1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwritting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 //===----------------------------------------------------------------------===// 141 142 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 143 #include "llvm/ADT/APInt.h" 144 #include "llvm/ADT/ArrayRef.h" 145 #include "llvm/ADT/DepthFirstIterator.h" 146 #include "llvm/ADT/SmallSet.h" 147 #include "llvm/ADT/SmallString.h" 148 #include "llvm/ADT/SmallVector.h" 149 #include "llvm/ADT/StringExtras.h" 150 #include "llvm/ADT/StringRef.h" 151 #include "llvm/ADT/Triple.h" 152 #include "llvm/Analysis/TargetLibraryInfo.h" 153 #include "llvm/IR/Argument.h" 154 #include "llvm/IR/Attributes.h" 155 #include "llvm/IR/BasicBlock.h" 156 #include "llvm/IR/CallSite.h" 157 #include "llvm/IR/CallingConv.h" 158 #include "llvm/IR/Constant.h" 159 #include "llvm/IR/Constants.h" 160 #include "llvm/IR/DataLayout.h" 161 #include "llvm/IR/DerivedTypes.h" 162 #include "llvm/IR/Function.h" 163 #include "llvm/IR/GlobalValue.h" 164 #include "llvm/IR/GlobalVariable.h" 165 #include "llvm/IR/IRBuilder.h" 166 #include "llvm/IR/InlineAsm.h" 167 #include "llvm/IR/InstVisitor.h" 168 #include "llvm/IR/InstrTypes.h" 169 #include "llvm/IR/Instruction.h" 170 #include "llvm/IR/Instructions.h" 171 #include "llvm/IR/IntrinsicInst.h" 172 #include "llvm/IR/Intrinsics.h" 173 #include "llvm/IR/LLVMContext.h" 174 #include "llvm/IR/MDBuilder.h" 175 #include "llvm/IR/Module.h" 176 #include "llvm/IR/Type.h" 177 #include "llvm/IR/Value.h" 178 #include "llvm/IR/ValueMap.h" 179 #include "llvm/Pass.h" 180 #include "llvm/Support/AtomicOrdering.h" 181 #include "llvm/Support/Casting.h" 182 #include "llvm/Support/CommandLine.h" 183 #include "llvm/Support/Compiler.h" 184 #include "llvm/Support/Debug.h" 185 #include "llvm/Support/ErrorHandling.h" 186 #include "llvm/Support/MathExtras.h" 187 #include "llvm/Support/raw_ostream.h" 188 #include "llvm/Transforms/Instrumentation.h" 189 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 190 #include "llvm/Transforms/Utils/Local.h" 191 #include "llvm/Transforms/Utils/ModuleUtils.h" 192 #include <algorithm> 193 #include <cassert> 194 #include <cstddef> 195 #include <cstdint> 196 #include <memory> 197 #include <string> 198 #include <tuple> 199 200 using namespace llvm; 201 202 #define DEBUG_TYPE "msan" 203 204 static const unsigned kOriginSize = 4; 205 static const unsigned kMinOriginAlignment = 4; 206 static const unsigned kShadowTLSAlignment = 8; 207 208 // These constants must be kept in sync with the ones in msan.h. 209 static const unsigned kParamTLSSize = 800; 210 static const unsigned kRetvalTLSSize = 800; 211 212 // Accesses sizes are powers of two: 1, 2, 4, 8. 213 static const size_t kNumberOfAccessSizes = 4; 214 215 /// Track origins of uninitialized values. 216 /// 217 /// Adds a section to MemorySanitizer report that points to the allocation 218 /// (stack or heap) the uninitialized bits came from originally. 219 static cl::opt<int> ClTrackOrigins("msan-track-origins", 220 cl::desc("Track origins (allocation sites) of poisoned memory"), 221 cl::Hidden, cl::init(0)); 222 223 static cl::opt<bool> ClKeepGoing("msan-keep-going", 224 cl::desc("keep going after reporting a UMR"), 225 cl::Hidden, cl::init(false)); 226 227 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 228 cl::desc("poison uninitialized stack variables"), 229 cl::Hidden, cl::init(true)); 230 231 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 232 cl::desc("poison uninitialized stack variables with a call"), 233 cl::Hidden, cl::init(false)); 234 235 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 236 cl::desc("poison uninitialized stack variables with the given pattern"), 237 cl::Hidden, cl::init(0xff)); 238 239 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 240 cl::desc("poison undef temps"), 241 cl::Hidden, cl::init(true)); 242 243 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 244 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 245 cl::Hidden, cl::init(true)); 246 247 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 248 cl::desc("exact handling of relational integer ICmp"), 249 cl::Hidden, cl::init(false)); 250 251 static cl::opt<bool> ClHandleLifetimeIntrinsics( 252 "msan-handle-lifetime-intrinsics", 253 cl::desc( 254 "when possible, poison scoped variables at the beginning of the scope " 255 "(slower, but more precise)"), 256 cl::Hidden, cl::init(true)); 257 258 // When compiling the Linux kernel, we sometimes see false positives related to 259 // MSan being unable to understand that inline assembly calls may initialize 260 // local variables. 261 // This flag makes the compiler conservatively unpoison every memory location 262 // passed into an assembly call. Note that this may cause false positives. 263 // Because it's impossible to figure out the array sizes, we can only unpoison 264 // the first sizeof(type) bytes for each type* pointer. 265 // The instrumentation is only enabled in KMSAN builds, and only if 266 // -msan-handle-asm-conservative is on. This is done because we may want to 267 // quickly disable assembly instrumentation when it breaks. 268 static cl::opt<bool> ClHandleAsmConservative( 269 "msan-handle-asm-conservative", 270 cl::desc("conservative handling of inline assembly"), cl::Hidden, 271 cl::init(true)); 272 273 // This flag controls whether we check the shadow of the address 274 // operand of load or store. Such bugs are very rare, since load from 275 // a garbage address typically results in SEGV, but still happen 276 // (e.g. only lower bits of address are garbage, or the access happens 277 // early at program startup where malloc-ed memory is more likely to 278 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 279 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 280 cl::desc("report accesses through a pointer which has poisoned shadow"), 281 cl::Hidden, cl::init(true)); 282 283 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 284 cl::desc("print out instructions with default strict semantics"), 285 cl::Hidden, cl::init(false)); 286 287 static cl::opt<int> ClInstrumentationWithCallThreshold( 288 "msan-instrumentation-with-call-threshold", 289 cl::desc( 290 "If the function being instrumented requires more than " 291 "this number of checks and origin stores, use callbacks instead of " 292 "inline checks (-1 means never use callbacks)."), 293 cl::Hidden, cl::init(3500)); 294 295 static cl::opt<bool> 296 ClEnableKmsan("msan-kernel", 297 cl::desc("Enable KernelMemorySanitizer instrumentation"), 298 cl::Hidden, cl::init(false)); 299 300 // This is an experiment to enable handling of cases where shadow is a non-zero 301 // compile-time constant. For some unexplainable reason they were silently 302 // ignored in the instrumentation. 303 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 304 cl::desc("Insert checks for constant shadow values"), 305 cl::Hidden, cl::init(false)); 306 307 // This is off by default because of a bug in gold: 308 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 309 static cl::opt<bool> ClWithComdat("msan-with-comdat", 310 cl::desc("Place MSan constructors in comdat sections"), 311 cl::Hidden, cl::init(false)); 312 313 // These options allow to specify custom memory map parameters 314 // See MemoryMapParams for details. 315 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 316 cl::desc("Define custom MSan AndMask"), 317 cl::Hidden, cl::init(0)); 318 319 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 320 cl::desc("Define custom MSan XorMask"), 321 cl::Hidden, cl::init(0)); 322 323 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 324 cl::desc("Define custom MSan ShadowBase"), 325 cl::Hidden, cl::init(0)); 326 327 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 328 cl::desc("Define custom MSan OriginBase"), 329 cl::Hidden, cl::init(0)); 330 331 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 332 static const char *const kMsanInitName = "__msan_init"; 333 334 namespace { 335 336 // Memory map parameters used in application-to-shadow address calculation. 337 // Offset = (Addr & ~AndMask) ^ XorMask 338 // Shadow = ShadowBase + Offset 339 // Origin = OriginBase + Offset 340 struct MemoryMapParams { 341 uint64_t AndMask; 342 uint64_t XorMask; 343 uint64_t ShadowBase; 344 uint64_t OriginBase; 345 }; 346 347 struct PlatformMemoryMapParams { 348 const MemoryMapParams *bits32; 349 const MemoryMapParams *bits64; 350 }; 351 352 } // end anonymous namespace 353 354 // i386 Linux 355 static const MemoryMapParams Linux_I386_MemoryMapParams = { 356 0x000080000000, // AndMask 357 0, // XorMask (not used) 358 0, // ShadowBase (not used) 359 0x000040000000, // OriginBase 360 }; 361 362 // x86_64 Linux 363 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 364 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 365 0x400000000000, // AndMask 366 0, // XorMask (not used) 367 0, // ShadowBase (not used) 368 0x200000000000, // OriginBase 369 #else 370 0, // AndMask (not used) 371 0x500000000000, // XorMask 372 0, // ShadowBase (not used) 373 0x100000000000, // OriginBase 374 #endif 375 }; 376 377 // mips64 Linux 378 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 379 0, // AndMask (not used) 380 0x008000000000, // XorMask 381 0, // ShadowBase (not used) 382 0x002000000000, // OriginBase 383 }; 384 385 // ppc64 Linux 386 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 387 0xE00000000000, // AndMask 388 0x100000000000, // XorMask 389 0x080000000000, // ShadowBase 390 0x1C0000000000, // OriginBase 391 }; 392 393 // aarch64 Linux 394 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 395 0, // AndMask (not used) 396 0x06000000000, // XorMask 397 0, // ShadowBase (not used) 398 0x01000000000, // OriginBase 399 }; 400 401 // i386 FreeBSD 402 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 403 0x000180000000, // AndMask 404 0x000040000000, // XorMask 405 0x000020000000, // ShadowBase 406 0x000700000000, // OriginBase 407 }; 408 409 // x86_64 FreeBSD 410 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 411 0xc00000000000, // AndMask 412 0x200000000000, // XorMask 413 0x100000000000, // ShadowBase 414 0x380000000000, // OriginBase 415 }; 416 417 // x86_64 NetBSD 418 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 419 0, // AndMask 420 0x500000000000, // XorMask 421 0, // ShadowBase 422 0x100000000000, // OriginBase 423 }; 424 425 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 426 &Linux_I386_MemoryMapParams, 427 &Linux_X86_64_MemoryMapParams, 428 }; 429 430 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 431 nullptr, 432 &Linux_MIPS64_MemoryMapParams, 433 }; 434 435 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 436 nullptr, 437 &Linux_PowerPC64_MemoryMapParams, 438 }; 439 440 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 441 nullptr, 442 &Linux_AArch64_MemoryMapParams, 443 }; 444 445 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 446 &FreeBSD_I386_MemoryMapParams, 447 &FreeBSD_X86_64_MemoryMapParams, 448 }; 449 450 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 451 nullptr, 452 &NetBSD_X86_64_MemoryMapParams, 453 }; 454 455 namespace { 456 457 /// Instrument functions of a module to detect uninitialized reads. 458 /// 459 /// Instantiating MemorySanitizer inserts the msan runtime library API function 460 /// declarations into the module if they don't exist already. Instantiating 461 /// ensures the __msan_init function is in the list of global constructors for 462 /// the module. 463 class MemorySanitizer { 464 public: 465 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 466 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 467 Recover(Options.Recover) { 468 initializeModule(M); 469 } 470 471 // MSan cannot be moved or copied because of MapParams. 472 MemorySanitizer(MemorySanitizer &&) = delete; 473 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 474 MemorySanitizer(const MemorySanitizer &) = delete; 475 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 476 477 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 478 479 private: 480 friend struct MemorySanitizerVisitor; 481 friend struct VarArgAMD64Helper; 482 friend struct VarArgMIPS64Helper; 483 friend struct VarArgAArch64Helper; 484 friend struct VarArgPowerPC64Helper; 485 486 void initializeModule(Module &M); 487 void initializeCallbacks(Module &M); 488 void createKernelApi(Module &M); 489 void createUserspaceApi(Module &M); 490 491 /// True if we're compiling the Linux kernel. 492 bool CompileKernel; 493 /// Track origins (allocation points) of uninitialized values. 494 int TrackOrigins; 495 bool Recover; 496 497 LLVMContext *C; 498 Type *IntptrTy; 499 Type *OriginTy; 500 501 // XxxTLS variables represent the per-thread state in MSan and per-task state 502 // in KMSAN. 503 // For the userspace these point to thread-local globals. In the kernel land 504 // they point to the members of a per-task struct obtained via a call to 505 // __msan_get_context_state(). 506 507 /// Thread-local shadow storage for function parameters. 508 Value *ParamTLS; 509 510 /// Thread-local origin storage for function parameters. 511 Value *ParamOriginTLS; 512 513 /// Thread-local shadow storage for function return value. 514 Value *RetvalTLS; 515 516 /// Thread-local origin storage for function return value. 517 Value *RetvalOriginTLS; 518 519 /// Thread-local shadow storage for in-register va_arg function 520 /// parameters (x86_64-specific). 521 Value *VAArgTLS; 522 523 /// Thread-local shadow storage for in-register va_arg function 524 /// parameters (x86_64-specific). 525 Value *VAArgOriginTLS; 526 527 /// Thread-local shadow storage for va_arg overflow area 528 /// (x86_64-specific). 529 Value *VAArgOverflowSizeTLS; 530 531 /// Thread-local space used to pass origin value to the UMR reporting 532 /// function. 533 Value *OriginTLS; 534 535 /// Are the instrumentation callbacks set up? 536 bool CallbacksInitialized = false; 537 538 /// The run-time callback to print a warning. 539 FunctionCallee WarningFn; 540 541 // These arrays are indexed by log2(AccessSize). 542 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 543 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 544 545 /// Run-time helper that generates a new origin value for a stack 546 /// allocation. 547 FunctionCallee MsanSetAllocaOrigin4Fn; 548 549 /// Run-time helper that poisons stack on function entry. 550 FunctionCallee MsanPoisonStackFn; 551 552 /// Run-time helper that records a store (or any event) of an 553 /// uninitialized value and returns an updated origin id encoding this info. 554 FunctionCallee MsanChainOriginFn; 555 556 /// MSan runtime replacements for memmove, memcpy and memset. 557 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 558 559 /// KMSAN callback for task-local function argument shadow. 560 StructType *MsanContextStateTy; 561 FunctionCallee MsanGetContextStateFn; 562 563 /// Functions for poisoning/unpoisoning local variables 564 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 565 566 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 567 /// pointers. 568 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 569 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 570 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 571 FunctionCallee MsanInstrumentAsmStoreFn; 572 573 /// Helper to choose between different MsanMetadataPtrXxx(). 574 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 575 576 /// Memory map parameters used in application-to-shadow calculation. 577 const MemoryMapParams *MapParams; 578 579 /// Custom memory map parameters used when -msan-shadow-base or 580 // -msan-origin-base is provided. 581 MemoryMapParams CustomMapParams; 582 583 MDNode *ColdCallWeights; 584 585 /// Branch weights for origin store. 586 MDNode *OriginStoreWeights; 587 588 /// An empty volatile inline asm that prevents callback merge. 589 InlineAsm *EmptyAsm; 590 }; 591 592 void insertModuleCtor(Module &M) { 593 getOrCreateSanitizerCtorAndInitFunctions( 594 M, kMsanModuleCtorName, kMsanInitName, 595 /*InitArgTypes=*/{}, 596 /*InitArgs=*/{}, 597 // This callback is invoked when the functions are created the first 598 // time. Hook them into the global ctors list in that case: 599 [&](Function *Ctor, FunctionCallee) { 600 if (!ClWithComdat) { 601 appendToGlobalCtors(M, Ctor, 0); 602 return; 603 } 604 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 605 Ctor->setComdat(MsanCtorComdat); 606 appendToGlobalCtors(M, Ctor, 0, Ctor); 607 }); 608 } 609 610 /// A legacy function pass for msan instrumentation. 611 /// 612 /// Instruments functions to detect unitialized reads. 613 struct MemorySanitizerLegacyPass : public FunctionPass { 614 // Pass identification, replacement for typeid. 615 static char ID; 616 617 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 618 : FunctionPass(ID), Options(Options) {} 619 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 620 621 void getAnalysisUsage(AnalysisUsage &AU) const override { 622 AU.addRequired<TargetLibraryInfoWrapperPass>(); 623 } 624 625 bool runOnFunction(Function &F) override { 626 return MSan->sanitizeFunction( 627 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 628 } 629 bool doInitialization(Module &M) override; 630 631 Optional<MemorySanitizer> MSan; 632 MemorySanitizerOptions Options; 633 }; 634 635 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 636 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 637 } 638 639 } // end anonymous namespace 640 641 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 642 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 643 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 644 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 645 646 PreservedAnalyses MemorySanitizerPass::run(Function &F, 647 FunctionAnalysisManager &FAM) { 648 MemorySanitizer Msan(*F.getParent(), Options); 649 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 650 return PreservedAnalyses::none(); 651 return PreservedAnalyses::all(); 652 } 653 654 PreservedAnalyses MemorySanitizerPass::run(Module &M, 655 ModuleAnalysisManager &AM) { 656 if (Options.Kernel) 657 return PreservedAnalyses::all(); 658 insertModuleCtor(M); 659 return PreservedAnalyses::none(); 660 } 661 662 char MemorySanitizerLegacyPass::ID = 0; 663 664 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 665 "MemorySanitizer: detects uninitialized reads.", false, 666 false) 667 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 668 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 669 "MemorySanitizer: detects uninitialized reads.", false, 670 false) 671 672 FunctionPass * 673 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 674 return new MemorySanitizerLegacyPass(Options); 675 } 676 677 /// Create a non-const global initialized with the given string. 678 /// 679 /// Creates a writable global for Str so that we can pass it to the 680 /// run-time lib. Runtime uses first 4 bytes of the string to store the 681 /// frame ID, so the string needs to be mutable. 682 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 683 StringRef Str) { 684 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 685 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 686 GlobalValue::PrivateLinkage, StrConst, ""); 687 } 688 689 /// Create KMSAN API callbacks. 690 void MemorySanitizer::createKernelApi(Module &M) { 691 IRBuilder<> IRB(*C); 692 693 // These will be initialized in insertKmsanPrologue(). 694 RetvalTLS = nullptr; 695 RetvalOriginTLS = nullptr; 696 ParamTLS = nullptr; 697 ParamOriginTLS = nullptr; 698 VAArgTLS = nullptr; 699 VAArgOriginTLS = nullptr; 700 VAArgOverflowSizeTLS = nullptr; 701 // OriginTLS is unused in the kernel. 702 OriginTLS = nullptr; 703 704 // __msan_warning() in the kernel takes an origin. 705 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 706 IRB.getInt32Ty()); 707 // Requests the per-task context state (kmsan_context_state*) from the 708 // runtime library. 709 MsanContextStateTy = StructType::get( 710 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 711 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 712 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 713 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 714 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 715 OriginTy); 716 MsanGetContextStateFn = M.getOrInsertFunction( 717 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 718 719 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 720 PointerType::get(IRB.getInt32Ty(), 0)); 721 722 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 723 std::string name_load = 724 "__msan_metadata_ptr_for_load_" + std::to_string(size); 725 std::string name_store = 726 "__msan_metadata_ptr_for_store_" + std::to_string(size); 727 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 728 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 729 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 730 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 731 } 732 733 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 734 "__msan_metadata_ptr_for_load_n", RetTy, 735 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 736 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 737 "__msan_metadata_ptr_for_store_n", RetTy, 738 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 739 740 // Functions for poisoning and unpoisoning memory. 741 MsanPoisonAllocaFn = 742 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 743 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 744 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 745 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 746 } 747 748 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 749 return M.getOrInsertGlobal(Name, Ty, [&] { 750 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 751 nullptr, Name, nullptr, 752 GlobalVariable::InitialExecTLSModel); 753 }); 754 } 755 756 /// Insert declarations for userspace-specific functions and globals. 757 void MemorySanitizer::createUserspaceApi(Module &M) { 758 IRBuilder<> IRB(*C); 759 // Create the callback. 760 // FIXME: this function should have "Cold" calling conv, 761 // which is not yet implemented. 762 StringRef WarningFnName = Recover ? "__msan_warning" 763 : "__msan_warning_noreturn"; 764 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 765 766 // Create the global TLS variables. 767 RetvalTLS = 768 getOrInsertGlobal(M, "__msan_retval_tls", 769 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 770 771 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 772 773 ParamTLS = 774 getOrInsertGlobal(M, "__msan_param_tls", 775 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 776 777 ParamOriginTLS = 778 getOrInsertGlobal(M, "__msan_param_origin_tls", 779 ArrayType::get(OriginTy, kParamTLSSize / 4)); 780 781 VAArgTLS = 782 getOrInsertGlobal(M, "__msan_va_arg_tls", 783 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 784 785 VAArgOriginTLS = 786 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 787 ArrayType::get(OriginTy, kParamTLSSize / 4)); 788 789 VAArgOverflowSizeTLS = 790 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 791 OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty()); 792 793 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 794 AccessSizeIndex++) { 795 unsigned AccessSize = 1 << AccessSizeIndex; 796 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 797 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 798 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 799 IRB.getInt32Ty()); 800 801 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 802 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 803 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 804 IRB.getInt8PtrTy(), IRB.getInt32Ty()); 805 } 806 807 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 808 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 809 IRB.getInt8PtrTy(), IntptrTy); 810 MsanPoisonStackFn = 811 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 812 IRB.getInt8PtrTy(), IntptrTy); 813 } 814 815 /// Insert extern declaration of runtime-provided functions and globals. 816 void MemorySanitizer::initializeCallbacks(Module &M) { 817 // Only do this once. 818 if (CallbacksInitialized) 819 return; 820 821 IRBuilder<> IRB(*C); 822 // Initialize callbacks that are common for kernel and userspace 823 // instrumentation. 824 MsanChainOriginFn = M.getOrInsertFunction( 825 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 826 MemmoveFn = M.getOrInsertFunction( 827 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 828 IRB.getInt8PtrTy(), IntptrTy); 829 MemcpyFn = M.getOrInsertFunction( 830 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 831 IntptrTy); 832 MemsetFn = M.getOrInsertFunction( 833 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 834 IntptrTy); 835 // We insert an empty inline asm after __msan_report* to avoid callback merge. 836 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 837 StringRef(""), StringRef(""), 838 /*hasSideEffects=*/true); 839 840 MsanInstrumentAsmStoreFn = 841 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 842 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 843 844 if (CompileKernel) { 845 createKernelApi(M); 846 } else { 847 createUserspaceApi(M); 848 } 849 CallbacksInitialized = true; 850 } 851 852 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 853 int size) { 854 FunctionCallee *Fns = 855 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 856 switch (size) { 857 case 1: 858 return Fns[0]; 859 case 2: 860 return Fns[1]; 861 case 4: 862 return Fns[2]; 863 case 8: 864 return Fns[3]; 865 default: 866 return nullptr; 867 } 868 } 869 870 /// Module-level initialization. 871 /// 872 /// inserts a call to __msan_init to the module's constructor list. 873 void MemorySanitizer::initializeModule(Module &M) { 874 auto &DL = M.getDataLayout(); 875 876 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 877 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 878 // Check the overrides first 879 if (ShadowPassed || OriginPassed) { 880 CustomMapParams.AndMask = ClAndMask; 881 CustomMapParams.XorMask = ClXorMask; 882 CustomMapParams.ShadowBase = ClShadowBase; 883 CustomMapParams.OriginBase = ClOriginBase; 884 MapParams = &CustomMapParams; 885 } else { 886 Triple TargetTriple(M.getTargetTriple()); 887 switch (TargetTriple.getOS()) { 888 case Triple::FreeBSD: 889 switch (TargetTriple.getArch()) { 890 case Triple::x86_64: 891 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 892 break; 893 case Triple::x86: 894 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 895 break; 896 default: 897 report_fatal_error("unsupported architecture"); 898 } 899 break; 900 case Triple::NetBSD: 901 switch (TargetTriple.getArch()) { 902 case Triple::x86_64: 903 MapParams = NetBSD_X86_MemoryMapParams.bits64; 904 break; 905 default: 906 report_fatal_error("unsupported architecture"); 907 } 908 break; 909 case Triple::Linux: 910 switch (TargetTriple.getArch()) { 911 case Triple::x86_64: 912 MapParams = Linux_X86_MemoryMapParams.bits64; 913 break; 914 case Triple::x86: 915 MapParams = Linux_X86_MemoryMapParams.bits32; 916 break; 917 case Triple::mips64: 918 case Triple::mips64el: 919 MapParams = Linux_MIPS_MemoryMapParams.bits64; 920 break; 921 case Triple::ppc64: 922 case Triple::ppc64le: 923 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 924 break; 925 case Triple::aarch64: 926 case Triple::aarch64_be: 927 MapParams = Linux_ARM_MemoryMapParams.bits64; 928 break; 929 default: 930 report_fatal_error("unsupported architecture"); 931 } 932 break; 933 default: 934 report_fatal_error("unsupported operating system"); 935 } 936 } 937 938 C = &(M.getContext()); 939 IRBuilder<> IRB(*C); 940 IntptrTy = IRB.getIntPtrTy(DL); 941 OriginTy = IRB.getInt32Ty(); 942 943 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 944 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 945 946 if (!CompileKernel) { 947 if (TrackOrigins) 948 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 949 return new GlobalVariable( 950 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 951 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 952 }); 953 954 if (Recover) 955 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 956 return new GlobalVariable(M, IRB.getInt32Ty(), true, 957 GlobalValue::WeakODRLinkage, 958 IRB.getInt32(Recover), "__msan_keep_going"); 959 }); 960 } 961 } 962 963 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 964 if (!Options.Kernel) 965 insertModuleCtor(M); 966 MSan.emplace(M, Options); 967 return true; 968 } 969 970 namespace { 971 972 /// A helper class that handles instrumentation of VarArg 973 /// functions on a particular platform. 974 /// 975 /// Implementations are expected to insert the instrumentation 976 /// necessary to propagate argument shadow through VarArg function 977 /// calls. Visit* methods are called during an InstVisitor pass over 978 /// the function, and should avoid creating new basic blocks. A new 979 /// instance of this class is created for each instrumented function. 980 struct VarArgHelper { 981 virtual ~VarArgHelper() = default; 982 983 /// Visit a CallSite. 984 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 985 986 /// Visit a va_start call. 987 virtual void visitVAStartInst(VAStartInst &I) = 0; 988 989 /// Visit a va_copy call. 990 virtual void visitVACopyInst(VACopyInst &I) = 0; 991 992 /// Finalize function instrumentation. 993 /// 994 /// This method is called after visiting all interesting (see above) 995 /// instructions in a function. 996 virtual void finalizeInstrumentation() = 0; 997 }; 998 999 struct MemorySanitizerVisitor; 1000 1001 } // end anonymous namespace 1002 1003 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1004 MemorySanitizerVisitor &Visitor); 1005 1006 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1007 if (TypeSize <= 8) return 0; 1008 return Log2_32_Ceil((TypeSize + 7) / 8); 1009 } 1010 1011 namespace { 1012 1013 /// This class does all the work for a given function. Store and Load 1014 /// instructions store and load corresponding shadow and origin 1015 /// values. Most instructions propagate shadow from arguments to their 1016 /// return values. Certain instructions (most importantly, BranchInst) 1017 /// test their argument shadow and print reports (with a runtime call) if it's 1018 /// non-zero. 1019 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1020 Function &F; 1021 MemorySanitizer &MS; 1022 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1023 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1024 std::unique_ptr<VarArgHelper> VAHelper; 1025 const TargetLibraryInfo *TLI; 1026 BasicBlock *ActualFnStart; 1027 1028 // The following flags disable parts of MSan instrumentation based on 1029 // blacklist contents and command-line options. 1030 bool InsertChecks; 1031 bool PropagateShadow; 1032 bool PoisonStack; 1033 bool PoisonUndef; 1034 bool CheckReturnValue; 1035 1036 struct ShadowOriginAndInsertPoint { 1037 Value *Shadow; 1038 Value *Origin; 1039 Instruction *OrigIns; 1040 1041 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1042 : Shadow(S), Origin(O), OrigIns(I) {} 1043 }; 1044 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1045 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1046 SmallSet<AllocaInst *, 16> AllocaSet; 1047 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1048 SmallVector<StoreInst *, 16> StoreList; 1049 1050 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1051 const TargetLibraryInfo &TLI) 1052 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1053 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1054 InsertChecks = SanitizeFunction; 1055 PropagateShadow = SanitizeFunction; 1056 PoisonStack = SanitizeFunction && ClPoisonStack; 1057 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1058 // FIXME: Consider using SpecialCaseList to specify a list of functions that 1059 // must always return fully initialized values. For now, we hardcode "main". 1060 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 1061 1062 MS.initializeCallbacks(*F.getParent()); 1063 if (MS.CompileKernel) 1064 ActualFnStart = insertKmsanPrologue(F); 1065 else 1066 ActualFnStart = &F.getEntryBlock(); 1067 1068 LLVM_DEBUG(if (!InsertChecks) dbgs() 1069 << "MemorySanitizer is not inserting checks into '" 1070 << F.getName() << "'\n"); 1071 } 1072 1073 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1074 if (MS.TrackOrigins <= 1) return V; 1075 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1076 } 1077 1078 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1079 const DataLayout &DL = F.getParent()->getDataLayout(); 1080 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1081 if (IntptrSize == kOriginSize) return Origin; 1082 assert(IntptrSize == kOriginSize * 2); 1083 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1084 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1085 } 1086 1087 /// Fill memory range with the given origin value. 1088 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1089 unsigned Size, unsigned Alignment) { 1090 const DataLayout &DL = F.getParent()->getDataLayout(); 1091 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); 1092 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1093 assert(IntptrAlignment >= kMinOriginAlignment); 1094 assert(IntptrSize >= kOriginSize); 1095 1096 unsigned Ofs = 0; 1097 unsigned CurrentAlignment = Alignment; 1098 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1099 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1100 Value *IntptrOriginPtr = 1101 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1102 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1103 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1104 : IntptrOriginPtr; 1105 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1106 Ofs += IntptrSize / kOriginSize; 1107 CurrentAlignment = IntptrAlignment; 1108 } 1109 } 1110 1111 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1112 Value *GEP = 1113 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1114 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1115 CurrentAlignment = kMinOriginAlignment; 1116 } 1117 } 1118 1119 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1120 Value *OriginPtr, unsigned Alignment, bool AsCall) { 1121 const DataLayout &DL = F.getParent()->getDataLayout(); 1122 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1123 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1124 if (Shadow->getType()->isAggregateType()) { 1125 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1126 OriginAlignment); 1127 } else { 1128 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1129 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 1130 if (ConstantShadow) { 1131 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1132 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1133 OriginAlignment); 1134 return; 1135 } 1136 1137 unsigned TypeSizeInBits = 1138 DL.getTypeSizeInBits(ConvertedShadow->getType()); 1139 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1140 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1141 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1142 Value *ConvertedShadow2 = IRB.CreateZExt( 1143 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1144 IRB.CreateCall(Fn, {ConvertedShadow2, 1145 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 1146 Origin}); 1147 } else { 1148 Value *Cmp = IRB.CreateICmpNE( 1149 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 1150 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1151 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1152 IRBuilder<> IRBNew(CheckTerm); 1153 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1154 OriginAlignment); 1155 } 1156 } 1157 } 1158 1159 void materializeStores(bool InstrumentWithCalls) { 1160 for (StoreInst *SI : StoreList) { 1161 IRBuilder<> IRB(SI); 1162 Value *Val = SI->getValueOperand(); 1163 Value *Addr = SI->getPointerOperand(); 1164 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1165 Value *ShadowPtr, *OriginPtr; 1166 Type *ShadowTy = Shadow->getType(); 1167 unsigned Alignment = SI->getAlignment(); 1168 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1169 std::tie(ShadowPtr, OriginPtr) = 1170 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1171 1172 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1173 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1174 (void)NewSI; 1175 1176 if (SI->isAtomic()) 1177 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1178 1179 if (MS.TrackOrigins && !SI->isAtomic()) 1180 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1181 OriginAlignment, InstrumentWithCalls); 1182 } 1183 } 1184 1185 /// Helper function to insert a warning at IRB's current insert point. 1186 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1187 if (!Origin) 1188 Origin = (Value *)IRB.getInt32(0); 1189 if (MS.CompileKernel) { 1190 IRB.CreateCall(MS.WarningFn, Origin); 1191 } else { 1192 if (MS.TrackOrigins) { 1193 IRB.CreateStore(Origin, MS.OriginTLS); 1194 } 1195 IRB.CreateCall(MS.WarningFn, {}); 1196 } 1197 IRB.CreateCall(MS.EmptyAsm, {}); 1198 // FIXME: Insert UnreachableInst if !MS.Recover? 1199 // This may invalidate some of the following checks and needs to be done 1200 // at the very end. 1201 } 1202 1203 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1204 bool AsCall) { 1205 IRBuilder<> IRB(OrigIns); 1206 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1207 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1208 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1209 1210 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 1211 if (ConstantShadow) { 1212 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1213 insertWarningFn(IRB, Origin); 1214 } 1215 return; 1216 } 1217 1218 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1219 1220 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1221 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1222 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1223 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1224 Value *ConvertedShadow2 = 1225 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1226 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1227 ? Origin 1228 : (Value *)IRB.getInt32(0)}); 1229 } else { 1230 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 1231 getCleanShadow(ConvertedShadow), "_mscmp"); 1232 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1233 Cmp, OrigIns, 1234 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1235 1236 IRB.SetInsertPoint(CheckTerm); 1237 insertWarningFn(IRB, Origin); 1238 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1239 } 1240 } 1241 1242 void materializeChecks(bool InstrumentWithCalls) { 1243 for (const auto &ShadowData : InstrumentationList) { 1244 Instruction *OrigIns = ShadowData.OrigIns; 1245 Value *Shadow = ShadowData.Shadow; 1246 Value *Origin = ShadowData.Origin; 1247 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1248 } 1249 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1250 } 1251 1252 BasicBlock *insertKmsanPrologue(Function &F) { 1253 BasicBlock *ret = 1254 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1255 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1256 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1257 Constant *Zero = IRB.getInt32(0); 1258 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1259 {Zero, IRB.getInt32(0)}, "param_shadow"); 1260 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1261 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1262 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1263 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1264 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1265 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1266 MS.VAArgOverflowSizeTLS = 1267 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1268 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1269 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1270 {Zero, IRB.getInt32(5)}, "param_origin"); 1271 MS.RetvalOriginTLS = 1272 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1273 {Zero, IRB.getInt32(6)}, "retval_origin"); 1274 return ret; 1275 } 1276 1277 /// Add MemorySanitizer instrumentation to a function. 1278 bool runOnFunction() { 1279 // In the presence of unreachable blocks, we may see Phi nodes with 1280 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1281 // blocks, such nodes will not have any shadow value associated with them. 1282 // It's easier to remove unreachable blocks than deal with missing shadow. 1283 removeUnreachableBlocks(F); 1284 1285 // Iterate all BBs in depth-first order and create shadow instructions 1286 // for all instructions (where applicable). 1287 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1288 for (BasicBlock *BB : depth_first(ActualFnStart)) 1289 visit(*BB); 1290 1291 // Finalize PHI nodes. 1292 for (PHINode *PN : ShadowPHINodes) { 1293 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1294 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1295 size_t NumValues = PN->getNumIncomingValues(); 1296 for (size_t v = 0; v < NumValues; v++) { 1297 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1298 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1299 } 1300 } 1301 1302 VAHelper->finalizeInstrumentation(); 1303 1304 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1305 // instrumenting only allocas. 1306 if (InstrumentLifetimeStart) { 1307 for (auto Item : LifetimeStartList) { 1308 instrumentAlloca(*Item.second, Item.first); 1309 AllocaSet.erase(Item.second); 1310 } 1311 } 1312 // Poison the allocas for which we didn't instrument the corresponding 1313 // lifetime intrinsics. 1314 for (AllocaInst *AI : AllocaSet) 1315 instrumentAlloca(*AI); 1316 1317 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1318 InstrumentationList.size() + StoreList.size() > 1319 (unsigned)ClInstrumentationWithCallThreshold; 1320 1321 // Insert shadow value checks. 1322 materializeChecks(InstrumentWithCalls); 1323 1324 // Delayed instrumentation of StoreInst. 1325 // This may not add new address checks. 1326 materializeStores(InstrumentWithCalls); 1327 1328 return true; 1329 } 1330 1331 /// Compute the shadow type that corresponds to a given Value. 1332 Type *getShadowTy(Value *V) { 1333 return getShadowTy(V->getType()); 1334 } 1335 1336 /// Compute the shadow type that corresponds to a given Type. 1337 Type *getShadowTy(Type *OrigTy) { 1338 if (!OrigTy->isSized()) { 1339 return nullptr; 1340 } 1341 // For integer type, shadow is the same as the original type. 1342 // This may return weird-sized types like i1. 1343 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1344 return IT; 1345 const DataLayout &DL = F.getParent()->getDataLayout(); 1346 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1347 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1348 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1349 VT->getNumElements()); 1350 } 1351 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1352 return ArrayType::get(getShadowTy(AT->getElementType()), 1353 AT->getNumElements()); 1354 } 1355 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1356 SmallVector<Type*, 4> Elements; 1357 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1358 Elements.push_back(getShadowTy(ST->getElementType(i))); 1359 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1360 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1361 return Res; 1362 } 1363 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1364 return IntegerType::get(*MS.C, TypeSize); 1365 } 1366 1367 /// Flatten a vector type. 1368 Type *getShadowTyNoVec(Type *ty) { 1369 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1370 return IntegerType::get(*MS.C, vt->getBitWidth()); 1371 return ty; 1372 } 1373 1374 /// Convert a shadow value to it's flattened variant. 1375 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 1376 Type *Ty = V->getType(); 1377 Type *NoVecTy = getShadowTyNoVec(Ty); 1378 if (Ty == NoVecTy) return V; 1379 return IRB.CreateBitCast(V, NoVecTy); 1380 } 1381 1382 /// Compute the integer shadow offset that corresponds to a given 1383 /// application address. 1384 /// 1385 /// Offset = (Addr & ~AndMask) ^ XorMask 1386 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1387 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1388 1389 uint64_t AndMask = MS.MapParams->AndMask; 1390 if (AndMask) 1391 OffsetLong = 1392 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1393 1394 uint64_t XorMask = MS.MapParams->XorMask; 1395 if (XorMask) 1396 OffsetLong = 1397 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1398 return OffsetLong; 1399 } 1400 1401 /// Compute the shadow and origin addresses corresponding to a given 1402 /// application address. 1403 /// 1404 /// Shadow = ShadowBase + Offset 1405 /// Origin = (OriginBase + Offset) & ~3ULL 1406 std::pair<Value *, Value *> getShadowOriginPtrUserspace(Value *Addr, 1407 IRBuilder<> &IRB, 1408 Type *ShadowTy, 1409 unsigned Alignment) { 1410 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1411 Value *ShadowLong = ShadowOffset; 1412 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1413 if (ShadowBase != 0) { 1414 ShadowLong = 1415 IRB.CreateAdd(ShadowLong, 1416 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1417 } 1418 Value *ShadowPtr = 1419 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1420 Value *OriginPtr = nullptr; 1421 if (MS.TrackOrigins) { 1422 Value *OriginLong = ShadowOffset; 1423 uint64_t OriginBase = MS.MapParams->OriginBase; 1424 if (OriginBase != 0) 1425 OriginLong = IRB.CreateAdd(OriginLong, 1426 ConstantInt::get(MS.IntptrTy, OriginBase)); 1427 if (Alignment < kMinOriginAlignment) { 1428 uint64_t Mask = kMinOriginAlignment - 1; 1429 OriginLong = 1430 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1431 } 1432 OriginPtr = 1433 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1434 } 1435 return std::make_pair(ShadowPtr, OriginPtr); 1436 } 1437 1438 std::pair<Value *, Value *> 1439 getShadowOriginPtrKernel(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1440 unsigned Alignment, bool isStore) { 1441 Value *ShadowOriginPtrs; 1442 const DataLayout &DL = F.getParent()->getDataLayout(); 1443 int Size = DL.getTypeStoreSize(ShadowTy); 1444 1445 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1446 Value *AddrCast = 1447 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1448 if (Getter) { 1449 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1450 } else { 1451 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1452 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1453 : MS.MsanMetadataPtrForLoadN, 1454 {AddrCast, SizeVal}); 1455 } 1456 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1457 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1458 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1459 1460 return std::make_pair(ShadowPtr, OriginPtr); 1461 } 1462 1463 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1464 Type *ShadowTy, 1465 unsigned Alignment, 1466 bool isStore) { 1467 std::pair<Value *, Value *> ret; 1468 if (MS.CompileKernel) 1469 ret = getShadowOriginPtrKernel(Addr, IRB, ShadowTy, Alignment, isStore); 1470 else 1471 ret = getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1472 return ret; 1473 } 1474 1475 /// Compute the shadow address for a given function argument. 1476 /// 1477 /// Shadow = ParamTLS+ArgOffset. 1478 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1479 int ArgOffset) { 1480 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1481 if (ArgOffset) 1482 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1483 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1484 "_msarg"); 1485 } 1486 1487 /// Compute the origin address for a given function argument. 1488 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1489 int ArgOffset) { 1490 if (!MS.TrackOrigins) 1491 return nullptr; 1492 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1493 if (ArgOffset) 1494 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1495 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1496 "_msarg_o"); 1497 } 1498 1499 /// Compute the shadow address for a retval. 1500 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1501 return IRB.CreatePointerCast(MS.RetvalTLS, 1502 PointerType::get(getShadowTy(A), 0), 1503 "_msret"); 1504 } 1505 1506 /// Compute the origin address for a retval. 1507 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1508 // We keep a single origin for the entire retval. Might be too optimistic. 1509 return MS.RetvalOriginTLS; 1510 } 1511 1512 /// Set SV to be the shadow value for V. 1513 void setShadow(Value *V, Value *SV) { 1514 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1515 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1516 } 1517 1518 /// Set Origin to be the origin value for V. 1519 void setOrigin(Value *V, Value *Origin) { 1520 if (!MS.TrackOrigins) return; 1521 assert(!OriginMap.count(V) && "Values may only have one origin"); 1522 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1523 OriginMap[V] = Origin; 1524 } 1525 1526 Constant *getCleanShadow(Type *OrigTy) { 1527 Type *ShadowTy = getShadowTy(OrigTy); 1528 if (!ShadowTy) 1529 return nullptr; 1530 return Constant::getNullValue(ShadowTy); 1531 } 1532 1533 /// Create a clean shadow value for a given value. 1534 /// 1535 /// Clean shadow (all zeroes) means all bits of the value are defined 1536 /// (initialized). 1537 Constant *getCleanShadow(Value *V) { 1538 return getCleanShadow(V->getType()); 1539 } 1540 1541 /// Create a dirty shadow of a given shadow type. 1542 Constant *getPoisonedShadow(Type *ShadowTy) { 1543 assert(ShadowTy); 1544 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1545 return Constant::getAllOnesValue(ShadowTy); 1546 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1547 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1548 getPoisonedShadow(AT->getElementType())); 1549 return ConstantArray::get(AT, Vals); 1550 } 1551 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1552 SmallVector<Constant *, 4> Vals; 1553 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1554 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1555 return ConstantStruct::get(ST, Vals); 1556 } 1557 llvm_unreachable("Unexpected shadow type"); 1558 } 1559 1560 /// Create a dirty shadow for a given value. 1561 Constant *getPoisonedShadow(Value *V) { 1562 Type *ShadowTy = getShadowTy(V); 1563 if (!ShadowTy) 1564 return nullptr; 1565 return getPoisonedShadow(ShadowTy); 1566 } 1567 1568 /// Create a clean (zero) origin. 1569 Value *getCleanOrigin() { 1570 return Constant::getNullValue(MS.OriginTy); 1571 } 1572 1573 /// Get the shadow value for a given Value. 1574 /// 1575 /// This function either returns the value set earlier with setShadow, 1576 /// or extracts if from ParamTLS (for function arguments). 1577 Value *getShadow(Value *V) { 1578 if (!PropagateShadow) return getCleanShadow(V); 1579 if (Instruction *I = dyn_cast<Instruction>(V)) { 1580 if (I->getMetadata("nosanitize")) 1581 return getCleanShadow(V); 1582 // For instructions the shadow is already stored in the map. 1583 Value *Shadow = ShadowMap[V]; 1584 if (!Shadow) { 1585 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1586 (void)I; 1587 assert(Shadow && "No shadow for a value"); 1588 } 1589 return Shadow; 1590 } 1591 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1592 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1593 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1594 (void)U; 1595 return AllOnes; 1596 } 1597 if (Argument *A = dyn_cast<Argument>(V)) { 1598 // For arguments we compute the shadow on demand and store it in the map. 1599 Value **ShadowPtr = &ShadowMap[V]; 1600 if (*ShadowPtr) 1601 return *ShadowPtr; 1602 Function *F = A->getParent(); 1603 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1604 unsigned ArgOffset = 0; 1605 const DataLayout &DL = F->getParent()->getDataLayout(); 1606 for (auto &FArg : F->args()) { 1607 if (!FArg.getType()->isSized()) { 1608 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1609 continue; 1610 } 1611 unsigned Size = 1612 FArg.hasByValAttr() 1613 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1614 : DL.getTypeAllocSize(FArg.getType()); 1615 if (A == &FArg) { 1616 bool Overflow = ArgOffset + Size > kParamTLSSize; 1617 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1618 if (FArg.hasByValAttr()) { 1619 // ByVal pointer itself has clean shadow. We copy the actual 1620 // argument shadow to the underlying memory. 1621 // Figure out maximal valid memcpy alignment. 1622 unsigned ArgAlign = FArg.getParamAlignment(); 1623 if (ArgAlign == 0) { 1624 Type *EltType = A->getType()->getPointerElementType(); 1625 ArgAlign = DL.getABITypeAlignment(EltType); 1626 } 1627 Value *CpShadowPtr = 1628 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1629 /*isStore*/ true) 1630 .first; 1631 // TODO(glider): need to copy origins. 1632 if (Overflow) { 1633 // ParamTLS overflow. 1634 EntryIRB.CreateMemSet( 1635 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1636 Size, ArgAlign); 1637 } else { 1638 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1639 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1640 CopyAlign, Size); 1641 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1642 (void)Cpy; 1643 } 1644 *ShadowPtr = getCleanShadow(V); 1645 } else { 1646 if (Overflow) { 1647 // ParamTLS overflow. 1648 *ShadowPtr = getCleanShadow(V); 1649 } else { 1650 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1651 kShadowTLSAlignment); 1652 } 1653 } 1654 LLVM_DEBUG(dbgs() 1655 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1656 if (MS.TrackOrigins && !Overflow) { 1657 Value *OriginPtr = 1658 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1659 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1660 } else { 1661 setOrigin(A, getCleanOrigin()); 1662 } 1663 } 1664 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1665 } 1666 assert(*ShadowPtr && "Could not find shadow for an argument"); 1667 return *ShadowPtr; 1668 } 1669 // For everything else the shadow is zero. 1670 return getCleanShadow(V); 1671 } 1672 1673 /// Get the shadow for i-th argument of the instruction I. 1674 Value *getShadow(Instruction *I, int i) { 1675 return getShadow(I->getOperand(i)); 1676 } 1677 1678 /// Get the origin for a value. 1679 Value *getOrigin(Value *V) { 1680 if (!MS.TrackOrigins) return nullptr; 1681 if (!PropagateShadow) return getCleanOrigin(); 1682 if (isa<Constant>(V)) return getCleanOrigin(); 1683 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1684 "Unexpected value type in getOrigin()"); 1685 if (Instruction *I = dyn_cast<Instruction>(V)) { 1686 if (I->getMetadata("nosanitize")) 1687 return getCleanOrigin(); 1688 } 1689 Value *Origin = OriginMap[V]; 1690 assert(Origin && "Missing origin"); 1691 return Origin; 1692 } 1693 1694 /// Get the origin for i-th argument of the instruction I. 1695 Value *getOrigin(Instruction *I, int i) { 1696 return getOrigin(I->getOperand(i)); 1697 } 1698 1699 /// Remember the place where a shadow check should be inserted. 1700 /// 1701 /// This location will be later instrumented with a check that will print a 1702 /// UMR warning in runtime if the shadow value is not 0. 1703 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1704 assert(Shadow); 1705 if (!InsertChecks) return; 1706 #ifndef NDEBUG 1707 Type *ShadowTy = Shadow->getType(); 1708 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1709 "Can only insert checks for integer and vector shadow types"); 1710 #endif 1711 InstrumentationList.push_back( 1712 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1713 } 1714 1715 /// Remember the place where a shadow check should be inserted. 1716 /// 1717 /// This location will be later instrumented with a check that will print a 1718 /// UMR warning in runtime if the value is not fully defined. 1719 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1720 assert(Val); 1721 Value *Shadow, *Origin; 1722 if (ClCheckConstantShadow) { 1723 Shadow = getShadow(Val); 1724 if (!Shadow) return; 1725 Origin = getOrigin(Val); 1726 } else { 1727 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1728 if (!Shadow) return; 1729 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1730 } 1731 insertShadowCheck(Shadow, Origin, OrigIns); 1732 } 1733 1734 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1735 switch (a) { 1736 case AtomicOrdering::NotAtomic: 1737 return AtomicOrdering::NotAtomic; 1738 case AtomicOrdering::Unordered: 1739 case AtomicOrdering::Monotonic: 1740 case AtomicOrdering::Release: 1741 return AtomicOrdering::Release; 1742 case AtomicOrdering::Acquire: 1743 case AtomicOrdering::AcquireRelease: 1744 return AtomicOrdering::AcquireRelease; 1745 case AtomicOrdering::SequentiallyConsistent: 1746 return AtomicOrdering::SequentiallyConsistent; 1747 } 1748 llvm_unreachable("Unknown ordering"); 1749 } 1750 1751 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1752 switch (a) { 1753 case AtomicOrdering::NotAtomic: 1754 return AtomicOrdering::NotAtomic; 1755 case AtomicOrdering::Unordered: 1756 case AtomicOrdering::Monotonic: 1757 case AtomicOrdering::Acquire: 1758 return AtomicOrdering::Acquire; 1759 case AtomicOrdering::Release: 1760 case AtomicOrdering::AcquireRelease: 1761 return AtomicOrdering::AcquireRelease; 1762 case AtomicOrdering::SequentiallyConsistent: 1763 return AtomicOrdering::SequentiallyConsistent; 1764 } 1765 llvm_unreachable("Unknown ordering"); 1766 } 1767 1768 // ------------------- Visitors. 1769 using InstVisitor<MemorySanitizerVisitor>::visit; 1770 void visit(Instruction &I) { 1771 if (!I.getMetadata("nosanitize")) 1772 InstVisitor<MemorySanitizerVisitor>::visit(I); 1773 } 1774 1775 /// Instrument LoadInst 1776 /// 1777 /// Loads the corresponding shadow and (optionally) origin. 1778 /// Optionally, checks that the load address is fully defined. 1779 void visitLoadInst(LoadInst &I) { 1780 assert(I.getType()->isSized() && "Load type must have size"); 1781 assert(!I.getMetadata("nosanitize")); 1782 IRBuilder<> IRB(I.getNextNode()); 1783 Type *ShadowTy = getShadowTy(&I); 1784 Value *Addr = I.getPointerOperand(); 1785 Value *ShadowPtr, *OriginPtr; 1786 unsigned Alignment = I.getAlignment(); 1787 if (PropagateShadow) { 1788 std::tie(ShadowPtr, OriginPtr) = 1789 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1790 setShadow(&I, 1791 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1792 } else { 1793 setShadow(&I, getCleanShadow(&I)); 1794 } 1795 1796 if (ClCheckAccessAddress) 1797 insertShadowCheck(I.getPointerOperand(), &I); 1798 1799 if (I.isAtomic()) 1800 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1801 1802 if (MS.TrackOrigins) { 1803 if (PropagateShadow) { 1804 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1805 setOrigin( 1806 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1807 } else { 1808 setOrigin(&I, getCleanOrigin()); 1809 } 1810 } 1811 } 1812 1813 /// Instrument StoreInst 1814 /// 1815 /// Stores the corresponding shadow and (optionally) origin. 1816 /// Optionally, checks that the store address is fully defined. 1817 void visitStoreInst(StoreInst &I) { 1818 StoreList.push_back(&I); 1819 if (ClCheckAccessAddress) 1820 insertShadowCheck(I.getPointerOperand(), &I); 1821 } 1822 1823 void handleCASOrRMW(Instruction &I) { 1824 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1825 1826 IRBuilder<> IRB(&I); 1827 Value *Addr = I.getOperand(0); 1828 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), 1829 /*Alignment*/ 1, /*isStore*/ true) 1830 .first; 1831 1832 if (ClCheckAccessAddress) 1833 insertShadowCheck(Addr, &I); 1834 1835 // Only test the conditional argument of cmpxchg instruction. 1836 // The other argument can potentially be uninitialized, but we can not 1837 // detect this situation reliably without possible false positives. 1838 if (isa<AtomicCmpXchgInst>(I)) 1839 insertShadowCheck(I.getOperand(1), &I); 1840 1841 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1842 1843 setShadow(&I, getCleanShadow(&I)); 1844 setOrigin(&I, getCleanOrigin()); 1845 } 1846 1847 void visitAtomicRMWInst(AtomicRMWInst &I) { 1848 handleCASOrRMW(I); 1849 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1850 } 1851 1852 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1853 handleCASOrRMW(I); 1854 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1855 } 1856 1857 // Vector manipulation. 1858 void visitExtractElementInst(ExtractElementInst &I) { 1859 insertShadowCheck(I.getOperand(1), &I); 1860 IRBuilder<> IRB(&I); 1861 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1862 "_msprop")); 1863 setOrigin(&I, getOrigin(&I, 0)); 1864 } 1865 1866 void visitInsertElementInst(InsertElementInst &I) { 1867 insertShadowCheck(I.getOperand(2), &I); 1868 IRBuilder<> IRB(&I); 1869 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1870 I.getOperand(2), "_msprop")); 1871 setOriginForNaryOp(I); 1872 } 1873 1874 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1875 insertShadowCheck(I.getOperand(2), &I); 1876 IRBuilder<> IRB(&I); 1877 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1878 I.getOperand(2), "_msprop")); 1879 setOriginForNaryOp(I); 1880 } 1881 1882 // Casts. 1883 void visitSExtInst(SExtInst &I) { 1884 IRBuilder<> IRB(&I); 1885 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1886 setOrigin(&I, getOrigin(&I, 0)); 1887 } 1888 1889 void visitZExtInst(ZExtInst &I) { 1890 IRBuilder<> IRB(&I); 1891 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1892 setOrigin(&I, getOrigin(&I, 0)); 1893 } 1894 1895 void visitTruncInst(TruncInst &I) { 1896 IRBuilder<> IRB(&I); 1897 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1898 setOrigin(&I, getOrigin(&I, 0)); 1899 } 1900 1901 void visitBitCastInst(BitCastInst &I) { 1902 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1903 // a musttail call and a ret, don't instrument. New instructions are not 1904 // allowed after a musttail call. 1905 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1906 if (CI->isMustTailCall()) 1907 return; 1908 IRBuilder<> IRB(&I); 1909 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1910 setOrigin(&I, getOrigin(&I, 0)); 1911 } 1912 1913 void visitPtrToIntInst(PtrToIntInst &I) { 1914 IRBuilder<> IRB(&I); 1915 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1916 "_msprop_ptrtoint")); 1917 setOrigin(&I, getOrigin(&I, 0)); 1918 } 1919 1920 void visitIntToPtrInst(IntToPtrInst &I) { 1921 IRBuilder<> IRB(&I); 1922 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1923 "_msprop_inttoptr")); 1924 setOrigin(&I, getOrigin(&I, 0)); 1925 } 1926 1927 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1928 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1929 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1930 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1931 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1932 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1933 1934 /// Propagate shadow for bitwise AND. 1935 /// 1936 /// This code is exact, i.e. if, for example, a bit in the left argument 1937 /// is defined and 0, then neither the value not definedness of the 1938 /// corresponding bit in B don't affect the resulting shadow. 1939 void visitAnd(BinaryOperator &I) { 1940 IRBuilder<> IRB(&I); 1941 // "And" of 0 and a poisoned value results in unpoisoned value. 1942 // 1&1 => 1; 0&1 => 0; p&1 => p; 1943 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1944 // 1&p => p; 0&p => 0; p&p => p; 1945 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1946 Value *S1 = getShadow(&I, 0); 1947 Value *S2 = getShadow(&I, 1); 1948 Value *V1 = I.getOperand(0); 1949 Value *V2 = I.getOperand(1); 1950 if (V1->getType() != S1->getType()) { 1951 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1952 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1953 } 1954 Value *S1S2 = IRB.CreateAnd(S1, S2); 1955 Value *V1S2 = IRB.CreateAnd(V1, S2); 1956 Value *S1V2 = IRB.CreateAnd(S1, V2); 1957 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1958 setOriginForNaryOp(I); 1959 } 1960 1961 void visitOr(BinaryOperator &I) { 1962 IRBuilder<> IRB(&I); 1963 // "Or" of 1 and a poisoned value results in unpoisoned value. 1964 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1965 // 1|0 => 1; 0|0 => 0; p|0 => p; 1966 // 1|p => 1; 0|p => p; p|p => p; 1967 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1968 Value *S1 = getShadow(&I, 0); 1969 Value *S2 = getShadow(&I, 1); 1970 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1971 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1972 if (V1->getType() != S1->getType()) { 1973 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1974 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1975 } 1976 Value *S1S2 = IRB.CreateAnd(S1, S2); 1977 Value *V1S2 = IRB.CreateAnd(V1, S2); 1978 Value *S1V2 = IRB.CreateAnd(S1, V2); 1979 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1980 setOriginForNaryOp(I); 1981 } 1982 1983 /// Default propagation of shadow and/or origin. 1984 /// 1985 /// This class implements the general case of shadow propagation, used in all 1986 /// cases where we don't know and/or don't care about what the operation 1987 /// actually does. It converts all input shadow values to a common type 1988 /// (extending or truncating as necessary), and bitwise OR's them. 1989 /// 1990 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1991 /// fully initialized), and less prone to false positives. 1992 /// 1993 /// This class also implements the general case of origin propagation. For a 1994 /// Nary operation, result origin is set to the origin of an argument that is 1995 /// not entirely initialized. If there is more than one such arguments, the 1996 /// rightmost of them is picked. It does not matter which one is picked if all 1997 /// arguments are initialized. 1998 template <bool CombineShadow> 1999 class Combiner { 2000 Value *Shadow = nullptr; 2001 Value *Origin = nullptr; 2002 IRBuilder<> &IRB; 2003 MemorySanitizerVisitor *MSV; 2004 2005 public: 2006 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2007 : IRB(IRB), MSV(MSV) {} 2008 2009 /// Add a pair of shadow and origin values to the mix. 2010 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2011 if (CombineShadow) { 2012 assert(OpShadow); 2013 if (!Shadow) 2014 Shadow = OpShadow; 2015 else { 2016 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2017 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2018 } 2019 } 2020 2021 if (MSV->MS.TrackOrigins) { 2022 assert(OpOrigin); 2023 if (!Origin) { 2024 Origin = OpOrigin; 2025 } else { 2026 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2027 // No point in adding something that might result in 0 origin value. 2028 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2029 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 2030 Value *Cond = 2031 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2032 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2033 } 2034 } 2035 } 2036 return *this; 2037 } 2038 2039 /// Add an application value to the mix. 2040 Combiner &Add(Value *V) { 2041 Value *OpShadow = MSV->getShadow(V); 2042 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2043 return Add(OpShadow, OpOrigin); 2044 } 2045 2046 /// Set the current combined values as the given instruction's shadow 2047 /// and origin. 2048 void Done(Instruction *I) { 2049 if (CombineShadow) { 2050 assert(Shadow); 2051 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2052 MSV->setShadow(I, Shadow); 2053 } 2054 if (MSV->MS.TrackOrigins) { 2055 assert(Origin); 2056 MSV->setOrigin(I, Origin); 2057 } 2058 } 2059 }; 2060 2061 using ShadowAndOriginCombiner = Combiner<true>; 2062 using OriginCombiner = Combiner<false>; 2063 2064 /// Propagate origin for arbitrary operation. 2065 void setOriginForNaryOp(Instruction &I) { 2066 if (!MS.TrackOrigins) return; 2067 IRBuilder<> IRB(&I); 2068 OriginCombiner OC(this, IRB); 2069 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2070 OC.Add(OI->get()); 2071 OC.Done(&I); 2072 } 2073 2074 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2075 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2076 "Vector of pointers is not a valid shadow type"); 2077 return Ty->isVectorTy() ? 2078 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 2079 Ty->getPrimitiveSizeInBits(); 2080 } 2081 2082 /// Cast between two shadow types, extending or truncating as 2083 /// necessary. 2084 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2085 bool Signed = false) { 2086 Type *srcTy = V->getType(); 2087 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2088 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2089 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2090 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2091 2092 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2093 return IRB.CreateIntCast(V, dstTy, Signed); 2094 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2095 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 2096 return IRB.CreateIntCast(V, dstTy, Signed); 2097 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2098 Value *V2 = 2099 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2100 return IRB.CreateBitCast(V2, dstTy); 2101 // TODO: handle struct types. 2102 } 2103 2104 /// Cast an application value to the type of its own shadow. 2105 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2106 Type *ShadowTy = getShadowTy(V); 2107 if (V->getType() == ShadowTy) 2108 return V; 2109 if (V->getType()->isPtrOrPtrVectorTy()) 2110 return IRB.CreatePtrToInt(V, ShadowTy); 2111 else 2112 return IRB.CreateBitCast(V, ShadowTy); 2113 } 2114 2115 /// Propagate shadow for arbitrary operation. 2116 void handleShadowOr(Instruction &I) { 2117 IRBuilder<> IRB(&I); 2118 ShadowAndOriginCombiner SC(this, IRB); 2119 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2120 SC.Add(OI->get()); 2121 SC.Done(&I); 2122 } 2123 2124 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2125 2126 // Handle multiplication by constant. 2127 // 2128 // Handle a special case of multiplication by constant that may have one or 2129 // more zeros in the lower bits. This makes corresponding number of lower bits 2130 // of the result zero as well. We model it by shifting the other operand 2131 // shadow left by the required number of bits. Effectively, we transform 2132 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2133 // We use multiplication by 2**N instead of shift to cover the case of 2134 // multiplication by 0, which may occur in some elements of a vector operand. 2135 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2136 Value *OtherArg) { 2137 Constant *ShadowMul; 2138 Type *Ty = ConstArg->getType(); 2139 if (Ty->isVectorTy()) { 2140 unsigned NumElements = Ty->getVectorNumElements(); 2141 Type *EltTy = Ty->getSequentialElementType(); 2142 SmallVector<Constant *, 16> Elements; 2143 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2144 if (ConstantInt *Elt = 2145 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2146 const APInt &V = Elt->getValue(); 2147 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2148 Elements.push_back(ConstantInt::get(EltTy, V2)); 2149 } else { 2150 Elements.push_back(ConstantInt::get(EltTy, 1)); 2151 } 2152 } 2153 ShadowMul = ConstantVector::get(Elements); 2154 } else { 2155 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2156 const APInt &V = Elt->getValue(); 2157 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2158 ShadowMul = ConstantInt::get(Ty, V2); 2159 } else { 2160 ShadowMul = ConstantInt::get(Ty, 1); 2161 } 2162 } 2163 2164 IRBuilder<> IRB(&I); 2165 setShadow(&I, 2166 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2167 setOrigin(&I, getOrigin(OtherArg)); 2168 } 2169 2170 void visitMul(BinaryOperator &I) { 2171 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2172 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2173 if (constOp0 && !constOp1) 2174 handleMulByConstant(I, constOp0, I.getOperand(1)); 2175 else if (constOp1 && !constOp0) 2176 handleMulByConstant(I, constOp1, I.getOperand(0)); 2177 else 2178 handleShadowOr(I); 2179 } 2180 2181 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2182 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2183 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2184 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2185 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2186 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2187 2188 void handleIntegerDiv(Instruction &I) { 2189 IRBuilder<> IRB(&I); 2190 // Strict on the second argument. 2191 insertShadowCheck(I.getOperand(1), &I); 2192 setShadow(&I, getShadow(&I, 0)); 2193 setOrigin(&I, getOrigin(&I, 0)); 2194 } 2195 2196 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2197 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2198 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2199 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2200 2201 // Floating point division is side-effect free. We can not require that the 2202 // divisor is fully initialized and must propagate shadow. See PR37523. 2203 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2204 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2205 2206 /// Instrument == and != comparisons. 2207 /// 2208 /// Sometimes the comparison result is known even if some of the bits of the 2209 /// arguments are not. 2210 void handleEqualityComparison(ICmpInst &I) { 2211 IRBuilder<> IRB(&I); 2212 Value *A = I.getOperand(0); 2213 Value *B = I.getOperand(1); 2214 Value *Sa = getShadow(A); 2215 Value *Sb = getShadow(B); 2216 2217 // Get rid of pointers and vectors of pointers. 2218 // For ints (and vectors of ints), types of A and Sa match, 2219 // and this is a no-op. 2220 A = IRB.CreatePointerCast(A, Sa->getType()); 2221 B = IRB.CreatePointerCast(B, Sb->getType()); 2222 2223 // A == B <==> (C = A^B) == 0 2224 // A != B <==> (C = A^B) != 0 2225 // Sc = Sa | Sb 2226 Value *C = IRB.CreateXor(A, B); 2227 Value *Sc = IRB.CreateOr(Sa, Sb); 2228 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2229 // Result is defined if one of the following is true 2230 // * there is a defined 1 bit in C 2231 // * C is fully defined 2232 // Si = !(C & ~Sc) && Sc 2233 Value *Zero = Constant::getNullValue(Sc->getType()); 2234 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2235 Value *Si = 2236 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2237 IRB.CreateICmpEQ( 2238 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2239 Si->setName("_msprop_icmp"); 2240 setShadow(&I, Si); 2241 setOriginForNaryOp(I); 2242 } 2243 2244 /// Build the lowest possible value of V, taking into account V's 2245 /// uninitialized bits. 2246 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2247 bool isSigned) { 2248 if (isSigned) { 2249 // Split shadow into sign bit and other bits. 2250 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2251 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2252 // Maximise the undefined shadow bit, minimize other undefined bits. 2253 return 2254 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2255 } else { 2256 // Minimize undefined bits. 2257 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2258 } 2259 } 2260 2261 /// Build the highest possible value of V, taking into account V's 2262 /// uninitialized bits. 2263 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2264 bool isSigned) { 2265 if (isSigned) { 2266 // Split shadow into sign bit and other bits. 2267 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2268 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2269 // Minimise the undefined shadow bit, maximise other undefined bits. 2270 return 2271 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2272 } else { 2273 // Maximize undefined bits. 2274 return IRB.CreateOr(A, Sa); 2275 } 2276 } 2277 2278 /// Instrument relational comparisons. 2279 /// 2280 /// This function does exact shadow propagation for all relational 2281 /// comparisons of integers, pointers and vectors of those. 2282 /// FIXME: output seems suboptimal when one of the operands is a constant 2283 void handleRelationalComparisonExact(ICmpInst &I) { 2284 IRBuilder<> IRB(&I); 2285 Value *A = I.getOperand(0); 2286 Value *B = I.getOperand(1); 2287 Value *Sa = getShadow(A); 2288 Value *Sb = getShadow(B); 2289 2290 // Get rid of pointers and vectors of pointers. 2291 // For ints (and vectors of ints), types of A and Sa match, 2292 // and this is a no-op. 2293 A = IRB.CreatePointerCast(A, Sa->getType()); 2294 B = IRB.CreatePointerCast(B, Sb->getType()); 2295 2296 // Let [a0, a1] be the interval of possible values of A, taking into account 2297 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2298 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2299 bool IsSigned = I.isSigned(); 2300 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2301 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2302 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2303 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2304 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2305 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2306 Value *Si = IRB.CreateXor(S1, S2); 2307 setShadow(&I, Si); 2308 setOriginForNaryOp(I); 2309 } 2310 2311 /// Instrument signed relational comparisons. 2312 /// 2313 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2314 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2315 void handleSignedRelationalComparison(ICmpInst &I) { 2316 Constant *constOp; 2317 Value *op = nullptr; 2318 CmpInst::Predicate pre; 2319 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2320 op = I.getOperand(0); 2321 pre = I.getPredicate(); 2322 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2323 op = I.getOperand(1); 2324 pre = I.getSwappedPredicate(); 2325 } else { 2326 handleShadowOr(I); 2327 return; 2328 } 2329 2330 if ((constOp->isNullValue() && 2331 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2332 (constOp->isAllOnesValue() && 2333 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2334 IRBuilder<> IRB(&I); 2335 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2336 "_msprop_icmp_s"); 2337 setShadow(&I, Shadow); 2338 setOrigin(&I, getOrigin(op)); 2339 } else { 2340 handleShadowOr(I); 2341 } 2342 } 2343 2344 void visitICmpInst(ICmpInst &I) { 2345 if (!ClHandleICmp) { 2346 handleShadowOr(I); 2347 return; 2348 } 2349 if (I.isEquality()) { 2350 handleEqualityComparison(I); 2351 return; 2352 } 2353 2354 assert(I.isRelational()); 2355 if (ClHandleICmpExact) { 2356 handleRelationalComparisonExact(I); 2357 return; 2358 } 2359 if (I.isSigned()) { 2360 handleSignedRelationalComparison(I); 2361 return; 2362 } 2363 2364 assert(I.isUnsigned()); 2365 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2366 handleRelationalComparisonExact(I); 2367 return; 2368 } 2369 2370 handleShadowOr(I); 2371 } 2372 2373 void visitFCmpInst(FCmpInst &I) { 2374 handleShadowOr(I); 2375 } 2376 2377 void handleShift(BinaryOperator &I) { 2378 IRBuilder<> IRB(&I); 2379 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2380 // Otherwise perform the same shift on S1. 2381 Value *S1 = getShadow(&I, 0); 2382 Value *S2 = getShadow(&I, 1); 2383 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2384 S2->getType()); 2385 Value *V2 = I.getOperand(1); 2386 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2387 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2388 setOriginForNaryOp(I); 2389 } 2390 2391 void visitShl(BinaryOperator &I) { handleShift(I); } 2392 void visitAShr(BinaryOperator &I) { handleShift(I); } 2393 void visitLShr(BinaryOperator &I) { handleShift(I); } 2394 2395 /// Instrument llvm.memmove 2396 /// 2397 /// At this point we don't know if llvm.memmove will be inlined or not. 2398 /// If we don't instrument it and it gets inlined, 2399 /// our interceptor will not kick in and we will lose the memmove. 2400 /// If we instrument the call here, but it does not get inlined, 2401 /// we will memove the shadow twice: which is bad in case 2402 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2403 /// 2404 /// Similar situation exists for memcpy and memset. 2405 void visitMemMoveInst(MemMoveInst &I) { 2406 IRBuilder<> IRB(&I); 2407 IRB.CreateCall( 2408 MS.MemmoveFn, 2409 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2410 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2411 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2412 I.eraseFromParent(); 2413 } 2414 2415 // Similar to memmove: avoid copying shadow twice. 2416 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2417 // FIXME: consider doing manual inline for small constant sizes and proper 2418 // alignment. 2419 void visitMemCpyInst(MemCpyInst &I) { 2420 IRBuilder<> IRB(&I); 2421 IRB.CreateCall( 2422 MS.MemcpyFn, 2423 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2424 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2425 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2426 I.eraseFromParent(); 2427 } 2428 2429 // Same as memcpy. 2430 void visitMemSetInst(MemSetInst &I) { 2431 IRBuilder<> IRB(&I); 2432 IRB.CreateCall( 2433 MS.MemsetFn, 2434 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2435 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2436 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2437 I.eraseFromParent(); 2438 } 2439 2440 void visitVAStartInst(VAStartInst &I) { 2441 VAHelper->visitVAStartInst(I); 2442 } 2443 2444 void visitVACopyInst(VACopyInst &I) { 2445 VAHelper->visitVACopyInst(I); 2446 } 2447 2448 /// Handle vector store-like intrinsics. 2449 /// 2450 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2451 /// has 1 pointer argument and 1 vector argument, returns void. 2452 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2453 IRBuilder<> IRB(&I); 2454 Value* Addr = I.getArgOperand(0); 2455 Value *Shadow = getShadow(&I, 1); 2456 Value *ShadowPtr, *OriginPtr; 2457 2458 // We don't know the pointer alignment (could be unaligned SSE store!). 2459 // Have to assume to worst case. 2460 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2461 Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true); 2462 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 2463 2464 if (ClCheckAccessAddress) 2465 insertShadowCheck(Addr, &I); 2466 2467 // FIXME: factor out common code from materializeStores 2468 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2469 return true; 2470 } 2471 2472 /// Handle vector load-like intrinsics. 2473 /// 2474 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2475 /// has 1 pointer argument, returns a vector. 2476 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2477 IRBuilder<> IRB(&I); 2478 Value *Addr = I.getArgOperand(0); 2479 2480 Type *ShadowTy = getShadowTy(&I); 2481 Value *ShadowPtr, *OriginPtr; 2482 if (PropagateShadow) { 2483 // We don't know the pointer alignment (could be unaligned SSE load!). 2484 // Have to assume to worst case. 2485 unsigned Alignment = 1; 2486 std::tie(ShadowPtr, OriginPtr) = 2487 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2488 setShadow(&I, 2489 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2490 } else { 2491 setShadow(&I, getCleanShadow(&I)); 2492 } 2493 2494 if (ClCheckAccessAddress) 2495 insertShadowCheck(Addr, &I); 2496 2497 if (MS.TrackOrigins) { 2498 if (PropagateShadow) 2499 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2500 else 2501 setOrigin(&I, getCleanOrigin()); 2502 } 2503 return true; 2504 } 2505 2506 /// Handle (SIMD arithmetic)-like intrinsics. 2507 /// 2508 /// Instrument intrinsics with any number of arguments of the same type, 2509 /// equal to the return type. The type should be simple (no aggregates or 2510 /// pointers; vectors are fine). 2511 /// Caller guarantees that this intrinsic does not access memory. 2512 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2513 Type *RetTy = I.getType(); 2514 if (!(RetTy->isIntOrIntVectorTy() || 2515 RetTy->isFPOrFPVectorTy() || 2516 RetTy->isX86_MMXTy())) 2517 return false; 2518 2519 unsigned NumArgOperands = I.getNumArgOperands(); 2520 2521 for (unsigned i = 0; i < NumArgOperands; ++i) { 2522 Type *Ty = I.getArgOperand(i)->getType(); 2523 if (Ty != RetTy) 2524 return false; 2525 } 2526 2527 IRBuilder<> IRB(&I); 2528 ShadowAndOriginCombiner SC(this, IRB); 2529 for (unsigned i = 0; i < NumArgOperands; ++i) 2530 SC.Add(I.getArgOperand(i)); 2531 SC.Done(&I); 2532 2533 return true; 2534 } 2535 2536 /// Heuristically instrument unknown intrinsics. 2537 /// 2538 /// The main purpose of this code is to do something reasonable with all 2539 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2540 /// We recognize several classes of intrinsics by their argument types and 2541 /// ModRefBehaviour and apply special intrumentation when we are reasonably 2542 /// sure that we know what the intrinsic does. 2543 /// 2544 /// We special-case intrinsics where this approach fails. See llvm.bswap 2545 /// handling as an example of that. 2546 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2547 unsigned NumArgOperands = I.getNumArgOperands(); 2548 if (NumArgOperands == 0) 2549 return false; 2550 2551 if (NumArgOperands == 2 && 2552 I.getArgOperand(0)->getType()->isPointerTy() && 2553 I.getArgOperand(1)->getType()->isVectorTy() && 2554 I.getType()->isVoidTy() && 2555 !I.onlyReadsMemory()) { 2556 // This looks like a vector store. 2557 return handleVectorStoreIntrinsic(I); 2558 } 2559 2560 if (NumArgOperands == 1 && 2561 I.getArgOperand(0)->getType()->isPointerTy() && 2562 I.getType()->isVectorTy() && 2563 I.onlyReadsMemory()) { 2564 // This looks like a vector load. 2565 return handleVectorLoadIntrinsic(I); 2566 } 2567 2568 if (I.doesNotAccessMemory()) 2569 if (maybeHandleSimpleNomemIntrinsic(I)) 2570 return true; 2571 2572 // FIXME: detect and handle SSE maskstore/maskload 2573 return false; 2574 } 2575 2576 void handleInvariantGroup(IntrinsicInst &I) { 2577 setShadow(&I, getShadow(&I, 0)); 2578 setOrigin(&I, getOrigin(&I, 0)); 2579 } 2580 2581 void handleLifetimeStart(IntrinsicInst &I) { 2582 if (!PoisonStack) 2583 return; 2584 DenseMap<Value *, AllocaInst *> AllocaForValue; 2585 AllocaInst *AI = 2586 llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); 2587 if (!AI) 2588 InstrumentLifetimeStart = false; 2589 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2590 } 2591 2592 void handleBswap(IntrinsicInst &I) { 2593 IRBuilder<> IRB(&I); 2594 Value *Op = I.getArgOperand(0); 2595 Type *OpType = Op->getType(); 2596 Function *BswapFunc = Intrinsic::getDeclaration( 2597 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2598 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2599 setOrigin(&I, getOrigin(Op)); 2600 } 2601 2602 // Instrument vector convert instrinsic. 2603 // 2604 // This function instruments intrinsics like cvtsi2ss: 2605 // %Out = int_xxx_cvtyyy(%ConvertOp) 2606 // or 2607 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2608 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2609 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2610 // elements from \p CopyOp. 2611 // In most cases conversion involves floating-point value which may trigger a 2612 // hardware exception when not fully initialized. For this reason we require 2613 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2614 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2615 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2616 // return a fully initialized value. 2617 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2618 IRBuilder<> IRB(&I); 2619 Value *CopyOp, *ConvertOp; 2620 2621 switch (I.getNumArgOperands()) { 2622 case 3: 2623 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2624 LLVM_FALLTHROUGH; 2625 case 2: 2626 CopyOp = I.getArgOperand(0); 2627 ConvertOp = I.getArgOperand(1); 2628 break; 2629 case 1: 2630 ConvertOp = I.getArgOperand(0); 2631 CopyOp = nullptr; 2632 break; 2633 default: 2634 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2635 } 2636 2637 // The first *NumUsedElements* elements of ConvertOp are converted to the 2638 // same number of output elements. The rest of the output is copied from 2639 // CopyOp, or (if not available) filled with zeroes. 2640 // Combine shadow for elements of ConvertOp that are used in this operation, 2641 // and insert a check. 2642 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2643 // int->any conversion. 2644 Value *ConvertShadow = getShadow(ConvertOp); 2645 Value *AggShadow = nullptr; 2646 if (ConvertOp->getType()->isVectorTy()) { 2647 AggShadow = IRB.CreateExtractElement( 2648 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2649 for (int i = 1; i < NumUsedElements; ++i) { 2650 Value *MoreShadow = IRB.CreateExtractElement( 2651 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2652 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2653 } 2654 } else { 2655 AggShadow = ConvertShadow; 2656 } 2657 assert(AggShadow->getType()->isIntegerTy()); 2658 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2659 2660 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2661 // ConvertOp. 2662 if (CopyOp) { 2663 assert(CopyOp->getType() == I.getType()); 2664 assert(CopyOp->getType()->isVectorTy()); 2665 Value *ResultShadow = getShadow(CopyOp); 2666 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2667 for (int i = 0; i < NumUsedElements; ++i) { 2668 ResultShadow = IRB.CreateInsertElement( 2669 ResultShadow, ConstantInt::getNullValue(EltTy), 2670 ConstantInt::get(IRB.getInt32Ty(), i)); 2671 } 2672 setShadow(&I, ResultShadow); 2673 setOrigin(&I, getOrigin(CopyOp)); 2674 } else { 2675 setShadow(&I, getCleanShadow(&I)); 2676 setOrigin(&I, getCleanOrigin()); 2677 } 2678 } 2679 2680 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2681 // zeroes if it is zero, and all ones otherwise. 2682 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2683 if (S->getType()->isVectorTy()) 2684 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2685 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2686 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2687 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2688 } 2689 2690 // Given a vector, extract its first element, and return all 2691 // zeroes if it is zero, and all ones otherwise. 2692 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2693 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2694 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2695 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2696 } 2697 2698 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2699 Type *T = S->getType(); 2700 assert(T->isVectorTy()); 2701 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2702 return IRB.CreateSExt(S2, T); 2703 } 2704 2705 // Instrument vector shift instrinsic. 2706 // 2707 // This function instruments intrinsics like int_x86_avx2_psll_w. 2708 // Intrinsic shifts %In by %ShiftSize bits. 2709 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2710 // size, and the rest is ignored. Behavior is defined even if shift size is 2711 // greater than register (or field) width. 2712 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2713 assert(I.getNumArgOperands() == 2); 2714 IRBuilder<> IRB(&I); 2715 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2716 // Otherwise perform the same shift on S1. 2717 Value *S1 = getShadow(&I, 0); 2718 Value *S2 = getShadow(&I, 1); 2719 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2720 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2721 Value *V1 = I.getOperand(0); 2722 Value *V2 = I.getOperand(1); 2723 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(), 2724 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2725 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2726 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2727 setOriginForNaryOp(I); 2728 } 2729 2730 // Get an X86_MMX-sized vector type. 2731 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2732 const unsigned X86_MMXSizeInBits = 64; 2733 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2734 "Illegal MMX vector element size"); 2735 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2736 X86_MMXSizeInBits / EltSizeInBits); 2737 } 2738 2739 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2740 // intrinsic. 2741 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2742 switch (id) { 2743 case Intrinsic::x86_sse2_packsswb_128: 2744 case Intrinsic::x86_sse2_packuswb_128: 2745 return Intrinsic::x86_sse2_packsswb_128; 2746 2747 case Intrinsic::x86_sse2_packssdw_128: 2748 case Intrinsic::x86_sse41_packusdw: 2749 return Intrinsic::x86_sse2_packssdw_128; 2750 2751 case Intrinsic::x86_avx2_packsswb: 2752 case Intrinsic::x86_avx2_packuswb: 2753 return Intrinsic::x86_avx2_packsswb; 2754 2755 case Intrinsic::x86_avx2_packssdw: 2756 case Intrinsic::x86_avx2_packusdw: 2757 return Intrinsic::x86_avx2_packssdw; 2758 2759 case Intrinsic::x86_mmx_packsswb: 2760 case Intrinsic::x86_mmx_packuswb: 2761 return Intrinsic::x86_mmx_packsswb; 2762 2763 case Intrinsic::x86_mmx_packssdw: 2764 return Intrinsic::x86_mmx_packssdw; 2765 default: 2766 llvm_unreachable("unexpected intrinsic id"); 2767 } 2768 } 2769 2770 // Instrument vector pack instrinsic. 2771 // 2772 // This function instruments intrinsics like x86_mmx_packsswb, that 2773 // packs elements of 2 input vectors into half as many bits with saturation. 2774 // Shadow is propagated with the signed variant of the same intrinsic applied 2775 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2776 // EltSizeInBits is used only for x86mmx arguments. 2777 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2778 assert(I.getNumArgOperands() == 2); 2779 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2780 IRBuilder<> IRB(&I); 2781 Value *S1 = getShadow(&I, 0); 2782 Value *S2 = getShadow(&I, 1); 2783 assert(isX86_MMX || S1->getType()->isVectorTy()); 2784 2785 // SExt and ICmpNE below must apply to individual elements of input vectors. 2786 // In case of x86mmx arguments, cast them to appropriate vector types and 2787 // back. 2788 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2789 if (isX86_MMX) { 2790 S1 = IRB.CreateBitCast(S1, T); 2791 S2 = IRB.CreateBitCast(S2, T); 2792 } 2793 Value *S1_ext = IRB.CreateSExt( 2794 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2795 Value *S2_ext = IRB.CreateSExt( 2796 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2797 if (isX86_MMX) { 2798 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2799 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2800 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2801 } 2802 2803 Function *ShadowFn = Intrinsic::getDeclaration( 2804 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2805 2806 Value *S = 2807 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2808 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2809 setShadow(&I, S); 2810 setOriginForNaryOp(I); 2811 } 2812 2813 // Instrument sum-of-absolute-differencies intrinsic. 2814 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2815 const unsigned SignificantBitsPerResultElement = 16; 2816 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2817 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2818 unsigned ZeroBitsPerResultElement = 2819 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2820 2821 IRBuilder<> IRB(&I); 2822 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2823 S = IRB.CreateBitCast(S, ResTy); 2824 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2825 ResTy); 2826 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2827 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2828 setShadow(&I, S); 2829 setOriginForNaryOp(I); 2830 } 2831 2832 // Instrument multiply-add intrinsic. 2833 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2834 unsigned EltSizeInBits = 0) { 2835 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2836 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2837 IRBuilder<> IRB(&I); 2838 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2839 S = IRB.CreateBitCast(S, ResTy); 2840 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2841 ResTy); 2842 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2843 setShadow(&I, S); 2844 setOriginForNaryOp(I); 2845 } 2846 2847 // Instrument compare-packed intrinsic. 2848 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2849 // all-ones shadow. 2850 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2851 IRBuilder<> IRB(&I); 2852 Type *ResTy = getShadowTy(&I); 2853 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2854 Value *S = IRB.CreateSExt( 2855 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2856 setShadow(&I, S); 2857 setOriginForNaryOp(I); 2858 } 2859 2860 // Instrument compare-scalar intrinsic. 2861 // This handles both cmp* intrinsics which return the result in the first 2862 // element of a vector, and comi* which return the result as i32. 2863 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2864 IRBuilder<> IRB(&I); 2865 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2866 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2867 setShadow(&I, S); 2868 setOriginForNaryOp(I); 2869 } 2870 2871 void handleStmxcsr(IntrinsicInst &I) { 2872 IRBuilder<> IRB(&I); 2873 Value* Addr = I.getArgOperand(0); 2874 Type *Ty = IRB.getInt32Ty(); 2875 Value *ShadowPtr = 2876 getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true) 2877 .first; 2878 2879 IRB.CreateStore(getCleanShadow(Ty), 2880 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2881 2882 if (ClCheckAccessAddress) 2883 insertShadowCheck(Addr, &I); 2884 } 2885 2886 void handleLdmxcsr(IntrinsicInst &I) { 2887 if (!InsertChecks) return; 2888 2889 IRBuilder<> IRB(&I); 2890 Value *Addr = I.getArgOperand(0); 2891 Type *Ty = IRB.getInt32Ty(); 2892 unsigned Alignment = 1; 2893 Value *ShadowPtr, *OriginPtr; 2894 std::tie(ShadowPtr, OriginPtr) = 2895 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 2896 2897 if (ClCheckAccessAddress) 2898 insertShadowCheck(Addr, &I); 2899 2900 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 2901 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 2902 : getCleanOrigin(); 2903 insertShadowCheck(Shadow, Origin, &I); 2904 } 2905 2906 void handleMaskedStore(IntrinsicInst &I) { 2907 IRBuilder<> IRB(&I); 2908 Value *V = I.getArgOperand(0); 2909 Value *Addr = I.getArgOperand(1); 2910 unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 2911 Value *Mask = I.getArgOperand(3); 2912 Value *Shadow = getShadow(V); 2913 2914 Value *ShadowPtr; 2915 Value *OriginPtr; 2916 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2917 Addr, IRB, Shadow->getType(), Align, /*isStore*/ true); 2918 2919 if (ClCheckAccessAddress) { 2920 insertShadowCheck(Addr, &I); 2921 // Uninitialized mask is kind of like uninitialized address, but not as 2922 // scary. 2923 insertShadowCheck(Mask, &I); 2924 } 2925 2926 IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask); 2927 2928 if (MS.TrackOrigins) { 2929 auto &DL = F.getParent()->getDataLayout(); 2930 paintOrigin(IRB, getOrigin(V), OriginPtr, 2931 DL.getTypeStoreSize(Shadow->getType()), 2932 std::max(Align, kMinOriginAlignment)); 2933 } 2934 } 2935 2936 bool handleMaskedLoad(IntrinsicInst &I) { 2937 IRBuilder<> IRB(&I); 2938 Value *Addr = I.getArgOperand(0); 2939 unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 2940 Value *Mask = I.getArgOperand(2); 2941 Value *PassThru = I.getArgOperand(3); 2942 2943 Type *ShadowTy = getShadowTy(&I); 2944 Value *ShadowPtr, *OriginPtr; 2945 if (PropagateShadow) { 2946 std::tie(ShadowPtr, OriginPtr) = 2947 getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false); 2948 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask, 2949 getShadow(PassThru), "_msmaskedld")); 2950 } else { 2951 setShadow(&I, getCleanShadow(&I)); 2952 } 2953 2954 if (ClCheckAccessAddress) { 2955 insertShadowCheck(Addr, &I); 2956 insertShadowCheck(Mask, &I); 2957 } 2958 2959 if (MS.TrackOrigins) { 2960 if (PropagateShadow) { 2961 // Choose between PassThru's and the loaded value's origins. 2962 Value *MaskedPassThruShadow = IRB.CreateAnd( 2963 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 2964 2965 Value *Acc = IRB.CreateExtractElement( 2966 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2967 for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N; 2968 ++i) { 2969 Value *More = IRB.CreateExtractElement( 2970 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2971 Acc = IRB.CreateOr(Acc, More); 2972 } 2973 2974 Value *Origin = IRB.CreateSelect( 2975 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 2976 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2977 2978 setOrigin(&I, Origin); 2979 } else { 2980 setOrigin(&I, getCleanOrigin()); 2981 } 2982 } 2983 return true; 2984 } 2985 2986 // Instrument BMI / BMI2 intrinsics. 2987 // All of these intrinsics are Z = I(X, Y) 2988 // where the types of all operands and the result match, and are either i32 or i64. 2989 // The following instrumentation happens to work for all of them: 2990 // Sz = I(Sx, Y) | (sext (Sy != 0)) 2991 void handleBmiIntrinsic(IntrinsicInst &I) { 2992 IRBuilder<> IRB(&I); 2993 Type *ShadowTy = getShadowTy(&I); 2994 2995 // If any bit of the mask operand is poisoned, then the whole thing is. 2996 Value *SMask = getShadow(&I, 1); 2997 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 2998 ShadowTy); 2999 // Apply the same intrinsic to the shadow of the first operand. 3000 Value *S = IRB.CreateCall(I.getCalledFunction(), 3001 {getShadow(&I, 0), I.getOperand(1)}); 3002 S = IRB.CreateOr(SMask, S); 3003 setShadow(&I, S); 3004 setOriginForNaryOp(I); 3005 } 3006 3007 void visitIntrinsicInst(IntrinsicInst &I) { 3008 switch (I.getIntrinsicID()) { 3009 case Intrinsic::lifetime_start: 3010 handleLifetimeStart(I); 3011 break; 3012 case Intrinsic::launder_invariant_group: 3013 case Intrinsic::strip_invariant_group: 3014 handleInvariantGroup(I); 3015 break; 3016 case Intrinsic::bswap: 3017 handleBswap(I); 3018 break; 3019 case Intrinsic::masked_store: 3020 handleMaskedStore(I); 3021 break; 3022 case Intrinsic::masked_load: 3023 handleMaskedLoad(I); 3024 break; 3025 case Intrinsic::x86_sse_stmxcsr: 3026 handleStmxcsr(I); 3027 break; 3028 case Intrinsic::x86_sse_ldmxcsr: 3029 handleLdmxcsr(I); 3030 break; 3031 case Intrinsic::x86_avx512_vcvtsd2usi64: 3032 case Intrinsic::x86_avx512_vcvtsd2usi32: 3033 case Intrinsic::x86_avx512_vcvtss2usi64: 3034 case Intrinsic::x86_avx512_vcvtss2usi32: 3035 case Intrinsic::x86_avx512_cvttss2usi64: 3036 case Intrinsic::x86_avx512_cvttss2usi: 3037 case Intrinsic::x86_avx512_cvttsd2usi64: 3038 case Intrinsic::x86_avx512_cvttsd2usi: 3039 case Intrinsic::x86_avx512_cvtusi2ss: 3040 case Intrinsic::x86_avx512_cvtusi642sd: 3041 case Intrinsic::x86_avx512_cvtusi642ss: 3042 case Intrinsic::x86_sse2_cvtsd2si64: 3043 case Intrinsic::x86_sse2_cvtsd2si: 3044 case Intrinsic::x86_sse2_cvtsd2ss: 3045 case Intrinsic::x86_sse2_cvttsd2si64: 3046 case Intrinsic::x86_sse2_cvttsd2si: 3047 case Intrinsic::x86_sse_cvtss2si64: 3048 case Intrinsic::x86_sse_cvtss2si: 3049 case Intrinsic::x86_sse_cvttss2si64: 3050 case Intrinsic::x86_sse_cvttss2si: 3051 handleVectorConvertIntrinsic(I, 1); 3052 break; 3053 case Intrinsic::x86_sse_cvtps2pi: 3054 case Intrinsic::x86_sse_cvttps2pi: 3055 handleVectorConvertIntrinsic(I, 2); 3056 break; 3057 3058 case Intrinsic::x86_avx512_psll_w_512: 3059 case Intrinsic::x86_avx512_psll_d_512: 3060 case Intrinsic::x86_avx512_psll_q_512: 3061 case Intrinsic::x86_avx512_pslli_w_512: 3062 case Intrinsic::x86_avx512_pslli_d_512: 3063 case Intrinsic::x86_avx512_pslli_q_512: 3064 case Intrinsic::x86_avx512_psrl_w_512: 3065 case Intrinsic::x86_avx512_psrl_d_512: 3066 case Intrinsic::x86_avx512_psrl_q_512: 3067 case Intrinsic::x86_avx512_psra_w_512: 3068 case Intrinsic::x86_avx512_psra_d_512: 3069 case Intrinsic::x86_avx512_psra_q_512: 3070 case Intrinsic::x86_avx512_psrli_w_512: 3071 case Intrinsic::x86_avx512_psrli_d_512: 3072 case Intrinsic::x86_avx512_psrli_q_512: 3073 case Intrinsic::x86_avx512_psrai_w_512: 3074 case Intrinsic::x86_avx512_psrai_d_512: 3075 case Intrinsic::x86_avx512_psrai_q_512: 3076 case Intrinsic::x86_avx512_psra_q_256: 3077 case Intrinsic::x86_avx512_psra_q_128: 3078 case Intrinsic::x86_avx512_psrai_q_256: 3079 case Intrinsic::x86_avx512_psrai_q_128: 3080 case Intrinsic::x86_avx2_psll_w: 3081 case Intrinsic::x86_avx2_psll_d: 3082 case Intrinsic::x86_avx2_psll_q: 3083 case Intrinsic::x86_avx2_pslli_w: 3084 case Intrinsic::x86_avx2_pslli_d: 3085 case Intrinsic::x86_avx2_pslli_q: 3086 case Intrinsic::x86_avx2_psrl_w: 3087 case Intrinsic::x86_avx2_psrl_d: 3088 case Intrinsic::x86_avx2_psrl_q: 3089 case Intrinsic::x86_avx2_psra_w: 3090 case Intrinsic::x86_avx2_psra_d: 3091 case Intrinsic::x86_avx2_psrli_w: 3092 case Intrinsic::x86_avx2_psrli_d: 3093 case Intrinsic::x86_avx2_psrli_q: 3094 case Intrinsic::x86_avx2_psrai_w: 3095 case Intrinsic::x86_avx2_psrai_d: 3096 case Intrinsic::x86_sse2_psll_w: 3097 case Intrinsic::x86_sse2_psll_d: 3098 case Intrinsic::x86_sse2_psll_q: 3099 case Intrinsic::x86_sse2_pslli_w: 3100 case Intrinsic::x86_sse2_pslli_d: 3101 case Intrinsic::x86_sse2_pslli_q: 3102 case Intrinsic::x86_sse2_psrl_w: 3103 case Intrinsic::x86_sse2_psrl_d: 3104 case Intrinsic::x86_sse2_psrl_q: 3105 case Intrinsic::x86_sse2_psra_w: 3106 case Intrinsic::x86_sse2_psra_d: 3107 case Intrinsic::x86_sse2_psrli_w: 3108 case Intrinsic::x86_sse2_psrli_d: 3109 case Intrinsic::x86_sse2_psrli_q: 3110 case Intrinsic::x86_sse2_psrai_w: 3111 case Intrinsic::x86_sse2_psrai_d: 3112 case Intrinsic::x86_mmx_psll_w: 3113 case Intrinsic::x86_mmx_psll_d: 3114 case Intrinsic::x86_mmx_psll_q: 3115 case Intrinsic::x86_mmx_pslli_w: 3116 case Intrinsic::x86_mmx_pslli_d: 3117 case Intrinsic::x86_mmx_pslli_q: 3118 case Intrinsic::x86_mmx_psrl_w: 3119 case Intrinsic::x86_mmx_psrl_d: 3120 case Intrinsic::x86_mmx_psrl_q: 3121 case Intrinsic::x86_mmx_psra_w: 3122 case Intrinsic::x86_mmx_psra_d: 3123 case Intrinsic::x86_mmx_psrli_w: 3124 case Intrinsic::x86_mmx_psrli_d: 3125 case Intrinsic::x86_mmx_psrli_q: 3126 case Intrinsic::x86_mmx_psrai_w: 3127 case Intrinsic::x86_mmx_psrai_d: 3128 handleVectorShiftIntrinsic(I, /* Variable */ false); 3129 break; 3130 case Intrinsic::x86_avx2_psllv_d: 3131 case Intrinsic::x86_avx2_psllv_d_256: 3132 case Intrinsic::x86_avx512_psllv_d_512: 3133 case Intrinsic::x86_avx2_psllv_q: 3134 case Intrinsic::x86_avx2_psllv_q_256: 3135 case Intrinsic::x86_avx512_psllv_q_512: 3136 case Intrinsic::x86_avx2_psrlv_d: 3137 case Intrinsic::x86_avx2_psrlv_d_256: 3138 case Intrinsic::x86_avx512_psrlv_d_512: 3139 case Intrinsic::x86_avx2_psrlv_q: 3140 case Intrinsic::x86_avx2_psrlv_q_256: 3141 case Intrinsic::x86_avx512_psrlv_q_512: 3142 case Intrinsic::x86_avx2_psrav_d: 3143 case Intrinsic::x86_avx2_psrav_d_256: 3144 case Intrinsic::x86_avx512_psrav_d_512: 3145 case Intrinsic::x86_avx512_psrav_q_128: 3146 case Intrinsic::x86_avx512_psrav_q_256: 3147 case Intrinsic::x86_avx512_psrav_q_512: 3148 handleVectorShiftIntrinsic(I, /* Variable */ true); 3149 break; 3150 3151 case Intrinsic::x86_sse2_packsswb_128: 3152 case Intrinsic::x86_sse2_packssdw_128: 3153 case Intrinsic::x86_sse2_packuswb_128: 3154 case Intrinsic::x86_sse41_packusdw: 3155 case Intrinsic::x86_avx2_packsswb: 3156 case Intrinsic::x86_avx2_packssdw: 3157 case Intrinsic::x86_avx2_packuswb: 3158 case Intrinsic::x86_avx2_packusdw: 3159 handleVectorPackIntrinsic(I); 3160 break; 3161 3162 case Intrinsic::x86_mmx_packsswb: 3163 case Intrinsic::x86_mmx_packuswb: 3164 handleVectorPackIntrinsic(I, 16); 3165 break; 3166 3167 case Intrinsic::x86_mmx_packssdw: 3168 handleVectorPackIntrinsic(I, 32); 3169 break; 3170 3171 case Intrinsic::x86_mmx_psad_bw: 3172 case Intrinsic::x86_sse2_psad_bw: 3173 case Intrinsic::x86_avx2_psad_bw: 3174 handleVectorSadIntrinsic(I); 3175 break; 3176 3177 case Intrinsic::x86_sse2_pmadd_wd: 3178 case Intrinsic::x86_avx2_pmadd_wd: 3179 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3180 case Intrinsic::x86_avx2_pmadd_ub_sw: 3181 handleVectorPmaddIntrinsic(I); 3182 break; 3183 3184 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3185 handleVectorPmaddIntrinsic(I, 8); 3186 break; 3187 3188 case Intrinsic::x86_mmx_pmadd_wd: 3189 handleVectorPmaddIntrinsic(I, 16); 3190 break; 3191 3192 case Intrinsic::x86_sse_cmp_ss: 3193 case Intrinsic::x86_sse2_cmp_sd: 3194 case Intrinsic::x86_sse_comieq_ss: 3195 case Intrinsic::x86_sse_comilt_ss: 3196 case Intrinsic::x86_sse_comile_ss: 3197 case Intrinsic::x86_sse_comigt_ss: 3198 case Intrinsic::x86_sse_comige_ss: 3199 case Intrinsic::x86_sse_comineq_ss: 3200 case Intrinsic::x86_sse_ucomieq_ss: 3201 case Intrinsic::x86_sse_ucomilt_ss: 3202 case Intrinsic::x86_sse_ucomile_ss: 3203 case Intrinsic::x86_sse_ucomigt_ss: 3204 case Intrinsic::x86_sse_ucomige_ss: 3205 case Intrinsic::x86_sse_ucomineq_ss: 3206 case Intrinsic::x86_sse2_comieq_sd: 3207 case Intrinsic::x86_sse2_comilt_sd: 3208 case Intrinsic::x86_sse2_comile_sd: 3209 case Intrinsic::x86_sse2_comigt_sd: 3210 case Intrinsic::x86_sse2_comige_sd: 3211 case Intrinsic::x86_sse2_comineq_sd: 3212 case Intrinsic::x86_sse2_ucomieq_sd: 3213 case Intrinsic::x86_sse2_ucomilt_sd: 3214 case Intrinsic::x86_sse2_ucomile_sd: 3215 case Intrinsic::x86_sse2_ucomigt_sd: 3216 case Intrinsic::x86_sse2_ucomige_sd: 3217 case Intrinsic::x86_sse2_ucomineq_sd: 3218 handleVectorCompareScalarIntrinsic(I); 3219 break; 3220 3221 case Intrinsic::x86_sse_cmp_ps: 3222 case Intrinsic::x86_sse2_cmp_pd: 3223 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3224 // generates reasonably looking IR that fails in the backend with "Do not 3225 // know how to split the result of this operator!". 3226 handleVectorComparePackedIntrinsic(I); 3227 break; 3228 3229 case Intrinsic::x86_bmi_bextr_32: 3230 case Intrinsic::x86_bmi_bextr_64: 3231 case Intrinsic::x86_bmi_bzhi_32: 3232 case Intrinsic::x86_bmi_bzhi_64: 3233 case Intrinsic::x86_bmi_pdep_32: 3234 case Intrinsic::x86_bmi_pdep_64: 3235 case Intrinsic::x86_bmi_pext_32: 3236 case Intrinsic::x86_bmi_pext_64: 3237 handleBmiIntrinsic(I); 3238 break; 3239 3240 case Intrinsic::is_constant: 3241 // The result of llvm.is.constant() is always defined. 3242 setShadow(&I, getCleanShadow(&I)); 3243 setOrigin(&I, getCleanOrigin()); 3244 break; 3245 3246 default: 3247 if (!handleUnknownIntrinsic(I)) 3248 visitInstruction(I); 3249 break; 3250 } 3251 } 3252 3253 void visitCallSite(CallSite CS) { 3254 Instruction &I = *CS.getInstruction(); 3255 assert(!I.getMetadata("nosanitize")); 3256 assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) && 3257 "Unknown type of CallSite"); 3258 if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) { 3259 // For inline asm (either a call to asm function, or callbr instruction), 3260 // do the usual thing: check argument shadow and mark all outputs as 3261 // clean. Note that any side effects of the inline asm that are not 3262 // immediately visible in its constraints are not handled. 3263 if (ClHandleAsmConservative && MS.CompileKernel) 3264 visitAsmInstruction(I); 3265 else 3266 visitInstruction(I); 3267 return; 3268 } 3269 if (CS.isCall()) { 3270 CallInst *Call = cast<CallInst>(&I); 3271 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 3272 3273 // We are going to insert code that relies on the fact that the callee 3274 // will become a non-readonly function after it is instrumented by us. To 3275 // prevent this code from being optimized out, mark that function 3276 // non-readonly in advance. 3277 if (Function *Func = Call->getCalledFunction()) { 3278 // Clear out readonly/readnone attributes. 3279 AttrBuilder B; 3280 B.addAttribute(Attribute::ReadOnly) 3281 .addAttribute(Attribute::ReadNone); 3282 Func->removeAttributes(AttributeList::FunctionIndex, B); 3283 } 3284 3285 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3286 } 3287 IRBuilder<> IRB(&I); 3288 3289 unsigned ArgOffset = 0; 3290 LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n"); 3291 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3292 ArgIt != End; ++ArgIt) { 3293 Value *A = *ArgIt; 3294 unsigned i = ArgIt - CS.arg_begin(); 3295 if (!A->getType()->isSized()) { 3296 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 3297 continue; 3298 } 3299 unsigned Size = 0; 3300 Value *Store = nullptr; 3301 // Compute the Shadow for arg even if it is ByVal, because 3302 // in that case getShadow() will copy the actual arg shadow to 3303 // __msan_param_tls. 3304 Value *ArgShadow = getShadow(A); 3305 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3306 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3307 << " Shadow: " << *ArgShadow << "\n"); 3308 bool ArgIsInitialized = false; 3309 const DataLayout &DL = F.getParent()->getDataLayout(); 3310 if (CS.paramHasAttr(i, Attribute::ByVal)) { 3311 assert(A->getType()->isPointerTy() && 3312 "ByVal argument is not a pointer!"); 3313 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 3314 if (ArgOffset + Size > kParamTLSSize) break; 3315 unsigned ParamAlignment = CS.getParamAlignment(i); 3316 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 3317 Value *AShadowPtr = 3318 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3319 /*isStore*/ false) 3320 .first; 3321 3322 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3323 Alignment, Size); 3324 // TODO(glider): need to copy origins. 3325 } else { 3326 Size = DL.getTypeAllocSize(A->getType()); 3327 if (ArgOffset + Size > kParamTLSSize) break; 3328 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3329 kShadowTLSAlignment); 3330 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3331 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3332 } 3333 if (MS.TrackOrigins && !ArgIsInitialized) 3334 IRB.CreateStore(getOrigin(A), 3335 getOriginPtrForArgument(A, IRB, ArgOffset)); 3336 (void)Store; 3337 assert(Size != 0 && Store != nullptr); 3338 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3339 ArgOffset += alignTo(Size, 8); 3340 } 3341 LLVM_DEBUG(dbgs() << " done with call args\n"); 3342 3343 FunctionType *FT = CS.getFunctionType(); 3344 if (FT->isVarArg()) { 3345 VAHelper->visitCallSite(CS, IRB); 3346 } 3347 3348 // Now, get the shadow for the RetVal. 3349 if (!I.getType()->isSized()) return; 3350 // Don't emit the epilogue for musttail call returns. 3351 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 3352 IRBuilder<> IRBBefore(&I); 3353 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3354 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 3355 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 3356 BasicBlock::iterator NextInsn; 3357 if (CS.isCall()) { 3358 NextInsn = ++I.getIterator(); 3359 assert(NextInsn != I.getParent()->end()); 3360 } else { 3361 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 3362 if (!NormalDest->getSinglePredecessor()) { 3363 // FIXME: this case is tricky, so we are just conservative here. 3364 // Perhaps we need to split the edge between this BB and NormalDest, 3365 // but a naive attempt to use SplitEdge leads to a crash. 3366 setShadow(&I, getCleanShadow(&I)); 3367 setOrigin(&I, getCleanOrigin()); 3368 return; 3369 } 3370 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3371 // Anything inserted there will be instrumented by MSan later! 3372 NextInsn = NormalDest->getFirstInsertionPt(); 3373 assert(NextInsn != NormalDest->end() && 3374 "Could not find insertion point for retval shadow load"); 3375 } 3376 IRBuilder<> IRBAfter(&*NextInsn); 3377 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3378 getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter), 3379 kShadowTLSAlignment, "_msret"); 3380 setShadow(&I, RetvalShadow); 3381 if (MS.TrackOrigins) 3382 setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy, 3383 getOriginPtrForRetval(IRBAfter))); 3384 } 3385 3386 bool isAMustTailRetVal(Value *RetVal) { 3387 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3388 RetVal = I->getOperand(0); 3389 } 3390 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3391 return I->isMustTailCall(); 3392 } 3393 return false; 3394 } 3395 3396 void visitReturnInst(ReturnInst &I) { 3397 IRBuilder<> IRB(&I); 3398 Value *RetVal = I.getReturnValue(); 3399 if (!RetVal) return; 3400 // Don't emit the epilogue for musttail call returns. 3401 if (isAMustTailRetVal(RetVal)) return; 3402 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3403 if (CheckReturnValue) { 3404 insertShadowCheck(RetVal, &I); 3405 Value *Shadow = getCleanShadow(RetVal); 3406 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3407 } else { 3408 Value *Shadow = getShadow(RetVal); 3409 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3410 if (MS.TrackOrigins) 3411 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3412 } 3413 } 3414 3415 void visitPHINode(PHINode &I) { 3416 IRBuilder<> IRB(&I); 3417 if (!PropagateShadow) { 3418 setShadow(&I, getCleanShadow(&I)); 3419 setOrigin(&I, getCleanOrigin()); 3420 return; 3421 } 3422 3423 ShadowPHINodes.push_back(&I); 3424 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3425 "_msphi_s")); 3426 if (MS.TrackOrigins) 3427 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3428 "_msphi_o")); 3429 } 3430 3431 Value *getLocalVarDescription(AllocaInst &I) { 3432 SmallString<2048> StackDescriptionStorage; 3433 raw_svector_ostream StackDescription(StackDescriptionStorage); 3434 // We create a string with a description of the stack allocation and 3435 // pass it into __msan_set_alloca_origin. 3436 // It will be printed by the run-time if stack-originated UMR is found. 3437 // The first 4 bytes of the string are set to '----' and will be replaced 3438 // by __msan_va_arg_overflow_size_tls at the first call. 3439 StackDescription << "----" << I.getName() << "@" << F.getName(); 3440 return createPrivateNonConstGlobalForString(*F.getParent(), 3441 StackDescription.str()); 3442 } 3443 3444 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3445 if (PoisonStack && ClPoisonStackWithCall) { 3446 IRB.CreateCall(MS.MsanPoisonStackFn, 3447 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3448 } else { 3449 Value *ShadowBase, *OriginBase; 3450 std::tie(ShadowBase, OriginBase) = 3451 getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(), 1, /*isStore*/ true); 3452 3453 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3454 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment()); 3455 } 3456 3457 if (PoisonStack && MS.TrackOrigins) { 3458 Value *Descr = getLocalVarDescription(I); 3459 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3460 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3461 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3462 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3463 } 3464 } 3465 3466 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3467 Value *Descr = getLocalVarDescription(I); 3468 if (PoisonStack) { 3469 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3470 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3471 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3472 } else { 3473 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3474 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3475 } 3476 } 3477 3478 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3479 if (!InsPoint) 3480 InsPoint = &I; 3481 IRBuilder<> IRB(InsPoint->getNextNode()); 3482 const DataLayout &DL = F.getParent()->getDataLayout(); 3483 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3484 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3485 if (I.isArrayAllocation()) 3486 Len = IRB.CreateMul(Len, I.getArraySize()); 3487 3488 if (MS.CompileKernel) 3489 poisonAllocaKmsan(I, IRB, Len); 3490 else 3491 poisonAllocaUserspace(I, IRB, Len); 3492 } 3493 3494 void visitAllocaInst(AllocaInst &I) { 3495 setShadow(&I, getCleanShadow(&I)); 3496 setOrigin(&I, getCleanOrigin()); 3497 // We'll get to this alloca later unless it's poisoned at the corresponding 3498 // llvm.lifetime.start. 3499 AllocaSet.insert(&I); 3500 } 3501 3502 void visitSelectInst(SelectInst& I) { 3503 IRBuilder<> IRB(&I); 3504 // a = select b, c, d 3505 Value *B = I.getCondition(); 3506 Value *C = I.getTrueValue(); 3507 Value *D = I.getFalseValue(); 3508 Value *Sb = getShadow(B); 3509 Value *Sc = getShadow(C); 3510 Value *Sd = getShadow(D); 3511 3512 // Result shadow if condition shadow is 0. 3513 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3514 Value *Sa1; 3515 if (I.getType()->isAggregateType()) { 3516 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3517 // an extra "select". This results in much more compact IR. 3518 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3519 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3520 } else { 3521 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3522 // If Sb (condition is poisoned), look for bits in c and d that are equal 3523 // and both unpoisoned. 3524 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3525 3526 // Cast arguments to shadow-compatible type. 3527 C = CreateAppToShadowCast(IRB, C); 3528 D = CreateAppToShadowCast(IRB, D); 3529 3530 // Result shadow if condition shadow is 1. 3531 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3532 } 3533 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3534 setShadow(&I, Sa); 3535 if (MS.TrackOrigins) { 3536 // Origins are always i32, so any vector conditions must be flattened. 3537 // FIXME: consider tracking vector origins for app vectors? 3538 if (B->getType()->isVectorTy()) { 3539 Type *FlatTy = getShadowTyNoVec(B->getType()); 3540 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3541 ConstantInt::getNullValue(FlatTy)); 3542 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3543 ConstantInt::getNullValue(FlatTy)); 3544 } 3545 // a = select b, c, d 3546 // Oa = Sb ? Ob : (b ? Oc : Od) 3547 setOrigin( 3548 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3549 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3550 getOrigin(I.getFalseValue())))); 3551 } 3552 } 3553 3554 void visitLandingPadInst(LandingPadInst &I) { 3555 // Do nothing. 3556 // See https://github.com/google/sanitizers/issues/504 3557 setShadow(&I, getCleanShadow(&I)); 3558 setOrigin(&I, getCleanOrigin()); 3559 } 3560 3561 void visitCatchSwitchInst(CatchSwitchInst &I) { 3562 setShadow(&I, getCleanShadow(&I)); 3563 setOrigin(&I, getCleanOrigin()); 3564 } 3565 3566 void visitFuncletPadInst(FuncletPadInst &I) { 3567 setShadow(&I, getCleanShadow(&I)); 3568 setOrigin(&I, getCleanOrigin()); 3569 } 3570 3571 void visitGetElementPtrInst(GetElementPtrInst &I) { 3572 handleShadowOr(I); 3573 } 3574 3575 void visitExtractValueInst(ExtractValueInst &I) { 3576 IRBuilder<> IRB(&I); 3577 Value *Agg = I.getAggregateOperand(); 3578 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3579 Value *AggShadow = getShadow(Agg); 3580 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3581 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3582 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3583 setShadow(&I, ResShadow); 3584 setOriginForNaryOp(I); 3585 } 3586 3587 void visitInsertValueInst(InsertValueInst &I) { 3588 IRBuilder<> IRB(&I); 3589 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3590 Value *AggShadow = getShadow(I.getAggregateOperand()); 3591 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3592 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3593 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3594 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3595 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3596 setShadow(&I, Res); 3597 setOriginForNaryOp(I); 3598 } 3599 3600 void dumpInst(Instruction &I) { 3601 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3602 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3603 } else { 3604 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3605 } 3606 errs() << "QQQ " << I << "\n"; 3607 } 3608 3609 void visitResumeInst(ResumeInst &I) { 3610 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3611 // Nothing to do here. 3612 } 3613 3614 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3615 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3616 // Nothing to do here. 3617 } 3618 3619 void visitCatchReturnInst(CatchReturnInst &CRI) { 3620 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3621 // Nothing to do here. 3622 } 3623 3624 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3625 const DataLayout &DL, bool isOutput) { 3626 // For each assembly argument, we check its value for being initialized. 3627 // If the argument is a pointer, we assume it points to a single element 3628 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3629 // Each such pointer is instrumented with a call to the runtime library. 3630 Type *OpType = Operand->getType(); 3631 // Check the operand value itself. 3632 insertShadowCheck(Operand, &I); 3633 if (!OpType->isPointerTy() || !isOutput) { 3634 assert(!isOutput); 3635 return; 3636 } 3637 Type *ElType = OpType->getPointerElementType(); 3638 if (!ElType->isSized()) 3639 return; 3640 int Size = DL.getTypeStoreSize(ElType); 3641 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3642 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 3643 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 3644 } 3645 3646 /// Get the number of output arguments returned by pointers. 3647 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 3648 int NumRetOutputs = 0; 3649 int NumOutputs = 0; 3650 Type *RetTy = cast<Value>(CB)->getType(); 3651 if (!RetTy->isVoidTy()) { 3652 // Register outputs are returned via the CallInst return value. 3653 auto *ST = dyn_cast<StructType>(RetTy); 3654 if (ST) 3655 NumRetOutputs = ST->getNumElements(); 3656 else 3657 NumRetOutputs = 1; 3658 } 3659 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 3660 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 3661 InlineAsm::ConstraintInfo Info = Constraints[i]; 3662 switch (Info.Type) { 3663 case InlineAsm::isOutput: 3664 NumOutputs++; 3665 break; 3666 default: 3667 break; 3668 } 3669 } 3670 return NumOutputs - NumRetOutputs; 3671 } 3672 3673 void visitAsmInstruction(Instruction &I) { 3674 // Conservative inline assembly handling: check for poisoned shadow of 3675 // asm() arguments, then unpoison the result and all the memory locations 3676 // pointed to by those arguments. 3677 // An inline asm() statement in C++ contains lists of input and output 3678 // arguments used by the assembly code. These are mapped to operands of the 3679 // CallInst as follows: 3680 // - nR register outputs ("=r) are returned by value in a single structure 3681 // (SSA value of the CallInst); 3682 // - nO other outputs ("=m" and others) are returned by pointer as first 3683 // nO operands of the CallInst; 3684 // - nI inputs ("r", "m" and others) are passed to CallInst as the 3685 // remaining nI operands. 3686 // The total number of asm() arguments in the source is nR+nO+nI, and the 3687 // corresponding CallInst has nO+nI+1 operands (the last operand is the 3688 // function to be called). 3689 const DataLayout &DL = F.getParent()->getDataLayout(); 3690 CallBase *CB = cast<CallBase>(&I); 3691 IRBuilder<> IRB(&I); 3692 InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue()); 3693 int OutputArgs = getNumOutputArgs(IA, CB); 3694 // The last operand of a CallInst is the function itself. 3695 int NumOperands = CB->getNumOperands() - 1; 3696 3697 // Check input arguments. Doing so before unpoisoning output arguments, so 3698 // that we won't overwrite uninit values before checking them. 3699 for (int i = OutputArgs; i < NumOperands; i++) { 3700 Value *Operand = CB->getOperand(i); 3701 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 3702 } 3703 // Unpoison output arguments. This must happen before the actual InlineAsm 3704 // call, so that the shadow for memory published in the asm() statement 3705 // remains valid. 3706 for (int i = 0; i < OutputArgs; i++) { 3707 Value *Operand = CB->getOperand(i); 3708 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 3709 } 3710 3711 setShadow(&I, getCleanShadow(&I)); 3712 setOrigin(&I, getCleanOrigin()); 3713 } 3714 3715 void visitInstruction(Instruction &I) { 3716 // Everything else: stop propagating and check for poisoned shadow. 3717 if (ClDumpStrictInstructions) 3718 dumpInst(I); 3719 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 3720 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 3721 Value *Operand = I.getOperand(i); 3722 if (Operand->getType()->isSized()) 3723 insertShadowCheck(Operand, &I); 3724 } 3725 setShadow(&I, getCleanShadow(&I)); 3726 setOrigin(&I, getCleanOrigin()); 3727 } 3728 }; 3729 3730 /// AMD64-specific implementation of VarArgHelper. 3731 struct VarArgAMD64Helper : public VarArgHelper { 3732 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 3733 // See a comment in visitCallSite for more details. 3734 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 3735 static const unsigned AMD64FpEndOffsetSSE = 176; 3736 // If SSE is disabled, fp_offset in va_list is zero. 3737 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 3738 3739 unsigned AMD64FpEndOffset; 3740 Function &F; 3741 MemorySanitizer &MS; 3742 MemorySanitizerVisitor &MSV; 3743 Value *VAArgTLSCopy = nullptr; 3744 Value *VAArgTLSOriginCopy = nullptr; 3745 Value *VAArgOverflowSize = nullptr; 3746 3747 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3748 3749 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3750 3751 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 3752 MemorySanitizerVisitor &MSV) 3753 : F(F), MS(MS), MSV(MSV) { 3754 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 3755 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 3756 if (Attr.isStringAttribute() && 3757 (Attr.getKindAsString() == "target-features")) { 3758 if (Attr.getValueAsString().contains("-sse")) 3759 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 3760 break; 3761 } 3762 } 3763 } 3764 3765 ArgKind classifyArgument(Value* arg) { 3766 // A very rough approximation of X86_64 argument classification rules. 3767 Type *T = arg->getType(); 3768 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 3769 return AK_FloatingPoint; 3770 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3771 return AK_GeneralPurpose; 3772 if (T->isPointerTy()) 3773 return AK_GeneralPurpose; 3774 return AK_Memory; 3775 } 3776 3777 // For VarArg functions, store the argument shadow in an ABI-specific format 3778 // that corresponds to va_list layout. 3779 // We do this because Clang lowers va_arg in the frontend, and this pass 3780 // only sees the low level code that deals with va_list internals. 3781 // A much easier alternative (provided that Clang emits va_arg instructions) 3782 // would have been to associate each live instance of va_list with a copy of 3783 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 3784 // order. 3785 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3786 unsigned GpOffset = 0; 3787 unsigned FpOffset = AMD64GpEndOffset; 3788 unsigned OverflowOffset = AMD64FpEndOffset; 3789 const DataLayout &DL = F.getParent()->getDataLayout(); 3790 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3791 ArgIt != End; ++ArgIt) { 3792 Value *A = *ArgIt; 3793 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3794 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3795 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 3796 if (IsByVal) { 3797 // ByVal arguments always go to the overflow area. 3798 // Fixed arguments passed through the overflow area will be stepped 3799 // over by va_start, so don't count them towards the offset. 3800 if (IsFixed) 3801 continue; 3802 assert(A->getType()->isPointerTy()); 3803 Type *RealTy = A->getType()->getPointerElementType(); 3804 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3805 Value *ShadowBase = getShadowPtrForVAArgument( 3806 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 3807 Value *OriginBase = nullptr; 3808 if (MS.TrackOrigins) 3809 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 3810 OverflowOffset += alignTo(ArgSize, 8); 3811 if (!ShadowBase) 3812 continue; 3813 Value *ShadowPtr, *OriginPtr; 3814 std::tie(ShadowPtr, OriginPtr) = 3815 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 3816 /*isStore*/ false); 3817 3818 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 3819 kShadowTLSAlignment, ArgSize); 3820 if (MS.TrackOrigins) 3821 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 3822 kShadowTLSAlignment, ArgSize); 3823 } else { 3824 ArgKind AK = classifyArgument(A); 3825 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 3826 AK = AK_Memory; 3827 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 3828 AK = AK_Memory; 3829 Value *ShadowBase, *OriginBase = nullptr; 3830 switch (AK) { 3831 case AK_GeneralPurpose: 3832 ShadowBase = 3833 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 3834 if (MS.TrackOrigins) 3835 OriginBase = 3836 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 3837 GpOffset += 8; 3838 break; 3839 case AK_FloatingPoint: 3840 ShadowBase = 3841 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 3842 if (MS.TrackOrigins) 3843 OriginBase = 3844 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 3845 FpOffset += 16; 3846 break; 3847 case AK_Memory: 3848 if (IsFixed) 3849 continue; 3850 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3851 ShadowBase = 3852 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 3853 if (MS.TrackOrigins) 3854 OriginBase = 3855 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3856 OverflowOffset += alignTo(ArgSize, 8); 3857 } 3858 // Take fixed arguments into account for GpOffset and FpOffset, 3859 // but don't actually store shadows for them. 3860 // TODO(glider): don't call get*PtrForVAArgument() for them. 3861 if (IsFixed) 3862 continue; 3863 if (!ShadowBase) 3864 continue; 3865 Value *Shadow = MSV.getShadow(A); 3866 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 3867 if (MS.TrackOrigins) { 3868 Value *Origin = MSV.getOrigin(A); 3869 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 3870 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 3871 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 3872 } 3873 } 3874 } 3875 Constant *OverflowSize = 3876 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 3877 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3878 } 3879 3880 /// Compute the shadow address for a given va_arg. 3881 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3882 unsigned ArgOffset, unsigned ArgSize) { 3883 // Make sure we don't overflow __msan_va_arg_tls. 3884 if (ArgOffset + ArgSize > kParamTLSSize) 3885 return nullptr; 3886 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3887 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3888 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3889 "_msarg_va_s"); 3890 } 3891 3892 /// Compute the origin address for a given va_arg. 3893 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 3894 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 3895 // getOriginPtrForVAArgument() is always called after 3896 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 3897 // overflow. 3898 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3899 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 3900 "_msarg_va_o"); 3901 } 3902 3903 void unpoisonVAListTagForInst(IntrinsicInst &I) { 3904 IRBuilder<> IRB(&I); 3905 Value *VAListTag = I.getArgOperand(0); 3906 Value *ShadowPtr, *OriginPtr; 3907 unsigned Alignment = 8; 3908 std::tie(ShadowPtr, OriginPtr) = 3909 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 3910 /*isStore*/ true); 3911 3912 // Unpoison the whole __va_list_tag. 3913 // FIXME: magic ABI constants. 3914 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3915 /* size */ 24, Alignment, false); 3916 // We shouldn't need to zero out the origins, as they're only checked for 3917 // nonzero shadow. 3918 } 3919 3920 void visitVAStartInst(VAStartInst &I) override { 3921 if (F.getCallingConv() == CallingConv::Win64) 3922 return; 3923 VAStartInstrumentationList.push_back(&I); 3924 unpoisonVAListTagForInst(I); 3925 } 3926 3927 void visitVACopyInst(VACopyInst &I) override { 3928 if (F.getCallingConv() == CallingConv::Win64) return; 3929 unpoisonVAListTagForInst(I); 3930 } 3931 3932 void finalizeInstrumentation() override { 3933 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3934 "finalizeInstrumentation called twice"); 3935 if (!VAStartInstrumentationList.empty()) { 3936 // If there is a va_start in this function, make a backup copy of 3937 // va_arg_tls somewhere in the function entry block. 3938 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 3939 VAArgOverflowSize = 3940 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 3941 Value *CopySize = 3942 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 3943 VAArgOverflowSize); 3944 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3945 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 3946 if (MS.TrackOrigins) { 3947 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3948 IRB.CreateMemCpy(VAArgTLSOriginCopy, 8, MS.VAArgOriginTLS, 8, CopySize); 3949 } 3950 } 3951 3952 // Instrument va_start. 3953 // Copy va_list shadow from the backup copy of the TLS contents. 3954 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3955 CallInst *OrigInst = VAStartInstrumentationList[i]; 3956 IRBuilder<> IRB(OrigInst->getNextNode()); 3957 Value *VAListTag = OrigInst->getArgOperand(0); 3958 3959 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 3960 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 3961 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3962 ConstantInt::get(MS.IntptrTy, 16)), 3963 PointerType::get(RegSaveAreaPtrTy, 0)); 3964 Value *RegSaveAreaPtr = 3965 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 3966 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 3967 unsigned Alignment = 16; 3968 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 3969 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 3970 Alignment, /*isStore*/ true); 3971 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 3972 AMD64FpEndOffset); 3973 if (MS.TrackOrigins) 3974 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 3975 Alignment, AMD64FpEndOffset); 3976 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 3977 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 3978 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3979 ConstantInt::get(MS.IntptrTy, 8)), 3980 PointerType::get(OverflowArgAreaPtrTy, 0)); 3981 Value *OverflowArgAreaPtr = 3982 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 3983 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 3984 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 3985 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 3986 Alignment, /*isStore*/ true); 3987 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 3988 AMD64FpEndOffset); 3989 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 3990 VAArgOverflowSize); 3991 if (MS.TrackOrigins) { 3992 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 3993 AMD64FpEndOffset); 3994 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 3995 VAArgOverflowSize); 3996 } 3997 } 3998 } 3999 }; 4000 4001 /// MIPS64-specific implementation of VarArgHelper. 4002 struct VarArgMIPS64Helper : public VarArgHelper { 4003 Function &F; 4004 MemorySanitizer &MS; 4005 MemorySanitizerVisitor &MSV; 4006 Value *VAArgTLSCopy = nullptr; 4007 Value *VAArgSize = nullptr; 4008 4009 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4010 4011 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4012 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4013 4014 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4015 unsigned VAArgOffset = 0; 4016 const DataLayout &DL = F.getParent()->getDataLayout(); 4017 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 4018 CS.getFunctionType()->getNumParams(), End = CS.arg_end(); 4019 ArgIt != End; ++ArgIt) { 4020 Triple TargetTriple(F.getParent()->getTargetTriple()); 4021 Value *A = *ArgIt; 4022 Value *Base; 4023 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4024 if (TargetTriple.getArch() == Triple::mips64) { 4025 // Adjusting the shadow for argument with size < 8 to match the placement 4026 // of bits in big endian system 4027 if (ArgSize < 8) 4028 VAArgOffset += (8 - ArgSize); 4029 } 4030 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4031 VAArgOffset += ArgSize; 4032 VAArgOffset = alignTo(VAArgOffset, 8); 4033 if (!Base) 4034 continue; 4035 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4036 } 4037 4038 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4039 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4040 // a new class member i.e. it is the total size of all VarArgs. 4041 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4042 } 4043 4044 /// Compute the shadow address for a given va_arg. 4045 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4046 unsigned ArgOffset, unsigned ArgSize) { 4047 // Make sure we don't overflow __msan_va_arg_tls. 4048 if (ArgOffset + ArgSize > kParamTLSSize) 4049 return nullptr; 4050 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4051 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4052 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4053 "_msarg"); 4054 } 4055 4056 void visitVAStartInst(VAStartInst &I) override { 4057 IRBuilder<> IRB(&I); 4058 VAStartInstrumentationList.push_back(&I); 4059 Value *VAListTag = I.getArgOperand(0); 4060 Value *ShadowPtr, *OriginPtr; 4061 unsigned Alignment = 8; 4062 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4063 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4064 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4065 /* size */ 8, Alignment, false); 4066 } 4067 4068 void visitVACopyInst(VACopyInst &I) override { 4069 IRBuilder<> IRB(&I); 4070 VAStartInstrumentationList.push_back(&I); 4071 Value *VAListTag = I.getArgOperand(0); 4072 Value *ShadowPtr, *OriginPtr; 4073 unsigned Alignment = 8; 4074 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4075 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4076 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4077 /* size */ 8, Alignment, false); 4078 } 4079 4080 void finalizeInstrumentation() override { 4081 assert(!VAArgSize && !VAArgTLSCopy && 4082 "finalizeInstrumentation called twice"); 4083 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4084 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4085 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4086 VAArgSize); 4087 4088 if (!VAStartInstrumentationList.empty()) { 4089 // If there is a va_start in this function, make a backup copy of 4090 // va_arg_tls somewhere in the function entry block. 4091 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4092 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 4093 } 4094 4095 // Instrument va_start. 4096 // Copy va_list shadow from the backup copy of the TLS contents. 4097 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4098 CallInst *OrigInst = VAStartInstrumentationList[i]; 4099 IRBuilder<> IRB(OrigInst->getNextNode()); 4100 Value *VAListTag = OrigInst->getArgOperand(0); 4101 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4102 Value *RegSaveAreaPtrPtr = 4103 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4104 PointerType::get(RegSaveAreaPtrTy, 0)); 4105 Value *RegSaveAreaPtr = 4106 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4107 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4108 unsigned Alignment = 8; 4109 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4110 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4111 Alignment, /*isStore*/ true); 4112 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4113 CopySize); 4114 } 4115 } 4116 }; 4117 4118 /// AArch64-specific implementation of VarArgHelper. 4119 struct VarArgAArch64Helper : public VarArgHelper { 4120 static const unsigned kAArch64GrArgSize = 64; 4121 static const unsigned kAArch64VrArgSize = 128; 4122 4123 static const unsigned AArch64GrBegOffset = 0; 4124 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4125 // Make VR space aligned to 16 bytes. 4126 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4127 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4128 + kAArch64VrArgSize; 4129 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4130 4131 Function &F; 4132 MemorySanitizer &MS; 4133 MemorySanitizerVisitor &MSV; 4134 Value *VAArgTLSCopy = nullptr; 4135 Value *VAArgOverflowSize = nullptr; 4136 4137 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4138 4139 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4140 4141 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4142 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4143 4144 ArgKind classifyArgument(Value* arg) { 4145 Type *T = arg->getType(); 4146 if (T->isFPOrFPVectorTy()) 4147 return AK_FloatingPoint; 4148 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4149 || (T->isPointerTy())) 4150 return AK_GeneralPurpose; 4151 return AK_Memory; 4152 } 4153 4154 // The instrumentation stores the argument shadow in a non ABI-specific 4155 // format because it does not know which argument is named (since Clang, 4156 // like x86_64 case, lowers the va_args in the frontend and this pass only 4157 // sees the low level code that deals with va_list internals). 4158 // The first seven GR registers are saved in the first 56 bytes of the 4159 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4160 // the remaining arguments. 4161 // Using constant offset within the va_arg TLS array allows fast copy 4162 // in the finalize instrumentation. 4163 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4164 unsigned GrOffset = AArch64GrBegOffset; 4165 unsigned VrOffset = AArch64VrBegOffset; 4166 unsigned OverflowOffset = AArch64VAEndOffset; 4167 4168 const DataLayout &DL = F.getParent()->getDataLayout(); 4169 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4170 ArgIt != End; ++ArgIt) { 4171 Value *A = *ArgIt; 4172 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4173 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4174 ArgKind AK = classifyArgument(A); 4175 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4176 AK = AK_Memory; 4177 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4178 AK = AK_Memory; 4179 Value *Base; 4180 switch (AK) { 4181 case AK_GeneralPurpose: 4182 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4183 GrOffset += 8; 4184 break; 4185 case AK_FloatingPoint: 4186 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4187 VrOffset += 16; 4188 break; 4189 case AK_Memory: 4190 // Don't count fixed arguments in the overflow area - va_start will 4191 // skip right over them. 4192 if (IsFixed) 4193 continue; 4194 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4195 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4196 alignTo(ArgSize, 8)); 4197 OverflowOffset += alignTo(ArgSize, 8); 4198 break; 4199 } 4200 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4201 // bother to actually store a shadow. 4202 if (IsFixed) 4203 continue; 4204 if (!Base) 4205 continue; 4206 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4207 } 4208 Constant *OverflowSize = 4209 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4210 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4211 } 4212 4213 /// Compute the shadow address for a given va_arg. 4214 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4215 unsigned ArgOffset, unsigned ArgSize) { 4216 // Make sure we don't overflow __msan_va_arg_tls. 4217 if (ArgOffset + ArgSize > kParamTLSSize) 4218 return nullptr; 4219 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4220 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4221 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4222 "_msarg"); 4223 } 4224 4225 void visitVAStartInst(VAStartInst &I) override { 4226 IRBuilder<> IRB(&I); 4227 VAStartInstrumentationList.push_back(&I); 4228 Value *VAListTag = I.getArgOperand(0); 4229 Value *ShadowPtr, *OriginPtr; 4230 unsigned Alignment = 8; 4231 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4232 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4233 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4234 /* size */ 32, Alignment, false); 4235 } 4236 4237 void visitVACopyInst(VACopyInst &I) override { 4238 IRBuilder<> IRB(&I); 4239 VAStartInstrumentationList.push_back(&I); 4240 Value *VAListTag = I.getArgOperand(0); 4241 Value *ShadowPtr, *OriginPtr; 4242 unsigned Alignment = 8; 4243 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4244 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4245 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4246 /* size */ 32, Alignment, false); 4247 } 4248 4249 // Retrieve a va_list field of 'void*' size. 4250 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4251 Value *SaveAreaPtrPtr = 4252 IRB.CreateIntToPtr( 4253 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4254 ConstantInt::get(MS.IntptrTy, offset)), 4255 Type::getInt64PtrTy(*MS.C)); 4256 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4257 } 4258 4259 // Retrieve a va_list field of 'int' size. 4260 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4261 Value *SaveAreaPtr = 4262 IRB.CreateIntToPtr( 4263 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4264 ConstantInt::get(MS.IntptrTy, offset)), 4265 Type::getInt32PtrTy(*MS.C)); 4266 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4267 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4268 } 4269 4270 void finalizeInstrumentation() override { 4271 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4272 "finalizeInstrumentation called twice"); 4273 if (!VAStartInstrumentationList.empty()) { 4274 // If there is a va_start in this function, make a backup copy of 4275 // va_arg_tls somewhere in the function entry block. 4276 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4277 VAArgOverflowSize = 4278 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4279 Value *CopySize = 4280 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4281 VAArgOverflowSize); 4282 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4283 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 4284 } 4285 4286 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4287 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4288 4289 // Instrument va_start, copy va_list shadow from the backup copy of 4290 // the TLS contents. 4291 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4292 CallInst *OrigInst = VAStartInstrumentationList[i]; 4293 IRBuilder<> IRB(OrigInst->getNextNode()); 4294 4295 Value *VAListTag = OrigInst->getArgOperand(0); 4296 4297 // The variadic ABI for AArch64 creates two areas to save the incoming 4298 // argument registers (one for 64-bit general register xn-x7 and another 4299 // for 128-bit FP/SIMD vn-v7). 4300 // We need then to propagate the shadow arguments on both regions 4301 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4302 // The remaning arguments are saved on shadow for 'va::stack'. 4303 // One caveat is it requires only to propagate the non-named arguments, 4304 // however on the call site instrumentation 'all' the arguments are 4305 // saved. So to copy the shadow values from the va_arg TLS array 4306 // we need to adjust the offset for both GR and VR fields based on 4307 // the __{gr,vr}_offs value (since they are stores based on incoming 4308 // named arguments). 4309 4310 // Read the stack pointer from the va_list. 4311 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4312 4313 // Read both the __gr_top and __gr_off and add them up. 4314 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4315 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4316 4317 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4318 4319 // Read both the __vr_top and __vr_off and add them up. 4320 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4321 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4322 4323 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4324 4325 // It does not know how many named arguments is being used and, on the 4326 // callsite all the arguments were saved. Since __gr_off is defined as 4327 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4328 // argument by ignoring the bytes of shadow from named arguments. 4329 Value *GrRegSaveAreaShadowPtrOff = 4330 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4331 4332 Value *GrRegSaveAreaShadowPtr = 4333 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4334 /*Alignment*/ 8, /*isStore*/ true) 4335 .first; 4336 4337 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4338 GrRegSaveAreaShadowPtrOff); 4339 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4340 4341 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize); 4342 4343 // Again, but for FP/SIMD values. 4344 Value *VrRegSaveAreaShadowPtrOff = 4345 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4346 4347 Value *VrRegSaveAreaShadowPtr = 4348 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4349 /*Alignment*/ 8, /*isStore*/ true) 4350 .first; 4351 4352 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4353 IRB.getInt8Ty(), 4354 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4355 IRB.getInt32(AArch64VrBegOffset)), 4356 VrRegSaveAreaShadowPtrOff); 4357 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4358 4359 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize); 4360 4361 // And finally for remaining arguments. 4362 Value *StackSaveAreaShadowPtr = 4363 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4364 /*Alignment*/ 16, /*isStore*/ true) 4365 .first; 4366 4367 Value *StackSrcPtr = 4368 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4369 IRB.getInt32(AArch64VAEndOffset)); 4370 4371 IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16, 4372 VAArgOverflowSize); 4373 } 4374 } 4375 }; 4376 4377 /// PowerPC64-specific implementation of VarArgHelper. 4378 struct VarArgPowerPC64Helper : public VarArgHelper { 4379 Function &F; 4380 MemorySanitizer &MS; 4381 MemorySanitizerVisitor &MSV; 4382 Value *VAArgTLSCopy = nullptr; 4383 Value *VAArgSize = nullptr; 4384 4385 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4386 4387 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4388 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4389 4390 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4391 // For PowerPC, we need to deal with alignment of stack arguments - 4392 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4393 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4394 // and QPX vectors are aligned to 32 bytes. For that reason, we 4395 // compute current offset from stack pointer (which is always properly 4396 // aligned), and offset for the first vararg, then subtract them. 4397 unsigned VAArgBase; 4398 Triple TargetTriple(F.getParent()->getTargetTriple()); 4399 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4400 // and 32 bytes for ABIv2. This is usually determined by target 4401 // endianness, but in theory could be overriden by function attribute. 4402 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 4403 if (TargetTriple.getArch() == Triple::ppc64) 4404 VAArgBase = 48; 4405 else 4406 VAArgBase = 32; 4407 unsigned VAArgOffset = VAArgBase; 4408 const DataLayout &DL = F.getParent()->getDataLayout(); 4409 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4410 ArgIt != End; ++ArgIt) { 4411 Value *A = *ArgIt; 4412 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4413 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4414 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 4415 if (IsByVal) { 4416 assert(A->getType()->isPointerTy()); 4417 Type *RealTy = A->getType()->getPointerElementType(); 4418 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4419 uint64_t ArgAlign = CS.getParamAlignment(ArgNo); 4420 if (ArgAlign < 8) 4421 ArgAlign = 8; 4422 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4423 if (!IsFixed) { 4424 Value *Base = getShadowPtrForVAArgument( 4425 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4426 if (Base) { 4427 Value *AShadowPtr, *AOriginPtr; 4428 std::tie(AShadowPtr, AOriginPtr) = 4429 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4430 kShadowTLSAlignment, /*isStore*/ false); 4431 4432 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4433 kShadowTLSAlignment, ArgSize); 4434 } 4435 } 4436 VAArgOffset += alignTo(ArgSize, 8); 4437 } else { 4438 Value *Base; 4439 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4440 uint64_t ArgAlign = 8; 4441 if (A->getType()->isArrayTy()) { 4442 // Arrays are aligned to element size, except for long double 4443 // arrays, which are aligned to 8 bytes. 4444 Type *ElementTy = A->getType()->getArrayElementType(); 4445 if (!ElementTy->isPPC_FP128Ty()) 4446 ArgAlign = DL.getTypeAllocSize(ElementTy); 4447 } else if (A->getType()->isVectorTy()) { 4448 // Vectors are naturally aligned. 4449 ArgAlign = DL.getTypeAllocSize(A->getType()); 4450 } 4451 if (ArgAlign < 8) 4452 ArgAlign = 8; 4453 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4454 if (DL.isBigEndian()) { 4455 // Adjusting the shadow for argument with size < 8 to match the placement 4456 // of bits in big endian system 4457 if (ArgSize < 8) 4458 VAArgOffset += (8 - ArgSize); 4459 } 4460 if (!IsFixed) { 4461 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4462 VAArgOffset - VAArgBase, ArgSize); 4463 if (Base) 4464 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4465 } 4466 VAArgOffset += ArgSize; 4467 VAArgOffset = alignTo(VAArgOffset, 8); 4468 } 4469 if (IsFixed) 4470 VAArgBase = VAArgOffset; 4471 } 4472 4473 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4474 VAArgOffset - VAArgBase); 4475 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4476 // a new class member i.e. it is the total size of all VarArgs. 4477 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4478 } 4479 4480 /// Compute the shadow address for a given va_arg. 4481 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4482 unsigned ArgOffset, unsigned ArgSize) { 4483 // Make sure we don't overflow __msan_va_arg_tls. 4484 if (ArgOffset + ArgSize > kParamTLSSize) 4485 return nullptr; 4486 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4487 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4488 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4489 "_msarg"); 4490 } 4491 4492 void visitVAStartInst(VAStartInst &I) override { 4493 IRBuilder<> IRB(&I); 4494 VAStartInstrumentationList.push_back(&I); 4495 Value *VAListTag = I.getArgOperand(0); 4496 Value *ShadowPtr, *OriginPtr; 4497 unsigned Alignment = 8; 4498 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4499 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4500 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4501 /* size */ 8, Alignment, false); 4502 } 4503 4504 void visitVACopyInst(VACopyInst &I) override { 4505 IRBuilder<> IRB(&I); 4506 Value *VAListTag = I.getArgOperand(0); 4507 Value *ShadowPtr, *OriginPtr; 4508 unsigned Alignment = 8; 4509 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4510 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4511 // Unpoison the whole __va_list_tag. 4512 // FIXME: magic ABI constants. 4513 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4514 /* size */ 8, Alignment, false); 4515 } 4516 4517 void finalizeInstrumentation() override { 4518 assert(!VAArgSize && !VAArgTLSCopy && 4519 "finalizeInstrumentation called twice"); 4520 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4521 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4522 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4523 VAArgSize); 4524 4525 if (!VAStartInstrumentationList.empty()) { 4526 // If there is a va_start in this function, make a backup copy of 4527 // va_arg_tls somewhere in the function entry block. 4528 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4529 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 4530 } 4531 4532 // Instrument va_start. 4533 // Copy va_list shadow from the backup copy of the TLS contents. 4534 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4535 CallInst *OrigInst = VAStartInstrumentationList[i]; 4536 IRBuilder<> IRB(OrigInst->getNextNode()); 4537 Value *VAListTag = OrigInst->getArgOperand(0); 4538 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4539 Value *RegSaveAreaPtrPtr = 4540 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4541 PointerType::get(RegSaveAreaPtrTy, 0)); 4542 Value *RegSaveAreaPtr = 4543 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4544 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4545 unsigned Alignment = 8; 4546 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4547 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4548 Alignment, /*isStore*/ true); 4549 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4550 CopySize); 4551 } 4552 } 4553 }; 4554 4555 /// A no-op implementation of VarArgHelper. 4556 struct VarArgNoOpHelper : public VarArgHelper { 4557 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 4558 MemorySanitizerVisitor &MSV) {} 4559 4560 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 4561 4562 void visitVAStartInst(VAStartInst &I) override {} 4563 4564 void visitVACopyInst(VACopyInst &I) override {} 4565 4566 void finalizeInstrumentation() override {} 4567 }; 4568 4569 } // end anonymous namespace 4570 4571 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 4572 MemorySanitizerVisitor &Visitor) { 4573 // VarArg handling is only implemented on AMD64. False positives are possible 4574 // on other platforms. 4575 Triple TargetTriple(Func.getParent()->getTargetTriple()); 4576 if (TargetTriple.getArch() == Triple::x86_64) 4577 return new VarArgAMD64Helper(Func, Msan, Visitor); 4578 else if (TargetTriple.isMIPS64()) 4579 return new VarArgMIPS64Helper(Func, Msan, Visitor); 4580 else if (TargetTriple.getArch() == Triple::aarch64) 4581 return new VarArgAArch64Helper(Func, Msan, Visitor); 4582 else if (TargetTriple.getArch() == Triple::ppc64 || 4583 TargetTriple.getArch() == Triple::ppc64le) 4584 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 4585 else 4586 return new VarArgNoOpHelper(Func, Msan, Visitor); 4587 } 4588 4589 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 4590 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 4591 return false; 4592 4593 MemorySanitizerVisitor Visitor(F, *this, TLI); 4594 4595 // Clear out readonly/readnone attributes. 4596 AttrBuilder B; 4597 B.addAttribute(Attribute::ReadOnly) 4598 .addAttribute(Attribute::ReadNone); 4599 F.removeAttributes(AttributeList::FunctionIndex, B); 4600 4601 return Visitor.runOnFunction(); 4602 } 4603