1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// Note that the sanitizer code has to deal with how shadow/origin pairs 126 /// returned by the these functions are represented in different ABIs. In 127 /// the X86_64 ABI they are returned in RDX:RAX, and in the SystemZ ABI they 128 /// are written to memory pointed to by a hidden parameter. 129 /// - TLS variables are stored in a single per-task struct. A call to a 130 /// function __msan_get_context_state() returning a pointer to that struct 131 /// is inserted into every instrumented function before the entry block; 132 /// - __msan_warning() takes a 32-bit origin parameter; 133 /// - local variables are poisoned with __msan_poison_alloca() upon function 134 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 135 /// function; 136 /// - the pass doesn't declare any global variables or add global constructors 137 /// to the translation unit. 138 /// 139 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 140 /// calls, making sure we're on the safe side wrt. possible false positives. 141 /// 142 /// KernelMemorySanitizer only supports X86_64 and SystemZ at the moment. 143 /// 144 // 145 // FIXME: This sanitizer does not yet handle scalable vectors 146 // 147 //===----------------------------------------------------------------------===// 148 149 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 150 #include "llvm/ADT/APInt.h" 151 #include "llvm/ADT/ArrayRef.h" 152 #include "llvm/ADT/DenseMap.h" 153 #include "llvm/ADT/DepthFirstIterator.h" 154 #include "llvm/ADT/SetVector.h" 155 #include "llvm/ADT/SmallVector.h" 156 #include "llvm/ADT/StringExtras.h" 157 #include "llvm/ADT/StringRef.h" 158 #include "llvm/Analysis/GlobalsModRef.h" 159 #include "llvm/Analysis/TargetLibraryInfo.h" 160 #include "llvm/Analysis/ValueTracking.h" 161 #include "llvm/IR/Argument.h" 162 #include "llvm/IR/AttributeMask.h" 163 #include "llvm/IR/Attributes.h" 164 #include "llvm/IR/BasicBlock.h" 165 #include "llvm/IR/CallingConv.h" 166 #include "llvm/IR/Constant.h" 167 #include "llvm/IR/Constants.h" 168 #include "llvm/IR/DataLayout.h" 169 #include "llvm/IR/DerivedTypes.h" 170 #include "llvm/IR/Function.h" 171 #include "llvm/IR/GlobalValue.h" 172 #include "llvm/IR/GlobalVariable.h" 173 #include "llvm/IR/IRBuilder.h" 174 #include "llvm/IR/InlineAsm.h" 175 #include "llvm/IR/InstVisitor.h" 176 #include "llvm/IR/InstrTypes.h" 177 #include "llvm/IR/Instruction.h" 178 #include "llvm/IR/Instructions.h" 179 #include "llvm/IR/IntrinsicInst.h" 180 #include "llvm/IR/Intrinsics.h" 181 #include "llvm/IR/IntrinsicsX86.h" 182 #include "llvm/IR/MDBuilder.h" 183 #include "llvm/IR/Module.h" 184 #include "llvm/IR/Type.h" 185 #include "llvm/IR/Value.h" 186 #include "llvm/IR/ValueMap.h" 187 #include "llvm/Support/Alignment.h" 188 #include "llvm/Support/AtomicOrdering.h" 189 #include "llvm/Support/Casting.h" 190 #include "llvm/Support/CommandLine.h" 191 #include "llvm/Support/Debug.h" 192 #include "llvm/Support/DebugCounter.h" 193 #include "llvm/Support/ErrorHandling.h" 194 #include "llvm/Support/MathExtras.h" 195 #include "llvm/Support/raw_ostream.h" 196 #include "llvm/TargetParser/Triple.h" 197 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 198 #include "llvm/Transforms/Utils/Local.h" 199 #include "llvm/Transforms/Utils/ModuleUtils.h" 200 #include <algorithm> 201 #include <cassert> 202 #include <cstddef> 203 #include <cstdint> 204 #include <memory> 205 #include <string> 206 #include <tuple> 207 208 using namespace llvm; 209 210 #define DEBUG_TYPE "msan" 211 212 DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check", 213 "Controls which checks to insert"); 214 215 static const unsigned kOriginSize = 4; 216 static const Align kMinOriginAlignment = Align(4); 217 static const Align kShadowTLSAlignment = Align(8); 218 219 // These constants must be kept in sync with the ones in msan.h. 220 static const unsigned kParamTLSSize = 800; 221 static const unsigned kRetvalTLSSize = 800; 222 223 // Accesses sizes are powers of two: 1, 2, 4, 8. 224 static const size_t kNumberOfAccessSizes = 4; 225 226 /// Track origins of uninitialized values. 227 /// 228 /// Adds a section to MemorySanitizer report that points to the allocation 229 /// (stack or heap) the uninitialized bits came from originally. 230 static cl::opt<int> ClTrackOrigins( 231 "msan-track-origins", 232 cl::desc("Track origins (allocation sites) of poisoned memory"), cl::Hidden, 233 cl::init(0)); 234 235 static cl::opt<bool> ClKeepGoing("msan-keep-going", 236 cl::desc("keep going after reporting a UMR"), 237 cl::Hidden, cl::init(false)); 238 239 static cl::opt<bool> 240 ClPoisonStack("msan-poison-stack", 241 cl::desc("poison uninitialized stack variables"), cl::Hidden, 242 cl::init(true)); 243 244 static cl::opt<bool> ClPoisonStackWithCall( 245 "msan-poison-stack-with-call", 246 cl::desc("poison uninitialized stack variables with a call"), cl::Hidden, 247 cl::init(false)); 248 249 static cl::opt<int> ClPoisonStackPattern( 250 "msan-poison-stack-pattern", 251 cl::desc("poison uninitialized stack variables with the given pattern"), 252 cl::Hidden, cl::init(0xff)); 253 254 static cl::opt<bool> 255 ClPrintStackNames("msan-print-stack-names", 256 cl::desc("Print name of local stack variable"), 257 cl::Hidden, cl::init(true)); 258 259 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 260 cl::desc("poison undef temps"), cl::Hidden, 261 cl::init(true)); 262 263 static cl::opt<bool> 264 ClHandleICmp("msan-handle-icmp", 265 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 266 cl::Hidden, cl::init(true)); 267 268 static cl::opt<bool> 269 ClHandleICmpExact("msan-handle-icmp-exact", 270 cl::desc("exact handling of relational integer ICmp"), 271 cl::Hidden, cl::init(false)); 272 273 static cl::opt<bool> ClHandleLifetimeIntrinsics( 274 "msan-handle-lifetime-intrinsics", 275 cl::desc( 276 "when possible, poison scoped variables at the beginning of the scope " 277 "(slower, but more precise)"), 278 cl::Hidden, cl::init(true)); 279 280 // When compiling the Linux kernel, we sometimes see false positives related to 281 // MSan being unable to understand that inline assembly calls may initialize 282 // local variables. 283 // This flag makes the compiler conservatively unpoison every memory location 284 // passed into an assembly call. Note that this may cause false positives. 285 // Because it's impossible to figure out the array sizes, we can only unpoison 286 // the first sizeof(type) bytes for each type* pointer. 287 // The instrumentation is only enabled in KMSAN builds, and only if 288 // -msan-handle-asm-conservative is on. This is done because we may want to 289 // quickly disable assembly instrumentation when it breaks. 290 static cl::opt<bool> ClHandleAsmConservative( 291 "msan-handle-asm-conservative", 292 cl::desc("conservative handling of inline assembly"), cl::Hidden, 293 cl::init(true)); 294 295 // This flag controls whether we check the shadow of the address 296 // operand of load or store. Such bugs are very rare, since load from 297 // a garbage address typically results in SEGV, but still happen 298 // (e.g. only lower bits of address are garbage, or the access happens 299 // early at program startup where malloc-ed memory is more likely to 300 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 301 static cl::opt<bool> ClCheckAccessAddress( 302 "msan-check-access-address", 303 cl::desc("report accesses through a pointer which has poisoned shadow"), 304 cl::Hidden, cl::init(true)); 305 306 static cl::opt<bool> ClEagerChecks( 307 "msan-eager-checks", 308 cl::desc("check arguments and return values at function call boundaries"), 309 cl::Hidden, cl::init(false)); 310 311 static cl::opt<bool> ClDumpStrictInstructions( 312 "msan-dump-strict-instructions", 313 cl::desc("print out instructions with default strict semantics"), 314 cl::Hidden, cl::init(false)); 315 316 static cl::opt<int> ClInstrumentationWithCallThreshold( 317 "msan-instrumentation-with-call-threshold", 318 cl::desc( 319 "If the function being instrumented requires more than " 320 "this number of checks and origin stores, use callbacks instead of " 321 "inline checks (-1 means never use callbacks)."), 322 cl::Hidden, cl::init(3500)); 323 324 static cl::opt<bool> 325 ClEnableKmsan("msan-kernel", 326 cl::desc("Enable KernelMemorySanitizer instrumentation"), 327 cl::Hidden, cl::init(false)); 328 329 static cl::opt<bool> 330 ClDisableChecks("msan-disable-checks", 331 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden, 332 cl::init(false)); 333 334 static cl::opt<bool> 335 ClCheckConstantShadow("msan-check-constant-shadow", 336 cl::desc("Insert checks for constant shadow values"), 337 cl::Hidden, cl::init(true)); 338 339 // This is off by default because of a bug in gold: 340 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 341 static cl::opt<bool> 342 ClWithComdat("msan-with-comdat", 343 cl::desc("Place MSan constructors in comdat sections"), 344 cl::Hidden, cl::init(false)); 345 346 // These options allow to specify custom memory map parameters 347 // See MemoryMapParams for details. 348 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 349 cl::desc("Define custom MSan AndMask"), 350 cl::Hidden, cl::init(0)); 351 352 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 353 cl::desc("Define custom MSan XorMask"), 354 cl::Hidden, cl::init(0)); 355 356 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 357 cl::desc("Define custom MSan ShadowBase"), 358 cl::Hidden, cl::init(0)); 359 360 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 361 cl::desc("Define custom MSan OriginBase"), 362 cl::Hidden, cl::init(0)); 363 364 static cl::opt<int> 365 ClDisambiguateWarning("msan-disambiguate-warning-threshold", 366 cl::desc("Define threshold for number of checks per " 367 "debug location to force origin update."), 368 cl::Hidden, cl::init(3)); 369 370 const char kMsanModuleCtorName[] = "msan.module_ctor"; 371 const char kMsanInitName[] = "__msan_init"; 372 373 namespace { 374 375 // Memory map parameters used in application-to-shadow address calculation. 376 // Offset = (Addr & ~AndMask) ^ XorMask 377 // Shadow = ShadowBase + Offset 378 // Origin = OriginBase + Offset 379 struct MemoryMapParams { 380 uint64_t AndMask; 381 uint64_t XorMask; 382 uint64_t ShadowBase; 383 uint64_t OriginBase; 384 }; 385 386 struct PlatformMemoryMapParams { 387 const MemoryMapParams *bits32; 388 const MemoryMapParams *bits64; 389 }; 390 391 } // end anonymous namespace 392 393 // i386 Linux 394 static const MemoryMapParams Linux_I386_MemoryMapParams = { 395 0x000080000000, // AndMask 396 0, // XorMask (not used) 397 0, // ShadowBase (not used) 398 0x000040000000, // OriginBase 399 }; 400 401 // x86_64 Linux 402 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 403 0, // AndMask (not used) 404 0x500000000000, // XorMask 405 0, // ShadowBase (not used) 406 0x100000000000, // OriginBase 407 }; 408 409 // mips64 Linux 410 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 411 0, // AndMask (not used) 412 0x008000000000, // XorMask 413 0, // ShadowBase (not used) 414 0x002000000000, // OriginBase 415 }; 416 417 // ppc64 Linux 418 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 419 0xE00000000000, // AndMask 420 0x100000000000, // XorMask 421 0x080000000000, // ShadowBase 422 0x1C0000000000, // OriginBase 423 }; 424 425 // s390x Linux 426 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 427 0xC00000000000, // AndMask 428 0, // XorMask (not used) 429 0x080000000000, // ShadowBase 430 0x1C0000000000, // OriginBase 431 }; 432 433 // aarch64 Linux 434 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 435 0, // AndMask (not used) 436 0x0B00000000000, // XorMask 437 0, // ShadowBase (not used) 438 0x0200000000000, // OriginBase 439 }; 440 441 // loongarch64 Linux 442 static const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { 443 0, // AndMask (not used) 444 0x500000000000, // XorMask 445 0, // ShadowBase (not used) 446 0x100000000000, // OriginBase 447 }; 448 449 // aarch64 FreeBSD 450 static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = { 451 0x1800000000000, // AndMask 452 0x0400000000000, // XorMask 453 0x0200000000000, // ShadowBase 454 0x0700000000000, // OriginBase 455 }; 456 457 // i386 FreeBSD 458 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 459 0x000180000000, // AndMask 460 0x000040000000, // XorMask 461 0x000020000000, // ShadowBase 462 0x000700000000, // OriginBase 463 }; 464 465 // x86_64 FreeBSD 466 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 467 0xc00000000000, // AndMask 468 0x200000000000, // XorMask 469 0x100000000000, // ShadowBase 470 0x380000000000, // OriginBase 471 }; 472 473 // x86_64 NetBSD 474 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 475 0, // AndMask 476 0x500000000000, // XorMask 477 0, // ShadowBase 478 0x100000000000, // OriginBase 479 }; 480 481 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 482 &Linux_I386_MemoryMapParams, 483 &Linux_X86_64_MemoryMapParams, 484 }; 485 486 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 487 nullptr, 488 &Linux_MIPS64_MemoryMapParams, 489 }; 490 491 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 492 nullptr, 493 &Linux_PowerPC64_MemoryMapParams, 494 }; 495 496 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 497 nullptr, 498 &Linux_S390X_MemoryMapParams, 499 }; 500 501 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 502 nullptr, 503 &Linux_AArch64_MemoryMapParams, 504 }; 505 506 static const PlatformMemoryMapParams Linux_LoongArch_MemoryMapParams = { 507 nullptr, 508 &Linux_LoongArch64_MemoryMapParams, 509 }; 510 511 static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = { 512 nullptr, 513 &FreeBSD_AArch64_MemoryMapParams, 514 }; 515 516 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 517 &FreeBSD_I386_MemoryMapParams, 518 &FreeBSD_X86_64_MemoryMapParams, 519 }; 520 521 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 522 nullptr, 523 &NetBSD_X86_64_MemoryMapParams, 524 }; 525 526 namespace { 527 528 /// Instrument functions of a module to detect uninitialized reads. 529 /// 530 /// Instantiating MemorySanitizer inserts the msan runtime library API function 531 /// declarations into the module if they don't exist already. Instantiating 532 /// ensures the __msan_init function is in the list of global constructors for 533 /// the module. 534 class MemorySanitizer { 535 public: 536 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 537 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 538 Recover(Options.Recover), EagerChecks(Options.EagerChecks) { 539 initializeModule(M); 540 } 541 542 // MSan cannot be moved or copied because of MapParams. 543 MemorySanitizer(MemorySanitizer &&) = delete; 544 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 545 MemorySanitizer(const MemorySanitizer &) = delete; 546 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 547 548 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 549 550 private: 551 friend struct MemorySanitizerVisitor; 552 friend struct VarArgHelperBase; 553 friend struct VarArgAMD64Helper; 554 friend struct VarArgMIPS64Helper; 555 friend struct VarArgAArch64Helper; 556 friend struct VarArgPowerPC64Helper; 557 friend struct VarArgSystemZHelper; 558 559 void initializeModule(Module &M); 560 void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI); 561 void createKernelApi(Module &M, const TargetLibraryInfo &TLI); 562 void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI); 563 564 template <typename... ArgsTy> 565 FunctionCallee getOrInsertMsanMetadataFunction(Module &M, StringRef Name, 566 ArgsTy... Args); 567 568 /// True if we're compiling the Linux kernel. 569 bool CompileKernel; 570 /// Track origins (allocation points) of uninitialized values. 571 int TrackOrigins; 572 bool Recover; 573 bool EagerChecks; 574 575 Triple TargetTriple; 576 LLVMContext *C; 577 Type *IntptrTy; ///< Integer type with the size of a ptr in default AS. 578 Type *OriginTy; 579 PointerType *PtrTy; ///< Integer type with the size of a ptr in default AS. 580 581 // XxxTLS variables represent the per-thread state in MSan and per-task state 582 // in KMSAN. 583 // For the userspace these point to thread-local globals. In the kernel land 584 // they point to the members of a per-task struct obtained via a call to 585 // __msan_get_context_state(). 586 587 /// Thread-local shadow storage for function parameters. 588 Value *ParamTLS; 589 590 /// Thread-local origin storage for function parameters. 591 Value *ParamOriginTLS; 592 593 /// Thread-local shadow storage for function return value. 594 Value *RetvalTLS; 595 596 /// Thread-local origin storage for function return value. 597 Value *RetvalOriginTLS; 598 599 /// Thread-local shadow storage for in-register va_arg function. 600 Value *VAArgTLS; 601 602 /// Thread-local shadow storage for in-register va_arg function. 603 Value *VAArgOriginTLS; 604 605 /// Thread-local shadow storage for va_arg overflow area. 606 Value *VAArgOverflowSizeTLS; 607 608 /// Are the instrumentation callbacks set up? 609 bool CallbacksInitialized = false; 610 611 /// The run-time callback to print a warning. 612 FunctionCallee WarningFn; 613 614 // These arrays are indexed by log2(AccessSize). 615 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 616 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 617 618 /// Run-time helper that generates a new origin value for a stack 619 /// allocation. 620 FunctionCallee MsanSetAllocaOriginWithDescriptionFn; 621 // No description version 622 FunctionCallee MsanSetAllocaOriginNoDescriptionFn; 623 624 /// Run-time helper that poisons stack on function entry. 625 FunctionCallee MsanPoisonStackFn; 626 627 /// Run-time helper that records a store (or any event) of an 628 /// uninitialized value and returns an updated origin id encoding this info. 629 FunctionCallee MsanChainOriginFn; 630 631 /// Run-time helper that paints an origin over a region. 632 FunctionCallee MsanSetOriginFn; 633 634 /// MSan runtime replacements for memmove, memcpy and memset. 635 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 636 637 /// KMSAN callback for task-local function argument shadow. 638 StructType *MsanContextStateTy; 639 FunctionCallee MsanGetContextStateFn; 640 641 /// Functions for poisoning/unpoisoning local variables 642 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 643 644 /// Pair of shadow/origin pointers. 645 Type *MsanMetadata; 646 647 /// Each of the MsanMetadataPtrXxx functions returns a MsanMetadata. 648 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 649 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 650 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 651 FunctionCallee MsanInstrumentAsmStoreFn; 652 653 /// Storage for return values of the MsanMetadataPtrXxx functions. 654 Value *MsanMetadataAlloca; 655 656 /// Helper to choose between different MsanMetadataPtrXxx(). 657 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 658 659 /// Memory map parameters used in application-to-shadow calculation. 660 const MemoryMapParams *MapParams; 661 662 /// Custom memory map parameters used when -msan-shadow-base or 663 // -msan-origin-base is provided. 664 MemoryMapParams CustomMapParams; 665 666 MDNode *ColdCallWeights; 667 668 /// Branch weights for origin store. 669 MDNode *OriginStoreWeights; 670 }; 671 672 void insertModuleCtor(Module &M) { 673 getOrCreateSanitizerCtorAndInitFunctions( 674 M, kMsanModuleCtorName, kMsanInitName, 675 /*InitArgTypes=*/{}, 676 /*InitArgs=*/{}, 677 // This callback is invoked when the functions are created the first 678 // time. Hook them into the global ctors list in that case: 679 [&](Function *Ctor, FunctionCallee) { 680 if (!ClWithComdat) { 681 appendToGlobalCtors(M, Ctor, 0); 682 return; 683 } 684 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 685 Ctor->setComdat(MsanCtorComdat); 686 appendToGlobalCtors(M, Ctor, 0, Ctor); 687 }); 688 } 689 690 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 691 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 692 } 693 694 } // end anonymous namespace 695 696 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, 697 bool EagerChecks) 698 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 699 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 700 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)), 701 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {} 702 703 PreservedAnalyses MemorySanitizerPass::run(Module &M, 704 ModuleAnalysisManager &AM) { 705 bool Modified = false; 706 if (!Options.Kernel) { 707 insertModuleCtor(M); 708 Modified = true; 709 } 710 711 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 712 for (Function &F : M) { 713 if (F.empty()) 714 continue; 715 MemorySanitizer Msan(*F.getParent(), Options); 716 Modified |= 717 Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)); 718 } 719 720 if (!Modified) 721 return PreservedAnalyses::all(); 722 723 PreservedAnalyses PA = PreservedAnalyses::none(); 724 // GlobalsAA is considered stateless and does not get invalidated unless 725 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 726 // make changes that require GlobalsAA to be invalidated. 727 PA.abandon<GlobalsAA>(); 728 return PA; 729 } 730 731 void MemorySanitizerPass::printPipeline( 732 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 733 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( 734 OS, MapClassName2PassName); 735 OS << '<'; 736 if (Options.Recover) 737 OS << "recover;"; 738 if (Options.Kernel) 739 OS << "kernel;"; 740 if (Options.EagerChecks) 741 OS << "eager-checks;"; 742 OS << "track-origins=" << Options.TrackOrigins; 743 OS << '>'; 744 } 745 746 /// Create a non-const global initialized with the given string. 747 /// 748 /// Creates a writable global for Str so that we can pass it to the 749 /// run-time lib. Runtime uses first 4 bytes of the string to store the 750 /// frame ID, so the string needs to be mutable. 751 static GlobalVariable *createPrivateConstGlobalForString(Module &M, 752 StringRef Str) { 753 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 754 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true, 755 GlobalValue::PrivateLinkage, StrConst, ""); 756 } 757 758 template <typename... ArgsTy> 759 FunctionCallee 760 MemorySanitizer::getOrInsertMsanMetadataFunction(Module &M, StringRef Name, 761 ArgsTy... Args) { 762 if (TargetTriple.getArch() == Triple::systemz) { 763 // SystemZ ABI: shadow/origin pair is returned via a hidden parameter. 764 return M.getOrInsertFunction(Name, Type::getVoidTy(*C), 765 PointerType::get(MsanMetadata, 0), 766 std::forward<ArgsTy>(Args)...); 767 } 768 769 return M.getOrInsertFunction(Name, MsanMetadata, 770 std::forward<ArgsTy>(Args)...); 771 } 772 773 /// Create KMSAN API callbacks. 774 void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) { 775 IRBuilder<> IRB(*C); 776 777 // These will be initialized in insertKmsanPrologue(). 778 RetvalTLS = nullptr; 779 RetvalOriginTLS = nullptr; 780 ParamTLS = nullptr; 781 ParamOriginTLS = nullptr; 782 VAArgTLS = nullptr; 783 VAArgOriginTLS = nullptr; 784 VAArgOverflowSizeTLS = nullptr; 785 786 WarningFn = M.getOrInsertFunction("__msan_warning", 787 TLI.getAttrList(C, {0}, /*Signed=*/false), 788 IRB.getVoidTy(), IRB.getInt32Ty()); 789 790 // Requests the per-task context state (kmsan_context_state*) from the 791 // runtime library. 792 MsanContextStateTy = StructType::get( 793 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 794 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 795 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 796 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 797 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 798 OriginTy); 799 MsanGetContextStateFn = M.getOrInsertFunction( 800 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 801 802 MsanMetadata = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 803 PointerType::get(IRB.getInt32Ty(), 0)); 804 805 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 806 std::string name_load = 807 "__msan_metadata_ptr_for_load_" + std::to_string(size); 808 std::string name_store = 809 "__msan_metadata_ptr_for_store_" + std::to_string(size); 810 MsanMetadataPtrForLoad_1_8[ind] = getOrInsertMsanMetadataFunction( 811 M, name_load, PointerType::get(IRB.getInt8Ty(), 0)); 812 MsanMetadataPtrForStore_1_8[ind] = getOrInsertMsanMetadataFunction( 813 M, name_store, PointerType::get(IRB.getInt8Ty(), 0)); 814 } 815 816 MsanMetadataPtrForLoadN = getOrInsertMsanMetadataFunction( 817 M, "__msan_metadata_ptr_for_load_n", PointerType::get(IRB.getInt8Ty(), 0), 818 IRB.getInt64Ty()); 819 MsanMetadataPtrForStoreN = getOrInsertMsanMetadataFunction( 820 M, "__msan_metadata_ptr_for_store_n", 821 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 822 823 // Functions for poisoning and unpoisoning memory. 824 MsanPoisonAllocaFn = M.getOrInsertFunction( 825 "__msan_poison_alloca", IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy); 826 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 827 "__msan_unpoison_alloca", IRB.getVoidTy(), PtrTy, IntptrTy); 828 } 829 830 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 831 return M.getOrInsertGlobal(Name, Ty, [&] { 832 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 833 nullptr, Name, nullptr, 834 GlobalVariable::InitialExecTLSModel); 835 }); 836 } 837 838 /// Insert declarations for userspace-specific functions and globals. 839 void MemorySanitizer::createUserspaceApi(Module &M, const TargetLibraryInfo &TLI) { 840 IRBuilder<> IRB(*C); 841 842 // Create the callback. 843 // FIXME: this function should have "Cold" calling conv, 844 // which is not yet implemented. 845 if (TrackOrigins) { 846 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 847 : "__msan_warning_with_origin_noreturn"; 848 WarningFn = M.getOrInsertFunction(WarningFnName, 849 TLI.getAttrList(C, {0}, /*Signed=*/false), 850 IRB.getVoidTy(), IRB.getInt32Ty()); 851 } else { 852 StringRef WarningFnName = 853 Recover ? "__msan_warning" : "__msan_warning_noreturn"; 854 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 855 } 856 857 // Create the global TLS variables. 858 RetvalTLS = 859 getOrInsertGlobal(M, "__msan_retval_tls", 860 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 861 862 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 863 864 ParamTLS = 865 getOrInsertGlobal(M, "__msan_param_tls", 866 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 867 868 ParamOriginTLS = 869 getOrInsertGlobal(M, "__msan_param_origin_tls", 870 ArrayType::get(OriginTy, kParamTLSSize / 4)); 871 872 VAArgTLS = 873 getOrInsertGlobal(M, "__msan_va_arg_tls", 874 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 875 876 VAArgOriginTLS = 877 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 878 ArrayType::get(OriginTy, kParamTLSSize / 4)); 879 880 VAArgOverflowSizeTLS = 881 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 882 883 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 884 AccessSizeIndex++) { 885 unsigned AccessSize = 1 << AccessSizeIndex; 886 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 887 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 888 FunctionName, TLI.getAttrList(C, {0, 1}, /*Signed=*/false), 889 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 890 891 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 892 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 893 FunctionName, TLI.getAttrList(C, {0, 2}, /*Signed=*/false), 894 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), PtrTy, 895 IRB.getInt32Ty()); 896 } 897 898 MsanSetAllocaOriginWithDescriptionFn = 899 M.getOrInsertFunction("__msan_set_alloca_origin_with_descr", 900 IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy, PtrTy); 901 MsanSetAllocaOriginNoDescriptionFn = 902 M.getOrInsertFunction("__msan_set_alloca_origin_no_descr", 903 IRB.getVoidTy(), PtrTy, IntptrTy, PtrTy); 904 MsanPoisonStackFn = M.getOrInsertFunction("__msan_poison_stack", 905 IRB.getVoidTy(), PtrTy, IntptrTy); 906 } 907 908 /// Insert extern declaration of runtime-provided functions and globals. 909 void MemorySanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo &TLI) { 910 // Only do this once. 911 if (CallbacksInitialized) 912 return; 913 914 IRBuilder<> IRB(*C); 915 // Initialize callbacks that are common for kernel and userspace 916 // instrumentation. 917 MsanChainOriginFn = M.getOrInsertFunction( 918 "__msan_chain_origin", 919 TLI.getAttrList(C, {0}, /*Signed=*/false, /*Ret=*/true), IRB.getInt32Ty(), 920 IRB.getInt32Ty()); 921 MsanSetOriginFn = M.getOrInsertFunction( 922 "__msan_set_origin", TLI.getAttrList(C, {2}, /*Signed=*/false), 923 IRB.getVoidTy(), PtrTy, IntptrTy, IRB.getInt32Ty()); 924 MemmoveFn = 925 M.getOrInsertFunction("__msan_memmove", PtrTy, PtrTy, PtrTy, IntptrTy); 926 MemcpyFn = 927 M.getOrInsertFunction("__msan_memcpy", PtrTy, PtrTy, PtrTy, IntptrTy); 928 MemsetFn = M.getOrInsertFunction("__msan_memset", 929 TLI.getAttrList(C, {1}, /*Signed=*/true), 930 PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy); 931 932 MsanInstrumentAsmStoreFn = 933 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 934 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 935 936 if (CompileKernel) { 937 createKernelApi(M, TLI); 938 } else { 939 createUserspaceApi(M, TLI); 940 } 941 CallbacksInitialized = true; 942 } 943 944 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 945 int size) { 946 FunctionCallee *Fns = 947 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 948 switch (size) { 949 case 1: 950 return Fns[0]; 951 case 2: 952 return Fns[1]; 953 case 4: 954 return Fns[2]; 955 case 8: 956 return Fns[3]; 957 default: 958 return nullptr; 959 } 960 } 961 962 /// Module-level initialization. 963 /// 964 /// inserts a call to __msan_init to the module's constructor list. 965 void MemorySanitizer::initializeModule(Module &M) { 966 auto &DL = M.getDataLayout(); 967 968 TargetTriple = Triple(M.getTargetTriple()); 969 970 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 971 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 972 // Check the overrides first 973 if (ShadowPassed || OriginPassed) { 974 CustomMapParams.AndMask = ClAndMask; 975 CustomMapParams.XorMask = ClXorMask; 976 CustomMapParams.ShadowBase = ClShadowBase; 977 CustomMapParams.OriginBase = ClOriginBase; 978 MapParams = &CustomMapParams; 979 } else { 980 switch (TargetTriple.getOS()) { 981 case Triple::FreeBSD: 982 switch (TargetTriple.getArch()) { 983 case Triple::aarch64: 984 MapParams = FreeBSD_ARM_MemoryMapParams.bits64; 985 break; 986 case Triple::x86_64: 987 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 988 break; 989 case Triple::x86: 990 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 991 break; 992 default: 993 report_fatal_error("unsupported architecture"); 994 } 995 break; 996 case Triple::NetBSD: 997 switch (TargetTriple.getArch()) { 998 case Triple::x86_64: 999 MapParams = NetBSD_X86_MemoryMapParams.bits64; 1000 break; 1001 default: 1002 report_fatal_error("unsupported architecture"); 1003 } 1004 break; 1005 case Triple::Linux: 1006 switch (TargetTriple.getArch()) { 1007 case Triple::x86_64: 1008 MapParams = Linux_X86_MemoryMapParams.bits64; 1009 break; 1010 case Triple::x86: 1011 MapParams = Linux_X86_MemoryMapParams.bits32; 1012 break; 1013 case Triple::mips64: 1014 case Triple::mips64el: 1015 MapParams = Linux_MIPS_MemoryMapParams.bits64; 1016 break; 1017 case Triple::ppc64: 1018 case Triple::ppc64le: 1019 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 1020 break; 1021 case Triple::systemz: 1022 MapParams = Linux_S390_MemoryMapParams.bits64; 1023 break; 1024 case Triple::aarch64: 1025 case Triple::aarch64_be: 1026 MapParams = Linux_ARM_MemoryMapParams.bits64; 1027 break; 1028 case Triple::loongarch64: 1029 MapParams = Linux_LoongArch_MemoryMapParams.bits64; 1030 break; 1031 default: 1032 report_fatal_error("unsupported architecture"); 1033 } 1034 break; 1035 default: 1036 report_fatal_error("unsupported operating system"); 1037 } 1038 } 1039 1040 C = &(M.getContext()); 1041 IRBuilder<> IRB(*C); 1042 IntptrTy = IRB.getIntPtrTy(DL); 1043 OriginTy = IRB.getInt32Ty(); 1044 PtrTy = IRB.getPtrTy(); 1045 1046 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 1047 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 1048 1049 if (!CompileKernel) { 1050 if (TrackOrigins) 1051 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 1052 return new GlobalVariable( 1053 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 1054 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 1055 }); 1056 1057 if (Recover) 1058 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 1059 return new GlobalVariable(M, IRB.getInt32Ty(), true, 1060 GlobalValue::WeakODRLinkage, 1061 IRB.getInt32(Recover), "__msan_keep_going"); 1062 }); 1063 } 1064 } 1065 1066 namespace { 1067 1068 /// A helper class that handles instrumentation of VarArg 1069 /// functions on a particular platform. 1070 /// 1071 /// Implementations are expected to insert the instrumentation 1072 /// necessary to propagate argument shadow through VarArg function 1073 /// calls. Visit* methods are called during an InstVisitor pass over 1074 /// the function, and should avoid creating new basic blocks. A new 1075 /// instance of this class is created for each instrumented function. 1076 struct VarArgHelper { 1077 virtual ~VarArgHelper() = default; 1078 1079 /// Visit a CallBase. 1080 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1081 1082 /// Visit a va_start call. 1083 virtual void visitVAStartInst(VAStartInst &I) = 0; 1084 1085 /// Visit a va_copy call. 1086 virtual void visitVACopyInst(VACopyInst &I) = 0; 1087 1088 /// Finalize function instrumentation. 1089 /// 1090 /// This method is called after visiting all interesting (see above) 1091 /// instructions in a function. 1092 virtual void finalizeInstrumentation() = 0; 1093 }; 1094 1095 struct MemorySanitizerVisitor; 1096 1097 } // end anonymous namespace 1098 1099 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1100 MemorySanitizerVisitor &Visitor); 1101 1102 static unsigned TypeSizeToSizeIndex(TypeSize TS) { 1103 if (TS.isScalable()) 1104 // Scalable types unconditionally take slowpaths. 1105 return kNumberOfAccessSizes; 1106 unsigned TypeSizeFixed = TS.getFixedValue(); 1107 if (TypeSizeFixed <= 8) 1108 return 0; 1109 return Log2_32_Ceil((TypeSizeFixed + 7) / 8); 1110 } 1111 1112 namespace { 1113 1114 /// Helper class to attach debug information of the given instruction onto new 1115 /// instructions inserted after. 1116 class NextNodeIRBuilder : public IRBuilder<> { 1117 public: 1118 explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) { 1119 SetCurrentDebugLocation(IP->getDebugLoc()); 1120 } 1121 }; 1122 1123 /// This class does all the work for a given function. Store and Load 1124 /// instructions store and load corresponding shadow and origin 1125 /// values. Most instructions propagate shadow from arguments to their 1126 /// return values. Certain instructions (most importantly, BranchInst) 1127 /// test their argument shadow and print reports (with a runtime call) if it's 1128 /// non-zero. 1129 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1130 Function &F; 1131 MemorySanitizer &MS; 1132 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1133 ValueMap<Value *, Value *> ShadowMap, OriginMap; 1134 std::unique_ptr<VarArgHelper> VAHelper; 1135 const TargetLibraryInfo *TLI; 1136 Instruction *FnPrologueEnd; 1137 1138 // The following flags disable parts of MSan instrumentation based on 1139 // exclusion list contents and command-line options. 1140 bool InsertChecks; 1141 bool PropagateShadow; 1142 bool PoisonStack; 1143 bool PoisonUndef; 1144 1145 struct ShadowOriginAndInsertPoint { 1146 Value *Shadow; 1147 Value *Origin; 1148 Instruction *OrigIns; 1149 1150 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1151 : Shadow(S), Origin(O), OrigIns(I) {} 1152 }; 1153 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1154 DenseMap<const DILocation *, int> LazyWarningDebugLocationCount; 1155 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1156 SmallSetVector<AllocaInst *, 16> AllocaSet; 1157 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1158 SmallVector<StoreInst *, 16> StoreList; 1159 int64_t SplittableBlocksCount = 0; 1160 1161 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1162 const TargetLibraryInfo &TLI) 1163 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1164 bool SanitizeFunction = 1165 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks; 1166 InsertChecks = SanitizeFunction; 1167 PropagateShadow = SanitizeFunction; 1168 PoisonStack = SanitizeFunction && ClPoisonStack; 1169 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1170 1171 // In the presence of unreachable blocks, we may see Phi nodes with 1172 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1173 // blocks, such nodes will not have any shadow value associated with them. 1174 // It's easier to remove unreachable blocks than deal with missing shadow. 1175 removeUnreachableBlocks(F); 1176 1177 MS.initializeCallbacks(*F.getParent(), TLI); 1178 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1179 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1180 1181 if (MS.CompileKernel) { 1182 IRBuilder<> IRB(FnPrologueEnd); 1183 insertKmsanPrologue(IRB); 1184 } 1185 1186 LLVM_DEBUG(if (!InsertChecks) dbgs() 1187 << "MemorySanitizer is not inserting checks into '" 1188 << F.getName() << "'\n"); 1189 } 1190 1191 bool instrumentWithCalls(Value *V) { 1192 // Constants likely will be eliminated by follow-up passes. 1193 if (isa<Constant>(V)) 1194 return false; 1195 1196 ++SplittableBlocksCount; 1197 return ClInstrumentationWithCallThreshold >= 0 && 1198 SplittableBlocksCount > ClInstrumentationWithCallThreshold; 1199 } 1200 1201 bool isInPrologue(Instruction &I) { 1202 return I.getParent() == FnPrologueEnd->getParent() && 1203 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1204 } 1205 1206 // Creates a new origin and records the stack trace. In general we can call 1207 // this function for any origin manipulation we like. However it will cost 1208 // runtime resources. So use this wisely only if it can provide additional 1209 // information helpful to a user. 1210 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1211 if (MS.TrackOrigins <= 1) 1212 return V; 1213 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1214 } 1215 1216 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1217 const DataLayout &DL = F.getParent()->getDataLayout(); 1218 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1219 if (IntptrSize == kOriginSize) 1220 return Origin; 1221 assert(IntptrSize == kOriginSize * 2); 1222 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1223 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1224 } 1225 1226 /// Fill memory range with the given origin value. 1227 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1228 TypeSize TS, Align Alignment) { 1229 const DataLayout &DL = F.getParent()->getDataLayout(); 1230 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1231 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1232 assert(IntptrAlignment >= kMinOriginAlignment); 1233 assert(IntptrSize >= kOriginSize); 1234 1235 // Note: The loop based formation works for fixed length vectors too, 1236 // however we prefer to unroll and specialize alignment below. 1237 if (TS.isScalable()) { 1238 Value *Size = IRB.CreateTypeSize(IRB.getInt32Ty(), TS); 1239 Value *RoundUp = IRB.CreateAdd(Size, IRB.getInt32(kOriginSize - 1)); 1240 Value *End = IRB.CreateUDiv(RoundUp, IRB.getInt32(kOriginSize)); 1241 auto [InsertPt, Index] = 1242 SplitBlockAndInsertSimpleForLoop(End, &*IRB.GetInsertPoint()); 1243 IRB.SetInsertPoint(InsertPt); 1244 1245 Value *GEP = IRB.CreateGEP(MS.OriginTy, OriginPtr, Index); 1246 IRB.CreateAlignedStore(Origin, GEP, kMinOriginAlignment); 1247 return; 1248 } 1249 1250 unsigned Size = TS.getFixedValue(); 1251 1252 unsigned Ofs = 0; 1253 Align CurrentAlignment = Alignment; 1254 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1255 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1256 Value *IntptrOriginPtr = 1257 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1258 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1259 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1260 : IntptrOriginPtr; 1261 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1262 Ofs += IntptrSize / kOriginSize; 1263 CurrentAlignment = IntptrAlignment; 1264 } 1265 } 1266 1267 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1268 Value *GEP = 1269 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1270 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1271 CurrentAlignment = kMinOriginAlignment; 1272 } 1273 } 1274 1275 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1276 Value *OriginPtr, Align Alignment) { 1277 const DataLayout &DL = F.getParent()->getDataLayout(); 1278 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1279 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1280 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1281 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1282 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { 1283 // Origin is not needed: value is initialized or const shadow is 1284 // ignored. 1285 return; 1286 } 1287 if (llvm::isKnownNonZero(ConvertedShadow, DL)) { 1288 // Copy origin as the value is definitely uninitialized. 1289 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1290 OriginAlignment); 1291 return; 1292 } 1293 // Fallback to runtime check, which still can be optimized out later. 1294 } 1295 1296 TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1297 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1298 if (instrumentWithCalls(ConvertedShadow) && 1299 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1300 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1301 Value *ConvertedShadow2 = 1302 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1303 CallBase *CB = IRB.CreateCall(Fn, {ConvertedShadow2, Addr, Origin}); 1304 CB->addParamAttr(0, Attribute::ZExt); 1305 CB->addParamAttr(2, Attribute::ZExt); 1306 } else { 1307 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1308 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1309 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1310 IRBuilder<> IRBNew(CheckTerm); 1311 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1312 OriginAlignment); 1313 } 1314 } 1315 1316 void materializeStores() { 1317 for (StoreInst *SI : StoreList) { 1318 IRBuilder<> IRB(SI); 1319 Value *Val = SI->getValueOperand(); 1320 Value *Addr = SI->getPointerOperand(); 1321 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1322 Value *ShadowPtr, *OriginPtr; 1323 Type *ShadowTy = Shadow->getType(); 1324 const Align Alignment = SI->getAlign(); 1325 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1326 std::tie(ShadowPtr, OriginPtr) = 1327 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1328 1329 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1330 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1331 (void)NewSI; 1332 1333 if (SI->isAtomic()) 1334 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1335 1336 if (MS.TrackOrigins && !SI->isAtomic()) 1337 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1338 OriginAlignment); 1339 } 1340 } 1341 1342 // Returns true if Debug Location curresponds to multiple warnings. 1343 bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) { 1344 if (MS.TrackOrigins < 2) 1345 return false; 1346 1347 if (LazyWarningDebugLocationCount.empty()) 1348 for (const auto &I : InstrumentationList) 1349 ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()]; 1350 1351 return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning; 1352 } 1353 1354 /// Helper function to insert a warning at IRB's current insert point. 1355 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1356 if (!Origin) 1357 Origin = (Value *)IRB.getInt32(0); 1358 assert(Origin->getType()->isIntegerTy()); 1359 1360 if (shouldDisambiguateWarningLocation(IRB.getCurrentDebugLocation())) { 1361 // Try to create additional origin with debug info of the last origin 1362 // instruction. It may provide additional information to the user. 1363 if (Instruction *OI = dyn_cast_or_null<Instruction>(Origin)) { 1364 assert(MS.TrackOrigins); 1365 auto NewDebugLoc = OI->getDebugLoc(); 1366 // Origin update with missing or the same debug location provides no 1367 // additional value. 1368 if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) { 1369 // Insert update just before the check, so we call runtime only just 1370 // before the report. 1371 IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint()); 1372 IRBOrigin.SetCurrentDebugLocation(NewDebugLoc); 1373 Origin = updateOrigin(Origin, IRBOrigin); 1374 } 1375 } 1376 } 1377 1378 if (MS.CompileKernel || MS.TrackOrigins) 1379 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1380 else 1381 IRB.CreateCall(MS.WarningFn)->setCannotMerge(); 1382 // FIXME: Insert UnreachableInst if !MS.Recover? 1383 // This may invalidate some of the following checks and needs to be done 1384 // at the very end. 1385 } 1386 1387 void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow, 1388 Value *Origin) { 1389 const DataLayout &DL = F.getParent()->getDataLayout(); 1390 TypeSize TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1391 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1392 if (instrumentWithCalls(ConvertedShadow) && 1393 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1394 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1395 Value *ConvertedShadow2 = 1396 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1397 CallBase *CB = IRB.CreateCall( 1398 Fn, {ConvertedShadow2, 1399 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1400 CB->addParamAttr(0, Attribute::ZExt); 1401 CB->addParamAttr(1, Attribute::ZExt); 1402 } else { 1403 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1404 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1405 Cmp, &*IRB.GetInsertPoint(), 1406 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1407 1408 IRB.SetInsertPoint(CheckTerm); 1409 insertWarningFn(IRB, Origin); 1410 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1411 } 1412 } 1413 1414 void materializeInstructionChecks( 1415 ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) { 1416 const DataLayout &DL = F.getParent()->getDataLayout(); 1417 // Disable combining in some cases. TrackOrigins checks each shadow to pick 1418 // correct origin. 1419 bool Combine = !MS.TrackOrigins; 1420 Instruction *Instruction = InstructionChecks.front().OrigIns; 1421 Value *Shadow = nullptr; 1422 for (const auto &ShadowData : InstructionChecks) { 1423 assert(ShadowData.OrigIns == Instruction); 1424 IRBuilder<> IRB(Instruction); 1425 1426 Value *ConvertedShadow = ShadowData.Shadow; 1427 1428 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1429 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { 1430 // Skip, value is initialized or const shadow is ignored. 1431 continue; 1432 } 1433 if (llvm::isKnownNonZero(ConvertedShadow, DL)) { 1434 // Report as the value is definitely uninitialized. 1435 insertWarningFn(IRB, ShadowData.Origin); 1436 if (!MS.Recover) 1437 return; // Always fail and stop here, not need to check the rest. 1438 // Skip entire instruction, 1439 continue; 1440 } 1441 // Fallback to runtime check, which still can be optimized out later. 1442 } 1443 1444 if (!Combine) { 1445 materializeOneCheck(IRB, ConvertedShadow, ShadowData.Origin); 1446 continue; 1447 } 1448 1449 if (!Shadow) { 1450 Shadow = ConvertedShadow; 1451 continue; 1452 } 1453 1454 Shadow = convertToBool(Shadow, IRB, "_mscmp"); 1455 ConvertedShadow = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1456 Shadow = IRB.CreateOr(Shadow, ConvertedShadow, "_msor"); 1457 } 1458 1459 if (Shadow) { 1460 assert(Combine); 1461 IRBuilder<> IRB(Instruction); 1462 materializeOneCheck(IRB, Shadow, nullptr); 1463 } 1464 } 1465 1466 void materializeChecks() { 1467 llvm::stable_sort(InstrumentationList, 1468 [](const ShadowOriginAndInsertPoint &L, 1469 const ShadowOriginAndInsertPoint &R) { 1470 return L.OrigIns < R.OrigIns; 1471 }); 1472 1473 for (auto I = InstrumentationList.begin(); 1474 I != InstrumentationList.end();) { 1475 auto J = 1476 std::find_if(I + 1, InstrumentationList.end(), 1477 [L = I->OrigIns](const ShadowOriginAndInsertPoint &R) { 1478 return L != R.OrigIns; 1479 }); 1480 // Process all checks of instruction at once. 1481 materializeInstructionChecks(ArrayRef<ShadowOriginAndInsertPoint>(I, J)); 1482 I = J; 1483 } 1484 1485 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1486 } 1487 1488 // Returns the last instruction in the new prologue 1489 void insertKmsanPrologue(IRBuilder<> &IRB) { 1490 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1491 Constant *Zero = IRB.getInt32(0); 1492 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1493 {Zero, IRB.getInt32(0)}, "param_shadow"); 1494 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1495 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1496 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1497 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1498 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1499 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1500 MS.VAArgOverflowSizeTLS = 1501 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1502 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1503 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1504 {Zero, IRB.getInt32(5)}, "param_origin"); 1505 MS.RetvalOriginTLS = 1506 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1507 {Zero, IRB.getInt32(6)}, "retval_origin"); 1508 if (MS.TargetTriple.getArch() == Triple::systemz) 1509 MS.MsanMetadataAlloca = IRB.CreateAlloca(MS.MsanMetadata, 0u); 1510 } 1511 1512 /// Add MemorySanitizer instrumentation to a function. 1513 bool runOnFunction() { 1514 // Iterate all BBs in depth-first order and create shadow instructions 1515 // for all instructions (where applicable). 1516 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1517 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1518 visit(*BB); 1519 1520 // Finalize PHI nodes. 1521 for (PHINode *PN : ShadowPHINodes) { 1522 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1523 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1524 size_t NumValues = PN->getNumIncomingValues(); 1525 for (size_t v = 0; v < NumValues; v++) { 1526 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1527 if (PNO) 1528 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1529 } 1530 } 1531 1532 VAHelper->finalizeInstrumentation(); 1533 1534 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1535 // instrumenting only allocas. 1536 if (InstrumentLifetimeStart) { 1537 for (auto Item : LifetimeStartList) { 1538 instrumentAlloca(*Item.second, Item.first); 1539 AllocaSet.remove(Item.second); 1540 } 1541 } 1542 // Poison the allocas for which we didn't instrument the corresponding 1543 // lifetime intrinsics. 1544 for (AllocaInst *AI : AllocaSet) 1545 instrumentAlloca(*AI); 1546 1547 // Insert shadow value checks. 1548 materializeChecks(); 1549 1550 // Delayed instrumentation of StoreInst. 1551 // This may not add new address checks. 1552 materializeStores(); 1553 1554 return true; 1555 } 1556 1557 /// Compute the shadow type that corresponds to a given Value. 1558 Type *getShadowTy(Value *V) { return getShadowTy(V->getType()); } 1559 1560 /// Compute the shadow type that corresponds to a given Type. 1561 Type *getShadowTy(Type *OrigTy) { 1562 if (!OrigTy->isSized()) { 1563 return nullptr; 1564 } 1565 // For integer type, shadow is the same as the original type. 1566 // This may return weird-sized types like i1. 1567 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1568 return IT; 1569 const DataLayout &DL = F.getParent()->getDataLayout(); 1570 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1571 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1572 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1573 VT->getElementCount()); 1574 } 1575 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1576 return ArrayType::get(getShadowTy(AT->getElementType()), 1577 AT->getNumElements()); 1578 } 1579 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1580 SmallVector<Type *, 4> Elements; 1581 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1582 Elements.push_back(getShadowTy(ST->getElementType(i))); 1583 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1584 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1585 return Res; 1586 } 1587 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1588 return IntegerType::get(*MS.C, TypeSize); 1589 } 1590 1591 /// Extract combined shadow of struct elements as a bool 1592 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1593 IRBuilder<> &IRB) { 1594 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1595 Value *Aggregator = FalseVal; 1596 1597 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1598 // Combine by ORing together each element's bool shadow 1599 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1600 Value *ShadowBool = convertToBool(ShadowItem, IRB); 1601 1602 if (Aggregator != FalseVal) 1603 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1604 else 1605 Aggregator = ShadowBool; 1606 } 1607 1608 return Aggregator; 1609 } 1610 1611 // Extract combined shadow of array elements 1612 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1613 IRBuilder<> &IRB) { 1614 if (!Array->getNumElements()) 1615 return IRB.getIntN(/* width */ 1, /* value */ 0); 1616 1617 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1618 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1619 1620 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1621 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1622 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1623 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1624 } 1625 return Aggregator; 1626 } 1627 1628 /// Convert a shadow value to it's flattened variant. The resulting 1629 /// shadow may not necessarily have the same bit width as the input 1630 /// value, but it will always be comparable to zero. 1631 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1632 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1633 return collapseStructShadow(Struct, V, IRB); 1634 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1635 return collapseArrayShadow(Array, V, IRB); 1636 if (isa<VectorType>(V->getType())) { 1637 if (isa<ScalableVectorType>(V->getType())) 1638 return convertShadowToScalar(IRB.CreateOrReduce(V), IRB); 1639 unsigned BitWidth = 1640 V->getType()->getPrimitiveSizeInBits().getFixedValue(); 1641 return IRB.CreateBitCast(V, IntegerType::get(*MS.C, BitWidth)); 1642 } 1643 return V; 1644 } 1645 1646 // Convert a scalar value to an i1 by comparing with 0 1647 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1648 Type *VTy = V->getType(); 1649 if (!VTy->isIntegerTy()) 1650 return convertToBool(convertShadowToScalar(V, IRB), IRB, name); 1651 if (VTy->getIntegerBitWidth() == 1) 1652 // Just converting a bool to a bool, so do nothing. 1653 return V; 1654 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1655 } 1656 1657 Type *ptrToIntPtrType(Type *PtrTy) const { 1658 if (VectorType *VectTy = dyn_cast<VectorType>(PtrTy)) { 1659 return VectorType::get(ptrToIntPtrType(VectTy->getElementType()), 1660 VectTy->getElementCount()); 1661 } 1662 assert(PtrTy->isIntOrPtrTy()); 1663 return MS.IntptrTy; 1664 } 1665 1666 Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const { 1667 if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) { 1668 return VectorType::get( 1669 getPtrToShadowPtrType(VectTy->getElementType(), ShadowTy), 1670 VectTy->getElementCount()); 1671 } 1672 assert(IntPtrTy == MS.IntptrTy); 1673 return PointerType::get(*MS.C, 0); 1674 } 1675 1676 Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const { 1677 if (VectorType *VectTy = dyn_cast<VectorType>(IntPtrTy)) { 1678 return ConstantVector::getSplat( 1679 VectTy->getElementCount(), constToIntPtr(VectTy->getElementType(), C)); 1680 } 1681 assert(IntPtrTy == MS.IntptrTy); 1682 return ConstantInt::get(MS.IntptrTy, C); 1683 } 1684 1685 /// Compute the integer shadow offset that corresponds to a given 1686 /// application address. 1687 /// 1688 /// Offset = (Addr & ~AndMask) ^ XorMask 1689 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1690 /// a single pointee. 1691 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1692 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1693 Type *IntptrTy = ptrToIntPtrType(Addr->getType()); 1694 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1695 1696 if (uint64_t AndMask = MS.MapParams->AndMask) 1697 OffsetLong = IRB.CreateAnd(OffsetLong, constToIntPtr(IntptrTy, ~AndMask)); 1698 1699 if (uint64_t XorMask = MS.MapParams->XorMask) 1700 OffsetLong = IRB.CreateXor(OffsetLong, constToIntPtr(IntptrTy, XorMask)); 1701 return OffsetLong; 1702 } 1703 1704 /// Compute the shadow and origin addresses corresponding to a given 1705 /// application address. 1706 /// 1707 /// Shadow = ShadowBase + Offset 1708 /// Origin = (OriginBase + Offset) & ~3ULL 1709 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1710 /// a single pointee. 1711 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1712 std::pair<Value *, Value *> 1713 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1714 MaybeAlign Alignment) { 1715 VectorType *VectTy = dyn_cast<VectorType>(Addr->getType()); 1716 if (!VectTy) { 1717 assert(Addr->getType()->isPointerTy()); 1718 } else { 1719 assert(VectTy->getElementType()->isPointerTy()); 1720 } 1721 Type *IntptrTy = ptrToIntPtrType(Addr->getType()); 1722 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1723 Value *ShadowLong = ShadowOffset; 1724 if (uint64_t ShadowBase = MS.MapParams->ShadowBase) { 1725 ShadowLong = 1726 IRB.CreateAdd(ShadowLong, constToIntPtr(IntptrTy, ShadowBase)); 1727 } 1728 Value *ShadowPtr = IRB.CreateIntToPtr( 1729 ShadowLong, getPtrToShadowPtrType(IntptrTy, ShadowTy)); 1730 1731 Value *OriginPtr = nullptr; 1732 if (MS.TrackOrigins) { 1733 Value *OriginLong = ShadowOffset; 1734 uint64_t OriginBase = MS.MapParams->OriginBase; 1735 if (OriginBase != 0) 1736 OriginLong = 1737 IRB.CreateAdd(OriginLong, constToIntPtr(IntptrTy, OriginBase)); 1738 if (!Alignment || *Alignment < kMinOriginAlignment) { 1739 uint64_t Mask = kMinOriginAlignment.value() - 1; 1740 OriginLong = IRB.CreateAnd(OriginLong, constToIntPtr(IntptrTy, ~Mask)); 1741 } 1742 OriginPtr = IRB.CreateIntToPtr( 1743 OriginLong, getPtrToShadowPtrType(IntptrTy, MS.OriginTy)); 1744 } 1745 return std::make_pair(ShadowPtr, OriginPtr); 1746 } 1747 1748 template <typename... ArgsTy> 1749 Value *createMetadataCall(IRBuilder<> &IRB, FunctionCallee Callee, 1750 ArgsTy... Args) { 1751 if (MS.TargetTriple.getArch() == Triple::systemz) { 1752 IRB.CreateCall(Callee, 1753 {MS.MsanMetadataAlloca, std::forward<ArgsTy>(Args)...}); 1754 return IRB.CreateLoad(MS.MsanMetadata, MS.MsanMetadataAlloca); 1755 } 1756 1757 return IRB.CreateCall(Callee, {std::forward<ArgsTy>(Args)...}); 1758 } 1759 1760 std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr, 1761 IRBuilder<> &IRB, 1762 Type *ShadowTy, 1763 bool isStore) { 1764 Value *ShadowOriginPtrs; 1765 const DataLayout &DL = F.getParent()->getDataLayout(); 1766 TypeSize Size = DL.getTypeStoreSize(ShadowTy); 1767 1768 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1769 Value *AddrCast = 1770 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1771 if (Getter) { 1772 ShadowOriginPtrs = createMetadataCall(IRB, Getter, AddrCast); 1773 } else { 1774 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1775 ShadowOriginPtrs = createMetadataCall( 1776 IRB, 1777 isStore ? MS.MsanMetadataPtrForStoreN : MS.MsanMetadataPtrForLoadN, 1778 AddrCast, SizeVal); 1779 } 1780 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1781 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1782 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1783 1784 return std::make_pair(ShadowPtr, OriginPtr); 1785 } 1786 1787 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1788 /// a single pointee. 1789 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1790 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1791 IRBuilder<> &IRB, 1792 Type *ShadowTy, 1793 bool isStore) { 1794 VectorType *VectTy = dyn_cast<VectorType>(Addr->getType()); 1795 if (!VectTy) { 1796 assert(Addr->getType()->isPointerTy()); 1797 return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore); 1798 } 1799 1800 // TODO: Support callbacs with vectors of addresses. 1801 unsigned NumElements = cast<FixedVectorType>(VectTy)->getNumElements(); 1802 Value *ShadowPtrs = ConstantInt::getNullValue( 1803 FixedVectorType::get(IRB.getPtrTy(), NumElements)); 1804 Value *OriginPtrs = nullptr; 1805 if (MS.TrackOrigins) 1806 OriginPtrs = ConstantInt::getNullValue( 1807 FixedVectorType::get(IRB.getPtrTy(), NumElements)); 1808 for (unsigned i = 0; i < NumElements; ++i) { 1809 Value *OneAddr = 1810 IRB.CreateExtractElement(Addr, ConstantInt::get(IRB.getInt32Ty(), i)); 1811 auto [ShadowPtr, OriginPtr] = 1812 getShadowOriginPtrKernelNoVec(OneAddr, IRB, ShadowTy, isStore); 1813 1814 ShadowPtrs = IRB.CreateInsertElement( 1815 ShadowPtrs, ShadowPtr, ConstantInt::get(IRB.getInt32Ty(), i)); 1816 if (MS.TrackOrigins) 1817 OriginPtrs = IRB.CreateInsertElement( 1818 OriginPtrs, OriginPtr, ConstantInt::get(IRB.getInt32Ty(), i)); 1819 } 1820 return {ShadowPtrs, OriginPtrs}; 1821 } 1822 1823 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1824 Type *ShadowTy, 1825 MaybeAlign Alignment, 1826 bool isStore) { 1827 if (MS.CompileKernel) 1828 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1829 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1830 } 1831 1832 /// Compute the shadow address for a given function argument. 1833 /// 1834 /// Shadow = ParamTLS+ArgOffset. 1835 Value *getShadowPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { 1836 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1837 if (ArgOffset) 1838 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1839 return IRB.CreateIntToPtr(Base, IRB.getPtrTy(0), "_msarg"); 1840 } 1841 1842 /// Compute the origin address for a given function argument. 1843 Value *getOriginPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { 1844 if (!MS.TrackOrigins) 1845 return nullptr; 1846 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1847 if (ArgOffset) 1848 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1849 return IRB.CreateIntToPtr(Base, IRB.getPtrTy(0), "_msarg_o"); 1850 } 1851 1852 /// Compute the shadow address for a retval. 1853 Value *getShadowPtrForRetval(IRBuilder<> &IRB) { 1854 return IRB.CreatePointerCast(MS.RetvalTLS, IRB.getPtrTy(0), "_msret"); 1855 } 1856 1857 /// Compute the origin address for a retval. 1858 Value *getOriginPtrForRetval() { 1859 // We keep a single origin for the entire retval. Might be too optimistic. 1860 return MS.RetvalOriginTLS; 1861 } 1862 1863 /// Set SV to be the shadow value for V. 1864 void setShadow(Value *V, Value *SV) { 1865 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1866 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1867 } 1868 1869 /// Set Origin to be the origin value for V. 1870 void setOrigin(Value *V, Value *Origin) { 1871 if (!MS.TrackOrigins) 1872 return; 1873 assert(!OriginMap.count(V) && "Values may only have one origin"); 1874 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1875 OriginMap[V] = Origin; 1876 } 1877 1878 Constant *getCleanShadow(Type *OrigTy) { 1879 Type *ShadowTy = getShadowTy(OrigTy); 1880 if (!ShadowTy) 1881 return nullptr; 1882 return Constant::getNullValue(ShadowTy); 1883 } 1884 1885 /// Create a clean shadow value for a given value. 1886 /// 1887 /// Clean shadow (all zeroes) means all bits of the value are defined 1888 /// (initialized). 1889 Constant *getCleanShadow(Value *V) { return getCleanShadow(V->getType()); } 1890 1891 /// Create a dirty shadow of a given shadow type. 1892 Constant *getPoisonedShadow(Type *ShadowTy) { 1893 assert(ShadowTy); 1894 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1895 return Constant::getAllOnesValue(ShadowTy); 1896 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1897 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1898 getPoisonedShadow(AT->getElementType())); 1899 return ConstantArray::get(AT, Vals); 1900 } 1901 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1902 SmallVector<Constant *, 4> Vals; 1903 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1904 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1905 return ConstantStruct::get(ST, Vals); 1906 } 1907 llvm_unreachable("Unexpected shadow type"); 1908 } 1909 1910 /// Create a dirty shadow for a given value. 1911 Constant *getPoisonedShadow(Value *V) { 1912 Type *ShadowTy = getShadowTy(V); 1913 if (!ShadowTy) 1914 return nullptr; 1915 return getPoisonedShadow(ShadowTy); 1916 } 1917 1918 /// Create a clean (zero) origin. 1919 Value *getCleanOrigin() { return Constant::getNullValue(MS.OriginTy); } 1920 1921 /// Get the shadow value for a given Value. 1922 /// 1923 /// This function either returns the value set earlier with setShadow, 1924 /// or extracts if from ParamTLS (for function arguments). 1925 Value *getShadow(Value *V) { 1926 if (Instruction *I = dyn_cast<Instruction>(V)) { 1927 if (!PropagateShadow || I->getMetadata(LLVMContext::MD_nosanitize)) 1928 return getCleanShadow(V); 1929 // For instructions the shadow is already stored in the map. 1930 Value *Shadow = ShadowMap[V]; 1931 if (!Shadow) { 1932 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1933 (void)I; 1934 assert(Shadow && "No shadow for a value"); 1935 } 1936 return Shadow; 1937 } 1938 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1939 Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) 1940 : getCleanShadow(V); 1941 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1942 (void)U; 1943 return AllOnes; 1944 } 1945 if (Argument *A = dyn_cast<Argument>(V)) { 1946 // For arguments we compute the shadow on demand and store it in the map. 1947 Value *&ShadowPtr = ShadowMap[V]; 1948 if (ShadowPtr) 1949 return ShadowPtr; 1950 Function *F = A->getParent(); 1951 IRBuilder<> EntryIRB(FnPrologueEnd); 1952 unsigned ArgOffset = 0; 1953 const DataLayout &DL = F->getParent()->getDataLayout(); 1954 for (auto &FArg : F->args()) { 1955 if (!FArg.getType()->isSized()) { 1956 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1957 continue; 1958 } 1959 1960 unsigned Size = FArg.hasByValAttr() 1961 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1962 : DL.getTypeAllocSize(FArg.getType()); 1963 1964 if (A == &FArg) { 1965 bool Overflow = ArgOffset + Size > kParamTLSSize; 1966 if (FArg.hasByValAttr()) { 1967 // ByVal pointer itself has clean shadow. We copy the actual 1968 // argument shadow to the underlying memory. 1969 // Figure out maximal valid memcpy alignment. 1970 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1971 FArg.getParamAlign(), FArg.getParamByValType()); 1972 Value *CpShadowPtr, *CpOriginPtr; 1973 std::tie(CpShadowPtr, CpOriginPtr) = 1974 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1975 /*isStore*/ true); 1976 if (!PropagateShadow || Overflow) { 1977 // ParamTLS overflow. 1978 EntryIRB.CreateMemSet( 1979 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1980 Size, ArgAlign); 1981 } else { 1982 Value *Base = getShadowPtrForArgument(EntryIRB, ArgOffset); 1983 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1984 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1985 CopyAlign, Size); 1986 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1987 (void)Cpy; 1988 1989 if (MS.TrackOrigins) { 1990 Value *OriginPtr = 1991 getOriginPtrForArgument(EntryIRB, ArgOffset); 1992 // FIXME: OriginSize should be: 1993 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) 1994 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 1995 EntryIRB.CreateMemCpy( 1996 CpOriginPtr, 1997 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr, 1998 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 1999 OriginSize); 2000 } 2001 } 2002 } 2003 2004 if (!PropagateShadow || Overflow || FArg.hasByValAttr() || 2005 (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) { 2006 ShadowPtr = getCleanShadow(V); 2007 setOrigin(A, getCleanOrigin()); 2008 } else { 2009 // Shadow over TLS 2010 Value *Base = getShadowPtrForArgument(EntryIRB, ArgOffset); 2011 ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 2012 kShadowTLSAlignment); 2013 if (MS.TrackOrigins) { 2014 Value *OriginPtr = 2015 getOriginPtrForArgument(EntryIRB, ArgOffset); 2016 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 2017 } 2018 } 2019 LLVM_DEBUG(dbgs() 2020 << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n"); 2021 break; 2022 } 2023 2024 ArgOffset += alignTo(Size, kShadowTLSAlignment); 2025 } 2026 assert(ShadowPtr && "Could not find shadow for an argument"); 2027 return ShadowPtr; 2028 } 2029 // For everything else the shadow is zero. 2030 return getCleanShadow(V); 2031 } 2032 2033 /// Get the shadow for i-th argument of the instruction I. 2034 Value *getShadow(Instruction *I, int i) { 2035 return getShadow(I->getOperand(i)); 2036 } 2037 2038 /// Get the origin for a value. 2039 Value *getOrigin(Value *V) { 2040 if (!MS.TrackOrigins) 2041 return nullptr; 2042 if (!PropagateShadow || isa<Constant>(V) || isa<InlineAsm>(V)) 2043 return getCleanOrigin(); 2044 assert((isa<Instruction>(V) || isa<Argument>(V)) && 2045 "Unexpected value type in getOrigin()"); 2046 if (Instruction *I = dyn_cast<Instruction>(V)) { 2047 if (I->getMetadata(LLVMContext::MD_nosanitize)) 2048 return getCleanOrigin(); 2049 } 2050 Value *Origin = OriginMap[V]; 2051 assert(Origin && "Missing origin"); 2052 return Origin; 2053 } 2054 2055 /// Get the origin for i-th argument of the instruction I. 2056 Value *getOrigin(Instruction *I, int i) { 2057 return getOrigin(I->getOperand(i)); 2058 } 2059 2060 /// Remember the place where a shadow check should be inserted. 2061 /// 2062 /// This location will be later instrumented with a check that will print a 2063 /// UMR warning in runtime if the shadow value is not 0. 2064 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 2065 assert(Shadow); 2066 if (!InsertChecks) 2067 return; 2068 2069 if (!DebugCounter::shouldExecute(DebugInsertCheck)) { 2070 LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before " 2071 << *OrigIns << "\n"); 2072 return; 2073 } 2074 #ifndef NDEBUG 2075 Type *ShadowTy = Shadow->getType(); 2076 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 2077 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 2078 "Can only insert checks for integer, vector, and aggregate shadow " 2079 "types"); 2080 #endif 2081 InstrumentationList.push_back( 2082 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 2083 } 2084 2085 /// Remember the place where a shadow check should be inserted. 2086 /// 2087 /// This location will be later instrumented with a check that will print a 2088 /// UMR warning in runtime if the value is not fully defined. 2089 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 2090 assert(Val); 2091 Value *Shadow, *Origin; 2092 if (ClCheckConstantShadow) { 2093 Shadow = getShadow(Val); 2094 if (!Shadow) 2095 return; 2096 Origin = getOrigin(Val); 2097 } else { 2098 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 2099 if (!Shadow) 2100 return; 2101 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 2102 } 2103 insertShadowCheck(Shadow, Origin, OrigIns); 2104 } 2105 2106 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 2107 switch (a) { 2108 case AtomicOrdering::NotAtomic: 2109 return AtomicOrdering::NotAtomic; 2110 case AtomicOrdering::Unordered: 2111 case AtomicOrdering::Monotonic: 2112 case AtomicOrdering::Release: 2113 return AtomicOrdering::Release; 2114 case AtomicOrdering::Acquire: 2115 case AtomicOrdering::AcquireRelease: 2116 return AtomicOrdering::AcquireRelease; 2117 case AtomicOrdering::SequentiallyConsistent: 2118 return AtomicOrdering::SequentiallyConsistent; 2119 } 2120 llvm_unreachable("Unknown ordering"); 2121 } 2122 2123 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 2124 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 2125 uint32_t OrderingTable[NumOrderings] = {}; 2126 2127 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 2128 OrderingTable[(int)AtomicOrderingCABI::release] = 2129 (int)AtomicOrderingCABI::release; 2130 OrderingTable[(int)AtomicOrderingCABI::consume] = 2131 OrderingTable[(int)AtomicOrderingCABI::acquire] = 2132 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 2133 (int)AtomicOrderingCABI::acq_rel; 2134 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 2135 (int)AtomicOrderingCABI::seq_cst; 2136 2137 return ConstantDataVector::get(IRB.getContext(), 2138 ArrayRef(OrderingTable, NumOrderings)); 2139 } 2140 2141 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 2142 switch (a) { 2143 case AtomicOrdering::NotAtomic: 2144 return AtomicOrdering::NotAtomic; 2145 case AtomicOrdering::Unordered: 2146 case AtomicOrdering::Monotonic: 2147 case AtomicOrdering::Acquire: 2148 return AtomicOrdering::Acquire; 2149 case AtomicOrdering::Release: 2150 case AtomicOrdering::AcquireRelease: 2151 return AtomicOrdering::AcquireRelease; 2152 case AtomicOrdering::SequentiallyConsistent: 2153 return AtomicOrdering::SequentiallyConsistent; 2154 } 2155 llvm_unreachable("Unknown ordering"); 2156 } 2157 2158 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 2159 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 2160 uint32_t OrderingTable[NumOrderings] = {}; 2161 2162 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 2163 OrderingTable[(int)AtomicOrderingCABI::acquire] = 2164 OrderingTable[(int)AtomicOrderingCABI::consume] = 2165 (int)AtomicOrderingCABI::acquire; 2166 OrderingTable[(int)AtomicOrderingCABI::release] = 2167 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 2168 (int)AtomicOrderingCABI::acq_rel; 2169 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 2170 (int)AtomicOrderingCABI::seq_cst; 2171 2172 return ConstantDataVector::get(IRB.getContext(), 2173 ArrayRef(OrderingTable, NumOrderings)); 2174 } 2175 2176 // ------------------- Visitors. 2177 using InstVisitor<MemorySanitizerVisitor>::visit; 2178 void visit(Instruction &I) { 2179 if (I.getMetadata(LLVMContext::MD_nosanitize)) 2180 return; 2181 // Don't want to visit if we're in the prologue 2182 if (isInPrologue(I)) 2183 return; 2184 InstVisitor<MemorySanitizerVisitor>::visit(I); 2185 } 2186 2187 /// Instrument LoadInst 2188 /// 2189 /// Loads the corresponding shadow and (optionally) origin. 2190 /// Optionally, checks that the load address is fully defined. 2191 void visitLoadInst(LoadInst &I) { 2192 assert(I.getType()->isSized() && "Load type must have size"); 2193 assert(!I.getMetadata(LLVMContext::MD_nosanitize)); 2194 NextNodeIRBuilder IRB(&I); 2195 Type *ShadowTy = getShadowTy(&I); 2196 Value *Addr = I.getPointerOperand(); 2197 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2198 const Align Alignment = I.getAlign(); 2199 if (PropagateShadow) { 2200 std::tie(ShadowPtr, OriginPtr) = 2201 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2202 setShadow(&I, 2203 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2204 } else { 2205 setShadow(&I, getCleanShadow(&I)); 2206 } 2207 2208 if (ClCheckAccessAddress) 2209 insertShadowCheck(I.getPointerOperand(), &I); 2210 2211 if (I.isAtomic()) 2212 I.setOrdering(addAcquireOrdering(I.getOrdering())); 2213 2214 if (MS.TrackOrigins) { 2215 if (PropagateShadow) { 2216 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 2217 setOrigin( 2218 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 2219 } else { 2220 setOrigin(&I, getCleanOrigin()); 2221 } 2222 } 2223 } 2224 2225 /// Instrument StoreInst 2226 /// 2227 /// Stores the corresponding shadow and (optionally) origin. 2228 /// Optionally, checks that the store address is fully defined. 2229 void visitStoreInst(StoreInst &I) { 2230 StoreList.push_back(&I); 2231 if (ClCheckAccessAddress) 2232 insertShadowCheck(I.getPointerOperand(), &I); 2233 } 2234 2235 void handleCASOrRMW(Instruction &I) { 2236 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2237 2238 IRBuilder<> IRB(&I); 2239 Value *Addr = I.getOperand(0); 2240 Value *Val = I.getOperand(1); 2241 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, getShadowTy(Val), Align(1), 2242 /*isStore*/ true) 2243 .first; 2244 2245 if (ClCheckAccessAddress) 2246 insertShadowCheck(Addr, &I); 2247 2248 // Only test the conditional argument of cmpxchg instruction. 2249 // The other argument can potentially be uninitialized, but we can not 2250 // detect this situation reliably without possible false positives. 2251 if (isa<AtomicCmpXchgInst>(I)) 2252 insertShadowCheck(Val, &I); 2253 2254 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 2255 2256 setShadow(&I, getCleanShadow(&I)); 2257 setOrigin(&I, getCleanOrigin()); 2258 } 2259 2260 void visitAtomicRMWInst(AtomicRMWInst &I) { 2261 handleCASOrRMW(I); 2262 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2263 } 2264 2265 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2266 handleCASOrRMW(I); 2267 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2268 } 2269 2270 // Vector manipulation. 2271 void visitExtractElementInst(ExtractElementInst &I) { 2272 insertShadowCheck(I.getOperand(1), &I); 2273 IRBuilder<> IRB(&I); 2274 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 2275 "_msprop")); 2276 setOrigin(&I, getOrigin(&I, 0)); 2277 } 2278 2279 void visitInsertElementInst(InsertElementInst &I) { 2280 insertShadowCheck(I.getOperand(2), &I); 2281 IRBuilder<> IRB(&I); 2282 auto *Shadow0 = getShadow(&I, 0); 2283 auto *Shadow1 = getShadow(&I, 1); 2284 setShadow(&I, IRB.CreateInsertElement(Shadow0, Shadow1, I.getOperand(2), 2285 "_msprop")); 2286 setOriginForNaryOp(I); 2287 } 2288 2289 void visitShuffleVectorInst(ShuffleVectorInst &I) { 2290 IRBuilder<> IRB(&I); 2291 auto *Shadow0 = getShadow(&I, 0); 2292 auto *Shadow1 = getShadow(&I, 1); 2293 setShadow(&I, IRB.CreateShuffleVector(Shadow0, Shadow1, I.getShuffleMask(), 2294 "_msprop")); 2295 setOriginForNaryOp(I); 2296 } 2297 2298 // Casts. 2299 void visitSExtInst(SExtInst &I) { 2300 IRBuilder<> IRB(&I); 2301 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2302 setOrigin(&I, getOrigin(&I, 0)); 2303 } 2304 2305 void visitZExtInst(ZExtInst &I) { 2306 IRBuilder<> IRB(&I); 2307 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2308 setOrigin(&I, getOrigin(&I, 0)); 2309 } 2310 2311 void visitTruncInst(TruncInst &I) { 2312 IRBuilder<> IRB(&I); 2313 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2314 setOrigin(&I, getOrigin(&I, 0)); 2315 } 2316 2317 void visitBitCastInst(BitCastInst &I) { 2318 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2319 // a musttail call and a ret, don't instrument. New instructions are not 2320 // allowed after a musttail call. 2321 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2322 if (CI->isMustTailCall()) 2323 return; 2324 IRBuilder<> IRB(&I); 2325 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2326 setOrigin(&I, getOrigin(&I, 0)); 2327 } 2328 2329 void visitPtrToIntInst(PtrToIntInst &I) { 2330 IRBuilder<> IRB(&I); 2331 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2332 "_msprop_ptrtoint")); 2333 setOrigin(&I, getOrigin(&I, 0)); 2334 } 2335 2336 void visitIntToPtrInst(IntToPtrInst &I) { 2337 IRBuilder<> IRB(&I); 2338 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2339 "_msprop_inttoptr")); 2340 setOrigin(&I, getOrigin(&I, 0)); 2341 } 2342 2343 void visitFPToSIInst(CastInst &I) { handleShadowOr(I); } 2344 void visitFPToUIInst(CastInst &I) { handleShadowOr(I); } 2345 void visitSIToFPInst(CastInst &I) { handleShadowOr(I); } 2346 void visitUIToFPInst(CastInst &I) { handleShadowOr(I); } 2347 void visitFPExtInst(CastInst &I) { handleShadowOr(I); } 2348 void visitFPTruncInst(CastInst &I) { handleShadowOr(I); } 2349 2350 /// Propagate shadow for bitwise AND. 2351 /// 2352 /// This code is exact, i.e. if, for example, a bit in the left argument 2353 /// is defined and 0, then neither the value not definedness of the 2354 /// corresponding bit in B don't affect the resulting shadow. 2355 void visitAnd(BinaryOperator &I) { 2356 IRBuilder<> IRB(&I); 2357 // "And" of 0 and a poisoned value results in unpoisoned value. 2358 // 1&1 => 1; 0&1 => 0; p&1 => p; 2359 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2360 // 1&p => p; 0&p => 0; p&p => p; 2361 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2362 Value *S1 = getShadow(&I, 0); 2363 Value *S2 = getShadow(&I, 1); 2364 Value *V1 = I.getOperand(0); 2365 Value *V2 = I.getOperand(1); 2366 if (V1->getType() != S1->getType()) { 2367 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2368 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2369 } 2370 Value *S1S2 = IRB.CreateAnd(S1, S2); 2371 Value *V1S2 = IRB.CreateAnd(V1, S2); 2372 Value *S1V2 = IRB.CreateAnd(S1, V2); 2373 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2374 setOriginForNaryOp(I); 2375 } 2376 2377 void visitOr(BinaryOperator &I) { 2378 IRBuilder<> IRB(&I); 2379 // "Or" of 1 and a poisoned value results in unpoisoned value. 2380 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2381 // 1|0 => 1; 0|0 => 0; p|0 => p; 2382 // 1|p => 1; 0|p => p; p|p => p; 2383 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2384 Value *S1 = getShadow(&I, 0); 2385 Value *S2 = getShadow(&I, 1); 2386 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2387 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2388 if (V1->getType() != S1->getType()) { 2389 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2390 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2391 } 2392 Value *S1S2 = IRB.CreateAnd(S1, S2); 2393 Value *V1S2 = IRB.CreateAnd(V1, S2); 2394 Value *S1V2 = IRB.CreateAnd(S1, V2); 2395 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2396 setOriginForNaryOp(I); 2397 } 2398 2399 /// Default propagation of shadow and/or origin. 2400 /// 2401 /// This class implements the general case of shadow propagation, used in all 2402 /// cases where we don't know and/or don't care about what the operation 2403 /// actually does. It converts all input shadow values to a common type 2404 /// (extending or truncating as necessary), and bitwise OR's them. 2405 /// 2406 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2407 /// fully initialized), and less prone to false positives. 2408 /// 2409 /// This class also implements the general case of origin propagation. For a 2410 /// Nary operation, result origin is set to the origin of an argument that is 2411 /// not entirely initialized. If there is more than one such arguments, the 2412 /// rightmost of them is picked. It does not matter which one is picked if all 2413 /// arguments are initialized. 2414 template <bool CombineShadow> class Combiner { 2415 Value *Shadow = nullptr; 2416 Value *Origin = nullptr; 2417 IRBuilder<> &IRB; 2418 MemorySanitizerVisitor *MSV; 2419 2420 public: 2421 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2422 : IRB(IRB), MSV(MSV) {} 2423 2424 /// Add a pair of shadow and origin values to the mix. 2425 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2426 if (CombineShadow) { 2427 assert(OpShadow); 2428 if (!Shadow) 2429 Shadow = OpShadow; 2430 else { 2431 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2432 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2433 } 2434 } 2435 2436 if (MSV->MS.TrackOrigins) { 2437 assert(OpOrigin); 2438 if (!Origin) { 2439 Origin = OpOrigin; 2440 } else { 2441 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2442 // No point in adding something that might result in 0 origin value. 2443 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2444 Value *Cond = MSV->convertToBool(OpShadow, IRB); 2445 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2446 } 2447 } 2448 } 2449 return *this; 2450 } 2451 2452 /// Add an application value to the mix. 2453 Combiner &Add(Value *V) { 2454 Value *OpShadow = MSV->getShadow(V); 2455 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2456 return Add(OpShadow, OpOrigin); 2457 } 2458 2459 /// Set the current combined values as the given instruction's shadow 2460 /// and origin. 2461 void Done(Instruction *I) { 2462 if (CombineShadow) { 2463 assert(Shadow); 2464 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2465 MSV->setShadow(I, Shadow); 2466 } 2467 if (MSV->MS.TrackOrigins) { 2468 assert(Origin); 2469 MSV->setOrigin(I, Origin); 2470 } 2471 } 2472 }; 2473 2474 using ShadowAndOriginCombiner = Combiner<true>; 2475 using OriginCombiner = Combiner<false>; 2476 2477 /// Propagate origin for arbitrary operation. 2478 void setOriginForNaryOp(Instruction &I) { 2479 if (!MS.TrackOrigins) 2480 return; 2481 IRBuilder<> IRB(&I); 2482 OriginCombiner OC(this, IRB); 2483 for (Use &Op : I.operands()) 2484 OC.Add(Op.get()); 2485 OC.Done(&I); 2486 } 2487 2488 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2489 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2490 "Vector of pointers is not a valid shadow type"); 2491 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2492 Ty->getScalarSizeInBits() 2493 : Ty->getPrimitiveSizeInBits(); 2494 } 2495 2496 /// Cast between two shadow types, extending or truncating as 2497 /// necessary. 2498 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2499 bool Signed = false) { 2500 Type *srcTy = V->getType(); 2501 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2502 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2503 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2504 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2505 2506 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2507 return IRB.CreateIntCast(V, dstTy, Signed); 2508 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2509 cast<VectorType>(dstTy)->getElementCount() == 2510 cast<VectorType>(srcTy)->getElementCount()) 2511 return IRB.CreateIntCast(V, dstTy, Signed); 2512 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2513 Value *V2 = 2514 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2515 return IRB.CreateBitCast(V2, dstTy); 2516 // TODO: handle struct types. 2517 } 2518 2519 /// Cast an application value to the type of its own shadow. 2520 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2521 Type *ShadowTy = getShadowTy(V); 2522 if (V->getType() == ShadowTy) 2523 return V; 2524 if (V->getType()->isPtrOrPtrVectorTy()) 2525 return IRB.CreatePtrToInt(V, ShadowTy); 2526 else 2527 return IRB.CreateBitCast(V, ShadowTy); 2528 } 2529 2530 /// Propagate shadow for arbitrary operation. 2531 void handleShadowOr(Instruction &I) { 2532 IRBuilder<> IRB(&I); 2533 ShadowAndOriginCombiner SC(this, IRB); 2534 for (Use &Op : I.operands()) 2535 SC.Add(Op.get()); 2536 SC.Done(&I); 2537 } 2538 2539 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2540 2541 // Handle multiplication by constant. 2542 // 2543 // Handle a special case of multiplication by constant that may have one or 2544 // more zeros in the lower bits. This makes corresponding number of lower bits 2545 // of the result zero as well. We model it by shifting the other operand 2546 // shadow left by the required number of bits. Effectively, we transform 2547 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2548 // We use multiplication by 2**N instead of shift to cover the case of 2549 // multiplication by 0, which may occur in some elements of a vector operand. 2550 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2551 Value *OtherArg) { 2552 Constant *ShadowMul; 2553 Type *Ty = ConstArg->getType(); 2554 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2555 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2556 Type *EltTy = VTy->getElementType(); 2557 SmallVector<Constant *, 16> Elements; 2558 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2559 if (ConstantInt *Elt = 2560 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2561 const APInt &V = Elt->getValue(); 2562 APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); 2563 Elements.push_back(ConstantInt::get(EltTy, V2)); 2564 } else { 2565 Elements.push_back(ConstantInt::get(EltTy, 1)); 2566 } 2567 } 2568 ShadowMul = ConstantVector::get(Elements); 2569 } else { 2570 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2571 const APInt &V = Elt->getValue(); 2572 APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); 2573 ShadowMul = ConstantInt::get(Ty, V2); 2574 } else { 2575 ShadowMul = ConstantInt::get(Ty, 1); 2576 } 2577 } 2578 2579 IRBuilder<> IRB(&I); 2580 setShadow(&I, 2581 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2582 setOrigin(&I, getOrigin(OtherArg)); 2583 } 2584 2585 void visitMul(BinaryOperator &I) { 2586 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2587 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2588 if (constOp0 && !constOp1) 2589 handleMulByConstant(I, constOp0, I.getOperand(1)); 2590 else if (constOp1 && !constOp0) 2591 handleMulByConstant(I, constOp1, I.getOperand(0)); 2592 else 2593 handleShadowOr(I); 2594 } 2595 2596 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2597 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2598 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2599 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2600 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2601 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2602 2603 void handleIntegerDiv(Instruction &I) { 2604 IRBuilder<> IRB(&I); 2605 // Strict on the second argument. 2606 insertShadowCheck(I.getOperand(1), &I); 2607 setShadow(&I, getShadow(&I, 0)); 2608 setOrigin(&I, getOrigin(&I, 0)); 2609 } 2610 2611 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2612 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2613 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2614 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2615 2616 // Floating point division is side-effect free. We can not require that the 2617 // divisor is fully initialized and must propagate shadow. See PR37523. 2618 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2619 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2620 2621 /// Instrument == and != comparisons. 2622 /// 2623 /// Sometimes the comparison result is known even if some of the bits of the 2624 /// arguments are not. 2625 void handleEqualityComparison(ICmpInst &I) { 2626 IRBuilder<> IRB(&I); 2627 Value *A = I.getOperand(0); 2628 Value *B = I.getOperand(1); 2629 Value *Sa = getShadow(A); 2630 Value *Sb = getShadow(B); 2631 2632 // Get rid of pointers and vectors of pointers. 2633 // For ints (and vectors of ints), types of A and Sa match, 2634 // and this is a no-op. 2635 A = IRB.CreatePointerCast(A, Sa->getType()); 2636 B = IRB.CreatePointerCast(B, Sb->getType()); 2637 2638 // A == B <==> (C = A^B) == 0 2639 // A != B <==> (C = A^B) != 0 2640 // Sc = Sa | Sb 2641 Value *C = IRB.CreateXor(A, B); 2642 Value *Sc = IRB.CreateOr(Sa, Sb); 2643 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2644 // Result is defined if one of the following is true 2645 // * there is a defined 1 bit in C 2646 // * C is fully defined 2647 // Si = !(C & ~Sc) && Sc 2648 Value *Zero = Constant::getNullValue(Sc->getType()); 2649 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2650 Value *LHS = IRB.CreateICmpNE(Sc, Zero); 2651 Value *RHS = 2652 IRB.CreateICmpEQ(IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero); 2653 Value *Si = IRB.CreateAnd(LHS, RHS); 2654 Si->setName("_msprop_icmp"); 2655 setShadow(&I, Si); 2656 setOriginForNaryOp(I); 2657 } 2658 2659 /// Build the lowest possible value of V, taking into account V's 2660 /// uninitialized bits. 2661 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2662 bool isSigned) { 2663 if (isSigned) { 2664 // Split shadow into sign bit and other bits. 2665 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2666 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2667 // Maximise the undefined shadow bit, minimize other undefined bits. 2668 return IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), 2669 SaSignBit); 2670 } else { 2671 // Minimize undefined bits. 2672 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2673 } 2674 } 2675 2676 /// Build the highest possible value of V, taking into account V's 2677 /// uninitialized bits. 2678 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2679 bool isSigned) { 2680 if (isSigned) { 2681 // Split shadow into sign bit and other bits. 2682 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2683 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2684 // Minimise the undefined shadow bit, maximise other undefined bits. 2685 return IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), 2686 SaOtherBits); 2687 } else { 2688 // Maximize undefined bits. 2689 return IRB.CreateOr(A, Sa); 2690 } 2691 } 2692 2693 /// Instrument relational comparisons. 2694 /// 2695 /// This function does exact shadow propagation for all relational 2696 /// comparisons of integers, pointers and vectors of those. 2697 /// FIXME: output seems suboptimal when one of the operands is a constant 2698 void handleRelationalComparisonExact(ICmpInst &I) { 2699 IRBuilder<> IRB(&I); 2700 Value *A = I.getOperand(0); 2701 Value *B = I.getOperand(1); 2702 Value *Sa = getShadow(A); 2703 Value *Sb = getShadow(B); 2704 2705 // Get rid of pointers and vectors of pointers. 2706 // For ints (and vectors of ints), types of A and Sa match, 2707 // and this is a no-op. 2708 A = IRB.CreatePointerCast(A, Sa->getType()); 2709 B = IRB.CreatePointerCast(B, Sb->getType()); 2710 2711 // Let [a0, a1] be the interval of possible values of A, taking into account 2712 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2713 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2714 bool IsSigned = I.isSigned(); 2715 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2716 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2717 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2718 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2719 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2720 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2721 Value *Si = IRB.CreateXor(S1, S2); 2722 setShadow(&I, Si); 2723 setOriginForNaryOp(I); 2724 } 2725 2726 /// Instrument signed relational comparisons. 2727 /// 2728 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2729 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2730 void handleSignedRelationalComparison(ICmpInst &I) { 2731 Constant *constOp; 2732 Value *op = nullptr; 2733 CmpInst::Predicate pre; 2734 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2735 op = I.getOperand(0); 2736 pre = I.getPredicate(); 2737 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2738 op = I.getOperand(1); 2739 pre = I.getSwappedPredicate(); 2740 } else { 2741 handleShadowOr(I); 2742 return; 2743 } 2744 2745 if ((constOp->isNullValue() && 2746 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2747 (constOp->isAllOnesValue() && 2748 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2749 IRBuilder<> IRB(&I); 2750 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2751 "_msprop_icmp_s"); 2752 setShadow(&I, Shadow); 2753 setOrigin(&I, getOrigin(op)); 2754 } else { 2755 handleShadowOr(I); 2756 } 2757 } 2758 2759 void visitICmpInst(ICmpInst &I) { 2760 if (!ClHandleICmp) { 2761 handleShadowOr(I); 2762 return; 2763 } 2764 if (I.isEquality()) { 2765 handleEqualityComparison(I); 2766 return; 2767 } 2768 2769 assert(I.isRelational()); 2770 if (ClHandleICmpExact) { 2771 handleRelationalComparisonExact(I); 2772 return; 2773 } 2774 if (I.isSigned()) { 2775 handleSignedRelationalComparison(I); 2776 return; 2777 } 2778 2779 assert(I.isUnsigned()); 2780 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2781 handleRelationalComparisonExact(I); 2782 return; 2783 } 2784 2785 handleShadowOr(I); 2786 } 2787 2788 void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); } 2789 2790 void handleShift(BinaryOperator &I) { 2791 IRBuilder<> IRB(&I); 2792 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2793 // Otherwise perform the same shift on S1. 2794 Value *S1 = getShadow(&I, 0); 2795 Value *S2 = getShadow(&I, 1); 2796 Value *S2Conv = 2797 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2798 Value *V2 = I.getOperand(1); 2799 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2800 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2801 setOriginForNaryOp(I); 2802 } 2803 2804 void visitShl(BinaryOperator &I) { handleShift(I); } 2805 void visitAShr(BinaryOperator &I) { handleShift(I); } 2806 void visitLShr(BinaryOperator &I) { handleShift(I); } 2807 2808 void handleFunnelShift(IntrinsicInst &I) { 2809 IRBuilder<> IRB(&I); 2810 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2811 // Otherwise perform the same shift on S0 and S1. 2812 Value *S0 = getShadow(&I, 0); 2813 Value *S1 = getShadow(&I, 1); 2814 Value *S2 = getShadow(&I, 2); 2815 Value *S2Conv = 2816 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2817 Value *V2 = I.getOperand(2); 2818 Function *Intrin = Intrinsic::getDeclaration( 2819 I.getModule(), I.getIntrinsicID(), S2Conv->getType()); 2820 Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2}); 2821 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2822 setOriginForNaryOp(I); 2823 } 2824 2825 /// Instrument llvm.memmove 2826 /// 2827 /// At this point we don't know if llvm.memmove will be inlined or not. 2828 /// If we don't instrument it and it gets inlined, 2829 /// our interceptor will not kick in and we will lose the memmove. 2830 /// If we instrument the call here, but it does not get inlined, 2831 /// we will memove the shadow twice: which is bad in case 2832 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2833 /// 2834 /// Similar situation exists for memcpy and memset. 2835 void visitMemMoveInst(MemMoveInst &I) { 2836 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2837 IRBuilder<> IRB(&I); 2838 IRB.CreateCall(MS.MemmoveFn, 2839 {I.getArgOperand(0), I.getArgOperand(1), 2840 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2841 I.eraseFromParent(); 2842 } 2843 2844 /// Instrument memcpy 2845 /// 2846 /// Similar to memmove: avoid copying shadow twice. This is somewhat 2847 /// unfortunate as it may slowdown small constant memcpys. 2848 /// FIXME: consider doing manual inline for small constant sizes and proper 2849 /// alignment. 2850 /// 2851 /// Note: This also handles memcpy.inline, which promises no calls to external 2852 /// functions as an optimization. However, with instrumentation enabled this 2853 /// is difficult to promise; additionally, we know that the MSan runtime 2854 /// exists and provides __msan_memcpy(). Therefore, we assume that with 2855 /// instrumentation it's safe to turn memcpy.inline into a call to 2856 /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy() 2857 /// itself, instrumentation should be disabled with the no_sanitize attribute. 2858 void visitMemCpyInst(MemCpyInst &I) { 2859 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2860 IRBuilder<> IRB(&I); 2861 IRB.CreateCall(MS.MemcpyFn, 2862 {I.getArgOperand(0), I.getArgOperand(1), 2863 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2864 I.eraseFromParent(); 2865 } 2866 2867 // Same as memcpy. 2868 void visitMemSetInst(MemSetInst &I) { 2869 IRBuilder<> IRB(&I); 2870 IRB.CreateCall( 2871 MS.MemsetFn, 2872 {I.getArgOperand(0), 2873 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2874 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2875 I.eraseFromParent(); 2876 } 2877 2878 void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); } 2879 2880 void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); } 2881 2882 /// Handle vector store-like intrinsics. 2883 /// 2884 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2885 /// has 1 pointer argument and 1 vector argument, returns void. 2886 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2887 IRBuilder<> IRB(&I); 2888 Value *Addr = I.getArgOperand(0); 2889 Value *Shadow = getShadow(&I, 1); 2890 Value *ShadowPtr, *OriginPtr; 2891 2892 // We don't know the pointer alignment (could be unaligned SSE store!). 2893 // Have to assume to worst case. 2894 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2895 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2896 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2897 2898 if (ClCheckAccessAddress) 2899 insertShadowCheck(Addr, &I); 2900 2901 // FIXME: factor out common code from materializeStores 2902 if (MS.TrackOrigins) 2903 IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2904 return true; 2905 } 2906 2907 /// Handle vector load-like intrinsics. 2908 /// 2909 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2910 /// has 1 pointer argument, returns a vector. 2911 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2912 IRBuilder<> IRB(&I); 2913 Value *Addr = I.getArgOperand(0); 2914 2915 Type *ShadowTy = getShadowTy(&I); 2916 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2917 if (PropagateShadow) { 2918 // We don't know the pointer alignment (could be unaligned SSE load!). 2919 // Have to assume to worst case. 2920 const Align Alignment = Align(1); 2921 std::tie(ShadowPtr, OriginPtr) = 2922 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2923 setShadow(&I, 2924 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2925 } else { 2926 setShadow(&I, getCleanShadow(&I)); 2927 } 2928 2929 if (ClCheckAccessAddress) 2930 insertShadowCheck(Addr, &I); 2931 2932 if (MS.TrackOrigins) { 2933 if (PropagateShadow) 2934 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2935 else 2936 setOrigin(&I, getCleanOrigin()); 2937 } 2938 return true; 2939 } 2940 2941 /// Handle (SIMD arithmetic)-like intrinsics. 2942 /// 2943 /// Instrument intrinsics with any number of arguments of the same type, 2944 /// equal to the return type. The type should be simple (no aggregates or 2945 /// pointers; vectors are fine). 2946 /// Caller guarantees that this intrinsic does not access memory. 2947 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2948 Type *RetTy = I.getType(); 2949 if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy() || 2950 RetTy->isX86_MMXTy())) 2951 return false; 2952 2953 unsigned NumArgOperands = I.arg_size(); 2954 for (unsigned i = 0; i < NumArgOperands; ++i) { 2955 Type *Ty = I.getArgOperand(i)->getType(); 2956 if (Ty != RetTy) 2957 return false; 2958 } 2959 2960 IRBuilder<> IRB(&I); 2961 ShadowAndOriginCombiner SC(this, IRB); 2962 for (unsigned i = 0; i < NumArgOperands; ++i) 2963 SC.Add(I.getArgOperand(i)); 2964 SC.Done(&I); 2965 2966 return true; 2967 } 2968 2969 /// Heuristically instrument unknown intrinsics. 2970 /// 2971 /// The main purpose of this code is to do something reasonable with all 2972 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2973 /// We recognize several classes of intrinsics by their argument types and 2974 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2975 /// sure that we know what the intrinsic does. 2976 /// 2977 /// We special-case intrinsics where this approach fails. See llvm.bswap 2978 /// handling as an example of that. 2979 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2980 unsigned NumArgOperands = I.arg_size(); 2981 if (NumArgOperands == 0) 2982 return false; 2983 2984 if (NumArgOperands == 2 && I.getArgOperand(0)->getType()->isPointerTy() && 2985 I.getArgOperand(1)->getType()->isVectorTy() && 2986 I.getType()->isVoidTy() && !I.onlyReadsMemory()) { 2987 // This looks like a vector store. 2988 return handleVectorStoreIntrinsic(I); 2989 } 2990 2991 if (NumArgOperands == 1 && I.getArgOperand(0)->getType()->isPointerTy() && 2992 I.getType()->isVectorTy() && I.onlyReadsMemory()) { 2993 // This looks like a vector load. 2994 return handleVectorLoadIntrinsic(I); 2995 } 2996 2997 if (I.doesNotAccessMemory()) 2998 if (maybeHandleSimpleNomemIntrinsic(I)) 2999 return true; 3000 3001 // FIXME: detect and handle SSE maskstore/maskload 3002 return false; 3003 } 3004 3005 void handleInvariantGroup(IntrinsicInst &I) { 3006 setShadow(&I, getShadow(&I, 0)); 3007 setOrigin(&I, getOrigin(&I, 0)); 3008 } 3009 3010 void handleLifetimeStart(IntrinsicInst &I) { 3011 if (!PoisonStack) 3012 return; 3013 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 3014 if (!AI) 3015 InstrumentLifetimeStart = false; 3016 LifetimeStartList.push_back(std::make_pair(&I, AI)); 3017 } 3018 3019 void handleBswap(IntrinsicInst &I) { 3020 IRBuilder<> IRB(&I); 3021 Value *Op = I.getArgOperand(0); 3022 Type *OpType = Op->getType(); 3023 Function *BswapFunc = Intrinsic::getDeclaration( 3024 F.getParent(), Intrinsic::bswap, ArrayRef(&OpType, 1)); 3025 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 3026 setOrigin(&I, getOrigin(Op)); 3027 } 3028 3029 void handleCountZeroes(IntrinsicInst &I) { 3030 IRBuilder<> IRB(&I); 3031 Value *Src = I.getArgOperand(0); 3032 3033 // Set the Output shadow based on input Shadow 3034 Value *BoolShadow = IRB.CreateIsNotNull(getShadow(Src), "_mscz_bs"); 3035 3036 // If zero poison is requested, mix in with the shadow 3037 Constant *IsZeroPoison = cast<Constant>(I.getOperand(1)); 3038 if (!IsZeroPoison->isZeroValue()) { 3039 Value *BoolZeroPoison = IRB.CreateIsNull(Src, "_mscz_bzp"); 3040 BoolShadow = IRB.CreateOr(BoolShadow, BoolZeroPoison, "_mscz_bs"); 3041 } 3042 3043 Value *OutputShadow = 3044 IRB.CreateSExt(BoolShadow, getShadowTy(Src), "_mscz_os"); 3045 3046 setShadow(&I, OutputShadow); 3047 setOriginForNaryOp(I); 3048 } 3049 3050 // Instrument vector convert intrinsic. 3051 // 3052 // This function instruments intrinsics like cvtsi2ss: 3053 // %Out = int_xxx_cvtyyy(%ConvertOp) 3054 // or 3055 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 3056 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 3057 // number \p Out elements, and (if has 2 arguments) copies the rest of the 3058 // elements from \p CopyOp. 3059 // In most cases conversion involves floating-point value which may trigger a 3060 // hardware exception when not fully initialized. For this reason we require 3061 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 3062 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 3063 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 3064 // return a fully initialized value. 3065 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 3066 bool HasRoundingMode = false) { 3067 IRBuilder<> IRB(&I); 3068 Value *CopyOp, *ConvertOp; 3069 3070 assert((!HasRoundingMode || 3071 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && 3072 "Invalid rounding mode"); 3073 3074 switch (I.arg_size() - HasRoundingMode) { 3075 case 2: 3076 CopyOp = I.getArgOperand(0); 3077 ConvertOp = I.getArgOperand(1); 3078 break; 3079 case 1: 3080 ConvertOp = I.getArgOperand(0); 3081 CopyOp = nullptr; 3082 break; 3083 default: 3084 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 3085 } 3086 3087 // The first *NumUsedElements* elements of ConvertOp are converted to the 3088 // same number of output elements. The rest of the output is copied from 3089 // CopyOp, or (if not available) filled with zeroes. 3090 // Combine shadow for elements of ConvertOp that are used in this operation, 3091 // and insert a check. 3092 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 3093 // int->any conversion. 3094 Value *ConvertShadow = getShadow(ConvertOp); 3095 Value *AggShadow = nullptr; 3096 if (ConvertOp->getType()->isVectorTy()) { 3097 AggShadow = IRB.CreateExtractElement( 3098 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3099 for (int i = 1; i < NumUsedElements; ++i) { 3100 Value *MoreShadow = IRB.CreateExtractElement( 3101 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3102 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 3103 } 3104 } else { 3105 AggShadow = ConvertShadow; 3106 } 3107 assert(AggShadow->getType()->isIntegerTy()); 3108 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 3109 3110 // Build result shadow by zero-filling parts of CopyOp shadow that come from 3111 // ConvertOp. 3112 if (CopyOp) { 3113 assert(CopyOp->getType() == I.getType()); 3114 assert(CopyOp->getType()->isVectorTy()); 3115 Value *ResultShadow = getShadow(CopyOp); 3116 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 3117 for (int i = 0; i < NumUsedElements; ++i) { 3118 ResultShadow = IRB.CreateInsertElement( 3119 ResultShadow, ConstantInt::getNullValue(EltTy), 3120 ConstantInt::get(IRB.getInt32Ty(), i)); 3121 } 3122 setShadow(&I, ResultShadow); 3123 setOrigin(&I, getOrigin(CopyOp)); 3124 } else { 3125 setShadow(&I, getCleanShadow(&I)); 3126 setOrigin(&I, getCleanOrigin()); 3127 } 3128 } 3129 3130 // Given a scalar or vector, extract lower 64 bits (or less), and return all 3131 // zeroes if it is zero, and all ones otherwise. 3132 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 3133 if (S->getType()->isVectorTy()) 3134 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 3135 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 3136 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 3137 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 3138 } 3139 3140 // Given a vector, extract its first element, and return all 3141 // zeroes if it is zero, and all ones otherwise. 3142 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 3143 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 3144 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 3145 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 3146 } 3147 3148 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 3149 Type *T = S->getType(); 3150 assert(T->isVectorTy()); 3151 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 3152 return IRB.CreateSExt(S2, T); 3153 } 3154 3155 // Instrument vector shift intrinsic. 3156 // 3157 // This function instruments intrinsics like int_x86_avx2_psll_w. 3158 // Intrinsic shifts %In by %ShiftSize bits. 3159 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 3160 // size, and the rest is ignored. Behavior is defined even if shift size is 3161 // greater than register (or field) width. 3162 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 3163 assert(I.arg_size() == 2); 3164 IRBuilder<> IRB(&I); 3165 // If any of the S2 bits are poisoned, the whole thing is poisoned. 3166 // Otherwise perform the same shift on S1. 3167 Value *S1 = getShadow(&I, 0); 3168 Value *S2 = getShadow(&I, 1); 3169 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 3170 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 3171 Value *V1 = I.getOperand(0); 3172 Value *V2 = I.getOperand(1); 3173 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 3174 {IRB.CreateBitCast(S1, V1->getType()), V2}); 3175 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 3176 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 3177 setOriginForNaryOp(I); 3178 } 3179 3180 // Get an X86_MMX-sized vector type. 3181 Type *getMMXVectorTy(unsigned EltSizeInBits) { 3182 const unsigned X86_MMXSizeInBits = 64; 3183 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 3184 "Illegal MMX vector element size"); 3185 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 3186 X86_MMXSizeInBits / EltSizeInBits); 3187 } 3188 3189 // Returns a signed counterpart for an (un)signed-saturate-and-pack 3190 // intrinsic. 3191 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 3192 switch (id) { 3193 case Intrinsic::x86_sse2_packsswb_128: 3194 case Intrinsic::x86_sse2_packuswb_128: 3195 return Intrinsic::x86_sse2_packsswb_128; 3196 3197 case Intrinsic::x86_sse2_packssdw_128: 3198 case Intrinsic::x86_sse41_packusdw: 3199 return Intrinsic::x86_sse2_packssdw_128; 3200 3201 case Intrinsic::x86_avx2_packsswb: 3202 case Intrinsic::x86_avx2_packuswb: 3203 return Intrinsic::x86_avx2_packsswb; 3204 3205 case Intrinsic::x86_avx2_packssdw: 3206 case Intrinsic::x86_avx2_packusdw: 3207 return Intrinsic::x86_avx2_packssdw; 3208 3209 case Intrinsic::x86_mmx_packsswb: 3210 case Intrinsic::x86_mmx_packuswb: 3211 return Intrinsic::x86_mmx_packsswb; 3212 3213 case Intrinsic::x86_mmx_packssdw: 3214 return Intrinsic::x86_mmx_packssdw; 3215 default: 3216 llvm_unreachable("unexpected intrinsic id"); 3217 } 3218 } 3219 3220 // Instrument vector pack intrinsic. 3221 // 3222 // This function instruments intrinsics like x86_mmx_packsswb, that 3223 // packs elements of 2 input vectors into half as many bits with saturation. 3224 // Shadow is propagated with the signed variant of the same intrinsic applied 3225 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 3226 // EltSizeInBits is used only for x86mmx arguments. 3227 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 3228 assert(I.arg_size() == 2); 3229 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 3230 IRBuilder<> IRB(&I); 3231 Value *S1 = getShadow(&I, 0); 3232 Value *S2 = getShadow(&I, 1); 3233 assert(isX86_MMX || S1->getType()->isVectorTy()); 3234 3235 // SExt and ICmpNE below must apply to individual elements of input vectors. 3236 // In case of x86mmx arguments, cast them to appropriate vector types and 3237 // back. 3238 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 3239 if (isX86_MMX) { 3240 S1 = IRB.CreateBitCast(S1, T); 3241 S2 = IRB.CreateBitCast(S2, T); 3242 } 3243 Value *S1_ext = 3244 IRB.CreateSExt(IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 3245 Value *S2_ext = 3246 IRB.CreateSExt(IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 3247 if (isX86_MMX) { 3248 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 3249 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 3250 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 3251 } 3252 3253 Function *ShadowFn = Intrinsic::getDeclaration( 3254 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 3255 3256 Value *S = 3257 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 3258 if (isX86_MMX) 3259 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3260 setShadow(&I, S); 3261 setOriginForNaryOp(I); 3262 } 3263 3264 // Instrument sum-of-absolute-differences intrinsic. 3265 void handleVectorSadIntrinsic(IntrinsicInst &I) { 3266 const unsigned SignificantBitsPerResultElement = 16; 3267 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 3268 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 3269 unsigned ZeroBitsPerResultElement = 3270 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 3271 3272 IRBuilder<> IRB(&I); 3273 auto *Shadow0 = getShadow(&I, 0); 3274 auto *Shadow1 = getShadow(&I, 1); 3275 Value *S = IRB.CreateOr(Shadow0, Shadow1); 3276 S = IRB.CreateBitCast(S, ResTy); 3277 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3278 ResTy); 3279 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 3280 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3281 setShadow(&I, S); 3282 setOriginForNaryOp(I); 3283 } 3284 3285 // Instrument multiply-add intrinsic. 3286 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 3287 unsigned EltSizeInBits = 0) { 3288 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 3289 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 3290 IRBuilder<> IRB(&I); 3291 auto *Shadow0 = getShadow(&I, 0); 3292 auto *Shadow1 = getShadow(&I, 1); 3293 Value *S = IRB.CreateOr(Shadow0, Shadow1); 3294 S = IRB.CreateBitCast(S, ResTy); 3295 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3296 ResTy); 3297 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3298 setShadow(&I, S); 3299 setOriginForNaryOp(I); 3300 } 3301 3302 // Instrument compare-packed intrinsic. 3303 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 3304 // all-ones shadow. 3305 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 3306 IRBuilder<> IRB(&I); 3307 Type *ResTy = getShadowTy(&I); 3308 auto *Shadow0 = getShadow(&I, 0); 3309 auto *Shadow1 = getShadow(&I, 1); 3310 Value *S0 = IRB.CreateOr(Shadow0, Shadow1); 3311 Value *S = IRB.CreateSExt( 3312 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 3313 setShadow(&I, S); 3314 setOriginForNaryOp(I); 3315 } 3316 3317 // Instrument compare-scalar intrinsic. 3318 // This handles both cmp* intrinsics which return the result in the first 3319 // element of a vector, and comi* which return the result as i32. 3320 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 3321 IRBuilder<> IRB(&I); 3322 auto *Shadow0 = getShadow(&I, 0); 3323 auto *Shadow1 = getShadow(&I, 1); 3324 Value *S0 = IRB.CreateOr(Shadow0, Shadow1); 3325 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 3326 setShadow(&I, S); 3327 setOriginForNaryOp(I); 3328 } 3329 3330 // Instrument generic vector reduction intrinsics 3331 // by ORing together all their fields. 3332 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 3333 IRBuilder<> IRB(&I); 3334 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 3335 setShadow(&I, S); 3336 setOrigin(&I, getOrigin(&I, 0)); 3337 } 3338 3339 // Instrument vector.reduce.or intrinsic. 3340 // Valid (non-poisoned) set bits in the operand pull low the 3341 // corresponding shadow bits. 3342 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3343 IRBuilder<> IRB(&I); 3344 Value *OperandShadow = getShadow(&I, 0); 3345 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3346 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3347 // Bit N is clean if any field's bit N is 1 and unpoison 3348 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3349 // Otherwise, it is clean if every field's bit N is unpoison 3350 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3351 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3352 3353 setShadow(&I, S); 3354 setOrigin(&I, getOrigin(&I, 0)); 3355 } 3356 3357 // Instrument vector.reduce.and intrinsic. 3358 // Valid (non-poisoned) unset bits in the operand pull down the 3359 // corresponding shadow bits. 3360 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3361 IRBuilder<> IRB(&I); 3362 Value *OperandShadow = getShadow(&I, 0); 3363 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3364 // Bit N is clean if any field's bit N is 0 and unpoison 3365 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3366 // Otherwise, it is clean if every field's bit N is unpoison 3367 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3368 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3369 3370 setShadow(&I, S); 3371 setOrigin(&I, getOrigin(&I, 0)); 3372 } 3373 3374 void handleStmxcsr(IntrinsicInst &I) { 3375 IRBuilder<> IRB(&I); 3376 Value *Addr = I.getArgOperand(0); 3377 Type *Ty = IRB.getInt32Ty(); 3378 Value *ShadowPtr = 3379 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3380 3381 IRB.CreateStore(getCleanShadow(Ty), ShadowPtr); 3382 3383 if (ClCheckAccessAddress) 3384 insertShadowCheck(Addr, &I); 3385 } 3386 3387 void handleLdmxcsr(IntrinsicInst &I) { 3388 if (!InsertChecks) 3389 return; 3390 3391 IRBuilder<> IRB(&I); 3392 Value *Addr = I.getArgOperand(0); 3393 Type *Ty = IRB.getInt32Ty(); 3394 const Align Alignment = Align(1); 3395 Value *ShadowPtr, *OriginPtr; 3396 std::tie(ShadowPtr, OriginPtr) = 3397 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3398 3399 if (ClCheckAccessAddress) 3400 insertShadowCheck(Addr, &I); 3401 3402 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3403 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3404 : getCleanOrigin(); 3405 insertShadowCheck(Shadow, Origin, &I); 3406 } 3407 3408 void handleMaskedExpandLoad(IntrinsicInst &I) { 3409 IRBuilder<> IRB(&I); 3410 Value *Ptr = I.getArgOperand(0); 3411 Value *Mask = I.getArgOperand(1); 3412 Value *PassThru = I.getArgOperand(2); 3413 3414 if (ClCheckAccessAddress) { 3415 insertShadowCheck(Ptr, &I); 3416 insertShadowCheck(Mask, &I); 3417 } 3418 3419 if (!PropagateShadow) { 3420 setShadow(&I, getCleanShadow(&I)); 3421 setOrigin(&I, getCleanOrigin()); 3422 return; 3423 } 3424 3425 Type *ShadowTy = getShadowTy(&I); 3426 Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType(); 3427 auto [ShadowPtr, OriginPtr] = 3428 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, {}, /*isStore*/ false); 3429 3430 Value *Shadow = IRB.CreateMaskedExpandLoad( 3431 ShadowTy, ShadowPtr, Mask, getShadow(PassThru), "_msmaskedexpload"); 3432 3433 setShadow(&I, Shadow); 3434 3435 // TODO: Store origins. 3436 setOrigin(&I, getCleanOrigin()); 3437 } 3438 3439 void handleMaskedCompressStore(IntrinsicInst &I) { 3440 IRBuilder<> IRB(&I); 3441 Value *Values = I.getArgOperand(0); 3442 Value *Ptr = I.getArgOperand(1); 3443 Value *Mask = I.getArgOperand(2); 3444 3445 if (ClCheckAccessAddress) { 3446 insertShadowCheck(Ptr, &I); 3447 insertShadowCheck(Mask, &I); 3448 } 3449 3450 Value *Shadow = getShadow(Values); 3451 Type *ElementShadowTy = 3452 getShadowTy(cast<VectorType>(Values->getType())->getElementType()); 3453 auto [ShadowPtr, OriginPtrs] = 3454 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, {}, /*isStore*/ true); 3455 3456 IRB.CreateMaskedCompressStore(Shadow, ShadowPtr, Mask); 3457 3458 // TODO: Store origins. 3459 } 3460 3461 void handleMaskedGather(IntrinsicInst &I) { 3462 IRBuilder<> IRB(&I); 3463 Value *Ptrs = I.getArgOperand(0); 3464 const Align Alignment( 3465 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3466 Value *Mask = I.getArgOperand(2); 3467 Value *PassThru = I.getArgOperand(3); 3468 3469 Type *PtrsShadowTy = getShadowTy(Ptrs); 3470 if (ClCheckAccessAddress) { 3471 insertShadowCheck(Mask, &I); 3472 Value *MaskedPtrShadow = IRB.CreateSelect( 3473 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)), 3474 "_msmaskedptrs"); 3475 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I); 3476 } 3477 3478 if (!PropagateShadow) { 3479 setShadow(&I, getCleanShadow(&I)); 3480 setOrigin(&I, getCleanOrigin()); 3481 return; 3482 } 3483 3484 Type *ShadowTy = getShadowTy(&I); 3485 Type *ElementShadowTy = cast<VectorType>(ShadowTy)->getElementType(); 3486 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( 3487 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ false); 3488 3489 Value *Shadow = 3490 IRB.CreateMaskedGather(ShadowTy, ShadowPtrs, Alignment, Mask, 3491 getShadow(PassThru), "_msmaskedgather"); 3492 3493 setShadow(&I, Shadow); 3494 3495 // TODO: Store origins. 3496 setOrigin(&I, getCleanOrigin()); 3497 } 3498 3499 void handleMaskedScatter(IntrinsicInst &I) { 3500 IRBuilder<> IRB(&I); 3501 Value *Values = I.getArgOperand(0); 3502 Value *Ptrs = I.getArgOperand(1); 3503 const Align Alignment( 3504 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3505 Value *Mask = I.getArgOperand(3); 3506 3507 Type *PtrsShadowTy = getShadowTy(Ptrs); 3508 if (ClCheckAccessAddress) { 3509 insertShadowCheck(Mask, &I); 3510 Value *MaskedPtrShadow = IRB.CreateSelect( 3511 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)), 3512 "_msmaskedptrs"); 3513 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I); 3514 } 3515 3516 Value *Shadow = getShadow(Values); 3517 Type *ElementShadowTy = 3518 getShadowTy(cast<VectorType>(Values->getType())->getElementType()); 3519 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( 3520 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ true); 3521 3522 IRB.CreateMaskedScatter(Shadow, ShadowPtrs, Alignment, Mask); 3523 3524 // TODO: Store origin. 3525 } 3526 3527 void handleMaskedStore(IntrinsicInst &I) { 3528 IRBuilder<> IRB(&I); 3529 Value *V = I.getArgOperand(0); 3530 Value *Ptr = I.getArgOperand(1); 3531 const Align Alignment( 3532 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3533 Value *Mask = I.getArgOperand(3); 3534 Value *Shadow = getShadow(V); 3535 3536 if (ClCheckAccessAddress) { 3537 insertShadowCheck(Ptr, &I); 3538 insertShadowCheck(Mask, &I); 3539 } 3540 3541 Value *ShadowPtr; 3542 Value *OriginPtr; 3543 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3544 Ptr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3545 3546 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3547 3548 if (!MS.TrackOrigins) 3549 return; 3550 3551 auto &DL = F.getParent()->getDataLayout(); 3552 paintOrigin(IRB, getOrigin(V), OriginPtr, 3553 DL.getTypeStoreSize(Shadow->getType()), 3554 std::max(Alignment, kMinOriginAlignment)); 3555 } 3556 3557 void handleMaskedLoad(IntrinsicInst &I) { 3558 IRBuilder<> IRB(&I); 3559 Value *Ptr = I.getArgOperand(0); 3560 const Align Alignment( 3561 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3562 Value *Mask = I.getArgOperand(2); 3563 Value *PassThru = I.getArgOperand(3); 3564 3565 if (ClCheckAccessAddress) { 3566 insertShadowCheck(Ptr, &I); 3567 insertShadowCheck(Mask, &I); 3568 } 3569 3570 if (!PropagateShadow) { 3571 setShadow(&I, getCleanShadow(&I)); 3572 setOrigin(&I, getCleanOrigin()); 3573 return; 3574 } 3575 3576 Type *ShadowTy = getShadowTy(&I); 3577 Value *ShadowPtr, *OriginPtr; 3578 std::tie(ShadowPtr, OriginPtr) = 3579 getShadowOriginPtr(Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3580 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3581 getShadow(PassThru), "_msmaskedld")); 3582 3583 if (!MS.TrackOrigins) 3584 return; 3585 3586 // Choose between PassThru's and the loaded value's origins. 3587 Value *MaskedPassThruShadow = IRB.CreateAnd( 3588 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3589 3590 Value *NotNull = convertToBool(MaskedPassThruShadow, IRB, "_mscmp"); 3591 3592 Value *PtrOrigin = IRB.CreateLoad(MS.OriginTy, OriginPtr); 3593 Value *Origin = IRB.CreateSelect(NotNull, getOrigin(PassThru), PtrOrigin); 3594 3595 setOrigin(&I, Origin); 3596 } 3597 3598 // Instrument BMI / BMI2 intrinsics. 3599 // All of these intrinsics are Z = I(X, Y) 3600 // where the types of all operands and the result match, and are either i32 or 3601 // i64. The following instrumentation happens to work for all of them: 3602 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3603 void handleBmiIntrinsic(IntrinsicInst &I) { 3604 IRBuilder<> IRB(&I); 3605 Type *ShadowTy = getShadowTy(&I); 3606 3607 // If any bit of the mask operand is poisoned, then the whole thing is. 3608 Value *SMask = getShadow(&I, 1); 3609 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3610 ShadowTy); 3611 // Apply the same intrinsic to the shadow of the first operand. 3612 Value *S = IRB.CreateCall(I.getCalledFunction(), 3613 {getShadow(&I, 0), I.getOperand(1)}); 3614 S = IRB.CreateOr(SMask, S); 3615 setShadow(&I, S); 3616 setOriginForNaryOp(I); 3617 } 3618 3619 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3620 SmallVector<int, 8> Mask; 3621 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3622 Mask.append(2, X); 3623 } 3624 return Mask; 3625 } 3626 3627 // Instrument pclmul intrinsics. 3628 // These intrinsics operate either on odd or on even elements of the input 3629 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3630 // Replace the unused elements with copies of the used ones, ex: 3631 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3632 // or 3633 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3634 // and then apply the usual shadow combining logic. 3635 void handlePclmulIntrinsic(IntrinsicInst &I) { 3636 IRBuilder<> IRB(&I); 3637 unsigned Width = 3638 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3639 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3640 "pclmul 3rd operand must be a constant"); 3641 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3642 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3643 getPclmulMask(Width, Imm & 0x01)); 3644 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3645 getPclmulMask(Width, Imm & 0x10)); 3646 ShadowAndOriginCombiner SOC(this, IRB); 3647 SOC.Add(Shuf0, getOrigin(&I, 0)); 3648 SOC.Add(Shuf1, getOrigin(&I, 1)); 3649 SOC.Done(&I); 3650 } 3651 3652 // Instrument _mm_*_sd|ss intrinsics 3653 void handleUnarySdSsIntrinsic(IntrinsicInst &I) { 3654 IRBuilder<> IRB(&I); 3655 unsigned Width = 3656 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3657 Value *First = getShadow(&I, 0); 3658 Value *Second = getShadow(&I, 1); 3659 // First element of second operand, remaining elements of first operand 3660 SmallVector<int, 16> Mask; 3661 Mask.push_back(Width); 3662 for (unsigned i = 1; i < Width; i++) 3663 Mask.push_back(i); 3664 Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask); 3665 3666 setShadow(&I, Shadow); 3667 setOriginForNaryOp(I); 3668 } 3669 3670 void handleVtestIntrinsic(IntrinsicInst &I) { 3671 IRBuilder<> IRB(&I); 3672 Value *Shadow0 = getShadow(&I, 0); 3673 Value *Shadow1 = getShadow(&I, 1); 3674 Value *Or = IRB.CreateOr(Shadow0, Shadow1); 3675 Value *NZ = IRB.CreateICmpNE(Or, Constant::getNullValue(Or->getType())); 3676 Value *Scalar = convertShadowToScalar(NZ, IRB); 3677 Value *Shadow = IRB.CreateZExt(Scalar, getShadowTy(&I)); 3678 3679 setShadow(&I, Shadow); 3680 setOriginForNaryOp(I); 3681 } 3682 3683 void handleBinarySdSsIntrinsic(IntrinsicInst &I) { 3684 IRBuilder<> IRB(&I); 3685 unsigned Width = 3686 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3687 Value *First = getShadow(&I, 0); 3688 Value *Second = getShadow(&I, 1); 3689 Value *OrShadow = IRB.CreateOr(First, Second); 3690 // First element of both OR'd together, remaining elements of first operand 3691 SmallVector<int, 16> Mask; 3692 Mask.push_back(Width); 3693 for (unsigned i = 1; i < Width; i++) 3694 Mask.push_back(i); 3695 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask); 3696 3697 setShadow(&I, Shadow); 3698 setOriginForNaryOp(I); 3699 } 3700 3701 // Instrument abs intrinsic. 3702 // handleUnknownIntrinsic can't handle it because of the last 3703 // is_int_min_poison argument which does not match the result type. 3704 void handleAbsIntrinsic(IntrinsicInst &I) { 3705 assert(I.getType()->isIntOrIntVectorTy()); 3706 assert(I.getArgOperand(0)->getType() == I.getType()); 3707 3708 // FIXME: Handle is_int_min_poison. 3709 IRBuilder<> IRB(&I); 3710 setShadow(&I, getShadow(&I, 0)); 3711 setOrigin(&I, getOrigin(&I, 0)); 3712 } 3713 3714 void handleIsFpClass(IntrinsicInst &I) { 3715 IRBuilder<> IRB(&I); 3716 Value *Shadow = getShadow(&I, 0); 3717 setShadow(&I, IRB.CreateICmpNE(Shadow, getCleanShadow(Shadow))); 3718 setOrigin(&I, getOrigin(&I, 0)); 3719 } 3720 3721 void visitIntrinsicInst(IntrinsicInst &I) { 3722 switch (I.getIntrinsicID()) { 3723 case Intrinsic::abs: 3724 handleAbsIntrinsic(I); 3725 break; 3726 case Intrinsic::is_fpclass: 3727 handleIsFpClass(I); 3728 break; 3729 case Intrinsic::lifetime_start: 3730 handleLifetimeStart(I); 3731 break; 3732 case Intrinsic::launder_invariant_group: 3733 case Intrinsic::strip_invariant_group: 3734 handleInvariantGroup(I); 3735 break; 3736 case Intrinsic::bswap: 3737 handleBswap(I); 3738 break; 3739 case Intrinsic::ctlz: 3740 case Intrinsic::cttz: 3741 handleCountZeroes(I); 3742 break; 3743 case Intrinsic::masked_compressstore: 3744 handleMaskedCompressStore(I); 3745 break; 3746 case Intrinsic::masked_expandload: 3747 handleMaskedExpandLoad(I); 3748 break; 3749 case Intrinsic::masked_gather: 3750 handleMaskedGather(I); 3751 break; 3752 case Intrinsic::masked_scatter: 3753 handleMaskedScatter(I); 3754 break; 3755 case Intrinsic::masked_store: 3756 handleMaskedStore(I); 3757 break; 3758 case Intrinsic::masked_load: 3759 handleMaskedLoad(I); 3760 break; 3761 case Intrinsic::vector_reduce_and: 3762 handleVectorReduceAndIntrinsic(I); 3763 break; 3764 case Intrinsic::vector_reduce_or: 3765 handleVectorReduceOrIntrinsic(I); 3766 break; 3767 case Intrinsic::vector_reduce_add: 3768 case Intrinsic::vector_reduce_xor: 3769 case Intrinsic::vector_reduce_mul: 3770 handleVectorReduceIntrinsic(I); 3771 break; 3772 case Intrinsic::x86_sse_stmxcsr: 3773 handleStmxcsr(I); 3774 break; 3775 case Intrinsic::x86_sse_ldmxcsr: 3776 handleLdmxcsr(I); 3777 break; 3778 case Intrinsic::x86_avx512_vcvtsd2usi64: 3779 case Intrinsic::x86_avx512_vcvtsd2usi32: 3780 case Intrinsic::x86_avx512_vcvtss2usi64: 3781 case Intrinsic::x86_avx512_vcvtss2usi32: 3782 case Intrinsic::x86_avx512_cvttss2usi64: 3783 case Intrinsic::x86_avx512_cvttss2usi: 3784 case Intrinsic::x86_avx512_cvttsd2usi64: 3785 case Intrinsic::x86_avx512_cvttsd2usi: 3786 case Intrinsic::x86_avx512_cvtusi2ss: 3787 case Intrinsic::x86_avx512_cvtusi642sd: 3788 case Intrinsic::x86_avx512_cvtusi642ss: 3789 handleVectorConvertIntrinsic(I, 1, true); 3790 break; 3791 case Intrinsic::x86_sse2_cvtsd2si64: 3792 case Intrinsic::x86_sse2_cvtsd2si: 3793 case Intrinsic::x86_sse2_cvtsd2ss: 3794 case Intrinsic::x86_sse2_cvttsd2si64: 3795 case Intrinsic::x86_sse2_cvttsd2si: 3796 case Intrinsic::x86_sse_cvtss2si64: 3797 case Intrinsic::x86_sse_cvtss2si: 3798 case Intrinsic::x86_sse_cvttss2si64: 3799 case Intrinsic::x86_sse_cvttss2si: 3800 handleVectorConvertIntrinsic(I, 1); 3801 break; 3802 case Intrinsic::x86_sse_cvtps2pi: 3803 case Intrinsic::x86_sse_cvttps2pi: 3804 handleVectorConvertIntrinsic(I, 2); 3805 break; 3806 3807 case Intrinsic::x86_avx512_psll_w_512: 3808 case Intrinsic::x86_avx512_psll_d_512: 3809 case Intrinsic::x86_avx512_psll_q_512: 3810 case Intrinsic::x86_avx512_pslli_w_512: 3811 case Intrinsic::x86_avx512_pslli_d_512: 3812 case Intrinsic::x86_avx512_pslli_q_512: 3813 case Intrinsic::x86_avx512_psrl_w_512: 3814 case Intrinsic::x86_avx512_psrl_d_512: 3815 case Intrinsic::x86_avx512_psrl_q_512: 3816 case Intrinsic::x86_avx512_psra_w_512: 3817 case Intrinsic::x86_avx512_psra_d_512: 3818 case Intrinsic::x86_avx512_psra_q_512: 3819 case Intrinsic::x86_avx512_psrli_w_512: 3820 case Intrinsic::x86_avx512_psrli_d_512: 3821 case Intrinsic::x86_avx512_psrli_q_512: 3822 case Intrinsic::x86_avx512_psrai_w_512: 3823 case Intrinsic::x86_avx512_psrai_d_512: 3824 case Intrinsic::x86_avx512_psrai_q_512: 3825 case Intrinsic::x86_avx512_psra_q_256: 3826 case Intrinsic::x86_avx512_psra_q_128: 3827 case Intrinsic::x86_avx512_psrai_q_256: 3828 case Intrinsic::x86_avx512_psrai_q_128: 3829 case Intrinsic::x86_avx2_psll_w: 3830 case Intrinsic::x86_avx2_psll_d: 3831 case Intrinsic::x86_avx2_psll_q: 3832 case Intrinsic::x86_avx2_pslli_w: 3833 case Intrinsic::x86_avx2_pslli_d: 3834 case Intrinsic::x86_avx2_pslli_q: 3835 case Intrinsic::x86_avx2_psrl_w: 3836 case Intrinsic::x86_avx2_psrl_d: 3837 case Intrinsic::x86_avx2_psrl_q: 3838 case Intrinsic::x86_avx2_psra_w: 3839 case Intrinsic::x86_avx2_psra_d: 3840 case Intrinsic::x86_avx2_psrli_w: 3841 case Intrinsic::x86_avx2_psrli_d: 3842 case Intrinsic::x86_avx2_psrli_q: 3843 case Intrinsic::x86_avx2_psrai_w: 3844 case Intrinsic::x86_avx2_psrai_d: 3845 case Intrinsic::x86_sse2_psll_w: 3846 case Intrinsic::x86_sse2_psll_d: 3847 case Intrinsic::x86_sse2_psll_q: 3848 case Intrinsic::x86_sse2_pslli_w: 3849 case Intrinsic::x86_sse2_pslli_d: 3850 case Intrinsic::x86_sse2_pslli_q: 3851 case Intrinsic::x86_sse2_psrl_w: 3852 case Intrinsic::x86_sse2_psrl_d: 3853 case Intrinsic::x86_sse2_psrl_q: 3854 case Intrinsic::x86_sse2_psra_w: 3855 case Intrinsic::x86_sse2_psra_d: 3856 case Intrinsic::x86_sse2_psrli_w: 3857 case Intrinsic::x86_sse2_psrli_d: 3858 case Intrinsic::x86_sse2_psrli_q: 3859 case Intrinsic::x86_sse2_psrai_w: 3860 case Intrinsic::x86_sse2_psrai_d: 3861 case Intrinsic::x86_mmx_psll_w: 3862 case Intrinsic::x86_mmx_psll_d: 3863 case Intrinsic::x86_mmx_psll_q: 3864 case Intrinsic::x86_mmx_pslli_w: 3865 case Intrinsic::x86_mmx_pslli_d: 3866 case Intrinsic::x86_mmx_pslli_q: 3867 case Intrinsic::x86_mmx_psrl_w: 3868 case Intrinsic::x86_mmx_psrl_d: 3869 case Intrinsic::x86_mmx_psrl_q: 3870 case Intrinsic::x86_mmx_psra_w: 3871 case Intrinsic::x86_mmx_psra_d: 3872 case Intrinsic::x86_mmx_psrli_w: 3873 case Intrinsic::x86_mmx_psrli_d: 3874 case Intrinsic::x86_mmx_psrli_q: 3875 case Intrinsic::x86_mmx_psrai_w: 3876 case Intrinsic::x86_mmx_psrai_d: 3877 handleVectorShiftIntrinsic(I, /* Variable */ false); 3878 break; 3879 case Intrinsic::x86_avx2_psllv_d: 3880 case Intrinsic::x86_avx2_psllv_d_256: 3881 case Intrinsic::x86_avx512_psllv_d_512: 3882 case Intrinsic::x86_avx2_psllv_q: 3883 case Intrinsic::x86_avx2_psllv_q_256: 3884 case Intrinsic::x86_avx512_psllv_q_512: 3885 case Intrinsic::x86_avx2_psrlv_d: 3886 case Intrinsic::x86_avx2_psrlv_d_256: 3887 case Intrinsic::x86_avx512_psrlv_d_512: 3888 case Intrinsic::x86_avx2_psrlv_q: 3889 case Intrinsic::x86_avx2_psrlv_q_256: 3890 case Intrinsic::x86_avx512_psrlv_q_512: 3891 case Intrinsic::x86_avx2_psrav_d: 3892 case Intrinsic::x86_avx2_psrav_d_256: 3893 case Intrinsic::x86_avx512_psrav_d_512: 3894 case Intrinsic::x86_avx512_psrav_q_128: 3895 case Intrinsic::x86_avx512_psrav_q_256: 3896 case Intrinsic::x86_avx512_psrav_q_512: 3897 handleVectorShiftIntrinsic(I, /* Variable */ true); 3898 break; 3899 3900 case Intrinsic::x86_sse2_packsswb_128: 3901 case Intrinsic::x86_sse2_packssdw_128: 3902 case Intrinsic::x86_sse2_packuswb_128: 3903 case Intrinsic::x86_sse41_packusdw: 3904 case Intrinsic::x86_avx2_packsswb: 3905 case Intrinsic::x86_avx2_packssdw: 3906 case Intrinsic::x86_avx2_packuswb: 3907 case Intrinsic::x86_avx2_packusdw: 3908 handleVectorPackIntrinsic(I); 3909 break; 3910 3911 case Intrinsic::x86_mmx_packsswb: 3912 case Intrinsic::x86_mmx_packuswb: 3913 handleVectorPackIntrinsic(I, 16); 3914 break; 3915 3916 case Intrinsic::x86_mmx_packssdw: 3917 handleVectorPackIntrinsic(I, 32); 3918 break; 3919 3920 case Intrinsic::x86_mmx_psad_bw: 3921 case Intrinsic::x86_sse2_psad_bw: 3922 case Intrinsic::x86_avx2_psad_bw: 3923 handleVectorSadIntrinsic(I); 3924 break; 3925 3926 case Intrinsic::x86_sse2_pmadd_wd: 3927 case Intrinsic::x86_avx2_pmadd_wd: 3928 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3929 case Intrinsic::x86_avx2_pmadd_ub_sw: 3930 handleVectorPmaddIntrinsic(I); 3931 break; 3932 3933 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3934 handleVectorPmaddIntrinsic(I, 8); 3935 break; 3936 3937 case Intrinsic::x86_mmx_pmadd_wd: 3938 handleVectorPmaddIntrinsic(I, 16); 3939 break; 3940 3941 case Intrinsic::x86_sse_cmp_ss: 3942 case Intrinsic::x86_sse2_cmp_sd: 3943 case Intrinsic::x86_sse_comieq_ss: 3944 case Intrinsic::x86_sse_comilt_ss: 3945 case Intrinsic::x86_sse_comile_ss: 3946 case Intrinsic::x86_sse_comigt_ss: 3947 case Intrinsic::x86_sse_comige_ss: 3948 case Intrinsic::x86_sse_comineq_ss: 3949 case Intrinsic::x86_sse_ucomieq_ss: 3950 case Intrinsic::x86_sse_ucomilt_ss: 3951 case Intrinsic::x86_sse_ucomile_ss: 3952 case Intrinsic::x86_sse_ucomigt_ss: 3953 case Intrinsic::x86_sse_ucomige_ss: 3954 case Intrinsic::x86_sse_ucomineq_ss: 3955 case Intrinsic::x86_sse2_comieq_sd: 3956 case Intrinsic::x86_sse2_comilt_sd: 3957 case Intrinsic::x86_sse2_comile_sd: 3958 case Intrinsic::x86_sse2_comigt_sd: 3959 case Intrinsic::x86_sse2_comige_sd: 3960 case Intrinsic::x86_sse2_comineq_sd: 3961 case Intrinsic::x86_sse2_ucomieq_sd: 3962 case Intrinsic::x86_sse2_ucomilt_sd: 3963 case Intrinsic::x86_sse2_ucomile_sd: 3964 case Intrinsic::x86_sse2_ucomigt_sd: 3965 case Intrinsic::x86_sse2_ucomige_sd: 3966 case Intrinsic::x86_sse2_ucomineq_sd: 3967 handleVectorCompareScalarIntrinsic(I); 3968 break; 3969 3970 case Intrinsic::x86_avx_cmp_pd_256: 3971 case Intrinsic::x86_avx_cmp_ps_256: 3972 case Intrinsic::x86_sse2_cmp_pd: 3973 case Intrinsic::x86_sse_cmp_ps: 3974 handleVectorComparePackedIntrinsic(I); 3975 break; 3976 3977 case Intrinsic::x86_bmi_bextr_32: 3978 case Intrinsic::x86_bmi_bextr_64: 3979 case Intrinsic::x86_bmi_bzhi_32: 3980 case Intrinsic::x86_bmi_bzhi_64: 3981 case Intrinsic::x86_bmi_pdep_32: 3982 case Intrinsic::x86_bmi_pdep_64: 3983 case Intrinsic::x86_bmi_pext_32: 3984 case Intrinsic::x86_bmi_pext_64: 3985 handleBmiIntrinsic(I); 3986 break; 3987 3988 case Intrinsic::x86_pclmulqdq: 3989 case Intrinsic::x86_pclmulqdq_256: 3990 case Intrinsic::x86_pclmulqdq_512: 3991 handlePclmulIntrinsic(I); 3992 break; 3993 3994 case Intrinsic::x86_sse41_round_sd: 3995 case Intrinsic::x86_sse41_round_ss: 3996 handleUnarySdSsIntrinsic(I); 3997 break; 3998 case Intrinsic::x86_sse2_max_sd: 3999 case Intrinsic::x86_sse_max_ss: 4000 case Intrinsic::x86_sse2_min_sd: 4001 case Intrinsic::x86_sse_min_ss: 4002 handleBinarySdSsIntrinsic(I); 4003 break; 4004 4005 case Intrinsic::x86_avx_vtestc_pd: 4006 case Intrinsic::x86_avx_vtestc_pd_256: 4007 case Intrinsic::x86_avx_vtestc_ps: 4008 case Intrinsic::x86_avx_vtestc_ps_256: 4009 case Intrinsic::x86_avx_vtestnzc_pd: 4010 case Intrinsic::x86_avx_vtestnzc_pd_256: 4011 case Intrinsic::x86_avx_vtestnzc_ps: 4012 case Intrinsic::x86_avx_vtestnzc_ps_256: 4013 case Intrinsic::x86_avx_vtestz_pd: 4014 case Intrinsic::x86_avx_vtestz_pd_256: 4015 case Intrinsic::x86_avx_vtestz_ps: 4016 case Intrinsic::x86_avx_vtestz_ps_256: 4017 case Intrinsic::x86_avx_ptestc_256: 4018 case Intrinsic::x86_avx_ptestnzc_256: 4019 case Intrinsic::x86_avx_ptestz_256: 4020 case Intrinsic::x86_sse41_ptestc: 4021 case Intrinsic::x86_sse41_ptestnzc: 4022 case Intrinsic::x86_sse41_ptestz: 4023 handleVtestIntrinsic(I); 4024 break; 4025 4026 case Intrinsic::fshl: 4027 case Intrinsic::fshr: 4028 handleFunnelShift(I); 4029 break; 4030 4031 case Intrinsic::is_constant: 4032 // The result of llvm.is.constant() is always defined. 4033 setShadow(&I, getCleanShadow(&I)); 4034 setOrigin(&I, getCleanOrigin()); 4035 break; 4036 4037 default: 4038 if (!handleUnknownIntrinsic(I)) 4039 visitInstruction(I); 4040 break; 4041 } 4042 } 4043 4044 void visitLibAtomicLoad(CallBase &CB) { 4045 // Since we use getNextNode here, we can't have CB terminate the BB. 4046 assert(isa<CallInst>(CB)); 4047 4048 IRBuilder<> IRB(&CB); 4049 Value *Size = CB.getArgOperand(0); 4050 Value *SrcPtr = CB.getArgOperand(1); 4051 Value *DstPtr = CB.getArgOperand(2); 4052 Value *Ordering = CB.getArgOperand(3); 4053 // Convert the call to have at least Acquire ordering to make sure 4054 // the shadow operations aren't reordered before it. 4055 Value *NewOrdering = 4056 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 4057 CB.setArgOperand(3, NewOrdering); 4058 4059 NextNodeIRBuilder NextIRB(&CB); 4060 Value *SrcShadowPtr, *SrcOriginPtr; 4061 std::tie(SrcShadowPtr, SrcOriginPtr) = 4062 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 4063 /*isStore*/ false); 4064 Value *DstShadowPtr = 4065 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 4066 /*isStore*/ true) 4067 .first; 4068 4069 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 4070 if (MS.TrackOrigins) { 4071 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 4072 kMinOriginAlignment); 4073 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 4074 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 4075 } 4076 } 4077 4078 void visitLibAtomicStore(CallBase &CB) { 4079 IRBuilder<> IRB(&CB); 4080 Value *Size = CB.getArgOperand(0); 4081 Value *DstPtr = CB.getArgOperand(2); 4082 Value *Ordering = CB.getArgOperand(3); 4083 // Convert the call to have at least Release ordering to make sure 4084 // the shadow operations aren't reordered after it. 4085 Value *NewOrdering = 4086 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 4087 CB.setArgOperand(3, NewOrdering); 4088 4089 Value *DstShadowPtr = 4090 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 4091 /*isStore*/ true) 4092 .first; 4093 4094 // Atomic store always paints clean shadow/origin. See file header. 4095 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 4096 Align(1)); 4097 } 4098 4099 void visitCallBase(CallBase &CB) { 4100 assert(!CB.getMetadata(LLVMContext::MD_nosanitize)); 4101 if (CB.isInlineAsm()) { 4102 // For inline asm (either a call to asm function, or callbr instruction), 4103 // do the usual thing: check argument shadow and mark all outputs as 4104 // clean. Note that any side effects of the inline asm that are not 4105 // immediately visible in its constraints are not handled. 4106 // For now, handle inline asm by default for KMSAN. 4107 bool HandleAsm = ClHandleAsmConservative.getNumOccurrences() 4108 ? ClHandleAsmConservative 4109 : MS.CompileKernel; 4110 if (HandleAsm) 4111 visitAsmInstruction(CB); 4112 else 4113 visitInstruction(CB); 4114 return; 4115 } 4116 LibFunc LF; 4117 if (TLI->getLibFunc(CB, LF)) { 4118 // libatomic.a functions need to have special handling because there isn't 4119 // a good way to intercept them or compile the library with 4120 // instrumentation. 4121 switch (LF) { 4122 case LibFunc_atomic_load: 4123 if (!isa<CallInst>(CB)) { 4124 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 4125 "Ignoring!\n"; 4126 break; 4127 } 4128 visitLibAtomicLoad(CB); 4129 return; 4130 case LibFunc_atomic_store: 4131 visitLibAtomicStore(CB); 4132 return; 4133 default: 4134 break; 4135 } 4136 } 4137 4138 if (auto *Call = dyn_cast<CallInst>(&CB)) { 4139 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 4140 4141 // We are going to insert code that relies on the fact that the callee 4142 // will become a non-readonly function after it is instrumented by us. To 4143 // prevent this code from being optimized out, mark that function 4144 // non-readonly in advance. 4145 // TODO: We can likely do better than dropping memory() completely here. 4146 AttributeMask B; 4147 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable); 4148 4149 Call->removeFnAttrs(B); 4150 if (Function *Func = Call->getCalledFunction()) { 4151 Func->removeFnAttrs(B); 4152 } 4153 4154 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 4155 } 4156 IRBuilder<> IRB(&CB); 4157 bool MayCheckCall = MS.EagerChecks; 4158 if (Function *Func = CB.getCalledFunction()) { 4159 // __sanitizer_unaligned_{load,store} functions may be called by users 4160 // and always expects shadows in the TLS. So don't check them. 4161 MayCheckCall &= !Func->getName().starts_with("__sanitizer_unaligned_"); 4162 } 4163 4164 unsigned ArgOffset = 0; 4165 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 4166 for (const auto &[i, A] : llvm::enumerate(CB.args())) { 4167 if (!A->getType()->isSized()) { 4168 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 4169 continue; 4170 } 4171 unsigned Size = 0; 4172 const DataLayout &DL = F.getParent()->getDataLayout(); 4173 4174 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 4175 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 4176 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 4177 4178 if (EagerCheck) { 4179 insertShadowCheck(A, &CB); 4180 Size = DL.getTypeAllocSize(A->getType()); 4181 } else { 4182 Value *Store = nullptr; 4183 // Compute the Shadow for arg even if it is ByVal, because 4184 // in that case getShadow() will copy the actual arg shadow to 4185 // __msan_param_tls. 4186 Value *ArgShadow = getShadow(A); 4187 Value *ArgShadowBase = getShadowPtrForArgument(IRB, ArgOffset); 4188 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 4189 << " Shadow: " << *ArgShadow << "\n"); 4190 if (ByVal) { 4191 // ByVal requires some special handling as it's too big for a single 4192 // load 4193 assert(A->getType()->isPointerTy() && 4194 "ByVal argument is not a pointer!"); 4195 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 4196 if (ArgOffset + Size > kParamTLSSize) 4197 break; 4198 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 4199 MaybeAlign Alignment = std::nullopt; 4200 if (ParamAlignment) 4201 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 4202 Value *AShadowPtr, *AOriginPtr; 4203 std::tie(AShadowPtr, AOriginPtr) = 4204 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 4205 /*isStore*/ false); 4206 if (!PropagateShadow) { 4207 Store = IRB.CreateMemSet(ArgShadowBase, 4208 Constant::getNullValue(IRB.getInt8Ty()), 4209 Size, Alignment); 4210 } else { 4211 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 4212 Alignment, Size); 4213 if (MS.TrackOrigins) { 4214 Value *ArgOriginBase = getOriginPtrForArgument(IRB, ArgOffset); 4215 // FIXME: OriginSize should be: 4216 // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) 4217 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 4218 IRB.CreateMemCpy( 4219 ArgOriginBase, 4220 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 4221 AOriginPtr, 4222 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize); 4223 } 4224 } 4225 } else { 4226 // Any other parameters mean we need bit-grained tracking of uninit 4227 // data 4228 Size = DL.getTypeAllocSize(A->getType()); 4229 if (ArgOffset + Size > kParamTLSSize) 4230 break; 4231 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 4232 kShadowTLSAlignment); 4233 Constant *Cst = dyn_cast<Constant>(ArgShadow); 4234 if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { 4235 IRB.CreateStore(getOrigin(A), 4236 getOriginPtrForArgument(IRB, ArgOffset)); 4237 } 4238 } 4239 (void)Store; 4240 assert(Store != nullptr); 4241 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 4242 } 4243 assert(Size != 0); 4244 ArgOffset += alignTo(Size, kShadowTLSAlignment); 4245 } 4246 LLVM_DEBUG(dbgs() << " done with call args\n"); 4247 4248 FunctionType *FT = CB.getFunctionType(); 4249 if (FT->isVarArg()) { 4250 VAHelper->visitCallBase(CB, IRB); 4251 } 4252 4253 // Now, get the shadow for the RetVal. 4254 if (!CB.getType()->isSized()) 4255 return; 4256 // Don't emit the epilogue for musttail call returns. 4257 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 4258 return; 4259 4260 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 4261 setShadow(&CB, getCleanShadow(&CB)); 4262 setOrigin(&CB, getCleanOrigin()); 4263 return; 4264 } 4265 4266 IRBuilder<> IRBBefore(&CB); 4267 // Until we have full dynamic coverage, make sure the retval shadow is 0. 4268 Value *Base = getShadowPtrForRetval(IRBBefore); 4269 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 4270 kShadowTLSAlignment); 4271 BasicBlock::iterator NextInsn; 4272 if (isa<CallInst>(CB)) { 4273 NextInsn = ++CB.getIterator(); 4274 assert(NextInsn != CB.getParent()->end()); 4275 } else { 4276 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 4277 if (!NormalDest->getSinglePredecessor()) { 4278 // FIXME: this case is tricky, so we are just conservative here. 4279 // Perhaps we need to split the edge between this BB and NormalDest, 4280 // but a naive attempt to use SplitEdge leads to a crash. 4281 setShadow(&CB, getCleanShadow(&CB)); 4282 setOrigin(&CB, getCleanOrigin()); 4283 return; 4284 } 4285 // FIXME: NextInsn is likely in a basic block that has not been visited 4286 // yet. Anything inserted there will be instrumented by MSan later! 4287 NextInsn = NormalDest->getFirstInsertionPt(); 4288 assert(NextInsn != NormalDest->end() && 4289 "Could not find insertion point for retval shadow load"); 4290 } 4291 IRBuilder<> IRBAfter(&*NextInsn); 4292 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 4293 getShadowTy(&CB), getShadowPtrForRetval(IRBAfter), 4294 kShadowTLSAlignment, "_msret"); 4295 setShadow(&CB, RetvalShadow); 4296 if (MS.TrackOrigins) 4297 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 4298 getOriginPtrForRetval())); 4299 } 4300 4301 bool isAMustTailRetVal(Value *RetVal) { 4302 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 4303 RetVal = I->getOperand(0); 4304 } 4305 if (auto *I = dyn_cast<CallInst>(RetVal)) { 4306 return I->isMustTailCall(); 4307 } 4308 return false; 4309 } 4310 4311 void visitReturnInst(ReturnInst &I) { 4312 IRBuilder<> IRB(&I); 4313 Value *RetVal = I.getReturnValue(); 4314 if (!RetVal) 4315 return; 4316 // Don't emit the epilogue for musttail call returns. 4317 if (isAMustTailRetVal(RetVal)) 4318 return; 4319 Value *ShadowPtr = getShadowPtrForRetval(IRB); 4320 bool HasNoUndef = F.hasRetAttribute(Attribute::NoUndef); 4321 bool StoreShadow = !(MS.EagerChecks && HasNoUndef); 4322 // FIXME: Consider using SpecialCaseList to specify a list of functions that 4323 // must always return fully initialized values. For now, we hardcode "main". 4324 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main"); 4325 4326 Value *Shadow = getShadow(RetVal); 4327 bool StoreOrigin = true; 4328 if (EagerCheck) { 4329 insertShadowCheck(RetVal, &I); 4330 Shadow = getCleanShadow(RetVal); 4331 StoreOrigin = false; 4332 } 4333 4334 // The caller may still expect information passed over TLS if we pass our 4335 // check 4336 if (StoreShadow) { 4337 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 4338 if (MS.TrackOrigins && StoreOrigin) 4339 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval()); 4340 } 4341 } 4342 4343 void visitPHINode(PHINode &I) { 4344 IRBuilder<> IRB(&I); 4345 if (!PropagateShadow) { 4346 setShadow(&I, getCleanShadow(&I)); 4347 setOrigin(&I, getCleanOrigin()); 4348 return; 4349 } 4350 4351 ShadowPHINodes.push_back(&I); 4352 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 4353 "_msphi_s")); 4354 if (MS.TrackOrigins) 4355 setOrigin( 4356 &I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), "_msphi_o")); 4357 } 4358 4359 Value *getLocalVarIdptr(AllocaInst &I) { 4360 ConstantInt *IntConst = 4361 ConstantInt::get(Type::getInt32Ty((*F.getParent()).getContext()), 0); 4362 return new GlobalVariable(*F.getParent(), IntConst->getType(), 4363 /*isConstant=*/false, GlobalValue::PrivateLinkage, 4364 IntConst); 4365 } 4366 4367 Value *getLocalVarDescription(AllocaInst &I) { 4368 return createPrivateConstGlobalForString(*F.getParent(), I.getName()); 4369 } 4370 4371 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 4372 if (PoisonStack && ClPoisonStackWithCall) { 4373 IRB.CreateCall(MS.MsanPoisonStackFn, {&I, Len}); 4374 } else { 4375 Value *ShadowBase, *OriginBase; 4376 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 4377 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 4378 4379 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 4380 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign()); 4381 } 4382 4383 if (PoisonStack && MS.TrackOrigins) { 4384 Value *Idptr = getLocalVarIdptr(I); 4385 if (ClPrintStackNames) { 4386 Value *Descr = getLocalVarDescription(I); 4387 IRB.CreateCall(MS.MsanSetAllocaOriginWithDescriptionFn, 4388 {&I, Len, Idptr, Descr}); 4389 } else { 4390 IRB.CreateCall(MS.MsanSetAllocaOriginNoDescriptionFn, {&I, Len, Idptr}); 4391 } 4392 } 4393 } 4394 4395 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 4396 Value *Descr = getLocalVarDescription(I); 4397 if (PoisonStack) { 4398 IRB.CreateCall(MS.MsanPoisonAllocaFn, {&I, Len, Descr}); 4399 } else { 4400 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, {&I, Len}); 4401 } 4402 } 4403 4404 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 4405 if (!InsPoint) 4406 InsPoint = &I; 4407 NextNodeIRBuilder IRB(InsPoint); 4408 const DataLayout &DL = F.getParent()->getDataLayout(); 4409 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 4410 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 4411 if (I.isArrayAllocation()) 4412 Len = IRB.CreateMul(Len, 4413 IRB.CreateZExtOrTrunc(I.getArraySize(), MS.IntptrTy)); 4414 4415 if (MS.CompileKernel) 4416 poisonAllocaKmsan(I, IRB, Len); 4417 else 4418 poisonAllocaUserspace(I, IRB, Len); 4419 } 4420 4421 void visitAllocaInst(AllocaInst &I) { 4422 setShadow(&I, getCleanShadow(&I)); 4423 setOrigin(&I, getCleanOrigin()); 4424 // We'll get to this alloca later unless it's poisoned at the corresponding 4425 // llvm.lifetime.start. 4426 AllocaSet.insert(&I); 4427 } 4428 4429 void visitSelectInst(SelectInst &I) { 4430 IRBuilder<> IRB(&I); 4431 // a = select b, c, d 4432 Value *B = I.getCondition(); 4433 Value *C = I.getTrueValue(); 4434 Value *D = I.getFalseValue(); 4435 Value *Sb = getShadow(B); 4436 Value *Sc = getShadow(C); 4437 Value *Sd = getShadow(D); 4438 4439 // Result shadow if condition shadow is 0. 4440 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 4441 Value *Sa1; 4442 if (I.getType()->isAggregateType()) { 4443 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 4444 // an extra "select". This results in much more compact IR. 4445 // Sa = select Sb, poisoned, (select b, Sc, Sd) 4446 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 4447 } else { 4448 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 4449 // If Sb (condition is poisoned), look for bits in c and d that are equal 4450 // and both unpoisoned. 4451 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 4452 4453 // Cast arguments to shadow-compatible type. 4454 C = CreateAppToShadowCast(IRB, C); 4455 D = CreateAppToShadowCast(IRB, D); 4456 4457 // Result shadow if condition shadow is 1. 4458 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 4459 } 4460 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 4461 setShadow(&I, Sa); 4462 if (MS.TrackOrigins) { 4463 // Origins are always i32, so any vector conditions must be flattened. 4464 // FIXME: consider tracking vector origins for app vectors? 4465 if (B->getType()->isVectorTy()) { 4466 B = convertToBool(B, IRB); 4467 Sb = convertToBool(Sb, IRB); 4468 } 4469 // a = select b, c, d 4470 // Oa = Sb ? Ob : (b ? Oc : Od) 4471 setOrigin( 4472 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 4473 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 4474 getOrigin(I.getFalseValue())))); 4475 } 4476 } 4477 4478 void visitLandingPadInst(LandingPadInst &I) { 4479 // Do nothing. 4480 // See https://github.com/google/sanitizers/issues/504 4481 setShadow(&I, getCleanShadow(&I)); 4482 setOrigin(&I, getCleanOrigin()); 4483 } 4484 4485 void visitCatchSwitchInst(CatchSwitchInst &I) { 4486 setShadow(&I, getCleanShadow(&I)); 4487 setOrigin(&I, getCleanOrigin()); 4488 } 4489 4490 void visitFuncletPadInst(FuncletPadInst &I) { 4491 setShadow(&I, getCleanShadow(&I)); 4492 setOrigin(&I, getCleanOrigin()); 4493 } 4494 4495 void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); } 4496 4497 void visitExtractValueInst(ExtractValueInst &I) { 4498 IRBuilder<> IRB(&I); 4499 Value *Agg = I.getAggregateOperand(); 4500 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 4501 Value *AggShadow = getShadow(Agg); 4502 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4503 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 4504 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 4505 setShadow(&I, ResShadow); 4506 setOriginForNaryOp(I); 4507 } 4508 4509 void visitInsertValueInst(InsertValueInst &I) { 4510 IRBuilder<> IRB(&I); 4511 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 4512 Value *AggShadow = getShadow(I.getAggregateOperand()); 4513 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 4514 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4515 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 4516 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 4517 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 4518 setShadow(&I, Res); 4519 setOriginForNaryOp(I); 4520 } 4521 4522 void dumpInst(Instruction &I) { 4523 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 4524 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 4525 } else { 4526 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 4527 } 4528 errs() << "QQQ " << I << "\n"; 4529 } 4530 4531 void visitResumeInst(ResumeInst &I) { 4532 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4533 // Nothing to do here. 4534 } 4535 4536 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4537 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4538 // Nothing to do here. 4539 } 4540 4541 void visitCatchReturnInst(CatchReturnInst &CRI) { 4542 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4543 // Nothing to do here. 4544 } 4545 4546 void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I, 4547 IRBuilder<> &IRB, const DataLayout &DL, 4548 bool isOutput) { 4549 // For each assembly argument, we check its value for being initialized. 4550 // If the argument is a pointer, we assume it points to a single element 4551 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4552 // Each such pointer is instrumented with a call to the runtime library. 4553 Type *OpType = Operand->getType(); 4554 // Check the operand value itself. 4555 insertShadowCheck(Operand, &I); 4556 if (!OpType->isPointerTy() || !isOutput) { 4557 assert(!isOutput); 4558 return; 4559 } 4560 if (!ElemTy->isSized()) 4561 return; 4562 Value *SizeVal = 4563 IRB.CreateTypeSize(MS.IntptrTy, DL.getTypeStoreSize(ElemTy)); 4564 if (MS.CompileKernel) { 4565 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Operand, SizeVal}); 4566 } else { 4567 // ElemTy, derived from elementtype(), does not encode the alignment of 4568 // the pointer. Conservatively assume that the shadow memory is unaligned. 4569 auto [ShadowPtr, _] = 4570 getShadowOriginPtrUserspace(Operand, IRB, IRB.getInt8Ty(), Align(1)); 4571 IRB.CreateAlignedStore(getCleanShadow(ElemTy), ShadowPtr, Align(1)); 4572 } 4573 } 4574 4575 /// Get the number of output arguments returned by pointers. 4576 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4577 int NumRetOutputs = 0; 4578 int NumOutputs = 0; 4579 Type *RetTy = cast<Value>(CB)->getType(); 4580 if (!RetTy->isVoidTy()) { 4581 // Register outputs are returned via the CallInst return value. 4582 auto *ST = dyn_cast<StructType>(RetTy); 4583 if (ST) 4584 NumRetOutputs = ST->getNumElements(); 4585 else 4586 NumRetOutputs = 1; 4587 } 4588 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4589 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 4590 switch (Info.Type) { 4591 case InlineAsm::isOutput: 4592 NumOutputs++; 4593 break; 4594 default: 4595 break; 4596 } 4597 } 4598 return NumOutputs - NumRetOutputs; 4599 } 4600 4601 void visitAsmInstruction(Instruction &I) { 4602 // Conservative inline assembly handling: check for poisoned shadow of 4603 // asm() arguments, then unpoison the result and all the memory locations 4604 // pointed to by those arguments. 4605 // An inline asm() statement in C++ contains lists of input and output 4606 // arguments used by the assembly code. These are mapped to operands of the 4607 // CallInst as follows: 4608 // - nR register outputs ("=r) are returned by value in a single structure 4609 // (SSA value of the CallInst); 4610 // - nO other outputs ("=m" and others) are returned by pointer as first 4611 // nO operands of the CallInst; 4612 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4613 // remaining nI operands. 4614 // The total number of asm() arguments in the source is nR+nO+nI, and the 4615 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4616 // function to be called). 4617 const DataLayout &DL = F.getParent()->getDataLayout(); 4618 CallBase *CB = cast<CallBase>(&I); 4619 IRBuilder<> IRB(&I); 4620 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4621 int OutputArgs = getNumOutputArgs(IA, CB); 4622 // The last operand of a CallInst is the function itself. 4623 int NumOperands = CB->getNumOperands() - 1; 4624 4625 // Check input arguments. Doing so before unpoisoning output arguments, so 4626 // that we won't overwrite uninit values before checking them. 4627 for (int i = OutputArgs; i < NumOperands; i++) { 4628 Value *Operand = CB->getOperand(i); 4629 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 4630 /*isOutput*/ false); 4631 } 4632 // Unpoison output arguments. This must happen before the actual InlineAsm 4633 // call, so that the shadow for memory published in the asm() statement 4634 // remains valid. 4635 for (int i = 0; i < OutputArgs; i++) { 4636 Value *Operand = CB->getOperand(i); 4637 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 4638 /*isOutput*/ true); 4639 } 4640 4641 setShadow(&I, getCleanShadow(&I)); 4642 setOrigin(&I, getCleanOrigin()); 4643 } 4644 4645 void visitFreezeInst(FreezeInst &I) { 4646 // Freeze always returns a fully defined value. 4647 setShadow(&I, getCleanShadow(&I)); 4648 setOrigin(&I, getCleanOrigin()); 4649 } 4650 4651 void visitInstruction(Instruction &I) { 4652 // Everything else: stop propagating and check for poisoned shadow. 4653 if (ClDumpStrictInstructions) 4654 dumpInst(I); 4655 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4656 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4657 Value *Operand = I.getOperand(i); 4658 if (Operand->getType()->isSized()) 4659 insertShadowCheck(Operand, &I); 4660 } 4661 setShadow(&I, getCleanShadow(&I)); 4662 setOrigin(&I, getCleanOrigin()); 4663 } 4664 }; 4665 4666 struct VarArgHelperBase : public VarArgHelper { 4667 Function &F; 4668 MemorySanitizer &MS; 4669 MemorySanitizerVisitor &MSV; 4670 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4671 const unsigned VAListTagSize; 4672 4673 VarArgHelperBase(Function &F, MemorySanitizer &MS, 4674 MemorySanitizerVisitor &MSV, unsigned VAListTagSize) 4675 : F(F), MS(MS), MSV(MSV), VAListTagSize(VAListTagSize) {} 4676 4677 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 4678 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4679 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4680 } 4681 4682 /// Compute the shadow address for a given va_arg. 4683 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4684 unsigned ArgOffset) { 4685 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4686 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4687 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4688 "_msarg_va_s"); 4689 } 4690 4691 /// Compute the shadow address for a given va_arg. 4692 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4693 unsigned ArgOffset, unsigned ArgSize) { 4694 // Make sure we don't overflow __msan_va_arg_tls. 4695 if (ArgOffset + ArgSize > kParamTLSSize) 4696 return nullptr; 4697 return getShadowPtrForVAArgument(Ty, IRB, ArgOffset); 4698 } 4699 4700 /// Compute the origin address for a given va_arg. 4701 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 4702 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4703 // getOriginPtrForVAArgument() is always called after 4704 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4705 // overflow. 4706 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4707 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4708 "_msarg_va_o"); 4709 } 4710 4711 void CleanUnusedTLS(IRBuilder<> &IRB, Value *ShadowBase, 4712 unsigned BaseOffset) { 4713 // The tails of __msan_va_arg_tls is not large enough to fit full 4714 // value shadow, but it will be copied to backup anyway. Make it 4715 // clean. 4716 if (BaseOffset >= kParamTLSSize) 4717 return; 4718 Value *TailSize = 4719 ConstantInt::getSigned(IRB.getInt32Ty(), kParamTLSSize - BaseOffset); 4720 IRB.CreateMemSet(ShadowBase, ConstantInt::getNullValue(IRB.getInt8Ty()), 4721 TailSize, Align(8)); 4722 } 4723 4724 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4725 IRBuilder<> IRB(&I); 4726 Value *VAListTag = I.getArgOperand(0); 4727 const Align Alignment = Align(8); 4728 auto [ShadowPtr, OriginPtr] = MSV.getShadowOriginPtr( 4729 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4730 // Unpoison the whole __va_list_tag. 4731 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4732 VAListTagSize, Alignment, false); 4733 } 4734 4735 void visitVAStartInst(VAStartInst &I) override { 4736 if (F.getCallingConv() == CallingConv::Win64) 4737 return; 4738 VAStartInstrumentationList.push_back(&I); 4739 unpoisonVAListTagForInst(I); 4740 } 4741 4742 void visitVACopyInst(VACopyInst &I) override { 4743 if (F.getCallingConv() == CallingConv::Win64) 4744 return; 4745 unpoisonVAListTagForInst(I); 4746 } 4747 }; 4748 4749 /// AMD64-specific implementation of VarArgHelper. 4750 struct VarArgAMD64Helper : public VarArgHelperBase { 4751 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4752 // See a comment in visitCallBase for more details. 4753 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4754 static const unsigned AMD64FpEndOffsetSSE = 176; 4755 // If SSE is disabled, fp_offset in va_list is zero. 4756 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4757 4758 unsigned AMD64FpEndOffset; 4759 AllocaInst *VAArgTLSCopy = nullptr; 4760 AllocaInst *VAArgTLSOriginCopy = nullptr; 4761 Value *VAArgOverflowSize = nullptr; 4762 4763 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4764 4765 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4766 MemorySanitizerVisitor &MSV) 4767 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/24) { 4768 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4769 for (const auto &Attr : F.getAttributes().getFnAttrs()) { 4770 if (Attr.isStringAttribute() && 4771 (Attr.getKindAsString() == "target-features")) { 4772 if (Attr.getValueAsString().contains("-sse")) 4773 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4774 break; 4775 } 4776 } 4777 } 4778 4779 ArgKind classifyArgument(Value *arg) { 4780 // A very rough approximation of X86_64 argument classification rules. 4781 Type *T = arg->getType(); 4782 if (T->isX86_FP80Ty()) 4783 return AK_Memory; 4784 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4785 return AK_FloatingPoint; 4786 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4787 return AK_GeneralPurpose; 4788 if (T->isPointerTy()) 4789 return AK_GeneralPurpose; 4790 return AK_Memory; 4791 } 4792 4793 // For VarArg functions, store the argument shadow in an ABI-specific format 4794 // that corresponds to va_list layout. 4795 // We do this because Clang lowers va_arg in the frontend, and this pass 4796 // only sees the low level code that deals with va_list internals. 4797 // A much easier alternative (provided that Clang emits va_arg instructions) 4798 // would have been to associate each live instance of va_list with a copy of 4799 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4800 // order. 4801 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4802 unsigned GpOffset = 0; 4803 unsigned FpOffset = AMD64GpEndOffset; 4804 unsigned OverflowOffset = AMD64FpEndOffset; 4805 const DataLayout &DL = F.getParent()->getDataLayout(); 4806 4807 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 4808 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4809 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4810 if (IsByVal) { 4811 // ByVal arguments always go to the overflow area. 4812 // Fixed arguments passed through the overflow area will be stepped 4813 // over by va_start, so don't count them towards the offset. 4814 if (IsFixed) 4815 continue; 4816 assert(A->getType()->isPointerTy()); 4817 Type *RealTy = CB.getParamByValType(ArgNo); 4818 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4819 uint64_t AlignedSize = alignTo(ArgSize, 8); 4820 unsigned BaseOffset = OverflowOffset; 4821 Value *ShadowBase = 4822 getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset); 4823 Value *OriginBase = nullptr; 4824 if (MS.TrackOrigins) 4825 OriginBase = getOriginPtrForVAArgument(IRB, OverflowOffset); 4826 OverflowOffset += AlignedSize; 4827 4828 if (OverflowOffset > kParamTLSSize) { 4829 CleanUnusedTLS(IRB, ShadowBase, BaseOffset); 4830 continue; // We have no space to copy shadow there. 4831 } 4832 4833 Value *ShadowPtr, *OriginPtr; 4834 std::tie(ShadowPtr, OriginPtr) = 4835 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4836 /*isStore*/ false); 4837 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4838 kShadowTLSAlignment, ArgSize); 4839 if (MS.TrackOrigins) 4840 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4841 kShadowTLSAlignment, ArgSize); 4842 } else { 4843 ArgKind AK = classifyArgument(A); 4844 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4845 AK = AK_Memory; 4846 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4847 AK = AK_Memory; 4848 Value *ShadowBase, *OriginBase = nullptr; 4849 switch (AK) { 4850 case AK_GeneralPurpose: 4851 ShadowBase = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset); 4852 if (MS.TrackOrigins) 4853 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset); 4854 GpOffset += 8; 4855 assert(GpOffset <= kParamTLSSize); 4856 break; 4857 case AK_FloatingPoint: 4858 ShadowBase = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset); 4859 if (MS.TrackOrigins) 4860 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 4861 FpOffset += 16; 4862 assert(FpOffset <= kParamTLSSize); 4863 break; 4864 case AK_Memory: 4865 if (IsFixed) 4866 continue; 4867 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4868 uint64_t AlignedSize = alignTo(ArgSize, 8); 4869 unsigned BaseOffset = OverflowOffset; 4870 ShadowBase = 4871 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4872 if (MS.TrackOrigins) { 4873 OriginBase = getOriginPtrForVAArgument(IRB, OverflowOffset); 4874 } 4875 OverflowOffset += AlignedSize; 4876 if (OverflowOffset > kParamTLSSize) { 4877 // We have no space to copy shadow there. 4878 CleanUnusedTLS(IRB, ShadowBase, BaseOffset); 4879 continue; 4880 } 4881 } 4882 // Take fixed arguments into account for GpOffset and FpOffset, 4883 // but don't actually store shadows for them. 4884 // TODO(glider): don't call get*PtrForVAArgument() for them. 4885 if (IsFixed) 4886 continue; 4887 Value *Shadow = MSV.getShadow(A); 4888 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4889 if (MS.TrackOrigins) { 4890 Value *Origin = MSV.getOrigin(A); 4891 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4892 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4893 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4894 } 4895 } 4896 } 4897 Constant *OverflowSize = 4898 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4899 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4900 } 4901 4902 void finalizeInstrumentation() override { 4903 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4904 "finalizeInstrumentation called twice"); 4905 if (!VAStartInstrumentationList.empty()) { 4906 // If there is a va_start in this function, make a backup copy of 4907 // va_arg_tls somewhere in the function entry block. 4908 IRBuilder<> IRB(MSV.FnPrologueEnd); 4909 VAArgOverflowSize = 4910 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4911 Value *CopySize = IRB.CreateAdd( 4912 ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), VAArgOverflowSize); 4913 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4914 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 4915 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 4916 CopySize, kShadowTLSAlignment, false); 4917 4918 Value *SrcSize = IRB.CreateBinaryIntrinsic( 4919 Intrinsic::umin, CopySize, 4920 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 4921 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 4922 kShadowTLSAlignment, SrcSize); 4923 if (MS.TrackOrigins) { 4924 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4925 VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); 4926 IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment, 4927 MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize); 4928 } 4929 } 4930 4931 // Instrument va_start. 4932 // Copy va_list shadow from the backup copy of the TLS contents. 4933 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4934 CallInst *OrigInst = VAStartInstrumentationList[i]; 4935 NextNodeIRBuilder IRB(OrigInst); 4936 Value *VAListTag = OrigInst->getArgOperand(0); 4937 4938 Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C); // i64* 4939 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4940 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4941 ConstantInt::get(MS.IntptrTy, 16)), 4942 PointerType::get(RegSaveAreaPtrTy, 0)); 4943 Value *RegSaveAreaPtr = 4944 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4945 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4946 const Align Alignment = Align(16); 4947 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4948 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4949 Alignment, /*isStore*/ true); 4950 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4951 AMD64FpEndOffset); 4952 if (MS.TrackOrigins) 4953 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4954 Alignment, AMD64FpEndOffset); 4955 Type *OverflowArgAreaPtrTy = PointerType::getUnqual(*MS.C); // i64* 4956 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4957 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4958 ConstantInt::get(MS.IntptrTy, 8)), 4959 PointerType::get(OverflowArgAreaPtrTy, 0)); 4960 Value *OverflowArgAreaPtr = 4961 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4962 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4963 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4964 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4965 Alignment, /*isStore*/ true); 4966 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4967 AMD64FpEndOffset); 4968 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4969 VAArgOverflowSize); 4970 if (MS.TrackOrigins) { 4971 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4972 AMD64FpEndOffset); 4973 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4974 VAArgOverflowSize); 4975 } 4976 } 4977 } 4978 }; 4979 4980 /// MIPS64-specific implementation of VarArgHelper. 4981 /// NOTE: This is also used for LoongArch64. 4982 struct VarArgMIPS64Helper : public VarArgHelperBase { 4983 AllocaInst *VAArgTLSCopy = nullptr; 4984 Value *VAArgSize = nullptr; 4985 4986 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4987 MemorySanitizerVisitor &MSV) 4988 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/8) {} 4989 4990 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4991 unsigned VAArgOffset = 0; 4992 const DataLayout &DL = F.getParent()->getDataLayout(); 4993 for (Value *A : 4994 llvm::drop_begin(CB.args(), CB.getFunctionType()->getNumParams())) { 4995 Triple TargetTriple(F.getParent()->getTargetTriple()); 4996 Value *Base; 4997 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4998 if (TargetTriple.getArch() == Triple::mips64) { 4999 // Adjusting the shadow for argument with size < 8 to match the 5000 // placement of bits in big endian system 5001 if (ArgSize < 8) 5002 VAArgOffset += (8 - ArgSize); 5003 } 5004 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 5005 VAArgOffset += ArgSize; 5006 VAArgOffset = alignTo(VAArgOffset, 8); 5007 if (!Base) 5008 continue; 5009 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5010 } 5011 5012 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 5013 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 5014 // a new class member i.e. it is the total size of all VarArgs. 5015 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 5016 } 5017 5018 void finalizeInstrumentation() override { 5019 assert(!VAArgSize && !VAArgTLSCopy && 5020 "finalizeInstrumentation called twice"); 5021 IRBuilder<> IRB(MSV.FnPrologueEnd); 5022 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5023 Value *CopySize = 5024 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), VAArgSize); 5025 5026 if (!VAStartInstrumentationList.empty()) { 5027 // If there is a va_start in this function, make a backup copy of 5028 // va_arg_tls somewhere in the function entry block. 5029 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5030 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5031 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5032 CopySize, kShadowTLSAlignment, false); 5033 5034 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5035 Intrinsic::umin, CopySize, 5036 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5037 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5038 kShadowTLSAlignment, SrcSize); 5039 } 5040 5041 // Instrument va_start. 5042 // Copy va_list shadow from the backup copy of the TLS contents. 5043 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 5044 CallInst *OrigInst = VAStartInstrumentationList[i]; 5045 NextNodeIRBuilder IRB(OrigInst); 5046 Value *VAListTag = OrigInst->getArgOperand(0); 5047 Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C); // i64* 5048 Value *RegSaveAreaPtrPtr = 5049 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5050 PointerType::get(RegSaveAreaPtrTy, 0)); 5051 Value *RegSaveAreaPtr = 5052 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5053 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5054 const Align Alignment = Align(8); 5055 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5056 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5057 Alignment, /*isStore*/ true); 5058 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5059 CopySize); 5060 } 5061 } 5062 }; 5063 5064 /// AArch64-specific implementation of VarArgHelper. 5065 struct VarArgAArch64Helper : public VarArgHelperBase { 5066 static const unsigned kAArch64GrArgSize = 64; 5067 static const unsigned kAArch64VrArgSize = 128; 5068 5069 static const unsigned AArch64GrBegOffset = 0; 5070 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 5071 // Make VR space aligned to 16 bytes. 5072 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 5073 static const unsigned AArch64VrEndOffset = 5074 AArch64VrBegOffset + kAArch64VrArgSize; 5075 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 5076 5077 AllocaInst *VAArgTLSCopy = nullptr; 5078 Value *VAArgOverflowSize = nullptr; 5079 5080 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 5081 5082 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 5083 MemorySanitizerVisitor &MSV) 5084 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/32) {} 5085 5086 // A very rough approximation of aarch64 argument classification rules. 5087 std::pair<ArgKind, uint64_t> classifyArgument(Type *T) { 5088 if (T->isIntOrPtrTy() && T->getPrimitiveSizeInBits() <= 64) 5089 return {AK_GeneralPurpose, 1}; 5090 if (T->isFloatingPointTy() && T->getPrimitiveSizeInBits() <= 128) 5091 return {AK_FloatingPoint, 1}; 5092 5093 if (T->isArrayTy()) { 5094 auto R = classifyArgument(T->getArrayElementType()); 5095 R.second *= T->getScalarType()->getArrayNumElements(); 5096 return R; 5097 } 5098 5099 if (const FixedVectorType *FV = dyn_cast<FixedVectorType>(T)) { 5100 auto R = classifyArgument(FV->getScalarType()); 5101 R.second *= FV->getNumElements(); 5102 return R; 5103 } 5104 5105 LLVM_DEBUG(errs() << "Unknown vararg type: " << *T << "\n"); 5106 return {AK_Memory, 0}; 5107 } 5108 5109 // The instrumentation stores the argument shadow in a non ABI-specific 5110 // format because it does not know which argument is named (since Clang, 5111 // like x86_64 case, lowers the va_args in the frontend and this pass only 5112 // sees the low level code that deals with va_list internals). 5113 // The first seven GR registers are saved in the first 56 bytes of the 5114 // va_arg tls arra, followed by the first 8 FP/SIMD registers, and then 5115 // the remaining arguments. 5116 // Using constant offset within the va_arg TLS array allows fast copy 5117 // in the finalize instrumentation. 5118 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5119 unsigned GrOffset = AArch64GrBegOffset; 5120 unsigned VrOffset = AArch64VrBegOffset; 5121 unsigned OverflowOffset = AArch64VAEndOffset; 5122 5123 const DataLayout &DL = F.getParent()->getDataLayout(); 5124 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5125 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5126 auto [AK, RegNum] = classifyArgument(A->getType()); 5127 if (AK == AK_GeneralPurpose && 5128 (GrOffset + RegNum * 8) > AArch64GrEndOffset) 5129 AK = AK_Memory; 5130 if (AK == AK_FloatingPoint && 5131 (VrOffset + RegNum * 16) > AArch64VrEndOffset) 5132 AK = AK_Memory; 5133 Value *Base; 5134 switch (AK) { 5135 case AK_GeneralPurpose: 5136 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset); 5137 GrOffset += 8 * RegNum; 5138 break; 5139 case AK_FloatingPoint: 5140 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset); 5141 VrOffset += 16 * RegNum; 5142 break; 5143 case AK_Memory: 5144 // Don't count fixed arguments in the overflow area - va_start will 5145 // skip right over them. 5146 if (IsFixed) 5147 continue; 5148 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5149 uint64_t AlignedSize = alignTo(ArgSize, 8); 5150 unsigned BaseOffset = OverflowOffset; 5151 Base = getShadowPtrForVAArgument(A->getType(), IRB, BaseOffset); 5152 OverflowOffset += AlignedSize; 5153 if (OverflowOffset > kParamTLSSize) { 5154 // We have no space to copy shadow there. 5155 CleanUnusedTLS(IRB, Base, BaseOffset); 5156 continue; 5157 } 5158 break; 5159 } 5160 // Count Gp/Vr fixed arguments to their respective offsets, but don't 5161 // bother to actually store a shadow. 5162 if (IsFixed) 5163 continue; 5164 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5165 } 5166 Constant *OverflowSize = 5167 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 5168 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5169 } 5170 5171 // Retrieve a va_list field of 'void*' size. 5172 Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 5173 Value *SaveAreaPtrPtr = IRB.CreateIntToPtr( 5174 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5175 ConstantInt::get(MS.IntptrTy, offset)), 5176 PointerType::get(*MS.C, 0)); 5177 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 5178 } 5179 5180 // Retrieve a va_list field of 'int' size. 5181 Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 5182 Value *SaveAreaPtr = IRB.CreateIntToPtr( 5183 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5184 ConstantInt::get(MS.IntptrTy, offset)), 5185 PointerType::get(*MS.C, 0)); 5186 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 5187 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 5188 } 5189 5190 void finalizeInstrumentation() override { 5191 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5192 "finalizeInstrumentation called twice"); 5193 if (!VAStartInstrumentationList.empty()) { 5194 // If there is a va_start in this function, make a backup copy of 5195 // va_arg_tls somewhere in the function entry block. 5196 IRBuilder<> IRB(MSV.FnPrologueEnd); 5197 VAArgOverflowSize = 5198 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5199 Value *CopySize = IRB.CreateAdd( 5200 ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), VAArgOverflowSize); 5201 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5202 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5203 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5204 CopySize, kShadowTLSAlignment, false); 5205 5206 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5207 Intrinsic::umin, CopySize, 5208 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5209 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5210 kShadowTLSAlignment, SrcSize); 5211 } 5212 5213 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 5214 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 5215 5216 // Instrument va_start, copy va_list shadow from the backup copy of 5217 // the TLS contents. 5218 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 5219 CallInst *OrigInst = VAStartInstrumentationList[i]; 5220 NextNodeIRBuilder IRB(OrigInst); 5221 5222 Value *VAListTag = OrigInst->getArgOperand(0); 5223 5224 // The variadic ABI for AArch64 creates two areas to save the incoming 5225 // argument registers (one for 64-bit general register xn-x7 and another 5226 // for 128-bit FP/SIMD vn-v7). 5227 // We need then to propagate the shadow arguments on both regions 5228 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 5229 // The remaining arguments are saved on shadow for 'va::stack'. 5230 // One caveat is it requires only to propagate the non-named arguments, 5231 // however on the call site instrumentation 'all' the arguments are 5232 // saved. So to copy the shadow values from the va_arg TLS array 5233 // we need to adjust the offset for both GR and VR fields based on 5234 // the __{gr,vr}_offs value (since they are stores based on incoming 5235 // named arguments). 5236 Type *RegSaveAreaPtrTy = IRB.getPtrTy(); 5237 5238 // Read the stack pointer from the va_list. 5239 Value *StackSaveAreaPtr = 5240 IRB.CreateIntToPtr(getVAField64(IRB, VAListTag, 0), RegSaveAreaPtrTy); 5241 5242 // Read both the __gr_top and __gr_off and add them up. 5243 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 5244 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 5245 5246 Value *GrRegSaveAreaPtr = IRB.CreateIntToPtr( 5247 IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea), RegSaveAreaPtrTy); 5248 5249 // Read both the __vr_top and __vr_off and add them up. 5250 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 5251 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 5252 5253 Value *VrRegSaveAreaPtr = IRB.CreateIntToPtr( 5254 IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea), RegSaveAreaPtrTy); 5255 5256 // It does not know how many named arguments is being used and, on the 5257 // callsite all the arguments were saved. Since __gr_off is defined as 5258 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 5259 // argument by ignoring the bytes of shadow from named arguments. 5260 Value *GrRegSaveAreaShadowPtrOff = 5261 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 5262 5263 Value *GrRegSaveAreaShadowPtr = 5264 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5265 Align(8), /*isStore*/ true) 5266 .first; 5267 5268 Value *GrSrcPtr = 5269 IRB.CreateInBoundsPtrAdd(VAArgTLSCopy, GrRegSaveAreaShadowPtrOff); 5270 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 5271 5272 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 5273 GrCopySize); 5274 5275 // Again, but for FP/SIMD values. 5276 Value *VrRegSaveAreaShadowPtrOff = 5277 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 5278 5279 Value *VrRegSaveAreaShadowPtr = 5280 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5281 Align(8), /*isStore*/ true) 5282 .first; 5283 5284 Value *VrSrcPtr = IRB.CreateInBoundsPtrAdd( 5285 IRB.CreateInBoundsPtrAdd(VAArgTLSCopy, 5286 IRB.getInt32(AArch64VrBegOffset)), 5287 VrRegSaveAreaShadowPtrOff); 5288 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 5289 5290 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 5291 VrCopySize); 5292 5293 // And finally for remaining arguments. 5294 Value *StackSaveAreaShadowPtr = 5295 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 5296 Align(16), /*isStore*/ true) 5297 .first; 5298 5299 Value *StackSrcPtr = IRB.CreateInBoundsPtrAdd( 5300 VAArgTLSCopy, IRB.getInt32(AArch64VAEndOffset)); 5301 5302 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 5303 Align(16), VAArgOverflowSize); 5304 } 5305 } 5306 }; 5307 5308 /// PowerPC64-specific implementation of VarArgHelper. 5309 struct VarArgPowerPC64Helper : public VarArgHelperBase { 5310 AllocaInst *VAArgTLSCopy = nullptr; 5311 Value *VAArgSize = nullptr; 5312 5313 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 5314 MemorySanitizerVisitor &MSV) 5315 : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/8) {} 5316 5317 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5318 // For PowerPC, we need to deal with alignment of stack arguments - 5319 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 5320 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 5321 // For that reason, we compute current offset from stack pointer (which is 5322 // always properly aligned), and offset for the first vararg, then subtract 5323 // them. 5324 unsigned VAArgBase; 5325 Triple TargetTriple(F.getParent()->getTargetTriple()); 5326 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 5327 // and 32 bytes for ABIv2. This is usually determined by target 5328 // endianness, but in theory could be overridden by function attribute. 5329 if (TargetTriple.getArch() == Triple::ppc64) 5330 VAArgBase = 48; 5331 else 5332 VAArgBase = 32; 5333 unsigned VAArgOffset = VAArgBase; 5334 const DataLayout &DL = F.getParent()->getDataLayout(); 5335 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5336 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5337 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 5338 if (IsByVal) { 5339 assert(A->getType()->isPointerTy()); 5340 Type *RealTy = CB.getParamByValType(ArgNo); 5341 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 5342 Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(8)); 5343 if (ArgAlign < 8) 5344 ArgAlign = Align(8); 5345 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 5346 if (!IsFixed) { 5347 Value *Base = getShadowPtrForVAArgument( 5348 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 5349 if (Base) { 5350 Value *AShadowPtr, *AOriginPtr; 5351 std::tie(AShadowPtr, AOriginPtr) = 5352 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 5353 kShadowTLSAlignment, /*isStore*/ false); 5354 5355 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 5356 kShadowTLSAlignment, ArgSize); 5357 } 5358 } 5359 VAArgOffset += alignTo(ArgSize, Align(8)); 5360 } else { 5361 Value *Base; 5362 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5363 Align ArgAlign = Align(8); 5364 if (A->getType()->isArrayTy()) { 5365 // Arrays are aligned to element size, except for long double 5366 // arrays, which are aligned to 8 bytes. 5367 Type *ElementTy = A->getType()->getArrayElementType(); 5368 if (!ElementTy->isPPC_FP128Ty()) 5369 ArgAlign = Align(DL.getTypeAllocSize(ElementTy)); 5370 } else if (A->getType()->isVectorTy()) { 5371 // Vectors are naturally aligned. 5372 ArgAlign = Align(ArgSize); 5373 } 5374 if (ArgAlign < 8) 5375 ArgAlign = Align(8); 5376 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 5377 if (DL.isBigEndian()) { 5378 // Adjusting the shadow for argument with size < 8 to match the 5379 // placement of bits in big endian system 5380 if (ArgSize < 8) 5381 VAArgOffset += (8 - ArgSize); 5382 } 5383 if (!IsFixed) { 5384 Base = getShadowPtrForVAArgument(A->getType(), IRB, 5385 VAArgOffset - VAArgBase, ArgSize); 5386 if (Base) 5387 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5388 } 5389 VAArgOffset += ArgSize; 5390 VAArgOffset = alignTo(VAArgOffset, Align(8)); 5391 } 5392 if (IsFixed) 5393 VAArgBase = VAArgOffset; 5394 } 5395 5396 Constant *TotalVAArgSize = 5397 ConstantInt::get(IRB.getInt64Ty(), VAArgOffset - VAArgBase); 5398 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 5399 // a new class member i.e. it is the total size of all VarArgs. 5400 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 5401 } 5402 5403 void finalizeInstrumentation() override { 5404 assert(!VAArgSize && !VAArgTLSCopy && 5405 "finalizeInstrumentation called twice"); 5406 IRBuilder<> IRB(MSV.FnPrologueEnd); 5407 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5408 Value *CopySize = 5409 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), VAArgSize); 5410 5411 if (!VAStartInstrumentationList.empty()) { 5412 // If there is a va_start in this function, make a backup copy of 5413 // va_arg_tls somewhere in the function entry block. 5414 5415 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5416 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5417 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5418 CopySize, kShadowTLSAlignment, false); 5419 5420 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5421 Intrinsic::umin, CopySize, 5422 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5423 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5424 kShadowTLSAlignment, SrcSize); 5425 } 5426 5427 // Instrument va_start. 5428 // Copy va_list shadow from the backup copy of the TLS contents. 5429 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 5430 CallInst *OrigInst = VAStartInstrumentationList[i]; 5431 NextNodeIRBuilder IRB(OrigInst); 5432 Value *VAListTag = OrigInst->getArgOperand(0); 5433 Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C); // i64* 5434 Value *RegSaveAreaPtrPtr = 5435 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5436 PointerType::get(RegSaveAreaPtrTy, 0)); 5437 Value *RegSaveAreaPtr = 5438 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5439 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5440 const Align Alignment = Align(8); 5441 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5442 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5443 Alignment, /*isStore*/ true); 5444 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5445 CopySize); 5446 } 5447 } 5448 }; 5449 5450 /// SystemZ-specific implementation of VarArgHelper. 5451 struct VarArgSystemZHelper : public VarArgHelperBase { 5452 static const unsigned SystemZGpOffset = 16; 5453 static const unsigned SystemZGpEndOffset = 56; 5454 static const unsigned SystemZFpOffset = 128; 5455 static const unsigned SystemZFpEndOffset = 160; 5456 static const unsigned SystemZMaxVrArgs = 8; 5457 static const unsigned SystemZRegSaveAreaSize = 160; 5458 static const unsigned SystemZOverflowOffset = 160; 5459 static const unsigned SystemZVAListTagSize = 32; 5460 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 5461 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 5462 5463 bool IsSoftFloatABI; 5464 AllocaInst *VAArgTLSCopy = nullptr; 5465 AllocaInst *VAArgTLSOriginCopy = nullptr; 5466 Value *VAArgOverflowSize = nullptr; 5467 5468 enum class ArgKind { 5469 GeneralPurpose, 5470 FloatingPoint, 5471 Vector, 5472 Memory, 5473 Indirect, 5474 }; 5475 5476 enum class ShadowExtension { None, Zero, Sign }; 5477 5478 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5479 MemorySanitizerVisitor &MSV) 5480 : VarArgHelperBase(F, MS, MSV, SystemZVAListTagSize), 5481 IsSoftFloatABI(F.getFnAttribute("use-soft-float").getValueAsBool()) {} 5482 5483 ArgKind classifyArgument(Type *T) { 5484 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5485 // only a few possibilities of what it can be. In particular, enums, single 5486 // element structs and large types have already been taken care of. 5487 5488 // Some i128 and fp128 arguments are converted to pointers only in the 5489 // back end. 5490 if (T->isIntegerTy(128) || T->isFP128Ty()) 5491 return ArgKind::Indirect; 5492 if (T->isFloatingPointTy()) 5493 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5494 if (T->isIntegerTy() || T->isPointerTy()) 5495 return ArgKind::GeneralPurpose; 5496 if (T->isVectorTy()) 5497 return ArgKind::Vector; 5498 return ArgKind::Memory; 5499 } 5500 5501 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5502 // ABI says: "One of the simple integer types no more than 64 bits wide. 5503 // ... If such an argument is shorter than 64 bits, replace it by a full 5504 // 64-bit integer representing the same number, using sign or zero 5505 // extension". Shadow for an integer argument has the same type as the 5506 // argument itself, so it can be sign or zero extended as well. 5507 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5508 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5509 if (ZExt) { 5510 assert(!SExt); 5511 return ShadowExtension::Zero; 5512 } 5513 if (SExt) { 5514 assert(!ZExt); 5515 return ShadowExtension::Sign; 5516 } 5517 return ShadowExtension::None; 5518 } 5519 5520 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5521 unsigned GpOffset = SystemZGpOffset; 5522 unsigned FpOffset = SystemZFpOffset; 5523 unsigned VrIndex = 0; 5524 unsigned OverflowOffset = SystemZOverflowOffset; 5525 const DataLayout &DL = F.getParent()->getDataLayout(); 5526 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5527 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5528 // SystemZABIInfo does not produce ByVal parameters. 5529 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5530 Type *T = A->getType(); 5531 ArgKind AK = classifyArgument(T); 5532 if (AK == ArgKind::Indirect) { 5533 T = PointerType::get(T, 0); 5534 AK = ArgKind::GeneralPurpose; 5535 } 5536 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5537 AK = ArgKind::Memory; 5538 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5539 AK = ArgKind::Memory; 5540 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5541 AK = ArgKind::Memory; 5542 Value *ShadowBase = nullptr; 5543 Value *OriginBase = nullptr; 5544 ShadowExtension SE = ShadowExtension::None; 5545 switch (AK) { 5546 case ArgKind::GeneralPurpose: { 5547 // Always keep track of GpOffset, but store shadow only for varargs. 5548 uint64_t ArgSize = 8; 5549 if (GpOffset + ArgSize <= kParamTLSSize) { 5550 if (!IsFixed) { 5551 SE = getShadowExtension(CB, ArgNo); 5552 uint64_t GapSize = 0; 5553 if (SE == ShadowExtension::None) { 5554 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5555 assert(ArgAllocSize <= ArgSize); 5556 GapSize = ArgSize - ArgAllocSize; 5557 } 5558 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5559 if (MS.TrackOrigins) 5560 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5561 } 5562 GpOffset += ArgSize; 5563 } else { 5564 GpOffset = kParamTLSSize; 5565 } 5566 break; 5567 } 5568 case ArgKind::FloatingPoint: { 5569 // Always keep track of FpOffset, but store shadow only for varargs. 5570 uint64_t ArgSize = 8; 5571 if (FpOffset + ArgSize <= kParamTLSSize) { 5572 if (!IsFixed) { 5573 // PoP says: "A short floating-point datum requires only the 5574 // left-most 32 bit positions of a floating-point register". 5575 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5576 // don't extend shadow and don't mind the gap. 5577 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5578 if (MS.TrackOrigins) 5579 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5580 } 5581 FpOffset += ArgSize; 5582 } else { 5583 FpOffset = kParamTLSSize; 5584 } 5585 break; 5586 } 5587 case ArgKind::Vector: { 5588 // Keep track of VrIndex. No need to store shadow, since vector varargs 5589 // go through AK_Memory. 5590 assert(IsFixed); 5591 VrIndex++; 5592 break; 5593 } 5594 case ArgKind::Memory: { 5595 // Keep track of OverflowOffset and store shadow only for varargs. 5596 // Ignore fixed args, since we need to copy only the vararg portion of 5597 // the overflow area shadow. 5598 if (!IsFixed) { 5599 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5600 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5601 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5602 SE = getShadowExtension(CB, ArgNo); 5603 uint64_t GapSize = 5604 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5605 ShadowBase = 5606 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5607 if (MS.TrackOrigins) 5608 OriginBase = 5609 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5610 OverflowOffset += ArgSize; 5611 } else { 5612 OverflowOffset = kParamTLSSize; 5613 } 5614 } 5615 break; 5616 } 5617 case ArgKind::Indirect: 5618 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5619 } 5620 if (ShadowBase == nullptr) 5621 continue; 5622 Value *Shadow = MSV.getShadow(A); 5623 if (SE != ShadowExtension::None) 5624 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5625 /*Signed*/ SE == ShadowExtension::Sign); 5626 ShadowBase = IRB.CreateIntToPtr( 5627 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5628 IRB.CreateStore(Shadow, ShadowBase); 5629 if (MS.TrackOrigins) { 5630 Value *Origin = MSV.getOrigin(A); 5631 TypeSize StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5632 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5633 kMinOriginAlignment); 5634 } 5635 } 5636 Constant *OverflowSize = ConstantInt::get( 5637 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5638 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5639 } 5640 5641 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5642 Type *RegSaveAreaPtrTy = PointerType::getUnqual(*MS.C); // i64* 5643 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5644 IRB.CreateAdd( 5645 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5646 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5647 PointerType::get(RegSaveAreaPtrTy, 0)); 5648 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5649 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5650 const Align Alignment = Align(8); 5651 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5652 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5653 /*isStore*/ true); 5654 // TODO(iii): copy only fragments filled by visitCallBase() 5655 // TODO(iii): support packed-stack && !use-soft-float 5656 // For use-soft-float functions, it is enough to copy just the GPRs. 5657 unsigned RegSaveAreaSize = 5658 IsSoftFloatABI ? SystemZGpEndOffset : SystemZRegSaveAreaSize; 5659 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5660 RegSaveAreaSize); 5661 if (MS.TrackOrigins) 5662 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5663 Alignment, RegSaveAreaSize); 5664 } 5665 5666 // FIXME: This implementation limits OverflowOffset to kParamTLSSize, so we 5667 // don't know real overflow size and can't clear shadow beyond kParamTLSSize. 5668 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5669 Type *OverflowArgAreaPtrTy = PointerType::getUnqual(*MS.C); // i64* 5670 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5671 IRB.CreateAdd( 5672 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5673 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5674 PointerType::get(OverflowArgAreaPtrTy, 0)); 5675 Value *OverflowArgAreaPtr = 5676 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5677 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5678 const Align Alignment = Align(8); 5679 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5680 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5681 Alignment, /*isStore*/ true); 5682 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5683 SystemZOverflowOffset); 5684 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5685 VAArgOverflowSize); 5686 if (MS.TrackOrigins) { 5687 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5688 SystemZOverflowOffset); 5689 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5690 VAArgOverflowSize); 5691 } 5692 } 5693 5694 void finalizeInstrumentation() override { 5695 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5696 "finalizeInstrumentation called twice"); 5697 if (!VAStartInstrumentationList.empty()) { 5698 // If there is a va_start in this function, make a backup copy of 5699 // va_arg_tls somewhere in the function entry block. 5700 IRBuilder<> IRB(MSV.FnPrologueEnd); 5701 VAArgOverflowSize = 5702 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5703 Value *CopySize = 5704 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5705 VAArgOverflowSize); 5706 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5707 VAArgTLSCopy->setAlignment(kShadowTLSAlignment); 5708 IRB.CreateMemSet(VAArgTLSCopy, Constant::getNullValue(IRB.getInt8Ty()), 5709 CopySize, kShadowTLSAlignment, false); 5710 5711 Value *SrcSize = IRB.CreateBinaryIntrinsic( 5712 Intrinsic::umin, CopySize, 5713 ConstantInt::get(MS.IntptrTy, kParamTLSSize)); 5714 IRB.CreateMemCpy(VAArgTLSCopy, kShadowTLSAlignment, MS.VAArgTLS, 5715 kShadowTLSAlignment, SrcSize); 5716 if (MS.TrackOrigins) { 5717 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5718 VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); 5719 IRB.CreateMemCpy(VAArgTLSOriginCopy, kShadowTLSAlignment, 5720 MS.VAArgOriginTLS, kShadowTLSAlignment, SrcSize); 5721 } 5722 } 5723 5724 // Instrument va_start. 5725 // Copy va_list shadow from the backup copy of the TLS contents. 5726 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5727 VaStartNo < VaStartNum; VaStartNo++) { 5728 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5729 NextNodeIRBuilder IRB(OrigInst); 5730 Value *VAListTag = OrigInst->getArgOperand(0); 5731 copyRegSaveArea(IRB, VAListTag); 5732 copyOverflowArea(IRB, VAListTag); 5733 } 5734 } 5735 }; 5736 5737 // Loongarch64 is not a MIPS, but the current vargs calling convention matches 5738 // the MIPS. 5739 using VarArgLoongArch64Helper = VarArgMIPS64Helper; 5740 5741 /// A no-op implementation of VarArgHelper. 5742 struct VarArgNoOpHelper : public VarArgHelper { 5743 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5744 MemorySanitizerVisitor &MSV) {} 5745 5746 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5747 5748 void visitVAStartInst(VAStartInst &I) override {} 5749 5750 void visitVACopyInst(VACopyInst &I) override {} 5751 5752 void finalizeInstrumentation() override {} 5753 }; 5754 5755 } // end anonymous namespace 5756 5757 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5758 MemorySanitizerVisitor &Visitor) { 5759 // VarArg handling is only implemented on AMD64. False positives are possible 5760 // on other platforms. 5761 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5762 if (TargetTriple.getArch() == Triple::x86_64) 5763 return new VarArgAMD64Helper(Func, Msan, Visitor); 5764 else if (TargetTriple.isMIPS64()) 5765 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5766 else if (TargetTriple.getArch() == Triple::aarch64) 5767 return new VarArgAArch64Helper(Func, Msan, Visitor); 5768 else if (TargetTriple.getArch() == Triple::ppc64 || 5769 TargetTriple.getArch() == Triple::ppc64le) 5770 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5771 else if (TargetTriple.getArch() == Triple::systemz) 5772 return new VarArgSystemZHelper(Func, Msan, Visitor); 5773 else if (TargetTriple.isLoongArch64()) 5774 return new VarArgLoongArch64Helper(Func, Msan, Visitor); 5775 else 5776 return new VarArgNoOpHelper(Func, Msan, Visitor); 5777 } 5778 5779 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5780 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5781 return false; 5782 5783 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 5784 return false; 5785 5786 MemorySanitizerVisitor Visitor(F, *this, TLI); 5787 5788 // Clear out memory attributes. 5789 AttributeMask B; 5790 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable); 5791 F.removeFnAttrs(B); 5792 5793 return Visitor.runOnFunction(); 5794 } 5795