1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DepthFirstIterator.h" 149 #include "llvm/ADT/SmallSet.h" 150 #include "llvm/ADT/SmallString.h" 151 #include "llvm/ADT/SmallVector.h" 152 #include "llvm/ADT/StringExtras.h" 153 #include "llvm/ADT/StringRef.h" 154 #include "llvm/ADT/Triple.h" 155 #include "llvm/Analysis/TargetLibraryInfo.h" 156 #include "llvm/Analysis/ValueTracking.h" 157 #include "llvm/IR/Argument.h" 158 #include "llvm/IR/Attributes.h" 159 #include "llvm/IR/BasicBlock.h" 160 #include "llvm/IR/CallingConv.h" 161 #include "llvm/IR/Constant.h" 162 #include "llvm/IR/Constants.h" 163 #include "llvm/IR/DataLayout.h" 164 #include "llvm/IR/DerivedTypes.h" 165 #include "llvm/IR/Function.h" 166 #include "llvm/IR/GlobalValue.h" 167 #include "llvm/IR/GlobalVariable.h" 168 #include "llvm/IR/IRBuilder.h" 169 #include "llvm/IR/InlineAsm.h" 170 #include "llvm/IR/InstVisitor.h" 171 #include "llvm/IR/InstrTypes.h" 172 #include "llvm/IR/Instruction.h" 173 #include "llvm/IR/Instructions.h" 174 #include "llvm/IR/IntrinsicInst.h" 175 #include "llvm/IR/Intrinsics.h" 176 #include "llvm/IR/IntrinsicsX86.h" 177 #include "llvm/IR/LLVMContext.h" 178 #include "llvm/IR/MDBuilder.h" 179 #include "llvm/IR/Module.h" 180 #include "llvm/IR/Type.h" 181 #include "llvm/IR/Value.h" 182 #include "llvm/IR/ValueMap.h" 183 #include "llvm/InitializePasses.h" 184 #include "llvm/Pass.h" 185 #include "llvm/Support/Alignment.h" 186 #include "llvm/Support/AtomicOrdering.h" 187 #include "llvm/Support/Casting.h" 188 #include "llvm/Support/CommandLine.h" 189 #include "llvm/Support/Compiler.h" 190 #include "llvm/Support/Debug.h" 191 #include "llvm/Support/ErrorHandling.h" 192 #include "llvm/Support/MathExtras.h" 193 #include "llvm/Support/raw_ostream.h" 194 #include "llvm/Transforms/Instrumentation.h" 195 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 196 #include "llvm/Transforms/Utils/Local.h" 197 #include "llvm/Transforms/Utils/ModuleUtils.h" 198 #include <algorithm> 199 #include <cassert> 200 #include <cstddef> 201 #include <cstdint> 202 #include <memory> 203 #include <string> 204 #include <tuple> 205 206 using namespace llvm; 207 208 #define DEBUG_TYPE "msan" 209 210 static const unsigned kOriginSize = 4; 211 static const Align kMinOriginAlignment = Align(4); 212 static const Align kShadowTLSAlignment = Align(8); 213 214 // These constants must be kept in sync with the ones in msan.h. 215 static const unsigned kParamTLSSize = 800; 216 static const unsigned kRetvalTLSSize = 800; 217 218 // Accesses sizes are powers of two: 1, 2, 4, 8. 219 static const size_t kNumberOfAccessSizes = 4; 220 221 /// Track origins of uninitialized values. 222 /// 223 /// Adds a section to MemorySanitizer report that points to the allocation 224 /// (stack or heap) the uninitialized bits came from originally. 225 static cl::opt<int> ClTrackOrigins("msan-track-origins", 226 cl::desc("Track origins (allocation sites) of poisoned memory"), 227 cl::Hidden, cl::init(0)); 228 229 static cl::opt<bool> ClKeepGoing("msan-keep-going", 230 cl::desc("keep going after reporting a UMR"), 231 cl::Hidden, cl::init(false)); 232 233 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 234 cl::desc("poison uninitialized stack variables"), 235 cl::Hidden, cl::init(true)); 236 237 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 238 cl::desc("poison uninitialized stack variables with a call"), 239 cl::Hidden, cl::init(false)); 240 241 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 242 cl::desc("poison uninitialized stack variables with the given pattern"), 243 cl::Hidden, cl::init(0xff)); 244 245 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 246 cl::desc("poison undef temps"), 247 cl::Hidden, cl::init(true)); 248 249 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 250 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 251 cl::Hidden, cl::init(true)); 252 253 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 254 cl::desc("exact handling of relational integer ICmp"), 255 cl::Hidden, cl::init(false)); 256 257 static cl::opt<bool> ClHandleLifetimeIntrinsics( 258 "msan-handle-lifetime-intrinsics", 259 cl::desc( 260 "when possible, poison scoped variables at the beginning of the scope " 261 "(slower, but more precise)"), 262 cl::Hidden, cl::init(true)); 263 264 // When compiling the Linux kernel, we sometimes see false positives related to 265 // MSan being unable to understand that inline assembly calls may initialize 266 // local variables. 267 // This flag makes the compiler conservatively unpoison every memory location 268 // passed into an assembly call. Note that this may cause false positives. 269 // Because it's impossible to figure out the array sizes, we can only unpoison 270 // the first sizeof(type) bytes for each type* pointer. 271 // The instrumentation is only enabled in KMSAN builds, and only if 272 // -msan-handle-asm-conservative is on. This is done because we may want to 273 // quickly disable assembly instrumentation when it breaks. 274 static cl::opt<bool> ClHandleAsmConservative( 275 "msan-handle-asm-conservative", 276 cl::desc("conservative handling of inline assembly"), cl::Hidden, 277 cl::init(true)); 278 279 // This flag controls whether we check the shadow of the address 280 // operand of load or store. Such bugs are very rare, since load from 281 // a garbage address typically results in SEGV, but still happen 282 // (e.g. only lower bits of address are garbage, or the access happens 283 // early at program startup where malloc-ed memory is more likely to 284 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 285 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 286 cl::desc("report accesses through a pointer which has poisoned shadow"), 287 cl::Hidden, cl::init(true)); 288 289 static cl::opt<bool> ClEagerChecks( 290 "msan-eager-checks", 291 cl::desc("check arguments and return values at function call boundaries"), 292 cl::Hidden, cl::init(false)); 293 294 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 295 cl::desc("print out instructions with default strict semantics"), 296 cl::Hidden, cl::init(false)); 297 298 static cl::opt<int> ClInstrumentationWithCallThreshold( 299 "msan-instrumentation-with-call-threshold", 300 cl::desc( 301 "If the function being instrumented requires more than " 302 "this number of checks and origin stores, use callbacks instead of " 303 "inline checks (-1 means never use callbacks)."), 304 cl::Hidden, cl::init(3500)); 305 306 static cl::opt<bool> 307 ClEnableKmsan("msan-kernel", 308 cl::desc("Enable KernelMemorySanitizer instrumentation"), 309 cl::Hidden, cl::init(false)); 310 311 static cl::opt<bool> 312 ClDisableChecks("msan-disable-checks", 313 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden, 314 cl::init(false)); 315 316 // This is an experiment to enable handling of cases where shadow is a non-zero 317 // compile-time constant. For some unexplainable reason they were silently 318 // ignored in the instrumentation. 319 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 320 cl::desc("Insert checks for constant shadow values"), 321 cl::Hidden, cl::init(false)); 322 323 // This is off by default because of a bug in gold: 324 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 325 static cl::opt<bool> ClWithComdat("msan-with-comdat", 326 cl::desc("Place MSan constructors in comdat sections"), 327 cl::Hidden, cl::init(false)); 328 329 // These options allow to specify custom memory map parameters 330 // See MemoryMapParams for details. 331 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 332 cl::desc("Define custom MSan AndMask"), 333 cl::Hidden, cl::init(0)); 334 335 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 336 cl::desc("Define custom MSan XorMask"), 337 cl::Hidden, cl::init(0)); 338 339 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 340 cl::desc("Define custom MSan ShadowBase"), 341 cl::Hidden, cl::init(0)); 342 343 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 344 cl::desc("Define custom MSan OriginBase"), 345 cl::Hidden, cl::init(0)); 346 347 const char kMsanModuleCtorName[] = "msan.module_ctor"; 348 const char kMsanInitName[] = "__msan_init"; 349 350 namespace { 351 352 // Memory map parameters used in application-to-shadow address calculation. 353 // Offset = (Addr & ~AndMask) ^ XorMask 354 // Shadow = ShadowBase + Offset 355 // Origin = OriginBase + Offset 356 struct MemoryMapParams { 357 uint64_t AndMask; 358 uint64_t XorMask; 359 uint64_t ShadowBase; 360 uint64_t OriginBase; 361 }; 362 363 struct PlatformMemoryMapParams { 364 const MemoryMapParams *bits32; 365 const MemoryMapParams *bits64; 366 }; 367 368 } // end anonymous namespace 369 370 // i386 Linux 371 static const MemoryMapParams Linux_I386_MemoryMapParams = { 372 0x000080000000, // AndMask 373 0, // XorMask (not used) 374 0, // ShadowBase (not used) 375 0x000040000000, // OriginBase 376 }; 377 378 // x86_64 Linux 379 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 380 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 381 0x400000000000, // AndMask 382 0, // XorMask (not used) 383 0, // ShadowBase (not used) 384 0x200000000000, // OriginBase 385 #else 386 0, // AndMask (not used) 387 0x500000000000, // XorMask 388 0, // ShadowBase (not used) 389 0x100000000000, // OriginBase 390 #endif 391 }; 392 393 // mips64 Linux 394 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 395 0, // AndMask (not used) 396 0x008000000000, // XorMask 397 0, // ShadowBase (not used) 398 0x002000000000, // OriginBase 399 }; 400 401 // ppc64 Linux 402 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 403 0xE00000000000, // AndMask 404 0x100000000000, // XorMask 405 0x080000000000, // ShadowBase 406 0x1C0000000000, // OriginBase 407 }; 408 409 // s390x Linux 410 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 411 0xC00000000000, // AndMask 412 0, // XorMask (not used) 413 0x080000000000, // ShadowBase 414 0x1C0000000000, // OriginBase 415 }; 416 417 // aarch64 Linux 418 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 419 0, // AndMask (not used) 420 0x06000000000, // XorMask 421 0, // ShadowBase (not used) 422 0x01000000000, // OriginBase 423 }; 424 425 // i386 FreeBSD 426 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 427 0x000180000000, // AndMask 428 0x000040000000, // XorMask 429 0x000020000000, // ShadowBase 430 0x000700000000, // OriginBase 431 }; 432 433 // x86_64 FreeBSD 434 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 435 0xc00000000000, // AndMask 436 0x200000000000, // XorMask 437 0x100000000000, // ShadowBase 438 0x380000000000, // OriginBase 439 }; 440 441 // x86_64 NetBSD 442 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 443 0, // AndMask 444 0x500000000000, // XorMask 445 0, // ShadowBase 446 0x100000000000, // OriginBase 447 }; 448 449 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 450 &Linux_I386_MemoryMapParams, 451 &Linux_X86_64_MemoryMapParams, 452 }; 453 454 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 455 nullptr, 456 &Linux_MIPS64_MemoryMapParams, 457 }; 458 459 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 460 nullptr, 461 &Linux_PowerPC64_MemoryMapParams, 462 }; 463 464 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 465 nullptr, 466 &Linux_S390X_MemoryMapParams, 467 }; 468 469 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 470 nullptr, 471 &Linux_AArch64_MemoryMapParams, 472 }; 473 474 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 475 &FreeBSD_I386_MemoryMapParams, 476 &FreeBSD_X86_64_MemoryMapParams, 477 }; 478 479 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 480 nullptr, 481 &NetBSD_X86_64_MemoryMapParams, 482 }; 483 484 namespace { 485 486 /// Instrument functions of a module to detect uninitialized reads. 487 /// 488 /// Instantiating MemorySanitizer inserts the msan runtime library API function 489 /// declarations into the module if they don't exist already. Instantiating 490 /// ensures the __msan_init function is in the list of global constructors for 491 /// the module. 492 class MemorySanitizer { 493 public: 494 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 495 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 496 Recover(Options.Recover), EagerChecks(Options.EagerChecks) { 497 initializeModule(M); 498 } 499 500 // MSan cannot be moved or copied because of MapParams. 501 MemorySanitizer(MemorySanitizer &&) = delete; 502 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 503 MemorySanitizer(const MemorySanitizer &) = delete; 504 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 505 506 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 507 508 private: 509 friend struct MemorySanitizerVisitor; 510 friend struct VarArgAMD64Helper; 511 friend struct VarArgMIPS64Helper; 512 friend struct VarArgAArch64Helper; 513 friend struct VarArgPowerPC64Helper; 514 friend struct VarArgSystemZHelper; 515 516 void initializeModule(Module &M); 517 void initializeCallbacks(Module &M); 518 void createKernelApi(Module &M); 519 void createUserspaceApi(Module &M); 520 521 /// True if we're compiling the Linux kernel. 522 bool CompileKernel; 523 /// Track origins (allocation points) of uninitialized values. 524 int TrackOrigins; 525 bool Recover; 526 bool EagerChecks; 527 528 LLVMContext *C; 529 Type *IntptrTy; 530 Type *OriginTy; 531 532 // XxxTLS variables represent the per-thread state in MSan and per-task state 533 // in KMSAN. 534 // For the userspace these point to thread-local globals. In the kernel land 535 // they point to the members of a per-task struct obtained via a call to 536 // __msan_get_context_state(). 537 538 /// Thread-local shadow storage for function parameters. 539 Value *ParamTLS; 540 541 /// Thread-local origin storage for function parameters. 542 Value *ParamOriginTLS; 543 544 /// Thread-local shadow storage for function return value. 545 Value *RetvalTLS; 546 547 /// Thread-local origin storage for function return value. 548 Value *RetvalOriginTLS; 549 550 /// Thread-local shadow storage for in-register va_arg function 551 /// parameters (x86_64-specific). 552 Value *VAArgTLS; 553 554 /// Thread-local shadow storage for in-register va_arg function 555 /// parameters (x86_64-specific). 556 Value *VAArgOriginTLS; 557 558 /// Thread-local shadow storage for va_arg overflow area 559 /// (x86_64-specific). 560 Value *VAArgOverflowSizeTLS; 561 562 /// Are the instrumentation callbacks set up? 563 bool CallbacksInitialized = false; 564 565 /// The run-time callback to print a warning. 566 FunctionCallee WarningFn; 567 568 // These arrays are indexed by log2(AccessSize). 569 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 570 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 571 572 /// Run-time helper that generates a new origin value for a stack 573 /// allocation. 574 FunctionCallee MsanSetAllocaOrigin4Fn; 575 576 /// Run-time helper that poisons stack on function entry. 577 FunctionCallee MsanPoisonStackFn; 578 579 /// Run-time helper that records a store (or any event) of an 580 /// uninitialized value and returns an updated origin id encoding this info. 581 FunctionCallee MsanChainOriginFn; 582 583 /// Run-time helper that paints an origin over a region. 584 FunctionCallee MsanSetOriginFn; 585 586 /// MSan runtime replacements for memmove, memcpy and memset. 587 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 588 589 /// KMSAN callback for task-local function argument shadow. 590 StructType *MsanContextStateTy; 591 FunctionCallee MsanGetContextStateFn; 592 593 /// Functions for poisoning/unpoisoning local variables 594 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 595 596 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 597 /// pointers. 598 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 599 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 600 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 601 FunctionCallee MsanInstrumentAsmStoreFn; 602 603 /// Helper to choose between different MsanMetadataPtrXxx(). 604 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 605 606 /// Memory map parameters used in application-to-shadow calculation. 607 const MemoryMapParams *MapParams; 608 609 /// Custom memory map parameters used when -msan-shadow-base or 610 // -msan-origin-base is provided. 611 MemoryMapParams CustomMapParams; 612 613 MDNode *ColdCallWeights; 614 615 /// Branch weights for origin store. 616 MDNode *OriginStoreWeights; 617 }; 618 619 void insertModuleCtor(Module &M) { 620 getOrCreateSanitizerCtorAndInitFunctions( 621 M, kMsanModuleCtorName, kMsanInitName, 622 /*InitArgTypes=*/{}, 623 /*InitArgs=*/{}, 624 // This callback is invoked when the functions are created the first 625 // time. Hook them into the global ctors list in that case: 626 [&](Function *Ctor, FunctionCallee) { 627 if (!ClWithComdat) { 628 appendToGlobalCtors(M, Ctor, 0); 629 return; 630 } 631 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 632 Ctor->setComdat(MsanCtorComdat); 633 appendToGlobalCtors(M, Ctor, 0, Ctor); 634 }); 635 } 636 637 /// A legacy function pass for msan instrumentation. 638 /// 639 /// Instruments functions to detect uninitialized reads. 640 struct MemorySanitizerLegacyPass : public FunctionPass { 641 // Pass identification, replacement for typeid. 642 static char ID; 643 644 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 645 : FunctionPass(ID), Options(Options) { 646 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 647 } 648 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 649 650 void getAnalysisUsage(AnalysisUsage &AU) const override { 651 AU.addRequired<TargetLibraryInfoWrapperPass>(); 652 } 653 654 bool runOnFunction(Function &F) override { 655 return MSan->sanitizeFunction( 656 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 657 } 658 bool doInitialization(Module &M) override; 659 660 Optional<MemorySanitizer> MSan; 661 MemorySanitizerOptions Options; 662 }; 663 664 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 665 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 666 } 667 668 } // end anonymous namespace 669 670 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, 671 bool EagerChecks) 672 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 673 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 674 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)), 675 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {} 676 677 PreservedAnalyses MemorySanitizerPass::run(Function &F, 678 FunctionAnalysisManager &FAM) { 679 MemorySanitizer Msan(*F.getParent(), Options); 680 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 681 return PreservedAnalyses::none(); 682 return PreservedAnalyses::all(); 683 } 684 685 PreservedAnalyses 686 ModuleMemorySanitizerPass::run(Module &M, ModuleAnalysisManager &AM) { 687 if (Options.Kernel) 688 return PreservedAnalyses::all(); 689 insertModuleCtor(M); 690 return PreservedAnalyses::none(); 691 } 692 693 void MemorySanitizerPass::printPipeline( 694 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 695 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( 696 OS, MapClassName2PassName); 697 OS << "<"; 698 if (Options.Recover) 699 OS << "recover;"; 700 if (Options.Kernel) 701 OS << "kernel;"; 702 if (Options.EagerChecks) 703 OS << "eager-checks;"; 704 OS << "track-origins=" << Options.TrackOrigins; 705 OS << ">"; 706 } 707 708 char MemorySanitizerLegacyPass::ID = 0; 709 710 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 711 "MemorySanitizer: detects uninitialized reads.", false, 712 false) 713 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 714 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 715 "MemorySanitizer: detects uninitialized reads.", false, 716 false) 717 718 FunctionPass * 719 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 720 return new MemorySanitizerLegacyPass(Options); 721 } 722 723 /// Create a non-const global initialized with the given string. 724 /// 725 /// Creates a writable global for Str so that we can pass it to the 726 /// run-time lib. Runtime uses first 4 bytes of the string to store the 727 /// frame ID, so the string needs to be mutable. 728 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 729 StringRef Str) { 730 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 731 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 732 GlobalValue::PrivateLinkage, StrConst, ""); 733 } 734 735 /// Create KMSAN API callbacks. 736 void MemorySanitizer::createKernelApi(Module &M) { 737 IRBuilder<> IRB(*C); 738 739 // These will be initialized in insertKmsanPrologue(). 740 RetvalTLS = nullptr; 741 RetvalOriginTLS = nullptr; 742 ParamTLS = nullptr; 743 ParamOriginTLS = nullptr; 744 VAArgTLS = nullptr; 745 VAArgOriginTLS = nullptr; 746 VAArgOverflowSizeTLS = nullptr; 747 748 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 749 IRB.getInt32Ty()); 750 // Requests the per-task context state (kmsan_context_state*) from the 751 // runtime library. 752 MsanContextStateTy = StructType::get( 753 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 754 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 755 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 756 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 757 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 758 OriginTy); 759 MsanGetContextStateFn = M.getOrInsertFunction( 760 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 761 762 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 763 PointerType::get(IRB.getInt32Ty(), 0)); 764 765 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 766 std::string name_load = 767 "__msan_metadata_ptr_for_load_" + std::to_string(size); 768 std::string name_store = 769 "__msan_metadata_ptr_for_store_" + std::to_string(size); 770 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 771 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 772 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 773 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 774 } 775 776 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 777 "__msan_metadata_ptr_for_load_n", RetTy, 778 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 779 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 780 "__msan_metadata_ptr_for_store_n", RetTy, 781 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 782 783 // Functions for poisoning and unpoisoning memory. 784 MsanPoisonAllocaFn = 785 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 786 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 787 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 788 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 789 } 790 791 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 792 return M.getOrInsertGlobal(Name, Ty, [&] { 793 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 794 nullptr, Name, nullptr, 795 GlobalVariable::InitialExecTLSModel); 796 }); 797 } 798 799 /// Insert declarations for userspace-specific functions and globals. 800 void MemorySanitizer::createUserspaceApi(Module &M) { 801 IRBuilder<> IRB(*C); 802 803 // Create the callback. 804 // FIXME: this function should have "Cold" calling conv, 805 // which is not yet implemented. 806 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 807 : "__msan_warning_with_origin_noreturn"; 808 WarningFn = 809 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 810 811 // Create the global TLS variables. 812 RetvalTLS = 813 getOrInsertGlobal(M, "__msan_retval_tls", 814 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 815 816 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 817 818 ParamTLS = 819 getOrInsertGlobal(M, "__msan_param_tls", 820 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 821 822 ParamOriginTLS = 823 getOrInsertGlobal(M, "__msan_param_origin_tls", 824 ArrayType::get(OriginTy, kParamTLSSize / 4)); 825 826 VAArgTLS = 827 getOrInsertGlobal(M, "__msan_va_arg_tls", 828 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 829 830 VAArgOriginTLS = 831 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 832 ArrayType::get(OriginTy, kParamTLSSize / 4)); 833 834 VAArgOverflowSizeTLS = 835 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 836 837 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 838 AccessSizeIndex++) { 839 unsigned AccessSize = 1 << AccessSizeIndex; 840 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 841 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 842 MaybeWarningFnAttrs.push_back(std::make_pair( 843 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 844 MaybeWarningFnAttrs.push_back(std::make_pair( 845 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 846 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 847 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 848 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 849 850 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 851 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 852 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 853 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 854 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 855 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 856 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 857 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 858 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 859 IRB.getInt32Ty()); 860 } 861 862 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 863 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 864 IRB.getInt8PtrTy(), IntptrTy); 865 MsanPoisonStackFn = 866 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 867 IRB.getInt8PtrTy(), IntptrTy); 868 } 869 870 /// Insert extern declaration of runtime-provided functions and globals. 871 void MemorySanitizer::initializeCallbacks(Module &M) { 872 // Only do this once. 873 if (CallbacksInitialized) 874 return; 875 876 IRBuilder<> IRB(*C); 877 // Initialize callbacks that are common for kernel and userspace 878 // instrumentation. 879 MsanChainOriginFn = M.getOrInsertFunction( 880 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 881 MsanSetOriginFn = 882 M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(), 883 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); 884 MemmoveFn = M.getOrInsertFunction( 885 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 886 IRB.getInt8PtrTy(), IntptrTy); 887 MemcpyFn = M.getOrInsertFunction( 888 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 889 IntptrTy); 890 MemsetFn = M.getOrInsertFunction( 891 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 892 IntptrTy); 893 894 MsanInstrumentAsmStoreFn = 895 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 896 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 897 898 if (CompileKernel) { 899 createKernelApi(M); 900 } else { 901 createUserspaceApi(M); 902 } 903 CallbacksInitialized = true; 904 } 905 906 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 907 int size) { 908 FunctionCallee *Fns = 909 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 910 switch (size) { 911 case 1: 912 return Fns[0]; 913 case 2: 914 return Fns[1]; 915 case 4: 916 return Fns[2]; 917 case 8: 918 return Fns[3]; 919 default: 920 return nullptr; 921 } 922 } 923 924 /// Module-level initialization. 925 /// 926 /// inserts a call to __msan_init to the module's constructor list. 927 void MemorySanitizer::initializeModule(Module &M) { 928 auto &DL = M.getDataLayout(); 929 930 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 931 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 932 // Check the overrides first 933 if (ShadowPassed || OriginPassed) { 934 CustomMapParams.AndMask = ClAndMask; 935 CustomMapParams.XorMask = ClXorMask; 936 CustomMapParams.ShadowBase = ClShadowBase; 937 CustomMapParams.OriginBase = ClOriginBase; 938 MapParams = &CustomMapParams; 939 } else { 940 Triple TargetTriple(M.getTargetTriple()); 941 switch (TargetTriple.getOS()) { 942 case Triple::FreeBSD: 943 switch (TargetTriple.getArch()) { 944 case Triple::x86_64: 945 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 946 break; 947 case Triple::x86: 948 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 949 break; 950 default: 951 report_fatal_error("unsupported architecture"); 952 } 953 break; 954 case Triple::NetBSD: 955 switch (TargetTriple.getArch()) { 956 case Triple::x86_64: 957 MapParams = NetBSD_X86_MemoryMapParams.bits64; 958 break; 959 default: 960 report_fatal_error("unsupported architecture"); 961 } 962 break; 963 case Triple::Linux: 964 switch (TargetTriple.getArch()) { 965 case Triple::x86_64: 966 MapParams = Linux_X86_MemoryMapParams.bits64; 967 break; 968 case Triple::x86: 969 MapParams = Linux_X86_MemoryMapParams.bits32; 970 break; 971 case Triple::mips64: 972 case Triple::mips64el: 973 MapParams = Linux_MIPS_MemoryMapParams.bits64; 974 break; 975 case Triple::ppc64: 976 case Triple::ppc64le: 977 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 978 break; 979 case Triple::systemz: 980 MapParams = Linux_S390_MemoryMapParams.bits64; 981 break; 982 case Triple::aarch64: 983 case Triple::aarch64_be: 984 MapParams = Linux_ARM_MemoryMapParams.bits64; 985 break; 986 default: 987 report_fatal_error("unsupported architecture"); 988 } 989 break; 990 default: 991 report_fatal_error("unsupported operating system"); 992 } 993 } 994 995 C = &(M.getContext()); 996 IRBuilder<> IRB(*C); 997 IntptrTy = IRB.getIntPtrTy(DL); 998 OriginTy = IRB.getInt32Ty(); 999 1000 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 1001 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 1002 1003 if (!CompileKernel) { 1004 if (TrackOrigins) 1005 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 1006 return new GlobalVariable( 1007 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 1008 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 1009 }); 1010 1011 if (Recover) 1012 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 1013 return new GlobalVariable(M, IRB.getInt32Ty(), true, 1014 GlobalValue::WeakODRLinkage, 1015 IRB.getInt32(Recover), "__msan_keep_going"); 1016 }); 1017 } 1018 } 1019 1020 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 1021 if (!Options.Kernel) 1022 insertModuleCtor(M); 1023 MSan.emplace(M, Options); 1024 return true; 1025 } 1026 1027 namespace { 1028 1029 /// A helper class that handles instrumentation of VarArg 1030 /// functions on a particular platform. 1031 /// 1032 /// Implementations are expected to insert the instrumentation 1033 /// necessary to propagate argument shadow through VarArg function 1034 /// calls. Visit* methods are called during an InstVisitor pass over 1035 /// the function, and should avoid creating new basic blocks. A new 1036 /// instance of this class is created for each instrumented function. 1037 struct VarArgHelper { 1038 virtual ~VarArgHelper() = default; 1039 1040 /// Visit a CallBase. 1041 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1042 1043 /// Visit a va_start call. 1044 virtual void visitVAStartInst(VAStartInst &I) = 0; 1045 1046 /// Visit a va_copy call. 1047 virtual void visitVACopyInst(VACopyInst &I) = 0; 1048 1049 /// Finalize function instrumentation. 1050 /// 1051 /// This method is called after visiting all interesting (see above) 1052 /// instructions in a function. 1053 virtual void finalizeInstrumentation() = 0; 1054 }; 1055 1056 struct MemorySanitizerVisitor; 1057 1058 } // end anonymous namespace 1059 1060 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1061 MemorySanitizerVisitor &Visitor); 1062 1063 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1064 if (TypeSize <= 8) return 0; 1065 return Log2_32_Ceil((TypeSize + 7) / 8); 1066 } 1067 1068 namespace { 1069 1070 /// This class does all the work for a given function. Store and Load 1071 /// instructions store and load corresponding shadow and origin 1072 /// values. Most instructions propagate shadow from arguments to their 1073 /// return values. Certain instructions (most importantly, BranchInst) 1074 /// test their argument shadow and print reports (with a runtime call) if it's 1075 /// non-zero. 1076 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1077 Function &F; 1078 MemorySanitizer &MS; 1079 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1080 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1081 std::unique_ptr<VarArgHelper> VAHelper; 1082 const TargetLibraryInfo *TLI; 1083 Instruction *FnPrologueEnd; 1084 1085 // The following flags disable parts of MSan instrumentation based on 1086 // exclusion list contents and command-line options. 1087 bool InsertChecks; 1088 bool PropagateShadow; 1089 bool PoisonStack; 1090 bool PoisonUndef; 1091 1092 struct ShadowOriginAndInsertPoint { 1093 Value *Shadow; 1094 Value *Origin; 1095 Instruction *OrigIns; 1096 1097 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1098 : Shadow(S), Origin(O), OrigIns(I) {} 1099 }; 1100 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1101 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1102 SmallSet<AllocaInst *, 16> AllocaSet; 1103 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1104 SmallVector<StoreInst *, 16> StoreList; 1105 1106 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1107 const TargetLibraryInfo &TLI) 1108 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1109 bool SanitizeFunction = 1110 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks; 1111 InsertChecks = SanitizeFunction; 1112 PropagateShadow = SanitizeFunction; 1113 PoisonStack = SanitizeFunction && ClPoisonStack; 1114 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1115 1116 // In the presence of unreachable blocks, we may see Phi nodes with 1117 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1118 // blocks, such nodes will not have any shadow value associated with them. 1119 // It's easier to remove unreachable blocks than deal with missing shadow. 1120 removeUnreachableBlocks(F); 1121 1122 MS.initializeCallbacks(*F.getParent()); 1123 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1124 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1125 1126 if (MS.CompileKernel) { 1127 IRBuilder<> IRB(FnPrologueEnd); 1128 insertKmsanPrologue(IRB); 1129 } 1130 1131 LLVM_DEBUG(if (!InsertChecks) dbgs() 1132 << "MemorySanitizer is not inserting checks into '" 1133 << F.getName() << "'\n"); 1134 } 1135 1136 bool isInPrologue(Instruction &I) { 1137 return I.getParent() == FnPrologueEnd->getParent() && 1138 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1139 } 1140 1141 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1142 if (MS.TrackOrigins <= 1) return V; 1143 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1144 } 1145 1146 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1147 const DataLayout &DL = F.getParent()->getDataLayout(); 1148 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1149 if (IntptrSize == kOriginSize) return Origin; 1150 assert(IntptrSize == kOriginSize * 2); 1151 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1152 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1153 } 1154 1155 /// Fill memory range with the given origin value. 1156 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1157 unsigned Size, Align Alignment) { 1158 const DataLayout &DL = F.getParent()->getDataLayout(); 1159 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1160 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1161 assert(IntptrAlignment >= kMinOriginAlignment); 1162 assert(IntptrSize >= kOriginSize); 1163 1164 unsigned Ofs = 0; 1165 Align CurrentAlignment = Alignment; 1166 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1167 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1168 Value *IntptrOriginPtr = 1169 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1170 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1171 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1172 : IntptrOriginPtr; 1173 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1174 Ofs += IntptrSize / kOriginSize; 1175 CurrentAlignment = IntptrAlignment; 1176 } 1177 } 1178 1179 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1180 Value *GEP = 1181 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1182 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1183 CurrentAlignment = kMinOriginAlignment; 1184 } 1185 } 1186 1187 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1188 Value *OriginPtr, Align Alignment, bool AsCall) { 1189 const DataLayout &DL = F.getParent()->getDataLayout(); 1190 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1191 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1192 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1193 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1194 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1195 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1196 OriginAlignment); 1197 return; 1198 } 1199 1200 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1201 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1202 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1203 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1204 Value *ConvertedShadow2 = 1205 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1206 CallBase *CB = IRB.CreateCall( 1207 Fn, {ConvertedShadow2, 1208 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1209 CB->addParamAttr(0, Attribute::ZExt); 1210 CB->addParamAttr(2, Attribute::ZExt); 1211 } else { 1212 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1213 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1214 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1215 IRBuilder<> IRBNew(CheckTerm); 1216 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1217 OriginAlignment); 1218 } 1219 } 1220 1221 void materializeStores(bool InstrumentWithCalls) { 1222 for (StoreInst *SI : StoreList) { 1223 IRBuilder<> IRB(SI); 1224 Value *Val = SI->getValueOperand(); 1225 Value *Addr = SI->getPointerOperand(); 1226 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1227 Value *ShadowPtr, *OriginPtr; 1228 Type *ShadowTy = Shadow->getType(); 1229 const Align Alignment = SI->getAlign(); 1230 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1231 std::tie(ShadowPtr, OriginPtr) = 1232 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1233 1234 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1235 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1236 (void)NewSI; 1237 1238 if (SI->isAtomic()) 1239 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1240 1241 if (MS.TrackOrigins && !SI->isAtomic()) 1242 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1243 OriginAlignment, InstrumentWithCalls); 1244 } 1245 } 1246 1247 /// Helper function to insert a warning at IRB's current insert point. 1248 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1249 if (!Origin) 1250 Origin = (Value *)IRB.getInt32(0); 1251 assert(Origin->getType()->isIntegerTy()); 1252 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1253 // FIXME: Insert UnreachableInst if !MS.Recover? 1254 // This may invalidate some of the following checks and needs to be done 1255 // at the very end. 1256 } 1257 1258 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1259 bool AsCall) { 1260 IRBuilder<> IRB(OrigIns); 1261 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1262 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1263 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1264 1265 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1266 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1267 insertWarningFn(IRB, Origin); 1268 } 1269 return; 1270 } 1271 1272 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1273 1274 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1275 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1276 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1277 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1278 Value *ConvertedShadow2 = 1279 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1280 CallBase *CB = IRB.CreateCall( 1281 Fn, {ConvertedShadow2, 1282 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1283 CB->addParamAttr(0, Attribute::ZExt); 1284 CB->addParamAttr(1, Attribute::ZExt); 1285 } else { 1286 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1287 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1288 Cmp, OrigIns, 1289 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1290 1291 IRB.SetInsertPoint(CheckTerm); 1292 insertWarningFn(IRB, Origin); 1293 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1294 } 1295 } 1296 1297 void materializeChecks(bool InstrumentWithCalls) { 1298 for (const auto &ShadowData : InstrumentationList) { 1299 Instruction *OrigIns = ShadowData.OrigIns; 1300 Value *Shadow = ShadowData.Shadow; 1301 Value *Origin = ShadowData.Origin; 1302 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1303 } 1304 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1305 } 1306 1307 // Returns the last instruction in the new prologue 1308 void insertKmsanPrologue(IRBuilder<> &IRB) { 1309 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1310 Constant *Zero = IRB.getInt32(0); 1311 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1312 {Zero, IRB.getInt32(0)}, "param_shadow"); 1313 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1314 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1315 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1316 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1317 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1318 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1319 MS.VAArgOverflowSizeTLS = 1320 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1321 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1322 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1323 {Zero, IRB.getInt32(5)}, "param_origin"); 1324 MS.RetvalOriginTLS = 1325 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1326 {Zero, IRB.getInt32(6)}, "retval_origin"); 1327 } 1328 1329 /// Add MemorySanitizer instrumentation to a function. 1330 bool runOnFunction() { 1331 // Iterate all BBs in depth-first order and create shadow instructions 1332 // for all instructions (where applicable). 1333 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1334 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1335 visit(*BB); 1336 1337 // Finalize PHI nodes. 1338 for (PHINode *PN : ShadowPHINodes) { 1339 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1340 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1341 size_t NumValues = PN->getNumIncomingValues(); 1342 for (size_t v = 0; v < NumValues; v++) { 1343 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1344 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1345 } 1346 } 1347 1348 VAHelper->finalizeInstrumentation(); 1349 1350 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1351 // instrumenting only allocas. 1352 if (InstrumentLifetimeStart) { 1353 for (auto Item : LifetimeStartList) { 1354 instrumentAlloca(*Item.second, Item.first); 1355 AllocaSet.erase(Item.second); 1356 } 1357 } 1358 // Poison the allocas for which we didn't instrument the corresponding 1359 // lifetime intrinsics. 1360 for (AllocaInst *AI : AllocaSet) 1361 instrumentAlloca(*AI); 1362 1363 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1364 InstrumentationList.size() + StoreList.size() > 1365 (unsigned)ClInstrumentationWithCallThreshold; 1366 1367 // Insert shadow value checks. 1368 materializeChecks(InstrumentWithCalls); 1369 1370 // Delayed instrumentation of StoreInst. 1371 // This may not add new address checks. 1372 materializeStores(InstrumentWithCalls); 1373 1374 return true; 1375 } 1376 1377 /// Compute the shadow type that corresponds to a given Value. 1378 Type *getShadowTy(Value *V) { 1379 return getShadowTy(V->getType()); 1380 } 1381 1382 /// Compute the shadow type that corresponds to a given Type. 1383 Type *getShadowTy(Type *OrigTy) { 1384 if (!OrigTy->isSized()) { 1385 return nullptr; 1386 } 1387 // For integer type, shadow is the same as the original type. 1388 // This may return weird-sized types like i1. 1389 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1390 return IT; 1391 const DataLayout &DL = F.getParent()->getDataLayout(); 1392 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1393 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1394 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1395 cast<FixedVectorType>(VT)->getNumElements()); 1396 } 1397 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1398 return ArrayType::get(getShadowTy(AT->getElementType()), 1399 AT->getNumElements()); 1400 } 1401 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1402 SmallVector<Type*, 4> Elements; 1403 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1404 Elements.push_back(getShadowTy(ST->getElementType(i))); 1405 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1406 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1407 return Res; 1408 } 1409 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1410 return IntegerType::get(*MS.C, TypeSize); 1411 } 1412 1413 /// Flatten a vector type. 1414 Type *getShadowTyNoVec(Type *ty) { 1415 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1416 return IntegerType::get(*MS.C, 1417 vt->getPrimitiveSizeInBits().getFixedSize()); 1418 return ty; 1419 } 1420 1421 /// Extract combined shadow of struct elements as a bool 1422 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1423 IRBuilder<> &IRB) { 1424 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1425 Value *Aggregator = FalseVal; 1426 1427 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1428 // Combine by ORing together each element's bool shadow 1429 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1430 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1431 Value *ShadowBool = convertToBool(ShadowInner, IRB); 1432 1433 if (Aggregator != FalseVal) 1434 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1435 else 1436 Aggregator = ShadowBool; 1437 } 1438 1439 return Aggregator; 1440 } 1441 1442 // Extract combined shadow of array elements 1443 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1444 IRBuilder<> &IRB) { 1445 if (!Array->getNumElements()) 1446 return IRB.getIntN(/* width */ 1, /* value */ 0); 1447 1448 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1449 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1450 1451 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1452 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1453 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1454 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1455 } 1456 return Aggregator; 1457 } 1458 1459 /// Convert a shadow value to it's flattened variant. The resulting 1460 /// shadow may not necessarily have the same bit width as the input 1461 /// value, but it will always be comparable to zero. 1462 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1463 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1464 return collapseStructShadow(Struct, V, IRB); 1465 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1466 return collapseArrayShadow(Array, V, IRB); 1467 Type *Ty = V->getType(); 1468 Type *NoVecTy = getShadowTyNoVec(Ty); 1469 if (Ty == NoVecTy) return V; 1470 return IRB.CreateBitCast(V, NoVecTy); 1471 } 1472 1473 // Convert a scalar value to an i1 by comparing with 0 1474 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1475 Type *VTy = V->getType(); 1476 assert(VTy->isIntegerTy()); 1477 if (VTy->getIntegerBitWidth() == 1) 1478 // Just converting a bool to a bool, so do nothing. 1479 return V; 1480 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1481 } 1482 1483 /// Compute the integer shadow offset that corresponds to a given 1484 /// application address. 1485 /// 1486 /// Offset = (Addr & ~AndMask) ^ XorMask 1487 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1488 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1489 1490 uint64_t AndMask = MS.MapParams->AndMask; 1491 if (AndMask) 1492 OffsetLong = 1493 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1494 1495 uint64_t XorMask = MS.MapParams->XorMask; 1496 if (XorMask) 1497 OffsetLong = 1498 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1499 return OffsetLong; 1500 } 1501 1502 /// Compute the shadow and origin addresses corresponding to a given 1503 /// application address. 1504 /// 1505 /// Shadow = ShadowBase + Offset 1506 /// Origin = (OriginBase + Offset) & ~3ULL 1507 std::pair<Value *, Value *> 1508 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1509 MaybeAlign Alignment) { 1510 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1511 Value *ShadowLong = ShadowOffset; 1512 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1513 if (ShadowBase != 0) { 1514 ShadowLong = 1515 IRB.CreateAdd(ShadowLong, 1516 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1517 } 1518 Value *ShadowPtr = 1519 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1520 Value *OriginPtr = nullptr; 1521 if (MS.TrackOrigins) { 1522 Value *OriginLong = ShadowOffset; 1523 uint64_t OriginBase = MS.MapParams->OriginBase; 1524 if (OriginBase != 0) 1525 OriginLong = IRB.CreateAdd(OriginLong, 1526 ConstantInt::get(MS.IntptrTy, OriginBase)); 1527 if (!Alignment || *Alignment < kMinOriginAlignment) { 1528 uint64_t Mask = kMinOriginAlignment.value() - 1; 1529 OriginLong = 1530 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1531 } 1532 OriginPtr = 1533 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1534 } 1535 return std::make_pair(ShadowPtr, OriginPtr); 1536 } 1537 1538 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1539 IRBuilder<> &IRB, 1540 Type *ShadowTy, 1541 bool isStore) { 1542 Value *ShadowOriginPtrs; 1543 const DataLayout &DL = F.getParent()->getDataLayout(); 1544 int Size = DL.getTypeStoreSize(ShadowTy); 1545 1546 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1547 Value *AddrCast = 1548 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1549 if (Getter) { 1550 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1551 } else { 1552 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1553 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1554 : MS.MsanMetadataPtrForLoadN, 1555 {AddrCast, SizeVal}); 1556 } 1557 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1558 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1559 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1560 1561 return std::make_pair(ShadowPtr, OriginPtr); 1562 } 1563 1564 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1565 Type *ShadowTy, 1566 MaybeAlign Alignment, 1567 bool isStore) { 1568 if (MS.CompileKernel) 1569 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1570 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1571 } 1572 1573 /// Compute the shadow address for a given function argument. 1574 /// 1575 /// Shadow = ParamTLS+ArgOffset. 1576 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1577 int ArgOffset) { 1578 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1579 if (ArgOffset) 1580 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1581 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1582 "_msarg"); 1583 } 1584 1585 /// Compute the origin address for a given function argument. 1586 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1587 int ArgOffset) { 1588 if (!MS.TrackOrigins) 1589 return nullptr; 1590 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1591 if (ArgOffset) 1592 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1593 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1594 "_msarg_o"); 1595 } 1596 1597 /// Compute the shadow address for a retval. 1598 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1599 return IRB.CreatePointerCast(MS.RetvalTLS, 1600 PointerType::get(getShadowTy(A), 0), 1601 "_msret"); 1602 } 1603 1604 /// Compute the origin address for a retval. 1605 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1606 // We keep a single origin for the entire retval. Might be too optimistic. 1607 return MS.RetvalOriginTLS; 1608 } 1609 1610 /// Set SV to be the shadow value for V. 1611 void setShadow(Value *V, Value *SV) { 1612 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1613 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1614 } 1615 1616 /// Set Origin to be the origin value for V. 1617 void setOrigin(Value *V, Value *Origin) { 1618 if (!MS.TrackOrigins) return; 1619 assert(!OriginMap.count(V) && "Values may only have one origin"); 1620 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1621 OriginMap[V] = Origin; 1622 } 1623 1624 Constant *getCleanShadow(Type *OrigTy) { 1625 Type *ShadowTy = getShadowTy(OrigTy); 1626 if (!ShadowTy) 1627 return nullptr; 1628 return Constant::getNullValue(ShadowTy); 1629 } 1630 1631 /// Create a clean shadow value for a given value. 1632 /// 1633 /// Clean shadow (all zeroes) means all bits of the value are defined 1634 /// (initialized). 1635 Constant *getCleanShadow(Value *V) { 1636 return getCleanShadow(V->getType()); 1637 } 1638 1639 /// Create a dirty shadow of a given shadow type. 1640 Constant *getPoisonedShadow(Type *ShadowTy) { 1641 assert(ShadowTy); 1642 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1643 return Constant::getAllOnesValue(ShadowTy); 1644 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1645 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1646 getPoisonedShadow(AT->getElementType())); 1647 return ConstantArray::get(AT, Vals); 1648 } 1649 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1650 SmallVector<Constant *, 4> Vals; 1651 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1652 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1653 return ConstantStruct::get(ST, Vals); 1654 } 1655 llvm_unreachable("Unexpected shadow type"); 1656 } 1657 1658 /// Create a dirty shadow for a given value. 1659 Constant *getPoisonedShadow(Value *V) { 1660 Type *ShadowTy = getShadowTy(V); 1661 if (!ShadowTy) 1662 return nullptr; 1663 return getPoisonedShadow(ShadowTy); 1664 } 1665 1666 /// Create a clean (zero) origin. 1667 Value *getCleanOrigin() { 1668 return Constant::getNullValue(MS.OriginTy); 1669 } 1670 1671 /// Get the shadow value for a given Value. 1672 /// 1673 /// This function either returns the value set earlier with setShadow, 1674 /// or extracts if from ParamTLS (for function arguments). 1675 Value *getShadow(Value *V) { 1676 if (Instruction *I = dyn_cast<Instruction>(V)) { 1677 if (!PropagateShadow || I->getMetadata("nosanitize")) 1678 return getCleanShadow(V); 1679 // For instructions the shadow is already stored in the map. 1680 Value *Shadow = ShadowMap[V]; 1681 if (!Shadow) { 1682 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1683 (void)I; 1684 assert(Shadow && "No shadow for a value"); 1685 } 1686 return Shadow; 1687 } 1688 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1689 Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) 1690 : getCleanShadow(V); 1691 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1692 (void)U; 1693 return AllOnes; 1694 } 1695 if (Argument *A = dyn_cast<Argument>(V)) { 1696 // For arguments we compute the shadow on demand and store it in the map. 1697 Value **ShadowPtr = &ShadowMap[V]; 1698 if (*ShadowPtr) 1699 return *ShadowPtr; 1700 Function *F = A->getParent(); 1701 IRBuilder<> EntryIRB(FnPrologueEnd); 1702 unsigned ArgOffset = 0; 1703 const DataLayout &DL = F->getParent()->getDataLayout(); 1704 for (auto &FArg : F->args()) { 1705 if (!FArg.getType()->isSized()) { 1706 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1707 continue; 1708 } 1709 1710 unsigned Size = FArg.hasByValAttr() 1711 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1712 : DL.getTypeAllocSize(FArg.getType()); 1713 1714 if (A == &FArg) { 1715 bool Overflow = ArgOffset + Size > kParamTLSSize; 1716 if (FArg.hasByValAttr()) { 1717 // ByVal pointer itself has clean shadow. We copy the actual 1718 // argument shadow to the underlying memory. 1719 // Figure out maximal valid memcpy alignment. 1720 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1721 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1722 Value *CpShadowPtr, *CpOriginPtr; 1723 std::tie(CpShadowPtr, CpOriginPtr) = 1724 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1725 /*isStore*/ true); 1726 if (!PropagateShadow || Overflow) { 1727 // ParamTLS overflow. 1728 EntryIRB.CreateMemSet( 1729 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1730 Size, ArgAlign); 1731 } else { 1732 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1733 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1734 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1735 CopyAlign, Size); 1736 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1737 (void)Cpy; 1738 1739 if (MS.TrackOrigins) { 1740 Value *OriginPtr = 1741 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1742 // FIXME: OriginSize should be: 1743 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) 1744 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 1745 EntryIRB.CreateMemCpy( 1746 CpOriginPtr, 1747 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr, 1748 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 1749 OriginSize); 1750 } 1751 } 1752 } 1753 1754 if (!PropagateShadow || Overflow || FArg.hasByValAttr() || 1755 (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) { 1756 *ShadowPtr = getCleanShadow(V); 1757 setOrigin(A, getCleanOrigin()); 1758 } else { 1759 // Shadow over TLS 1760 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1761 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1762 kShadowTLSAlignment); 1763 if (MS.TrackOrigins) { 1764 Value *OriginPtr = 1765 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1766 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1767 } 1768 } 1769 LLVM_DEBUG(dbgs() 1770 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1771 break; 1772 } 1773 1774 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1775 } 1776 assert(*ShadowPtr && "Could not find shadow for an argument"); 1777 return *ShadowPtr; 1778 } 1779 // For everything else the shadow is zero. 1780 return getCleanShadow(V); 1781 } 1782 1783 /// Get the shadow for i-th argument of the instruction I. 1784 Value *getShadow(Instruction *I, int i) { 1785 return getShadow(I->getOperand(i)); 1786 } 1787 1788 /// Get the origin for a value. 1789 Value *getOrigin(Value *V) { 1790 if (!MS.TrackOrigins) return nullptr; 1791 if (!PropagateShadow) return getCleanOrigin(); 1792 if (isa<Constant>(V)) return getCleanOrigin(); 1793 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1794 "Unexpected value type in getOrigin()"); 1795 if (Instruction *I = dyn_cast<Instruction>(V)) { 1796 if (I->getMetadata("nosanitize")) 1797 return getCleanOrigin(); 1798 } 1799 Value *Origin = OriginMap[V]; 1800 assert(Origin && "Missing origin"); 1801 return Origin; 1802 } 1803 1804 /// Get the origin for i-th argument of the instruction I. 1805 Value *getOrigin(Instruction *I, int i) { 1806 return getOrigin(I->getOperand(i)); 1807 } 1808 1809 /// Remember the place where a shadow check should be inserted. 1810 /// 1811 /// This location will be later instrumented with a check that will print a 1812 /// UMR warning in runtime if the shadow value is not 0. 1813 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1814 assert(Shadow); 1815 if (!InsertChecks) return; 1816 #ifndef NDEBUG 1817 Type *ShadowTy = Shadow->getType(); 1818 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 1819 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 1820 "Can only insert checks for integer, vector, and aggregate shadow " 1821 "types"); 1822 #endif 1823 InstrumentationList.push_back( 1824 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1825 } 1826 1827 /// Remember the place where a shadow check should be inserted. 1828 /// 1829 /// This location will be later instrumented with a check that will print a 1830 /// UMR warning in runtime if the value is not fully defined. 1831 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1832 assert(Val); 1833 Value *Shadow, *Origin; 1834 if (ClCheckConstantShadow) { 1835 Shadow = getShadow(Val); 1836 if (!Shadow) return; 1837 Origin = getOrigin(Val); 1838 } else { 1839 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1840 if (!Shadow) return; 1841 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1842 } 1843 insertShadowCheck(Shadow, Origin, OrigIns); 1844 } 1845 1846 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1847 switch (a) { 1848 case AtomicOrdering::NotAtomic: 1849 return AtomicOrdering::NotAtomic; 1850 case AtomicOrdering::Unordered: 1851 case AtomicOrdering::Monotonic: 1852 case AtomicOrdering::Release: 1853 return AtomicOrdering::Release; 1854 case AtomicOrdering::Acquire: 1855 case AtomicOrdering::AcquireRelease: 1856 return AtomicOrdering::AcquireRelease; 1857 case AtomicOrdering::SequentiallyConsistent: 1858 return AtomicOrdering::SequentiallyConsistent; 1859 } 1860 llvm_unreachable("Unknown ordering"); 1861 } 1862 1863 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 1864 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1865 uint32_t OrderingTable[NumOrderings] = {}; 1866 1867 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1868 OrderingTable[(int)AtomicOrderingCABI::release] = 1869 (int)AtomicOrderingCABI::release; 1870 OrderingTable[(int)AtomicOrderingCABI::consume] = 1871 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1872 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1873 (int)AtomicOrderingCABI::acq_rel; 1874 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1875 (int)AtomicOrderingCABI::seq_cst; 1876 1877 return ConstantDataVector::get(IRB.getContext(), 1878 makeArrayRef(OrderingTable, NumOrderings)); 1879 } 1880 1881 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1882 switch (a) { 1883 case AtomicOrdering::NotAtomic: 1884 return AtomicOrdering::NotAtomic; 1885 case AtomicOrdering::Unordered: 1886 case AtomicOrdering::Monotonic: 1887 case AtomicOrdering::Acquire: 1888 return AtomicOrdering::Acquire; 1889 case AtomicOrdering::Release: 1890 case AtomicOrdering::AcquireRelease: 1891 return AtomicOrdering::AcquireRelease; 1892 case AtomicOrdering::SequentiallyConsistent: 1893 return AtomicOrdering::SequentiallyConsistent; 1894 } 1895 llvm_unreachable("Unknown ordering"); 1896 } 1897 1898 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 1899 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1900 uint32_t OrderingTable[NumOrderings] = {}; 1901 1902 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1903 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1904 OrderingTable[(int)AtomicOrderingCABI::consume] = 1905 (int)AtomicOrderingCABI::acquire; 1906 OrderingTable[(int)AtomicOrderingCABI::release] = 1907 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1908 (int)AtomicOrderingCABI::acq_rel; 1909 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1910 (int)AtomicOrderingCABI::seq_cst; 1911 1912 return ConstantDataVector::get(IRB.getContext(), 1913 makeArrayRef(OrderingTable, NumOrderings)); 1914 } 1915 1916 // ------------------- Visitors. 1917 using InstVisitor<MemorySanitizerVisitor>::visit; 1918 void visit(Instruction &I) { 1919 if (I.getMetadata("nosanitize")) 1920 return; 1921 // Don't want to visit if we're in the prologue 1922 if (isInPrologue(I)) 1923 return; 1924 InstVisitor<MemorySanitizerVisitor>::visit(I); 1925 } 1926 1927 /// Instrument LoadInst 1928 /// 1929 /// Loads the corresponding shadow and (optionally) origin. 1930 /// Optionally, checks that the load address is fully defined. 1931 void visitLoadInst(LoadInst &I) { 1932 assert(I.getType()->isSized() && "Load type must have size"); 1933 assert(!I.getMetadata("nosanitize")); 1934 IRBuilder<> IRB(I.getNextNode()); 1935 Type *ShadowTy = getShadowTy(&I); 1936 Value *Addr = I.getPointerOperand(); 1937 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1938 const Align Alignment = assumeAligned(I.getAlignment()); 1939 if (PropagateShadow) { 1940 std::tie(ShadowPtr, OriginPtr) = 1941 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1942 setShadow(&I, 1943 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1944 } else { 1945 setShadow(&I, getCleanShadow(&I)); 1946 } 1947 1948 if (ClCheckAccessAddress) 1949 insertShadowCheck(I.getPointerOperand(), &I); 1950 1951 if (I.isAtomic()) 1952 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1953 1954 if (MS.TrackOrigins) { 1955 if (PropagateShadow) { 1956 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1957 setOrigin( 1958 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1959 } else { 1960 setOrigin(&I, getCleanOrigin()); 1961 } 1962 } 1963 } 1964 1965 /// Instrument StoreInst 1966 /// 1967 /// Stores the corresponding shadow and (optionally) origin. 1968 /// Optionally, checks that the store address is fully defined. 1969 void visitStoreInst(StoreInst &I) { 1970 StoreList.push_back(&I); 1971 if (ClCheckAccessAddress) 1972 insertShadowCheck(I.getPointerOperand(), &I); 1973 } 1974 1975 void handleCASOrRMW(Instruction &I) { 1976 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1977 1978 IRBuilder<> IRB(&I); 1979 Value *Addr = I.getOperand(0); 1980 Value *Val = I.getOperand(1); 1981 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, Val->getType(), Align(1), 1982 /*isStore*/ true) 1983 .first; 1984 1985 if (ClCheckAccessAddress) 1986 insertShadowCheck(Addr, &I); 1987 1988 // Only test the conditional argument of cmpxchg instruction. 1989 // The other argument can potentially be uninitialized, but we can not 1990 // detect this situation reliably without possible false positives. 1991 if (isa<AtomicCmpXchgInst>(I)) 1992 insertShadowCheck(Val, &I); 1993 1994 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 1995 1996 setShadow(&I, getCleanShadow(&I)); 1997 setOrigin(&I, getCleanOrigin()); 1998 } 1999 2000 void visitAtomicRMWInst(AtomicRMWInst &I) { 2001 handleCASOrRMW(I); 2002 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2003 } 2004 2005 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2006 handleCASOrRMW(I); 2007 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2008 } 2009 2010 // Vector manipulation. 2011 void visitExtractElementInst(ExtractElementInst &I) { 2012 insertShadowCheck(I.getOperand(1), &I); 2013 IRBuilder<> IRB(&I); 2014 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 2015 "_msprop")); 2016 setOrigin(&I, getOrigin(&I, 0)); 2017 } 2018 2019 void visitInsertElementInst(InsertElementInst &I) { 2020 insertShadowCheck(I.getOperand(2), &I); 2021 IRBuilder<> IRB(&I); 2022 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 2023 I.getOperand(2), "_msprop")); 2024 setOriginForNaryOp(I); 2025 } 2026 2027 void visitShuffleVectorInst(ShuffleVectorInst &I) { 2028 IRBuilder<> IRB(&I); 2029 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 2030 I.getShuffleMask(), "_msprop")); 2031 setOriginForNaryOp(I); 2032 } 2033 2034 // Casts. 2035 void visitSExtInst(SExtInst &I) { 2036 IRBuilder<> IRB(&I); 2037 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2038 setOrigin(&I, getOrigin(&I, 0)); 2039 } 2040 2041 void visitZExtInst(ZExtInst &I) { 2042 IRBuilder<> IRB(&I); 2043 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2044 setOrigin(&I, getOrigin(&I, 0)); 2045 } 2046 2047 void visitTruncInst(TruncInst &I) { 2048 IRBuilder<> IRB(&I); 2049 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2050 setOrigin(&I, getOrigin(&I, 0)); 2051 } 2052 2053 void visitBitCastInst(BitCastInst &I) { 2054 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2055 // a musttail call and a ret, don't instrument. New instructions are not 2056 // allowed after a musttail call. 2057 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2058 if (CI->isMustTailCall()) 2059 return; 2060 IRBuilder<> IRB(&I); 2061 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2062 setOrigin(&I, getOrigin(&I, 0)); 2063 } 2064 2065 void visitPtrToIntInst(PtrToIntInst &I) { 2066 IRBuilder<> IRB(&I); 2067 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2068 "_msprop_ptrtoint")); 2069 setOrigin(&I, getOrigin(&I, 0)); 2070 } 2071 2072 void visitIntToPtrInst(IntToPtrInst &I) { 2073 IRBuilder<> IRB(&I); 2074 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2075 "_msprop_inttoptr")); 2076 setOrigin(&I, getOrigin(&I, 0)); 2077 } 2078 2079 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 2080 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 2081 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 2082 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 2083 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 2084 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 2085 2086 /// Propagate shadow for bitwise AND. 2087 /// 2088 /// This code is exact, i.e. if, for example, a bit in the left argument 2089 /// is defined and 0, then neither the value not definedness of the 2090 /// corresponding bit in B don't affect the resulting shadow. 2091 void visitAnd(BinaryOperator &I) { 2092 IRBuilder<> IRB(&I); 2093 // "And" of 0 and a poisoned value results in unpoisoned value. 2094 // 1&1 => 1; 0&1 => 0; p&1 => p; 2095 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2096 // 1&p => p; 0&p => 0; p&p => p; 2097 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2098 Value *S1 = getShadow(&I, 0); 2099 Value *S2 = getShadow(&I, 1); 2100 Value *V1 = I.getOperand(0); 2101 Value *V2 = I.getOperand(1); 2102 if (V1->getType() != S1->getType()) { 2103 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2104 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2105 } 2106 Value *S1S2 = IRB.CreateAnd(S1, S2); 2107 Value *V1S2 = IRB.CreateAnd(V1, S2); 2108 Value *S1V2 = IRB.CreateAnd(S1, V2); 2109 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2110 setOriginForNaryOp(I); 2111 } 2112 2113 void visitOr(BinaryOperator &I) { 2114 IRBuilder<> IRB(&I); 2115 // "Or" of 1 and a poisoned value results in unpoisoned value. 2116 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2117 // 1|0 => 1; 0|0 => 0; p|0 => p; 2118 // 1|p => 1; 0|p => p; p|p => p; 2119 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2120 Value *S1 = getShadow(&I, 0); 2121 Value *S2 = getShadow(&I, 1); 2122 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2123 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2124 if (V1->getType() != S1->getType()) { 2125 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2126 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2127 } 2128 Value *S1S2 = IRB.CreateAnd(S1, S2); 2129 Value *V1S2 = IRB.CreateAnd(V1, S2); 2130 Value *S1V2 = IRB.CreateAnd(S1, V2); 2131 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2132 setOriginForNaryOp(I); 2133 } 2134 2135 /// Default propagation of shadow and/or origin. 2136 /// 2137 /// This class implements the general case of shadow propagation, used in all 2138 /// cases where we don't know and/or don't care about what the operation 2139 /// actually does. It converts all input shadow values to a common type 2140 /// (extending or truncating as necessary), and bitwise OR's them. 2141 /// 2142 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2143 /// fully initialized), and less prone to false positives. 2144 /// 2145 /// This class also implements the general case of origin propagation. For a 2146 /// Nary operation, result origin is set to the origin of an argument that is 2147 /// not entirely initialized. If there is more than one such arguments, the 2148 /// rightmost of them is picked. It does not matter which one is picked if all 2149 /// arguments are initialized. 2150 template <bool CombineShadow> 2151 class Combiner { 2152 Value *Shadow = nullptr; 2153 Value *Origin = nullptr; 2154 IRBuilder<> &IRB; 2155 MemorySanitizerVisitor *MSV; 2156 2157 public: 2158 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2159 : IRB(IRB), MSV(MSV) {} 2160 2161 /// Add a pair of shadow and origin values to the mix. 2162 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2163 if (CombineShadow) { 2164 assert(OpShadow); 2165 if (!Shadow) 2166 Shadow = OpShadow; 2167 else { 2168 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2169 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2170 } 2171 } 2172 2173 if (MSV->MS.TrackOrigins) { 2174 assert(OpOrigin); 2175 if (!Origin) { 2176 Origin = OpOrigin; 2177 } else { 2178 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2179 // No point in adding something that might result in 0 origin value. 2180 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2181 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); 2182 Value *Cond = 2183 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2184 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2185 } 2186 } 2187 } 2188 return *this; 2189 } 2190 2191 /// Add an application value to the mix. 2192 Combiner &Add(Value *V) { 2193 Value *OpShadow = MSV->getShadow(V); 2194 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2195 return Add(OpShadow, OpOrigin); 2196 } 2197 2198 /// Set the current combined values as the given instruction's shadow 2199 /// and origin. 2200 void Done(Instruction *I) { 2201 if (CombineShadow) { 2202 assert(Shadow); 2203 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2204 MSV->setShadow(I, Shadow); 2205 } 2206 if (MSV->MS.TrackOrigins) { 2207 assert(Origin); 2208 MSV->setOrigin(I, Origin); 2209 } 2210 } 2211 }; 2212 2213 using ShadowAndOriginCombiner = Combiner<true>; 2214 using OriginCombiner = Combiner<false>; 2215 2216 /// Propagate origin for arbitrary operation. 2217 void setOriginForNaryOp(Instruction &I) { 2218 if (!MS.TrackOrigins) return; 2219 IRBuilder<> IRB(&I); 2220 OriginCombiner OC(this, IRB); 2221 for (Use &Op : I.operands()) 2222 OC.Add(Op.get()); 2223 OC.Done(&I); 2224 } 2225 2226 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2227 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2228 "Vector of pointers is not a valid shadow type"); 2229 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2230 Ty->getScalarSizeInBits() 2231 : Ty->getPrimitiveSizeInBits(); 2232 } 2233 2234 /// Cast between two shadow types, extending or truncating as 2235 /// necessary. 2236 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2237 bool Signed = false) { 2238 Type *srcTy = V->getType(); 2239 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2240 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2241 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2242 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2243 2244 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2245 return IRB.CreateIntCast(V, dstTy, Signed); 2246 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2247 cast<FixedVectorType>(dstTy)->getNumElements() == 2248 cast<FixedVectorType>(srcTy)->getNumElements()) 2249 return IRB.CreateIntCast(V, dstTy, Signed); 2250 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2251 Value *V2 = 2252 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2253 return IRB.CreateBitCast(V2, dstTy); 2254 // TODO: handle struct types. 2255 } 2256 2257 /// Cast an application value to the type of its own shadow. 2258 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2259 Type *ShadowTy = getShadowTy(V); 2260 if (V->getType() == ShadowTy) 2261 return V; 2262 if (V->getType()->isPtrOrPtrVectorTy()) 2263 return IRB.CreatePtrToInt(V, ShadowTy); 2264 else 2265 return IRB.CreateBitCast(V, ShadowTy); 2266 } 2267 2268 /// Propagate shadow for arbitrary operation. 2269 void handleShadowOr(Instruction &I) { 2270 IRBuilder<> IRB(&I); 2271 ShadowAndOriginCombiner SC(this, IRB); 2272 for (Use &Op : I.operands()) 2273 SC.Add(Op.get()); 2274 SC.Done(&I); 2275 } 2276 2277 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2278 2279 // Handle multiplication by constant. 2280 // 2281 // Handle a special case of multiplication by constant that may have one or 2282 // more zeros in the lower bits. This makes corresponding number of lower bits 2283 // of the result zero as well. We model it by shifting the other operand 2284 // shadow left by the required number of bits. Effectively, we transform 2285 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2286 // We use multiplication by 2**N instead of shift to cover the case of 2287 // multiplication by 0, which may occur in some elements of a vector operand. 2288 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2289 Value *OtherArg) { 2290 Constant *ShadowMul; 2291 Type *Ty = ConstArg->getType(); 2292 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2293 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2294 Type *EltTy = VTy->getElementType(); 2295 SmallVector<Constant *, 16> Elements; 2296 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2297 if (ConstantInt *Elt = 2298 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2299 const APInt &V = Elt->getValue(); 2300 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2301 Elements.push_back(ConstantInt::get(EltTy, V2)); 2302 } else { 2303 Elements.push_back(ConstantInt::get(EltTy, 1)); 2304 } 2305 } 2306 ShadowMul = ConstantVector::get(Elements); 2307 } else { 2308 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2309 const APInt &V = Elt->getValue(); 2310 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2311 ShadowMul = ConstantInt::get(Ty, V2); 2312 } else { 2313 ShadowMul = ConstantInt::get(Ty, 1); 2314 } 2315 } 2316 2317 IRBuilder<> IRB(&I); 2318 setShadow(&I, 2319 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2320 setOrigin(&I, getOrigin(OtherArg)); 2321 } 2322 2323 void visitMul(BinaryOperator &I) { 2324 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2325 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2326 if (constOp0 && !constOp1) 2327 handleMulByConstant(I, constOp0, I.getOperand(1)); 2328 else if (constOp1 && !constOp0) 2329 handleMulByConstant(I, constOp1, I.getOperand(0)); 2330 else 2331 handleShadowOr(I); 2332 } 2333 2334 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2335 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2336 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2337 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2338 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2339 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2340 2341 void handleIntegerDiv(Instruction &I) { 2342 IRBuilder<> IRB(&I); 2343 // Strict on the second argument. 2344 insertShadowCheck(I.getOperand(1), &I); 2345 setShadow(&I, getShadow(&I, 0)); 2346 setOrigin(&I, getOrigin(&I, 0)); 2347 } 2348 2349 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2350 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2351 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2352 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2353 2354 // Floating point division is side-effect free. We can not require that the 2355 // divisor is fully initialized and must propagate shadow. See PR37523. 2356 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2357 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2358 2359 /// Instrument == and != comparisons. 2360 /// 2361 /// Sometimes the comparison result is known even if some of the bits of the 2362 /// arguments are not. 2363 void handleEqualityComparison(ICmpInst &I) { 2364 IRBuilder<> IRB(&I); 2365 Value *A = I.getOperand(0); 2366 Value *B = I.getOperand(1); 2367 Value *Sa = getShadow(A); 2368 Value *Sb = getShadow(B); 2369 2370 // Get rid of pointers and vectors of pointers. 2371 // For ints (and vectors of ints), types of A and Sa match, 2372 // and this is a no-op. 2373 A = IRB.CreatePointerCast(A, Sa->getType()); 2374 B = IRB.CreatePointerCast(B, Sb->getType()); 2375 2376 // A == B <==> (C = A^B) == 0 2377 // A != B <==> (C = A^B) != 0 2378 // Sc = Sa | Sb 2379 Value *C = IRB.CreateXor(A, B); 2380 Value *Sc = IRB.CreateOr(Sa, Sb); 2381 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2382 // Result is defined if one of the following is true 2383 // * there is a defined 1 bit in C 2384 // * C is fully defined 2385 // Si = !(C & ~Sc) && Sc 2386 Value *Zero = Constant::getNullValue(Sc->getType()); 2387 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2388 Value *Si = 2389 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2390 IRB.CreateICmpEQ( 2391 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2392 Si->setName("_msprop_icmp"); 2393 setShadow(&I, Si); 2394 setOriginForNaryOp(I); 2395 } 2396 2397 /// Build the lowest possible value of V, taking into account V's 2398 /// uninitialized bits. 2399 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2400 bool isSigned) { 2401 if (isSigned) { 2402 // Split shadow into sign bit and other bits. 2403 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2404 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2405 // Maximise the undefined shadow bit, minimize other undefined bits. 2406 return 2407 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2408 } else { 2409 // Minimize undefined bits. 2410 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2411 } 2412 } 2413 2414 /// Build the highest possible value of V, taking into account V's 2415 /// uninitialized bits. 2416 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2417 bool isSigned) { 2418 if (isSigned) { 2419 // Split shadow into sign bit and other bits. 2420 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2421 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2422 // Minimise the undefined shadow bit, maximise other undefined bits. 2423 return 2424 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2425 } else { 2426 // Maximize undefined bits. 2427 return IRB.CreateOr(A, Sa); 2428 } 2429 } 2430 2431 /// Instrument relational comparisons. 2432 /// 2433 /// This function does exact shadow propagation for all relational 2434 /// comparisons of integers, pointers and vectors of those. 2435 /// FIXME: output seems suboptimal when one of the operands is a constant 2436 void handleRelationalComparisonExact(ICmpInst &I) { 2437 IRBuilder<> IRB(&I); 2438 Value *A = I.getOperand(0); 2439 Value *B = I.getOperand(1); 2440 Value *Sa = getShadow(A); 2441 Value *Sb = getShadow(B); 2442 2443 // Get rid of pointers and vectors of pointers. 2444 // For ints (and vectors of ints), types of A and Sa match, 2445 // and this is a no-op. 2446 A = IRB.CreatePointerCast(A, Sa->getType()); 2447 B = IRB.CreatePointerCast(B, Sb->getType()); 2448 2449 // Let [a0, a1] be the interval of possible values of A, taking into account 2450 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2451 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2452 bool IsSigned = I.isSigned(); 2453 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2454 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2455 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2456 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2457 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2458 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2459 Value *Si = IRB.CreateXor(S1, S2); 2460 setShadow(&I, Si); 2461 setOriginForNaryOp(I); 2462 } 2463 2464 /// Instrument signed relational comparisons. 2465 /// 2466 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2467 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2468 void handleSignedRelationalComparison(ICmpInst &I) { 2469 Constant *constOp; 2470 Value *op = nullptr; 2471 CmpInst::Predicate pre; 2472 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2473 op = I.getOperand(0); 2474 pre = I.getPredicate(); 2475 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2476 op = I.getOperand(1); 2477 pre = I.getSwappedPredicate(); 2478 } else { 2479 handleShadowOr(I); 2480 return; 2481 } 2482 2483 if ((constOp->isNullValue() && 2484 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2485 (constOp->isAllOnesValue() && 2486 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2487 IRBuilder<> IRB(&I); 2488 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2489 "_msprop_icmp_s"); 2490 setShadow(&I, Shadow); 2491 setOrigin(&I, getOrigin(op)); 2492 } else { 2493 handleShadowOr(I); 2494 } 2495 } 2496 2497 void visitICmpInst(ICmpInst &I) { 2498 if (!ClHandleICmp) { 2499 handleShadowOr(I); 2500 return; 2501 } 2502 if (I.isEquality()) { 2503 handleEqualityComparison(I); 2504 return; 2505 } 2506 2507 assert(I.isRelational()); 2508 if (ClHandleICmpExact) { 2509 handleRelationalComparisonExact(I); 2510 return; 2511 } 2512 if (I.isSigned()) { 2513 handleSignedRelationalComparison(I); 2514 return; 2515 } 2516 2517 assert(I.isUnsigned()); 2518 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2519 handleRelationalComparisonExact(I); 2520 return; 2521 } 2522 2523 handleShadowOr(I); 2524 } 2525 2526 void visitFCmpInst(FCmpInst &I) { 2527 handleShadowOr(I); 2528 } 2529 2530 void handleShift(BinaryOperator &I) { 2531 IRBuilder<> IRB(&I); 2532 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2533 // Otherwise perform the same shift on S1. 2534 Value *S1 = getShadow(&I, 0); 2535 Value *S2 = getShadow(&I, 1); 2536 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2537 S2->getType()); 2538 Value *V2 = I.getOperand(1); 2539 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2540 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2541 setOriginForNaryOp(I); 2542 } 2543 2544 void visitShl(BinaryOperator &I) { handleShift(I); } 2545 void visitAShr(BinaryOperator &I) { handleShift(I); } 2546 void visitLShr(BinaryOperator &I) { handleShift(I); } 2547 2548 void handleFunnelShift(IntrinsicInst &I) { 2549 IRBuilder<> IRB(&I); 2550 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2551 // Otherwise perform the same shift on S0 and S1. 2552 Value *S0 = getShadow(&I, 0); 2553 Value *S1 = getShadow(&I, 1); 2554 Value *S2 = getShadow(&I, 2); 2555 Value *S2Conv = 2556 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2557 Value *V2 = I.getOperand(2); 2558 Function *Intrin = Intrinsic::getDeclaration( 2559 I.getModule(), I.getIntrinsicID(), S2Conv->getType()); 2560 Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2}); 2561 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2562 setOriginForNaryOp(I); 2563 } 2564 2565 /// Instrument llvm.memmove 2566 /// 2567 /// At this point we don't know if llvm.memmove will be inlined or not. 2568 /// If we don't instrument it and it gets inlined, 2569 /// our interceptor will not kick in and we will lose the memmove. 2570 /// If we instrument the call here, but it does not get inlined, 2571 /// we will memove the shadow twice: which is bad in case 2572 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2573 /// 2574 /// Similar situation exists for memcpy and memset. 2575 void visitMemMoveInst(MemMoveInst &I) { 2576 IRBuilder<> IRB(&I); 2577 IRB.CreateCall( 2578 MS.MemmoveFn, 2579 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2580 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2581 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2582 I.eraseFromParent(); 2583 } 2584 2585 // Similar to memmove: avoid copying shadow twice. 2586 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2587 // FIXME: consider doing manual inline for small constant sizes and proper 2588 // alignment. 2589 void visitMemCpyInst(MemCpyInst &I) { 2590 IRBuilder<> IRB(&I); 2591 IRB.CreateCall( 2592 MS.MemcpyFn, 2593 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2594 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2595 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2596 I.eraseFromParent(); 2597 } 2598 2599 // Same as memcpy. 2600 void visitMemSetInst(MemSetInst &I) { 2601 IRBuilder<> IRB(&I); 2602 IRB.CreateCall( 2603 MS.MemsetFn, 2604 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2605 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2606 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2607 I.eraseFromParent(); 2608 } 2609 2610 void visitVAStartInst(VAStartInst &I) { 2611 VAHelper->visitVAStartInst(I); 2612 } 2613 2614 void visitVACopyInst(VACopyInst &I) { 2615 VAHelper->visitVACopyInst(I); 2616 } 2617 2618 /// Handle vector store-like intrinsics. 2619 /// 2620 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2621 /// has 1 pointer argument and 1 vector argument, returns void. 2622 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2623 IRBuilder<> IRB(&I); 2624 Value* Addr = I.getArgOperand(0); 2625 Value *Shadow = getShadow(&I, 1); 2626 Value *ShadowPtr, *OriginPtr; 2627 2628 // We don't know the pointer alignment (could be unaligned SSE store!). 2629 // Have to assume to worst case. 2630 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2631 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2632 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2633 2634 if (ClCheckAccessAddress) 2635 insertShadowCheck(Addr, &I); 2636 2637 // FIXME: factor out common code from materializeStores 2638 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2639 return true; 2640 } 2641 2642 /// Handle vector load-like intrinsics. 2643 /// 2644 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2645 /// has 1 pointer argument, returns a vector. 2646 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2647 IRBuilder<> IRB(&I); 2648 Value *Addr = I.getArgOperand(0); 2649 2650 Type *ShadowTy = getShadowTy(&I); 2651 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2652 if (PropagateShadow) { 2653 // We don't know the pointer alignment (could be unaligned SSE load!). 2654 // Have to assume to worst case. 2655 const Align Alignment = Align(1); 2656 std::tie(ShadowPtr, OriginPtr) = 2657 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2658 setShadow(&I, 2659 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2660 } else { 2661 setShadow(&I, getCleanShadow(&I)); 2662 } 2663 2664 if (ClCheckAccessAddress) 2665 insertShadowCheck(Addr, &I); 2666 2667 if (MS.TrackOrigins) { 2668 if (PropagateShadow) 2669 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2670 else 2671 setOrigin(&I, getCleanOrigin()); 2672 } 2673 return true; 2674 } 2675 2676 /// Handle (SIMD arithmetic)-like intrinsics. 2677 /// 2678 /// Instrument intrinsics with any number of arguments of the same type, 2679 /// equal to the return type. The type should be simple (no aggregates or 2680 /// pointers; vectors are fine). 2681 /// Caller guarantees that this intrinsic does not access memory. 2682 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2683 Type *RetTy = I.getType(); 2684 if (!(RetTy->isIntOrIntVectorTy() || 2685 RetTy->isFPOrFPVectorTy() || 2686 RetTy->isX86_MMXTy())) 2687 return false; 2688 2689 unsigned NumArgOperands = I.arg_size(); 2690 for (unsigned i = 0; i < NumArgOperands; ++i) { 2691 Type *Ty = I.getArgOperand(i)->getType(); 2692 if (Ty != RetTy) 2693 return false; 2694 } 2695 2696 IRBuilder<> IRB(&I); 2697 ShadowAndOriginCombiner SC(this, IRB); 2698 for (unsigned i = 0; i < NumArgOperands; ++i) 2699 SC.Add(I.getArgOperand(i)); 2700 SC.Done(&I); 2701 2702 return true; 2703 } 2704 2705 /// Heuristically instrument unknown intrinsics. 2706 /// 2707 /// The main purpose of this code is to do something reasonable with all 2708 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2709 /// We recognize several classes of intrinsics by their argument types and 2710 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2711 /// sure that we know what the intrinsic does. 2712 /// 2713 /// We special-case intrinsics where this approach fails. See llvm.bswap 2714 /// handling as an example of that. 2715 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2716 unsigned NumArgOperands = I.arg_size(); 2717 if (NumArgOperands == 0) 2718 return false; 2719 2720 if (NumArgOperands == 2 && 2721 I.getArgOperand(0)->getType()->isPointerTy() && 2722 I.getArgOperand(1)->getType()->isVectorTy() && 2723 I.getType()->isVoidTy() && 2724 !I.onlyReadsMemory()) { 2725 // This looks like a vector store. 2726 return handleVectorStoreIntrinsic(I); 2727 } 2728 2729 if (NumArgOperands == 1 && 2730 I.getArgOperand(0)->getType()->isPointerTy() && 2731 I.getType()->isVectorTy() && 2732 I.onlyReadsMemory()) { 2733 // This looks like a vector load. 2734 return handleVectorLoadIntrinsic(I); 2735 } 2736 2737 if (I.doesNotAccessMemory()) 2738 if (maybeHandleSimpleNomemIntrinsic(I)) 2739 return true; 2740 2741 // FIXME: detect and handle SSE maskstore/maskload 2742 return false; 2743 } 2744 2745 void handleInvariantGroup(IntrinsicInst &I) { 2746 setShadow(&I, getShadow(&I, 0)); 2747 setOrigin(&I, getOrigin(&I, 0)); 2748 } 2749 2750 void handleLifetimeStart(IntrinsicInst &I) { 2751 if (!PoisonStack) 2752 return; 2753 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 2754 if (!AI) 2755 InstrumentLifetimeStart = false; 2756 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2757 } 2758 2759 void handleBswap(IntrinsicInst &I) { 2760 IRBuilder<> IRB(&I); 2761 Value *Op = I.getArgOperand(0); 2762 Type *OpType = Op->getType(); 2763 Function *BswapFunc = Intrinsic::getDeclaration( 2764 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2765 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2766 setOrigin(&I, getOrigin(Op)); 2767 } 2768 2769 // Instrument vector convert intrinsic. 2770 // 2771 // This function instruments intrinsics like cvtsi2ss: 2772 // %Out = int_xxx_cvtyyy(%ConvertOp) 2773 // or 2774 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2775 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2776 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2777 // elements from \p CopyOp. 2778 // In most cases conversion involves floating-point value which may trigger a 2779 // hardware exception when not fully initialized. For this reason we require 2780 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2781 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2782 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2783 // return a fully initialized value. 2784 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 2785 bool HasRoundingMode = false) { 2786 IRBuilder<> IRB(&I); 2787 Value *CopyOp, *ConvertOp; 2788 2789 assert((!HasRoundingMode || 2790 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && 2791 "Invalid rounding mode"); 2792 2793 switch (I.arg_size() - HasRoundingMode) { 2794 case 2: 2795 CopyOp = I.getArgOperand(0); 2796 ConvertOp = I.getArgOperand(1); 2797 break; 2798 case 1: 2799 ConvertOp = I.getArgOperand(0); 2800 CopyOp = nullptr; 2801 break; 2802 default: 2803 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2804 } 2805 2806 // The first *NumUsedElements* elements of ConvertOp are converted to the 2807 // same number of output elements. The rest of the output is copied from 2808 // CopyOp, or (if not available) filled with zeroes. 2809 // Combine shadow for elements of ConvertOp that are used in this operation, 2810 // and insert a check. 2811 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2812 // int->any conversion. 2813 Value *ConvertShadow = getShadow(ConvertOp); 2814 Value *AggShadow = nullptr; 2815 if (ConvertOp->getType()->isVectorTy()) { 2816 AggShadow = IRB.CreateExtractElement( 2817 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2818 for (int i = 1; i < NumUsedElements; ++i) { 2819 Value *MoreShadow = IRB.CreateExtractElement( 2820 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2821 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2822 } 2823 } else { 2824 AggShadow = ConvertShadow; 2825 } 2826 assert(AggShadow->getType()->isIntegerTy()); 2827 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2828 2829 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2830 // ConvertOp. 2831 if (CopyOp) { 2832 assert(CopyOp->getType() == I.getType()); 2833 assert(CopyOp->getType()->isVectorTy()); 2834 Value *ResultShadow = getShadow(CopyOp); 2835 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2836 for (int i = 0; i < NumUsedElements; ++i) { 2837 ResultShadow = IRB.CreateInsertElement( 2838 ResultShadow, ConstantInt::getNullValue(EltTy), 2839 ConstantInt::get(IRB.getInt32Ty(), i)); 2840 } 2841 setShadow(&I, ResultShadow); 2842 setOrigin(&I, getOrigin(CopyOp)); 2843 } else { 2844 setShadow(&I, getCleanShadow(&I)); 2845 setOrigin(&I, getCleanOrigin()); 2846 } 2847 } 2848 2849 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2850 // zeroes if it is zero, and all ones otherwise. 2851 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2852 if (S->getType()->isVectorTy()) 2853 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2854 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2855 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2856 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2857 } 2858 2859 // Given a vector, extract its first element, and return all 2860 // zeroes if it is zero, and all ones otherwise. 2861 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2862 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2863 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2864 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2865 } 2866 2867 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2868 Type *T = S->getType(); 2869 assert(T->isVectorTy()); 2870 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2871 return IRB.CreateSExt(S2, T); 2872 } 2873 2874 // Instrument vector shift intrinsic. 2875 // 2876 // This function instruments intrinsics like int_x86_avx2_psll_w. 2877 // Intrinsic shifts %In by %ShiftSize bits. 2878 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2879 // size, and the rest is ignored. Behavior is defined even if shift size is 2880 // greater than register (or field) width. 2881 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2882 assert(I.arg_size() == 2); 2883 IRBuilder<> IRB(&I); 2884 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2885 // Otherwise perform the same shift on S1. 2886 Value *S1 = getShadow(&I, 0); 2887 Value *S2 = getShadow(&I, 1); 2888 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2889 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2890 Value *V1 = I.getOperand(0); 2891 Value *V2 = I.getOperand(1); 2892 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2893 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2894 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2895 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2896 setOriginForNaryOp(I); 2897 } 2898 2899 // Get an X86_MMX-sized vector type. 2900 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2901 const unsigned X86_MMXSizeInBits = 64; 2902 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2903 "Illegal MMX vector element size"); 2904 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2905 X86_MMXSizeInBits / EltSizeInBits); 2906 } 2907 2908 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2909 // intrinsic. 2910 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2911 switch (id) { 2912 case Intrinsic::x86_sse2_packsswb_128: 2913 case Intrinsic::x86_sse2_packuswb_128: 2914 return Intrinsic::x86_sse2_packsswb_128; 2915 2916 case Intrinsic::x86_sse2_packssdw_128: 2917 case Intrinsic::x86_sse41_packusdw: 2918 return Intrinsic::x86_sse2_packssdw_128; 2919 2920 case Intrinsic::x86_avx2_packsswb: 2921 case Intrinsic::x86_avx2_packuswb: 2922 return Intrinsic::x86_avx2_packsswb; 2923 2924 case Intrinsic::x86_avx2_packssdw: 2925 case Intrinsic::x86_avx2_packusdw: 2926 return Intrinsic::x86_avx2_packssdw; 2927 2928 case Intrinsic::x86_mmx_packsswb: 2929 case Intrinsic::x86_mmx_packuswb: 2930 return Intrinsic::x86_mmx_packsswb; 2931 2932 case Intrinsic::x86_mmx_packssdw: 2933 return Intrinsic::x86_mmx_packssdw; 2934 default: 2935 llvm_unreachable("unexpected intrinsic id"); 2936 } 2937 } 2938 2939 // Instrument vector pack intrinsic. 2940 // 2941 // This function instruments intrinsics like x86_mmx_packsswb, that 2942 // packs elements of 2 input vectors into half as many bits with saturation. 2943 // Shadow is propagated with the signed variant of the same intrinsic applied 2944 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2945 // EltSizeInBits is used only for x86mmx arguments. 2946 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2947 assert(I.arg_size() == 2); 2948 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2949 IRBuilder<> IRB(&I); 2950 Value *S1 = getShadow(&I, 0); 2951 Value *S2 = getShadow(&I, 1); 2952 assert(isX86_MMX || S1->getType()->isVectorTy()); 2953 2954 // SExt and ICmpNE below must apply to individual elements of input vectors. 2955 // In case of x86mmx arguments, cast them to appropriate vector types and 2956 // back. 2957 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2958 if (isX86_MMX) { 2959 S1 = IRB.CreateBitCast(S1, T); 2960 S2 = IRB.CreateBitCast(S2, T); 2961 } 2962 Value *S1_ext = IRB.CreateSExt( 2963 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2964 Value *S2_ext = IRB.CreateSExt( 2965 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2966 if (isX86_MMX) { 2967 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2968 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2969 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2970 } 2971 2972 Function *ShadowFn = Intrinsic::getDeclaration( 2973 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2974 2975 Value *S = 2976 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2977 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2978 setShadow(&I, S); 2979 setOriginForNaryOp(I); 2980 } 2981 2982 // Instrument sum-of-absolute-differences intrinsic. 2983 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2984 const unsigned SignificantBitsPerResultElement = 16; 2985 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2986 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2987 unsigned ZeroBitsPerResultElement = 2988 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2989 2990 IRBuilder<> IRB(&I); 2991 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2992 S = IRB.CreateBitCast(S, ResTy); 2993 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2994 ResTy); 2995 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2996 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2997 setShadow(&I, S); 2998 setOriginForNaryOp(I); 2999 } 3000 3001 // Instrument multiply-add intrinsic. 3002 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 3003 unsigned EltSizeInBits = 0) { 3004 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 3005 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 3006 IRBuilder<> IRB(&I); 3007 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 3008 S = IRB.CreateBitCast(S, ResTy); 3009 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3010 ResTy); 3011 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3012 setShadow(&I, S); 3013 setOriginForNaryOp(I); 3014 } 3015 3016 // Instrument compare-packed intrinsic. 3017 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 3018 // all-ones shadow. 3019 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 3020 IRBuilder<> IRB(&I); 3021 Type *ResTy = getShadowTy(&I); 3022 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 3023 Value *S = IRB.CreateSExt( 3024 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 3025 setShadow(&I, S); 3026 setOriginForNaryOp(I); 3027 } 3028 3029 // Instrument compare-scalar intrinsic. 3030 // This handles both cmp* intrinsics which return the result in the first 3031 // element of a vector, and comi* which return the result as i32. 3032 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 3033 IRBuilder<> IRB(&I); 3034 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 3035 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 3036 setShadow(&I, S); 3037 setOriginForNaryOp(I); 3038 } 3039 3040 // Instrument generic vector reduction intrinsics 3041 // by ORing together all their fields. 3042 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 3043 IRBuilder<> IRB(&I); 3044 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 3045 setShadow(&I, S); 3046 setOrigin(&I, getOrigin(&I, 0)); 3047 } 3048 3049 // Instrument vector.reduce.or intrinsic. 3050 // Valid (non-poisoned) set bits in the operand pull low the 3051 // corresponding shadow bits. 3052 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3053 IRBuilder<> IRB(&I); 3054 Value *OperandShadow = getShadow(&I, 0); 3055 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3056 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3057 // Bit N is clean if any field's bit N is 1 and unpoison 3058 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3059 // Otherwise, it is clean if every field's bit N is unpoison 3060 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3061 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3062 3063 setShadow(&I, S); 3064 setOrigin(&I, getOrigin(&I, 0)); 3065 } 3066 3067 // Instrument vector.reduce.and intrinsic. 3068 // Valid (non-poisoned) unset bits in the operand pull down the 3069 // corresponding shadow bits. 3070 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3071 IRBuilder<> IRB(&I); 3072 Value *OperandShadow = getShadow(&I, 0); 3073 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3074 // Bit N is clean if any field's bit N is 0 and unpoison 3075 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3076 // Otherwise, it is clean if every field's bit N is unpoison 3077 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3078 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3079 3080 setShadow(&I, S); 3081 setOrigin(&I, getOrigin(&I, 0)); 3082 } 3083 3084 void handleStmxcsr(IntrinsicInst &I) { 3085 IRBuilder<> IRB(&I); 3086 Value* Addr = I.getArgOperand(0); 3087 Type *Ty = IRB.getInt32Ty(); 3088 Value *ShadowPtr = 3089 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3090 3091 IRB.CreateStore(getCleanShadow(Ty), 3092 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 3093 3094 if (ClCheckAccessAddress) 3095 insertShadowCheck(Addr, &I); 3096 } 3097 3098 void handleLdmxcsr(IntrinsicInst &I) { 3099 if (!InsertChecks) return; 3100 3101 IRBuilder<> IRB(&I); 3102 Value *Addr = I.getArgOperand(0); 3103 Type *Ty = IRB.getInt32Ty(); 3104 const Align Alignment = Align(1); 3105 Value *ShadowPtr, *OriginPtr; 3106 std::tie(ShadowPtr, OriginPtr) = 3107 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3108 3109 if (ClCheckAccessAddress) 3110 insertShadowCheck(Addr, &I); 3111 3112 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3113 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3114 : getCleanOrigin(); 3115 insertShadowCheck(Shadow, Origin, &I); 3116 } 3117 3118 void handleMaskedStore(IntrinsicInst &I) { 3119 IRBuilder<> IRB(&I); 3120 Value *V = I.getArgOperand(0); 3121 Value *Addr = I.getArgOperand(1); 3122 const Align Alignment( 3123 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3124 Value *Mask = I.getArgOperand(3); 3125 Value *Shadow = getShadow(V); 3126 3127 Value *ShadowPtr; 3128 Value *OriginPtr; 3129 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3130 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3131 3132 if (ClCheckAccessAddress) { 3133 insertShadowCheck(Addr, &I); 3134 // Uninitialized mask is kind of like uninitialized address, but not as 3135 // scary. 3136 insertShadowCheck(Mask, &I); 3137 } 3138 3139 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3140 3141 if (MS.TrackOrigins) { 3142 auto &DL = F.getParent()->getDataLayout(); 3143 paintOrigin(IRB, getOrigin(V), OriginPtr, 3144 DL.getTypeStoreSize(Shadow->getType()), 3145 std::max(Alignment, kMinOriginAlignment)); 3146 } 3147 } 3148 3149 bool handleMaskedLoad(IntrinsicInst &I) { 3150 IRBuilder<> IRB(&I); 3151 Value *Addr = I.getArgOperand(0); 3152 const Align Alignment( 3153 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3154 Value *Mask = I.getArgOperand(2); 3155 Value *PassThru = I.getArgOperand(3); 3156 3157 Type *ShadowTy = getShadowTy(&I); 3158 Value *ShadowPtr, *OriginPtr; 3159 if (PropagateShadow) { 3160 std::tie(ShadowPtr, OriginPtr) = 3161 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3162 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3163 getShadow(PassThru), "_msmaskedld")); 3164 } else { 3165 setShadow(&I, getCleanShadow(&I)); 3166 } 3167 3168 if (ClCheckAccessAddress) { 3169 insertShadowCheck(Addr, &I); 3170 insertShadowCheck(Mask, &I); 3171 } 3172 3173 if (MS.TrackOrigins) { 3174 if (PropagateShadow) { 3175 // Choose between PassThru's and the loaded value's origins. 3176 Value *MaskedPassThruShadow = IRB.CreateAnd( 3177 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3178 3179 Value *Acc = IRB.CreateExtractElement( 3180 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3181 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) 3182 ->getNumElements(); 3183 i < N; ++i) { 3184 Value *More = IRB.CreateExtractElement( 3185 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3186 Acc = IRB.CreateOr(Acc, More); 3187 } 3188 3189 Value *Origin = IRB.CreateSelect( 3190 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3191 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3192 3193 setOrigin(&I, Origin); 3194 } else { 3195 setOrigin(&I, getCleanOrigin()); 3196 } 3197 } 3198 return true; 3199 } 3200 3201 // Instrument BMI / BMI2 intrinsics. 3202 // All of these intrinsics are Z = I(X, Y) 3203 // where the types of all operands and the result match, and are either i32 or i64. 3204 // The following instrumentation happens to work for all of them: 3205 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3206 void handleBmiIntrinsic(IntrinsicInst &I) { 3207 IRBuilder<> IRB(&I); 3208 Type *ShadowTy = getShadowTy(&I); 3209 3210 // If any bit of the mask operand is poisoned, then the whole thing is. 3211 Value *SMask = getShadow(&I, 1); 3212 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3213 ShadowTy); 3214 // Apply the same intrinsic to the shadow of the first operand. 3215 Value *S = IRB.CreateCall(I.getCalledFunction(), 3216 {getShadow(&I, 0), I.getOperand(1)}); 3217 S = IRB.CreateOr(SMask, S); 3218 setShadow(&I, S); 3219 setOriginForNaryOp(I); 3220 } 3221 3222 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3223 SmallVector<int, 8> Mask; 3224 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3225 Mask.append(2, X); 3226 } 3227 return Mask; 3228 } 3229 3230 // Instrument pclmul intrinsics. 3231 // These intrinsics operate either on odd or on even elements of the input 3232 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3233 // Replace the unused elements with copies of the used ones, ex: 3234 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3235 // or 3236 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3237 // and then apply the usual shadow combining logic. 3238 void handlePclmulIntrinsic(IntrinsicInst &I) { 3239 IRBuilder<> IRB(&I); 3240 unsigned Width = 3241 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3242 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3243 "pclmul 3rd operand must be a constant"); 3244 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3245 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3246 getPclmulMask(Width, Imm & 0x01)); 3247 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3248 getPclmulMask(Width, Imm & 0x10)); 3249 ShadowAndOriginCombiner SOC(this, IRB); 3250 SOC.Add(Shuf0, getOrigin(&I, 0)); 3251 SOC.Add(Shuf1, getOrigin(&I, 1)); 3252 SOC.Done(&I); 3253 } 3254 3255 // Instrument _mm_*_sd intrinsics 3256 void handleUnarySdIntrinsic(IntrinsicInst &I) { 3257 IRBuilder<> IRB(&I); 3258 Value *First = getShadow(&I, 0); 3259 Value *Second = getShadow(&I, 1); 3260 // High word of first operand, low word of second 3261 Value *Shadow = 3262 IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); 3263 3264 setShadow(&I, Shadow); 3265 setOriginForNaryOp(I); 3266 } 3267 3268 void handleBinarySdIntrinsic(IntrinsicInst &I) { 3269 IRBuilder<> IRB(&I); 3270 Value *First = getShadow(&I, 0); 3271 Value *Second = getShadow(&I, 1); 3272 Value *OrShadow = IRB.CreateOr(First, Second); 3273 // High word of first operand, low word of both OR'd together 3274 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, 3275 llvm::makeArrayRef<int>({2, 1})); 3276 3277 setShadow(&I, Shadow); 3278 setOriginForNaryOp(I); 3279 } 3280 3281 // Instrument abs intrinsic. 3282 // handleUnknownIntrinsic can't handle it because of the last 3283 // is_int_min_poison argument which does not match the result type. 3284 void handleAbsIntrinsic(IntrinsicInst &I) { 3285 assert(I.getType()->isIntOrIntVectorTy()); 3286 assert(I.getArgOperand(0)->getType() == I.getType()); 3287 3288 // FIXME: Handle is_int_min_poison. 3289 IRBuilder<> IRB(&I); 3290 setShadow(&I, getShadow(&I, 0)); 3291 setOrigin(&I, getOrigin(&I, 0)); 3292 } 3293 3294 void visitIntrinsicInst(IntrinsicInst &I) { 3295 switch (I.getIntrinsicID()) { 3296 case Intrinsic::abs: 3297 handleAbsIntrinsic(I); 3298 break; 3299 case Intrinsic::lifetime_start: 3300 handleLifetimeStart(I); 3301 break; 3302 case Intrinsic::launder_invariant_group: 3303 case Intrinsic::strip_invariant_group: 3304 handleInvariantGroup(I); 3305 break; 3306 case Intrinsic::bswap: 3307 handleBswap(I); 3308 break; 3309 case Intrinsic::masked_store: 3310 handleMaskedStore(I); 3311 break; 3312 case Intrinsic::masked_load: 3313 handleMaskedLoad(I); 3314 break; 3315 case Intrinsic::vector_reduce_and: 3316 handleVectorReduceAndIntrinsic(I); 3317 break; 3318 case Intrinsic::vector_reduce_or: 3319 handleVectorReduceOrIntrinsic(I); 3320 break; 3321 case Intrinsic::vector_reduce_add: 3322 case Intrinsic::vector_reduce_xor: 3323 case Intrinsic::vector_reduce_mul: 3324 handleVectorReduceIntrinsic(I); 3325 break; 3326 case Intrinsic::x86_sse_stmxcsr: 3327 handleStmxcsr(I); 3328 break; 3329 case Intrinsic::x86_sse_ldmxcsr: 3330 handleLdmxcsr(I); 3331 break; 3332 case Intrinsic::x86_avx512_vcvtsd2usi64: 3333 case Intrinsic::x86_avx512_vcvtsd2usi32: 3334 case Intrinsic::x86_avx512_vcvtss2usi64: 3335 case Intrinsic::x86_avx512_vcvtss2usi32: 3336 case Intrinsic::x86_avx512_cvttss2usi64: 3337 case Intrinsic::x86_avx512_cvttss2usi: 3338 case Intrinsic::x86_avx512_cvttsd2usi64: 3339 case Intrinsic::x86_avx512_cvttsd2usi: 3340 case Intrinsic::x86_avx512_cvtusi2ss: 3341 case Intrinsic::x86_avx512_cvtusi642sd: 3342 case Intrinsic::x86_avx512_cvtusi642ss: 3343 handleVectorConvertIntrinsic(I, 1, true); 3344 break; 3345 case Intrinsic::x86_sse2_cvtsd2si64: 3346 case Intrinsic::x86_sse2_cvtsd2si: 3347 case Intrinsic::x86_sse2_cvtsd2ss: 3348 case Intrinsic::x86_sse2_cvttsd2si64: 3349 case Intrinsic::x86_sse2_cvttsd2si: 3350 case Intrinsic::x86_sse_cvtss2si64: 3351 case Intrinsic::x86_sse_cvtss2si: 3352 case Intrinsic::x86_sse_cvttss2si64: 3353 case Intrinsic::x86_sse_cvttss2si: 3354 handleVectorConvertIntrinsic(I, 1); 3355 break; 3356 case Intrinsic::x86_sse_cvtps2pi: 3357 case Intrinsic::x86_sse_cvttps2pi: 3358 handleVectorConvertIntrinsic(I, 2); 3359 break; 3360 3361 case Intrinsic::x86_avx512_psll_w_512: 3362 case Intrinsic::x86_avx512_psll_d_512: 3363 case Intrinsic::x86_avx512_psll_q_512: 3364 case Intrinsic::x86_avx512_pslli_w_512: 3365 case Intrinsic::x86_avx512_pslli_d_512: 3366 case Intrinsic::x86_avx512_pslli_q_512: 3367 case Intrinsic::x86_avx512_psrl_w_512: 3368 case Intrinsic::x86_avx512_psrl_d_512: 3369 case Intrinsic::x86_avx512_psrl_q_512: 3370 case Intrinsic::x86_avx512_psra_w_512: 3371 case Intrinsic::x86_avx512_psra_d_512: 3372 case Intrinsic::x86_avx512_psra_q_512: 3373 case Intrinsic::x86_avx512_psrli_w_512: 3374 case Intrinsic::x86_avx512_psrli_d_512: 3375 case Intrinsic::x86_avx512_psrli_q_512: 3376 case Intrinsic::x86_avx512_psrai_w_512: 3377 case Intrinsic::x86_avx512_psrai_d_512: 3378 case Intrinsic::x86_avx512_psrai_q_512: 3379 case Intrinsic::x86_avx512_psra_q_256: 3380 case Intrinsic::x86_avx512_psra_q_128: 3381 case Intrinsic::x86_avx512_psrai_q_256: 3382 case Intrinsic::x86_avx512_psrai_q_128: 3383 case Intrinsic::x86_avx2_psll_w: 3384 case Intrinsic::x86_avx2_psll_d: 3385 case Intrinsic::x86_avx2_psll_q: 3386 case Intrinsic::x86_avx2_pslli_w: 3387 case Intrinsic::x86_avx2_pslli_d: 3388 case Intrinsic::x86_avx2_pslli_q: 3389 case Intrinsic::x86_avx2_psrl_w: 3390 case Intrinsic::x86_avx2_psrl_d: 3391 case Intrinsic::x86_avx2_psrl_q: 3392 case Intrinsic::x86_avx2_psra_w: 3393 case Intrinsic::x86_avx2_psra_d: 3394 case Intrinsic::x86_avx2_psrli_w: 3395 case Intrinsic::x86_avx2_psrli_d: 3396 case Intrinsic::x86_avx2_psrli_q: 3397 case Intrinsic::x86_avx2_psrai_w: 3398 case Intrinsic::x86_avx2_psrai_d: 3399 case Intrinsic::x86_sse2_psll_w: 3400 case Intrinsic::x86_sse2_psll_d: 3401 case Intrinsic::x86_sse2_psll_q: 3402 case Intrinsic::x86_sse2_pslli_w: 3403 case Intrinsic::x86_sse2_pslli_d: 3404 case Intrinsic::x86_sse2_pslli_q: 3405 case Intrinsic::x86_sse2_psrl_w: 3406 case Intrinsic::x86_sse2_psrl_d: 3407 case Intrinsic::x86_sse2_psrl_q: 3408 case Intrinsic::x86_sse2_psra_w: 3409 case Intrinsic::x86_sse2_psra_d: 3410 case Intrinsic::x86_sse2_psrli_w: 3411 case Intrinsic::x86_sse2_psrli_d: 3412 case Intrinsic::x86_sse2_psrli_q: 3413 case Intrinsic::x86_sse2_psrai_w: 3414 case Intrinsic::x86_sse2_psrai_d: 3415 case Intrinsic::x86_mmx_psll_w: 3416 case Intrinsic::x86_mmx_psll_d: 3417 case Intrinsic::x86_mmx_psll_q: 3418 case Intrinsic::x86_mmx_pslli_w: 3419 case Intrinsic::x86_mmx_pslli_d: 3420 case Intrinsic::x86_mmx_pslli_q: 3421 case Intrinsic::x86_mmx_psrl_w: 3422 case Intrinsic::x86_mmx_psrl_d: 3423 case Intrinsic::x86_mmx_psrl_q: 3424 case Intrinsic::x86_mmx_psra_w: 3425 case Intrinsic::x86_mmx_psra_d: 3426 case Intrinsic::x86_mmx_psrli_w: 3427 case Intrinsic::x86_mmx_psrli_d: 3428 case Intrinsic::x86_mmx_psrli_q: 3429 case Intrinsic::x86_mmx_psrai_w: 3430 case Intrinsic::x86_mmx_psrai_d: 3431 handleVectorShiftIntrinsic(I, /* Variable */ false); 3432 break; 3433 case Intrinsic::x86_avx2_psllv_d: 3434 case Intrinsic::x86_avx2_psllv_d_256: 3435 case Intrinsic::x86_avx512_psllv_d_512: 3436 case Intrinsic::x86_avx2_psllv_q: 3437 case Intrinsic::x86_avx2_psllv_q_256: 3438 case Intrinsic::x86_avx512_psllv_q_512: 3439 case Intrinsic::x86_avx2_psrlv_d: 3440 case Intrinsic::x86_avx2_psrlv_d_256: 3441 case Intrinsic::x86_avx512_psrlv_d_512: 3442 case Intrinsic::x86_avx2_psrlv_q: 3443 case Intrinsic::x86_avx2_psrlv_q_256: 3444 case Intrinsic::x86_avx512_psrlv_q_512: 3445 case Intrinsic::x86_avx2_psrav_d: 3446 case Intrinsic::x86_avx2_psrav_d_256: 3447 case Intrinsic::x86_avx512_psrav_d_512: 3448 case Intrinsic::x86_avx512_psrav_q_128: 3449 case Intrinsic::x86_avx512_psrav_q_256: 3450 case Intrinsic::x86_avx512_psrav_q_512: 3451 handleVectorShiftIntrinsic(I, /* Variable */ true); 3452 break; 3453 3454 case Intrinsic::x86_sse2_packsswb_128: 3455 case Intrinsic::x86_sse2_packssdw_128: 3456 case Intrinsic::x86_sse2_packuswb_128: 3457 case Intrinsic::x86_sse41_packusdw: 3458 case Intrinsic::x86_avx2_packsswb: 3459 case Intrinsic::x86_avx2_packssdw: 3460 case Intrinsic::x86_avx2_packuswb: 3461 case Intrinsic::x86_avx2_packusdw: 3462 handleVectorPackIntrinsic(I); 3463 break; 3464 3465 case Intrinsic::x86_mmx_packsswb: 3466 case Intrinsic::x86_mmx_packuswb: 3467 handleVectorPackIntrinsic(I, 16); 3468 break; 3469 3470 case Intrinsic::x86_mmx_packssdw: 3471 handleVectorPackIntrinsic(I, 32); 3472 break; 3473 3474 case Intrinsic::x86_mmx_psad_bw: 3475 case Intrinsic::x86_sse2_psad_bw: 3476 case Intrinsic::x86_avx2_psad_bw: 3477 handleVectorSadIntrinsic(I); 3478 break; 3479 3480 case Intrinsic::x86_sse2_pmadd_wd: 3481 case Intrinsic::x86_avx2_pmadd_wd: 3482 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3483 case Intrinsic::x86_avx2_pmadd_ub_sw: 3484 handleVectorPmaddIntrinsic(I); 3485 break; 3486 3487 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3488 handleVectorPmaddIntrinsic(I, 8); 3489 break; 3490 3491 case Intrinsic::x86_mmx_pmadd_wd: 3492 handleVectorPmaddIntrinsic(I, 16); 3493 break; 3494 3495 case Intrinsic::x86_sse_cmp_ss: 3496 case Intrinsic::x86_sse2_cmp_sd: 3497 case Intrinsic::x86_sse_comieq_ss: 3498 case Intrinsic::x86_sse_comilt_ss: 3499 case Intrinsic::x86_sse_comile_ss: 3500 case Intrinsic::x86_sse_comigt_ss: 3501 case Intrinsic::x86_sse_comige_ss: 3502 case Intrinsic::x86_sse_comineq_ss: 3503 case Intrinsic::x86_sse_ucomieq_ss: 3504 case Intrinsic::x86_sse_ucomilt_ss: 3505 case Intrinsic::x86_sse_ucomile_ss: 3506 case Intrinsic::x86_sse_ucomigt_ss: 3507 case Intrinsic::x86_sse_ucomige_ss: 3508 case Intrinsic::x86_sse_ucomineq_ss: 3509 case Intrinsic::x86_sse2_comieq_sd: 3510 case Intrinsic::x86_sse2_comilt_sd: 3511 case Intrinsic::x86_sse2_comile_sd: 3512 case Intrinsic::x86_sse2_comigt_sd: 3513 case Intrinsic::x86_sse2_comige_sd: 3514 case Intrinsic::x86_sse2_comineq_sd: 3515 case Intrinsic::x86_sse2_ucomieq_sd: 3516 case Intrinsic::x86_sse2_ucomilt_sd: 3517 case Intrinsic::x86_sse2_ucomile_sd: 3518 case Intrinsic::x86_sse2_ucomigt_sd: 3519 case Intrinsic::x86_sse2_ucomige_sd: 3520 case Intrinsic::x86_sse2_ucomineq_sd: 3521 handleVectorCompareScalarIntrinsic(I); 3522 break; 3523 3524 case Intrinsic::x86_sse_cmp_ps: 3525 case Intrinsic::x86_sse2_cmp_pd: 3526 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3527 // generates reasonably looking IR that fails in the backend with "Do not 3528 // know how to split the result of this operator!". 3529 handleVectorComparePackedIntrinsic(I); 3530 break; 3531 3532 case Intrinsic::x86_bmi_bextr_32: 3533 case Intrinsic::x86_bmi_bextr_64: 3534 case Intrinsic::x86_bmi_bzhi_32: 3535 case Intrinsic::x86_bmi_bzhi_64: 3536 case Intrinsic::x86_bmi_pdep_32: 3537 case Intrinsic::x86_bmi_pdep_64: 3538 case Intrinsic::x86_bmi_pext_32: 3539 case Intrinsic::x86_bmi_pext_64: 3540 handleBmiIntrinsic(I); 3541 break; 3542 3543 case Intrinsic::x86_pclmulqdq: 3544 case Intrinsic::x86_pclmulqdq_256: 3545 case Intrinsic::x86_pclmulqdq_512: 3546 handlePclmulIntrinsic(I); 3547 break; 3548 3549 case Intrinsic::x86_sse41_round_sd: 3550 handleUnarySdIntrinsic(I); 3551 break; 3552 case Intrinsic::x86_sse2_max_sd: 3553 case Intrinsic::x86_sse2_min_sd: 3554 handleBinarySdIntrinsic(I); 3555 break; 3556 3557 case Intrinsic::fshl: 3558 case Intrinsic::fshr: 3559 handleFunnelShift(I); 3560 break; 3561 3562 case Intrinsic::is_constant: 3563 // The result of llvm.is.constant() is always defined. 3564 setShadow(&I, getCleanShadow(&I)); 3565 setOrigin(&I, getCleanOrigin()); 3566 break; 3567 3568 default: 3569 if (!handleUnknownIntrinsic(I)) 3570 visitInstruction(I); 3571 break; 3572 } 3573 } 3574 3575 void visitLibAtomicLoad(CallBase &CB) { 3576 // Since we use getNextNode here, we can't have CB terminate the BB. 3577 assert(isa<CallInst>(CB)); 3578 3579 IRBuilder<> IRB(&CB); 3580 Value *Size = CB.getArgOperand(0); 3581 Value *SrcPtr = CB.getArgOperand(1); 3582 Value *DstPtr = CB.getArgOperand(2); 3583 Value *Ordering = CB.getArgOperand(3); 3584 // Convert the call to have at least Acquire ordering to make sure 3585 // the shadow operations aren't reordered before it. 3586 Value *NewOrdering = 3587 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3588 CB.setArgOperand(3, NewOrdering); 3589 3590 IRBuilder<> NextIRB(CB.getNextNode()); 3591 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3592 3593 Value *SrcShadowPtr, *SrcOriginPtr; 3594 std::tie(SrcShadowPtr, SrcOriginPtr) = 3595 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3596 /*isStore*/ false); 3597 Value *DstShadowPtr = 3598 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3599 /*isStore*/ true) 3600 .first; 3601 3602 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 3603 if (MS.TrackOrigins) { 3604 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 3605 kMinOriginAlignment); 3606 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 3607 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 3608 } 3609 } 3610 3611 void visitLibAtomicStore(CallBase &CB) { 3612 IRBuilder<> IRB(&CB); 3613 Value *Size = CB.getArgOperand(0); 3614 Value *DstPtr = CB.getArgOperand(2); 3615 Value *Ordering = CB.getArgOperand(3); 3616 // Convert the call to have at least Release ordering to make sure 3617 // the shadow operations aren't reordered after it. 3618 Value *NewOrdering = 3619 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3620 CB.setArgOperand(3, NewOrdering); 3621 3622 Value *DstShadowPtr = 3623 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 3624 /*isStore*/ true) 3625 .first; 3626 3627 // Atomic store always paints clean shadow/origin. See file header. 3628 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 3629 Align(1)); 3630 } 3631 3632 void visitCallBase(CallBase &CB) { 3633 assert(!CB.getMetadata("nosanitize")); 3634 if (CB.isInlineAsm()) { 3635 // For inline asm (either a call to asm function, or callbr instruction), 3636 // do the usual thing: check argument shadow and mark all outputs as 3637 // clean. Note that any side effects of the inline asm that are not 3638 // immediately visible in its constraints are not handled. 3639 if (ClHandleAsmConservative && MS.CompileKernel) 3640 visitAsmInstruction(CB); 3641 else 3642 visitInstruction(CB); 3643 return; 3644 } 3645 LibFunc LF; 3646 if (TLI->getLibFunc(CB, LF)) { 3647 // libatomic.a functions need to have special handling because there isn't 3648 // a good way to intercept them or compile the library with 3649 // instrumentation. 3650 switch (LF) { 3651 case LibFunc_atomic_load: 3652 if (!isa<CallInst>(CB)) { 3653 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 3654 "Ignoring!\n"; 3655 break; 3656 } 3657 visitLibAtomicLoad(CB); 3658 return; 3659 case LibFunc_atomic_store: 3660 visitLibAtomicStore(CB); 3661 return; 3662 default: 3663 break; 3664 } 3665 } 3666 3667 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3668 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3669 3670 // We are going to insert code that relies on the fact that the callee 3671 // will become a non-readonly function after it is instrumented by us. To 3672 // prevent this code from being optimized out, mark that function 3673 // non-readonly in advance. 3674 AttributeMask B; 3675 B.addAttribute(Attribute::ReadOnly) 3676 .addAttribute(Attribute::ReadNone) 3677 .addAttribute(Attribute::WriteOnly) 3678 .addAttribute(Attribute::ArgMemOnly) 3679 .addAttribute(Attribute::Speculatable); 3680 3681 Call->removeFnAttrs(B); 3682 if (Function *Func = Call->getCalledFunction()) { 3683 Func->removeFnAttrs(B); 3684 } 3685 3686 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3687 } 3688 IRBuilder<> IRB(&CB); 3689 bool MayCheckCall = MS.EagerChecks; 3690 if (Function *Func = CB.getCalledFunction()) { 3691 // __sanitizer_unaligned_{load,store} functions may be called by users 3692 // and always expects shadows in the TLS. So don't check them. 3693 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 3694 } 3695 3696 unsigned ArgOffset = 0; 3697 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3698 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3699 ++ArgIt) { 3700 Value *A = *ArgIt; 3701 unsigned i = ArgIt - CB.arg_begin(); 3702 if (!A->getType()->isSized()) { 3703 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3704 continue; 3705 } 3706 unsigned Size = 0; 3707 const DataLayout &DL = F.getParent()->getDataLayout(); 3708 3709 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 3710 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 3711 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 3712 3713 if (EagerCheck) { 3714 insertShadowCheck(A, &CB); 3715 Size = DL.getTypeAllocSize(A->getType()); 3716 } else { 3717 Value *Store = nullptr; 3718 // Compute the Shadow for arg even if it is ByVal, because 3719 // in that case getShadow() will copy the actual arg shadow to 3720 // __msan_param_tls. 3721 Value *ArgShadow = getShadow(A); 3722 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3723 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3724 << " Shadow: " << *ArgShadow << "\n"); 3725 if (ByVal) { 3726 // ByVal requires some special handling as it's too big for a single 3727 // load 3728 assert(A->getType()->isPointerTy() && 3729 "ByVal argument is not a pointer!"); 3730 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3731 if (ArgOffset + Size > kParamTLSSize) 3732 break; 3733 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3734 MaybeAlign Alignment = llvm::None; 3735 if (ParamAlignment) 3736 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3737 Value *AShadowPtr, *AOriginPtr; 3738 std::tie(AShadowPtr, AOriginPtr) = 3739 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3740 /*isStore*/ false); 3741 if (!PropagateShadow) { 3742 Store = IRB.CreateMemSet(ArgShadowBase, 3743 Constant::getNullValue(IRB.getInt8Ty()), 3744 Size, Alignment); 3745 } else { 3746 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3747 Alignment, Size); 3748 if (MS.TrackOrigins) { 3749 Value *ArgOriginBase = getOriginPtrForArgument(A, IRB, ArgOffset); 3750 // FIXME: OriginSize should be: 3751 // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) 3752 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 3753 IRB.CreateMemCpy( 3754 ArgOriginBase, 3755 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 3756 AOriginPtr, 3757 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize); 3758 } 3759 } 3760 } else { 3761 // Any other parameters mean we need bit-grained tracking of uninit 3762 // data 3763 Size = DL.getTypeAllocSize(A->getType()); 3764 if (ArgOffset + Size > kParamTLSSize) 3765 break; 3766 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3767 kShadowTLSAlignment); 3768 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3769 if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { 3770 IRB.CreateStore(getOrigin(A), 3771 getOriginPtrForArgument(A, IRB, ArgOffset)); 3772 } 3773 } 3774 (void)Store; 3775 assert(Store != nullptr); 3776 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3777 } 3778 assert(Size != 0); 3779 ArgOffset += alignTo(Size, kShadowTLSAlignment); 3780 } 3781 LLVM_DEBUG(dbgs() << " done with call args\n"); 3782 3783 FunctionType *FT = CB.getFunctionType(); 3784 if (FT->isVarArg()) { 3785 VAHelper->visitCallBase(CB, IRB); 3786 } 3787 3788 // Now, get the shadow for the RetVal. 3789 if (!CB.getType()->isSized()) 3790 return; 3791 // Don't emit the epilogue for musttail call returns. 3792 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3793 return; 3794 3795 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 3796 setShadow(&CB, getCleanShadow(&CB)); 3797 setOrigin(&CB, getCleanOrigin()); 3798 return; 3799 } 3800 3801 IRBuilder<> IRBBefore(&CB); 3802 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3803 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3804 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3805 kShadowTLSAlignment); 3806 BasicBlock::iterator NextInsn; 3807 if (isa<CallInst>(CB)) { 3808 NextInsn = ++CB.getIterator(); 3809 assert(NextInsn != CB.getParent()->end()); 3810 } else { 3811 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3812 if (!NormalDest->getSinglePredecessor()) { 3813 // FIXME: this case is tricky, so we are just conservative here. 3814 // Perhaps we need to split the edge between this BB and NormalDest, 3815 // but a naive attempt to use SplitEdge leads to a crash. 3816 setShadow(&CB, getCleanShadow(&CB)); 3817 setOrigin(&CB, getCleanOrigin()); 3818 return; 3819 } 3820 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3821 // Anything inserted there will be instrumented by MSan later! 3822 NextInsn = NormalDest->getFirstInsertionPt(); 3823 assert(NextInsn != NormalDest->end() && 3824 "Could not find insertion point for retval shadow load"); 3825 } 3826 IRBuilder<> IRBAfter(&*NextInsn); 3827 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3828 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3829 kShadowTLSAlignment, "_msret"); 3830 setShadow(&CB, RetvalShadow); 3831 if (MS.TrackOrigins) 3832 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3833 getOriginPtrForRetval(IRBAfter))); 3834 } 3835 3836 bool isAMustTailRetVal(Value *RetVal) { 3837 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3838 RetVal = I->getOperand(0); 3839 } 3840 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3841 return I->isMustTailCall(); 3842 } 3843 return false; 3844 } 3845 3846 void visitReturnInst(ReturnInst &I) { 3847 IRBuilder<> IRB(&I); 3848 Value *RetVal = I.getReturnValue(); 3849 if (!RetVal) return; 3850 // Don't emit the epilogue for musttail call returns. 3851 if (isAMustTailRetVal(RetVal)) return; 3852 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3853 bool HasNoUndef = 3854 F.hasRetAttribute(Attribute::NoUndef); 3855 bool StoreShadow = !(MS.EagerChecks && HasNoUndef); 3856 // FIXME: Consider using SpecialCaseList to specify a list of functions that 3857 // must always return fully initialized values. For now, we hardcode "main". 3858 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main"); 3859 3860 Value *Shadow = getShadow(RetVal); 3861 bool StoreOrigin = true; 3862 if (EagerCheck) { 3863 insertShadowCheck(RetVal, &I); 3864 Shadow = getCleanShadow(RetVal); 3865 StoreOrigin = false; 3866 } 3867 3868 // The caller may still expect information passed over TLS if we pass our 3869 // check 3870 if (StoreShadow) { 3871 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3872 if (MS.TrackOrigins && StoreOrigin) 3873 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3874 } 3875 } 3876 3877 void visitPHINode(PHINode &I) { 3878 IRBuilder<> IRB(&I); 3879 if (!PropagateShadow) { 3880 setShadow(&I, getCleanShadow(&I)); 3881 setOrigin(&I, getCleanOrigin()); 3882 return; 3883 } 3884 3885 ShadowPHINodes.push_back(&I); 3886 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3887 "_msphi_s")); 3888 if (MS.TrackOrigins) 3889 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3890 "_msphi_o")); 3891 } 3892 3893 Value *getLocalVarDescription(AllocaInst &I) { 3894 SmallString<2048> StackDescriptionStorage; 3895 raw_svector_ostream StackDescription(StackDescriptionStorage); 3896 // We create a string with a description of the stack allocation and 3897 // pass it into __msan_set_alloca_origin. 3898 // It will be printed by the run-time if stack-originated UMR is found. 3899 // The first 4 bytes of the string are set to '----' and will be replaced 3900 // by __msan_va_arg_overflow_size_tls at the first call. 3901 StackDescription << "----" << I.getName() << "@" << F.getName(); 3902 return createPrivateNonConstGlobalForString(*F.getParent(), 3903 StackDescription.str()); 3904 } 3905 3906 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3907 if (PoisonStack && ClPoisonStackWithCall) { 3908 IRB.CreateCall(MS.MsanPoisonStackFn, 3909 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3910 } else { 3911 Value *ShadowBase, *OriginBase; 3912 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3913 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3914 3915 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3916 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign()); 3917 } 3918 3919 if (PoisonStack && MS.TrackOrigins) { 3920 Value *Descr = getLocalVarDescription(I); 3921 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3922 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3923 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3924 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3925 } 3926 } 3927 3928 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3929 Value *Descr = getLocalVarDescription(I); 3930 if (PoisonStack) { 3931 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3932 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3933 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3934 } else { 3935 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3936 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3937 } 3938 } 3939 3940 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3941 if (!InsPoint) 3942 InsPoint = &I; 3943 IRBuilder<> IRB(InsPoint->getNextNode()); 3944 const DataLayout &DL = F.getParent()->getDataLayout(); 3945 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3946 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3947 if (I.isArrayAllocation()) 3948 Len = IRB.CreateMul(Len, I.getArraySize()); 3949 3950 if (MS.CompileKernel) 3951 poisonAllocaKmsan(I, IRB, Len); 3952 else 3953 poisonAllocaUserspace(I, IRB, Len); 3954 } 3955 3956 void visitAllocaInst(AllocaInst &I) { 3957 setShadow(&I, getCleanShadow(&I)); 3958 setOrigin(&I, getCleanOrigin()); 3959 // We'll get to this alloca later unless it's poisoned at the corresponding 3960 // llvm.lifetime.start. 3961 AllocaSet.insert(&I); 3962 } 3963 3964 void visitSelectInst(SelectInst& I) { 3965 IRBuilder<> IRB(&I); 3966 // a = select b, c, d 3967 Value *B = I.getCondition(); 3968 Value *C = I.getTrueValue(); 3969 Value *D = I.getFalseValue(); 3970 Value *Sb = getShadow(B); 3971 Value *Sc = getShadow(C); 3972 Value *Sd = getShadow(D); 3973 3974 // Result shadow if condition shadow is 0. 3975 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3976 Value *Sa1; 3977 if (I.getType()->isAggregateType()) { 3978 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3979 // an extra "select". This results in much more compact IR. 3980 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3981 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3982 } else { 3983 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3984 // If Sb (condition is poisoned), look for bits in c and d that are equal 3985 // and both unpoisoned. 3986 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3987 3988 // Cast arguments to shadow-compatible type. 3989 C = CreateAppToShadowCast(IRB, C); 3990 D = CreateAppToShadowCast(IRB, D); 3991 3992 // Result shadow if condition shadow is 1. 3993 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3994 } 3995 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3996 setShadow(&I, Sa); 3997 if (MS.TrackOrigins) { 3998 // Origins are always i32, so any vector conditions must be flattened. 3999 // FIXME: consider tracking vector origins for app vectors? 4000 if (B->getType()->isVectorTy()) { 4001 Type *FlatTy = getShadowTyNoVec(B->getType()); 4002 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 4003 ConstantInt::getNullValue(FlatTy)); 4004 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 4005 ConstantInt::getNullValue(FlatTy)); 4006 } 4007 // a = select b, c, d 4008 // Oa = Sb ? Ob : (b ? Oc : Od) 4009 setOrigin( 4010 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 4011 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 4012 getOrigin(I.getFalseValue())))); 4013 } 4014 } 4015 4016 void visitLandingPadInst(LandingPadInst &I) { 4017 // Do nothing. 4018 // See https://github.com/google/sanitizers/issues/504 4019 setShadow(&I, getCleanShadow(&I)); 4020 setOrigin(&I, getCleanOrigin()); 4021 } 4022 4023 void visitCatchSwitchInst(CatchSwitchInst &I) { 4024 setShadow(&I, getCleanShadow(&I)); 4025 setOrigin(&I, getCleanOrigin()); 4026 } 4027 4028 void visitFuncletPadInst(FuncletPadInst &I) { 4029 setShadow(&I, getCleanShadow(&I)); 4030 setOrigin(&I, getCleanOrigin()); 4031 } 4032 4033 void visitGetElementPtrInst(GetElementPtrInst &I) { 4034 handleShadowOr(I); 4035 } 4036 4037 void visitExtractValueInst(ExtractValueInst &I) { 4038 IRBuilder<> IRB(&I); 4039 Value *Agg = I.getAggregateOperand(); 4040 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 4041 Value *AggShadow = getShadow(Agg); 4042 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4043 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 4044 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 4045 setShadow(&I, ResShadow); 4046 setOriginForNaryOp(I); 4047 } 4048 4049 void visitInsertValueInst(InsertValueInst &I) { 4050 IRBuilder<> IRB(&I); 4051 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 4052 Value *AggShadow = getShadow(I.getAggregateOperand()); 4053 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 4054 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4055 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 4056 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 4057 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 4058 setShadow(&I, Res); 4059 setOriginForNaryOp(I); 4060 } 4061 4062 void dumpInst(Instruction &I) { 4063 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 4064 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 4065 } else { 4066 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 4067 } 4068 errs() << "QQQ " << I << "\n"; 4069 } 4070 4071 void visitResumeInst(ResumeInst &I) { 4072 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4073 // Nothing to do here. 4074 } 4075 4076 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4077 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4078 // Nothing to do here. 4079 } 4080 4081 void visitCatchReturnInst(CatchReturnInst &CRI) { 4082 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4083 // Nothing to do here. 4084 } 4085 4086 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 4087 const DataLayout &DL, bool isOutput) { 4088 // For each assembly argument, we check its value for being initialized. 4089 // If the argument is a pointer, we assume it points to a single element 4090 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4091 // Each such pointer is instrumented with a call to the runtime library. 4092 Type *OpType = Operand->getType(); 4093 // Check the operand value itself. 4094 insertShadowCheck(Operand, &I); 4095 if (!OpType->isPointerTy() || !isOutput) { 4096 assert(!isOutput); 4097 return; 4098 } 4099 Type *ElType = OpType->getPointerElementType(); 4100 if (!ElType->isSized()) 4101 return; 4102 int Size = DL.getTypeStoreSize(ElType); 4103 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 4104 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 4105 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 4106 } 4107 4108 /// Get the number of output arguments returned by pointers. 4109 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4110 int NumRetOutputs = 0; 4111 int NumOutputs = 0; 4112 Type *RetTy = cast<Value>(CB)->getType(); 4113 if (!RetTy->isVoidTy()) { 4114 // Register outputs are returned via the CallInst return value. 4115 auto *ST = dyn_cast<StructType>(RetTy); 4116 if (ST) 4117 NumRetOutputs = ST->getNumElements(); 4118 else 4119 NumRetOutputs = 1; 4120 } 4121 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4122 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 4123 switch (Info.Type) { 4124 case InlineAsm::isOutput: 4125 NumOutputs++; 4126 break; 4127 default: 4128 break; 4129 } 4130 } 4131 return NumOutputs - NumRetOutputs; 4132 } 4133 4134 void visitAsmInstruction(Instruction &I) { 4135 // Conservative inline assembly handling: check for poisoned shadow of 4136 // asm() arguments, then unpoison the result and all the memory locations 4137 // pointed to by those arguments. 4138 // An inline asm() statement in C++ contains lists of input and output 4139 // arguments used by the assembly code. These are mapped to operands of the 4140 // CallInst as follows: 4141 // - nR register outputs ("=r) are returned by value in a single structure 4142 // (SSA value of the CallInst); 4143 // - nO other outputs ("=m" and others) are returned by pointer as first 4144 // nO operands of the CallInst; 4145 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4146 // remaining nI operands. 4147 // The total number of asm() arguments in the source is nR+nO+nI, and the 4148 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4149 // function to be called). 4150 const DataLayout &DL = F.getParent()->getDataLayout(); 4151 CallBase *CB = cast<CallBase>(&I); 4152 IRBuilder<> IRB(&I); 4153 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4154 int OutputArgs = getNumOutputArgs(IA, CB); 4155 // The last operand of a CallInst is the function itself. 4156 int NumOperands = CB->getNumOperands() - 1; 4157 4158 // Check input arguments. Doing so before unpoisoning output arguments, so 4159 // that we won't overwrite uninit values before checking them. 4160 for (int i = OutputArgs; i < NumOperands; i++) { 4161 Value *Operand = CB->getOperand(i); 4162 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 4163 } 4164 // Unpoison output arguments. This must happen before the actual InlineAsm 4165 // call, so that the shadow for memory published in the asm() statement 4166 // remains valid. 4167 for (int i = 0; i < OutputArgs; i++) { 4168 Value *Operand = CB->getOperand(i); 4169 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 4170 } 4171 4172 setShadow(&I, getCleanShadow(&I)); 4173 setOrigin(&I, getCleanOrigin()); 4174 } 4175 4176 void visitFreezeInst(FreezeInst &I) { 4177 // Freeze always returns a fully defined value. 4178 setShadow(&I, getCleanShadow(&I)); 4179 setOrigin(&I, getCleanOrigin()); 4180 } 4181 4182 void visitInstruction(Instruction &I) { 4183 // Everything else: stop propagating and check for poisoned shadow. 4184 if (ClDumpStrictInstructions) 4185 dumpInst(I); 4186 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4187 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4188 Value *Operand = I.getOperand(i); 4189 if (Operand->getType()->isSized()) 4190 insertShadowCheck(Operand, &I); 4191 } 4192 setShadow(&I, getCleanShadow(&I)); 4193 setOrigin(&I, getCleanOrigin()); 4194 } 4195 }; 4196 4197 /// AMD64-specific implementation of VarArgHelper. 4198 struct VarArgAMD64Helper : public VarArgHelper { 4199 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4200 // See a comment in visitCallBase for more details. 4201 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4202 static const unsigned AMD64FpEndOffsetSSE = 176; 4203 // If SSE is disabled, fp_offset in va_list is zero. 4204 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4205 4206 unsigned AMD64FpEndOffset; 4207 Function &F; 4208 MemorySanitizer &MS; 4209 MemorySanitizerVisitor &MSV; 4210 Value *VAArgTLSCopy = nullptr; 4211 Value *VAArgTLSOriginCopy = nullptr; 4212 Value *VAArgOverflowSize = nullptr; 4213 4214 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4215 4216 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4217 4218 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4219 MemorySanitizerVisitor &MSV) 4220 : F(F), MS(MS), MSV(MSV) { 4221 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4222 for (const auto &Attr : F.getAttributes().getFnAttrs()) { 4223 if (Attr.isStringAttribute() && 4224 (Attr.getKindAsString() == "target-features")) { 4225 if (Attr.getValueAsString().contains("-sse")) 4226 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4227 break; 4228 } 4229 } 4230 } 4231 4232 ArgKind classifyArgument(Value* arg) { 4233 // A very rough approximation of X86_64 argument classification rules. 4234 Type *T = arg->getType(); 4235 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4236 return AK_FloatingPoint; 4237 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4238 return AK_GeneralPurpose; 4239 if (T->isPointerTy()) 4240 return AK_GeneralPurpose; 4241 return AK_Memory; 4242 } 4243 4244 // For VarArg functions, store the argument shadow in an ABI-specific format 4245 // that corresponds to va_list layout. 4246 // We do this because Clang lowers va_arg in the frontend, and this pass 4247 // only sees the low level code that deals with va_list internals. 4248 // A much easier alternative (provided that Clang emits va_arg instructions) 4249 // would have been to associate each live instance of va_list with a copy of 4250 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4251 // order. 4252 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4253 unsigned GpOffset = 0; 4254 unsigned FpOffset = AMD64GpEndOffset; 4255 unsigned OverflowOffset = AMD64FpEndOffset; 4256 const DataLayout &DL = F.getParent()->getDataLayout(); 4257 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4258 ++ArgIt) { 4259 Value *A = *ArgIt; 4260 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4261 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4262 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4263 if (IsByVal) { 4264 // ByVal arguments always go to the overflow area. 4265 // Fixed arguments passed through the overflow area will be stepped 4266 // over by va_start, so don't count them towards the offset. 4267 if (IsFixed) 4268 continue; 4269 assert(A->getType()->isPointerTy()); 4270 Type *RealTy = CB.getParamByValType(ArgNo); 4271 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4272 Value *ShadowBase = getShadowPtrForVAArgument( 4273 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4274 Value *OriginBase = nullptr; 4275 if (MS.TrackOrigins) 4276 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4277 OverflowOffset += alignTo(ArgSize, 8); 4278 if (!ShadowBase) 4279 continue; 4280 Value *ShadowPtr, *OriginPtr; 4281 std::tie(ShadowPtr, OriginPtr) = 4282 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4283 /*isStore*/ false); 4284 4285 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4286 kShadowTLSAlignment, ArgSize); 4287 if (MS.TrackOrigins) 4288 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4289 kShadowTLSAlignment, ArgSize); 4290 } else { 4291 ArgKind AK = classifyArgument(A); 4292 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4293 AK = AK_Memory; 4294 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4295 AK = AK_Memory; 4296 Value *ShadowBase, *OriginBase = nullptr; 4297 switch (AK) { 4298 case AK_GeneralPurpose: 4299 ShadowBase = 4300 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4301 if (MS.TrackOrigins) 4302 OriginBase = 4303 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4304 GpOffset += 8; 4305 break; 4306 case AK_FloatingPoint: 4307 ShadowBase = 4308 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4309 if (MS.TrackOrigins) 4310 OriginBase = 4311 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4312 FpOffset += 16; 4313 break; 4314 case AK_Memory: 4315 if (IsFixed) 4316 continue; 4317 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4318 ShadowBase = 4319 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4320 if (MS.TrackOrigins) 4321 OriginBase = 4322 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4323 OverflowOffset += alignTo(ArgSize, 8); 4324 } 4325 // Take fixed arguments into account for GpOffset and FpOffset, 4326 // but don't actually store shadows for them. 4327 // TODO(glider): don't call get*PtrForVAArgument() for them. 4328 if (IsFixed) 4329 continue; 4330 if (!ShadowBase) 4331 continue; 4332 Value *Shadow = MSV.getShadow(A); 4333 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4334 if (MS.TrackOrigins) { 4335 Value *Origin = MSV.getOrigin(A); 4336 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4337 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4338 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4339 } 4340 } 4341 } 4342 Constant *OverflowSize = 4343 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4344 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4345 } 4346 4347 /// Compute the shadow address for a given va_arg. 4348 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4349 unsigned ArgOffset, unsigned ArgSize) { 4350 // Make sure we don't overflow __msan_va_arg_tls. 4351 if (ArgOffset + ArgSize > kParamTLSSize) 4352 return nullptr; 4353 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4354 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4355 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4356 "_msarg_va_s"); 4357 } 4358 4359 /// Compute the origin address for a given va_arg. 4360 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4361 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4362 // getOriginPtrForVAArgument() is always called after 4363 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4364 // overflow. 4365 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4366 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4367 "_msarg_va_o"); 4368 } 4369 4370 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4371 IRBuilder<> IRB(&I); 4372 Value *VAListTag = I.getArgOperand(0); 4373 Value *ShadowPtr, *OriginPtr; 4374 const Align Alignment = Align(8); 4375 std::tie(ShadowPtr, OriginPtr) = 4376 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4377 /*isStore*/ true); 4378 4379 // Unpoison the whole __va_list_tag. 4380 // FIXME: magic ABI constants. 4381 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4382 /* size */ 24, Alignment, false); 4383 // We shouldn't need to zero out the origins, as they're only checked for 4384 // nonzero shadow. 4385 } 4386 4387 void visitVAStartInst(VAStartInst &I) override { 4388 if (F.getCallingConv() == CallingConv::Win64) 4389 return; 4390 VAStartInstrumentationList.push_back(&I); 4391 unpoisonVAListTagForInst(I); 4392 } 4393 4394 void visitVACopyInst(VACopyInst &I) override { 4395 if (F.getCallingConv() == CallingConv::Win64) return; 4396 unpoisonVAListTagForInst(I); 4397 } 4398 4399 void finalizeInstrumentation() override { 4400 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4401 "finalizeInstrumentation called twice"); 4402 if (!VAStartInstrumentationList.empty()) { 4403 // If there is a va_start in this function, make a backup copy of 4404 // va_arg_tls somewhere in the function entry block. 4405 IRBuilder<> IRB(MSV.FnPrologueEnd); 4406 VAArgOverflowSize = 4407 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4408 Value *CopySize = 4409 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4410 VAArgOverflowSize); 4411 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4412 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4413 if (MS.TrackOrigins) { 4414 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4415 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4416 Align(8), CopySize); 4417 } 4418 } 4419 4420 // Instrument va_start. 4421 // Copy va_list shadow from the backup copy of the TLS contents. 4422 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4423 CallInst *OrigInst = VAStartInstrumentationList[i]; 4424 IRBuilder<> IRB(OrigInst->getNextNode()); 4425 Value *VAListTag = OrigInst->getArgOperand(0); 4426 4427 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4428 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4429 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4430 ConstantInt::get(MS.IntptrTy, 16)), 4431 PointerType::get(RegSaveAreaPtrTy, 0)); 4432 Value *RegSaveAreaPtr = 4433 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4434 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4435 const Align Alignment = Align(16); 4436 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4437 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4438 Alignment, /*isStore*/ true); 4439 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4440 AMD64FpEndOffset); 4441 if (MS.TrackOrigins) 4442 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4443 Alignment, AMD64FpEndOffset); 4444 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4445 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4446 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4447 ConstantInt::get(MS.IntptrTy, 8)), 4448 PointerType::get(OverflowArgAreaPtrTy, 0)); 4449 Value *OverflowArgAreaPtr = 4450 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4451 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4452 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4453 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4454 Alignment, /*isStore*/ true); 4455 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4456 AMD64FpEndOffset); 4457 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4458 VAArgOverflowSize); 4459 if (MS.TrackOrigins) { 4460 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4461 AMD64FpEndOffset); 4462 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4463 VAArgOverflowSize); 4464 } 4465 } 4466 } 4467 }; 4468 4469 /// MIPS64-specific implementation of VarArgHelper. 4470 struct VarArgMIPS64Helper : public VarArgHelper { 4471 Function &F; 4472 MemorySanitizer &MS; 4473 MemorySanitizerVisitor &MSV; 4474 Value *VAArgTLSCopy = nullptr; 4475 Value *VAArgSize = nullptr; 4476 4477 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4478 4479 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4480 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4481 4482 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4483 unsigned VAArgOffset = 0; 4484 const DataLayout &DL = F.getParent()->getDataLayout(); 4485 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4486 End = CB.arg_end(); 4487 ArgIt != End; ++ArgIt) { 4488 Triple TargetTriple(F.getParent()->getTargetTriple()); 4489 Value *A = *ArgIt; 4490 Value *Base; 4491 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4492 if (TargetTriple.getArch() == Triple::mips64) { 4493 // Adjusting the shadow for argument with size < 8 to match the placement 4494 // of bits in big endian system 4495 if (ArgSize < 8) 4496 VAArgOffset += (8 - ArgSize); 4497 } 4498 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4499 VAArgOffset += ArgSize; 4500 VAArgOffset = alignTo(VAArgOffset, 8); 4501 if (!Base) 4502 continue; 4503 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4504 } 4505 4506 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4507 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4508 // a new class member i.e. it is the total size of all VarArgs. 4509 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4510 } 4511 4512 /// Compute the shadow address for a given va_arg. 4513 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4514 unsigned ArgOffset, unsigned ArgSize) { 4515 // Make sure we don't overflow __msan_va_arg_tls. 4516 if (ArgOffset + ArgSize > kParamTLSSize) 4517 return nullptr; 4518 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4519 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4520 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4521 "_msarg"); 4522 } 4523 4524 void visitVAStartInst(VAStartInst &I) override { 4525 IRBuilder<> IRB(&I); 4526 VAStartInstrumentationList.push_back(&I); 4527 Value *VAListTag = I.getArgOperand(0); 4528 Value *ShadowPtr, *OriginPtr; 4529 const Align Alignment = Align(8); 4530 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4531 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4532 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4533 /* size */ 8, Alignment, false); 4534 } 4535 4536 void visitVACopyInst(VACopyInst &I) override { 4537 IRBuilder<> IRB(&I); 4538 VAStartInstrumentationList.push_back(&I); 4539 Value *VAListTag = I.getArgOperand(0); 4540 Value *ShadowPtr, *OriginPtr; 4541 const Align Alignment = Align(8); 4542 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4543 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4544 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4545 /* size */ 8, Alignment, false); 4546 } 4547 4548 void finalizeInstrumentation() override { 4549 assert(!VAArgSize && !VAArgTLSCopy && 4550 "finalizeInstrumentation called twice"); 4551 IRBuilder<> IRB(MSV.FnPrologueEnd); 4552 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4553 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4554 VAArgSize); 4555 4556 if (!VAStartInstrumentationList.empty()) { 4557 // If there is a va_start in this function, make a backup copy of 4558 // va_arg_tls somewhere in the function entry block. 4559 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4560 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4561 } 4562 4563 // Instrument va_start. 4564 // Copy va_list shadow from the backup copy of the TLS contents. 4565 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4566 CallInst *OrigInst = VAStartInstrumentationList[i]; 4567 IRBuilder<> IRB(OrigInst->getNextNode()); 4568 Value *VAListTag = OrigInst->getArgOperand(0); 4569 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4570 Value *RegSaveAreaPtrPtr = 4571 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4572 PointerType::get(RegSaveAreaPtrTy, 0)); 4573 Value *RegSaveAreaPtr = 4574 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4575 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4576 const Align Alignment = Align(8); 4577 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4578 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4579 Alignment, /*isStore*/ true); 4580 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4581 CopySize); 4582 } 4583 } 4584 }; 4585 4586 /// AArch64-specific implementation of VarArgHelper. 4587 struct VarArgAArch64Helper : public VarArgHelper { 4588 static const unsigned kAArch64GrArgSize = 64; 4589 static const unsigned kAArch64VrArgSize = 128; 4590 4591 static const unsigned AArch64GrBegOffset = 0; 4592 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4593 // Make VR space aligned to 16 bytes. 4594 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4595 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4596 + kAArch64VrArgSize; 4597 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4598 4599 Function &F; 4600 MemorySanitizer &MS; 4601 MemorySanitizerVisitor &MSV; 4602 Value *VAArgTLSCopy = nullptr; 4603 Value *VAArgOverflowSize = nullptr; 4604 4605 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4606 4607 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4608 4609 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4610 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4611 4612 ArgKind classifyArgument(Value* arg) { 4613 Type *T = arg->getType(); 4614 if (T->isFPOrFPVectorTy()) 4615 return AK_FloatingPoint; 4616 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4617 || (T->isPointerTy())) 4618 return AK_GeneralPurpose; 4619 return AK_Memory; 4620 } 4621 4622 // The instrumentation stores the argument shadow in a non ABI-specific 4623 // format because it does not know which argument is named (since Clang, 4624 // like x86_64 case, lowers the va_args in the frontend and this pass only 4625 // sees the low level code that deals with va_list internals). 4626 // The first seven GR registers are saved in the first 56 bytes of the 4627 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4628 // the remaining arguments. 4629 // Using constant offset within the va_arg TLS array allows fast copy 4630 // in the finalize instrumentation. 4631 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4632 unsigned GrOffset = AArch64GrBegOffset; 4633 unsigned VrOffset = AArch64VrBegOffset; 4634 unsigned OverflowOffset = AArch64VAEndOffset; 4635 4636 const DataLayout &DL = F.getParent()->getDataLayout(); 4637 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4638 ++ArgIt) { 4639 Value *A = *ArgIt; 4640 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4641 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4642 ArgKind AK = classifyArgument(A); 4643 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4644 AK = AK_Memory; 4645 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4646 AK = AK_Memory; 4647 Value *Base; 4648 switch (AK) { 4649 case AK_GeneralPurpose: 4650 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4651 GrOffset += 8; 4652 break; 4653 case AK_FloatingPoint: 4654 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4655 VrOffset += 16; 4656 break; 4657 case AK_Memory: 4658 // Don't count fixed arguments in the overflow area - va_start will 4659 // skip right over them. 4660 if (IsFixed) 4661 continue; 4662 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4663 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4664 alignTo(ArgSize, 8)); 4665 OverflowOffset += alignTo(ArgSize, 8); 4666 break; 4667 } 4668 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4669 // bother to actually store a shadow. 4670 if (IsFixed) 4671 continue; 4672 if (!Base) 4673 continue; 4674 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4675 } 4676 Constant *OverflowSize = 4677 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4678 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4679 } 4680 4681 /// Compute the shadow address for a given va_arg. 4682 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4683 unsigned ArgOffset, unsigned ArgSize) { 4684 // Make sure we don't overflow __msan_va_arg_tls. 4685 if (ArgOffset + ArgSize > kParamTLSSize) 4686 return nullptr; 4687 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4688 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4689 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4690 "_msarg"); 4691 } 4692 4693 void visitVAStartInst(VAStartInst &I) override { 4694 IRBuilder<> IRB(&I); 4695 VAStartInstrumentationList.push_back(&I); 4696 Value *VAListTag = I.getArgOperand(0); 4697 Value *ShadowPtr, *OriginPtr; 4698 const Align Alignment = Align(8); 4699 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4700 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4701 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4702 /* size */ 32, Alignment, false); 4703 } 4704 4705 void visitVACopyInst(VACopyInst &I) override { 4706 IRBuilder<> IRB(&I); 4707 VAStartInstrumentationList.push_back(&I); 4708 Value *VAListTag = I.getArgOperand(0); 4709 Value *ShadowPtr, *OriginPtr; 4710 const Align Alignment = Align(8); 4711 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4712 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4713 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4714 /* size */ 32, Alignment, false); 4715 } 4716 4717 // Retrieve a va_list field of 'void*' size. 4718 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4719 Value *SaveAreaPtrPtr = 4720 IRB.CreateIntToPtr( 4721 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4722 ConstantInt::get(MS.IntptrTy, offset)), 4723 Type::getInt64PtrTy(*MS.C)); 4724 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4725 } 4726 4727 // Retrieve a va_list field of 'int' size. 4728 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4729 Value *SaveAreaPtr = 4730 IRB.CreateIntToPtr( 4731 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4732 ConstantInt::get(MS.IntptrTy, offset)), 4733 Type::getInt32PtrTy(*MS.C)); 4734 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4735 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4736 } 4737 4738 void finalizeInstrumentation() override { 4739 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4740 "finalizeInstrumentation called twice"); 4741 if (!VAStartInstrumentationList.empty()) { 4742 // If there is a va_start in this function, make a backup copy of 4743 // va_arg_tls somewhere in the function entry block. 4744 IRBuilder<> IRB(MSV.FnPrologueEnd); 4745 VAArgOverflowSize = 4746 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4747 Value *CopySize = 4748 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4749 VAArgOverflowSize); 4750 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4751 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4752 } 4753 4754 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4755 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4756 4757 // Instrument va_start, copy va_list shadow from the backup copy of 4758 // the TLS contents. 4759 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4760 CallInst *OrigInst = VAStartInstrumentationList[i]; 4761 IRBuilder<> IRB(OrigInst->getNextNode()); 4762 4763 Value *VAListTag = OrigInst->getArgOperand(0); 4764 4765 // The variadic ABI for AArch64 creates two areas to save the incoming 4766 // argument registers (one for 64-bit general register xn-x7 and another 4767 // for 128-bit FP/SIMD vn-v7). 4768 // We need then to propagate the shadow arguments on both regions 4769 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4770 // The remaining arguments are saved on shadow for 'va::stack'. 4771 // One caveat is it requires only to propagate the non-named arguments, 4772 // however on the call site instrumentation 'all' the arguments are 4773 // saved. So to copy the shadow values from the va_arg TLS array 4774 // we need to adjust the offset for both GR and VR fields based on 4775 // the __{gr,vr}_offs value (since they are stores based on incoming 4776 // named arguments). 4777 4778 // Read the stack pointer from the va_list. 4779 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4780 4781 // Read both the __gr_top and __gr_off and add them up. 4782 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4783 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4784 4785 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4786 4787 // Read both the __vr_top and __vr_off and add them up. 4788 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4789 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4790 4791 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4792 4793 // It does not know how many named arguments is being used and, on the 4794 // callsite all the arguments were saved. Since __gr_off is defined as 4795 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4796 // argument by ignoring the bytes of shadow from named arguments. 4797 Value *GrRegSaveAreaShadowPtrOff = 4798 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4799 4800 Value *GrRegSaveAreaShadowPtr = 4801 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4802 Align(8), /*isStore*/ true) 4803 .first; 4804 4805 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4806 GrRegSaveAreaShadowPtrOff); 4807 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4808 4809 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4810 GrCopySize); 4811 4812 // Again, but for FP/SIMD values. 4813 Value *VrRegSaveAreaShadowPtrOff = 4814 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4815 4816 Value *VrRegSaveAreaShadowPtr = 4817 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4818 Align(8), /*isStore*/ true) 4819 .first; 4820 4821 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4822 IRB.getInt8Ty(), 4823 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4824 IRB.getInt32(AArch64VrBegOffset)), 4825 VrRegSaveAreaShadowPtrOff); 4826 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4827 4828 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4829 VrCopySize); 4830 4831 // And finally for remaining arguments. 4832 Value *StackSaveAreaShadowPtr = 4833 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4834 Align(16), /*isStore*/ true) 4835 .first; 4836 4837 Value *StackSrcPtr = 4838 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4839 IRB.getInt32(AArch64VAEndOffset)); 4840 4841 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4842 Align(16), VAArgOverflowSize); 4843 } 4844 } 4845 }; 4846 4847 /// PowerPC64-specific implementation of VarArgHelper. 4848 struct VarArgPowerPC64Helper : public VarArgHelper { 4849 Function &F; 4850 MemorySanitizer &MS; 4851 MemorySanitizerVisitor &MSV; 4852 Value *VAArgTLSCopy = nullptr; 4853 Value *VAArgSize = nullptr; 4854 4855 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4856 4857 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4858 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4859 4860 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4861 // For PowerPC, we need to deal with alignment of stack arguments - 4862 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4863 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4864 // For that reason, we compute current offset from stack pointer (which is 4865 // always properly aligned), and offset for the first vararg, then subtract 4866 // them. 4867 unsigned VAArgBase; 4868 Triple TargetTriple(F.getParent()->getTargetTriple()); 4869 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4870 // and 32 bytes for ABIv2. This is usually determined by target 4871 // endianness, but in theory could be overridden by function attribute. 4872 if (TargetTriple.getArch() == Triple::ppc64) 4873 VAArgBase = 48; 4874 else 4875 VAArgBase = 32; 4876 unsigned VAArgOffset = VAArgBase; 4877 const DataLayout &DL = F.getParent()->getDataLayout(); 4878 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4879 ++ArgIt) { 4880 Value *A = *ArgIt; 4881 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4882 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4883 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4884 if (IsByVal) { 4885 assert(A->getType()->isPointerTy()); 4886 Type *RealTy = CB.getParamByValType(ArgNo); 4887 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4888 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4889 if (!ArgAlign || *ArgAlign < Align(8)) 4890 ArgAlign = Align(8); 4891 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4892 if (!IsFixed) { 4893 Value *Base = getShadowPtrForVAArgument( 4894 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4895 if (Base) { 4896 Value *AShadowPtr, *AOriginPtr; 4897 std::tie(AShadowPtr, AOriginPtr) = 4898 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4899 kShadowTLSAlignment, /*isStore*/ false); 4900 4901 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4902 kShadowTLSAlignment, ArgSize); 4903 } 4904 } 4905 VAArgOffset += alignTo(ArgSize, 8); 4906 } else { 4907 Value *Base; 4908 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4909 uint64_t ArgAlign = 8; 4910 if (A->getType()->isArrayTy()) { 4911 // Arrays are aligned to element size, except for long double 4912 // arrays, which are aligned to 8 bytes. 4913 Type *ElementTy = A->getType()->getArrayElementType(); 4914 if (!ElementTy->isPPC_FP128Ty()) 4915 ArgAlign = DL.getTypeAllocSize(ElementTy); 4916 } else if (A->getType()->isVectorTy()) { 4917 // Vectors are naturally aligned. 4918 ArgAlign = DL.getTypeAllocSize(A->getType()); 4919 } 4920 if (ArgAlign < 8) 4921 ArgAlign = 8; 4922 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4923 if (DL.isBigEndian()) { 4924 // Adjusting the shadow for argument with size < 8 to match the placement 4925 // of bits in big endian system 4926 if (ArgSize < 8) 4927 VAArgOffset += (8 - ArgSize); 4928 } 4929 if (!IsFixed) { 4930 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4931 VAArgOffset - VAArgBase, ArgSize); 4932 if (Base) 4933 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4934 } 4935 VAArgOffset += ArgSize; 4936 VAArgOffset = alignTo(VAArgOffset, 8); 4937 } 4938 if (IsFixed) 4939 VAArgBase = VAArgOffset; 4940 } 4941 4942 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4943 VAArgOffset - VAArgBase); 4944 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4945 // a new class member i.e. it is the total size of all VarArgs. 4946 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4947 } 4948 4949 /// Compute the shadow address for a given va_arg. 4950 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4951 unsigned ArgOffset, unsigned ArgSize) { 4952 // Make sure we don't overflow __msan_va_arg_tls. 4953 if (ArgOffset + ArgSize > kParamTLSSize) 4954 return nullptr; 4955 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4956 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4957 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4958 "_msarg"); 4959 } 4960 4961 void visitVAStartInst(VAStartInst &I) override { 4962 IRBuilder<> IRB(&I); 4963 VAStartInstrumentationList.push_back(&I); 4964 Value *VAListTag = I.getArgOperand(0); 4965 Value *ShadowPtr, *OriginPtr; 4966 const Align Alignment = Align(8); 4967 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4968 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4969 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4970 /* size */ 8, Alignment, false); 4971 } 4972 4973 void visitVACopyInst(VACopyInst &I) override { 4974 IRBuilder<> IRB(&I); 4975 Value *VAListTag = I.getArgOperand(0); 4976 Value *ShadowPtr, *OriginPtr; 4977 const Align Alignment = Align(8); 4978 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4979 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4980 // Unpoison the whole __va_list_tag. 4981 // FIXME: magic ABI constants. 4982 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4983 /* size */ 8, Alignment, false); 4984 } 4985 4986 void finalizeInstrumentation() override { 4987 assert(!VAArgSize && !VAArgTLSCopy && 4988 "finalizeInstrumentation called twice"); 4989 IRBuilder<> IRB(MSV.FnPrologueEnd); 4990 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4991 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4992 VAArgSize); 4993 4994 if (!VAStartInstrumentationList.empty()) { 4995 // If there is a va_start in this function, make a backup copy of 4996 // va_arg_tls somewhere in the function entry block. 4997 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4998 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4999 } 5000 5001 // Instrument va_start. 5002 // Copy va_list shadow from the backup copy of the TLS contents. 5003 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 5004 CallInst *OrigInst = VAStartInstrumentationList[i]; 5005 IRBuilder<> IRB(OrigInst->getNextNode()); 5006 Value *VAListTag = OrigInst->getArgOperand(0); 5007 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5008 Value *RegSaveAreaPtrPtr = 5009 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5010 PointerType::get(RegSaveAreaPtrTy, 0)); 5011 Value *RegSaveAreaPtr = 5012 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5013 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5014 const Align Alignment = Align(8); 5015 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5016 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5017 Alignment, /*isStore*/ true); 5018 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5019 CopySize); 5020 } 5021 } 5022 }; 5023 5024 /// SystemZ-specific implementation of VarArgHelper. 5025 struct VarArgSystemZHelper : public VarArgHelper { 5026 static const unsigned SystemZGpOffset = 16; 5027 static const unsigned SystemZGpEndOffset = 56; 5028 static const unsigned SystemZFpOffset = 128; 5029 static const unsigned SystemZFpEndOffset = 160; 5030 static const unsigned SystemZMaxVrArgs = 8; 5031 static const unsigned SystemZRegSaveAreaSize = 160; 5032 static const unsigned SystemZOverflowOffset = 160; 5033 static const unsigned SystemZVAListTagSize = 32; 5034 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 5035 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 5036 5037 Function &F; 5038 MemorySanitizer &MS; 5039 MemorySanitizerVisitor &MSV; 5040 Value *VAArgTLSCopy = nullptr; 5041 Value *VAArgTLSOriginCopy = nullptr; 5042 Value *VAArgOverflowSize = nullptr; 5043 5044 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5045 5046 enum class ArgKind { 5047 GeneralPurpose, 5048 FloatingPoint, 5049 Vector, 5050 Memory, 5051 Indirect, 5052 }; 5053 5054 enum class ShadowExtension { None, Zero, Sign }; 5055 5056 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5057 MemorySanitizerVisitor &MSV) 5058 : F(F), MS(MS), MSV(MSV) {} 5059 5060 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 5061 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5062 // only a few possibilities of what it can be. In particular, enums, single 5063 // element structs and large types have already been taken care of. 5064 5065 // Some i128 and fp128 arguments are converted to pointers only in the 5066 // back end. 5067 if (T->isIntegerTy(128) || T->isFP128Ty()) 5068 return ArgKind::Indirect; 5069 if (T->isFloatingPointTy()) 5070 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5071 if (T->isIntegerTy() || T->isPointerTy()) 5072 return ArgKind::GeneralPurpose; 5073 if (T->isVectorTy()) 5074 return ArgKind::Vector; 5075 return ArgKind::Memory; 5076 } 5077 5078 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5079 // ABI says: "One of the simple integer types no more than 64 bits wide. 5080 // ... If such an argument is shorter than 64 bits, replace it by a full 5081 // 64-bit integer representing the same number, using sign or zero 5082 // extension". Shadow for an integer argument has the same type as the 5083 // argument itself, so it can be sign or zero extended as well. 5084 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5085 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5086 if (ZExt) { 5087 assert(!SExt); 5088 return ShadowExtension::Zero; 5089 } 5090 if (SExt) { 5091 assert(!ZExt); 5092 return ShadowExtension::Sign; 5093 } 5094 return ShadowExtension::None; 5095 } 5096 5097 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5098 bool IsSoftFloatABI = CB.getCalledFunction() 5099 ->getFnAttribute("use-soft-float") 5100 .getValueAsBool(); 5101 unsigned GpOffset = SystemZGpOffset; 5102 unsigned FpOffset = SystemZFpOffset; 5103 unsigned VrIndex = 0; 5104 unsigned OverflowOffset = SystemZOverflowOffset; 5105 const DataLayout &DL = F.getParent()->getDataLayout(); 5106 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 5107 ++ArgIt) { 5108 Value *A = *ArgIt; 5109 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 5110 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5111 // SystemZABIInfo does not produce ByVal parameters. 5112 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5113 Type *T = A->getType(); 5114 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 5115 if (AK == ArgKind::Indirect) { 5116 T = PointerType::get(T, 0); 5117 AK = ArgKind::GeneralPurpose; 5118 } 5119 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5120 AK = ArgKind::Memory; 5121 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5122 AK = ArgKind::Memory; 5123 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5124 AK = ArgKind::Memory; 5125 Value *ShadowBase = nullptr; 5126 Value *OriginBase = nullptr; 5127 ShadowExtension SE = ShadowExtension::None; 5128 switch (AK) { 5129 case ArgKind::GeneralPurpose: { 5130 // Always keep track of GpOffset, but store shadow only for varargs. 5131 uint64_t ArgSize = 8; 5132 if (GpOffset + ArgSize <= kParamTLSSize) { 5133 if (!IsFixed) { 5134 SE = getShadowExtension(CB, ArgNo); 5135 uint64_t GapSize = 0; 5136 if (SE == ShadowExtension::None) { 5137 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5138 assert(ArgAllocSize <= ArgSize); 5139 GapSize = ArgSize - ArgAllocSize; 5140 } 5141 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5142 if (MS.TrackOrigins) 5143 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5144 } 5145 GpOffset += ArgSize; 5146 } else { 5147 GpOffset = kParamTLSSize; 5148 } 5149 break; 5150 } 5151 case ArgKind::FloatingPoint: { 5152 // Always keep track of FpOffset, but store shadow only for varargs. 5153 uint64_t ArgSize = 8; 5154 if (FpOffset + ArgSize <= kParamTLSSize) { 5155 if (!IsFixed) { 5156 // PoP says: "A short floating-point datum requires only the 5157 // left-most 32 bit positions of a floating-point register". 5158 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5159 // don't extend shadow and don't mind the gap. 5160 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5161 if (MS.TrackOrigins) 5162 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5163 } 5164 FpOffset += ArgSize; 5165 } else { 5166 FpOffset = kParamTLSSize; 5167 } 5168 break; 5169 } 5170 case ArgKind::Vector: { 5171 // Keep track of VrIndex. No need to store shadow, since vector varargs 5172 // go through AK_Memory. 5173 assert(IsFixed); 5174 VrIndex++; 5175 break; 5176 } 5177 case ArgKind::Memory: { 5178 // Keep track of OverflowOffset and store shadow only for varargs. 5179 // Ignore fixed args, since we need to copy only the vararg portion of 5180 // the overflow area shadow. 5181 if (!IsFixed) { 5182 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5183 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5184 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5185 SE = getShadowExtension(CB, ArgNo); 5186 uint64_t GapSize = 5187 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5188 ShadowBase = 5189 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5190 if (MS.TrackOrigins) 5191 OriginBase = 5192 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5193 OverflowOffset += ArgSize; 5194 } else { 5195 OverflowOffset = kParamTLSSize; 5196 } 5197 } 5198 break; 5199 } 5200 case ArgKind::Indirect: 5201 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5202 } 5203 if (ShadowBase == nullptr) 5204 continue; 5205 Value *Shadow = MSV.getShadow(A); 5206 if (SE != ShadowExtension::None) 5207 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5208 /*Signed*/ SE == ShadowExtension::Sign); 5209 ShadowBase = IRB.CreateIntToPtr( 5210 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5211 IRB.CreateStore(Shadow, ShadowBase); 5212 if (MS.TrackOrigins) { 5213 Value *Origin = MSV.getOrigin(A); 5214 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5215 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5216 kMinOriginAlignment); 5217 } 5218 } 5219 Constant *OverflowSize = ConstantInt::get( 5220 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5221 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5222 } 5223 5224 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5225 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5226 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5227 } 5228 5229 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5230 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5231 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5232 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5233 "_msarg_va_o"); 5234 } 5235 5236 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5237 IRBuilder<> IRB(&I); 5238 Value *VAListTag = I.getArgOperand(0); 5239 Value *ShadowPtr, *OriginPtr; 5240 const Align Alignment = Align(8); 5241 std::tie(ShadowPtr, OriginPtr) = 5242 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5243 /*isStore*/ true); 5244 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5245 SystemZVAListTagSize, Alignment, false); 5246 } 5247 5248 void visitVAStartInst(VAStartInst &I) override { 5249 VAStartInstrumentationList.push_back(&I); 5250 unpoisonVAListTagForInst(I); 5251 } 5252 5253 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5254 5255 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5256 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5257 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5258 IRB.CreateAdd( 5259 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5260 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5261 PointerType::get(RegSaveAreaPtrTy, 0)); 5262 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5263 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5264 const Align Alignment = Align(8); 5265 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5266 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5267 /*isStore*/ true); 5268 // TODO(iii): copy only fragments filled by visitCallBase() 5269 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5270 SystemZRegSaveAreaSize); 5271 if (MS.TrackOrigins) 5272 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5273 Alignment, SystemZRegSaveAreaSize); 5274 } 5275 5276 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5277 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5278 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5279 IRB.CreateAdd( 5280 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5281 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5282 PointerType::get(OverflowArgAreaPtrTy, 0)); 5283 Value *OverflowArgAreaPtr = 5284 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5285 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5286 const Align Alignment = Align(8); 5287 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5288 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5289 Alignment, /*isStore*/ true); 5290 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5291 SystemZOverflowOffset); 5292 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5293 VAArgOverflowSize); 5294 if (MS.TrackOrigins) { 5295 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5296 SystemZOverflowOffset); 5297 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5298 VAArgOverflowSize); 5299 } 5300 } 5301 5302 void finalizeInstrumentation() override { 5303 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5304 "finalizeInstrumentation called twice"); 5305 if (!VAStartInstrumentationList.empty()) { 5306 // If there is a va_start in this function, make a backup copy of 5307 // va_arg_tls somewhere in the function entry block. 5308 IRBuilder<> IRB(MSV.FnPrologueEnd); 5309 VAArgOverflowSize = 5310 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5311 Value *CopySize = 5312 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5313 VAArgOverflowSize); 5314 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5315 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5316 if (MS.TrackOrigins) { 5317 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5318 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5319 Align(8), CopySize); 5320 } 5321 } 5322 5323 // Instrument va_start. 5324 // Copy va_list shadow from the backup copy of the TLS contents. 5325 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5326 VaStartNo < VaStartNum; VaStartNo++) { 5327 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5328 IRBuilder<> IRB(OrigInst->getNextNode()); 5329 Value *VAListTag = OrigInst->getArgOperand(0); 5330 copyRegSaveArea(IRB, VAListTag); 5331 copyOverflowArea(IRB, VAListTag); 5332 } 5333 } 5334 }; 5335 5336 /// A no-op implementation of VarArgHelper. 5337 struct VarArgNoOpHelper : public VarArgHelper { 5338 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5339 MemorySanitizerVisitor &MSV) {} 5340 5341 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5342 5343 void visitVAStartInst(VAStartInst &I) override {} 5344 5345 void visitVACopyInst(VACopyInst &I) override {} 5346 5347 void finalizeInstrumentation() override {} 5348 }; 5349 5350 } // end anonymous namespace 5351 5352 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5353 MemorySanitizerVisitor &Visitor) { 5354 // VarArg handling is only implemented on AMD64. False positives are possible 5355 // on other platforms. 5356 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5357 if (TargetTriple.getArch() == Triple::x86_64) 5358 return new VarArgAMD64Helper(Func, Msan, Visitor); 5359 else if (TargetTriple.isMIPS64()) 5360 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5361 else if (TargetTriple.getArch() == Triple::aarch64) 5362 return new VarArgAArch64Helper(Func, Msan, Visitor); 5363 else if (TargetTriple.getArch() == Triple::ppc64 || 5364 TargetTriple.getArch() == Triple::ppc64le) 5365 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5366 else if (TargetTriple.getArch() == Triple::systemz) 5367 return new VarArgSystemZHelper(Func, Msan, Visitor); 5368 else 5369 return new VarArgNoOpHelper(Func, Msan, Visitor); 5370 } 5371 5372 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5373 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5374 return false; 5375 5376 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 5377 return false; 5378 5379 MemorySanitizerVisitor Visitor(F, *this, TLI); 5380 5381 // Clear out readonly/readnone attributes. 5382 AttributeMask B; 5383 B.addAttribute(Attribute::ReadOnly) 5384 .addAttribute(Attribute::ReadNone) 5385 .addAttribute(Attribute::WriteOnly) 5386 .addAttribute(Attribute::ArgMemOnly) 5387 .addAttribute(Attribute::Speculatable); 5388 F.removeFnAttrs(B); 5389 5390 return Visitor.runOnFunction(); 5391 } 5392