1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DepthFirstIterator.h" 149 #include "llvm/ADT/SmallSet.h" 150 #include "llvm/ADT/SmallString.h" 151 #include "llvm/ADT/SmallVector.h" 152 #include "llvm/ADT/StringExtras.h" 153 #include "llvm/ADT/StringRef.h" 154 #include "llvm/ADT/Triple.h" 155 #include "llvm/Analysis/TargetLibraryInfo.h" 156 #include "llvm/IR/Argument.h" 157 #include "llvm/IR/Attributes.h" 158 #include "llvm/IR/BasicBlock.h" 159 #include "llvm/IR/CallingConv.h" 160 #include "llvm/IR/Constant.h" 161 #include "llvm/IR/Constants.h" 162 #include "llvm/IR/DataLayout.h" 163 #include "llvm/IR/DerivedTypes.h" 164 #include "llvm/IR/Function.h" 165 #include "llvm/IR/GlobalValue.h" 166 #include "llvm/IR/GlobalVariable.h" 167 #include "llvm/IR/IRBuilder.h" 168 #include "llvm/IR/InlineAsm.h" 169 #include "llvm/IR/InstVisitor.h" 170 #include "llvm/IR/InstrTypes.h" 171 #include "llvm/IR/Instruction.h" 172 #include "llvm/IR/Instructions.h" 173 #include "llvm/IR/IntrinsicInst.h" 174 #include "llvm/IR/Intrinsics.h" 175 #include "llvm/IR/IntrinsicsX86.h" 176 #include "llvm/IR/LLVMContext.h" 177 #include "llvm/IR/MDBuilder.h" 178 #include "llvm/IR/Module.h" 179 #include "llvm/IR/Type.h" 180 #include "llvm/IR/Value.h" 181 #include "llvm/IR/ValueMap.h" 182 #include "llvm/InitializePasses.h" 183 #include "llvm/Pass.h" 184 #include "llvm/Support/AtomicOrdering.h" 185 #include "llvm/Support/Casting.h" 186 #include "llvm/Support/CommandLine.h" 187 #include "llvm/Support/Compiler.h" 188 #include "llvm/Support/Debug.h" 189 #include "llvm/Support/ErrorHandling.h" 190 #include "llvm/Support/MathExtras.h" 191 #include "llvm/Support/raw_ostream.h" 192 #include "llvm/Transforms/Instrumentation.h" 193 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 194 #include "llvm/Transforms/Utils/Local.h" 195 #include "llvm/Transforms/Utils/ModuleUtils.h" 196 #include <algorithm> 197 #include <cassert> 198 #include <cstddef> 199 #include <cstdint> 200 #include <memory> 201 #include <string> 202 #include <tuple> 203 204 using namespace llvm; 205 206 #define DEBUG_TYPE "msan" 207 208 static const unsigned kOriginSize = 4; 209 static const Align kMinOriginAlignment = Align(4); 210 static const Align kShadowTLSAlignment = Align(8); 211 212 // These constants must be kept in sync with the ones in msan.h. 213 static const unsigned kParamTLSSize = 800; 214 static const unsigned kRetvalTLSSize = 800; 215 216 // Accesses sizes are powers of two: 1, 2, 4, 8. 217 static const size_t kNumberOfAccessSizes = 4; 218 219 /// Track origins of uninitialized values. 220 /// 221 /// Adds a section to MemorySanitizer report that points to the allocation 222 /// (stack or heap) the uninitialized bits came from originally. 223 static cl::opt<int> ClTrackOrigins("msan-track-origins", 224 cl::desc("Track origins (allocation sites) of poisoned memory"), 225 cl::Hidden, cl::init(0)); 226 227 static cl::opt<bool> ClKeepGoing("msan-keep-going", 228 cl::desc("keep going after reporting a UMR"), 229 cl::Hidden, cl::init(false)); 230 231 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 232 cl::desc("poison uninitialized stack variables"), 233 cl::Hidden, cl::init(true)); 234 235 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 236 cl::desc("poison uninitialized stack variables with a call"), 237 cl::Hidden, cl::init(false)); 238 239 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 240 cl::desc("poison uninitialized stack variables with the given pattern"), 241 cl::Hidden, cl::init(0xff)); 242 243 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 244 cl::desc("poison undef temps"), 245 cl::Hidden, cl::init(true)); 246 247 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 248 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 249 cl::Hidden, cl::init(true)); 250 251 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 252 cl::desc("exact handling of relational integer ICmp"), 253 cl::Hidden, cl::init(false)); 254 255 static cl::opt<bool> ClHandleLifetimeIntrinsics( 256 "msan-handle-lifetime-intrinsics", 257 cl::desc( 258 "when possible, poison scoped variables at the beginning of the scope " 259 "(slower, but more precise)"), 260 cl::Hidden, cl::init(true)); 261 262 // When compiling the Linux kernel, we sometimes see false positives related to 263 // MSan being unable to understand that inline assembly calls may initialize 264 // local variables. 265 // This flag makes the compiler conservatively unpoison every memory location 266 // passed into an assembly call. Note that this may cause false positives. 267 // Because it's impossible to figure out the array sizes, we can only unpoison 268 // the first sizeof(type) bytes for each type* pointer. 269 // The instrumentation is only enabled in KMSAN builds, and only if 270 // -msan-handle-asm-conservative is on. This is done because we may want to 271 // quickly disable assembly instrumentation when it breaks. 272 static cl::opt<bool> ClHandleAsmConservative( 273 "msan-handle-asm-conservative", 274 cl::desc("conservative handling of inline assembly"), cl::Hidden, 275 cl::init(true)); 276 277 // This flag controls whether we check the shadow of the address 278 // operand of load or store. Such bugs are very rare, since load from 279 // a garbage address typically results in SEGV, but still happen 280 // (e.g. only lower bits of address are garbage, or the access happens 281 // early at program startup where malloc-ed memory is more likely to 282 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 283 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 284 cl::desc("report accesses through a pointer which has poisoned shadow"), 285 cl::Hidden, cl::init(true)); 286 287 static cl::opt<bool> ClEagerChecks( 288 "msan-eager-checks", 289 cl::desc("check arguments and return values at function call boundaries"), 290 cl::Hidden, cl::init(false)); 291 292 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 293 cl::desc("print out instructions with default strict semantics"), 294 cl::Hidden, cl::init(false)); 295 296 static cl::opt<int> ClInstrumentationWithCallThreshold( 297 "msan-instrumentation-with-call-threshold", 298 cl::desc( 299 "If the function being instrumented requires more than " 300 "this number of checks and origin stores, use callbacks instead of " 301 "inline checks (-1 means never use callbacks)."), 302 cl::Hidden, cl::init(3500)); 303 304 static cl::opt<bool> 305 ClEnableKmsan("msan-kernel", 306 cl::desc("Enable KernelMemorySanitizer instrumentation"), 307 cl::Hidden, cl::init(false)); 308 309 // This is an experiment to enable handling of cases where shadow is a non-zero 310 // compile-time constant. For some unexplainable reason they were silently 311 // ignored in the instrumentation. 312 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 313 cl::desc("Insert checks for constant shadow values"), 314 cl::Hidden, cl::init(false)); 315 316 // This is off by default because of a bug in gold: 317 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 318 static cl::opt<bool> ClWithComdat("msan-with-comdat", 319 cl::desc("Place MSan constructors in comdat sections"), 320 cl::Hidden, cl::init(false)); 321 322 // These options allow to specify custom memory map parameters 323 // See MemoryMapParams for details. 324 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 325 cl::desc("Define custom MSan AndMask"), 326 cl::Hidden, cl::init(0)); 327 328 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 329 cl::desc("Define custom MSan XorMask"), 330 cl::Hidden, cl::init(0)); 331 332 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 333 cl::desc("Define custom MSan ShadowBase"), 334 cl::Hidden, cl::init(0)); 335 336 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 337 cl::desc("Define custom MSan OriginBase"), 338 cl::Hidden, cl::init(0)); 339 340 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 341 static const char *const kMsanInitName = "__msan_init"; 342 343 namespace { 344 345 // Memory map parameters used in application-to-shadow address calculation. 346 // Offset = (Addr & ~AndMask) ^ XorMask 347 // Shadow = ShadowBase + Offset 348 // Origin = OriginBase + Offset 349 struct MemoryMapParams { 350 uint64_t AndMask; 351 uint64_t XorMask; 352 uint64_t ShadowBase; 353 uint64_t OriginBase; 354 }; 355 356 struct PlatformMemoryMapParams { 357 const MemoryMapParams *bits32; 358 const MemoryMapParams *bits64; 359 }; 360 361 } // end anonymous namespace 362 363 // i386 Linux 364 static const MemoryMapParams Linux_I386_MemoryMapParams = { 365 0x000080000000, // AndMask 366 0, // XorMask (not used) 367 0, // ShadowBase (not used) 368 0x000040000000, // OriginBase 369 }; 370 371 // x86_64 Linux 372 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 373 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 374 0x400000000000, // AndMask 375 0, // XorMask (not used) 376 0, // ShadowBase (not used) 377 0x200000000000, // OriginBase 378 #else 379 0, // AndMask (not used) 380 0x500000000000, // XorMask 381 0, // ShadowBase (not used) 382 0x100000000000, // OriginBase 383 #endif 384 }; 385 386 // mips64 Linux 387 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 388 0, // AndMask (not used) 389 0x008000000000, // XorMask 390 0, // ShadowBase (not used) 391 0x002000000000, // OriginBase 392 }; 393 394 // ppc64 Linux 395 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 396 0xE00000000000, // AndMask 397 0x100000000000, // XorMask 398 0x080000000000, // ShadowBase 399 0x1C0000000000, // OriginBase 400 }; 401 402 // s390x Linux 403 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 404 0xC00000000000, // AndMask 405 0, // XorMask (not used) 406 0x080000000000, // ShadowBase 407 0x1C0000000000, // OriginBase 408 }; 409 410 // aarch64 Linux 411 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 412 0, // AndMask (not used) 413 0x06000000000, // XorMask 414 0, // ShadowBase (not used) 415 0x01000000000, // OriginBase 416 }; 417 418 // i386 FreeBSD 419 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 420 0x000180000000, // AndMask 421 0x000040000000, // XorMask 422 0x000020000000, // ShadowBase 423 0x000700000000, // OriginBase 424 }; 425 426 // x86_64 FreeBSD 427 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 428 0xc00000000000, // AndMask 429 0x200000000000, // XorMask 430 0x100000000000, // ShadowBase 431 0x380000000000, // OriginBase 432 }; 433 434 // x86_64 NetBSD 435 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 436 0, // AndMask 437 0x500000000000, // XorMask 438 0, // ShadowBase 439 0x100000000000, // OriginBase 440 }; 441 442 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 443 &Linux_I386_MemoryMapParams, 444 &Linux_X86_64_MemoryMapParams, 445 }; 446 447 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 448 nullptr, 449 &Linux_MIPS64_MemoryMapParams, 450 }; 451 452 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 453 nullptr, 454 &Linux_PowerPC64_MemoryMapParams, 455 }; 456 457 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 458 nullptr, 459 &Linux_S390X_MemoryMapParams, 460 }; 461 462 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 463 nullptr, 464 &Linux_AArch64_MemoryMapParams, 465 }; 466 467 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 468 &FreeBSD_I386_MemoryMapParams, 469 &FreeBSD_X86_64_MemoryMapParams, 470 }; 471 472 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 473 nullptr, 474 &NetBSD_X86_64_MemoryMapParams, 475 }; 476 477 namespace { 478 479 /// Instrument functions of a module to detect uninitialized reads. 480 /// 481 /// Instantiating MemorySanitizer inserts the msan runtime library API function 482 /// declarations into the module if they don't exist already. Instantiating 483 /// ensures the __msan_init function is in the list of global constructors for 484 /// the module. 485 class MemorySanitizer { 486 public: 487 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 488 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 489 Recover(Options.Recover) { 490 initializeModule(M); 491 } 492 493 // MSan cannot be moved or copied because of MapParams. 494 MemorySanitizer(MemorySanitizer &&) = delete; 495 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 496 MemorySanitizer(const MemorySanitizer &) = delete; 497 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 498 499 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 500 501 private: 502 friend struct MemorySanitizerVisitor; 503 friend struct VarArgAMD64Helper; 504 friend struct VarArgMIPS64Helper; 505 friend struct VarArgAArch64Helper; 506 friend struct VarArgPowerPC64Helper; 507 friend struct VarArgSystemZHelper; 508 509 void initializeModule(Module &M); 510 void initializeCallbacks(Module &M); 511 void createKernelApi(Module &M); 512 void createUserspaceApi(Module &M); 513 514 /// True if we're compiling the Linux kernel. 515 bool CompileKernel; 516 /// Track origins (allocation points) of uninitialized values. 517 int TrackOrigins; 518 bool Recover; 519 520 LLVMContext *C; 521 Type *IntptrTy; 522 Type *OriginTy; 523 524 // XxxTLS variables represent the per-thread state in MSan and per-task state 525 // in KMSAN. 526 // For the userspace these point to thread-local globals. In the kernel land 527 // they point to the members of a per-task struct obtained via a call to 528 // __msan_get_context_state(). 529 530 /// Thread-local shadow storage for function parameters. 531 Value *ParamTLS; 532 533 /// Thread-local origin storage for function parameters. 534 Value *ParamOriginTLS; 535 536 /// Thread-local shadow storage for function return value. 537 Value *RetvalTLS; 538 539 /// Thread-local origin storage for function return value. 540 Value *RetvalOriginTLS; 541 542 /// Thread-local shadow storage for in-register va_arg function 543 /// parameters (x86_64-specific). 544 Value *VAArgTLS; 545 546 /// Thread-local shadow storage for in-register va_arg function 547 /// parameters (x86_64-specific). 548 Value *VAArgOriginTLS; 549 550 /// Thread-local shadow storage for va_arg overflow area 551 /// (x86_64-specific). 552 Value *VAArgOverflowSizeTLS; 553 554 /// Are the instrumentation callbacks set up? 555 bool CallbacksInitialized = false; 556 557 /// The run-time callback to print a warning. 558 FunctionCallee WarningFn; 559 560 // These arrays are indexed by log2(AccessSize). 561 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 562 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 563 564 /// Run-time helper that generates a new origin value for a stack 565 /// allocation. 566 FunctionCallee MsanSetAllocaOrigin4Fn; 567 568 /// Run-time helper that poisons stack on function entry. 569 FunctionCallee MsanPoisonStackFn; 570 571 /// Run-time helper that records a store (or any event) of an 572 /// uninitialized value and returns an updated origin id encoding this info. 573 FunctionCallee MsanChainOriginFn; 574 575 /// MSan runtime replacements for memmove, memcpy and memset. 576 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 577 578 /// KMSAN callback for task-local function argument shadow. 579 StructType *MsanContextStateTy; 580 FunctionCallee MsanGetContextStateFn; 581 582 /// Functions for poisoning/unpoisoning local variables 583 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 584 585 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 586 /// pointers. 587 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 588 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 589 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 590 FunctionCallee MsanInstrumentAsmStoreFn; 591 592 /// Helper to choose between different MsanMetadataPtrXxx(). 593 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 594 595 /// Memory map parameters used in application-to-shadow calculation. 596 const MemoryMapParams *MapParams; 597 598 /// Custom memory map parameters used when -msan-shadow-base or 599 // -msan-origin-base is provided. 600 MemoryMapParams CustomMapParams; 601 602 MDNode *ColdCallWeights; 603 604 /// Branch weights for origin store. 605 MDNode *OriginStoreWeights; 606 }; 607 608 void insertModuleCtor(Module &M) { 609 getOrCreateSanitizerCtorAndInitFunctions( 610 M, kMsanModuleCtorName, kMsanInitName, 611 /*InitArgTypes=*/{}, 612 /*InitArgs=*/{}, 613 // This callback is invoked when the functions are created the first 614 // time. Hook them into the global ctors list in that case: 615 [&](Function *Ctor, FunctionCallee) { 616 if (!ClWithComdat) { 617 appendToGlobalCtors(M, Ctor, 0); 618 return; 619 } 620 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 621 Ctor->setComdat(MsanCtorComdat); 622 appendToGlobalCtors(M, Ctor, 0, Ctor); 623 }); 624 } 625 626 /// A legacy function pass for msan instrumentation. 627 /// 628 /// Instruments functions to detect uninitialized reads. 629 struct MemorySanitizerLegacyPass : public FunctionPass { 630 // Pass identification, replacement for typeid. 631 static char ID; 632 633 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 634 : FunctionPass(ID), Options(Options) { 635 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 636 } 637 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 638 639 void getAnalysisUsage(AnalysisUsage &AU) const override { 640 AU.addRequired<TargetLibraryInfoWrapperPass>(); 641 } 642 643 bool runOnFunction(Function &F) override { 644 return MSan->sanitizeFunction( 645 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 646 } 647 bool doInitialization(Module &M) override; 648 649 Optional<MemorySanitizer> MSan; 650 MemorySanitizerOptions Options; 651 }; 652 653 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 654 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 655 } 656 657 } // end anonymous namespace 658 659 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 660 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 661 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 662 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 663 664 PreservedAnalyses MemorySanitizerPass::run(Function &F, 665 FunctionAnalysisManager &FAM) { 666 MemorySanitizer Msan(*F.getParent(), Options); 667 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 668 return PreservedAnalyses::none(); 669 return PreservedAnalyses::all(); 670 } 671 672 PreservedAnalyses MemorySanitizerPass::run(Module &M, 673 ModuleAnalysisManager &AM) { 674 if (Options.Kernel) 675 return PreservedAnalyses::all(); 676 insertModuleCtor(M); 677 return PreservedAnalyses::none(); 678 } 679 680 char MemorySanitizerLegacyPass::ID = 0; 681 682 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 683 "MemorySanitizer: detects uninitialized reads.", false, 684 false) 685 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 686 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 687 "MemorySanitizer: detects uninitialized reads.", false, 688 false) 689 690 FunctionPass * 691 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 692 return new MemorySanitizerLegacyPass(Options); 693 } 694 695 /// Create a non-const global initialized with the given string. 696 /// 697 /// Creates a writable global for Str so that we can pass it to the 698 /// run-time lib. Runtime uses first 4 bytes of the string to store the 699 /// frame ID, so the string needs to be mutable. 700 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 701 StringRef Str) { 702 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 703 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 704 GlobalValue::PrivateLinkage, StrConst, ""); 705 } 706 707 /// Create KMSAN API callbacks. 708 void MemorySanitizer::createKernelApi(Module &M) { 709 IRBuilder<> IRB(*C); 710 711 // These will be initialized in insertKmsanPrologue(). 712 RetvalTLS = nullptr; 713 RetvalOriginTLS = nullptr; 714 ParamTLS = nullptr; 715 ParamOriginTLS = nullptr; 716 VAArgTLS = nullptr; 717 VAArgOriginTLS = nullptr; 718 VAArgOverflowSizeTLS = nullptr; 719 720 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 721 IRB.getInt32Ty()); 722 // Requests the per-task context state (kmsan_context_state*) from the 723 // runtime library. 724 MsanContextStateTy = StructType::get( 725 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 726 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 727 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 728 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 729 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 730 OriginTy); 731 MsanGetContextStateFn = M.getOrInsertFunction( 732 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 733 734 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 735 PointerType::get(IRB.getInt32Ty(), 0)); 736 737 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 738 std::string name_load = 739 "__msan_metadata_ptr_for_load_" + std::to_string(size); 740 std::string name_store = 741 "__msan_metadata_ptr_for_store_" + std::to_string(size); 742 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 743 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 744 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 745 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 746 } 747 748 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 749 "__msan_metadata_ptr_for_load_n", RetTy, 750 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 751 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 752 "__msan_metadata_ptr_for_store_n", RetTy, 753 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 754 755 // Functions for poisoning and unpoisoning memory. 756 MsanPoisonAllocaFn = 757 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 758 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 759 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 760 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 761 } 762 763 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 764 return M.getOrInsertGlobal(Name, Ty, [&] { 765 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 766 nullptr, Name, nullptr, 767 GlobalVariable::InitialExecTLSModel); 768 }); 769 } 770 771 /// Insert declarations for userspace-specific functions and globals. 772 void MemorySanitizer::createUserspaceApi(Module &M) { 773 IRBuilder<> IRB(*C); 774 775 // Create the callback. 776 // FIXME: this function should have "Cold" calling conv, 777 // which is not yet implemented. 778 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 779 : "__msan_warning_with_origin_noreturn"; 780 WarningFn = 781 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 782 783 // Create the global TLS variables. 784 RetvalTLS = 785 getOrInsertGlobal(M, "__msan_retval_tls", 786 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 787 788 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 789 790 ParamTLS = 791 getOrInsertGlobal(M, "__msan_param_tls", 792 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 793 794 ParamOriginTLS = 795 getOrInsertGlobal(M, "__msan_param_origin_tls", 796 ArrayType::get(OriginTy, kParamTLSSize / 4)); 797 798 VAArgTLS = 799 getOrInsertGlobal(M, "__msan_va_arg_tls", 800 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 801 802 VAArgOriginTLS = 803 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 804 ArrayType::get(OriginTy, kParamTLSSize / 4)); 805 806 VAArgOverflowSizeTLS = 807 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 808 809 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 810 AccessSizeIndex++) { 811 unsigned AccessSize = 1 << AccessSizeIndex; 812 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 813 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 814 MaybeWarningFnAttrs.push_back(std::make_pair( 815 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 816 MaybeWarningFnAttrs.push_back(std::make_pair( 817 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 818 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 819 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 820 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 821 822 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 823 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 824 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 825 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 826 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 827 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 828 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 829 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 830 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 831 IRB.getInt32Ty()); 832 } 833 834 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 835 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 836 IRB.getInt8PtrTy(), IntptrTy); 837 MsanPoisonStackFn = 838 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 839 IRB.getInt8PtrTy(), IntptrTy); 840 } 841 842 /// Insert extern declaration of runtime-provided functions and globals. 843 void MemorySanitizer::initializeCallbacks(Module &M) { 844 // Only do this once. 845 if (CallbacksInitialized) 846 return; 847 848 IRBuilder<> IRB(*C); 849 // Initialize callbacks that are common for kernel and userspace 850 // instrumentation. 851 MsanChainOriginFn = M.getOrInsertFunction( 852 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 853 MemmoveFn = M.getOrInsertFunction( 854 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 855 IRB.getInt8PtrTy(), IntptrTy); 856 MemcpyFn = M.getOrInsertFunction( 857 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 858 IntptrTy); 859 MemsetFn = M.getOrInsertFunction( 860 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 861 IntptrTy); 862 863 MsanInstrumentAsmStoreFn = 864 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 865 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 866 867 if (CompileKernel) { 868 createKernelApi(M); 869 } else { 870 createUserspaceApi(M); 871 } 872 CallbacksInitialized = true; 873 } 874 875 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 876 int size) { 877 FunctionCallee *Fns = 878 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 879 switch (size) { 880 case 1: 881 return Fns[0]; 882 case 2: 883 return Fns[1]; 884 case 4: 885 return Fns[2]; 886 case 8: 887 return Fns[3]; 888 default: 889 return nullptr; 890 } 891 } 892 893 /// Module-level initialization. 894 /// 895 /// inserts a call to __msan_init to the module's constructor list. 896 void MemorySanitizer::initializeModule(Module &M) { 897 auto &DL = M.getDataLayout(); 898 899 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 900 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 901 // Check the overrides first 902 if (ShadowPassed || OriginPassed) { 903 CustomMapParams.AndMask = ClAndMask; 904 CustomMapParams.XorMask = ClXorMask; 905 CustomMapParams.ShadowBase = ClShadowBase; 906 CustomMapParams.OriginBase = ClOriginBase; 907 MapParams = &CustomMapParams; 908 } else { 909 Triple TargetTriple(M.getTargetTriple()); 910 switch (TargetTriple.getOS()) { 911 case Triple::FreeBSD: 912 switch (TargetTriple.getArch()) { 913 case Triple::x86_64: 914 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 915 break; 916 case Triple::x86: 917 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 918 break; 919 default: 920 report_fatal_error("unsupported architecture"); 921 } 922 break; 923 case Triple::NetBSD: 924 switch (TargetTriple.getArch()) { 925 case Triple::x86_64: 926 MapParams = NetBSD_X86_MemoryMapParams.bits64; 927 break; 928 default: 929 report_fatal_error("unsupported architecture"); 930 } 931 break; 932 case Triple::Linux: 933 switch (TargetTriple.getArch()) { 934 case Triple::x86_64: 935 MapParams = Linux_X86_MemoryMapParams.bits64; 936 break; 937 case Triple::x86: 938 MapParams = Linux_X86_MemoryMapParams.bits32; 939 break; 940 case Triple::mips64: 941 case Triple::mips64el: 942 MapParams = Linux_MIPS_MemoryMapParams.bits64; 943 break; 944 case Triple::ppc64: 945 case Triple::ppc64le: 946 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 947 break; 948 case Triple::systemz: 949 MapParams = Linux_S390_MemoryMapParams.bits64; 950 break; 951 case Triple::aarch64: 952 case Triple::aarch64_be: 953 MapParams = Linux_ARM_MemoryMapParams.bits64; 954 break; 955 default: 956 report_fatal_error("unsupported architecture"); 957 } 958 break; 959 default: 960 report_fatal_error("unsupported operating system"); 961 } 962 } 963 964 C = &(M.getContext()); 965 IRBuilder<> IRB(*C); 966 IntptrTy = IRB.getIntPtrTy(DL); 967 OriginTy = IRB.getInt32Ty(); 968 969 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 970 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 971 972 if (!CompileKernel) { 973 if (TrackOrigins) 974 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 975 return new GlobalVariable( 976 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 977 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 978 }); 979 980 if (Recover) 981 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 982 return new GlobalVariable(M, IRB.getInt32Ty(), true, 983 GlobalValue::WeakODRLinkage, 984 IRB.getInt32(Recover), "__msan_keep_going"); 985 }); 986 } 987 } 988 989 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 990 if (!Options.Kernel) 991 insertModuleCtor(M); 992 MSan.emplace(M, Options); 993 return true; 994 } 995 996 namespace { 997 998 /// A helper class that handles instrumentation of VarArg 999 /// functions on a particular platform. 1000 /// 1001 /// Implementations are expected to insert the instrumentation 1002 /// necessary to propagate argument shadow through VarArg function 1003 /// calls. Visit* methods are called during an InstVisitor pass over 1004 /// the function, and should avoid creating new basic blocks. A new 1005 /// instance of this class is created for each instrumented function. 1006 struct VarArgHelper { 1007 virtual ~VarArgHelper() = default; 1008 1009 /// Visit a CallBase. 1010 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1011 1012 /// Visit a va_start call. 1013 virtual void visitVAStartInst(VAStartInst &I) = 0; 1014 1015 /// Visit a va_copy call. 1016 virtual void visitVACopyInst(VACopyInst &I) = 0; 1017 1018 /// Finalize function instrumentation. 1019 /// 1020 /// This method is called after visiting all interesting (see above) 1021 /// instructions in a function. 1022 virtual void finalizeInstrumentation() = 0; 1023 }; 1024 1025 struct MemorySanitizerVisitor; 1026 1027 } // end anonymous namespace 1028 1029 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1030 MemorySanitizerVisitor &Visitor); 1031 1032 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1033 if (TypeSize <= 8) return 0; 1034 return Log2_32_Ceil((TypeSize + 7) / 8); 1035 } 1036 1037 namespace { 1038 1039 /// This class does all the work for a given function. Store and Load 1040 /// instructions store and load corresponding shadow and origin 1041 /// values. Most instructions propagate shadow from arguments to their 1042 /// return values. Certain instructions (most importantly, BranchInst) 1043 /// test their argument shadow and print reports (with a runtime call) if it's 1044 /// non-zero. 1045 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1046 Function &F; 1047 MemorySanitizer &MS; 1048 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1049 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1050 std::unique_ptr<VarArgHelper> VAHelper; 1051 const TargetLibraryInfo *TLI; 1052 BasicBlock *ActualFnStart; 1053 1054 // The following flags disable parts of MSan instrumentation based on 1055 // exclusion list contents and command-line options. 1056 bool InsertChecks; 1057 bool PropagateShadow; 1058 bool PoisonStack; 1059 bool PoisonUndef; 1060 1061 struct ShadowOriginAndInsertPoint { 1062 Value *Shadow; 1063 Value *Origin; 1064 Instruction *OrigIns; 1065 1066 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1067 : Shadow(S), Origin(O), OrigIns(I) {} 1068 }; 1069 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1070 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1071 SmallSet<AllocaInst *, 16> AllocaSet; 1072 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1073 SmallVector<StoreInst *, 16> StoreList; 1074 1075 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1076 const TargetLibraryInfo &TLI) 1077 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1078 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1079 InsertChecks = SanitizeFunction; 1080 PropagateShadow = SanitizeFunction; 1081 PoisonStack = SanitizeFunction && ClPoisonStack; 1082 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1083 1084 MS.initializeCallbacks(*F.getParent()); 1085 if (MS.CompileKernel) 1086 ActualFnStart = insertKmsanPrologue(F); 1087 else 1088 ActualFnStart = &F.getEntryBlock(); 1089 1090 LLVM_DEBUG(if (!InsertChecks) dbgs() 1091 << "MemorySanitizer is not inserting checks into '" 1092 << F.getName() << "'\n"); 1093 } 1094 1095 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1096 if (MS.TrackOrigins <= 1) return V; 1097 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1098 } 1099 1100 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1101 const DataLayout &DL = F.getParent()->getDataLayout(); 1102 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1103 if (IntptrSize == kOriginSize) return Origin; 1104 assert(IntptrSize == kOriginSize * 2); 1105 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1106 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1107 } 1108 1109 /// Fill memory range with the given origin value. 1110 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1111 unsigned Size, Align Alignment) { 1112 const DataLayout &DL = F.getParent()->getDataLayout(); 1113 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1114 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1115 assert(IntptrAlignment >= kMinOriginAlignment); 1116 assert(IntptrSize >= kOriginSize); 1117 1118 unsigned Ofs = 0; 1119 Align CurrentAlignment = Alignment; 1120 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1121 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1122 Value *IntptrOriginPtr = 1123 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1124 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1125 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1126 : IntptrOriginPtr; 1127 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1128 Ofs += IntptrSize / kOriginSize; 1129 CurrentAlignment = IntptrAlignment; 1130 } 1131 } 1132 1133 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1134 Value *GEP = 1135 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1136 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1137 CurrentAlignment = kMinOriginAlignment; 1138 } 1139 } 1140 1141 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1142 Value *OriginPtr, Align Alignment, bool AsCall) { 1143 const DataLayout &DL = F.getParent()->getDataLayout(); 1144 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1145 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1146 if (Shadow->getType()->isAggregateType()) { 1147 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1148 OriginAlignment); 1149 } else { 1150 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1151 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1152 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1153 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1154 OriginAlignment); 1155 return; 1156 } 1157 1158 unsigned TypeSizeInBits = 1159 DL.getTypeSizeInBits(ConvertedShadow->getType()); 1160 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1161 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1162 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1163 Value *ConvertedShadow2 = IRB.CreateZExt( 1164 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1165 IRB.CreateCall(Fn, {ConvertedShadow2, 1166 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 1167 Origin}); 1168 } else { 1169 Value *Cmp = IRB.CreateICmpNE( 1170 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 1171 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1172 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1173 IRBuilder<> IRBNew(CheckTerm); 1174 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1175 OriginAlignment); 1176 } 1177 } 1178 } 1179 1180 void materializeStores(bool InstrumentWithCalls) { 1181 for (StoreInst *SI : StoreList) { 1182 IRBuilder<> IRB(SI); 1183 Value *Val = SI->getValueOperand(); 1184 Value *Addr = SI->getPointerOperand(); 1185 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1186 Value *ShadowPtr, *OriginPtr; 1187 Type *ShadowTy = Shadow->getType(); 1188 const Align Alignment = assumeAligned(SI->getAlignment()); 1189 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1190 std::tie(ShadowPtr, OriginPtr) = 1191 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1192 1193 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1194 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1195 (void)NewSI; 1196 1197 if (SI->isAtomic()) 1198 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1199 1200 if (MS.TrackOrigins && !SI->isAtomic()) 1201 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1202 OriginAlignment, InstrumentWithCalls); 1203 } 1204 } 1205 1206 /// Helper function to insert a warning at IRB's current insert point. 1207 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1208 if (!Origin) 1209 Origin = (Value *)IRB.getInt32(0); 1210 assert(Origin->getType()->isIntegerTy()); 1211 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1212 // FIXME: Insert UnreachableInst if !MS.Recover? 1213 // This may invalidate some of the following checks and needs to be done 1214 // at the very end. 1215 } 1216 1217 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1218 bool AsCall) { 1219 IRBuilder<> IRB(OrigIns); 1220 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1221 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1222 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1223 1224 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1225 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1226 insertWarningFn(IRB, Origin); 1227 } 1228 return; 1229 } 1230 1231 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1232 1233 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1234 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1235 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1236 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1237 Value *ConvertedShadow2 = 1238 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1239 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1240 ? Origin 1241 : (Value *)IRB.getInt32(0)}); 1242 } else { 1243 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 1244 getCleanShadow(ConvertedShadow), "_mscmp"); 1245 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1246 Cmp, OrigIns, 1247 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1248 1249 IRB.SetInsertPoint(CheckTerm); 1250 insertWarningFn(IRB, Origin); 1251 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1252 } 1253 } 1254 1255 void materializeChecks(bool InstrumentWithCalls) { 1256 for (const auto &ShadowData : InstrumentationList) { 1257 Instruction *OrigIns = ShadowData.OrigIns; 1258 Value *Shadow = ShadowData.Shadow; 1259 Value *Origin = ShadowData.Origin; 1260 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1261 } 1262 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1263 } 1264 1265 BasicBlock *insertKmsanPrologue(Function &F) { 1266 BasicBlock *ret = 1267 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1268 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1269 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1270 Constant *Zero = IRB.getInt32(0); 1271 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1272 {Zero, IRB.getInt32(0)}, "param_shadow"); 1273 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1274 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1275 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1276 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1277 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1278 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1279 MS.VAArgOverflowSizeTLS = 1280 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1281 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1282 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1283 {Zero, IRB.getInt32(5)}, "param_origin"); 1284 MS.RetvalOriginTLS = 1285 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1286 {Zero, IRB.getInt32(6)}, "retval_origin"); 1287 return ret; 1288 } 1289 1290 /// Add MemorySanitizer instrumentation to a function. 1291 bool runOnFunction() { 1292 // In the presence of unreachable blocks, we may see Phi nodes with 1293 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1294 // blocks, such nodes will not have any shadow value associated with them. 1295 // It's easier to remove unreachable blocks than deal with missing shadow. 1296 removeUnreachableBlocks(F); 1297 1298 // Iterate all BBs in depth-first order and create shadow instructions 1299 // for all instructions (where applicable). 1300 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1301 for (BasicBlock *BB : depth_first(ActualFnStart)) 1302 visit(*BB); 1303 1304 // Finalize PHI nodes. 1305 for (PHINode *PN : ShadowPHINodes) { 1306 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1307 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1308 size_t NumValues = PN->getNumIncomingValues(); 1309 for (size_t v = 0; v < NumValues; v++) { 1310 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1311 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1312 } 1313 } 1314 1315 VAHelper->finalizeInstrumentation(); 1316 1317 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1318 // instrumenting only allocas. 1319 if (InstrumentLifetimeStart) { 1320 for (auto Item : LifetimeStartList) { 1321 instrumentAlloca(*Item.second, Item.first); 1322 AllocaSet.erase(Item.second); 1323 } 1324 } 1325 // Poison the allocas for which we didn't instrument the corresponding 1326 // lifetime intrinsics. 1327 for (AllocaInst *AI : AllocaSet) 1328 instrumentAlloca(*AI); 1329 1330 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1331 InstrumentationList.size() + StoreList.size() > 1332 (unsigned)ClInstrumentationWithCallThreshold; 1333 1334 // Insert shadow value checks. 1335 materializeChecks(InstrumentWithCalls); 1336 1337 // Delayed instrumentation of StoreInst. 1338 // This may not add new address checks. 1339 materializeStores(InstrumentWithCalls); 1340 1341 return true; 1342 } 1343 1344 /// Compute the shadow type that corresponds to a given Value. 1345 Type *getShadowTy(Value *V) { 1346 return getShadowTy(V->getType()); 1347 } 1348 1349 /// Compute the shadow type that corresponds to a given Type. 1350 Type *getShadowTy(Type *OrigTy) { 1351 if (!OrigTy->isSized()) { 1352 return nullptr; 1353 } 1354 // For integer type, shadow is the same as the original type. 1355 // This may return weird-sized types like i1. 1356 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1357 return IT; 1358 const DataLayout &DL = F.getParent()->getDataLayout(); 1359 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1360 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1361 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1362 cast<FixedVectorType>(VT)->getNumElements()); 1363 } 1364 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1365 return ArrayType::get(getShadowTy(AT->getElementType()), 1366 AT->getNumElements()); 1367 } 1368 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1369 SmallVector<Type*, 4> Elements; 1370 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1371 Elements.push_back(getShadowTy(ST->getElementType(i))); 1372 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1373 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1374 return Res; 1375 } 1376 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1377 return IntegerType::get(*MS.C, TypeSize); 1378 } 1379 1380 /// Flatten a vector type. 1381 Type *getShadowTyNoVec(Type *ty) { 1382 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1383 return IntegerType::get(*MS.C, 1384 vt->getPrimitiveSizeInBits().getFixedSize()); 1385 return ty; 1386 } 1387 1388 /// Convert a shadow value to it's flattened variant. 1389 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 1390 Type *Ty = V->getType(); 1391 Type *NoVecTy = getShadowTyNoVec(Ty); 1392 if (Ty == NoVecTy) return V; 1393 return IRB.CreateBitCast(V, NoVecTy); 1394 } 1395 1396 /// Compute the integer shadow offset that corresponds to a given 1397 /// application address. 1398 /// 1399 /// Offset = (Addr & ~AndMask) ^ XorMask 1400 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1401 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1402 1403 uint64_t AndMask = MS.MapParams->AndMask; 1404 if (AndMask) 1405 OffsetLong = 1406 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1407 1408 uint64_t XorMask = MS.MapParams->XorMask; 1409 if (XorMask) 1410 OffsetLong = 1411 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1412 return OffsetLong; 1413 } 1414 1415 /// Compute the shadow and origin addresses corresponding to a given 1416 /// application address. 1417 /// 1418 /// Shadow = ShadowBase + Offset 1419 /// Origin = (OriginBase + Offset) & ~3ULL 1420 std::pair<Value *, Value *> 1421 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1422 MaybeAlign Alignment) { 1423 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1424 Value *ShadowLong = ShadowOffset; 1425 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1426 if (ShadowBase != 0) { 1427 ShadowLong = 1428 IRB.CreateAdd(ShadowLong, 1429 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1430 } 1431 Value *ShadowPtr = 1432 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1433 Value *OriginPtr = nullptr; 1434 if (MS.TrackOrigins) { 1435 Value *OriginLong = ShadowOffset; 1436 uint64_t OriginBase = MS.MapParams->OriginBase; 1437 if (OriginBase != 0) 1438 OriginLong = IRB.CreateAdd(OriginLong, 1439 ConstantInt::get(MS.IntptrTy, OriginBase)); 1440 if (!Alignment || *Alignment < kMinOriginAlignment) { 1441 uint64_t Mask = kMinOriginAlignment.value() - 1; 1442 OriginLong = 1443 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1444 } 1445 OriginPtr = 1446 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1447 } 1448 return std::make_pair(ShadowPtr, OriginPtr); 1449 } 1450 1451 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1452 IRBuilder<> &IRB, 1453 Type *ShadowTy, 1454 bool isStore) { 1455 Value *ShadowOriginPtrs; 1456 const DataLayout &DL = F.getParent()->getDataLayout(); 1457 int Size = DL.getTypeStoreSize(ShadowTy); 1458 1459 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1460 Value *AddrCast = 1461 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1462 if (Getter) { 1463 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1464 } else { 1465 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1466 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1467 : MS.MsanMetadataPtrForLoadN, 1468 {AddrCast, SizeVal}); 1469 } 1470 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1471 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1472 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1473 1474 return std::make_pair(ShadowPtr, OriginPtr); 1475 } 1476 1477 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1478 Type *ShadowTy, 1479 MaybeAlign Alignment, 1480 bool isStore) { 1481 if (MS.CompileKernel) 1482 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1483 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1484 } 1485 1486 /// Compute the shadow address for a given function argument. 1487 /// 1488 /// Shadow = ParamTLS+ArgOffset. 1489 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1490 int ArgOffset) { 1491 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1492 if (ArgOffset) 1493 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1494 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1495 "_msarg"); 1496 } 1497 1498 /// Compute the origin address for a given function argument. 1499 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1500 int ArgOffset) { 1501 if (!MS.TrackOrigins) 1502 return nullptr; 1503 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1504 if (ArgOffset) 1505 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1506 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1507 "_msarg_o"); 1508 } 1509 1510 /// Compute the shadow address for a retval. 1511 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1512 return IRB.CreatePointerCast(MS.RetvalTLS, 1513 PointerType::get(getShadowTy(A), 0), 1514 "_msret"); 1515 } 1516 1517 /// Compute the origin address for a retval. 1518 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1519 // We keep a single origin for the entire retval. Might be too optimistic. 1520 return MS.RetvalOriginTLS; 1521 } 1522 1523 /// Set SV to be the shadow value for V. 1524 void setShadow(Value *V, Value *SV) { 1525 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1526 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1527 } 1528 1529 /// Set Origin to be the origin value for V. 1530 void setOrigin(Value *V, Value *Origin) { 1531 if (!MS.TrackOrigins) return; 1532 assert(!OriginMap.count(V) && "Values may only have one origin"); 1533 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1534 OriginMap[V] = Origin; 1535 } 1536 1537 Constant *getCleanShadow(Type *OrigTy) { 1538 Type *ShadowTy = getShadowTy(OrigTy); 1539 if (!ShadowTy) 1540 return nullptr; 1541 return Constant::getNullValue(ShadowTy); 1542 } 1543 1544 /// Create a clean shadow value for a given value. 1545 /// 1546 /// Clean shadow (all zeroes) means all bits of the value are defined 1547 /// (initialized). 1548 Constant *getCleanShadow(Value *V) { 1549 return getCleanShadow(V->getType()); 1550 } 1551 1552 /// Create a dirty shadow of a given shadow type. 1553 Constant *getPoisonedShadow(Type *ShadowTy) { 1554 assert(ShadowTy); 1555 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1556 return Constant::getAllOnesValue(ShadowTy); 1557 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1558 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1559 getPoisonedShadow(AT->getElementType())); 1560 return ConstantArray::get(AT, Vals); 1561 } 1562 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1563 SmallVector<Constant *, 4> Vals; 1564 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1565 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1566 return ConstantStruct::get(ST, Vals); 1567 } 1568 llvm_unreachable("Unexpected shadow type"); 1569 } 1570 1571 /// Create a dirty shadow for a given value. 1572 Constant *getPoisonedShadow(Value *V) { 1573 Type *ShadowTy = getShadowTy(V); 1574 if (!ShadowTy) 1575 return nullptr; 1576 return getPoisonedShadow(ShadowTy); 1577 } 1578 1579 /// Create a clean (zero) origin. 1580 Value *getCleanOrigin() { 1581 return Constant::getNullValue(MS.OriginTy); 1582 } 1583 1584 /// Get the shadow value for a given Value. 1585 /// 1586 /// This function either returns the value set earlier with setShadow, 1587 /// or extracts if from ParamTLS (for function arguments). 1588 Value *getShadow(Value *V) { 1589 if (!PropagateShadow) return getCleanShadow(V); 1590 if (Instruction *I = dyn_cast<Instruction>(V)) { 1591 if (I->getMetadata("nosanitize")) 1592 return getCleanShadow(V); 1593 // For instructions the shadow is already stored in the map. 1594 Value *Shadow = ShadowMap[V]; 1595 if (!Shadow) { 1596 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1597 (void)I; 1598 assert(Shadow && "No shadow for a value"); 1599 } 1600 return Shadow; 1601 } 1602 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1603 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1604 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1605 (void)U; 1606 return AllOnes; 1607 } 1608 if (Argument *A = dyn_cast<Argument>(V)) { 1609 // For arguments we compute the shadow on demand and store it in the map. 1610 Value **ShadowPtr = &ShadowMap[V]; 1611 if (*ShadowPtr) 1612 return *ShadowPtr; 1613 Function *F = A->getParent(); 1614 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1615 unsigned ArgOffset = 0; 1616 const DataLayout &DL = F->getParent()->getDataLayout(); 1617 for (auto &FArg : F->args()) { 1618 if (!FArg.getType()->isSized()) { 1619 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1620 continue; 1621 } 1622 1623 bool FArgByVal = FArg.hasByValAttr(); 1624 bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef); 1625 bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef; 1626 unsigned Size = 1627 FArg.hasByValAttr() 1628 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1629 : DL.getTypeAllocSize(FArg.getType()); 1630 1631 if (A == &FArg) { 1632 bool Overflow = ArgOffset + Size > kParamTLSSize; 1633 if (FArgEagerCheck) { 1634 *ShadowPtr = getCleanShadow(V); 1635 setOrigin(A, getCleanOrigin()); 1636 continue; 1637 } else if (FArgByVal) { 1638 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1639 // ByVal pointer itself has clean shadow. We copy the actual 1640 // argument shadow to the underlying memory. 1641 // Figure out maximal valid memcpy alignment. 1642 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1643 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1644 Value *CpShadowPtr = 1645 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1646 /*isStore*/ true) 1647 .first; 1648 // TODO(glider): need to copy origins. 1649 if (Overflow) { 1650 // ParamTLS overflow. 1651 EntryIRB.CreateMemSet( 1652 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1653 Size, ArgAlign); 1654 } else { 1655 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1656 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1657 CopyAlign, Size); 1658 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1659 (void)Cpy; 1660 } 1661 *ShadowPtr = getCleanShadow(V); 1662 } else { 1663 // Shadow over TLS 1664 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1665 if (Overflow) { 1666 // ParamTLS overflow. 1667 *ShadowPtr = getCleanShadow(V); 1668 } else { 1669 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1670 kShadowTLSAlignment); 1671 } 1672 } 1673 LLVM_DEBUG(dbgs() 1674 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1675 if (MS.TrackOrigins && !Overflow) { 1676 Value *OriginPtr = 1677 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1678 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1679 } else { 1680 setOrigin(A, getCleanOrigin()); 1681 } 1682 } 1683 1684 if (!FArgEagerCheck) 1685 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1686 } 1687 assert(*ShadowPtr && "Could not find shadow for an argument"); 1688 return *ShadowPtr; 1689 } 1690 // For everything else the shadow is zero. 1691 return getCleanShadow(V); 1692 } 1693 1694 /// Get the shadow for i-th argument of the instruction I. 1695 Value *getShadow(Instruction *I, int i) { 1696 return getShadow(I->getOperand(i)); 1697 } 1698 1699 /// Get the origin for a value. 1700 Value *getOrigin(Value *V) { 1701 if (!MS.TrackOrigins) return nullptr; 1702 if (!PropagateShadow) return getCleanOrigin(); 1703 if (isa<Constant>(V)) return getCleanOrigin(); 1704 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1705 "Unexpected value type in getOrigin()"); 1706 if (Instruction *I = dyn_cast<Instruction>(V)) { 1707 if (I->getMetadata("nosanitize")) 1708 return getCleanOrigin(); 1709 } 1710 Value *Origin = OriginMap[V]; 1711 assert(Origin && "Missing origin"); 1712 return Origin; 1713 } 1714 1715 /// Get the origin for i-th argument of the instruction I. 1716 Value *getOrigin(Instruction *I, int i) { 1717 return getOrigin(I->getOperand(i)); 1718 } 1719 1720 /// Remember the place where a shadow check should be inserted. 1721 /// 1722 /// This location will be later instrumented with a check that will print a 1723 /// UMR warning in runtime if the shadow value is not 0. 1724 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1725 assert(Shadow); 1726 if (!InsertChecks) return; 1727 #ifndef NDEBUG 1728 Type *ShadowTy = Shadow->getType(); 1729 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1730 "Can only insert checks for integer and vector shadow types"); 1731 #endif 1732 InstrumentationList.push_back( 1733 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1734 } 1735 1736 /// Remember the place where a shadow check should be inserted. 1737 /// 1738 /// This location will be later instrumented with a check that will print a 1739 /// UMR warning in runtime if the value is not fully defined. 1740 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1741 assert(Val); 1742 Value *Shadow, *Origin; 1743 if (ClCheckConstantShadow) { 1744 Shadow = getShadow(Val); 1745 if (!Shadow) return; 1746 Origin = getOrigin(Val); 1747 } else { 1748 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1749 if (!Shadow) return; 1750 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1751 } 1752 insertShadowCheck(Shadow, Origin, OrigIns); 1753 } 1754 1755 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1756 switch (a) { 1757 case AtomicOrdering::NotAtomic: 1758 return AtomicOrdering::NotAtomic; 1759 case AtomicOrdering::Unordered: 1760 case AtomicOrdering::Monotonic: 1761 case AtomicOrdering::Release: 1762 return AtomicOrdering::Release; 1763 case AtomicOrdering::Acquire: 1764 case AtomicOrdering::AcquireRelease: 1765 return AtomicOrdering::AcquireRelease; 1766 case AtomicOrdering::SequentiallyConsistent: 1767 return AtomicOrdering::SequentiallyConsistent; 1768 } 1769 llvm_unreachable("Unknown ordering"); 1770 } 1771 1772 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1773 switch (a) { 1774 case AtomicOrdering::NotAtomic: 1775 return AtomicOrdering::NotAtomic; 1776 case AtomicOrdering::Unordered: 1777 case AtomicOrdering::Monotonic: 1778 case AtomicOrdering::Acquire: 1779 return AtomicOrdering::Acquire; 1780 case AtomicOrdering::Release: 1781 case AtomicOrdering::AcquireRelease: 1782 return AtomicOrdering::AcquireRelease; 1783 case AtomicOrdering::SequentiallyConsistent: 1784 return AtomicOrdering::SequentiallyConsistent; 1785 } 1786 llvm_unreachable("Unknown ordering"); 1787 } 1788 1789 // ------------------- Visitors. 1790 using InstVisitor<MemorySanitizerVisitor>::visit; 1791 void visit(Instruction &I) { 1792 if (!I.getMetadata("nosanitize")) 1793 InstVisitor<MemorySanitizerVisitor>::visit(I); 1794 } 1795 1796 /// Instrument LoadInst 1797 /// 1798 /// Loads the corresponding shadow and (optionally) origin. 1799 /// Optionally, checks that the load address is fully defined. 1800 void visitLoadInst(LoadInst &I) { 1801 assert(I.getType()->isSized() && "Load type must have size"); 1802 assert(!I.getMetadata("nosanitize")); 1803 IRBuilder<> IRB(I.getNextNode()); 1804 Type *ShadowTy = getShadowTy(&I); 1805 Value *Addr = I.getPointerOperand(); 1806 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1807 const Align Alignment = assumeAligned(I.getAlignment()); 1808 if (PropagateShadow) { 1809 std::tie(ShadowPtr, OriginPtr) = 1810 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1811 setShadow(&I, 1812 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1813 } else { 1814 setShadow(&I, getCleanShadow(&I)); 1815 } 1816 1817 if (ClCheckAccessAddress) 1818 insertShadowCheck(I.getPointerOperand(), &I); 1819 1820 if (I.isAtomic()) 1821 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1822 1823 if (MS.TrackOrigins) { 1824 if (PropagateShadow) { 1825 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1826 setOrigin( 1827 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1828 } else { 1829 setOrigin(&I, getCleanOrigin()); 1830 } 1831 } 1832 } 1833 1834 /// Instrument StoreInst 1835 /// 1836 /// Stores the corresponding shadow and (optionally) origin. 1837 /// Optionally, checks that the store address is fully defined. 1838 void visitStoreInst(StoreInst &I) { 1839 StoreList.push_back(&I); 1840 if (ClCheckAccessAddress) 1841 insertShadowCheck(I.getPointerOperand(), &I); 1842 } 1843 1844 void handleCASOrRMW(Instruction &I) { 1845 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1846 1847 IRBuilder<> IRB(&I); 1848 Value *Addr = I.getOperand(0); 1849 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align(1), 1850 /*isStore*/ true) 1851 .first; 1852 1853 if (ClCheckAccessAddress) 1854 insertShadowCheck(Addr, &I); 1855 1856 // Only test the conditional argument of cmpxchg instruction. 1857 // The other argument can potentially be uninitialized, but we can not 1858 // detect this situation reliably without possible false positives. 1859 if (isa<AtomicCmpXchgInst>(I)) 1860 insertShadowCheck(I.getOperand(1), &I); 1861 1862 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1863 1864 setShadow(&I, getCleanShadow(&I)); 1865 setOrigin(&I, getCleanOrigin()); 1866 } 1867 1868 void visitAtomicRMWInst(AtomicRMWInst &I) { 1869 handleCASOrRMW(I); 1870 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1871 } 1872 1873 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1874 handleCASOrRMW(I); 1875 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1876 } 1877 1878 // Vector manipulation. 1879 void visitExtractElementInst(ExtractElementInst &I) { 1880 insertShadowCheck(I.getOperand(1), &I); 1881 IRBuilder<> IRB(&I); 1882 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1883 "_msprop")); 1884 setOrigin(&I, getOrigin(&I, 0)); 1885 } 1886 1887 void visitInsertElementInst(InsertElementInst &I) { 1888 insertShadowCheck(I.getOperand(2), &I); 1889 IRBuilder<> IRB(&I); 1890 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1891 I.getOperand(2), "_msprop")); 1892 setOriginForNaryOp(I); 1893 } 1894 1895 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1896 IRBuilder<> IRB(&I); 1897 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1898 I.getShuffleMask(), "_msprop")); 1899 setOriginForNaryOp(I); 1900 } 1901 1902 // Casts. 1903 void visitSExtInst(SExtInst &I) { 1904 IRBuilder<> IRB(&I); 1905 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1906 setOrigin(&I, getOrigin(&I, 0)); 1907 } 1908 1909 void visitZExtInst(ZExtInst &I) { 1910 IRBuilder<> IRB(&I); 1911 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1912 setOrigin(&I, getOrigin(&I, 0)); 1913 } 1914 1915 void visitTruncInst(TruncInst &I) { 1916 IRBuilder<> IRB(&I); 1917 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1918 setOrigin(&I, getOrigin(&I, 0)); 1919 } 1920 1921 void visitBitCastInst(BitCastInst &I) { 1922 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1923 // a musttail call and a ret, don't instrument. New instructions are not 1924 // allowed after a musttail call. 1925 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1926 if (CI->isMustTailCall()) 1927 return; 1928 IRBuilder<> IRB(&I); 1929 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1930 setOrigin(&I, getOrigin(&I, 0)); 1931 } 1932 1933 void visitPtrToIntInst(PtrToIntInst &I) { 1934 IRBuilder<> IRB(&I); 1935 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1936 "_msprop_ptrtoint")); 1937 setOrigin(&I, getOrigin(&I, 0)); 1938 } 1939 1940 void visitIntToPtrInst(IntToPtrInst &I) { 1941 IRBuilder<> IRB(&I); 1942 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1943 "_msprop_inttoptr")); 1944 setOrigin(&I, getOrigin(&I, 0)); 1945 } 1946 1947 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1948 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1949 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1950 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1951 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1952 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1953 1954 /// Propagate shadow for bitwise AND. 1955 /// 1956 /// This code is exact, i.e. if, for example, a bit in the left argument 1957 /// is defined and 0, then neither the value not definedness of the 1958 /// corresponding bit in B don't affect the resulting shadow. 1959 void visitAnd(BinaryOperator &I) { 1960 IRBuilder<> IRB(&I); 1961 // "And" of 0 and a poisoned value results in unpoisoned value. 1962 // 1&1 => 1; 0&1 => 0; p&1 => p; 1963 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1964 // 1&p => p; 0&p => 0; p&p => p; 1965 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1966 Value *S1 = getShadow(&I, 0); 1967 Value *S2 = getShadow(&I, 1); 1968 Value *V1 = I.getOperand(0); 1969 Value *V2 = I.getOperand(1); 1970 if (V1->getType() != S1->getType()) { 1971 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1972 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1973 } 1974 Value *S1S2 = IRB.CreateAnd(S1, S2); 1975 Value *V1S2 = IRB.CreateAnd(V1, S2); 1976 Value *S1V2 = IRB.CreateAnd(S1, V2); 1977 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1978 setOriginForNaryOp(I); 1979 } 1980 1981 void visitOr(BinaryOperator &I) { 1982 IRBuilder<> IRB(&I); 1983 // "Or" of 1 and a poisoned value results in unpoisoned value. 1984 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1985 // 1|0 => 1; 0|0 => 0; p|0 => p; 1986 // 1|p => 1; 0|p => p; p|p => p; 1987 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1988 Value *S1 = getShadow(&I, 0); 1989 Value *S2 = getShadow(&I, 1); 1990 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1991 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1992 if (V1->getType() != S1->getType()) { 1993 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1994 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1995 } 1996 Value *S1S2 = IRB.CreateAnd(S1, S2); 1997 Value *V1S2 = IRB.CreateAnd(V1, S2); 1998 Value *S1V2 = IRB.CreateAnd(S1, V2); 1999 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2000 setOriginForNaryOp(I); 2001 } 2002 2003 /// Default propagation of shadow and/or origin. 2004 /// 2005 /// This class implements the general case of shadow propagation, used in all 2006 /// cases where we don't know and/or don't care about what the operation 2007 /// actually does. It converts all input shadow values to a common type 2008 /// (extending or truncating as necessary), and bitwise OR's them. 2009 /// 2010 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2011 /// fully initialized), and less prone to false positives. 2012 /// 2013 /// This class also implements the general case of origin propagation. For a 2014 /// Nary operation, result origin is set to the origin of an argument that is 2015 /// not entirely initialized. If there is more than one such arguments, the 2016 /// rightmost of them is picked. It does not matter which one is picked if all 2017 /// arguments are initialized. 2018 template <bool CombineShadow> 2019 class Combiner { 2020 Value *Shadow = nullptr; 2021 Value *Origin = nullptr; 2022 IRBuilder<> &IRB; 2023 MemorySanitizerVisitor *MSV; 2024 2025 public: 2026 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2027 : IRB(IRB), MSV(MSV) {} 2028 2029 /// Add a pair of shadow and origin values to the mix. 2030 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2031 if (CombineShadow) { 2032 assert(OpShadow); 2033 if (!Shadow) 2034 Shadow = OpShadow; 2035 else { 2036 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2037 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2038 } 2039 } 2040 2041 if (MSV->MS.TrackOrigins) { 2042 assert(OpOrigin); 2043 if (!Origin) { 2044 Origin = OpOrigin; 2045 } else { 2046 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2047 // No point in adding something that might result in 0 origin value. 2048 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2049 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 2050 Value *Cond = 2051 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2052 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2053 } 2054 } 2055 } 2056 return *this; 2057 } 2058 2059 /// Add an application value to the mix. 2060 Combiner &Add(Value *V) { 2061 Value *OpShadow = MSV->getShadow(V); 2062 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2063 return Add(OpShadow, OpOrigin); 2064 } 2065 2066 /// Set the current combined values as the given instruction's shadow 2067 /// and origin. 2068 void Done(Instruction *I) { 2069 if (CombineShadow) { 2070 assert(Shadow); 2071 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2072 MSV->setShadow(I, Shadow); 2073 } 2074 if (MSV->MS.TrackOrigins) { 2075 assert(Origin); 2076 MSV->setOrigin(I, Origin); 2077 } 2078 } 2079 }; 2080 2081 using ShadowAndOriginCombiner = Combiner<true>; 2082 using OriginCombiner = Combiner<false>; 2083 2084 /// Propagate origin for arbitrary operation. 2085 void setOriginForNaryOp(Instruction &I) { 2086 if (!MS.TrackOrigins) return; 2087 IRBuilder<> IRB(&I); 2088 OriginCombiner OC(this, IRB); 2089 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2090 OC.Add(OI->get()); 2091 OC.Done(&I); 2092 } 2093 2094 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2095 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2096 "Vector of pointers is not a valid shadow type"); 2097 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2098 Ty->getScalarSizeInBits() 2099 : Ty->getPrimitiveSizeInBits(); 2100 } 2101 2102 /// Cast between two shadow types, extending or truncating as 2103 /// necessary. 2104 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2105 bool Signed = false) { 2106 Type *srcTy = V->getType(); 2107 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2108 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2109 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2110 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2111 2112 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2113 return IRB.CreateIntCast(V, dstTy, Signed); 2114 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2115 cast<FixedVectorType>(dstTy)->getNumElements() == 2116 cast<FixedVectorType>(srcTy)->getNumElements()) 2117 return IRB.CreateIntCast(V, dstTy, Signed); 2118 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2119 Value *V2 = 2120 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2121 return IRB.CreateBitCast(V2, dstTy); 2122 // TODO: handle struct types. 2123 } 2124 2125 /// Cast an application value to the type of its own shadow. 2126 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2127 Type *ShadowTy = getShadowTy(V); 2128 if (V->getType() == ShadowTy) 2129 return V; 2130 if (V->getType()->isPtrOrPtrVectorTy()) 2131 return IRB.CreatePtrToInt(V, ShadowTy); 2132 else 2133 return IRB.CreateBitCast(V, ShadowTy); 2134 } 2135 2136 /// Propagate shadow for arbitrary operation. 2137 void handleShadowOr(Instruction &I) { 2138 IRBuilder<> IRB(&I); 2139 ShadowAndOriginCombiner SC(this, IRB); 2140 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2141 SC.Add(OI->get()); 2142 SC.Done(&I); 2143 } 2144 2145 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2146 2147 // Handle multiplication by constant. 2148 // 2149 // Handle a special case of multiplication by constant that may have one or 2150 // more zeros in the lower bits. This makes corresponding number of lower bits 2151 // of the result zero as well. We model it by shifting the other operand 2152 // shadow left by the required number of bits. Effectively, we transform 2153 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2154 // We use multiplication by 2**N instead of shift to cover the case of 2155 // multiplication by 0, which may occur in some elements of a vector operand. 2156 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2157 Value *OtherArg) { 2158 Constant *ShadowMul; 2159 Type *Ty = ConstArg->getType(); 2160 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2161 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2162 Type *EltTy = VTy->getElementType(); 2163 SmallVector<Constant *, 16> Elements; 2164 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2165 if (ConstantInt *Elt = 2166 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2167 const APInt &V = Elt->getValue(); 2168 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2169 Elements.push_back(ConstantInt::get(EltTy, V2)); 2170 } else { 2171 Elements.push_back(ConstantInt::get(EltTy, 1)); 2172 } 2173 } 2174 ShadowMul = ConstantVector::get(Elements); 2175 } else { 2176 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2177 const APInt &V = Elt->getValue(); 2178 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2179 ShadowMul = ConstantInt::get(Ty, V2); 2180 } else { 2181 ShadowMul = ConstantInt::get(Ty, 1); 2182 } 2183 } 2184 2185 IRBuilder<> IRB(&I); 2186 setShadow(&I, 2187 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2188 setOrigin(&I, getOrigin(OtherArg)); 2189 } 2190 2191 void visitMul(BinaryOperator &I) { 2192 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2193 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2194 if (constOp0 && !constOp1) 2195 handleMulByConstant(I, constOp0, I.getOperand(1)); 2196 else if (constOp1 && !constOp0) 2197 handleMulByConstant(I, constOp1, I.getOperand(0)); 2198 else 2199 handleShadowOr(I); 2200 } 2201 2202 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2203 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2204 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2205 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2206 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2207 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2208 2209 void handleIntegerDiv(Instruction &I) { 2210 IRBuilder<> IRB(&I); 2211 // Strict on the second argument. 2212 insertShadowCheck(I.getOperand(1), &I); 2213 setShadow(&I, getShadow(&I, 0)); 2214 setOrigin(&I, getOrigin(&I, 0)); 2215 } 2216 2217 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2218 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2219 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2220 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2221 2222 // Floating point division is side-effect free. We can not require that the 2223 // divisor is fully initialized and must propagate shadow. See PR37523. 2224 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2225 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2226 2227 /// Instrument == and != comparisons. 2228 /// 2229 /// Sometimes the comparison result is known even if some of the bits of the 2230 /// arguments are not. 2231 void handleEqualityComparison(ICmpInst &I) { 2232 IRBuilder<> IRB(&I); 2233 Value *A = I.getOperand(0); 2234 Value *B = I.getOperand(1); 2235 Value *Sa = getShadow(A); 2236 Value *Sb = getShadow(B); 2237 2238 // Get rid of pointers and vectors of pointers. 2239 // For ints (and vectors of ints), types of A and Sa match, 2240 // and this is a no-op. 2241 A = IRB.CreatePointerCast(A, Sa->getType()); 2242 B = IRB.CreatePointerCast(B, Sb->getType()); 2243 2244 // A == B <==> (C = A^B) == 0 2245 // A != B <==> (C = A^B) != 0 2246 // Sc = Sa | Sb 2247 Value *C = IRB.CreateXor(A, B); 2248 Value *Sc = IRB.CreateOr(Sa, Sb); 2249 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2250 // Result is defined if one of the following is true 2251 // * there is a defined 1 bit in C 2252 // * C is fully defined 2253 // Si = !(C & ~Sc) && Sc 2254 Value *Zero = Constant::getNullValue(Sc->getType()); 2255 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2256 Value *Si = 2257 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2258 IRB.CreateICmpEQ( 2259 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2260 Si->setName("_msprop_icmp"); 2261 setShadow(&I, Si); 2262 setOriginForNaryOp(I); 2263 } 2264 2265 /// Build the lowest possible value of V, taking into account V's 2266 /// uninitialized bits. 2267 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2268 bool isSigned) { 2269 if (isSigned) { 2270 // Split shadow into sign bit and other bits. 2271 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2272 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2273 // Maximise the undefined shadow bit, minimize other undefined bits. 2274 return 2275 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2276 } else { 2277 // Minimize undefined bits. 2278 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2279 } 2280 } 2281 2282 /// Build the highest possible value of V, taking into account V's 2283 /// uninitialized bits. 2284 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2285 bool isSigned) { 2286 if (isSigned) { 2287 // Split shadow into sign bit and other bits. 2288 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2289 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2290 // Minimise the undefined shadow bit, maximise other undefined bits. 2291 return 2292 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2293 } else { 2294 // Maximize undefined bits. 2295 return IRB.CreateOr(A, Sa); 2296 } 2297 } 2298 2299 /// Instrument relational comparisons. 2300 /// 2301 /// This function does exact shadow propagation for all relational 2302 /// comparisons of integers, pointers and vectors of those. 2303 /// FIXME: output seems suboptimal when one of the operands is a constant 2304 void handleRelationalComparisonExact(ICmpInst &I) { 2305 IRBuilder<> IRB(&I); 2306 Value *A = I.getOperand(0); 2307 Value *B = I.getOperand(1); 2308 Value *Sa = getShadow(A); 2309 Value *Sb = getShadow(B); 2310 2311 // Get rid of pointers and vectors of pointers. 2312 // For ints (and vectors of ints), types of A and Sa match, 2313 // and this is a no-op. 2314 A = IRB.CreatePointerCast(A, Sa->getType()); 2315 B = IRB.CreatePointerCast(B, Sb->getType()); 2316 2317 // Let [a0, a1] be the interval of possible values of A, taking into account 2318 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2319 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2320 bool IsSigned = I.isSigned(); 2321 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2322 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2323 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2324 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2325 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2326 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2327 Value *Si = IRB.CreateXor(S1, S2); 2328 setShadow(&I, Si); 2329 setOriginForNaryOp(I); 2330 } 2331 2332 /// Instrument signed relational comparisons. 2333 /// 2334 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2335 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2336 void handleSignedRelationalComparison(ICmpInst &I) { 2337 Constant *constOp; 2338 Value *op = nullptr; 2339 CmpInst::Predicate pre; 2340 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2341 op = I.getOperand(0); 2342 pre = I.getPredicate(); 2343 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2344 op = I.getOperand(1); 2345 pre = I.getSwappedPredicate(); 2346 } else { 2347 handleShadowOr(I); 2348 return; 2349 } 2350 2351 if ((constOp->isNullValue() && 2352 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2353 (constOp->isAllOnesValue() && 2354 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2355 IRBuilder<> IRB(&I); 2356 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2357 "_msprop_icmp_s"); 2358 setShadow(&I, Shadow); 2359 setOrigin(&I, getOrigin(op)); 2360 } else { 2361 handleShadowOr(I); 2362 } 2363 } 2364 2365 void visitICmpInst(ICmpInst &I) { 2366 if (!ClHandleICmp) { 2367 handleShadowOr(I); 2368 return; 2369 } 2370 if (I.isEquality()) { 2371 handleEqualityComparison(I); 2372 return; 2373 } 2374 2375 assert(I.isRelational()); 2376 if (ClHandleICmpExact) { 2377 handleRelationalComparisonExact(I); 2378 return; 2379 } 2380 if (I.isSigned()) { 2381 handleSignedRelationalComparison(I); 2382 return; 2383 } 2384 2385 assert(I.isUnsigned()); 2386 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2387 handleRelationalComparisonExact(I); 2388 return; 2389 } 2390 2391 handleShadowOr(I); 2392 } 2393 2394 void visitFCmpInst(FCmpInst &I) { 2395 handleShadowOr(I); 2396 } 2397 2398 void handleShift(BinaryOperator &I) { 2399 IRBuilder<> IRB(&I); 2400 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2401 // Otherwise perform the same shift on S1. 2402 Value *S1 = getShadow(&I, 0); 2403 Value *S2 = getShadow(&I, 1); 2404 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2405 S2->getType()); 2406 Value *V2 = I.getOperand(1); 2407 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2408 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2409 setOriginForNaryOp(I); 2410 } 2411 2412 void visitShl(BinaryOperator &I) { handleShift(I); } 2413 void visitAShr(BinaryOperator &I) { handleShift(I); } 2414 void visitLShr(BinaryOperator &I) { handleShift(I); } 2415 2416 /// Instrument llvm.memmove 2417 /// 2418 /// At this point we don't know if llvm.memmove will be inlined or not. 2419 /// If we don't instrument it and it gets inlined, 2420 /// our interceptor will not kick in and we will lose the memmove. 2421 /// If we instrument the call here, but it does not get inlined, 2422 /// we will memove the shadow twice: which is bad in case 2423 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2424 /// 2425 /// Similar situation exists for memcpy and memset. 2426 void visitMemMoveInst(MemMoveInst &I) { 2427 IRBuilder<> IRB(&I); 2428 IRB.CreateCall( 2429 MS.MemmoveFn, 2430 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2431 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2432 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2433 I.eraseFromParent(); 2434 } 2435 2436 // Similar to memmove: avoid copying shadow twice. 2437 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2438 // FIXME: consider doing manual inline for small constant sizes and proper 2439 // alignment. 2440 void visitMemCpyInst(MemCpyInst &I) { 2441 IRBuilder<> IRB(&I); 2442 IRB.CreateCall( 2443 MS.MemcpyFn, 2444 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2445 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2446 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2447 I.eraseFromParent(); 2448 } 2449 2450 // Same as memcpy. 2451 void visitMemSetInst(MemSetInst &I) { 2452 IRBuilder<> IRB(&I); 2453 IRB.CreateCall( 2454 MS.MemsetFn, 2455 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2456 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2457 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2458 I.eraseFromParent(); 2459 } 2460 2461 void visitVAStartInst(VAStartInst &I) { 2462 VAHelper->visitVAStartInst(I); 2463 } 2464 2465 void visitVACopyInst(VACopyInst &I) { 2466 VAHelper->visitVACopyInst(I); 2467 } 2468 2469 /// Handle vector store-like intrinsics. 2470 /// 2471 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2472 /// has 1 pointer argument and 1 vector argument, returns void. 2473 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2474 IRBuilder<> IRB(&I); 2475 Value* Addr = I.getArgOperand(0); 2476 Value *Shadow = getShadow(&I, 1); 2477 Value *ShadowPtr, *OriginPtr; 2478 2479 // We don't know the pointer alignment (could be unaligned SSE store!). 2480 // Have to assume to worst case. 2481 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2482 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2483 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2484 2485 if (ClCheckAccessAddress) 2486 insertShadowCheck(Addr, &I); 2487 2488 // FIXME: factor out common code from materializeStores 2489 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2490 return true; 2491 } 2492 2493 /// Handle vector load-like intrinsics. 2494 /// 2495 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2496 /// has 1 pointer argument, returns a vector. 2497 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2498 IRBuilder<> IRB(&I); 2499 Value *Addr = I.getArgOperand(0); 2500 2501 Type *ShadowTy = getShadowTy(&I); 2502 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2503 if (PropagateShadow) { 2504 // We don't know the pointer alignment (could be unaligned SSE load!). 2505 // Have to assume to worst case. 2506 const Align Alignment = Align(1); 2507 std::tie(ShadowPtr, OriginPtr) = 2508 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2509 setShadow(&I, 2510 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2511 } else { 2512 setShadow(&I, getCleanShadow(&I)); 2513 } 2514 2515 if (ClCheckAccessAddress) 2516 insertShadowCheck(Addr, &I); 2517 2518 if (MS.TrackOrigins) { 2519 if (PropagateShadow) 2520 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2521 else 2522 setOrigin(&I, getCleanOrigin()); 2523 } 2524 return true; 2525 } 2526 2527 /// Handle (SIMD arithmetic)-like intrinsics. 2528 /// 2529 /// Instrument intrinsics with any number of arguments of the same type, 2530 /// equal to the return type. The type should be simple (no aggregates or 2531 /// pointers; vectors are fine). 2532 /// Caller guarantees that this intrinsic does not access memory. 2533 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2534 Type *RetTy = I.getType(); 2535 if (!(RetTy->isIntOrIntVectorTy() || 2536 RetTy->isFPOrFPVectorTy() || 2537 RetTy->isX86_MMXTy())) 2538 return false; 2539 2540 unsigned NumArgOperands = I.getNumArgOperands(); 2541 2542 for (unsigned i = 0; i < NumArgOperands; ++i) { 2543 Type *Ty = I.getArgOperand(i)->getType(); 2544 if (Ty != RetTy) 2545 return false; 2546 } 2547 2548 IRBuilder<> IRB(&I); 2549 ShadowAndOriginCombiner SC(this, IRB); 2550 for (unsigned i = 0; i < NumArgOperands; ++i) 2551 SC.Add(I.getArgOperand(i)); 2552 SC.Done(&I); 2553 2554 return true; 2555 } 2556 2557 /// Heuristically instrument unknown intrinsics. 2558 /// 2559 /// The main purpose of this code is to do something reasonable with all 2560 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2561 /// We recognize several classes of intrinsics by their argument types and 2562 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2563 /// sure that we know what the intrinsic does. 2564 /// 2565 /// We special-case intrinsics where this approach fails. See llvm.bswap 2566 /// handling as an example of that. 2567 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2568 unsigned NumArgOperands = I.getNumArgOperands(); 2569 if (NumArgOperands == 0) 2570 return false; 2571 2572 if (NumArgOperands == 2 && 2573 I.getArgOperand(0)->getType()->isPointerTy() && 2574 I.getArgOperand(1)->getType()->isVectorTy() && 2575 I.getType()->isVoidTy() && 2576 !I.onlyReadsMemory()) { 2577 // This looks like a vector store. 2578 return handleVectorStoreIntrinsic(I); 2579 } 2580 2581 if (NumArgOperands == 1 && 2582 I.getArgOperand(0)->getType()->isPointerTy() && 2583 I.getType()->isVectorTy() && 2584 I.onlyReadsMemory()) { 2585 // This looks like a vector load. 2586 return handleVectorLoadIntrinsic(I); 2587 } 2588 2589 if (I.doesNotAccessMemory()) 2590 if (maybeHandleSimpleNomemIntrinsic(I)) 2591 return true; 2592 2593 // FIXME: detect and handle SSE maskstore/maskload 2594 return false; 2595 } 2596 2597 void handleInvariantGroup(IntrinsicInst &I) { 2598 setShadow(&I, getShadow(&I, 0)); 2599 setOrigin(&I, getOrigin(&I, 0)); 2600 } 2601 2602 void handleLifetimeStart(IntrinsicInst &I) { 2603 if (!PoisonStack) 2604 return; 2605 DenseMap<Value *, AllocaInst *> AllocaForValue; 2606 AllocaInst *AI = 2607 llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); 2608 if (!AI) 2609 InstrumentLifetimeStart = false; 2610 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2611 } 2612 2613 void handleBswap(IntrinsicInst &I) { 2614 IRBuilder<> IRB(&I); 2615 Value *Op = I.getArgOperand(0); 2616 Type *OpType = Op->getType(); 2617 Function *BswapFunc = Intrinsic::getDeclaration( 2618 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2619 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2620 setOrigin(&I, getOrigin(Op)); 2621 } 2622 2623 // Instrument vector convert intrinsic. 2624 // 2625 // This function instruments intrinsics like cvtsi2ss: 2626 // %Out = int_xxx_cvtyyy(%ConvertOp) 2627 // or 2628 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2629 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2630 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2631 // elements from \p CopyOp. 2632 // In most cases conversion involves floating-point value which may trigger a 2633 // hardware exception when not fully initialized. For this reason we require 2634 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2635 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2636 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2637 // return a fully initialized value. 2638 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2639 IRBuilder<> IRB(&I); 2640 Value *CopyOp, *ConvertOp; 2641 2642 switch (I.getNumArgOperands()) { 2643 case 3: 2644 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2645 LLVM_FALLTHROUGH; 2646 case 2: 2647 CopyOp = I.getArgOperand(0); 2648 ConvertOp = I.getArgOperand(1); 2649 break; 2650 case 1: 2651 ConvertOp = I.getArgOperand(0); 2652 CopyOp = nullptr; 2653 break; 2654 default: 2655 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2656 } 2657 2658 // The first *NumUsedElements* elements of ConvertOp are converted to the 2659 // same number of output elements. The rest of the output is copied from 2660 // CopyOp, or (if not available) filled with zeroes. 2661 // Combine shadow for elements of ConvertOp that are used in this operation, 2662 // and insert a check. 2663 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2664 // int->any conversion. 2665 Value *ConvertShadow = getShadow(ConvertOp); 2666 Value *AggShadow = nullptr; 2667 if (ConvertOp->getType()->isVectorTy()) { 2668 AggShadow = IRB.CreateExtractElement( 2669 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2670 for (int i = 1; i < NumUsedElements; ++i) { 2671 Value *MoreShadow = IRB.CreateExtractElement( 2672 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2673 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2674 } 2675 } else { 2676 AggShadow = ConvertShadow; 2677 } 2678 assert(AggShadow->getType()->isIntegerTy()); 2679 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2680 2681 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2682 // ConvertOp. 2683 if (CopyOp) { 2684 assert(CopyOp->getType() == I.getType()); 2685 assert(CopyOp->getType()->isVectorTy()); 2686 Value *ResultShadow = getShadow(CopyOp); 2687 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2688 for (int i = 0; i < NumUsedElements; ++i) { 2689 ResultShadow = IRB.CreateInsertElement( 2690 ResultShadow, ConstantInt::getNullValue(EltTy), 2691 ConstantInt::get(IRB.getInt32Ty(), i)); 2692 } 2693 setShadow(&I, ResultShadow); 2694 setOrigin(&I, getOrigin(CopyOp)); 2695 } else { 2696 setShadow(&I, getCleanShadow(&I)); 2697 setOrigin(&I, getCleanOrigin()); 2698 } 2699 } 2700 2701 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2702 // zeroes if it is zero, and all ones otherwise. 2703 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2704 if (S->getType()->isVectorTy()) 2705 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2706 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2707 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2708 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2709 } 2710 2711 // Given a vector, extract its first element, and return all 2712 // zeroes if it is zero, and all ones otherwise. 2713 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2714 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2715 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2716 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2717 } 2718 2719 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2720 Type *T = S->getType(); 2721 assert(T->isVectorTy()); 2722 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2723 return IRB.CreateSExt(S2, T); 2724 } 2725 2726 // Instrument vector shift intrinsic. 2727 // 2728 // This function instruments intrinsics like int_x86_avx2_psll_w. 2729 // Intrinsic shifts %In by %ShiftSize bits. 2730 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2731 // size, and the rest is ignored. Behavior is defined even if shift size is 2732 // greater than register (or field) width. 2733 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2734 assert(I.getNumArgOperands() == 2); 2735 IRBuilder<> IRB(&I); 2736 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2737 // Otherwise perform the same shift on S1. 2738 Value *S1 = getShadow(&I, 0); 2739 Value *S2 = getShadow(&I, 1); 2740 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2741 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2742 Value *V1 = I.getOperand(0); 2743 Value *V2 = I.getOperand(1); 2744 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2745 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2746 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2747 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2748 setOriginForNaryOp(I); 2749 } 2750 2751 // Get an X86_MMX-sized vector type. 2752 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2753 const unsigned X86_MMXSizeInBits = 64; 2754 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2755 "Illegal MMX vector element size"); 2756 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2757 X86_MMXSizeInBits / EltSizeInBits); 2758 } 2759 2760 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2761 // intrinsic. 2762 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2763 switch (id) { 2764 case Intrinsic::x86_sse2_packsswb_128: 2765 case Intrinsic::x86_sse2_packuswb_128: 2766 return Intrinsic::x86_sse2_packsswb_128; 2767 2768 case Intrinsic::x86_sse2_packssdw_128: 2769 case Intrinsic::x86_sse41_packusdw: 2770 return Intrinsic::x86_sse2_packssdw_128; 2771 2772 case Intrinsic::x86_avx2_packsswb: 2773 case Intrinsic::x86_avx2_packuswb: 2774 return Intrinsic::x86_avx2_packsswb; 2775 2776 case Intrinsic::x86_avx2_packssdw: 2777 case Intrinsic::x86_avx2_packusdw: 2778 return Intrinsic::x86_avx2_packssdw; 2779 2780 case Intrinsic::x86_mmx_packsswb: 2781 case Intrinsic::x86_mmx_packuswb: 2782 return Intrinsic::x86_mmx_packsswb; 2783 2784 case Intrinsic::x86_mmx_packssdw: 2785 return Intrinsic::x86_mmx_packssdw; 2786 default: 2787 llvm_unreachable("unexpected intrinsic id"); 2788 } 2789 } 2790 2791 // Instrument vector pack intrinsic. 2792 // 2793 // This function instruments intrinsics like x86_mmx_packsswb, that 2794 // packs elements of 2 input vectors into half as many bits with saturation. 2795 // Shadow is propagated with the signed variant of the same intrinsic applied 2796 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2797 // EltSizeInBits is used only for x86mmx arguments. 2798 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2799 assert(I.getNumArgOperands() == 2); 2800 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2801 IRBuilder<> IRB(&I); 2802 Value *S1 = getShadow(&I, 0); 2803 Value *S2 = getShadow(&I, 1); 2804 assert(isX86_MMX || S1->getType()->isVectorTy()); 2805 2806 // SExt and ICmpNE below must apply to individual elements of input vectors. 2807 // In case of x86mmx arguments, cast them to appropriate vector types and 2808 // back. 2809 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2810 if (isX86_MMX) { 2811 S1 = IRB.CreateBitCast(S1, T); 2812 S2 = IRB.CreateBitCast(S2, T); 2813 } 2814 Value *S1_ext = IRB.CreateSExt( 2815 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2816 Value *S2_ext = IRB.CreateSExt( 2817 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2818 if (isX86_MMX) { 2819 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2820 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2821 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2822 } 2823 2824 Function *ShadowFn = Intrinsic::getDeclaration( 2825 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2826 2827 Value *S = 2828 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2829 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2830 setShadow(&I, S); 2831 setOriginForNaryOp(I); 2832 } 2833 2834 // Instrument sum-of-absolute-differences intrinsic. 2835 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2836 const unsigned SignificantBitsPerResultElement = 16; 2837 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2838 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2839 unsigned ZeroBitsPerResultElement = 2840 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2841 2842 IRBuilder<> IRB(&I); 2843 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2844 S = IRB.CreateBitCast(S, ResTy); 2845 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2846 ResTy); 2847 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2848 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2849 setShadow(&I, S); 2850 setOriginForNaryOp(I); 2851 } 2852 2853 // Instrument multiply-add intrinsic. 2854 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2855 unsigned EltSizeInBits = 0) { 2856 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2857 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2858 IRBuilder<> IRB(&I); 2859 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2860 S = IRB.CreateBitCast(S, ResTy); 2861 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2862 ResTy); 2863 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2864 setShadow(&I, S); 2865 setOriginForNaryOp(I); 2866 } 2867 2868 // Instrument compare-packed intrinsic. 2869 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2870 // all-ones shadow. 2871 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2872 IRBuilder<> IRB(&I); 2873 Type *ResTy = getShadowTy(&I); 2874 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2875 Value *S = IRB.CreateSExt( 2876 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2877 setShadow(&I, S); 2878 setOriginForNaryOp(I); 2879 } 2880 2881 // Instrument compare-scalar intrinsic. 2882 // This handles both cmp* intrinsics which return the result in the first 2883 // element of a vector, and comi* which return the result as i32. 2884 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2885 IRBuilder<> IRB(&I); 2886 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2887 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2888 setShadow(&I, S); 2889 setOriginForNaryOp(I); 2890 } 2891 2892 // Instrument generic vector reduction intrinsics 2893 // by ORing together all their fields. 2894 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 2895 IRBuilder<> IRB(&I); 2896 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 2897 setShadow(&I, S); 2898 setOrigin(&I, getOrigin(&I, 0)); 2899 } 2900 2901 // Instrument experimental.vector.reduce.or intrinsic. 2902 // Valid (non-poisoned) set bits in the operand pull low the 2903 // corresponding shadow bits. 2904 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 2905 IRBuilder<> IRB(&I); 2906 Value *OperandShadow = getShadow(&I, 0); 2907 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 2908 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 2909 // Bit N is clean if any field's bit N is 1 and unpoison 2910 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 2911 // Otherwise, it is clean if every field's bit N is unpoison 2912 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 2913 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 2914 2915 setShadow(&I, S); 2916 setOrigin(&I, getOrigin(&I, 0)); 2917 } 2918 2919 // Instrument experimental.vector.reduce.or intrinsic. 2920 // Valid (non-poisoned) unset bits in the operand pull down the 2921 // corresponding shadow bits. 2922 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 2923 IRBuilder<> IRB(&I); 2924 Value *OperandShadow = getShadow(&I, 0); 2925 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 2926 // Bit N is clean if any field's bit N is 0 and unpoison 2927 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 2928 // Otherwise, it is clean if every field's bit N is unpoison 2929 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 2930 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 2931 2932 setShadow(&I, S); 2933 setOrigin(&I, getOrigin(&I, 0)); 2934 } 2935 2936 void handleStmxcsr(IntrinsicInst &I) { 2937 IRBuilder<> IRB(&I); 2938 Value* Addr = I.getArgOperand(0); 2939 Type *Ty = IRB.getInt32Ty(); 2940 Value *ShadowPtr = 2941 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 2942 2943 IRB.CreateStore(getCleanShadow(Ty), 2944 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2945 2946 if (ClCheckAccessAddress) 2947 insertShadowCheck(Addr, &I); 2948 } 2949 2950 void handleLdmxcsr(IntrinsicInst &I) { 2951 if (!InsertChecks) return; 2952 2953 IRBuilder<> IRB(&I); 2954 Value *Addr = I.getArgOperand(0); 2955 Type *Ty = IRB.getInt32Ty(); 2956 const Align Alignment = Align(1); 2957 Value *ShadowPtr, *OriginPtr; 2958 std::tie(ShadowPtr, OriginPtr) = 2959 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 2960 2961 if (ClCheckAccessAddress) 2962 insertShadowCheck(Addr, &I); 2963 2964 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 2965 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 2966 : getCleanOrigin(); 2967 insertShadowCheck(Shadow, Origin, &I); 2968 } 2969 2970 void handleMaskedStore(IntrinsicInst &I) { 2971 IRBuilder<> IRB(&I); 2972 Value *V = I.getArgOperand(0); 2973 Value *Addr = I.getArgOperand(1); 2974 const Align Alignment( 2975 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 2976 Value *Mask = I.getArgOperand(3); 2977 Value *Shadow = getShadow(V); 2978 2979 Value *ShadowPtr; 2980 Value *OriginPtr; 2981 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2982 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 2983 2984 if (ClCheckAccessAddress) { 2985 insertShadowCheck(Addr, &I); 2986 // Uninitialized mask is kind of like uninitialized address, but not as 2987 // scary. 2988 insertShadowCheck(Mask, &I); 2989 } 2990 2991 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 2992 2993 if (MS.TrackOrigins) { 2994 auto &DL = F.getParent()->getDataLayout(); 2995 paintOrigin(IRB, getOrigin(V), OriginPtr, 2996 DL.getTypeStoreSize(Shadow->getType()), 2997 std::max(Alignment, kMinOriginAlignment)); 2998 } 2999 } 3000 3001 bool handleMaskedLoad(IntrinsicInst &I) { 3002 IRBuilder<> IRB(&I); 3003 Value *Addr = I.getArgOperand(0); 3004 const Align Alignment( 3005 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3006 Value *Mask = I.getArgOperand(2); 3007 Value *PassThru = I.getArgOperand(3); 3008 3009 Type *ShadowTy = getShadowTy(&I); 3010 Value *ShadowPtr, *OriginPtr; 3011 if (PropagateShadow) { 3012 std::tie(ShadowPtr, OriginPtr) = 3013 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3014 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask, 3015 getShadow(PassThru), "_msmaskedld")); 3016 } else { 3017 setShadow(&I, getCleanShadow(&I)); 3018 } 3019 3020 if (ClCheckAccessAddress) { 3021 insertShadowCheck(Addr, &I); 3022 insertShadowCheck(Mask, &I); 3023 } 3024 3025 if (MS.TrackOrigins) { 3026 if (PropagateShadow) { 3027 // Choose between PassThru's and the loaded value's origins. 3028 Value *MaskedPassThruShadow = IRB.CreateAnd( 3029 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3030 3031 Value *Acc = IRB.CreateExtractElement( 3032 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3033 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) 3034 ->getNumElements(); 3035 i < N; ++i) { 3036 Value *More = IRB.CreateExtractElement( 3037 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3038 Acc = IRB.CreateOr(Acc, More); 3039 } 3040 3041 Value *Origin = IRB.CreateSelect( 3042 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3043 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3044 3045 setOrigin(&I, Origin); 3046 } else { 3047 setOrigin(&I, getCleanOrigin()); 3048 } 3049 } 3050 return true; 3051 } 3052 3053 // Instrument BMI / BMI2 intrinsics. 3054 // All of these intrinsics are Z = I(X, Y) 3055 // where the types of all operands and the result match, and are either i32 or i64. 3056 // The following instrumentation happens to work for all of them: 3057 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3058 void handleBmiIntrinsic(IntrinsicInst &I) { 3059 IRBuilder<> IRB(&I); 3060 Type *ShadowTy = getShadowTy(&I); 3061 3062 // If any bit of the mask operand is poisoned, then the whole thing is. 3063 Value *SMask = getShadow(&I, 1); 3064 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3065 ShadowTy); 3066 // Apply the same intrinsic to the shadow of the first operand. 3067 Value *S = IRB.CreateCall(I.getCalledFunction(), 3068 {getShadow(&I, 0), I.getOperand(1)}); 3069 S = IRB.CreateOr(SMask, S); 3070 setShadow(&I, S); 3071 setOriginForNaryOp(I); 3072 } 3073 3074 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3075 SmallVector<int, 8> Mask; 3076 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3077 Mask.append(2, X); 3078 } 3079 return Mask; 3080 } 3081 3082 // Instrument pclmul intrinsics. 3083 // These intrinsics operate either on odd or on even elements of the input 3084 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3085 // Replace the unused elements with copies of the used ones, ex: 3086 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3087 // or 3088 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3089 // and then apply the usual shadow combining logic. 3090 void handlePclmulIntrinsic(IntrinsicInst &I) { 3091 IRBuilder<> IRB(&I); 3092 Type *ShadowTy = getShadowTy(&I); 3093 unsigned Width = 3094 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3095 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3096 "pclmul 3rd operand must be a constant"); 3097 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3098 Value *Shuf0 = 3099 IRB.CreateShuffleVector(getShadow(&I, 0), UndefValue::get(ShadowTy), 3100 getPclmulMask(Width, Imm & 0x01)); 3101 Value *Shuf1 = 3102 IRB.CreateShuffleVector(getShadow(&I, 1), UndefValue::get(ShadowTy), 3103 getPclmulMask(Width, Imm & 0x10)); 3104 ShadowAndOriginCombiner SOC(this, IRB); 3105 SOC.Add(Shuf0, getOrigin(&I, 0)); 3106 SOC.Add(Shuf1, getOrigin(&I, 1)); 3107 SOC.Done(&I); 3108 } 3109 3110 // Instrument _mm_*_sd intrinsics 3111 void handleUnarySdIntrinsic(IntrinsicInst &I) { 3112 IRBuilder<> IRB(&I); 3113 Value *First = getShadow(&I, 0); 3114 Value *Second = getShadow(&I, 1); 3115 // High word of first operand, low word of second 3116 Value *Shadow = 3117 IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); 3118 3119 setShadow(&I, Shadow); 3120 setOriginForNaryOp(I); 3121 } 3122 3123 void handleBinarySdIntrinsic(IntrinsicInst &I) { 3124 IRBuilder<> IRB(&I); 3125 Value *First = getShadow(&I, 0); 3126 Value *Second = getShadow(&I, 1); 3127 Value *OrShadow = IRB.CreateOr(First, Second); 3128 // High word of first operand, low word of both OR'd together 3129 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, 3130 llvm::makeArrayRef<int>({2, 1})); 3131 3132 setShadow(&I, Shadow); 3133 setOriginForNaryOp(I); 3134 } 3135 3136 void visitIntrinsicInst(IntrinsicInst &I) { 3137 switch (I.getIntrinsicID()) { 3138 case Intrinsic::lifetime_start: 3139 handleLifetimeStart(I); 3140 break; 3141 case Intrinsic::launder_invariant_group: 3142 case Intrinsic::strip_invariant_group: 3143 handleInvariantGroup(I); 3144 break; 3145 case Intrinsic::bswap: 3146 handleBswap(I); 3147 break; 3148 case Intrinsic::masked_store: 3149 handleMaskedStore(I); 3150 break; 3151 case Intrinsic::masked_load: 3152 handleMaskedLoad(I); 3153 break; 3154 case Intrinsic::experimental_vector_reduce_and: 3155 handleVectorReduceAndIntrinsic(I); 3156 break; 3157 case Intrinsic::experimental_vector_reduce_or: 3158 handleVectorReduceOrIntrinsic(I); 3159 break; 3160 case Intrinsic::experimental_vector_reduce_add: 3161 case Intrinsic::experimental_vector_reduce_xor: 3162 case Intrinsic::experimental_vector_reduce_mul: 3163 handleVectorReduceIntrinsic(I); 3164 break; 3165 case Intrinsic::x86_sse_stmxcsr: 3166 handleStmxcsr(I); 3167 break; 3168 case Intrinsic::x86_sse_ldmxcsr: 3169 handleLdmxcsr(I); 3170 break; 3171 case Intrinsic::x86_avx512_vcvtsd2usi64: 3172 case Intrinsic::x86_avx512_vcvtsd2usi32: 3173 case Intrinsic::x86_avx512_vcvtss2usi64: 3174 case Intrinsic::x86_avx512_vcvtss2usi32: 3175 case Intrinsic::x86_avx512_cvttss2usi64: 3176 case Intrinsic::x86_avx512_cvttss2usi: 3177 case Intrinsic::x86_avx512_cvttsd2usi64: 3178 case Intrinsic::x86_avx512_cvttsd2usi: 3179 case Intrinsic::x86_avx512_cvtusi2ss: 3180 case Intrinsic::x86_avx512_cvtusi642sd: 3181 case Intrinsic::x86_avx512_cvtusi642ss: 3182 case Intrinsic::x86_sse2_cvtsd2si64: 3183 case Intrinsic::x86_sse2_cvtsd2si: 3184 case Intrinsic::x86_sse2_cvtsd2ss: 3185 case Intrinsic::x86_sse2_cvttsd2si64: 3186 case Intrinsic::x86_sse2_cvttsd2si: 3187 case Intrinsic::x86_sse_cvtss2si64: 3188 case Intrinsic::x86_sse_cvtss2si: 3189 case Intrinsic::x86_sse_cvttss2si64: 3190 case Intrinsic::x86_sse_cvttss2si: 3191 handleVectorConvertIntrinsic(I, 1); 3192 break; 3193 case Intrinsic::x86_sse_cvtps2pi: 3194 case Intrinsic::x86_sse_cvttps2pi: 3195 handleVectorConvertIntrinsic(I, 2); 3196 break; 3197 3198 case Intrinsic::x86_avx512_psll_w_512: 3199 case Intrinsic::x86_avx512_psll_d_512: 3200 case Intrinsic::x86_avx512_psll_q_512: 3201 case Intrinsic::x86_avx512_pslli_w_512: 3202 case Intrinsic::x86_avx512_pslli_d_512: 3203 case Intrinsic::x86_avx512_pslli_q_512: 3204 case Intrinsic::x86_avx512_psrl_w_512: 3205 case Intrinsic::x86_avx512_psrl_d_512: 3206 case Intrinsic::x86_avx512_psrl_q_512: 3207 case Intrinsic::x86_avx512_psra_w_512: 3208 case Intrinsic::x86_avx512_psra_d_512: 3209 case Intrinsic::x86_avx512_psra_q_512: 3210 case Intrinsic::x86_avx512_psrli_w_512: 3211 case Intrinsic::x86_avx512_psrli_d_512: 3212 case Intrinsic::x86_avx512_psrli_q_512: 3213 case Intrinsic::x86_avx512_psrai_w_512: 3214 case Intrinsic::x86_avx512_psrai_d_512: 3215 case Intrinsic::x86_avx512_psrai_q_512: 3216 case Intrinsic::x86_avx512_psra_q_256: 3217 case Intrinsic::x86_avx512_psra_q_128: 3218 case Intrinsic::x86_avx512_psrai_q_256: 3219 case Intrinsic::x86_avx512_psrai_q_128: 3220 case Intrinsic::x86_avx2_psll_w: 3221 case Intrinsic::x86_avx2_psll_d: 3222 case Intrinsic::x86_avx2_psll_q: 3223 case Intrinsic::x86_avx2_pslli_w: 3224 case Intrinsic::x86_avx2_pslli_d: 3225 case Intrinsic::x86_avx2_pslli_q: 3226 case Intrinsic::x86_avx2_psrl_w: 3227 case Intrinsic::x86_avx2_psrl_d: 3228 case Intrinsic::x86_avx2_psrl_q: 3229 case Intrinsic::x86_avx2_psra_w: 3230 case Intrinsic::x86_avx2_psra_d: 3231 case Intrinsic::x86_avx2_psrli_w: 3232 case Intrinsic::x86_avx2_psrli_d: 3233 case Intrinsic::x86_avx2_psrli_q: 3234 case Intrinsic::x86_avx2_psrai_w: 3235 case Intrinsic::x86_avx2_psrai_d: 3236 case Intrinsic::x86_sse2_psll_w: 3237 case Intrinsic::x86_sse2_psll_d: 3238 case Intrinsic::x86_sse2_psll_q: 3239 case Intrinsic::x86_sse2_pslli_w: 3240 case Intrinsic::x86_sse2_pslli_d: 3241 case Intrinsic::x86_sse2_pslli_q: 3242 case Intrinsic::x86_sse2_psrl_w: 3243 case Intrinsic::x86_sse2_psrl_d: 3244 case Intrinsic::x86_sse2_psrl_q: 3245 case Intrinsic::x86_sse2_psra_w: 3246 case Intrinsic::x86_sse2_psra_d: 3247 case Intrinsic::x86_sse2_psrli_w: 3248 case Intrinsic::x86_sse2_psrli_d: 3249 case Intrinsic::x86_sse2_psrli_q: 3250 case Intrinsic::x86_sse2_psrai_w: 3251 case Intrinsic::x86_sse2_psrai_d: 3252 case Intrinsic::x86_mmx_psll_w: 3253 case Intrinsic::x86_mmx_psll_d: 3254 case Intrinsic::x86_mmx_psll_q: 3255 case Intrinsic::x86_mmx_pslli_w: 3256 case Intrinsic::x86_mmx_pslli_d: 3257 case Intrinsic::x86_mmx_pslli_q: 3258 case Intrinsic::x86_mmx_psrl_w: 3259 case Intrinsic::x86_mmx_psrl_d: 3260 case Intrinsic::x86_mmx_psrl_q: 3261 case Intrinsic::x86_mmx_psra_w: 3262 case Intrinsic::x86_mmx_psra_d: 3263 case Intrinsic::x86_mmx_psrli_w: 3264 case Intrinsic::x86_mmx_psrli_d: 3265 case Intrinsic::x86_mmx_psrli_q: 3266 case Intrinsic::x86_mmx_psrai_w: 3267 case Intrinsic::x86_mmx_psrai_d: 3268 handleVectorShiftIntrinsic(I, /* Variable */ false); 3269 break; 3270 case Intrinsic::x86_avx2_psllv_d: 3271 case Intrinsic::x86_avx2_psllv_d_256: 3272 case Intrinsic::x86_avx512_psllv_d_512: 3273 case Intrinsic::x86_avx2_psllv_q: 3274 case Intrinsic::x86_avx2_psllv_q_256: 3275 case Intrinsic::x86_avx512_psllv_q_512: 3276 case Intrinsic::x86_avx2_psrlv_d: 3277 case Intrinsic::x86_avx2_psrlv_d_256: 3278 case Intrinsic::x86_avx512_psrlv_d_512: 3279 case Intrinsic::x86_avx2_psrlv_q: 3280 case Intrinsic::x86_avx2_psrlv_q_256: 3281 case Intrinsic::x86_avx512_psrlv_q_512: 3282 case Intrinsic::x86_avx2_psrav_d: 3283 case Intrinsic::x86_avx2_psrav_d_256: 3284 case Intrinsic::x86_avx512_psrav_d_512: 3285 case Intrinsic::x86_avx512_psrav_q_128: 3286 case Intrinsic::x86_avx512_psrav_q_256: 3287 case Intrinsic::x86_avx512_psrav_q_512: 3288 handleVectorShiftIntrinsic(I, /* Variable */ true); 3289 break; 3290 3291 case Intrinsic::x86_sse2_packsswb_128: 3292 case Intrinsic::x86_sse2_packssdw_128: 3293 case Intrinsic::x86_sse2_packuswb_128: 3294 case Intrinsic::x86_sse41_packusdw: 3295 case Intrinsic::x86_avx2_packsswb: 3296 case Intrinsic::x86_avx2_packssdw: 3297 case Intrinsic::x86_avx2_packuswb: 3298 case Intrinsic::x86_avx2_packusdw: 3299 handleVectorPackIntrinsic(I); 3300 break; 3301 3302 case Intrinsic::x86_mmx_packsswb: 3303 case Intrinsic::x86_mmx_packuswb: 3304 handleVectorPackIntrinsic(I, 16); 3305 break; 3306 3307 case Intrinsic::x86_mmx_packssdw: 3308 handleVectorPackIntrinsic(I, 32); 3309 break; 3310 3311 case Intrinsic::x86_mmx_psad_bw: 3312 case Intrinsic::x86_sse2_psad_bw: 3313 case Intrinsic::x86_avx2_psad_bw: 3314 handleVectorSadIntrinsic(I); 3315 break; 3316 3317 case Intrinsic::x86_sse2_pmadd_wd: 3318 case Intrinsic::x86_avx2_pmadd_wd: 3319 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3320 case Intrinsic::x86_avx2_pmadd_ub_sw: 3321 handleVectorPmaddIntrinsic(I); 3322 break; 3323 3324 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3325 handleVectorPmaddIntrinsic(I, 8); 3326 break; 3327 3328 case Intrinsic::x86_mmx_pmadd_wd: 3329 handleVectorPmaddIntrinsic(I, 16); 3330 break; 3331 3332 case Intrinsic::x86_sse_cmp_ss: 3333 case Intrinsic::x86_sse2_cmp_sd: 3334 case Intrinsic::x86_sse_comieq_ss: 3335 case Intrinsic::x86_sse_comilt_ss: 3336 case Intrinsic::x86_sse_comile_ss: 3337 case Intrinsic::x86_sse_comigt_ss: 3338 case Intrinsic::x86_sse_comige_ss: 3339 case Intrinsic::x86_sse_comineq_ss: 3340 case Intrinsic::x86_sse_ucomieq_ss: 3341 case Intrinsic::x86_sse_ucomilt_ss: 3342 case Intrinsic::x86_sse_ucomile_ss: 3343 case Intrinsic::x86_sse_ucomigt_ss: 3344 case Intrinsic::x86_sse_ucomige_ss: 3345 case Intrinsic::x86_sse_ucomineq_ss: 3346 case Intrinsic::x86_sse2_comieq_sd: 3347 case Intrinsic::x86_sse2_comilt_sd: 3348 case Intrinsic::x86_sse2_comile_sd: 3349 case Intrinsic::x86_sse2_comigt_sd: 3350 case Intrinsic::x86_sse2_comige_sd: 3351 case Intrinsic::x86_sse2_comineq_sd: 3352 case Intrinsic::x86_sse2_ucomieq_sd: 3353 case Intrinsic::x86_sse2_ucomilt_sd: 3354 case Intrinsic::x86_sse2_ucomile_sd: 3355 case Intrinsic::x86_sse2_ucomigt_sd: 3356 case Intrinsic::x86_sse2_ucomige_sd: 3357 case Intrinsic::x86_sse2_ucomineq_sd: 3358 handleVectorCompareScalarIntrinsic(I); 3359 break; 3360 3361 case Intrinsic::x86_sse_cmp_ps: 3362 case Intrinsic::x86_sse2_cmp_pd: 3363 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3364 // generates reasonably looking IR that fails in the backend with "Do not 3365 // know how to split the result of this operator!". 3366 handleVectorComparePackedIntrinsic(I); 3367 break; 3368 3369 case Intrinsic::x86_bmi_bextr_32: 3370 case Intrinsic::x86_bmi_bextr_64: 3371 case Intrinsic::x86_bmi_bzhi_32: 3372 case Intrinsic::x86_bmi_bzhi_64: 3373 case Intrinsic::x86_bmi_pdep_32: 3374 case Intrinsic::x86_bmi_pdep_64: 3375 case Intrinsic::x86_bmi_pext_32: 3376 case Intrinsic::x86_bmi_pext_64: 3377 handleBmiIntrinsic(I); 3378 break; 3379 3380 case Intrinsic::x86_pclmulqdq: 3381 case Intrinsic::x86_pclmulqdq_256: 3382 case Intrinsic::x86_pclmulqdq_512: 3383 handlePclmulIntrinsic(I); 3384 break; 3385 3386 case Intrinsic::x86_sse41_round_sd: 3387 handleUnarySdIntrinsic(I); 3388 break; 3389 case Intrinsic::x86_sse2_max_sd: 3390 case Intrinsic::x86_sse2_min_sd: 3391 handleBinarySdIntrinsic(I); 3392 break; 3393 3394 case Intrinsic::is_constant: 3395 // The result of llvm.is.constant() is always defined. 3396 setShadow(&I, getCleanShadow(&I)); 3397 setOrigin(&I, getCleanOrigin()); 3398 break; 3399 3400 default: 3401 if (!handleUnknownIntrinsic(I)) 3402 visitInstruction(I); 3403 break; 3404 } 3405 } 3406 3407 void visitCallBase(CallBase &CB) { 3408 assert(!CB.getMetadata("nosanitize")); 3409 if (CB.isInlineAsm()) { 3410 // For inline asm (either a call to asm function, or callbr instruction), 3411 // do the usual thing: check argument shadow and mark all outputs as 3412 // clean. Note that any side effects of the inline asm that are not 3413 // immediately visible in its constraints are not handled. 3414 if (ClHandleAsmConservative && MS.CompileKernel) 3415 visitAsmInstruction(CB); 3416 else 3417 visitInstruction(CB); 3418 return; 3419 } 3420 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3421 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3422 3423 // We are going to insert code that relies on the fact that the callee 3424 // will become a non-readonly function after it is instrumented by us. To 3425 // prevent this code from being optimized out, mark that function 3426 // non-readonly in advance. 3427 if (Function *Func = Call->getCalledFunction()) { 3428 // Clear out readonly/readnone attributes. 3429 AttrBuilder B; 3430 B.addAttribute(Attribute::ReadOnly) 3431 .addAttribute(Attribute::ReadNone) 3432 .addAttribute(Attribute::WriteOnly) 3433 .addAttribute(Attribute::ArgMemOnly) 3434 .addAttribute(Attribute::Speculatable); 3435 Func->removeAttributes(AttributeList::FunctionIndex, B); 3436 } 3437 3438 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3439 } 3440 IRBuilder<> IRB(&CB); 3441 3442 unsigned ArgOffset = 0; 3443 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3444 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3445 ++ArgIt) { 3446 Value *A = *ArgIt; 3447 unsigned i = ArgIt - CB.arg_begin(); 3448 if (!A->getType()->isSized()) { 3449 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3450 continue; 3451 } 3452 unsigned Size = 0; 3453 Value *Store = nullptr; 3454 // Compute the Shadow for arg even if it is ByVal, because 3455 // in that case getShadow() will copy the actual arg shadow to 3456 // __msan_param_tls. 3457 Value *ArgShadow = getShadow(A); 3458 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3459 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3460 << " Shadow: " << *ArgShadow << "\n"); 3461 bool ArgIsInitialized = false; 3462 const DataLayout &DL = F.getParent()->getDataLayout(); 3463 3464 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 3465 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 3466 bool EagerCheck = ClEagerChecks && !ByVal && NoUndef; 3467 3468 if (EagerCheck) { 3469 insertShadowCheck(A, &CB); 3470 continue; 3471 } 3472 if (ByVal) { 3473 // ByVal requires some special handling as it's too big for a single 3474 // load 3475 assert(A->getType()->isPointerTy() && 3476 "ByVal argument is not a pointer!"); 3477 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3478 if (ArgOffset + Size > kParamTLSSize) break; 3479 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3480 MaybeAlign Alignment = llvm::None; 3481 if (ParamAlignment) 3482 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3483 Value *AShadowPtr = 3484 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3485 /*isStore*/ false) 3486 .first; 3487 3488 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3489 Alignment, Size); 3490 // TODO(glider): need to copy origins. 3491 } else { 3492 // Any other parameters mean we need bit-grained tracking of uninit data 3493 Size = DL.getTypeAllocSize(A->getType()); 3494 if (ArgOffset + Size > kParamTLSSize) break; 3495 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3496 kShadowTLSAlignment); 3497 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3498 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3499 } 3500 if (MS.TrackOrigins && !ArgIsInitialized) 3501 IRB.CreateStore(getOrigin(A), 3502 getOriginPtrForArgument(A, IRB, ArgOffset)); 3503 (void)Store; 3504 assert(Size != 0 && Store != nullptr); 3505 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3506 ArgOffset += alignTo(Size, 8); 3507 } 3508 LLVM_DEBUG(dbgs() << " done with call args\n"); 3509 3510 FunctionType *FT = CB.getFunctionType(); 3511 if (FT->isVarArg()) { 3512 VAHelper->visitCallBase(CB, IRB); 3513 } 3514 3515 // Now, get the shadow for the RetVal. 3516 if (!CB.getType()->isSized()) 3517 return; 3518 // Don't emit the epilogue for musttail call returns. 3519 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3520 return; 3521 3522 if (ClEagerChecks && CB.hasRetAttr(Attribute::NoUndef)) { 3523 setShadow(&CB, getCleanShadow(&CB)); 3524 setOrigin(&CB, getCleanOrigin()); 3525 return; 3526 } 3527 3528 IRBuilder<> IRBBefore(&CB); 3529 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3530 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3531 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3532 kShadowTLSAlignment); 3533 BasicBlock::iterator NextInsn; 3534 if (isa<CallInst>(CB)) { 3535 NextInsn = ++CB.getIterator(); 3536 assert(NextInsn != CB.getParent()->end()); 3537 } else { 3538 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3539 if (!NormalDest->getSinglePredecessor()) { 3540 // FIXME: this case is tricky, so we are just conservative here. 3541 // Perhaps we need to split the edge between this BB and NormalDest, 3542 // but a naive attempt to use SplitEdge leads to a crash. 3543 setShadow(&CB, getCleanShadow(&CB)); 3544 setOrigin(&CB, getCleanOrigin()); 3545 return; 3546 } 3547 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3548 // Anything inserted there will be instrumented by MSan later! 3549 NextInsn = NormalDest->getFirstInsertionPt(); 3550 assert(NextInsn != NormalDest->end() && 3551 "Could not find insertion point for retval shadow load"); 3552 } 3553 IRBuilder<> IRBAfter(&*NextInsn); 3554 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3555 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3556 kShadowTLSAlignment, "_msret"); 3557 setShadow(&CB, RetvalShadow); 3558 if (MS.TrackOrigins) 3559 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3560 getOriginPtrForRetval(IRBAfter))); 3561 } 3562 3563 bool isAMustTailRetVal(Value *RetVal) { 3564 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3565 RetVal = I->getOperand(0); 3566 } 3567 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3568 return I->isMustTailCall(); 3569 } 3570 return false; 3571 } 3572 3573 void visitReturnInst(ReturnInst &I) { 3574 IRBuilder<> IRB(&I); 3575 Value *RetVal = I.getReturnValue(); 3576 if (!RetVal) return; 3577 // Don't emit the epilogue for musttail call returns. 3578 if (isAMustTailRetVal(RetVal)) return; 3579 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3580 bool HasNoUndef = 3581 F.hasAttribute(AttributeList::ReturnIndex, Attribute::NoUndef); 3582 bool StoreShadow = !(ClEagerChecks && HasNoUndef); 3583 // FIXME: Consider using SpecialCaseList to specify a list of functions that 3584 // must always return fully initialized values. For now, we hardcode "main". 3585 bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main"); 3586 3587 Value *Shadow = getShadow(RetVal); 3588 bool StoreOrigin = true; 3589 if (EagerCheck) { 3590 insertShadowCheck(RetVal, &I); 3591 Shadow = getCleanShadow(RetVal); 3592 StoreOrigin = false; 3593 } 3594 3595 // The caller may still expect information passed over TLS if we pass our 3596 // check 3597 if (StoreShadow) { 3598 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3599 if (MS.TrackOrigins && StoreOrigin) 3600 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3601 } 3602 } 3603 3604 void visitPHINode(PHINode &I) { 3605 IRBuilder<> IRB(&I); 3606 if (!PropagateShadow) { 3607 setShadow(&I, getCleanShadow(&I)); 3608 setOrigin(&I, getCleanOrigin()); 3609 return; 3610 } 3611 3612 ShadowPHINodes.push_back(&I); 3613 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3614 "_msphi_s")); 3615 if (MS.TrackOrigins) 3616 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3617 "_msphi_o")); 3618 } 3619 3620 Value *getLocalVarDescription(AllocaInst &I) { 3621 SmallString<2048> StackDescriptionStorage; 3622 raw_svector_ostream StackDescription(StackDescriptionStorage); 3623 // We create a string with a description of the stack allocation and 3624 // pass it into __msan_set_alloca_origin. 3625 // It will be printed by the run-time if stack-originated UMR is found. 3626 // The first 4 bytes of the string are set to '----' and will be replaced 3627 // by __msan_va_arg_overflow_size_tls at the first call. 3628 StackDescription << "----" << I.getName() << "@" << F.getName(); 3629 return createPrivateNonConstGlobalForString(*F.getParent(), 3630 StackDescription.str()); 3631 } 3632 3633 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3634 if (PoisonStack && ClPoisonStackWithCall) { 3635 IRB.CreateCall(MS.MsanPoisonStackFn, 3636 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3637 } else { 3638 Value *ShadowBase, *OriginBase; 3639 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3640 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3641 3642 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3643 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3644 MaybeAlign(I.getAlignment())); 3645 } 3646 3647 if (PoisonStack && MS.TrackOrigins) { 3648 Value *Descr = getLocalVarDescription(I); 3649 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3650 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3651 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3652 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3653 } 3654 } 3655 3656 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3657 Value *Descr = getLocalVarDescription(I); 3658 if (PoisonStack) { 3659 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3660 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3661 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3662 } else { 3663 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3664 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3665 } 3666 } 3667 3668 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3669 if (!InsPoint) 3670 InsPoint = &I; 3671 IRBuilder<> IRB(InsPoint->getNextNode()); 3672 const DataLayout &DL = F.getParent()->getDataLayout(); 3673 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3674 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3675 if (I.isArrayAllocation()) 3676 Len = IRB.CreateMul(Len, I.getArraySize()); 3677 3678 if (MS.CompileKernel) 3679 poisonAllocaKmsan(I, IRB, Len); 3680 else 3681 poisonAllocaUserspace(I, IRB, Len); 3682 } 3683 3684 void visitAllocaInst(AllocaInst &I) { 3685 setShadow(&I, getCleanShadow(&I)); 3686 setOrigin(&I, getCleanOrigin()); 3687 // We'll get to this alloca later unless it's poisoned at the corresponding 3688 // llvm.lifetime.start. 3689 AllocaSet.insert(&I); 3690 } 3691 3692 void visitSelectInst(SelectInst& I) { 3693 IRBuilder<> IRB(&I); 3694 // a = select b, c, d 3695 Value *B = I.getCondition(); 3696 Value *C = I.getTrueValue(); 3697 Value *D = I.getFalseValue(); 3698 Value *Sb = getShadow(B); 3699 Value *Sc = getShadow(C); 3700 Value *Sd = getShadow(D); 3701 3702 // Result shadow if condition shadow is 0. 3703 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3704 Value *Sa1; 3705 if (I.getType()->isAggregateType()) { 3706 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3707 // an extra "select". This results in much more compact IR. 3708 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3709 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3710 } else { 3711 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3712 // If Sb (condition is poisoned), look for bits in c and d that are equal 3713 // and both unpoisoned. 3714 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3715 3716 // Cast arguments to shadow-compatible type. 3717 C = CreateAppToShadowCast(IRB, C); 3718 D = CreateAppToShadowCast(IRB, D); 3719 3720 // Result shadow if condition shadow is 1. 3721 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3722 } 3723 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3724 setShadow(&I, Sa); 3725 if (MS.TrackOrigins) { 3726 // Origins are always i32, so any vector conditions must be flattened. 3727 // FIXME: consider tracking vector origins for app vectors? 3728 if (B->getType()->isVectorTy()) { 3729 Type *FlatTy = getShadowTyNoVec(B->getType()); 3730 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3731 ConstantInt::getNullValue(FlatTy)); 3732 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3733 ConstantInt::getNullValue(FlatTy)); 3734 } 3735 // a = select b, c, d 3736 // Oa = Sb ? Ob : (b ? Oc : Od) 3737 setOrigin( 3738 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3739 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3740 getOrigin(I.getFalseValue())))); 3741 } 3742 } 3743 3744 void visitLandingPadInst(LandingPadInst &I) { 3745 // Do nothing. 3746 // See https://github.com/google/sanitizers/issues/504 3747 setShadow(&I, getCleanShadow(&I)); 3748 setOrigin(&I, getCleanOrigin()); 3749 } 3750 3751 void visitCatchSwitchInst(CatchSwitchInst &I) { 3752 setShadow(&I, getCleanShadow(&I)); 3753 setOrigin(&I, getCleanOrigin()); 3754 } 3755 3756 void visitFuncletPadInst(FuncletPadInst &I) { 3757 setShadow(&I, getCleanShadow(&I)); 3758 setOrigin(&I, getCleanOrigin()); 3759 } 3760 3761 void visitGetElementPtrInst(GetElementPtrInst &I) { 3762 handleShadowOr(I); 3763 } 3764 3765 void visitExtractValueInst(ExtractValueInst &I) { 3766 IRBuilder<> IRB(&I); 3767 Value *Agg = I.getAggregateOperand(); 3768 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3769 Value *AggShadow = getShadow(Agg); 3770 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3771 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3772 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3773 setShadow(&I, ResShadow); 3774 setOriginForNaryOp(I); 3775 } 3776 3777 void visitInsertValueInst(InsertValueInst &I) { 3778 IRBuilder<> IRB(&I); 3779 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3780 Value *AggShadow = getShadow(I.getAggregateOperand()); 3781 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3782 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3783 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3784 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3785 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3786 setShadow(&I, Res); 3787 setOriginForNaryOp(I); 3788 } 3789 3790 void dumpInst(Instruction &I) { 3791 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3792 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3793 } else { 3794 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3795 } 3796 errs() << "QQQ " << I << "\n"; 3797 } 3798 3799 void visitResumeInst(ResumeInst &I) { 3800 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3801 // Nothing to do here. 3802 } 3803 3804 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3805 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3806 // Nothing to do here. 3807 } 3808 3809 void visitCatchReturnInst(CatchReturnInst &CRI) { 3810 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3811 // Nothing to do here. 3812 } 3813 3814 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3815 const DataLayout &DL, bool isOutput) { 3816 // For each assembly argument, we check its value for being initialized. 3817 // If the argument is a pointer, we assume it points to a single element 3818 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3819 // Each such pointer is instrumented with a call to the runtime library. 3820 Type *OpType = Operand->getType(); 3821 // Check the operand value itself. 3822 insertShadowCheck(Operand, &I); 3823 if (!OpType->isPointerTy() || !isOutput) { 3824 assert(!isOutput); 3825 return; 3826 } 3827 Type *ElType = OpType->getPointerElementType(); 3828 if (!ElType->isSized()) 3829 return; 3830 int Size = DL.getTypeStoreSize(ElType); 3831 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3832 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 3833 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 3834 } 3835 3836 /// Get the number of output arguments returned by pointers. 3837 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 3838 int NumRetOutputs = 0; 3839 int NumOutputs = 0; 3840 Type *RetTy = cast<Value>(CB)->getType(); 3841 if (!RetTy->isVoidTy()) { 3842 // Register outputs are returned via the CallInst return value. 3843 auto *ST = dyn_cast<StructType>(RetTy); 3844 if (ST) 3845 NumRetOutputs = ST->getNumElements(); 3846 else 3847 NumRetOutputs = 1; 3848 } 3849 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 3850 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 3851 InlineAsm::ConstraintInfo Info = Constraints[i]; 3852 switch (Info.Type) { 3853 case InlineAsm::isOutput: 3854 NumOutputs++; 3855 break; 3856 default: 3857 break; 3858 } 3859 } 3860 return NumOutputs - NumRetOutputs; 3861 } 3862 3863 void visitAsmInstruction(Instruction &I) { 3864 // Conservative inline assembly handling: check for poisoned shadow of 3865 // asm() arguments, then unpoison the result and all the memory locations 3866 // pointed to by those arguments. 3867 // An inline asm() statement in C++ contains lists of input and output 3868 // arguments used by the assembly code. These are mapped to operands of the 3869 // CallInst as follows: 3870 // - nR register outputs ("=r) are returned by value in a single structure 3871 // (SSA value of the CallInst); 3872 // - nO other outputs ("=m" and others) are returned by pointer as first 3873 // nO operands of the CallInst; 3874 // - nI inputs ("r", "m" and others) are passed to CallInst as the 3875 // remaining nI operands. 3876 // The total number of asm() arguments in the source is nR+nO+nI, and the 3877 // corresponding CallInst has nO+nI+1 operands (the last operand is the 3878 // function to be called). 3879 const DataLayout &DL = F.getParent()->getDataLayout(); 3880 CallBase *CB = cast<CallBase>(&I); 3881 IRBuilder<> IRB(&I); 3882 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 3883 int OutputArgs = getNumOutputArgs(IA, CB); 3884 // The last operand of a CallInst is the function itself. 3885 int NumOperands = CB->getNumOperands() - 1; 3886 3887 // Check input arguments. Doing so before unpoisoning output arguments, so 3888 // that we won't overwrite uninit values before checking them. 3889 for (int i = OutputArgs; i < NumOperands; i++) { 3890 Value *Operand = CB->getOperand(i); 3891 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 3892 } 3893 // Unpoison output arguments. This must happen before the actual InlineAsm 3894 // call, so that the shadow for memory published in the asm() statement 3895 // remains valid. 3896 for (int i = 0; i < OutputArgs; i++) { 3897 Value *Operand = CB->getOperand(i); 3898 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 3899 } 3900 3901 setShadow(&I, getCleanShadow(&I)); 3902 setOrigin(&I, getCleanOrigin()); 3903 } 3904 3905 void visitInstruction(Instruction &I) { 3906 // Everything else: stop propagating and check for poisoned shadow. 3907 if (ClDumpStrictInstructions) 3908 dumpInst(I); 3909 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 3910 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 3911 Value *Operand = I.getOperand(i); 3912 if (Operand->getType()->isSized()) 3913 insertShadowCheck(Operand, &I); 3914 } 3915 setShadow(&I, getCleanShadow(&I)); 3916 setOrigin(&I, getCleanOrigin()); 3917 } 3918 }; 3919 3920 /// AMD64-specific implementation of VarArgHelper. 3921 struct VarArgAMD64Helper : public VarArgHelper { 3922 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 3923 // See a comment in visitCallBase for more details. 3924 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 3925 static const unsigned AMD64FpEndOffsetSSE = 176; 3926 // If SSE is disabled, fp_offset in va_list is zero. 3927 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 3928 3929 unsigned AMD64FpEndOffset; 3930 Function &F; 3931 MemorySanitizer &MS; 3932 MemorySanitizerVisitor &MSV; 3933 Value *VAArgTLSCopy = nullptr; 3934 Value *VAArgTLSOriginCopy = nullptr; 3935 Value *VAArgOverflowSize = nullptr; 3936 3937 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3938 3939 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3940 3941 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 3942 MemorySanitizerVisitor &MSV) 3943 : F(F), MS(MS), MSV(MSV) { 3944 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 3945 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 3946 if (Attr.isStringAttribute() && 3947 (Attr.getKindAsString() == "target-features")) { 3948 if (Attr.getValueAsString().contains("-sse")) 3949 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 3950 break; 3951 } 3952 } 3953 } 3954 3955 ArgKind classifyArgument(Value* arg) { 3956 // A very rough approximation of X86_64 argument classification rules. 3957 Type *T = arg->getType(); 3958 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 3959 return AK_FloatingPoint; 3960 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3961 return AK_GeneralPurpose; 3962 if (T->isPointerTy()) 3963 return AK_GeneralPurpose; 3964 return AK_Memory; 3965 } 3966 3967 // For VarArg functions, store the argument shadow in an ABI-specific format 3968 // that corresponds to va_list layout. 3969 // We do this because Clang lowers va_arg in the frontend, and this pass 3970 // only sees the low level code that deals with va_list internals. 3971 // A much easier alternative (provided that Clang emits va_arg instructions) 3972 // would have been to associate each live instance of va_list with a copy of 3973 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 3974 // order. 3975 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 3976 unsigned GpOffset = 0; 3977 unsigned FpOffset = AMD64GpEndOffset; 3978 unsigned OverflowOffset = AMD64FpEndOffset; 3979 const DataLayout &DL = F.getParent()->getDataLayout(); 3980 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3981 ++ArgIt) { 3982 Value *A = *ArgIt; 3983 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 3984 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 3985 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 3986 if (IsByVal) { 3987 // ByVal arguments always go to the overflow area. 3988 // Fixed arguments passed through the overflow area will be stepped 3989 // over by va_start, so don't count them towards the offset. 3990 if (IsFixed) 3991 continue; 3992 assert(A->getType()->isPointerTy()); 3993 Type *RealTy = CB.getParamByValType(ArgNo); 3994 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3995 Value *ShadowBase = getShadowPtrForVAArgument( 3996 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 3997 Value *OriginBase = nullptr; 3998 if (MS.TrackOrigins) 3999 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4000 OverflowOffset += alignTo(ArgSize, 8); 4001 if (!ShadowBase) 4002 continue; 4003 Value *ShadowPtr, *OriginPtr; 4004 std::tie(ShadowPtr, OriginPtr) = 4005 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4006 /*isStore*/ false); 4007 4008 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4009 kShadowTLSAlignment, ArgSize); 4010 if (MS.TrackOrigins) 4011 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4012 kShadowTLSAlignment, ArgSize); 4013 } else { 4014 ArgKind AK = classifyArgument(A); 4015 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4016 AK = AK_Memory; 4017 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4018 AK = AK_Memory; 4019 Value *ShadowBase, *OriginBase = nullptr; 4020 switch (AK) { 4021 case AK_GeneralPurpose: 4022 ShadowBase = 4023 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4024 if (MS.TrackOrigins) 4025 OriginBase = 4026 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4027 GpOffset += 8; 4028 break; 4029 case AK_FloatingPoint: 4030 ShadowBase = 4031 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4032 if (MS.TrackOrigins) 4033 OriginBase = 4034 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4035 FpOffset += 16; 4036 break; 4037 case AK_Memory: 4038 if (IsFixed) 4039 continue; 4040 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4041 ShadowBase = 4042 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4043 if (MS.TrackOrigins) 4044 OriginBase = 4045 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4046 OverflowOffset += alignTo(ArgSize, 8); 4047 } 4048 // Take fixed arguments into account for GpOffset and FpOffset, 4049 // but don't actually store shadows for them. 4050 // TODO(glider): don't call get*PtrForVAArgument() for them. 4051 if (IsFixed) 4052 continue; 4053 if (!ShadowBase) 4054 continue; 4055 Value *Shadow = MSV.getShadow(A); 4056 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4057 if (MS.TrackOrigins) { 4058 Value *Origin = MSV.getOrigin(A); 4059 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4060 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4061 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4062 } 4063 } 4064 } 4065 Constant *OverflowSize = 4066 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4067 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4068 } 4069 4070 /// Compute the shadow address for a given va_arg. 4071 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4072 unsigned ArgOffset, unsigned ArgSize) { 4073 // Make sure we don't overflow __msan_va_arg_tls. 4074 if (ArgOffset + ArgSize > kParamTLSSize) 4075 return nullptr; 4076 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4077 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4078 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4079 "_msarg_va_s"); 4080 } 4081 4082 /// Compute the origin address for a given va_arg. 4083 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4084 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4085 // getOriginPtrForVAArgument() is always called after 4086 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4087 // overflow. 4088 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4089 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4090 "_msarg_va_o"); 4091 } 4092 4093 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4094 IRBuilder<> IRB(&I); 4095 Value *VAListTag = I.getArgOperand(0); 4096 Value *ShadowPtr, *OriginPtr; 4097 const Align Alignment = Align(8); 4098 std::tie(ShadowPtr, OriginPtr) = 4099 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4100 /*isStore*/ true); 4101 4102 // Unpoison the whole __va_list_tag. 4103 // FIXME: magic ABI constants. 4104 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4105 /* size */ 24, Alignment, false); 4106 // We shouldn't need to zero out the origins, as they're only checked for 4107 // nonzero shadow. 4108 } 4109 4110 void visitVAStartInst(VAStartInst &I) override { 4111 if (F.getCallingConv() == CallingConv::Win64) 4112 return; 4113 VAStartInstrumentationList.push_back(&I); 4114 unpoisonVAListTagForInst(I); 4115 } 4116 4117 void visitVACopyInst(VACopyInst &I) override { 4118 if (F.getCallingConv() == CallingConv::Win64) return; 4119 unpoisonVAListTagForInst(I); 4120 } 4121 4122 void finalizeInstrumentation() override { 4123 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4124 "finalizeInstrumentation called twice"); 4125 if (!VAStartInstrumentationList.empty()) { 4126 // If there is a va_start in this function, make a backup copy of 4127 // va_arg_tls somewhere in the function entry block. 4128 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4129 VAArgOverflowSize = 4130 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4131 Value *CopySize = 4132 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4133 VAArgOverflowSize); 4134 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4135 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4136 if (MS.TrackOrigins) { 4137 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4138 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4139 Align(8), CopySize); 4140 } 4141 } 4142 4143 // Instrument va_start. 4144 // Copy va_list shadow from the backup copy of the TLS contents. 4145 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4146 CallInst *OrigInst = VAStartInstrumentationList[i]; 4147 IRBuilder<> IRB(OrigInst->getNextNode()); 4148 Value *VAListTag = OrigInst->getArgOperand(0); 4149 4150 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4151 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4152 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4153 ConstantInt::get(MS.IntptrTy, 16)), 4154 PointerType::get(RegSaveAreaPtrTy, 0)); 4155 Value *RegSaveAreaPtr = 4156 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4157 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4158 const Align Alignment = Align(16); 4159 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4160 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4161 Alignment, /*isStore*/ true); 4162 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4163 AMD64FpEndOffset); 4164 if (MS.TrackOrigins) 4165 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4166 Alignment, AMD64FpEndOffset); 4167 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4168 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4169 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4170 ConstantInt::get(MS.IntptrTy, 8)), 4171 PointerType::get(OverflowArgAreaPtrTy, 0)); 4172 Value *OverflowArgAreaPtr = 4173 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4174 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4175 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4176 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4177 Alignment, /*isStore*/ true); 4178 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4179 AMD64FpEndOffset); 4180 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4181 VAArgOverflowSize); 4182 if (MS.TrackOrigins) { 4183 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4184 AMD64FpEndOffset); 4185 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4186 VAArgOverflowSize); 4187 } 4188 } 4189 } 4190 }; 4191 4192 /// MIPS64-specific implementation of VarArgHelper. 4193 struct VarArgMIPS64Helper : public VarArgHelper { 4194 Function &F; 4195 MemorySanitizer &MS; 4196 MemorySanitizerVisitor &MSV; 4197 Value *VAArgTLSCopy = nullptr; 4198 Value *VAArgSize = nullptr; 4199 4200 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4201 4202 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4203 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4204 4205 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4206 unsigned VAArgOffset = 0; 4207 const DataLayout &DL = F.getParent()->getDataLayout(); 4208 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4209 End = CB.arg_end(); 4210 ArgIt != End; ++ArgIt) { 4211 Triple TargetTriple(F.getParent()->getTargetTriple()); 4212 Value *A = *ArgIt; 4213 Value *Base; 4214 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4215 if (TargetTriple.getArch() == Triple::mips64) { 4216 // Adjusting the shadow for argument with size < 8 to match the placement 4217 // of bits in big endian system 4218 if (ArgSize < 8) 4219 VAArgOffset += (8 - ArgSize); 4220 } 4221 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4222 VAArgOffset += ArgSize; 4223 VAArgOffset = alignTo(VAArgOffset, 8); 4224 if (!Base) 4225 continue; 4226 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4227 } 4228 4229 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4230 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4231 // a new class member i.e. it is the total size of all VarArgs. 4232 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4233 } 4234 4235 /// Compute the shadow address for a given va_arg. 4236 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4237 unsigned ArgOffset, unsigned ArgSize) { 4238 // Make sure we don't overflow __msan_va_arg_tls. 4239 if (ArgOffset + ArgSize > kParamTLSSize) 4240 return nullptr; 4241 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4242 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4243 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4244 "_msarg"); 4245 } 4246 4247 void visitVAStartInst(VAStartInst &I) override { 4248 IRBuilder<> IRB(&I); 4249 VAStartInstrumentationList.push_back(&I); 4250 Value *VAListTag = I.getArgOperand(0); 4251 Value *ShadowPtr, *OriginPtr; 4252 const Align Alignment = Align(8); 4253 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4254 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4255 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4256 /* size */ 8, Alignment, false); 4257 } 4258 4259 void visitVACopyInst(VACopyInst &I) override { 4260 IRBuilder<> IRB(&I); 4261 VAStartInstrumentationList.push_back(&I); 4262 Value *VAListTag = I.getArgOperand(0); 4263 Value *ShadowPtr, *OriginPtr; 4264 const Align Alignment = Align(8); 4265 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4266 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4267 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4268 /* size */ 8, Alignment, false); 4269 } 4270 4271 void finalizeInstrumentation() override { 4272 assert(!VAArgSize && !VAArgTLSCopy && 4273 "finalizeInstrumentation called twice"); 4274 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4275 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4276 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4277 VAArgSize); 4278 4279 if (!VAStartInstrumentationList.empty()) { 4280 // If there is a va_start in this function, make a backup copy of 4281 // va_arg_tls somewhere in the function entry block. 4282 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4283 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4284 } 4285 4286 // Instrument va_start. 4287 // Copy va_list shadow from the backup copy of the TLS contents. 4288 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4289 CallInst *OrigInst = VAStartInstrumentationList[i]; 4290 IRBuilder<> IRB(OrigInst->getNextNode()); 4291 Value *VAListTag = OrigInst->getArgOperand(0); 4292 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4293 Value *RegSaveAreaPtrPtr = 4294 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4295 PointerType::get(RegSaveAreaPtrTy, 0)); 4296 Value *RegSaveAreaPtr = 4297 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4298 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4299 const Align Alignment = Align(8); 4300 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4301 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4302 Alignment, /*isStore*/ true); 4303 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4304 CopySize); 4305 } 4306 } 4307 }; 4308 4309 /// AArch64-specific implementation of VarArgHelper. 4310 struct VarArgAArch64Helper : public VarArgHelper { 4311 static const unsigned kAArch64GrArgSize = 64; 4312 static const unsigned kAArch64VrArgSize = 128; 4313 4314 static const unsigned AArch64GrBegOffset = 0; 4315 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4316 // Make VR space aligned to 16 bytes. 4317 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4318 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4319 + kAArch64VrArgSize; 4320 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4321 4322 Function &F; 4323 MemorySanitizer &MS; 4324 MemorySanitizerVisitor &MSV; 4325 Value *VAArgTLSCopy = nullptr; 4326 Value *VAArgOverflowSize = nullptr; 4327 4328 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4329 4330 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4331 4332 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4333 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4334 4335 ArgKind classifyArgument(Value* arg) { 4336 Type *T = arg->getType(); 4337 if (T->isFPOrFPVectorTy()) 4338 return AK_FloatingPoint; 4339 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4340 || (T->isPointerTy())) 4341 return AK_GeneralPurpose; 4342 return AK_Memory; 4343 } 4344 4345 // The instrumentation stores the argument shadow in a non ABI-specific 4346 // format because it does not know which argument is named (since Clang, 4347 // like x86_64 case, lowers the va_args in the frontend and this pass only 4348 // sees the low level code that deals with va_list internals). 4349 // The first seven GR registers are saved in the first 56 bytes of the 4350 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4351 // the remaining arguments. 4352 // Using constant offset within the va_arg TLS array allows fast copy 4353 // in the finalize instrumentation. 4354 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4355 unsigned GrOffset = AArch64GrBegOffset; 4356 unsigned VrOffset = AArch64VrBegOffset; 4357 unsigned OverflowOffset = AArch64VAEndOffset; 4358 4359 const DataLayout &DL = F.getParent()->getDataLayout(); 4360 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4361 ++ArgIt) { 4362 Value *A = *ArgIt; 4363 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4364 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4365 ArgKind AK = classifyArgument(A); 4366 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4367 AK = AK_Memory; 4368 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4369 AK = AK_Memory; 4370 Value *Base; 4371 switch (AK) { 4372 case AK_GeneralPurpose: 4373 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4374 GrOffset += 8; 4375 break; 4376 case AK_FloatingPoint: 4377 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4378 VrOffset += 16; 4379 break; 4380 case AK_Memory: 4381 // Don't count fixed arguments in the overflow area - va_start will 4382 // skip right over them. 4383 if (IsFixed) 4384 continue; 4385 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4386 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4387 alignTo(ArgSize, 8)); 4388 OverflowOffset += alignTo(ArgSize, 8); 4389 break; 4390 } 4391 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4392 // bother to actually store a shadow. 4393 if (IsFixed) 4394 continue; 4395 if (!Base) 4396 continue; 4397 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4398 } 4399 Constant *OverflowSize = 4400 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4401 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4402 } 4403 4404 /// Compute the shadow address for a given va_arg. 4405 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4406 unsigned ArgOffset, unsigned ArgSize) { 4407 // Make sure we don't overflow __msan_va_arg_tls. 4408 if (ArgOffset + ArgSize > kParamTLSSize) 4409 return nullptr; 4410 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4411 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4412 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4413 "_msarg"); 4414 } 4415 4416 void visitVAStartInst(VAStartInst &I) override { 4417 IRBuilder<> IRB(&I); 4418 VAStartInstrumentationList.push_back(&I); 4419 Value *VAListTag = I.getArgOperand(0); 4420 Value *ShadowPtr, *OriginPtr; 4421 const Align Alignment = Align(8); 4422 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4423 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4424 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4425 /* size */ 32, Alignment, false); 4426 } 4427 4428 void visitVACopyInst(VACopyInst &I) override { 4429 IRBuilder<> IRB(&I); 4430 VAStartInstrumentationList.push_back(&I); 4431 Value *VAListTag = I.getArgOperand(0); 4432 Value *ShadowPtr, *OriginPtr; 4433 const Align Alignment = Align(8); 4434 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4435 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4436 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4437 /* size */ 32, Alignment, false); 4438 } 4439 4440 // Retrieve a va_list field of 'void*' size. 4441 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4442 Value *SaveAreaPtrPtr = 4443 IRB.CreateIntToPtr( 4444 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4445 ConstantInt::get(MS.IntptrTy, offset)), 4446 Type::getInt64PtrTy(*MS.C)); 4447 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4448 } 4449 4450 // Retrieve a va_list field of 'int' size. 4451 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4452 Value *SaveAreaPtr = 4453 IRB.CreateIntToPtr( 4454 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4455 ConstantInt::get(MS.IntptrTy, offset)), 4456 Type::getInt32PtrTy(*MS.C)); 4457 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4458 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4459 } 4460 4461 void finalizeInstrumentation() override { 4462 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4463 "finalizeInstrumentation called twice"); 4464 if (!VAStartInstrumentationList.empty()) { 4465 // If there is a va_start in this function, make a backup copy of 4466 // va_arg_tls somewhere in the function entry block. 4467 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4468 VAArgOverflowSize = 4469 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4470 Value *CopySize = 4471 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4472 VAArgOverflowSize); 4473 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4474 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4475 } 4476 4477 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4478 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4479 4480 // Instrument va_start, copy va_list shadow from the backup copy of 4481 // the TLS contents. 4482 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4483 CallInst *OrigInst = VAStartInstrumentationList[i]; 4484 IRBuilder<> IRB(OrigInst->getNextNode()); 4485 4486 Value *VAListTag = OrigInst->getArgOperand(0); 4487 4488 // The variadic ABI for AArch64 creates two areas to save the incoming 4489 // argument registers (one for 64-bit general register xn-x7 and another 4490 // for 128-bit FP/SIMD vn-v7). 4491 // We need then to propagate the shadow arguments on both regions 4492 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4493 // The remaining arguments are saved on shadow for 'va::stack'. 4494 // One caveat is it requires only to propagate the non-named arguments, 4495 // however on the call site instrumentation 'all' the arguments are 4496 // saved. So to copy the shadow values from the va_arg TLS array 4497 // we need to adjust the offset for both GR and VR fields based on 4498 // the __{gr,vr}_offs value (since they are stores based on incoming 4499 // named arguments). 4500 4501 // Read the stack pointer from the va_list. 4502 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4503 4504 // Read both the __gr_top and __gr_off and add them up. 4505 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4506 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4507 4508 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4509 4510 // Read both the __vr_top and __vr_off and add them up. 4511 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4512 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4513 4514 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4515 4516 // It does not know how many named arguments is being used and, on the 4517 // callsite all the arguments were saved. Since __gr_off is defined as 4518 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4519 // argument by ignoring the bytes of shadow from named arguments. 4520 Value *GrRegSaveAreaShadowPtrOff = 4521 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4522 4523 Value *GrRegSaveAreaShadowPtr = 4524 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4525 Align(8), /*isStore*/ true) 4526 .first; 4527 4528 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4529 GrRegSaveAreaShadowPtrOff); 4530 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4531 4532 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4533 GrCopySize); 4534 4535 // Again, but for FP/SIMD values. 4536 Value *VrRegSaveAreaShadowPtrOff = 4537 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4538 4539 Value *VrRegSaveAreaShadowPtr = 4540 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4541 Align(8), /*isStore*/ true) 4542 .first; 4543 4544 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4545 IRB.getInt8Ty(), 4546 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4547 IRB.getInt32(AArch64VrBegOffset)), 4548 VrRegSaveAreaShadowPtrOff); 4549 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4550 4551 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4552 VrCopySize); 4553 4554 // And finally for remaining arguments. 4555 Value *StackSaveAreaShadowPtr = 4556 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4557 Align(16), /*isStore*/ true) 4558 .first; 4559 4560 Value *StackSrcPtr = 4561 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4562 IRB.getInt32(AArch64VAEndOffset)); 4563 4564 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4565 Align(16), VAArgOverflowSize); 4566 } 4567 } 4568 }; 4569 4570 /// PowerPC64-specific implementation of VarArgHelper. 4571 struct VarArgPowerPC64Helper : public VarArgHelper { 4572 Function &F; 4573 MemorySanitizer &MS; 4574 MemorySanitizerVisitor &MSV; 4575 Value *VAArgTLSCopy = nullptr; 4576 Value *VAArgSize = nullptr; 4577 4578 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4579 4580 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4581 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4582 4583 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4584 // For PowerPC, we need to deal with alignment of stack arguments - 4585 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4586 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4587 // and QPX vectors are aligned to 32 bytes. For that reason, we 4588 // compute current offset from stack pointer (which is always properly 4589 // aligned), and offset for the first vararg, then subtract them. 4590 unsigned VAArgBase; 4591 Triple TargetTriple(F.getParent()->getTargetTriple()); 4592 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4593 // and 32 bytes for ABIv2. This is usually determined by target 4594 // endianness, but in theory could be overridden by function attribute. 4595 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 4596 if (TargetTriple.getArch() == Triple::ppc64) 4597 VAArgBase = 48; 4598 else 4599 VAArgBase = 32; 4600 unsigned VAArgOffset = VAArgBase; 4601 const DataLayout &DL = F.getParent()->getDataLayout(); 4602 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4603 ++ArgIt) { 4604 Value *A = *ArgIt; 4605 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4606 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4607 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4608 if (IsByVal) { 4609 assert(A->getType()->isPointerTy()); 4610 Type *RealTy = CB.getParamByValType(ArgNo); 4611 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4612 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4613 if (!ArgAlign || *ArgAlign < Align(8)) 4614 ArgAlign = Align(8); 4615 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4616 if (!IsFixed) { 4617 Value *Base = getShadowPtrForVAArgument( 4618 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4619 if (Base) { 4620 Value *AShadowPtr, *AOriginPtr; 4621 std::tie(AShadowPtr, AOriginPtr) = 4622 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4623 kShadowTLSAlignment, /*isStore*/ false); 4624 4625 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4626 kShadowTLSAlignment, ArgSize); 4627 } 4628 } 4629 VAArgOffset += alignTo(ArgSize, 8); 4630 } else { 4631 Value *Base; 4632 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4633 uint64_t ArgAlign = 8; 4634 if (A->getType()->isArrayTy()) { 4635 // Arrays are aligned to element size, except for long double 4636 // arrays, which are aligned to 8 bytes. 4637 Type *ElementTy = A->getType()->getArrayElementType(); 4638 if (!ElementTy->isPPC_FP128Ty()) 4639 ArgAlign = DL.getTypeAllocSize(ElementTy); 4640 } else if (A->getType()->isVectorTy()) { 4641 // Vectors are naturally aligned. 4642 ArgAlign = DL.getTypeAllocSize(A->getType()); 4643 } 4644 if (ArgAlign < 8) 4645 ArgAlign = 8; 4646 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4647 if (DL.isBigEndian()) { 4648 // Adjusting the shadow for argument with size < 8 to match the placement 4649 // of bits in big endian system 4650 if (ArgSize < 8) 4651 VAArgOffset += (8 - ArgSize); 4652 } 4653 if (!IsFixed) { 4654 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4655 VAArgOffset - VAArgBase, ArgSize); 4656 if (Base) 4657 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4658 } 4659 VAArgOffset += ArgSize; 4660 VAArgOffset = alignTo(VAArgOffset, 8); 4661 } 4662 if (IsFixed) 4663 VAArgBase = VAArgOffset; 4664 } 4665 4666 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4667 VAArgOffset - VAArgBase); 4668 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4669 // a new class member i.e. it is the total size of all VarArgs. 4670 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4671 } 4672 4673 /// Compute the shadow address for a given va_arg. 4674 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4675 unsigned ArgOffset, unsigned ArgSize) { 4676 // Make sure we don't overflow __msan_va_arg_tls. 4677 if (ArgOffset + ArgSize > kParamTLSSize) 4678 return nullptr; 4679 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4680 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4681 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4682 "_msarg"); 4683 } 4684 4685 void visitVAStartInst(VAStartInst &I) override { 4686 IRBuilder<> IRB(&I); 4687 VAStartInstrumentationList.push_back(&I); 4688 Value *VAListTag = I.getArgOperand(0); 4689 Value *ShadowPtr, *OriginPtr; 4690 const Align Alignment = Align(8); 4691 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4692 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4693 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4694 /* size */ 8, Alignment, false); 4695 } 4696 4697 void visitVACopyInst(VACopyInst &I) override { 4698 IRBuilder<> IRB(&I); 4699 Value *VAListTag = I.getArgOperand(0); 4700 Value *ShadowPtr, *OriginPtr; 4701 const Align Alignment = Align(8); 4702 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4703 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4704 // Unpoison the whole __va_list_tag. 4705 // FIXME: magic ABI constants. 4706 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4707 /* size */ 8, Alignment, false); 4708 } 4709 4710 void finalizeInstrumentation() override { 4711 assert(!VAArgSize && !VAArgTLSCopy && 4712 "finalizeInstrumentation called twice"); 4713 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4714 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4715 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4716 VAArgSize); 4717 4718 if (!VAStartInstrumentationList.empty()) { 4719 // If there is a va_start in this function, make a backup copy of 4720 // va_arg_tls somewhere in the function entry block. 4721 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4722 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4723 } 4724 4725 // Instrument va_start. 4726 // Copy va_list shadow from the backup copy of the TLS contents. 4727 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4728 CallInst *OrigInst = VAStartInstrumentationList[i]; 4729 IRBuilder<> IRB(OrigInst->getNextNode()); 4730 Value *VAListTag = OrigInst->getArgOperand(0); 4731 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4732 Value *RegSaveAreaPtrPtr = 4733 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4734 PointerType::get(RegSaveAreaPtrTy, 0)); 4735 Value *RegSaveAreaPtr = 4736 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4737 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4738 const Align Alignment = Align(8); 4739 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4740 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4741 Alignment, /*isStore*/ true); 4742 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4743 CopySize); 4744 } 4745 } 4746 }; 4747 4748 /// SystemZ-specific implementation of VarArgHelper. 4749 struct VarArgSystemZHelper : public VarArgHelper { 4750 static const unsigned SystemZGpOffset = 16; 4751 static const unsigned SystemZGpEndOffset = 56; 4752 static const unsigned SystemZFpOffset = 128; 4753 static const unsigned SystemZFpEndOffset = 160; 4754 static const unsigned SystemZMaxVrArgs = 8; 4755 static const unsigned SystemZRegSaveAreaSize = 160; 4756 static const unsigned SystemZOverflowOffset = 160; 4757 static const unsigned SystemZVAListTagSize = 32; 4758 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 4759 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 4760 4761 Function &F; 4762 MemorySanitizer &MS; 4763 MemorySanitizerVisitor &MSV; 4764 Value *VAArgTLSCopy = nullptr; 4765 Value *VAArgTLSOriginCopy = nullptr; 4766 Value *VAArgOverflowSize = nullptr; 4767 4768 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4769 4770 enum class ArgKind { 4771 GeneralPurpose, 4772 FloatingPoint, 4773 Vector, 4774 Memory, 4775 Indirect, 4776 }; 4777 4778 enum class ShadowExtension { None, Zero, Sign }; 4779 4780 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 4781 MemorySanitizerVisitor &MSV) 4782 : F(F), MS(MS), MSV(MSV) {} 4783 4784 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 4785 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 4786 // only a few possibilities of what it can be. In particular, enums, single 4787 // element structs and large types have already been taken care of. 4788 4789 // Some i128 and fp128 arguments are converted to pointers only in the 4790 // back end. 4791 if (T->isIntegerTy(128) || T->isFP128Ty()) 4792 return ArgKind::Indirect; 4793 if (T->isFloatingPointTy()) 4794 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 4795 if (T->isIntegerTy() || T->isPointerTy()) 4796 return ArgKind::GeneralPurpose; 4797 if (T->isVectorTy()) 4798 return ArgKind::Vector; 4799 return ArgKind::Memory; 4800 } 4801 4802 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 4803 // ABI says: "One of the simple integer types no more than 64 bits wide. 4804 // ... If such an argument is shorter than 64 bits, replace it by a full 4805 // 64-bit integer representing the same number, using sign or zero 4806 // extension". Shadow for an integer argument has the same type as the 4807 // argument itself, so it can be sign or zero extended as well. 4808 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 4809 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 4810 if (ZExt) { 4811 assert(!SExt); 4812 return ShadowExtension::Zero; 4813 } 4814 if (SExt) { 4815 assert(!ZExt); 4816 return ShadowExtension::Sign; 4817 } 4818 return ShadowExtension::None; 4819 } 4820 4821 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4822 bool IsSoftFloatABI = CB.getCalledFunction() 4823 ->getFnAttribute("use-soft-float") 4824 .getValueAsString() == "true"; 4825 unsigned GpOffset = SystemZGpOffset; 4826 unsigned FpOffset = SystemZFpOffset; 4827 unsigned VrIndex = 0; 4828 unsigned OverflowOffset = SystemZOverflowOffset; 4829 const DataLayout &DL = F.getParent()->getDataLayout(); 4830 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4831 ++ArgIt) { 4832 Value *A = *ArgIt; 4833 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4834 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4835 // SystemZABIInfo does not produce ByVal parameters. 4836 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 4837 Type *T = A->getType(); 4838 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 4839 if (AK == ArgKind::Indirect) { 4840 T = PointerType::get(T, 0); 4841 AK = ArgKind::GeneralPurpose; 4842 } 4843 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 4844 AK = ArgKind::Memory; 4845 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 4846 AK = ArgKind::Memory; 4847 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 4848 AK = ArgKind::Memory; 4849 Value *ShadowBase = nullptr; 4850 Value *OriginBase = nullptr; 4851 ShadowExtension SE = ShadowExtension::None; 4852 switch (AK) { 4853 case ArgKind::GeneralPurpose: { 4854 // Always keep track of GpOffset, but store shadow only for varargs. 4855 uint64_t ArgSize = 8; 4856 if (GpOffset + ArgSize <= kParamTLSSize) { 4857 if (!IsFixed) { 4858 SE = getShadowExtension(CB, ArgNo); 4859 uint64_t GapSize = 0; 4860 if (SE == ShadowExtension::None) { 4861 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 4862 assert(ArgAllocSize <= ArgSize); 4863 GapSize = ArgSize - ArgAllocSize; 4864 } 4865 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 4866 if (MS.TrackOrigins) 4867 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 4868 } 4869 GpOffset += ArgSize; 4870 } else { 4871 GpOffset = kParamTLSSize; 4872 } 4873 break; 4874 } 4875 case ArgKind::FloatingPoint: { 4876 // Always keep track of FpOffset, but store shadow only for varargs. 4877 uint64_t ArgSize = 8; 4878 if (FpOffset + ArgSize <= kParamTLSSize) { 4879 if (!IsFixed) { 4880 // PoP says: "A short floating-point datum requires only the 4881 // left-most 32 bit positions of a floating-point register". 4882 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 4883 // don't extend shadow and don't mind the gap. 4884 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 4885 if (MS.TrackOrigins) 4886 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 4887 } 4888 FpOffset += ArgSize; 4889 } else { 4890 FpOffset = kParamTLSSize; 4891 } 4892 break; 4893 } 4894 case ArgKind::Vector: { 4895 // Keep track of VrIndex. No need to store shadow, since vector varargs 4896 // go through AK_Memory. 4897 assert(IsFixed); 4898 VrIndex++; 4899 break; 4900 } 4901 case ArgKind::Memory: { 4902 // Keep track of OverflowOffset and store shadow only for varargs. 4903 // Ignore fixed args, since we need to copy only the vararg portion of 4904 // the overflow area shadow. 4905 if (!IsFixed) { 4906 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 4907 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 4908 if (OverflowOffset + ArgSize <= kParamTLSSize) { 4909 SE = getShadowExtension(CB, ArgNo); 4910 uint64_t GapSize = 4911 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 4912 ShadowBase = 4913 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 4914 if (MS.TrackOrigins) 4915 OriginBase = 4916 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 4917 OverflowOffset += ArgSize; 4918 } else { 4919 OverflowOffset = kParamTLSSize; 4920 } 4921 } 4922 break; 4923 } 4924 case ArgKind::Indirect: 4925 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 4926 } 4927 if (ShadowBase == nullptr) 4928 continue; 4929 Value *Shadow = MSV.getShadow(A); 4930 if (SE != ShadowExtension::None) 4931 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 4932 /*Signed*/ SE == ShadowExtension::Sign); 4933 ShadowBase = IRB.CreateIntToPtr( 4934 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 4935 IRB.CreateStore(Shadow, ShadowBase); 4936 if (MS.TrackOrigins) { 4937 Value *Origin = MSV.getOrigin(A); 4938 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4939 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4940 kMinOriginAlignment); 4941 } 4942 } 4943 Constant *OverflowSize = ConstantInt::get( 4944 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 4945 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4946 } 4947 4948 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 4949 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4950 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4951 } 4952 4953 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 4954 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4955 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4956 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4957 "_msarg_va_o"); 4958 } 4959 4960 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4961 IRBuilder<> IRB(&I); 4962 Value *VAListTag = I.getArgOperand(0); 4963 Value *ShadowPtr, *OriginPtr; 4964 const Align Alignment = Align(8); 4965 std::tie(ShadowPtr, OriginPtr) = 4966 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4967 /*isStore*/ true); 4968 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4969 SystemZVAListTagSize, Alignment, false); 4970 } 4971 4972 void visitVAStartInst(VAStartInst &I) override { 4973 VAStartInstrumentationList.push_back(&I); 4974 unpoisonVAListTagForInst(I); 4975 } 4976 4977 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 4978 4979 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 4980 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4981 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4982 IRB.CreateAdd( 4983 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4984 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 4985 PointerType::get(RegSaveAreaPtrTy, 0)); 4986 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4987 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4988 const Align Alignment = Align(8); 4989 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4990 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 4991 /*isStore*/ true); 4992 // TODO(iii): copy only fragments filled by visitCallBase() 4993 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4994 SystemZRegSaveAreaSize); 4995 if (MS.TrackOrigins) 4996 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4997 Alignment, SystemZRegSaveAreaSize); 4998 } 4999 5000 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5001 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5002 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5003 IRB.CreateAdd( 5004 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5005 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5006 PointerType::get(OverflowArgAreaPtrTy, 0)); 5007 Value *OverflowArgAreaPtr = 5008 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5009 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5010 const Align Alignment = Align(8); 5011 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5012 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5013 Alignment, /*isStore*/ true); 5014 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5015 SystemZOverflowOffset); 5016 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5017 VAArgOverflowSize); 5018 if (MS.TrackOrigins) { 5019 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5020 SystemZOverflowOffset); 5021 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5022 VAArgOverflowSize); 5023 } 5024 } 5025 5026 void finalizeInstrumentation() override { 5027 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5028 "finalizeInstrumentation called twice"); 5029 if (!VAStartInstrumentationList.empty()) { 5030 // If there is a va_start in this function, make a backup copy of 5031 // va_arg_tls somewhere in the function entry block. 5032 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 5033 VAArgOverflowSize = 5034 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5035 Value *CopySize = 5036 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5037 VAArgOverflowSize); 5038 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5039 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5040 if (MS.TrackOrigins) { 5041 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5042 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5043 Align(8), CopySize); 5044 } 5045 } 5046 5047 // Instrument va_start. 5048 // Copy va_list shadow from the backup copy of the TLS contents. 5049 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5050 VaStartNo < VaStartNum; VaStartNo++) { 5051 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5052 IRBuilder<> IRB(OrigInst->getNextNode()); 5053 Value *VAListTag = OrigInst->getArgOperand(0); 5054 copyRegSaveArea(IRB, VAListTag); 5055 copyOverflowArea(IRB, VAListTag); 5056 } 5057 } 5058 }; 5059 5060 /// A no-op implementation of VarArgHelper. 5061 struct VarArgNoOpHelper : public VarArgHelper { 5062 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5063 MemorySanitizerVisitor &MSV) {} 5064 5065 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5066 5067 void visitVAStartInst(VAStartInst &I) override {} 5068 5069 void visitVACopyInst(VACopyInst &I) override {} 5070 5071 void finalizeInstrumentation() override {} 5072 }; 5073 5074 } // end anonymous namespace 5075 5076 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5077 MemorySanitizerVisitor &Visitor) { 5078 // VarArg handling is only implemented on AMD64. False positives are possible 5079 // on other platforms. 5080 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5081 if (TargetTriple.getArch() == Triple::x86_64) 5082 return new VarArgAMD64Helper(Func, Msan, Visitor); 5083 else if (TargetTriple.isMIPS64()) 5084 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5085 else if (TargetTriple.getArch() == Triple::aarch64) 5086 return new VarArgAArch64Helper(Func, Msan, Visitor); 5087 else if (TargetTriple.getArch() == Triple::ppc64 || 5088 TargetTriple.getArch() == Triple::ppc64le) 5089 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5090 else if (TargetTriple.getArch() == Triple::systemz) 5091 return new VarArgSystemZHelper(Func, Msan, Visitor); 5092 else 5093 return new VarArgNoOpHelper(Func, Msan, Visitor); 5094 } 5095 5096 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5097 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5098 return false; 5099 5100 MemorySanitizerVisitor Visitor(F, *this, TLI); 5101 5102 // Clear out readonly/readnone attributes. 5103 AttrBuilder B; 5104 B.addAttribute(Attribute::ReadOnly) 5105 .addAttribute(Attribute::ReadNone) 5106 .addAttribute(Attribute::WriteOnly) 5107 .addAttribute(Attribute::ArgMemOnly) 5108 .addAttribute(Attribute::Speculatable); 5109 F.removeAttributes(AttributeList::FunctionIndex, B); 5110 5111 return Visitor.runOnFunction(); 5112 } 5113