xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp (revision 8bcb0991864975618c09697b1aca10683346d9f0)
1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
15 /// byte of the application memory, poison the shadow of the malloc-ed
16 /// or alloca-ed memory, load the shadow bits on every memory read,
17 /// propagate the shadow bits through some of the arithmetic
18 /// instruction (including MOV), store the shadow bits on every memory
19 /// write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 ///                           Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwritting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 ///                            Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91 ///
92 ///                      Instrumenting inline assembly.
93 ///
94 /// For inline assembly code LLVM has little idea about which memory locations
95 /// become initialized depending on the arguments. It can be possible to figure
96 /// out which arguments are meant to point to inputs and outputs, but the
97 /// actual semantics can be only visible at runtime. In the Linux kernel it's
98 /// also possible that the arguments only indicate the offset for a base taken
99 /// from a segment register, so it's dangerous to treat any asm() arguments as
100 /// pointers. We take a conservative approach generating calls to
101 ///   __msan_instrument_asm_store(ptr, size)
102 /// , which defer the memory unpoisoning to the runtime library.
103 /// The latter can perform more complex address checks to figure out whether
104 /// it's safe to touch the shadow memory.
105 /// Like with atomic operations, we call __msan_instrument_asm_store() before
106 /// the assembly call, so that changes to the shadow memory will be seen by
107 /// other threads together with main memory initialization.
108 ///
109 ///                  KernelMemorySanitizer (KMSAN) implementation.
110 ///
111 /// The major differences between KMSAN and MSan instrumentation are:
112 ///  - KMSAN always tracks the origins and implies msan-keep-going=true;
113 ///  - KMSAN allocates shadow and origin memory for each page separately, so
114 ///    there are no explicit accesses to shadow and origin in the
115 ///    instrumentation.
116 ///    Shadow and origin values for a particular X-byte memory location
117 ///    (X=1,2,4,8) are accessed through pointers obtained via the
118 ///      __msan_metadata_ptr_for_load_X(ptr)
119 ///      __msan_metadata_ptr_for_store_X(ptr)
120 ///    functions. The corresponding functions check that the X-byte accesses
121 ///    are possible and returns the pointers to shadow and origin memory.
122 ///    Arbitrary sized accesses are handled with:
123 ///      __msan_metadata_ptr_for_load_n(ptr, size)
124 ///      __msan_metadata_ptr_for_store_n(ptr, size);
125 ///  - TLS variables are stored in a single per-task struct. A call to a
126 ///    function __msan_get_context_state() returning a pointer to that struct
127 ///    is inserted into every instrumented function before the entry block;
128 ///  - __msan_warning() takes a 32-bit origin parameter;
129 ///  - local variables are poisoned with __msan_poison_alloca() upon function
130 ///    entry and unpoisoned with __msan_unpoison_alloca() before leaving the
131 ///    function;
132 ///  - the pass doesn't declare any global variables or add global constructors
133 ///    to the translation unit.
134 ///
135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm
136 /// calls, making sure we're on the safe side wrt. possible false positives.
137 ///
138 ///  KernelMemorySanitizer only supports X86_64 at the moment.
139 ///
140 //===----------------------------------------------------------------------===//
141 
142 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
143 #include "llvm/ADT/APInt.h"
144 #include "llvm/ADT/ArrayRef.h"
145 #include "llvm/ADT/DepthFirstIterator.h"
146 #include "llvm/ADT/SmallSet.h"
147 #include "llvm/ADT/SmallString.h"
148 #include "llvm/ADT/SmallVector.h"
149 #include "llvm/ADT/StringExtras.h"
150 #include "llvm/ADT/StringRef.h"
151 #include "llvm/ADT/Triple.h"
152 #include "llvm/Analysis/TargetLibraryInfo.h"
153 #include "llvm/IR/Argument.h"
154 #include "llvm/IR/Attributes.h"
155 #include "llvm/IR/BasicBlock.h"
156 #include "llvm/IR/CallSite.h"
157 #include "llvm/IR/CallingConv.h"
158 #include "llvm/IR/Constant.h"
159 #include "llvm/IR/Constants.h"
160 #include "llvm/IR/DataLayout.h"
161 #include "llvm/IR/DerivedTypes.h"
162 #include "llvm/IR/Function.h"
163 #include "llvm/IR/GlobalValue.h"
164 #include "llvm/IR/GlobalVariable.h"
165 #include "llvm/IR/IRBuilder.h"
166 #include "llvm/IR/InlineAsm.h"
167 #include "llvm/IR/InstVisitor.h"
168 #include "llvm/IR/InstrTypes.h"
169 #include "llvm/IR/Instruction.h"
170 #include "llvm/IR/Instructions.h"
171 #include "llvm/IR/IntrinsicInst.h"
172 #include "llvm/IR/Intrinsics.h"
173 #include "llvm/IR/LLVMContext.h"
174 #include "llvm/IR/MDBuilder.h"
175 #include "llvm/IR/Module.h"
176 #include "llvm/IR/Type.h"
177 #include "llvm/IR/Value.h"
178 #include "llvm/IR/ValueMap.h"
179 #include "llvm/Pass.h"
180 #include "llvm/Support/AtomicOrdering.h"
181 #include "llvm/Support/Casting.h"
182 #include "llvm/Support/CommandLine.h"
183 #include "llvm/Support/Compiler.h"
184 #include "llvm/Support/Debug.h"
185 #include "llvm/Support/ErrorHandling.h"
186 #include "llvm/Support/MathExtras.h"
187 #include "llvm/Support/raw_ostream.h"
188 #include "llvm/Transforms/Instrumentation.h"
189 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
190 #include "llvm/Transforms/Utils/Local.h"
191 #include "llvm/Transforms/Utils/ModuleUtils.h"
192 #include <algorithm>
193 #include <cassert>
194 #include <cstddef>
195 #include <cstdint>
196 #include <memory>
197 #include <string>
198 #include <tuple>
199 
200 using namespace llvm;
201 
202 #define DEBUG_TYPE "msan"
203 
204 static const unsigned kOriginSize = 4;
205 static const unsigned kMinOriginAlignment = 4;
206 static const unsigned kShadowTLSAlignment = 8;
207 
208 // These constants must be kept in sync with the ones in msan.h.
209 static const unsigned kParamTLSSize = 800;
210 static const unsigned kRetvalTLSSize = 800;
211 
212 // Accesses sizes are powers of two: 1, 2, 4, 8.
213 static const size_t kNumberOfAccessSizes = 4;
214 
215 /// Track origins of uninitialized values.
216 ///
217 /// Adds a section to MemorySanitizer report that points to the allocation
218 /// (stack or heap) the uninitialized bits came from originally.
219 static cl::opt<int> ClTrackOrigins("msan-track-origins",
220        cl::desc("Track origins (allocation sites) of poisoned memory"),
221        cl::Hidden, cl::init(0));
222 
223 static cl::opt<bool> ClKeepGoing("msan-keep-going",
224        cl::desc("keep going after reporting a UMR"),
225        cl::Hidden, cl::init(false));
226 
227 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
228        cl::desc("poison uninitialized stack variables"),
229        cl::Hidden, cl::init(true));
230 
231 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
232        cl::desc("poison uninitialized stack variables with a call"),
233        cl::Hidden, cl::init(false));
234 
235 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
236        cl::desc("poison uninitialized stack variables with the given pattern"),
237        cl::Hidden, cl::init(0xff));
238 
239 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
240        cl::desc("poison undef temps"),
241        cl::Hidden, cl::init(true));
242 
243 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
244        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
245        cl::Hidden, cl::init(true));
246 
247 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
248        cl::desc("exact handling of relational integer ICmp"),
249        cl::Hidden, cl::init(false));
250 
251 static cl::opt<bool> ClHandleLifetimeIntrinsics(
252     "msan-handle-lifetime-intrinsics",
253     cl::desc(
254         "when possible, poison scoped variables at the beginning of the scope "
255         "(slower, but more precise)"),
256     cl::Hidden, cl::init(true));
257 
258 // When compiling the Linux kernel, we sometimes see false positives related to
259 // MSan being unable to understand that inline assembly calls may initialize
260 // local variables.
261 // This flag makes the compiler conservatively unpoison every memory location
262 // passed into an assembly call. Note that this may cause false positives.
263 // Because it's impossible to figure out the array sizes, we can only unpoison
264 // the first sizeof(type) bytes for each type* pointer.
265 // The instrumentation is only enabled in KMSAN builds, and only if
266 // -msan-handle-asm-conservative is on. This is done because we may want to
267 // quickly disable assembly instrumentation when it breaks.
268 static cl::opt<bool> ClHandleAsmConservative(
269     "msan-handle-asm-conservative",
270     cl::desc("conservative handling of inline assembly"), cl::Hidden,
271     cl::init(true));
272 
273 // This flag controls whether we check the shadow of the address
274 // operand of load or store. Such bugs are very rare, since load from
275 // a garbage address typically results in SEGV, but still happen
276 // (e.g. only lower bits of address are garbage, or the access happens
277 // early at program startup where malloc-ed memory is more likely to
278 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
279 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
280        cl::desc("report accesses through a pointer which has poisoned shadow"),
281        cl::Hidden, cl::init(true));
282 
283 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
284        cl::desc("print out instructions with default strict semantics"),
285        cl::Hidden, cl::init(false));
286 
287 static cl::opt<int> ClInstrumentationWithCallThreshold(
288     "msan-instrumentation-with-call-threshold",
289     cl::desc(
290         "If the function being instrumented requires more than "
291         "this number of checks and origin stores, use callbacks instead of "
292         "inline checks (-1 means never use callbacks)."),
293     cl::Hidden, cl::init(3500));
294 
295 static cl::opt<bool>
296     ClEnableKmsan("msan-kernel",
297                   cl::desc("Enable KernelMemorySanitizer instrumentation"),
298                   cl::Hidden, cl::init(false));
299 
300 // This is an experiment to enable handling of cases where shadow is a non-zero
301 // compile-time constant. For some unexplainable reason they were silently
302 // ignored in the instrumentation.
303 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
304        cl::desc("Insert checks for constant shadow values"),
305        cl::Hidden, cl::init(false));
306 
307 // This is off by default because of a bug in gold:
308 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
309 static cl::opt<bool> ClWithComdat("msan-with-comdat",
310        cl::desc("Place MSan constructors in comdat sections"),
311        cl::Hidden, cl::init(false));
312 
313 // These options allow to specify custom memory map parameters
314 // See MemoryMapParams for details.
315 static cl::opt<uint64_t> ClAndMask("msan-and-mask",
316                                    cl::desc("Define custom MSan AndMask"),
317                                    cl::Hidden, cl::init(0));
318 
319 static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
320                                    cl::desc("Define custom MSan XorMask"),
321                                    cl::Hidden, cl::init(0));
322 
323 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
324                                       cl::desc("Define custom MSan ShadowBase"),
325                                       cl::Hidden, cl::init(0));
326 
327 static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
328                                       cl::desc("Define custom MSan OriginBase"),
329                                       cl::Hidden, cl::init(0));
330 
331 static const char *const kMsanModuleCtorName = "msan.module_ctor";
332 static const char *const kMsanInitName = "__msan_init";
333 
334 namespace {
335 
336 // Memory map parameters used in application-to-shadow address calculation.
337 // Offset = (Addr & ~AndMask) ^ XorMask
338 // Shadow = ShadowBase + Offset
339 // Origin = OriginBase + Offset
340 struct MemoryMapParams {
341   uint64_t AndMask;
342   uint64_t XorMask;
343   uint64_t ShadowBase;
344   uint64_t OriginBase;
345 };
346 
347 struct PlatformMemoryMapParams {
348   const MemoryMapParams *bits32;
349   const MemoryMapParams *bits64;
350 };
351 
352 } // end anonymous namespace
353 
354 // i386 Linux
355 static const MemoryMapParams Linux_I386_MemoryMapParams = {
356   0x000080000000,  // AndMask
357   0,               // XorMask (not used)
358   0,               // ShadowBase (not used)
359   0x000040000000,  // OriginBase
360 };
361 
362 // x86_64 Linux
363 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
364 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING
365   0x400000000000,  // AndMask
366   0,               // XorMask (not used)
367   0,               // ShadowBase (not used)
368   0x200000000000,  // OriginBase
369 #else
370   0,               // AndMask (not used)
371   0x500000000000,  // XorMask
372   0,               // ShadowBase (not used)
373   0x100000000000,  // OriginBase
374 #endif
375 };
376 
377 // mips64 Linux
378 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
379   0,               // AndMask (not used)
380   0x008000000000,  // XorMask
381   0,               // ShadowBase (not used)
382   0x002000000000,  // OriginBase
383 };
384 
385 // ppc64 Linux
386 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
387   0xE00000000000,  // AndMask
388   0x100000000000,  // XorMask
389   0x080000000000,  // ShadowBase
390   0x1C0000000000,  // OriginBase
391 };
392 
393 // aarch64 Linux
394 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
395   0,               // AndMask (not used)
396   0x06000000000,   // XorMask
397   0,               // ShadowBase (not used)
398   0x01000000000,   // OriginBase
399 };
400 
401 // i386 FreeBSD
402 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
403   0x000180000000,  // AndMask
404   0x000040000000,  // XorMask
405   0x000020000000,  // ShadowBase
406   0x000700000000,  // OriginBase
407 };
408 
409 // x86_64 FreeBSD
410 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
411   0xc00000000000,  // AndMask
412   0x200000000000,  // XorMask
413   0x100000000000,  // ShadowBase
414   0x380000000000,  // OriginBase
415 };
416 
417 // x86_64 NetBSD
418 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
419   0,               // AndMask
420   0x500000000000,  // XorMask
421   0,               // ShadowBase
422   0x100000000000,  // OriginBase
423 };
424 
425 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
426   &Linux_I386_MemoryMapParams,
427   &Linux_X86_64_MemoryMapParams,
428 };
429 
430 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
431   nullptr,
432   &Linux_MIPS64_MemoryMapParams,
433 };
434 
435 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
436   nullptr,
437   &Linux_PowerPC64_MemoryMapParams,
438 };
439 
440 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
441   nullptr,
442   &Linux_AArch64_MemoryMapParams,
443 };
444 
445 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
446   &FreeBSD_I386_MemoryMapParams,
447   &FreeBSD_X86_64_MemoryMapParams,
448 };
449 
450 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
451   nullptr,
452   &NetBSD_X86_64_MemoryMapParams,
453 };
454 
455 namespace {
456 
457 /// Instrument functions of a module to detect uninitialized reads.
458 ///
459 /// Instantiating MemorySanitizer inserts the msan runtime library API function
460 /// declarations into the module if they don't exist already. Instantiating
461 /// ensures the __msan_init function is in the list of global constructors for
462 /// the module.
463 class MemorySanitizer {
464 public:
465   MemorySanitizer(Module &M, MemorySanitizerOptions Options)
466       : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins),
467         Recover(Options.Recover) {
468     initializeModule(M);
469   }
470 
471   // MSan cannot be moved or copied because of MapParams.
472   MemorySanitizer(MemorySanitizer &&) = delete;
473   MemorySanitizer &operator=(MemorySanitizer &&) = delete;
474   MemorySanitizer(const MemorySanitizer &) = delete;
475   MemorySanitizer &operator=(const MemorySanitizer &) = delete;
476 
477   bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
478 
479 private:
480   friend struct MemorySanitizerVisitor;
481   friend struct VarArgAMD64Helper;
482   friend struct VarArgMIPS64Helper;
483   friend struct VarArgAArch64Helper;
484   friend struct VarArgPowerPC64Helper;
485 
486   void initializeModule(Module &M);
487   void initializeCallbacks(Module &M);
488   void createKernelApi(Module &M);
489   void createUserspaceApi(Module &M);
490 
491   /// True if we're compiling the Linux kernel.
492   bool CompileKernel;
493   /// Track origins (allocation points) of uninitialized values.
494   int TrackOrigins;
495   bool Recover;
496 
497   LLVMContext *C;
498   Type *IntptrTy;
499   Type *OriginTy;
500 
501   // XxxTLS variables represent the per-thread state in MSan and per-task state
502   // in KMSAN.
503   // For the userspace these point to thread-local globals. In the kernel land
504   // they point to the members of a per-task struct obtained via a call to
505   // __msan_get_context_state().
506 
507   /// Thread-local shadow storage for function parameters.
508   Value *ParamTLS;
509 
510   /// Thread-local origin storage for function parameters.
511   Value *ParamOriginTLS;
512 
513   /// Thread-local shadow storage for function return value.
514   Value *RetvalTLS;
515 
516   /// Thread-local origin storage for function return value.
517   Value *RetvalOriginTLS;
518 
519   /// Thread-local shadow storage for in-register va_arg function
520   /// parameters (x86_64-specific).
521   Value *VAArgTLS;
522 
523   /// Thread-local shadow storage for in-register va_arg function
524   /// parameters (x86_64-specific).
525   Value *VAArgOriginTLS;
526 
527   /// Thread-local shadow storage for va_arg overflow area
528   /// (x86_64-specific).
529   Value *VAArgOverflowSizeTLS;
530 
531   /// Thread-local space used to pass origin value to the UMR reporting
532   /// function.
533   Value *OriginTLS;
534 
535   /// Are the instrumentation callbacks set up?
536   bool CallbacksInitialized = false;
537 
538   /// The run-time callback to print a warning.
539   FunctionCallee WarningFn;
540 
541   // These arrays are indexed by log2(AccessSize).
542   FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
543   FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
544 
545   /// Run-time helper that generates a new origin value for a stack
546   /// allocation.
547   FunctionCallee MsanSetAllocaOrigin4Fn;
548 
549   /// Run-time helper that poisons stack on function entry.
550   FunctionCallee MsanPoisonStackFn;
551 
552   /// Run-time helper that records a store (or any event) of an
553   /// uninitialized value and returns an updated origin id encoding this info.
554   FunctionCallee MsanChainOriginFn;
555 
556   /// MSan runtime replacements for memmove, memcpy and memset.
557   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
558 
559   /// KMSAN callback for task-local function argument shadow.
560   StructType *MsanContextStateTy;
561   FunctionCallee MsanGetContextStateFn;
562 
563   /// Functions for poisoning/unpoisoning local variables
564   FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
565 
566   /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin
567   /// pointers.
568   FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
569   FunctionCallee MsanMetadataPtrForLoad_1_8[4];
570   FunctionCallee MsanMetadataPtrForStore_1_8[4];
571   FunctionCallee MsanInstrumentAsmStoreFn;
572 
573   /// Helper to choose between different MsanMetadataPtrXxx().
574   FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
575 
576   /// Memory map parameters used in application-to-shadow calculation.
577   const MemoryMapParams *MapParams;
578 
579   /// Custom memory map parameters used when -msan-shadow-base or
580   // -msan-origin-base is provided.
581   MemoryMapParams CustomMapParams;
582 
583   MDNode *ColdCallWeights;
584 
585   /// Branch weights for origin store.
586   MDNode *OriginStoreWeights;
587 
588   /// An empty volatile inline asm that prevents callback merge.
589   InlineAsm *EmptyAsm;
590 };
591 
592 void insertModuleCtor(Module &M) {
593   getOrCreateSanitizerCtorAndInitFunctions(
594       M, kMsanModuleCtorName, kMsanInitName,
595       /*InitArgTypes=*/{},
596       /*InitArgs=*/{},
597       // This callback is invoked when the functions are created the first
598       // time. Hook them into the global ctors list in that case:
599       [&](Function *Ctor, FunctionCallee) {
600         if (!ClWithComdat) {
601           appendToGlobalCtors(M, Ctor, 0);
602           return;
603         }
604         Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
605         Ctor->setComdat(MsanCtorComdat);
606         appendToGlobalCtors(M, Ctor, 0, Ctor);
607       });
608 }
609 
610 /// A legacy function pass for msan instrumentation.
611 ///
612 /// Instruments functions to detect unitialized reads.
613 struct MemorySanitizerLegacyPass : public FunctionPass {
614   // Pass identification, replacement for typeid.
615   static char ID;
616 
617   MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {})
618       : FunctionPass(ID), Options(Options) {}
619   StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; }
620 
621   void getAnalysisUsage(AnalysisUsage &AU) const override {
622     AU.addRequired<TargetLibraryInfoWrapperPass>();
623   }
624 
625   bool runOnFunction(Function &F) override {
626     return MSan->sanitizeFunction(
627         F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
628   }
629   bool doInitialization(Module &M) override;
630 
631   Optional<MemorySanitizer> MSan;
632   MemorySanitizerOptions Options;
633 };
634 
635 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) {
636   return (Opt.getNumOccurrences() > 0) ? Opt : Default;
637 }
638 
639 } // end anonymous namespace
640 
641 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K)
642     : Kernel(getOptOrDefault(ClEnableKmsan, K)),
643       TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)),
644       Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {}
645 
646 PreservedAnalyses MemorySanitizerPass::run(Function &F,
647                                            FunctionAnalysisManager &FAM) {
648   MemorySanitizer Msan(*F.getParent(), Options);
649   if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
650     return PreservedAnalyses::none();
651   return PreservedAnalyses::all();
652 }
653 
654 PreservedAnalyses MemorySanitizerPass::run(Module &M,
655                                            ModuleAnalysisManager &AM) {
656   if (Options.Kernel)
657     return PreservedAnalyses::all();
658   insertModuleCtor(M);
659   return PreservedAnalyses::none();
660 }
661 
662 char MemorySanitizerLegacyPass::ID = 0;
663 
664 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan",
665                       "MemorySanitizer: detects uninitialized reads.", false,
666                       false)
667 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
668 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan",
669                     "MemorySanitizer: detects uninitialized reads.", false,
670                     false)
671 
672 FunctionPass *
673 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) {
674   return new MemorySanitizerLegacyPass(Options);
675 }
676 
677 /// Create a non-const global initialized with the given string.
678 ///
679 /// Creates a writable global for Str so that we can pass it to the
680 /// run-time lib. Runtime uses first 4 bytes of the string to store the
681 /// frame ID, so the string needs to be mutable.
682 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
683                                                             StringRef Str) {
684   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
685   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
686                             GlobalValue::PrivateLinkage, StrConst, "");
687 }
688 
689 /// Create KMSAN API callbacks.
690 void MemorySanitizer::createKernelApi(Module &M) {
691   IRBuilder<> IRB(*C);
692 
693   // These will be initialized in insertKmsanPrologue().
694   RetvalTLS = nullptr;
695   RetvalOriginTLS = nullptr;
696   ParamTLS = nullptr;
697   ParamOriginTLS = nullptr;
698   VAArgTLS = nullptr;
699   VAArgOriginTLS = nullptr;
700   VAArgOverflowSizeTLS = nullptr;
701   // OriginTLS is unused in the kernel.
702   OriginTLS = nullptr;
703 
704   // __msan_warning() in the kernel takes an origin.
705   WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(),
706                                     IRB.getInt32Ty());
707   // Requests the per-task context state (kmsan_context_state*) from the
708   // runtime library.
709   MsanContextStateTy = StructType::get(
710       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
711       ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
712       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
713       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
714       IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
715       OriginTy);
716   MsanGetContextStateFn = M.getOrInsertFunction(
717       "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
718 
719   Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
720                                 PointerType::get(IRB.getInt32Ty(), 0));
721 
722   for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
723     std::string name_load =
724         "__msan_metadata_ptr_for_load_" + std::to_string(size);
725     std::string name_store =
726         "__msan_metadata_ptr_for_store_" + std::to_string(size);
727     MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction(
728         name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
729     MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction(
730         name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
731   }
732 
733   MsanMetadataPtrForLoadN = M.getOrInsertFunction(
734       "__msan_metadata_ptr_for_load_n", RetTy,
735       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
736   MsanMetadataPtrForStoreN = M.getOrInsertFunction(
737       "__msan_metadata_ptr_for_store_n", RetTy,
738       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
739 
740   // Functions for poisoning and unpoisoning memory.
741   MsanPoisonAllocaFn =
742       M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
743                             IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
744   MsanUnpoisonAllocaFn = M.getOrInsertFunction(
745       "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
746 }
747 
748 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
749   return M.getOrInsertGlobal(Name, Ty, [&] {
750     return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
751                               nullptr, Name, nullptr,
752                               GlobalVariable::InitialExecTLSModel);
753   });
754 }
755 
756 /// Insert declarations for userspace-specific functions and globals.
757 void MemorySanitizer::createUserspaceApi(Module &M) {
758   IRBuilder<> IRB(*C);
759   // Create the callback.
760   // FIXME: this function should have "Cold" calling conv,
761   // which is not yet implemented.
762   StringRef WarningFnName = Recover ? "__msan_warning"
763                                     : "__msan_warning_noreturn";
764   WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy());
765 
766   // Create the global TLS variables.
767   RetvalTLS =
768       getOrInsertGlobal(M, "__msan_retval_tls",
769                         ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
770 
771   RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
772 
773   ParamTLS =
774       getOrInsertGlobal(M, "__msan_param_tls",
775                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
776 
777   ParamOriginTLS =
778       getOrInsertGlobal(M, "__msan_param_origin_tls",
779                         ArrayType::get(OriginTy, kParamTLSSize / 4));
780 
781   VAArgTLS =
782       getOrInsertGlobal(M, "__msan_va_arg_tls",
783                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
784 
785   VAArgOriginTLS =
786       getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
787                         ArrayType::get(OriginTy, kParamTLSSize / 4));
788 
789   VAArgOverflowSizeTLS =
790       getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
791   OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty());
792 
793   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
794        AccessSizeIndex++) {
795     unsigned AccessSize = 1 << AccessSizeIndex;
796     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
797     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
798         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
799         IRB.getInt32Ty());
800 
801     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
802     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
803         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
804         IRB.getInt8PtrTy(), IRB.getInt32Ty());
805   }
806 
807   MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
808     "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
809     IRB.getInt8PtrTy(), IntptrTy);
810   MsanPoisonStackFn =
811       M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
812                             IRB.getInt8PtrTy(), IntptrTy);
813 }
814 
815 /// Insert extern declaration of runtime-provided functions and globals.
816 void MemorySanitizer::initializeCallbacks(Module &M) {
817   // Only do this once.
818   if (CallbacksInitialized)
819     return;
820 
821   IRBuilder<> IRB(*C);
822   // Initialize callbacks that are common for kernel and userspace
823   // instrumentation.
824   MsanChainOriginFn = M.getOrInsertFunction(
825     "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty());
826   MemmoveFn = M.getOrInsertFunction(
827     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
828     IRB.getInt8PtrTy(), IntptrTy);
829   MemcpyFn = M.getOrInsertFunction(
830     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
831     IntptrTy);
832   MemsetFn = M.getOrInsertFunction(
833     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
834     IntptrTy);
835   // We insert an empty inline asm after __msan_report* to avoid callback merge.
836   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
837                             StringRef(""), StringRef(""),
838                             /*hasSideEffects=*/true);
839 
840   MsanInstrumentAsmStoreFn =
841       M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
842                             PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
843 
844   if (CompileKernel) {
845     createKernelApi(M);
846   } else {
847     createUserspaceApi(M);
848   }
849   CallbacksInitialized = true;
850 }
851 
852 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
853                                                              int size) {
854   FunctionCallee *Fns =
855       isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
856   switch (size) {
857   case 1:
858     return Fns[0];
859   case 2:
860     return Fns[1];
861   case 4:
862     return Fns[2];
863   case 8:
864     return Fns[3];
865   default:
866     return nullptr;
867   }
868 }
869 
870 /// Module-level initialization.
871 ///
872 /// inserts a call to __msan_init to the module's constructor list.
873 void MemorySanitizer::initializeModule(Module &M) {
874   auto &DL = M.getDataLayout();
875 
876   bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
877   bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
878   // Check the overrides first
879   if (ShadowPassed || OriginPassed) {
880     CustomMapParams.AndMask = ClAndMask;
881     CustomMapParams.XorMask = ClXorMask;
882     CustomMapParams.ShadowBase = ClShadowBase;
883     CustomMapParams.OriginBase = ClOriginBase;
884     MapParams = &CustomMapParams;
885   } else {
886     Triple TargetTriple(M.getTargetTriple());
887     switch (TargetTriple.getOS()) {
888       case Triple::FreeBSD:
889         switch (TargetTriple.getArch()) {
890           case Triple::x86_64:
891             MapParams = FreeBSD_X86_MemoryMapParams.bits64;
892             break;
893           case Triple::x86:
894             MapParams = FreeBSD_X86_MemoryMapParams.bits32;
895             break;
896           default:
897             report_fatal_error("unsupported architecture");
898         }
899         break;
900       case Triple::NetBSD:
901         switch (TargetTriple.getArch()) {
902           case Triple::x86_64:
903             MapParams = NetBSD_X86_MemoryMapParams.bits64;
904             break;
905           default:
906             report_fatal_error("unsupported architecture");
907         }
908         break;
909       case Triple::Linux:
910         switch (TargetTriple.getArch()) {
911           case Triple::x86_64:
912             MapParams = Linux_X86_MemoryMapParams.bits64;
913             break;
914           case Triple::x86:
915             MapParams = Linux_X86_MemoryMapParams.bits32;
916             break;
917           case Triple::mips64:
918           case Triple::mips64el:
919             MapParams = Linux_MIPS_MemoryMapParams.bits64;
920             break;
921           case Triple::ppc64:
922           case Triple::ppc64le:
923             MapParams = Linux_PowerPC_MemoryMapParams.bits64;
924             break;
925           case Triple::aarch64:
926           case Triple::aarch64_be:
927             MapParams = Linux_ARM_MemoryMapParams.bits64;
928             break;
929           default:
930             report_fatal_error("unsupported architecture");
931         }
932         break;
933       default:
934         report_fatal_error("unsupported operating system");
935     }
936   }
937 
938   C = &(M.getContext());
939   IRBuilder<> IRB(*C);
940   IntptrTy = IRB.getIntPtrTy(DL);
941   OriginTy = IRB.getInt32Ty();
942 
943   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
944   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
945 
946   if (!CompileKernel) {
947     if (TrackOrigins)
948       M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
949         return new GlobalVariable(
950             M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
951             IRB.getInt32(TrackOrigins), "__msan_track_origins");
952       });
953 
954     if (Recover)
955       M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
956         return new GlobalVariable(M, IRB.getInt32Ty(), true,
957                                   GlobalValue::WeakODRLinkage,
958                                   IRB.getInt32(Recover), "__msan_keep_going");
959       });
960 }
961 }
962 
963 bool MemorySanitizerLegacyPass::doInitialization(Module &M) {
964   if (!Options.Kernel)
965     insertModuleCtor(M);
966   MSan.emplace(M, Options);
967   return true;
968 }
969 
970 namespace {
971 
972 /// A helper class that handles instrumentation of VarArg
973 /// functions on a particular platform.
974 ///
975 /// Implementations are expected to insert the instrumentation
976 /// necessary to propagate argument shadow through VarArg function
977 /// calls. Visit* methods are called during an InstVisitor pass over
978 /// the function, and should avoid creating new basic blocks. A new
979 /// instance of this class is created for each instrumented function.
980 struct VarArgHelper {
981   virtual ~VarArgHelper() = default;
982 
983   /// Visit a CallSite.
984   virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
985 
986   /// Visit a va_start call.
987   virtual void visitVAStartInst(VAStartInst &I) = 0;
988 
989   /// Visit a va_copy call.
990   virtual void visitVACopyInst(VACopyInst &I) = 0;
991 
992   /// Finalize function instrumentation.
993   ///
994   /// This method is called after visiting all interesting (see above)
995   /// instructions in a function.
996   virtual void finalizeInstrumentation() = 0;
997 };
998 
999 struct MemorySanitizerVisitor;
1000 
1001 } // end anonymous namespace
1002 
1003 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1004                                         MemorySanitizerVisitor &Visitor);
1005 
1006 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
1007   if (TypeSize <= 8) return 0;
1008   return Log2_32_Ceil((TypeSize + 7) / 8);
1009 }
1010 
1011 namespace {
1012 
1013 /// This class does all the work for a given function. Store and Load
1014 /// instructions store and load corresponding shadow and origin
1015 /// values. Most instructions propagate shadow from arguments to their
1016 /// return values. Certain instructions (most importantly, BranchInst)
1017 /// test their argument shadow and print reports (with a runtime call) if it's
1018 /// non-zero.
1019 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
1020   Function &F;
1021   MemorySanitizer &MS;
1022   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
1023   ValueMap<Value*, Value*> ShadowMap, OriginMap;
1024   std::unique_ptr<VarArgHelper> VAHelper;
1025   const TargetLibraryInfo *TLI;
1026   BasicBlock *ActualFnStart;
1027 
1028   // The following flags disable parts of MSan instrumentation based on
1029   // blacklist contents and command-line options.
1030   bool InsertChecks;
1031   bool PropagateShadow;
1032   bool PoisonStack;
1033   bool PoisonUndef;
1034   bool CheckReturnValue;
1035 
1036   struct ShadowOriginAndInsertPoint {
1037     Value *Shadow;
1038     Value *Origin;
1039     Instruction *OrigIns;
1040 
1041     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
1042       : Shadow(S), Origin(O), OrigIns(I) {}
1043   };
1044   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
1045   bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
1046   SmallSet<AllocaInst *, 16> AllocaSet;
1047   SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
1048   SmallVector<StoreInst *, 16> StoreList;
1049 
1050   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
1051                          const TargetLibraryInfo &TLI)
1052       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
1053     bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
1054     InsertChecks = SanitizeFunction;
1055     PropagateShadow = SanitizeFunction;
1056     PoisonStack = SanitizeFunction && ClPoisonStack;
1057     PoisonUndef = SanitizeFunction && ClPoisonUndef;
1058     // FIXME: Consider using SpecialCaseList to specify a list of functions that
1059     // must always return fully initialized values. For now, we hardcode "main".
1060     CheckReturnValue = SanitizeFunction && (F.getName() == "main");
1061 
1062     MS.initializeCallbacks(*F.getParent());
1063     if (MS.CompileKernel)
1064       ActualFnStart = insertKmsanPrologue(F);
1065     else
1066       ActualFnStart = &F.getEntryBlock();
1067 
1068     LLVM_DEBUG(if (!InsertChecks) dbgs()
1069                << "MemorySanitizer is not inserting checks into '"
1070                << F.getName() << "'\n");
1071   }
1072 
1073   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
1074     if (MS.TrackOrigins <= 1) return V;
1075     return IRB.CreateCall(MS.MsanChainOriginFn, V);
1076   }
1077 
1078   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
1079     const DataLayout &DL = F.getParent()->getDataLayout();
1080     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1081     if (IntptrSize == kOriginSize) return Origin;
1082     assert(IntptrSize == kOriginSize * 2);
1083     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
1084     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
1085   }
1086 
1087   /// Fill memory range with the given origin value.
1088   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
1089                    unsigned Size, unsigned Alignment) {
1090     const DataLayout &DL = F.getParent()->getDataLayout();
1091     unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
1092     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1093     assert(IntptrAlignment >= kMinOriginAlignment);
1094     assert(IntptrSize >= kOriginSize);
1095 
1096     unsigned Ofs = 0;
1097     unsigned CurrentAlignment = Alignment;
1098     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
1099       Value *IntptrOrigin = originToIntptr(IRB, Origin);
1100       Value *IntptrOriginPtr =
1101           IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
1102       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
1103         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
1104                        : IntptrOriginPtr;
1105         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
1106         Ofs += IntptrSize / kOriginSize;
1107         CurrentAlignment = IntptrAlignment;
1108       }
1109     }
1110 
1111     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
1112       Value *GEP =
1113           i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
1114       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
1115       CurrentAlignment = kMinOriginAlignment;
1116     }
1117   }
1118 
1119   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
1120                    Value *OriginPtr, unsigned Alignment, bool AsCall) {
1121     const DataLayout &DL = F.getParent()->getDataLayout();
1122     unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1123     unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
1124     if (Shadow->getType()->isAggregateType()) {
1125       paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1126                   OriginAlignment);
1127     } else {
1128       Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
1129       Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
1130       if (ConstantShadow) {
1131         if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
1132           paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1133                       OriginAlignment);
1134         return;
1135       }
1136 
1137       unsigned TypeSizeInBits =
1138           DL.getTypeSizeInBits(ConvertedShadow->getType());
1139       unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1140       if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1141         FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
1142         Value *ConvertedShadow2 = IRB.CreateZExt(
1143             ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1144         IRB.CreateCall(Fn, {ConvertedShadow2,
1145                             IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
1146                             Origin});
1147       } else {
1148         Value *Cmp = IRB.CreateICmpNE(
1149             ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
1150         Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1151             Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
1152         IRBuilder<> IRBNew(CheckTerm);
1153         paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
1154                     OriginAlignment);
1155       }
1156     }
1157   }
1158 
1159   void materializeStores(bool InstrumentWithCalls) {
1160     for (StoreInst *SI : StoreList) {
1161       IRBuilder<> IRB(SI);
1162       Value *Val = SI->getValueOperand();
1163       Value *Addr = SI->getPointerOperand();
1164       Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
1165       Value *ShadowPtr, *OriginPtr;
1166       Type *ShadowTy = Shadow->getType();
1167       unsigned Alignment = SI->getAlignment();
1168       unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1169       std::tie(ShadowPtr, OriginPtr) =
1170           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
1171 
1172       StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
1173       LLVM_DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
1174       (void)NewSI;
1175 
1176       if (SI->isAtomic())
1177         SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
1178 
1179       if (MS.TrackOrigins && !SI->isAtomic())
1180         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
1181                     OriginAlignment, InstrumentWithCalls);
1182     }
1183   }
1184 
1185   /// Helper function to insert a warning at IRB's current insert point.
1186   void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
1187     if (!Origin)
1188       Origin = (Value *)IRB.getInt32(0);
1189     if (MS.CompileKernel) {
1190       IRB.CreateCall(MS.WarningFn, Origin);
1191     } else {
1192       if (MS.TrackOrigins) {
1193         IRB.CreateStore(Origin, MS.OriginTLS);
1194       }
1195       IRB.CreateCall(MS.WarningFn, {});
1196     }
1197     IRB.CreateCall(MS.EmptyAsm, {});
1198     // FIXME: Insert UnreachableInst if !MS.Recover?
1199     // This may invalidate some of the following checks and needs to be done
1200     // at the very end.
1201   }
1202 
1203   void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
1204                            bool AsCall) {
1205     IRBuilder<> IRB(OrigIns);
1206     LLVM_DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
1207     Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
1208     LLVM_DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
1209 
1210     Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
1211     if (ConstantShadow) {
1212       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
1213         insertWarningFn(IRB, Origin);
1214       }
1215       return;
1216     }
1217 
1218     const DataLayout &DL = OrigIns->getModule()->getDataLayout();
1219 
1220     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1221     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1222     if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1223       FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
1224       Value *ConvertedShadow2 =
1225           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1226       IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
1227                                                 ? Origin
1228                                                 : (Value *)IRB.getInt32(0)});
1229     } else {
1230       Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
1231                                     getCleanShadow(ConvertedShadow), "_mscmp");
1232       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1233           Cmp, OrigIns,
1234           /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
1235 
1236       IRB.SetInsertPoint(CheckTerm);
1237       insertWarningFn(IRB, Origin);
1238       LLVM_DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
1239     }
1240   }
1241 
1242   void materializeChecks(bool InstrumentWithCalls) {
1243     for (const auto &ShadowData : InstrumentationList) {
1244       Instruction *OrigIns = ShadowData.OrigIns;
1245       Value *Shadow = ShadowData.Shadow;
1246       Value *Origin = ShadowData.Origin;
1247       materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
1248     }
1249     LLVM_DEBUG(dbgs() << "DONE:\n" << F);
1250   }
1251 
1252   BasicBlock *insertKmsanPrologue(Function &F) {
1253     BasicBlock *ret =
1254         SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI());
1255     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
1256     Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
1257     Constant *Zero = IRB.getInt32(0);
1258     MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1259                                 {Zero, IRB.getInt32(0)}, "param_shadow");
1260     MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1261                                  {Zero, IRB.getInt32(1)}, "retval_shadow");
1262     MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1263                                 {Zero, IRB.getInt32(2)}, "va_arg_shadow");
1264     MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1265                                       {Zero, IRB.getInt32(3)}, "va_arg_origin");
1266     MS.VAArgOverflowSizeTLS =
1267         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1268                       {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
1269     MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1270                                       {Zero, IRB.getInt32(5)}, "param_origin");
1271     MS.RetvalOriginTLS =
1272         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1273                       {Zero, IRB.getInt32(6)}, "retval_origin");
1274     return ret;
1275   }
1276 
1277   /// Add MemorySanitizer instrumentation to a function.
1278   bool runOnFunction() {
1279     // In the presence of unreachable blocks, we may see Phi nodes with
1280     // incoming nodes from such blocks. Since InstVisitor skips unreachable
1281     // blocks, such nodes will not have any shadow value associated with them.
1282     // It's easier to remove unreachable blocks than deal with missing shadow.
1283     removeUnreachableBlocks(F);
1284 
1285     // Iterate all BBs in depth-first order and create shadow instructions
1286     // for all instructions (where applicable).
1287     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1288     for (BasicBlock *BB : depth_first(ActualFnStart))
1289       visit(*BB);
1290 
1291     // Finalize PHI nodes.
1292     for (PHINode *PN : ShadowPHINodes) {
1293       PHINode *PNS = cast<PHINode>(getShadow(PN));
1294       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
1295       size_t NumValues = PN->getNumIncomingValues();
1296       for (size_t v = 0; v < NumValues; v++) {
1297         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1298         if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1299       }
1300     }
1301 
1302     VAHelper->finalizeInstrumentation();
1303 
1304     // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
1305     // instrumenting only allocas.
1306     if (InstrumentLifetimeStart) {
1307       for (auto Item : LifetimeStartList) {
1308         instrumentAlloca(*Item.second, Item.first);
1309         AllocaSet.erase(Item.second);
1310       }
1311     }
1312     // Poison the allocas for which we didn't instrument the corresponding
1313     // lifetime intrinsics.
1314     for (AllocaInst *AI : AllocaSet)
1315       instrumentAlloca(*AI);
1316 
1317     bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
1318                                InstrumentationList.size() + StoreList.size() >
1319                                    (unsigned)ClInstrumentationWithCallThreshold;
1320 
1321     // Insert shadow value checks.
1322     materializeChecks(InstrumentWithCalls);
1323 
1324     // Delayed instrumentation of StoreInst.
1325     // This may not add new address checks.
1326     materializeStores(InstrumentWithCalls);
1327 
1328     return true;
1329   }
1330 
1331   /// Compute the shadow type that corresponds to a given Value.
1332   Type *getShadowTy(Value *V) {
1333     return getShadowTy(V->getType());
1334   }
1335 
1336   /// Compute the shadow type that corresponds to a given Type.
1337   Type *getShadowTy(Type *OrigTy) {
1338     if (!OrigTy->isSized()) {
1339       return nullptr;
1340     }
1341     // For integer type, shadow is the same as the original type.
1342     // This may return weird-sized types like i1.
1343     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1344       return IT;
1345     const DataLayout &DL = F.getParent()->getDataLayout();
1346     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1347       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1348       return VectorType::get(IntegerType::get(*MS.C, EltSize),
1349                              VT->getNumElements());
1350     }
1351     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1352       return ArrayType::get(getShadowTy(AT->getElementType()),
1353                             AT->getNumElements());
1354     }
1355     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1356       SmallVector<Type*, 4> Elements;
1357       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1358         Elements.push_back(getShadowTy(ST->getElementType(i)));
1359       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1360       LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
1361       return Res;
1362     }
1363     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1364     return IntegerType::get(*MS.C, TypeSize);
1365   }
1366 
1367   /// Flatten a vector type.
1368   Type *getShadowTyNoVec(Type *ty) {
1369     if (VectorType *vt = dyn_cast<VectorType>(ty))
1370       return IntegerType::get(*MS.C, vt->getBitWidth());
1371     return ty;
1372   }
1373 
1374   /// Convert a shadow value to it's flattened variant.
1375   Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
1376     Type *Ty = V->getType();
1377     Type *NoVecTy = getShadowTyNoVec(Ty);
1378     if (Ty == NoVecTy) return V;
1379     return IRB.CreateBitCast(V, NoVecTy);
1380   }
1381 
1382   /// Compute the integer shadow offset that corresponds to a given
1383   /// application address.
1384   ///
1385   /// Offset = (Addr & ~AndMask) ^ XorMask
1386   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1387     Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
1388 
1389     uint64_t AndMask = MS.MapParams->AndMask;
1390     if (AndMask)
1391       OffsetLong =
1392           IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
1393 
1394     uint64_t XorMask = MS.MapParams->XorMask;
1395     if (XorMask)
1396       OffsetLong =
1397           IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
1398     return OffsetLong;
1399   }
1400 
1401   /// Compute the shadow and origin addresses corresponding to a given
1402   /// application address.
1403   ///
1404   /// Shadow = ShadowBase + Offset
1405   /// Origin = (OriginBase + Offset) & ~3ULL
1406   std::pair<Value *, Value *> getShadowOriginPtrUserspace(Value *Addr,
1407                                                           IRBuilder<> &IRB,
1408                                                           Type *ShadowTy,
1409                                                           unsigned Alignment) {
1410     Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1411     Value *ShadowLong = ShadowOffset;
1412     uint64_t ShadowBase = MS.MapParams->ShadowBase;
1413     if (ShadowBase != 0) {
1414       ShadowLong =
1415         IRB.CreateAdd(ShadowLong,
1416                       ConstantInt::get(MS.IntptrTy, ShadowBase));
1417     }
1418     Value *ShadowPtr =
1419         IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1420     Value *OriginPtr = nullptr;
1421     if (MS.TrackOrigins) {
1422       Value *OriginLong = ShadowOffset;
1423       uint64_t OriginBase = MS.MapParams->OriginBase;
1424       if (OriginBase != 0)
1425         OriginLong = IRB.CreateAdd(OriginLong,
1426                                    ConstantInt::get(MS.IntptrTy, OriginBase));
1427       if (Alignment < kMinOriginAlignment) {
1428         uint64_t Mask = kMinOriginAlignment - 1;
1429         OriginLong =
1430             IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask));
1431       }
1432       OriginPtr =
1433           IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0));
1434     }
1435     return std::make_pair(ShadowPtr, OriginPtr);
1436   }
1437 
1438   std::pair<Value *, Value *>
1439   getShadowOriginPtrKernel(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
1440                            unsigned Alignment, bool isStore) {
1441     Value *ShadowOriginPtrs;
1442     const DataLayout &DL = F.getParent()->getDataLayout();
1443     int Size = DL.getTypeStoreSize(ShadowTy);
1444 
1445     FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
1446     Value *AddrCast =
1447         IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
1448     if (Getter) {
1449       ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast);
1450     } else {
1451       Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
1452       ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN
1453                                                 : MS.MsanMetadataPtrForLoadN,
1454                                         {AddrCast, SizeVal});
1455     }
1456     Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
1457     ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
1458     Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
1459 
1460     return std::make_pair(ShadowPtr, OriginPtr);
1461   }
1462 
1463   std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1464                                                  Type *ShadowTy,
1465                                                  unsigned Alignment,
1466                                                  bool isStore) {
1467     std::pair<Value *, Value *> ret;
1468     if (MS.CompileKernel)
1469       ret = getShadowOriginPtrKernel(Addr, IRB, ShadowTy, Alignment, isStore);
1470     else
1471       ret = getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
1472     return ret;
1473   }
1474 
1475   /// Compute the shadow address for a given function argument.
1476   ///
1477   /// Shadow = ParamTLS+ArgOffset.
1478   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
1479                                  int ArgOffset) {
1480     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1481     if (ArgOffset)
1482       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1483     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1484                               "_msarg");
1485   }
1486 
1487   /// Compute the origin address for a given function argument.
1488   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
1489                                  int ArgOffset) {
1490     if (!MS.TrackOrigins)
1491       return nullptr;
1492     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1493     if (ArgOffset)
1494       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1495     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1496                               "_msarg_o");
1497   }
1498 
1499   /// Compute the shadow address for a retval.
1500   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1501     return IRB.CreatePointerCast(MS.RetvalTLS,
1502                                  PointerType::get(getShadowTy(A), 0),
1503                                  "_msret");
1504   }
1505 
1506   /// Compute the origin address for a retval.
1507   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1508     // We keep a single origin for the entire retval. Might be too optimistic.
1509     return MS.RetvalOriginTLS;
1510   }
1511 
1512   /// Set SV to be the shadow value for V.
1513   void setShadow(Value *V, Value *SV) {
1514     assert(!ShadowMap.count(V) && "Values may only have one shadow");
1515     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1516   }
1517 
1518   /// Set Origin to be the origin value for V.
1519   void setOrigin(Value *V, Value *Origin) {
1520     if (!MS.TrackOrigins) return;
1521     assert(!OriginMap.count(V) && "Values may only have one origin");
1522     LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
1523     OriginMap[V] = Origin;
1524   }
1525 
1526   Constant *getCleanShadow(Type *OrigTy) {
1527     Type *ShadowTy = getShadowTy(OrigTy);
1528     if (!ShadowTy)
1529       return nullptr;
1530     return Constant::getNullValue(ShadowTy);
1531   }
1532 
1533   /// Create a clean shadow value for a given value.
1534   ///
1535   /// Clean shadow (all zeroes) means all bits of the value are defined
1536   /// (initialized).
1537   Constant *getCleanShadow(Value *V) {
1538     return getCleanShadow(V->getType());
1539   }
1540 
1541   /// Create a dirty shadow of a given shadow type.
1542   Constant *getPoisonedShadow(Type *ShadowTy) {
1543     assert(ShadowTy);
1544     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1545       return Constant::getAllOnesValue(ShadowTy);
1546     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1547       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1548                                       getPoisonedShadow(AT->getElementType()));
1549       return ConstantArray::get(AT, Vals);
1550     }
1551     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1552       SmallVector<Constant *, 4> Vals;
1553       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1554         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1555       return ConstantStruct::get(ST, Vals);
1556     }
1557     llvm_unreachable("Unexpected shadow type");
1558   }
1559 
1560   /// Create a dirty shadow for a given value.
1561   Constant *getPoisonedShadow(Value *V) {
1562     Type *ShadowTy = getShadowTy(V);
1563     if (!ShadowTy)
1564       return nullptr;
1565     return getPoisonedShadow(ShadowTy);
1566   }
1567 
1568   /// Create a clean (zero) origin.
1569   Value *getCleanOrigin() {
1570     return Constant::getNullValue(MS.OriginTy);
1571   }
1572 
1573   /// Get the shadow value for a given Value.
1574   ///
1575   /// This function either returns the value set earlier with setShadow,
1576   /// or extracts if from ParamTLS (for function arguments).
1577   Value *getShadow(Value *V) {
1578     if (!PropagateShadow) return getCleanShadow(V);
1579     if (Instruction *I = dyn_cast<Instruction>(V)) {
1580       if (I->getMetadata("nosanitize"))
1581         return getCleanShadow(V);
1582       // For instructions the shadow is already stored in the map.
1583       Value *Shadow = ShadowMap[V];
1584       if (!Shadow) {
1585         LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1586         (void)I;
1587         assert(Shadow && "No shadow for a value");
1588       }
1589       return Shadow;
1590     }
1591     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1592       Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
1593       LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1594       (void)U;
1595       return AllOnes;
1596     }
1597     if (Argument *A = dyn_cast<Argument>(V)) {
1598       // For arguments we compute the shadow on demand and store it in the map.
1599       Value **ShadowPtr = &ShadowMap[V];
1600       if (*ShadowPtr)
1601         return *ShadowPtr;
1602       Function *F = A->getParent();
1603       IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI());
1604       unsigned ArgOffset = 0;
1605       const DataLayout &DL = F->getParent()->getDataLayout();
1606       for (auto &FArg : F->args()) {
1607         if (!FArg.getType()->isSized()) {
1608           LLVM_DEBUG(dbgs() << "Arg is not sized\n");
1609           continue;
1610         }
1611         unsigned Size =
1612             FArg.hasByValAttr()
1613                 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
1614                 : DL.getTypeAllocSize(FArg.getType());
1615         if (A == &FArg) {
1616           bool Overflow = ArgOffset + Size > kParamTLSSize;
1617           Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1618           if (FArg.hasByValAttr()) {
1619             // ByVal pointer itself has clean shadow. We copy the actual
1620             // argument shadow to the underlying memory.
1621             // Figure out maximal valid memcpy alignment.
1622             unsigned ArgAlign = FArg.getParamAlignment();
1623             if (ArgAlign == 0) {
1624               Type *EltType = A->getType()->getPointerElementType();
1625               ArgAlign = DL.getABITypeAlignment(EltType);
1626             }
1627             Value *CpShadowPtr =
1628                 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
1629                                    /*isStore*/ true)
1630                     .first;
1631             // TODO(glider): need to copy origins.
1632             if (Overflow) {
1633               // ParamTLS overflow.
1634               EntryIRB.CreateMemSet(
1635                   CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
1636                   Size, ArgAlign);
1637             } else {
1638               unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1639               Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
1640                                                  CopyAlign, Size);
1641               LLVM_DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
1642               (void)Cpy;
1643             }
1644             *ShadowPtr = getCleanShadow(V);
1645           } else {
1646             if (Overflow) {
1647               // ParamTLS overflow.
1648               *ShadowPtr = getCleanShadow(V);
1649             } else {
1650               *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
1651                                                       kShadowTLSAlignment);
1652             }
1653           }
1654           LLVM_DEBUG(dbgs()
1655                      << "  ARG:    " << FArg << " ==> " << **ShadowPtr << "\n");
1656           if (MS.TrackOrigins && !Overflow) {
1657             Value *OriginPtr =
1658                 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1659             setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
1660           } else {
1661             setOrigin(A, getCleanOrigin());
1662           }
1663         }
1664         ArgOffset += alignTo(Size, kShadowTLSAlignment);
1665       }
1666       assert(*ShadowPtr && "Could not find shadow for an argument");
1667       return *ShadowPtr;
1668     }
1669     // For everything else the shadow is zero.
1670     return getCleanShadow(V);
1671   }
1672 
1673   /// Get the shadow for i-th argument of the instruction I.
1674   Value *getShadow(Instruction *I, int i) {
1675     return getShadow(I->getOperand(i));
1676   }
1677 
1678   /// Get the origin for a value.
1679   Value *getOrigin(Value *V) {
1680     if (!MS.TrackOrigins) return nullptr;
1681     if (!PropagateShadow) return getCleanOrigin();
1682     if (isa<Constant>(V)) return getCleanOrigin();
1683     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1684            "Unexpected value type in getOrigin()");
1685     if (Instruction *I = dyn_cast<Instruction>(V)) {
1686       if (I->getMetadata("nosanitize"))
1687         return getCleanOrigin();
1688     }
1689     Value *Origin = OriginMap[V];
1690     assert(Origin && "Missing origin");
1691     return Origin;
1692   }
1693 
1694   /// Get the origin for i-th argument of the instruction I.
1695   Value *getOrigin(Instruction *I, int i) {
1696     return getOrigin(I->getOperand(i));
1697   }
1698 
1699   /// Remember the place where a shadow check should be inserted.
1700   ///
1701   /// This location will be later instrumented with a check that will print a
1702   /// UMR warning in runtime if the shadow value is not 0.
1703   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1704     assert(Shadow);
1705     if (!InsertChecks) return;
1706 #ifndef NDEBUG
1707     Type *ShadowTy = Shadow->getType();
1708     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1709            "Can only insert checks for integer and vector shadow types");
1710 #endif
1711     InstrumentationList.push_back(
1712         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1713   }
1714 
1715   /// Remember the place where a shadow check should be inserted.
1716   ///
1717   /// This location will be later instrumented with a check that will print a
1718   /// UMR warning in runtime if the value is not fully defined.
1719   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1720     assert(Val);
1721     Value *Shadow, *Origin;
1722     if (ClCheckConstantShadow) {
1723       Shadow = getShadow(Val);
1724       if (!Shadow) return;
1725       Origin = getOrigin(Val);
1726     } else {
1727       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1728       if (!Shadow) return;
1729       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1730     }
1731     insertShadowCheck(Shadow, Origin, OrigIns);
1732   }
1733 
1734   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1735     switch (a) {
1736       case AtomicOrdering::NotAtomic:
1737         return AtomicOrdering::NotAtomic;
1738       case AtomicOrdering::Unordered:
1739       case AtomicOrdering::Monotonic:
1740       case AtomicOrdering::Release:
1741         return AtomicOrdering::Release;
1742       case AtomicOrdering::Acquire:
1743       case AtomicOrdering::AcquireRelease:
1744         return AtomicOrdering::AcquireRelease;
1745       case AtomicOrdering::SequentiallyConsistent:
1746         return AtomicOrdering::SequentiallyConsistent;
1747     }
1748     llvm_unreachable("Unknown ordering");
1749   }
1750 
1751   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1752     switch (a) {
1753       case AtomicOrdering::NotAtomic:
1754         return AtomicOrdering::NotAtomic;
1755       case AtomicOrdering::Unordered:
1756       case AtomicOrdering::Monotonic:
1757       case AtomicOrdering::Acquire:
1758         return AtomicOrdering::Acquire;
1759       case AtomicOrdering::Release:
1760       case AtomicOrdering::AcquireRelease:
1761         return AtomicOrdering::AcquireRelease;
1762       case AtomicOrdering::SequentiallyConsistent:
1763         return AtomicOrdering::SequentiallyConsistent;
1764     }
1765     llvm_unreachable("Unknown ordering");
1766   }
1767 
1768   // ------------------- Visitors.
1769   using InstVisitor<MemorySanitizerVisitor>::visit;
1770   void visit(Instruction &I) {
1771     if (!I.getMetadata("nosanitize"))
1772       InstVisitor<MemorySanitizerVisitor>::visit(I);
1773   }
1774 
1775   /// Instrument LoadInst
1776   ///
1777   /// Loads the corresponding shadow and (optionally) origin.
1778   /// Optionally, checks that the load address is fully defined.
1779   void visitLoadInst(LoadInst &I) {
1780     assert(I.getType()->isSized() && "Load type must have size");
1781     assert(!I.getMetadata("nosanitize"));
1782     IRBuilder<> IRB(I.getNextNode());
1783     Type *ShadowTy = getShadowTy(&I);
1784     Value *Addr = I.getPointerOperand();
1785     Value *ShadowPtr, *OriginPtr;
1786     unsigned Alignment = I.getAlignment();
1787     if (PropagateShadow) {
1788       std::tie(ShadowPtr, OriginPtr) =
1789           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
1790       setShadow(&I,
1791                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
1792     } else {
1793       setShadow(&I, getCleanShadow(&I));
1794     }
1795 
1796     if (ClCheckAccessAddress)
1797       insertShadowCheck(I.getPointerOperand(), &I);
1798 
1799     if (I.isAtomic())
1800       I.setOrdering(addAcquireOrdering(I.getOrdering()));
1801 
1802     if (MS.TrackOrigins) {
1803       if (PropagateShadow) {
1804         unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1805         setOrigin(
1806             &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
1807       } else {
1808         setOrigin(&I, getCleanOrigin());
1809       }
1810     }
1811   }
1812 
1813   /// Instrument StoreInst
1814   ///
1815   /// Stores the corresponding shadow and (optionally) origin.
1816   /// Optionally, checks that the store address is fully defined.
1817   void visitStoreInst(StoreInst &I) {
1818     StoreList.push_back(&I);
1819     if (ClCheckAccessAddress)
1820       insertShadowCheck(I.getPointerOperand(), &I);
1821   }
1822 
1823   void handleCASOrRMW(Instruction &I) {
1824     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1825 
1826     IRBuilder<> IRB(&I);
1827     Value *Addr = I.getOperand(0);
1828     Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(),
1829                                           /*Alignment*/ 1, /*isStore*/ true)
1830                            .first;
1831 
1832     if (ClCheckAccessAddress)
1833       insertShadowCheck(Addr, &I);
1834 
1835     // Only test the conditional argument of cmpxchg instruction.
1836     // The other argument can potentially be uninitialized, but we can not
1837     // detect this situation reliably without possible false positives.
1838     if (isa<AtomicCmpXchgInst>(I))
1839       insertShadowCheck(I.getOperand(1), &I);
1840 
1841     IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1842 
1843     setShadow(&I, getCleanShadow(&I));
1844     setOrigin(&I, getCleanOrigin());
1845   }
1846 
1847   void visitAtomicRMWInst(AtomicRMWInst &I) {
1848     handleCASOrRMW(I);
1849     I.setOrdering(addReleaseOrdering(I.getOrdering()));
1850   }
1851 
1852   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1853     handleCASOrRMW(I);
1854     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1855   }
1856 
1857   // Vector manipulation.
1858   void visitExtractElementInst(ExtractElementInst &I) {
1859     insertShadowCheck(I.getOperand(1), &I);
1860     IRBuilder<> IRB(&I);
1861     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1862               "_msprop"));
1863     setOrigin(&I, getOrigin(&I, 0));
1864   }
1865 
1866   void visitInsertElementInst(InsertElementInst &I) {
1867     insertShadowCheck(I.getOperand(2), &I);
1868     IRBuilder<> IRB(&I);
1869     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1870               I.getOperand(2), "_msprop"));
1871     setOriginForNaryOp(I);
1872   }
1873 
1874   void visitShuffleVectorInst(ShuffleVectorInst &I) {
1875     insertShadowCheck(I.getOperand(2), &I);
1876     IRBuilder<> IRB(&I);
1877     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1878               I.getOperand(2), "_msprop"));
1879     setOriginForNaryOp(I);
1880   }
1881 
1882   // Casts.
1883   void visitSExtInst(SExtInst &I) {
1884     IRBuilder<> IRB(&I);
1885     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1886     setOrigin(&I, getOrigin(&I, 0));
1887   }
1888 
1889   void visitZExtInst(ZExtInst &I) {
1890     IRBuilder<> IRB(&I);
1891     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1892     setOrigin(&I, getOrigin(&I, 0));
1893   }
1894 
1895   void visitTruncInst(TruncInst &I) {
1896     IRBuilder<> IRB(&I);
1897     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1898     setOrigin(&I, getOrigin(&I, 0));
1899   }
1900 
1901   void visitBitCastInst(BitCastInst &I) {
1902     // Special case: if this is the bitcast (there is exactly 1 allowed) between
1903     // a musttail call and a ret, don't instrument. New instructions are not
1904     // allowed after a musttail call.
1905     if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
1906       if (CI->isMustTailCall())
1907         return;
1908     IRBuilder<> IRB(&I);
1909     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1910     setOrigin(&I, getOrigin(&I, 0));
1911   }
1912 
1913   void visitPtrToIntInst(PtrToIntInst &I) {
1914     IRBuilder<> IRB(&I);
1915     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1916              "_msprop_ptrtoint"));
1917     setOrigin(&I, getOrigin(&I, 0));
1918   }
1919 
1920   void visitIntToPtrInst(IntToPtrInst &I) {
1921     IRBuilder<> IRB(&I);
1922     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1923              "_msprop_inttoptr"));
1924     setOrigin(&I, getOrigin(&I, 0));
1925   }
1926 
1927   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1928   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1929   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1930   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1931   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1932   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1933 
1934   /// Propagate shadow for bitwise AND.
1935   ///
1936   /// This code is exact, i.e. if, for example, a bit in the left argument
1937   /// is defined and 0, then neither the value not definedness of the
1938   /// corresponding bit in B don't affect the resulting shadow.
1939   void visitAnd(BinaryOperator &I) {
1940     IRBuilder<> IRB(&I);
1941     //  "And" of 0 and a poisoned value results in unpoisoned value.
1942     //  1&1 => 1;     0&1 => 0;     p&1 => p;
1943     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
1944     //  1&p => p;     0&p => 0;     p&p => p;
1945     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1946     Value *S1 = getShadow(&I, 0);
1947     Value *S2 = getShadow(&I, 1);
1948     Value *V1 = I.getOperand(0);
1949     Value *V2 = I.getOperand(1);
1950     if (V1->getType() != S1->getType()) {
1951       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1952       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1953     }
1954     Value *S1S2 = IRB.CreateAnd(S1, S2);
1955     Value *V1S2 = IRB.CreateAnd(V1, S2);
1956     Value *S1V2 = IRB.CreateAnd(S1, V2);
1957     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
1958     setOriginForNaryOp(I);
1959   }
1960 
1961   void visitOr(BinaryOperator &I) {
1962     IRBuilder<> IRB(&I);
1963     //  "Or" of 1 and a poisoned value results in unpoisoned value.
1964     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
1965     //  1|0 => 1;     0|0 => 0;     p|0 => p;
1966     //  1|p => 1;     0|p => p;     p|p => p;
1967     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1968     Value *S1 = getShadow(&I, 0);
1969     Value *S2 = getShadow(&I, 1);
1970     Value *V1 = IRB.CreateNot(I.getOperand(0));
1971     Value *V2 = IRB.CreateNot(I.getOperand(1));
1972     if (V1->getType() != S1->getType()) {
1973       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1974       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1975     }
1976     Value *S1S2 = IRB.CreateAnd(S1, S2);
1977     Value *V1S2 = IRB.CreateAnd(V1, S2);
1978     Value *S1V2 = IRB.CreateAnd(S1, V2);
1979     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
1980     setOriginForNaryOp(I);
1981   }
1982 
1983   /// Default propagation of shadow and/or origin.
1984   ///
1985   /// This class implements the general case of shadow propagation, used in all
1986   /// cases where we don't know and/or don't care about what the operation
1987   /// actually does. It converts all input shadow values to a common type
1988   /// (extending or truncating as necessary), and bitwise OR's them.
1989   ///
1990   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1991   /// fully initialized), and less prone to false positives.
1992   ///
1993   /// This class also implements the general case of origin propagation. For a
1994   /// Nary operation, result origin is set to the origin of an argument that is
1995   /// not entirely initialized. If there is more than one such arguments, the
1996   /// rightmost of them is picked. It does not matter which one is picked if all
1997   /// arguments are initialized.
1998   template <bool CombineShadow>
1999   class Combiner {
2000     Value *Shadow = nullptr;
2001     Value *Origin = nullptr;
2002     IRBuilder<> &IRB;
2003     MemorySanitizerVisitor *MSV;
2004 
2005   public:
2006     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
2007         : IRB(IRB), MSV(MSV) {}
2008 
2009     /// Add a pair of shadow and origin values to the mix.
2010     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
2011       if (CombineShadow) {
2012         assert(OpShadow);
2013         if (!Shadow)
2014           Shadow = OpShadow;
2015         else {
2016           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
2017           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
2018         }
2019       }
2020 
2021       if (MSV->MS.TrackOrigins) {
2022         assert(OpOrigin);
2023         if (!Origin) {
2024           Origin = OpOrigin;
2025         } else {
2026           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
2027           // No point in adding something that might result in 0 origin value.
2028           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
2029             Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
2030             Value *Cond =
2031                 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
2032             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2033           }
2034         }
2035       }
2036       return *this;
2037     }
2038 
2039     /// Add an application value to the mix.
2040     Combiner &Add(Value *V) {
2041       Value *OpShadow = MSV->getShadow(V);
2042       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
2043       return Add(OpShadow, OpOrigin);
2044     }
2045 
2046     /// Set the current combined values as the given instruction's shadow
2047     /// and origin.
2048     void Done(Instruction *I) {
2049       if (CombineShadow) {
2050         assert(Shadow);
2051         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
2052         MSV->setShadow(I, Shadow);
2053       }
2054       if (MSV->MS.TrackOrigins) {
2055         assert(Origin);
2056         MSV->setOrigin(I, Origin);
2057       }
2058     }
2059   };
2060 
2061   using ShadowAndOriginCombiner = Combiner<true>;
2062   using OriginCombiner = Combiner<false>;
2063 
2064   /// Propagate origin for arbitrary operation.
2065   void setOriginForNaryOp(Instruction &I) {
2066     if (!MS.TrackOrigins) return;
2067     IRBuilder<> IRB(&I);
2068     OriginCombiner OC(this, IRB);
2069     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
2070       OC.Add(OI->get());
2071     OC.Done(&I);
2072   }
2073 
2074   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
2075     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
2076            "Vector of pointers is not a valid shadow type");
2077     return Ty->isVectorTy() ?
2078       Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
2079       Ty->getPrimitiveSizeInBits();
2080   }
2081 
2082   /// Cast between two shadow types, extending or truncating as
2083   /// necessary.
2084   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
2085                           bool Signed = false) {
2086     Type *srcTy = V->getType();
2087     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
2088     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
2089     if (srcSizeInBits > 1 && dstSizeInBits == 1)
2090       return IRB.CreateICmpNE(V, getCleanShadow(V));
2091 
2092     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
2093       return IRB.CreateIntCast(V, dstTy, Signed);
2094     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
2095         dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
2096       return IRB.CreateIntCast(V, dstTy, Signed);
2097     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
2098     Value *V2 =
2099       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
2100     return IRB.CreateBitCast(V2, dstTy);
2101     // TODO: handle struct types.
2102   }
2103 
2104   /// Cast an application value to the type of its own shadow.
2105   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
2106     Type *ShadowTy = getShadowTy(V);
2107     if (V->getType() == ShadowTy)
2108       return V;
2109     if (V->getType()->isPtrOrPtrVectorTy())
2110       return IRB.CreatePtrToInt(V, ShadowTy);
2111     else
2112       return IRB.CreateBitCast(V, ShadowTy);
2113   }
2114 
2115   /// Propagate shadow for arbitrary operation.
2116   void handleShadowOr(Instruction &I) {
2117     IRBuilder<> IRB(&I);
2118     ShadowAndOriginCombiner SC(this, IRB);
2119     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
2120       SC.Add(OI->get());
2121     SC.Done(&I);
2122   }
2123 
2124   void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
2125 
2126   // Handle multiplication by constant.
2127   //
2128   // Handle a special case of multiplication by constant that may have one or
2129   // more zeros in the lower bits. This makes corresponding number of lower bits
2130   // of the result zero as well. We model it by shifting the other operand
2131   // shadow left by the required number of bits. Effectively, we transform
2132   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
2133   // We use multiplication by 2**N instead of shift to cover the case of
2134   // multiplication by 0, which may occur in some elements of a vector operand.
2135   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
2136                            Value *OtherArg) {
2137     Constant *ShadowMul;
2138     Type *Ty = ConstArg->getType();
2139     if (Ty->isVectorTy()) {
2140       unsigned NumElements = Ty->getVectorNumElements();
2141       Type *EltTy = Ty->getSequentialElementType();
2142       SmallVector<Constant *, 16> Elements;
2143       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
2144         if (ConstantInt *Elt =
2145                 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
2146           const APInt &V = Elt->getValue();
2147           APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2148           Elements.push_back(ConstantInt::get(EltTy, V2));
2149         } else {
2150           Elements.push_back(ConstantInt::get(EltTy, 1));
2151         }
2152       }
2153       ShadowMul = ConstantVector::get(Elements);
2154     } else {
2155       if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
2156         const APInt &V = Elt->getValue();
2157         APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2158         ShadowMul = ConstantInt::get(Ty, V2);
2159       } else {
2160         ShadowMul = ConstantInt::get(Ty, 1);
2161       }
2162     }
2163 
2164     IRBuilder<> IRB(&I);
2165     setShadow(&I,
2166               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
2167     setOrigin(&I, getOrigin(OtherArg));
2168   }
2169 
2170   void visitMul(BinaryOperator &I) {
2171     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
2172     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
2173     if (constOp0 && !constOp1)
2174       handleMulByConstant(I, constOp0, I.getOperand(1));
2175     else if (constOp1 && !constOp0)
2176       handleMulByConstant(I, constOp1, I.getOperand(0));
2177     else
2178       handleShadowOr(I);
2179   }
2180 
2181   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
2182   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
2183   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
2184   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
2185   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
2186   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
2187 
2188   void handleIntegerDiv(Instruction &I) {
2189     IRBuilder<> IRB(&I);
2190     // Strict on the second argument.
2191     insertShadowCheck(I.getOperand(1), &I);
2192     setShadow(&I, getShadow(&I, 0));
2193     setOrigin(&I, getOrigin(&I, 0));
2194   }
2195 
2196   void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2197   void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2198   void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
2199   void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
2200 
2201   // Floating point division is side-effect free. We can not require that the
2202   // divisor is fully initialized and must propagate shadow. See PR37523.
2203   void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
2204   void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
2205 
2206   /// Instrument == and != comparisons.
2207   ///
2208   /// Sometimes the comparison result is known even if some of the bits of the
2209   /// arguments are not.
2210   void handleEqualityComparison(ICmpInst &I) {
2211     IRBuilder<> IRB(&I);
2212     Value *A = I.getOperand(0);
2213     Value *B = I.getOperand(1);
2214     Value *Sa = getShadow(A);
2215     Value *Sb = getShadow(B);
2216 
2217     // Get rid of pointers and vectors of pointers.
2218     // For ints (and vectors of ints), types of A and Sa match,
2219     // and this is a no-op.
2220     A = IRB.CreatePointerCast(A, Sa->getType());
2221     B = IRB.CreatePointerCast(B, Sb->getType());
2222 
2223     // A == B  <==>  (C = A^B) == 0
2224     // A != B  <==>  (C = A^B) != 0
2225     // Sc = Sa | Sb
2226     Value *C = IRB.CreateXor(A, B);
2227     Value *Sc = IRB.CreateOr(Sa, Sb);
2228     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
2229     // Result is defined if one of the following is true
2230     // * there is a defined 1 bit in C
2231     // * C is fully defined
2232     // Si = !(C & ~Sc) && Sc
2233     Value *Zero = Constant::getNullValue(Sc->getType());
2234     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
2235     Value *Si =
2236       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
2237                     IRB.CreateICmpEQ(
2238                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
2239     Si->setName("_msprop_icmp");
2240     setShadow(&I, Si);
2241     setOriginForNaryOp(I);
2242   }
2243 
2244   /// Build the lowest possible value of V, taking into account V's
2245   ///        uninitialized bits.
2246   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2247                                 bool isSigned) {
2248     if (isSigned) {
2249       // Split shadow into sign bit and other bits.
2250       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2251       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2252       // Maximise the undefined shadow bit, minimize other undefined bits.
2253       return
2254         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
2255     } else {
2256       // Minimize undefined bits.
2257       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
2258     }
2259   }
2260 
2261   /// Build the highest possible value of V, taking into account V's
2262   ///        uninitialized bits.
2263   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2264                                 bool isSigned) {
2265     if (isSigned) {
2266       // Split shadow into sign bit and other bits.
2267       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2268       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2269       // Minimise the undefined shadow bit, maximise other undefined bits.
2270       return
2271         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
2272     } else {
2273       // Maximize undefined bits.
2274       return IRB.CreateOr(A, Sa);
2275     }
2276   }
2277 
2278   /// Instrument relational comparisons.
2279   ///
2280   /// This function does exact shadow propagation for all relational
2281   /// comparisons of integers, pointers and vectors of those.
2282   /// FIXME: output seems suboptimal when one of the operands is a constant
2283   void handleRelationalComparisonExact(ICmpInst &I) {
2284     IRBuilder<> IRB(&I);
2285     Value *A = I.getOperand(0);
2286     Value *B = I.getOperand(1);
2287     Value *Sa = getShadow(A);
2288     Value *Sb = getShadow(B);
2289 
2290     // Get rid of pointers and vectors of pointers.
2291     // For ints (and vectors of ints), types of A and Sa match,
2292     // and this is a no-op.
2293     A = IRB.CreatePointerCast(A, Sa->getType());
2294     B = IRB.CreatePointerCast(B, Sb->getType());
2295 
2296     // Let [a0, a1] be the interval of possible values of A, taking into account
2297     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
2298     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
2299     bool IsSigned = I.isSigned();
2300     Value *S1 = IRB.CreateICmp(I.getPredicate(),
2301                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
2302                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
2303     Value *S2 = IRB.CreateICmp(I.getPredicate(),
2304                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
2305                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
2306     Value *Si = IRB.CreateXor(S1, S2);
2307     setShadow(&I, Si);
2308     setOriginForNaryOp(I);
2309   }
2310 
2311   /// Instrument signed relational comparisons.
2312   ///
2313   /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
2314   /// bit of the shadow. Everything else is delegated to handleShadowOr().
2315   void handleSignedRelationalComparison(ICmpInst &I) {
2316     Constant *constOp;
2317     Value *op = nullptr;
2318     CmpInst::Predicate pre;
2319     if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
2320       op = I.getOperand(0);
2321       pre = I.getPredicate();
2322     } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
2323       op = I.getOperand(1);
2324       pre = I.getSwappedPredicate();
2325     } else {
2326       handleShadowOr(I);
2327       return;
2328     }
2329 
2330     if ((constOp->isNullValue() &&
2331          (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
2332         (constOp->isAllOnesValue() &&
2333          (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
2334       IRBuilder<> IRB(&I);
2335       Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
2336                                         "_msprop_icmp_s");
2337       setShadow(&I, Shadow);
2338       setOrigin(&I, getOrigin(op));
2339     } else {
2340       handleShadowOr(I);
2341     }
2342   }
2343 
2344   void visitICmpInst(ICmpInst &I) {
2345     if (!ClHandleICmp) {
2346       handleShadowOr(I);
2347       return;
2348     }
2349     if (I.isEquality()) {
2350       handleEqualityComparison(I);
2351       return;
2352     }
2353 
2354     assert(I.isRelational());
2355     if (ClHandleICmpExact) {
2356       handleRelationalComparisonExact(I);
2357       return;
2358     }
2359     if (I.isSigned()) {
2360       handleSignedRelationalComparison(I);
2361       return;
2362     }
2363 
2364     assert(I.isUnsigned());
2365     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2366       handleRelationalComparisonExact(I);
2367       return;
2368     }
2369 
2370     handleShadowOr(I);
2371   }
2372 
2373   void visitFCmpInst(FCmpInst &I) {
2374     handleShadowOr(I);
2375   }
2376 
2377   void handleShift(BinaryOperator &I) {
2378     IRBuilder<> IRB(&I);
2379     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2380     // Otherwise perform the same shift on S1.
2381     Value *S1 = getShadow(&I, 0);
2382     Value *S2 = getShadow(&I, 1);
2383     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
2384                                    S2->getType());
2385     Value *V2 = I.getOperand(1);
2386     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2387     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2388     setOriginForNaryOp(I);
2389   }
2390 
2391   void visitShl(BinaryOperator &I) { handleShift(I); }
2392   void visitAShr(BinaryOperator &I) { handleShift(I); }
2393   void visitLShr(BinaryOperator &I) { handleShift(I); }
2394 
2395   /// Instrument llvm.memmove
2396   ///
2397   /// At this point we don't know if llvm.memmove will be inlined or not.
2398   /// If we don't instrument it and it gets inlined,
2399   /// our interceptor will not kick in and we will lose the memmove.
2400   /// If we instrument the call here, but it does not get inlined,
2401   /// we will memove the shadow twice: which is bad in case
2402   /// of overlapping regions. So, we simply lower the intrinsic to a call.
2403   ///
2404   /// Similar situation exists for memcpy and memset.
2405   void visitMemMoveInst(MemMoveInst &I) {
2406     IRBuilder<> IRB(&I);
2407     IRB.CreateCall(
2408         MS.MemmoveFn,
2409         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2410          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2411          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2412     I.eraseFromParent();
2413   }
2414 
2415   // Similar to memmove: avoid copying shadow twice.
2416   // This is somewhat unfortunate as it may slowdown small constant memcpys.
2417   // FIXME: consider doing manual inline for small constant sizes and proper
2418   // alignment.
2419   void visitMemCpyInst(MemCpyInst &I) {
2420     IRBuilder<> IRB(&I);
2421     IRB.CreateCall(
2422         MS.MemcpyFn,
2423         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2424          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2425          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2426     I.eraseFromParent();
2427   }
2428 
2429   // Same as memcpy.
2430   void visitMemSetInst(MemSetInst &I) {
2431     IRBuilder<> IRB(&I);
2432     IRB.CreateCall(
2433         MS.MemsetFn,
2434         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2435          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2436          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2437     I.eraseFromParent();
2438   }
2439 
2440   void visitVAStartInst(VAStartInst &I) {
2441     VAHelper->visitVAStartInst(I);
2442   }
2443 
2444   void visitVACopyInst(VACopyInst &I) {
2445     VAHelper->visitVACopyInst(I);
2446   }
2447 
2448   /// Handle vector store-like intrinsics.
2449   ///
2450   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2451   /// has 1 pointer argument and 1 vector argument, returns void.
2452   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2453     IRBuilder<> IRB(&I);
2454     Value* Addr = I.getArgOperand(0);
2455     Value *Shadow = getShadow(&I, 1);
2456     Value *ShadowPtr, *OriginPtr;
2457 
2458     // We don't know the pointer alignment (could be unaligned SSE store!).
2459     // Have to assume to worst case.
2460     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2461         Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true);
2462     IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
2463 
2464     if (ClCheckAccessAddress)
2465       insertShadowCheck(Addr, &I);
2466 
2467     // FIXME: factor out common code from materializeStores
2468     if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2469     return true;
2470   }
2471 
2472   /// Handle vector load-like intrinsics.
2473   ///
2474   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2475   /// has 1 pointer argument, returns a vector.
2476   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2477     IRBuilder<> IRB(&I);
2478     Value *Addr = I.getArgOperand(0);
2479 
2480     Type *ShadowTy = getShadowTy(&I);
2481     Value *ShadowPtr, *OriginPtr;
2482     if (PropagateShadow) {
2483       // We don't know the pointer alignment (could be unaligned SSE load!).
2484       // Have to assume to worst case.
2485       unsigned Alignment = 1;
2486       std::tie(ShadowPtr, OriginPtr) =
2487           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2488       setShadow(&I,
2489                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2490     } else {
2491       setShadow(&I, getCleanShadow(&I));
2492     }
2493 
2494     if (ClCheckAccessAddress)
2495       insertShadowCheck(Addr, &I);
2496 
2497     if (MS.TrackOrigins) {
2498       if (PropagateShadow)
2499         setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
2500       else
2501         setOrigin(&I, getCleanOrigin());
2502     }
2503     return true;
2504   }
2505 
2506   /// Handle (SIMD arithmetic)-like intrinsics.
2507   ///
2508   /// Instrument intrinsics with any number of arguments of the same type,
2509   /// equal to the return type. The type should be simple (no aggregates or
2510   /// pointers; vectors are fine).
2511   /// Caller guarantees that this intrinsic does not access memory.
2512   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2513     Type *RetTy = I.getType();
2514     if (!(RetTy->isIntOrIntVectorTy() ||
2515           RetTy->isFPOrFPVectorTy() ||
2516           RetTy->isX86_MMXTy()))
2517       return false;
2518 
2519     unsigned NumArgOperands = I.getNumArgOperands();
2520 
2521     for (unsigned i = 0; i < NumArgOperands; ++i) {
2522       Type *Ty = I.getArgOperand(i)->getType();
2523       if (Ty != RetTy)
2524         return false;
2525     }
2526 
2527     IRBuilder<> IRB(&I);
2528     ShadowAndOriginCombiner SC(this, IRB);
2529     for (unsigned i = 0; i < NumArgOperands; ++i)
2530       SC.Add(I.getArgOperand(i));
2531     SC.Done(&I);
2532 
2533     return true;
2534   }
2535 
2536   /// Heuristically instrument unknown intrinsics.
2537   ///
2538   /// The main purpose of this code is to do something reasonable with all
2539   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2540   /// We recognize several classes of intrinsics by their argument types and
2541   /// ModRefBehaviour and apply special intrumentation when we are reasonably
2542   /// sure that we know what the intrinsic does.
2543   ///
2544   /// We special-case intrinsics where this approach fails. See llvm.bswap
2545   /// handling as an example of that.
2546   bool handleUnknownIntrinsic(IntrinsicInst &I) {
2547     unsigned NumArgOperands = I.getNumArgOperands();
2548     if (NumArgOperands == 0)
2549       return false;
2550 
2551     if (NumArgOperands == 2 &&
2552         I.getArgOperand(0)->getType()->isPointerTy() &&
2553         I.getArgOperand(1)->getType()->isVectorTy() &&
2554         I.getType()->isVoidTy() &&
2555         !I.onlyReadsMemory()) {
2556       // This looks like a vector store.
2557       return handleVectorStoreIntrinsic(I);
2558     }
2559 
2560     if (NumArgOperands == 1 &&
2561         I.getArgOperand(0)->getType()->isPointerTy() &&
2562         I.getType()->isVectorTy() &&
2563         I.onlyReadsMemory()) {
2564       // This looks like a vector load.
2565       return handleVectorLoadIntrinsic(I);
2566     }
2567 
2568     if (I.doesNotAccessMemory())
2569       if (maybeHandleSimpleNomemIntrinsic(I))
2570         return true;
2571 
2572     // FIXME: detect and handle SSE maskstore/maskload
2573     return false;
2574   }
2575 
2576   void handleInvariantGroup(IntrinsicInst &I) {
2577     setShadow(&I, getShadow(&I, 0));
2578     setOrigin(&I, getOrigin(&I, 0));
2579   }
2580 
2581   void handleLifetimeStart(IntrinsicInst &I) {
2582     if (!PoisonStack)
2583       return;
2584     DenseMap<Value *, AllocaInst *> AllocaForValue;
2585     AllocaInst *AI =
2586         llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue);
2587     if (!AI)
2588       InstrumentLifetimeStart = false;
2589     LifetimeStartList.push_back(std::make_pair(&I, AI));
2590   }
2591 
2592   void handleBswap(IntrinsicInst &I) {
2593     IRBuilder<> IRB(&I);
2594     Value *Op = I.getArgOperand(0);
2595     Type *OpType = Op->getType();
2596     Function *BswapFunc = Intrinsic::getDeclaration(
2597       F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
2598     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
2599     setOrigin(&I, getOrigin(Op));
2600   }
2601 
2602   // Instrument vector convert instrinsic.
2603   //
2604   // This function instruments intrinsics like cvtsi2ss:
2605   // %Out = int_xxx_cvtyyy(%ConvertOp)
2606   // or
2607   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2608   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2609   // number \p Out elements, and (if has 2 arguments) copies the rest of the
2610   // elements from \p CopyOp.
2611   // In most cases conversion involves floating-point value which may trigger a
2612   // hardware exception when not fully initialized. For this reason we require
2613   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2614   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2615   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2616   // return a fully initialized value.
2617   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
2618     IRBuilder<> IRB(&I);
2619     Value *CopyOp, *ConvertOp;
2620 
2621     switch (I.getNumArgOperands()) {
2622     case 3:
2623       assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
2624       LLVM_FALLTHROUGH;
2625     case 2:
2626       CopyOp = I.getArgOperand(0);
2627       ConvertOp = I.getArgOperand(1);
2628       break;
2629     case 1:
2630       ConvertOp = I.getArgOperand(0);
2631       CopyOp = nullptr;
2632       break;
2633     default:
2634       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
2635     }
2636 
2637     // The first *NumUsedElements* elements of ConvertOp are converted to the
2638     // same number of output elements. The rest of the output is copied from
2639     // CopyOp, or (if not available) filled with zeroes.
2640     // Combine shadow for elements of ConvertOp that are used in this operation,
2641     // and insert a check.
2642     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2643     // int->any conversion.
2644     Value *ConvertShadow = getShadow(ConvertOp);
2645     Value *AggShadow = nullptr;
2646     if (ConvertOp->getType()->isVectorTy()) {
2647       AggShadow = IRB.CreateExtractElement(
2648           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2649       for (int i = 1; i < NumUsedElements; ++i) {
2650         Value *MoreShadow = IRB.CreateExtractElement(
2651             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2652         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2653       }
2654     } else {
2655       AggShadow = ConvertShadow;
2656     }
2657     assert(AggShadow->getType()->isIntegerTy());
2658     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2659 
2660     // Build result shadow by zero-filling parts of CopyOp shadow that come from
2661     // ConvertOp.
2662     if (CopyOp) {
2663       assert(CopyOp->getType() == I.getType());
2664       assert(CopyOp->getType()->isVectorTy());
2665       Value *ResultShadow = getShadow(CopyOp);
2666       Type *EltTy = ResultShadow->getType()->getVectorElementType();
2667       for (int i = 0; i < NumUsedElements; ++i) {
2668         ResultShadow = IRB.CreateInsertElement(
2669             ResultShadow, ConstantInt::getNullValue(EltTy),
2670             ConstantInt::get(IRB.getInt32Ty(), i));
2671       }
2672       setShadow(&I, ResultShadow);
2673       setOrigin(&I, getOrigin(CopyOp));
2674     } else {
2675       setShadow(&I, getCleanShadow(&I));
2676       setOrigin(&I, getCleanOrigin());
2677     }
2678   }
2679 
2680   // Given a scalar or vector, extract lower 64 bits (or less), and return all
2681   // zeroes if it is zero, and all ones otherwise.
2682   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2683     if (S->getType()->isVectorTy())
2684       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2685     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2686     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2687     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2688   }
2689 
2690   // Given a vector, extract its first element, and return all
2691   // zeroes if it is zero, and all ones otherwise.
2692   Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2693     Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
2694     Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
2695     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2696   }
2697 
2698   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2699     Type *T = S->getType();
2700     assert(T->isVectorTy());
2701     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2702     return IRB.CreateSExt(S2, T);
2703   }
2704 
2705   // Instrument vector shift instrinsic.
2706   //
2707   // This function instruments intrinsics like int_x86_avx2_psll_w.
2708   // Intrinsic shifts %In by %ShiftSize bits.
2709   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2710   // size, and the rest is ignored. Behavior is defined even if shift size is
2711   // greater than register (or field) width.
2712   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2713     assert(I.getNumArgOperands() == 2);
2714     IRBuilder<> IRB(&I);
2715     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2716     // Otherwise perform the same shift on S1.
2717     Value *S1 = getShadow(&I, 0);
2718     Value *S2 = getShadow(&I, 1);
2719     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2720                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2721     Value *V1 = I.getOperand(0);
2722     Value *V2 = I.getOperand(1);
2723     Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(),
2724                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
2725     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2726     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2727     setOriginForNaryOp(I);
2728   }
2729 
2730   // Get an X86_MMX-sized vector type.
2731   Type *getMMXVectorTy(unsigned EltSizeInBits) {
2732     const unsigned X86_MMXSizeInBits = 64;
2733     assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
2734            "Illegal MMX vector element size");
2735     return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2736                            X86_MMXSizeInBits / EltSizeInBits);
2737   }
2738 
2739   // Returns a signed counterpart for an (un)signed-saturate-and-pack
2740   // intrinsic.
2741   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2742     switch (id) {
2743       case Intrinsic::x86_sse2_packsswb_128:
2744       case Intrinsic::x86_sse2_packuswb_128:
2745         return Intrinsic::x86_sse2_packsswb_128;
2746 
2747       case Intrinsic::x86_sse2_packssdw_128:
2748       case Intrinsic::x86_sse41_packusdw:
2749         return Intrinsic::x86_sse2_packssdw_128;
2750 
2751       case Intrinsic::x86_avx2_packsswb:
2752       case Intrinsic::x86_avx2_packuswb:
2753         return Intrinsic::x86_avx2_packsswb;
2754 
2755       case Intrinsic::x86_avx2_packssdw:
2756       case Intrinsic::x86_avx2_packusdw:
2757         return Intrinsic::x86_avx2_packssdw;
2758 
2759       case Intrinsic::x86_mmx_packsswb:
2760       case Intrinsic::x86_mmx_packuswb:
2761         return Intrinsic::x86_mmx_packsswb;
2762 
2763       case Intrinsic::x86_mmx_packssdw:
2764         return Intrinsic::x86_mmx_packssdw;
2765       default:
2766         llvm_unreachable("unexpected intrinsic id");
2767     }
2768   }
2769 
2770   // Instrument vector pack instrinsic.
2771   //
2772   // This function instruments intrinsics like x86_mmx_packsswb, that
2773   // packs elements of 2 input vectors into half as many bits with saturation.
2774   // Shadow is propagated with the signed variant of the same intrinsic applied
2775   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2776   // EltSizeInBits is used only for x86mmx arguments.
2777   void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2778     assert(I.getNumArgOperands() == 2);
2779     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2780     IRBuilder<> IRB(&I);
2781     Value *S1 = getShadow(&I, 0);
2782     Value *S2 = getShadow(&I, 1);
2783     assert(isX86_MMX || S1->getType()->isVectorTy());
2784 
2785     // SExt and ICmpNE below must apply to individual elements of input vectors.
2786     // In case of x86mmx arguments, cast them to appropriate vector types and
2787     // back.
2788     Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2789     if (isX86_MMX) {
2790       S1 = IRB.CreateBitCast(S1, T);
2791       S2 = IRB.CreateBitCast(S2, T);
2792     }
2793     Value *S1_ext = IRB.CreateSExt(
2794         IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
2795     Value *S2_ext = IRB.CreateSExt(
2796         IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
2797     if (isX86_MMX) {
2798       Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2799       S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2800       S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2801     }
2802 
2803     Function *ShadowFn = Intrinsic::getDeclaration(
2804         F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2805 
2806     Value *S =
2807         IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
2808     if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2809     setShadow(&I, S);
2810     setOriginForNaryOp(I);
2811   }
2812 
2813   // Instrument sum-of-absolute-differencies intrinsic.
2814   void handleVectorSadIntrinsic(IntrinsicInst &I) {
2815     const unsigned SignificantBitsPerResultElement = 16;
2816     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2817     Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2818     unsigned ZeroBitsPerResultElement =
2819         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2820 
2821     IRBuilder<> IRB(&I);
2822     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2823     S = IRB.CreateBitCast(S, ResTy);
2824     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2825                        ResTy);
2826     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2827     S = IRB.CreateBitCast(S, getShadowTy(&I));
2828     setShadow(&I, S);
2829     setOriginForNaryOp(I);
2830   }
2831 
2832   // Instrument multiply-add intrinsic.
2833   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2834                                   unsigned EltSizeInBits = 0) {
2835     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2836     Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2837     IRBuilder<> IRB(&I);
2838     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2839     S = IRB.CreateBitCast(S, ResTy);
2840     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2841                        ResTy);
2842     S = IRB.CreateBitCast(S, getShadowTy(&I));
2843     setShadow(&I, S);
2844     setOriginForNaryOp(I);
2845   }
2846 
2847   // Instrument compare-packed intrinsic.
2848   // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
2849   // all-ones shadow.
2850   void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
2851     IRBuilder<> IRB(&I);
2852     Type *ResTy = getShadowTy(&I);
2853     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2854     Value *S = IRB.CreateSExt(
2855         IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
2856     setShadow(&I, S);
2857     setOriginForNaryOp(I);
2858   }
2859 
2860   // Instrument compare-scalar intrinsic.
2861   // This handles both cmp* intrinsics which return the result in the first
2862   // element of a vector, and comi* which return the result as i32.
2863   void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
2864     IRBuilder<> IRB(&I);
2865     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2866     Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
2867     setShadow(&I, S);
2868     setOriginForNaryOp(I);
2869   }
2870 
2871   void handleStmxcsr(IntrinsicInst &I) {
2872     IRBuilder<> IRB(&I);
2873     Value* Addr = I.getArgOperand(0);
2874     Type *Ty = IRB.getInt32Ty();
2875     Value *ShadowPtr =
2876         getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true)
2877             .first;
2878 
2879     IRB.CreateStore(getCleanShadow(Ty),
2880                     IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
2881 
2882     if (ClCheckAccessAddress)
2883       insertShadowCheck(Addr, &I);
2884   }
2885 
2886   void handleLdmxcsr(IntrinsicInst &I) {
2887     if (!InsertChecks) return;
2888 
2889     IRBuilder<> IRB(&I);
2890     Value *Addr = I.getArgOperand(0);
2891     Type *Ty = IRB.getInt32Ty();
2892     unsigned Alignment = 1;
2893     Value *ShadowPtr, *OriginPtr;
2894     std::tie(ShadowPtr, OriginPtr) =
2895         getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
2896 
2897     if (ClCheckAccessAddress)
2898       insertShadowCheck(Addr, &I);
2899 
2900     Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
2901     Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
2902                                     : getCleanOrigin();
2903     insertShadowCheck(Shadow, Origin, &I);
2904   }
2905 
2906   void handleMaskedStore(IntrinsicInst &I) {
2907     IRBuilder<> IRB(&I);
2908     Value *V = I.getArgOperand(0);
2909     Value *Addr = I.getArgOperand(1);
2910     unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
2911     Value *Mask = I.getArgOperand(3);
2912     Value *Shadow = getShadow(V);
2913 
2914     Value *ShadowPtr;
2915     Value *OriginPtr;
2916     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2917         Addr, IRB, Shadow->getType(), Align, /*isStore*/ true);
2918 
2919     if (ClCheckAccessAddress) {
2920       insertShadowCheck(Addr, &I);
2921       // Uninitialized mask is kind of like uninitialized address, but not as
2922       // scary.
2923       insertShadowCheck(Mask, &I);
2924     }
2925 
2926     IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask);
2927 
2928     if (MS.TrackOrigins) {
2929       auto &DL = F.getParent()->getDataLayout();
2930       paintOrigin(IRB, getOrigin(V), OriginPtr,
2931                   DL.getTypeStoreSize(Shadow->getType()),
2932                   std::max(Align, kMinOriginAlignment));
2933     }
2934   }
2935 
2936   bool handleMaskedLoad(IntrinsicInst &I) {
2937     IRBuilder<> IRB(&I);
2938     Value *Addr = I.getArgOperand(0);
2939     unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
2940     Value *Mask = I.getArgOperand(2);
2941     Value *PassThru = I.getArgOperand(3);
2942 
2943     Type *ShadowTy = getShadowTy(&I);
2944     Value *ShadowPtr, *OriginPtr;
2945     if (PropagateShadow) {
2946       std::tie(ShadowPtr, OriginPtr) =
2947           getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false);
2948       setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask,
2949                                          getShadow(PassThru), "_msmaskedld"));
2950     } else {
2951       setShadow(&I, getCleanShadow(&I));
2952     }
2953 
2954     if (ClCheckAccessAddress) {
2955       insertShadowCheck(Addr, &I);
2956       insertShadowCheck(Mask, &I);
2957     }
2958 
2959     if (MS.TrackOrigins) {
2960       if (PropagateShadow) {
2961         // Choose between PassThru's and the loaded value's origins.
2962         Value *MaskedPassThruShadow = IRB.CreateAnd(
2963             getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
2964 
2965         Value *Acc = IRB.CreateExtractElement(
2966             MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2967         for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N;
2968              ++i) {
2969           Value *More = IRB.CreateExtractElement(
2970               MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2971           Acc = IRB.CreateOr(Acc, More);
2972         }
2973 
2974         Value *Origin = IRB.CreateSelect(
2975             IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())),
2976             getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr));
2977 
2978         setOrigin(&I, Origin);
2979       } else {
2980         setOrigin(&I, getCleanOrigin());
2981       }
2982     }
2983     return true;
2984   }
2985 
2986   // Instrument BMI / BMI2 intrinsics.
2987   // All of these intrinsics are Z = I(X, Y)
2988   // where the types of all operands and the result match, and are either i32 or i64.
2989   // The following instrumentation happens to work for all of them:
2990   //   Sz = I(Sx, Y) | (sext (Sy != 0))
2991   void handleBmiIntrinsic(IntrinsicInst &I) {
2992     IRBuilder<> IRB(&I);
2993     Type *ShadowTy = getShadowTy(&I);
2994 
2995     // If any bit of the mask operand is poisoned, then the whole thing is.
2996     Value *SMask = getShadow(&I, 1);
2997     SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
2998                            ShadowTy);
2999     // Apply the same intrinsic to the shadow of the first operand.
3000     Value *S = IRB.CreateCall(I.getCalledFunction(),
3001                               {getShadow(&I, 0), I.getOperand(1)});
3002     S = IRB.CreateOr(SMask, S);
3003     setShadow(&I, S);
3004     setOriginForNaryOp(I);
3005   }
3006 
3007   void visitIntrinsicInst(IntrinsicInst &I) {
3008     switch (I.getIntrinsicID()) {
3009     case Intrinsic::lifetime_start:
3010       handleLifetimeStart(I);
3011       break;
3012     case Intrinsic::launder_invariant_group:
3013     case Intrinsic::strip_invariant_group:
3014       handleInvariantGroup(I);
3015       break;
3016     case Intrinsic::bswap:
3017       handleBswap(I);
3018       break;
3019     case Intrinsic::masked_store:
3020       handleMaskedStore(I);
3021       break;
3022     case Intrinsic::masked_load:
3023       handleMaskedLoad(I);
3024       break;
3025     case Intrinsic::x86_sse_stmxcsr:
3026       handleStmxcsr(I);
3027       break;
3028     case Intrinsic::x86_sse_ldmxcsr:
3029       handleLdmxcsr(I);
3030       break;
3031     case Intrinsic::x86_avx512_vcvtsd2usi64:
3032     case Intrinsic::x86_avx512_vcvtsd2usi32:
3033     case Intrinsic::x86_avx512_vcvtss2usi64:
3034     case Intrinsic::x86_avx512_vcvtss2usi32:
3035     case Intrinsic::x86_avx512_cvttss2usi64:
3036     case Intrinsic::x86_avx512_cvttss2usi:
3037     case Intrinsic::x86_avx512_cvttsd2usi64:
3038     case Intrinsic::x86_avx512_cvttsd2usi:
3039     case Intrinsic::x86_avx512_cvtusi2ss:
3040     case Intrinsic::x86_avx512_cvtusi642sd:
3041     case Intrinsic::x86_avx512_cvtusi642ss:
3042     case Intrinsic::x86_sse2_cvtsd2si64:
3043     case Intrinsic::x86_sse2_cvtsd2si:
3044     case Intrinsic::x86_sse2_cvtsd2ss:
3045     case Intrinsic::x86_sse2_cvttsd2si64:
3046     case Intrinsic::x86_sse2_cvttsd2si:
3047     case Intrinsic::x86_sse_cvtss2si64:
3048     case Intrinsic::x86_sse_cvtss2si:
3049     case Intrinsic::x86_sse_cvttss2si64:
3050     case Intrinsic::x86_sse_cvttss2si:
3051       handleVectorConvertIntrinsic(I, 1);
3052       break;
3053     case Intrinsic::x86_sse_cvtps2pi:
3054     case Intrinsic::x86_sse_cvttps2pi:
3055       handleVectorConvertIntrinsic(I, 2);
3056       break;
3057 
3058     case Intrinsic::x86_avx512_psll_w_512:
3059     case Intrinsic::x86_avx512_psll_d_512:
3060     case Intrinsic::x86_avx512_psll_q_512:
3061     case Intrinsic::x86_avx512_pslli_w_512:
3062     case Intrinsic::x86_avx512_pslli_d_512:
3063     case Intrinsic::x86_avx512_pslli_q_512:
3064     case Intrinsic::x86_avx512_psrl_w_512:
3065     case Intrinsic::x86_avx512_psrl_d_512:
3066     case Intrinsic::x86_avx512_psrl_q_512:
3067     case Intrinsic::x86_avx512_psra_w_512:
3068     case Intrinsic::x86_avx512_psra_d_512:
3069     case Intrinsic::x86_avx512_psra_q_512:
3070     case Intrinsic::x86_avx512_psrli_w_512:
3071     case Intrinsic::x86_avx512_psrli_d_512:
3072     case Intrinsic::x86_avx512_psrli_q_512:
3073     case Intrinsic::x86_avx512_psrai_w_512:
3074     case Intrinsic::x86_avx512_psrai_d_512:
3075     case Intrinsic::x86_avx512_psrai_q_512:
3076     case Intrinsic::x86_avx512_psra_q_256:
3077     case Intrinsic::x86_avx512_psra_q_128:
3078     case Intrinsic::x86_avx512_psrai_q_256:
3079     case Intrinsic::x86_avx512_psrai_q_128:
3080     case Intrinsic::x86_avx2_psll_w:
3081     case Intrinsic::x86_avx2_psll_d:
3082     case Intrinsic::x86_avx2_psll_q:
3083     case Intrinsic::x86_avx2_pslli_w:
3084     case Intrinsic::x86_avx2_pslli_d:
3085     case Intrinsic::x86_avx2_pslli_q:
3086     case Intrinsic::x86_avx2_psrl_w:
3087     case Intrinsic::x86_avx2_psrl_d:
3088     case Intrinsic::x86_avx2_psrl_q:
3089     case Intrinsic::x86_avx2_psra_w:
3090     case Intrinsic::x86_avx2_psra_d:
3091     case Intrinsic::x86_avx2_psrli_w:
3092     case Intrinsic::x86_avx2_psrli_d:
3093     case Intrinsic::x86_avx2_psrli_q:
3094     case Intrinsic::x86_avx2_psrai_w:
3095     case Intrinsic::x86_avx2_psrai_d:
3096     case Intrinsic::x86_sse2_psll_w:
3097     case Intrinsic::x86_sse2_psll_d:
3098     case Intrinsic::x86_sse2_psll_q:
3099     case Intrinsic::x86_sse2_pslli_w:
3100     case Intrinsic::x86_sse2_pslli_d:
3101     case Intrinsic::x86_sse2_pslli_q:
3102     case Intrinsic::x86_sse2_psrl_w:
3103     case Intrinsic::x86_sse2_psrl_d:
3104     case Intrinsic::x86_sse2_psrl_q:
3105     case Intrinsic::x86_sse2_psra_w:
3106     case Intrinsic::x86_sse2_psra_d:
3107     case Intrinsic::x86_sse2_psrli_w:
3108     case Intrinsic::x86_sse2_psrli_d:
3109     case Intrinsic::x86_sse2_psrli_q:
3110     case Intrinsic::x86_sse2_psrai_w:
3111     case Intrinsic::x86_sse2_psrai_d:
3112     case Intrinsic::x86_mmx_psll_w:
3113     case Intrinsic::x86_mmx_psll_d:
3114     case Intrinsic::x86_mmx_psll_q:
3115     case Intrinsic::x86_mmx_pslli_w:
3116     case Intrinsic::x86_mmx_pslli_d:
3117     case Intrinsic::x86_mmx_pslli_q:
3118     case Intrinsic::x86_mmx_psrl_w:
3119     case Intrinsic::x86_mmx_psrl_d:
3120     case Intrinsic::x86_mmx_psrl_q:
3121     case Intrinsic::x86_mmx_psra_w:
3122     case Intrinsic::x86_mmx_psra_d:
3123     case Intrinsic::x86_mmx_psrli_w:
3124     case Intrinsic::x86_mmx_psrli_d:
3125     case Intrinsic::x86_mmx_psrli_q:
3126     case Intrinsic::x86_mmx_psrai_w:
3127     case Intrinsic::x86_mmx_psrai_d:
3128       handleVectorShiftIntrinsic(I, /* Variable */ false);
3129       break;
3130     case Intrinsic::x86_avx2_psllv_d:
3131     case Intrinsic::x86_avx2_psllv_d_256:
3132     case Intrinsic::x86_avx512_psllv_d_512:
3133     case Intrinsic::x86_avx2_psllv_q:
3134     case Intrinsic::x86_avx2_psllv_q_256:
3135     case Intrinsic::x86_avx512_psllv_q_512:
3136     case Intrinsic::x86_avx2_psrlv_d:
3137     case Intrinsic::x86_avx2_psrlv_d_256:
3138     case Intrinsic::x86_avx512_psrlv_d_512:
3139     case Intrinsic::x86_avx2_psrlv_q:
3140     case Intrinsic::x86_avx2_psrlv_q_256:
3141     case Intrinsic::x86_avx512_psrlv_q_512:
3142     case Intrinsic::x86_avx2_psrav_d:
3143     case Intrinsic::x86_avx2_psrav_d_256:
3144     case Intrinsic::x86_avx512_psrav_d_512:
3145     case Intrinsic::x86_avx512_psrav_q_128:
3146     case Intrinsic::x86_avx512_psrav_q_256:
3147     case Intrinsic::x86_avx512_psrav_q_512:
3148       handleVectorShiftIntrinsic(I, /* Variable */ true);
3149       break;
3150 
3151     case Intrinsic::x86_sse2_packsswb_128:
3152     case Intrinsic::x86_sse2_packssdw_128:
3153     case Intrinsic::x86_sse2_packuswb_128:
3154     case Intrinsic::x86_sse41_packusdw:
3155     case Intrinsic::x86_avx2_packsswb:
3156     case Intrinsic::x86_avx2_packssdw:
3157     case Intrinsic::x86_avx2_packuswb:
3158     case Intrinsic::x86_avx2_packusdw:
3159       handleVectorPackIntrinsic(I);
3160       break;
3161 
3162     case Intrinsic::x86_mmx_packsswb:
3163     case Intrinsic::x86_mmx_packuswb:
3164       handleVectorPackIntrinsic(I, 16);
3165       break;
3166 
3167     case Intrinsic::x86_mmx_packssdw:
3168       handleVectorPackIntrinsic(I, 32);
3169       break;
3170 
3171     case Intrinsic::x86_mmx_psad_bw:
3172     case Intrinsic::x86_sse2_psad_bw:
3173     case Intrinsic::x86_avx2_psad_bw:
3174       handleVectorSadIntrinsic(I);
3175       break;
3176 
3177     case Intrinsic::x86_sse2_pmadd_wd:
3178     case Intrinsic::x86_avx2_pmadd_wd:
3179     case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
3180     case Intrinsic::x86_avx2_pmadd_ub_sw:
3181       handleVectorPmaddIntrinsic(I);
3182       break;
3183 
3184     case Intrinsic::x86_ssse3_pmadd_ub_sw:
3185       handleVectorPmaddIntrinsic(I, 8);
3186       break;
3187 
3188     case Intrinsic::x86_mmx_pmadd_wd:
3189       handleVectorPmaddIntrinsic(I, 16);
3190       break;
3191 
3192     case Intrinsic::x86_sse_cmp_ss:
3193     case Intrinsic::x86_sse2_cmp_sd:
3194     case Intrinsic::x86_sse_comieq_ss:
3195     case Intrinsic::x86_sse_comilt_ss:
3196     case Intrinsic::x86_sse_comile_ss:
3197     case Intrinsic::x86_sse_comigt_ss:
3198     case Intrinsic::x86_sse_comige_ss:
3199     case Intrinsic::x86_sse_comineq_ss:
3200     case Intrinsic::x86_sse_ucomieq_ss:
3201     case Intrinsic::x86_sse_ucomilt_ss:
3202     case Intrinsic::x86_sse_ucomile_ss:
3203     case Intrinsic::x86_sse_ucomigt_ss:
3204     case Intrinsic::x86_sse_ucomige_ss:
3205     case Intrinsic::x86_sse_ucomineq_ss:
3206     case Intrinsic::x86_sse2_comieq_sd:
3207     case Intrinsic::x86_sse2_comilt_sd:
3208     case Intrinsic::x86_sse2_comile_sd:
3209     case Intrinsic::x86_sse2_comigt_sd:
3210     case Intrinsic::x86_sse2_comige_sd:
3211     case Intrinsic::x86_sse2_comineq_sd:
3212     case Intrinsic::x86_sse2_ucomieq_sd:
3213     case Intrinsic::x86_sse2_ucomilt_sd:
3214     case Intrinsic::x86_sse2_ucomile_sd:
3215     case Intrinsic::x86_sse2_ucomigt_sd:
3216     case Intrinsic::x86_sse2_ucomige_sd:
3217     case Intrinsic::x86_sse2_ucomineq_sd:
3218       handleVectorCompareScalarIntrinsic(I);
3219       break;
3220 
3221     case Intrinsic::x86_sse_cmp_ps:
3222     case Intrinsic::x86_sse2_cmp_pd:
3223       // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
3224       // generates reasonably looking IR that fails in the backend with "Do not
3225       // know how to split the result of this operator!".
3226       handleVectorComparePackedIntrinsic(I);
3227       break;
3228 
3229     case Intrinsic::x86_bmi_bextr_32:
3230     case Intrinsic::x86_bmi_bextr_64:
3231     case Intrinsic::x86_bmi_bzhi_32:
3232     case Intrinsic::x86_bmi_bzhi_64:
3233     case Intrinsic::x86_bmi_pdep_32:
3234     case Intrinsic::x86_bmi_pdep_64:
3235     case Intrinsic::x86_bmi_pext_32:
3236     case Intrinsic::x86_bmi_pext_64:
3237       handleBmiIntrinsic(I);
3238       break;
3239 
3240     case Intrinsic::is_constant:
3241       // The result of llvm.is.constant() is always defined.
3242       setShadow(&I, getCleanShadow(&I));
3243       setOrigin(&I, getCleanOrigin());
3244       break;
3245 
3246     default:
3247       if (!handleUnknownIntrinsic(I))
3248         visitInstruction(I);
3249       break;
3250     }
3251   }
3252 
3253   void visitCallSite(CallSite CS) {
3254     Instruction &I = *CS.getInstruction();
3255     assert(!I.getMetadata("nosanitize"));
3256     assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) &&
3257            "Unknown type of CallSite");
3258     if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) {
3259       // For inline asm (either a call to asm function, or callbr instruction),
3260       // do the usual thing: check argument shadow and mark all outputs as
3261       // clean. Note that any side effects of the inline asm that are not
3262       // immediately visible in its constraints are not handled.
3263       if (ClHandleAsmConservative && MS.CompileKernel)
3264         visitAsmInstruction(I);
3265       else
3266         visitInstruction(I);
3267       return;
3268     }
3269     if (CS.isCall()) {
3270       CallInst *Call = cast<CallInst>(&I);
3271       assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
3272 
3273       // We are going to insert code that relies on the fact that the callee
3274       // will become a non-readonly function after it is instrumented by us. To
3275       // prevent this code from being optimized out, mark that function
3276       // non-readonly in advance.
3277       if (Function *Func = Call->getCalledFunction()) {
3278         // Clear out readonly/readnone attributes.
3279         AttrBuilder B;
3280         B.addAttribute(Attribute::ReadOnly)
3281           .addAttribute(Attribute::ReadNone);
3282         Func->removeAttributes(AttributeList::FunctionIndex, B);
3283       }
3284 
3285       maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
3286     }
3287     IRBuilder<> IRB(&I);
3288 
3289     unsigned ArgOffset = 0;
3290     LLVM_DEBUG(dbgs() << "  CallSite: " << I << "\n");
3291     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3292          ArgIt != End; ++ArgIt) {
3293       Value *A = *ArgIt;
3294       unsigned i = ArgIt - CS.arg_begin();
3295       if (!A->getType()->isSized()) {
3296         LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
3297         continue;
3298       }
3299       unsigned Size = 0;
3300       Value *Store = nullptr;
3301       // Compute the Shadow for arg even if it is ByVal, because
3302       // in that case getShadow() will copy the actual arg shadow to
3303       // __msan_param_tls.
3304       Value *ArgShadow = getShadow(A);
3305       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
3306       LLVM_DEBUG(dbgs() << "  Arg#" << i << ": " << *A
3307                         << " Shadow: " << *ArgShadow << "\n");
3308       bool ArgIsInitialized = false;
3309       const DataLayout &DL = F.getParent()->getDataLayout();
3310       if (CS.paramHasAttr(i, Attribute::ByVal)) {
3311         assert(A->getType()->isPointerTy() &&
3312                "ByVal argument is not a pointer!");
3313         Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
3314         if (ArgOffset + Size > kParamTLSSize) break;
3315         unsigned ParamAlignment = CS.getParamAlignment(i);
3316         unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
3317         Value *AShadowPtr =
3318             getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
3319                                /*isStore*/ false)
3320                 .first;
3321 
3322         Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
3323                                  Alignment, Size);
3324         // TODO(glider): need to copy origins.
3325       } else {
3326         Size = DL.getTypeAllocSize(A->getType());
3327         if (ArgOffset + Size > kParamTLSSize) break;
3328         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
3329                                        kShadowTLSAlignment);
3330         Constant *Cst = dyn_cast<Constant>(ArgShadow);
3331         if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
3332       }
3333       if (MS.TrackOrigins && !ArgIsInitialized)
3334         IRB.CreateStore(getOrigin(A),
3335                         getOriginPtrForArgument(A, IRB, ArgOffset));
3336       (void)Store;
3337       assert(Size != 0 && Store != nullptr);
3338       LLVM_DEBUG(dbgs() << "  Param:" << *Store << "\n");
3339       ArgOffset += alignTo(Size, 8);
3340     }
3341     LLVM_DEBUG(dbgs() << "  done with call args\n");
3342 
3343     FunctionType *FT = CS.getFunctionType();
3344     if (FT->isVarArg()) {
3345       VAHelper->visitCallSite(CS, IRB);
3346     }
3347 
3348     // Now, get the shadow for the RetVal.
3349     if (!I.getType()->isSized()) return;
3350     // Don't emit the epilogue for musttail call returns.
3351     if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return;
3352     IRBuilder<> IRBBefore(&I);
3353     // Until we have full dynamic coverage, make sure the retval shadow is 0.
3354     Value *Base = getShadowPtrForRetval(&I, IRBBefore);
3355     IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
3356     BasicBlock::iterator NextInsn;
3357     if (CS.isCall()) {
3358       NextInsn = ++I.getIterator();
3359       assert(NextInsn != I.getParent()->end());
3360     } else {
3361       BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
3362       if (!NormalDest->getSinglePredecessor()) {
3363         // FIXME: this case is tricky, so we are just conservative here.
3364         // Perhaps we need to split the edge between this BB and NormalDest,
3365         // but a naive attempt to use SplitEdge leads to a crash.
3366         setShadow(&I, getCleanShadow(&I));
3367         setOrigin(&I, getCleanOrigin());
3368         return;
3369       }
3370       // FIXME: NextInsn is likely in a basic block that has not been visited yet.
3371       // Anything inserted there will be instrumented by MSan later!
3372       NextInsn = NormalDest->getFirstInsertionPt();
3373       assert(NextInsn != NormalDest->end() &&
3374              "Could not find insertion point for retval shadow load");
3375     }
3376     IRBuilder<> IRBAfter(&*NextInsn);
3377     Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
3378         getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter),
3379         kShadowTLSAlignment, "_msret");
3380     setShadow(&I, RetvalShadow);
3381     if (MS.TrackOrigins)
3382       setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy,
3383                                         getOriginPtrForRetval(IRBAfter)));
3384   }
3385 
3386   bool isAMustTailRetVal(Value *RetVal) {
3387     if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
3388       RetVal = I->getOperand(0);
3389     }
3390     if (auto *I = dyn_cast<CallInst>(RetVal)) {
3391       return I->isMustTailCall();
3392     }
3393     return false;
3394   }
3395 
3396   void visitReturnInst(ReturnInst &I) {
3397     IRBuilder<> IRB(&I);
3398     Value *RetVal = I.getReturnValue();
3399     if (!RetVal) return;
3400     // Don't emit the epilogue for musttail call returns.
3401     if (isAMustTailRetVal(RetVal)) return;
3402     Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
3403     if (CheckReturnValue) {
3404       insertShadowCheck(RetVal, &I);
3405       Value *Shadow = getCleanShadow(RetVal);
3406       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
3407     } else {
3408       Value *Shadow = getShadow(RetVal);
3409       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
3410       if (MS.TrackOrigins)
3411         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
3412     }
3413   }
3414 
3415   void visitPHINode(PHINode &I) {
3416     IRBuilder<> IRB(&I);
3417     if (!PropagateShadow) {
3418       setShadow(&I, getCleanShadow(&I));
3419       setOrigin(&I, getCleanOrigin());
3420       return;
3421     }
3422 
3423     ShadowPHINodes.push_back(&I);
3424     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
3425                                 "_msphi_s"));
3426     if (MS.TrackOrigins)
3427       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
3428                                   "_msphi_o"));
3429   }
3430 
3431   Value *getLocalVarDescription(AllocaInst &I) {
3432     SmallString<2048> StackDescriptionStorage;
3433     raw_svector_ostream StackDescription(StackDescriptionStorage);
3434     // We create a string with a description of the stack allocation and
3435     // pass it into __msan_set_alloca_origin.
3436     // It will be printed by the run-time if stack-originated UMR is found.
3437     // The first 4 bytes of the string are set to '----' and will be replaced
3438     // by __msan_va_arg_overflow_size_tls at the first call.
3439     StackDescription << "----" << I.getName() << "@" << F.getName();
3440     return createPrivateNonConstGlobalForString(*F.getParent(),
3441                                                 StackDescription.str());
3442   }
3443 
3444   void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3445     if (PoisonStack && ClPoisonStackWithCall) {
3446       IRB.CreateCall(MS.MsanPoisonStackFn,
3447                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3448     } else {
3449       Value *ShadowBase, *OriginBase;
3450       std::tie(ShadowBase, OriginBase) =
3451           getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(), 1, /*isStore*/ true);
3452 
3453       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
3454       IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment());
3455     }
3456 
3457     if (PoisonStack && MS.TrackOrigins) {
3458       Value *Descr = getLocalVarDescription(I);
3459       IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
3460                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3461                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
3462                       IRB.CreatePointerCast(&F, MS.IntptrTy)});
3463     }
3464   }
3465 
3466   void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3467     Value *Descr = getLocalVarDescription(I);
3468     if (PoisonStack) {
3469       IRB.CreateCall(MS.MsanPoisonAllocaFn,
3470                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3471                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
3472     } else {
3473       IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
3474                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3475     }
3476   }
3477 
3478   void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
3479     if (!InsPoint)
3480       InsPoint = &I;
3481     IRBuilder<> IRB(InsPoint->getNextNode());
3482     const DataLayout &DL = F.getParent()->getDataLayout();
3483     uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
3484     Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
3485     if (I.isArrayAllocation())
3486       Len = IRB.CreateMul(Len, I.getArraySize());
3487 
3488     if (MS.CompileKernel)
3489       poisonAllocaKmsan(I, IRB, Len);
3490     else
3491       poisonAllocaUserspace(I, IRB, Len);
3492   }
3493 
3494   void visitAllocaInst(AllocaInst &I) {
3495     setShadow(&I, getCleanShadow(&I));
3496     setOrigin(&I, getCleanOrigin());
3497     // We'll get to this alloca later unless it's poisoned at the corresponding
3498     // llvm.lifetime.start.
3499     AllocaSet.insert(&I);
3500   }
3501 
3502   void visitSelectInst(SelectInst& I) {
3503     IRBuilder<> IRB(&I);
3504     // a = select b, c, d
3505     Value *B = I.getCondition();
3506     Value *C = I.getTrueValue();
3507     Value *D = I.getFalseValue();
3508     Value *Sb = getShadow(B);
3509     Value *Sc = getShadow(C);
3510     Value *Sd = getShadow(D);
3511 
3512     // Result shadow if condition shadow is 0.
3513     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
3514     Value *Sa1;
3515     if (I.getType()->isAggregateType()) {
3516       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
3517       // an extra "select". This results in much more compact IR.
3518       // Sa = select Sb, poisoned, (select b, Sc, Sd)
3519       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
3520     } else {
3521       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
3522       // If Sb (condition is poisoned), look for bits in c and d that are equal
3523       // and both unpoisoned.
3524       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
3525 
3526       // Cast arguments to shadow-compatible type.
3527       C = CreateAppToShadowCast(IRB, C);
3528       D = CreateAppToShadowCast(IRB, D);
3529 
3530       // Result shadow if condition shadow is 1.
3531       Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
3532     }
3533     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
3534     setShadow(&I, Sa);
3535     if (MS.TrackOrigins) {
3536       // Origins are always i32, so any vector conditions must be flattened.
3537       // FIXME: consider tracking vector origins for app vectors?
3538       if (B->getType()->isVectorTy()) {
3539         Type *FlatTy = getShadowTyNoVec(B->getType());
3540         B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
3541                                 ConstantInt::getNullValue(FlatTy));
3542         Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
3543                                       ConstantInt::getNullValue(FlatTy));
3544       }
3545       // a = select b, c, d
3546       // Oa = Sb ? Ob : (b ? Oc : Od)
3547       setOrigin(
3548           &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
3549                                IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
3550                                                 getOrigin(I.getFalseValue()))));
3551     }
3552   }
3553 
3554   void visitLandingPadInst(LandingPadInst &I) {
3555     // Do nothing.
3556     // See https://github.com/google/sanitizers/issues/504
3557     setShadow(&I, getCleanShadow(&I));
3558     setOrigin(&I, getCleanOrigin());
3559   }
3560 
3561   void visitCatchSwitchInst(CatchSwitchInst &I) {
3562     setShadow(&I, getCleanShadow(&I));
3563     setOrigin(&I, getCleanOrigin());
3564   }
3565 
3566   void visitFuncletPadInst(FuncletPadInst &I) {
3567     setShadow(&I, getCleanShadow(&I));
3568     setOrigin(&I, getCleanOrigin());
3569   }
3570 
3571   void visitGetElementPtrInst(GetElementPtrInst &I) {
3572     handleShadowOr(I);
3573   }
3574 
3575   void visitExtractValueInst(ExtractValueInst &I) {
3576     IRBuilder<> IRB(&I);
3577     Value *Agg = I.getAggregateOperand();
3578     LLVM_DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
3579     Value *AggShadow = getShadow(Agg);
3580     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
3581     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
3582     LLVM_DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
3583     setShadow(&I, ResShadow);
3584     setOriginForNaryOp(I);
3585   }
3586 
3587   void visitInsertValueInst(InsertValueInst &I) {
3588     IRBuilder<> IRB(&I);
3589     LLVM_DEBUG(dbgs() << "InsertValue:  " << I << "\n");
3590     Value *AggShadow = getShadow(I.getAggregateOperand());
3591     Value *InsShadow = getShadow(I.getInsertedValueOperand());
3592     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
3593     LLVM_DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
3594     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
3595     LLVM_DEBUG(dbgs() << "   Res:        " << *Res << "\n");
3596     setShadow(&I, Res);
3597     setOriginForNaryOp(I);
3598   }
3599 
3600   void dumpInst(Instruction &I) {
3601     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
3602       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
3603     } else {
3604       errs() << "ZZZ " << I.getOpcodeName() << "\n";
3605     }
3606     errs() << "QQQ " << I << "\n";
3607   }
3608 
3609   void visitResumeInst(ResumeInst &I) {
3610     LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
3611     // Nothing to do here.
3612   }
3613 
3614   void visitCleanupReturnInst(CleanupReturnInst &CRI) {
3615     LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
3616     // Nothing to do here.
3617   }
3618 
3619   void visitCatchReturnInst(CatchReturnInst &CRI) {
3620     LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
3621     // Nothing to do here.
3622   }
3623 
3624   void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB,
3625                              const DataLayout &DL, bool isOutput) {
3626     // For each assembly argument, we check its value for being initialized.
3627     // If the argument is a pointer, we assume it points to a single element
3628     // of the corresponding type (or to a 8-byte word, if the type is unsized).
3629     // Each such pointer is instrumented with a call to the runtime library.
3630     Type *OpType = Operand->getType();
3631     // Check the operand value itself.
3632     insertShadowCheck(Operand, &I);
3633     if (!OpType->isPointerTy() || !isOutput) {
3634       assert(!isOutput);
3635       return;
3636     }
3637     Type *ElType = OpType->getPointerElementType();
3638     if (!ElType->isSized())
3639       return;
3640     int Size = DL.getTypeStoreSize(ElType);
3641     Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
3642     Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
3643     IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
3644   }
3645 
3646   /// Get the number of output arguments returned by pointers.
3647   int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
3648     int NumRetOutputs = 0;
3649     int NumOutputs = 0;
3650     Type *RetTy = cast<Value>(CB)->getType();
3651     if (!RetTy->isVoidTy()) {
3652       // Register outputs are returned via the CallInst return value.
3653       auto *ST = dyn_cast<StructType>(RetTy);
3654       if (ST)
3655         NumRetOutputs = ST->getNumElements();
3656       else
3657         NumRetOutputs = 1;
3658     }
3659     InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
3660     for (size_t i = 0, n = Constraints.size(); i < n; i++) {
3661       InlineAsm::ConstraintInfo Info = Constraints[i];
3662       switch (Info.Type) {
3663       case InlineAsm::isOutput:
3664         NumOutputs++;
3665         break;
3666       default:
3667         break;
3668       }
3669     }
3670     return NumOutputs - NumRetOutputs;
3671   }
3672 
3673   void visitAsmInstruction(Instruction &I) {
3674     // Conservative inline assembly handling: check for poisoned shadow of
3675     // asm() arguments, then unpoison the result and all the memory locations
3676     // pointed to by those arguments.
3677     // An inline asm() statement in C++ contains lists of input and output
3678     // arguments used by the assembly code. These are mapped to operands of the
3679     // CallInst as follows:
3680     //  - nR register outputs ("=r) are returned by value in a single structure
3681     //  (SSA value of the CallInst);
3682     //  - nO other outputs ("=m" and others) are returned by pointer as first
3683     // nO operands of the CallInst;
3684     //  - nI inputs ("r", "m" and others) are passed to CallInst as the
3685     // remaining nI operands.
3686     // The total number of asm() arguments in the source is nR+nO+nI, and the
3687     // corresponding CallInst has nO+nI+1 operands (the last operand is the
3688     // function to be called).
3689     const DataLayout &DL = F.getParent()->getDataLayout();
3690     CallBase *CB = cast<CallBase>(&I);
3691     IRBuilder<> IRB(&I);
3692     InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue());
3693     int OutputArgs = getNumOutputArgs(IA, CB);
3694     // The last operand of a CallInst is the function itself.
3695     int NumOperands = CB->getNumOperands() - 1;
3696 
3697     // Check input arguments. Doing so before unpoisoning output arguments, so
3698     // that we won't overwrite uninit values before checking them.
3699     for (int i = OutputArgs; i < NumOperands; i++) {
3700       Value *Operand = CB->getOperand(i);
3701       instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false);
3702     }
3703     // Unpoison output arguments. This must happen before the actual InlineAsm
3704     // call, so that the shadow for memory published in the asm() statement
3705     // remains valid.
3706     for (int i = 0; i < OutputArgs; i++) {
3707       Value *Operand = CB->getOperand(i);
3708       instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true);
3709     }
3710 
3711     setShadow(&I, getCleanShadow(&I));
3712     setOrigin(&I, getCleanOrigin());
3713   }
3714 
3715   void visitInstruction(Instruction &I) {
3716     // Everything else: stop propagating and check for poisoned shadow.
3717     if (ClDumpStrictInstructions)
3718       dumpInst(I);
3719     LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
3720     for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
3721       Value *Operand = I.getOperand(i);
3722       if (Operand->getType()->isSized())
3723         insertShadowCheck(Operand, &I);
3724     }
3725     setShadow(&I, getCleanShadow(&I));
3726     setOrigin(&I, getCleanOrigin());
3727   }
3728 };
3729 
3730 /// AMD64-specific implementation of VarArgHelper.
3731 struct VarArgAMD64Helper : public VarArgHelper {
3732   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
3733   // See a comment in visitCallSite for more details.
3734   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
3735   static const unsigned AMD64FpEndOffsetSSE = 176;
3736   // If SSE is disabled, fp_offset in va_list is zero.
3737   static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
3738 
3739   unsigned AMD64FpEndOffset;
3740   Function &F;
3741   MemorySanitizer &MS;
3742   MemorySanitizerVisitor &MSV;
3743   Value *VAArgTLSCopy = nullptr;
3744   Value *VAArgTLSOriginCopy = nullptr;
3745   Value *VAArgOverflowSize = nullptr;
3746 
3747   SmallVector<CallInst*, 16> VAStartInstrumentationList;
3748 
3749   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
3750 
3751   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
3752                     MemorySanitizerVisitor &MSV)
3753       : F(F), MS(MS), MSV(MSV) {
3754     AMD64FpEndOffset = AMD64FpEndOffsetSSE;
3755     for (const auto &Attr : F.getAttributes().getFnAttributes()) {
3756       if (Attr.isStringAttribute() &&
3757           (Attr.getKindAsString() == "target-features")) {
3758         if (Attr.getValueAsString().contains("-sse"))
3759           AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
3760         break;
3761       }
3762     }
3763   }
3764 
3765   ArgKind classifyArgument(Value* arg) {
3766     // A very rough approximation of X86_64 argument classification rules.
3767     Type *T = arg->getType();
3768     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
3769       return AK_FloatingPoint;
3770     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
3771       return AK_GeneralPurpose;
3772     if (T->isPointerTy())
3773       return AK_GeneralPurpose;
3774     return AK_Memory;
3775   }
3776 
3777   // For VarArg functions, store the argument shadow in an ABI-specific format
3778   // that corresponds to va_list layout.
3779   // We do this because Clang lowers va_arg in the frontend, and this pass
3780   // only sees the low level code that deals with va_list internals.
3781   // A much easier alternative (provided that Clang emits va_arg instructions)
3782   // would have been to associate each live instance of va_list with a copy of
3783   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
3784   // order.
3785   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3786     unsigned GpOffset = 0;
3787     unsigned FpOffset = AMD64GpEndOffset;
3788     unsigned OverflowOffset = AMD64FpEndOffset;
3789     const DataLayout &DL = F.getParent()->getDataLayout();
3790     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3791          ArgIt != End; ++ArgIt) {
3792       Value *A = *ArgIt;
3793       unsigned ArgNo = CS.getArgumentNo(ArgIt);
3794       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
3795       bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
3796       if (IsByVal) {
3797         // ByVal arguments always go to the overflow area.
3798         // Fixed arguments passed through the overflow area will be stepped
3799         // over by va_start, so don't count them towards the offset.
3800         if (IsFixed)
3801           continue;
3802         assert(A->getType()->isPointerTy());
3803         Type *RealTy = A->getType()->getPointerElementType();
3804         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
3805         Value *ShadowBase = getShadowPtrForVAArgument(
3806             RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
3807         Value *OriginBase = nullptr;
3808         if (MS.TrackOrigins)
3809           OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
3810         OverflowOffset += alignTo(ArgSize, 8);
3811         if (!ShadowBase)
3812           continue;
3813         Value *ShadowPtr, *OriginPtr;
3814         std::tie(ShadowPtr, OriginPtr) =
3815             MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
3816                                    /*isStore*/ false);
3817 
3818         IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
3819                          kShadowTLSAlignment, ArgSize);
3820         if (MS.TrackOrigins)
3821           IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
3822                            kShadowTLSAlignment, ArgSize);
3823       } else {
3824         ArgKind AK = classifyArgument(A);
3825         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
3826           AK = AK_Memory;
3827         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
3828           AK = AK_Memory;
3829         Value *ShadowBase, *OriginBase = nullptr;
3830         switch (AK) {
3831           case AK_GeneralPurpose:
3832             ShadowBase =
3833                 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
3834             if (MS.TrackOrigins)
3835               OriginBase =
3836                   getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
3837             GpOffset += 8;
3838             break;
3839           case AK_FloatingPoint:
3840             ShadowBase =
3841                 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
3842             if (MS.TrackOrigins)
3843               OriginBase =
3844                   getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
3845             FpOffset += 16;
3846             break;
3847           case AK_Memory:
3848             if (IsFixed)
3849               continue;
3850             uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3851             ShadowBase =
3852                 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
3853             if (MS.TrackOrigins)
3854               OriginBase =
3855                   getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
3856             OverflowOffset += alignTo(ArgSize, 8);
3857         }
3858         // Take fixed arguments into account for GpOffset and FpOffset,
3859         // but don't actually store shadows for them.
3860         // TODO(glider): don't call get*PtrForVAArgument() for them.
3861         if (IsFixed)
3862           continue;
3863         if (!ShadowBase)
3864           continue;
3865         Value *Shadow = MSV.getShadow(A);
3866         IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
3867         if (MS.TrackOrigins) {
3868           Value *Origin = MSV.getOrigin(A);
3869           unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
3870           MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
3871                           std::max(kShadowTLSAlignment, kMinOriginAlignment));
3872         }
3873       }
3874     }
3875     Constant *OverflowSize =
3876       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
3877     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
3878   }
3879 
3880   /// Compute the shadow address for a given va_arg.
3881   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3882                                    unsigned ArgOffset, unsigned ArgSize) {
3883     // Make sure we don't overflow __msan_va_arg_tls.
3884     if (ArgOffset + ArgSize > kParamTLSSize)
3885       return nullptr;
3886     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3887     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3888     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3889                               "_msarg_va_s");
3890   }
3891 
3892   /// Compute the origin address for a given va_arg.
3893   Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
3894     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
3895     // getOriginPtrForVAArgument() is always called after
3896     // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
3897     // overflow.
3898     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3899     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
3900                               "_msarg_va_o");
3901   }
3902 
3903   void unpoisonVAListTagForInst(IntrinsicInst &I) {
3904     IRBuilder<> IRB(&I);
3905     Value *VAListTag = I.getArgOperand(0);
3906     Value *ShadowPtr, *OriginPtr;
3907     unsigned Alignment = 8;
3908     std::tie(ShadowPtr, OriginPtr) =
3909         MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
3910                                /*isStore*/ true);
3911 
3912     // Unpoison the whole __va_list_tag.
3913     // FIXME: magic ABI constants.
3914     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3915                      /* size */ 24, Alignment, false);
3916     // We shouldn't need to zero out the origins, as they're only checked for
3917     // nonzero shadow.
3918   }
3919 
3920   void visitVAStartInst(VAStartInst &I) override {
3921     if (F.getCallingConv() == CallingConv::Win64)
3922       return;
3923     VAStartInstrumentationList.push_back(&I);
3924     unpoisonVAListTagForInst(I);
3925   }
3926 
3927   void visitVACopyInst(VACopyInst &I) override {
3928     if (F.getCallingConv() == CallingConv::Win64) return;
3929     unpoisonVAListTagForInst(I);
3930   }
3931 
3932   void finalizeInstrumentation() override {
3933     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
3934            "finalizeInstrumentation called twice");
3935     if (!VAStartInstrumentationList.empty()) {
3936       // If there is a va_start in this function, make a backup copy of
3937       // va_arg_tls somewhere in the function entry block.
3938       IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
3939       VAArgOverflowSize =
3940           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
3941       Value *CopySize =
3942         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
3943                       VAArgOverflowSize);
3944       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3945       IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
3946       if (MS.TrackOrigins) {
3947         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3948         IRB.CreateMemCpy(VAArgTLSOriginCopy, 8, MS.VAArgOriginTLS, 8, CopySize);
3949       }
3950     }
3951 
3952     // Instrument va_start.
3953     // Copy va_list shadow from the backup copy of the TLS contents.
3954     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3955       CallInst *OrigInst = VAStartInstrumentationList[i];
3956       IRBuilder<> IRB(OrigInst->getNextNode());
3957       Value *VAListTag = OrigInst->getArgOperand(0);
3958 
3959       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
3960       Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
3961           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3962                         ConstantInt::get(MS.IntptrTy, 16)),
3963           PointerType::get(RegSaveAreaPtrTy, 0));
3964       Value *RegSaveAreaPtr =
3965           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
3966       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
3967       unsigned Alignment = 16;
3968       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
3969           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
3970                                  Alignment, /*isStore*/ true);
3971       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
3972                        AMD64FpEndOffset);
3973       if (MS.TrackOrigins)
3974         IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
3975                          Alignment, AMD64FpEndOffset);
3976       Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
3977       Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
3978           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3979                         ConstantInt::get(MS.IntptrTy, 8)),
3980           PointerType::get(OverflowArgAreaPtrTy, 0));
3981       Value *OverflowArgAreaPtr =
3982           IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
3983       Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
3984       std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
3985           MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
3986                                  Alignment, /*isStore*/ true);
3987       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
3988                                              AMD64FpEndOffset);
3989       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
3990                        VAArgOverflowSize);
3991       if (MS.TrackOrigins) {
3992         SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
3993                                         AMD64FpEndOffset);
3994         IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
3995                          VAArgOverflowSize);
3996       }
3997     }
3998   }
3999 };
4000 
4001 /// MIPS64-specific implementation of VarArgHelper.
4002 struct VarArgMIPS64Helper : public VarArgHelper {
4003   Function &F;
4004   MemorySanitizer &MS;
4005   MemorySanitizerVisitor &MSV;
4006   Value *VAArgTLSCopy = nullptr;
4007   Value *VAArgSize = nullptr;
4008 
4009   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4010 
4011   VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
4012                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4013 
4014   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
4015     unsigned VAArgOffset = 0;
4016     const DataLayout &DL = F.getParent()->getDataLayout();
4017     for (CallSite::arg_iterator ArgIt = CS.arg_begin() +
4018          CS.getFunctionType()->getNumParams(), End = CS.arg_end();
4019          ArgIt != End; ++ArgIt) {
4020       Triple TargetTriple(F.getParent()->getTargetTriple());
4021       Value *A = *ArgIt;
4022       Value *Base;
4023       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4024       if (TargetTriple.getArch() == Triple::mips64) {
4025         // Adjusting the shadow for argument with size < 8 to match the placement
4026         // of bits in big endian system
4027         if (ArgSize < 8)
4028           VAArgOffset += (8 - ArgSize);
4029       }
4030       Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
4031       VAArgOffset += ArgSize;
4032       VAArgOffset = alignTo(VAArgOffset, 8);
4033       if (!Base)
4034         continue;
4035       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4036     }
4037 
4038     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
4039     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4040     // a new class member i.e. it is the total size of all VarArgs.
4041     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4042   }
4043 
4044   /// Compute the shadow address for a given va_arg.
4045   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4046                                    unsigned ArgOffset, unsigned ArgSize) {
4047     // Make sure we don't overflow __msan_va_arg_tls.
4048     if (ArgOffset + ArgSize > kParamTLSSize)
4049       return nullptr;
4050     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4051     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4052     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4053                               "_msarg");
4054   }
4055 
4056   void visitVAStartInst(VAStartInst &I) override {
4057     IRBuilder<> IRB(&I);
4058     VAStartInstrumentationList.push_back(&I);
4059     Value *VAListTag = I.getArgOperand(0);
4060     Value *ShadowPtr, *OriginPtr;
4061     unsigned Alignment = 8;
4062     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4063         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4064     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4065                      /* size */ 8, Alignment, false);
4066   }
4067 
4068   void visitVACopyInst(VACopyInst &I) override {
4069     IRBuilder<> IRB(&I);
4070     VAStartInstrumentationList.push_back(&I);
4071     Value *VAListTag = I.getArgOperand(0);
4072     Value *ShadowPtr, *OriginPtr;
4073     unsigned Alignment = 8;
4074     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4075         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4076     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4077                      /* size */ 8, Alignment, false);
4078   }
4079 
4080   void finalizeInstrumentation() override {
4081     assert(!VAArgSize && !VAArgTLSCopy &&
4082            "finalizeInstrumentation called twice");
4083     IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
4084     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4085     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4086                                     VAArgSize);
4087 
4088     if (!VAStartInstrumentationList.empty()) {
4089       // If there is a va_start in this function, make a backup copy of
4090       // va_arg_tls somewhere in the function entry block.
4091       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4092       IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
4093     }
4094 
4095     // Instrument va_start.
4096     // Copy va_list shadow from the backup copy of the TLS contents.
4097     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4098       CallInst *OrigInst = VAStartInstrumentationList[i];
4099       IRBuilder<> IRB(OrigInst->getNextNode());
4100       Value *VAListTag = OrigInst->getArgOperand(0);
4101       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4102       Value *RegSaveAreaPtrPtr =
4103           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4104                              PointerType::get(RegSaveAreaPtrTy, 0));
4105       Value *RegSaveAreaPtr =
4106           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4107       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4108       unsigned Alignment = 8;
4109       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4110           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4111                                  Alignment, /*isStore*/ true);
4112       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4113                        CopySize);
4114     }
4115   }
4116 };
4117 
4118 /// AArch64-specific implementation of VarArgHelper.
4119 struct VarArgAArch64Helper : public VarArgHelper {
4120   static const unsigned kAArch64GrArgSize = 64;
4121   static const unsigned kAArch64VrArgSize = 128;
4122 
4123   static const unsigned AArch64GrBegOffset = 0;
4124   static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
4125   // Make VR space aligned to 16 bytes.
4126   static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
4127   static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
4128                                              + kAArch64VrArgSize;
4129   static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
4130 
4131   Function &F;
4132   MemorySanitizer &MS;
4133   MemorySanitizerVisitor &MSV;
4134   Value *VAArgTLSCopy = nullptr;
4135   Value *VAArgOverflowSize = nullptr;
4136 
4137   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4138 
4139   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4140 
4141   VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
4142                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4143 
4144   ArgKind classifyArgument(Value* arg) {
4145     Type *T = arg->getType();
4146     if (T->isFPOrFPVectorTy())
4147       return AK_FloatingPoint;
4148     if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4149         || (T->isPointerTy()))
4150       return AK_GeneralPurpose;
4151     return AK_Memory;
4152   }
4153 
4154   // The instrumentation stores the argument shadow in a non ABI-specific
4155   // format because it does not know which argument is named (since Clang,
4156   // like x86_64 case, lowers the va_args in the frontend and this pass only
4157   // sees the low level code that deals with va_list internals).
4158   // The first seven GR registers are saved in the first 56 bytes of the
4159   // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
4160   // the remaining arguments.
4161   // Using constant offset within the va_arg TLS array allows fast copy
4162   // in the finalize instrumentation.
4163   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
4164     unsigned GrOffset = AArch64GrBegOffset;
4165     unsigned VrOffset = AArch64VrBegOffset;
4166     unsigned OverflowOffset = AArch64VAEndOffset;
4167 
4168     const DataLayout &DL = F.getParent()->getDataLayout();
4169     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
4170          ArgIt != End; ++ArgIt) {
4171       Value *A = *ArgIt;
4172       unsigned ArgNo = CS.getArgumentNo(ArgIt);
4173       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
4174       ArgKind AK = classifyArgument(A);
4175       if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
4176         AK = AK_Memory;
4177       if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
4178         AK = AK_Memory;
4179       Value *Base;
4180       switch (AK) {
4181         case AK_GeneralPurpose:
4182           Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
4183           GrOffset += 8;
4184           break;
4185         case AK_FloatingPoint:
4186           Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
4187           VrOffset += 16;
4188           break;
4189         case AK_Memory:
4190           // Don't count fixed arguments in the overflow area - va_start will
4191           // skip right over them.
4192           if (IsFixed)
4193             continue;
4194           uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4195           Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
4196                                            alignTo(ArgSize, 8));
4197           OverflowOffset += alignTo(ArgSize, 8);
4198           break;
4199       }
4200       // Count Gp/Vr fixed arguments to their respective offsets, but don't
4201       // bother to actually store a shadow.
4202       if (IsFixed)
4203         continue;
4204       if (!Base)
4205         continue;
4206       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4207     }
4208     Constant *OverflowSize =
4209       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
4210     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4211   }
4212 
4213   /// Compute the shadow address for a given va_arg.
4214   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4215                                    unsigned ArgOffset, unsigned ArgSize) {
4216     // Make sure we don't overflow __msan_va_arg_tls.
4217     if (ArgOffset + ArgSize > kParamTLSSize)
4218       return nullptr;
4219     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4220     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4221     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4222                               "_msarg");
4223   }
4224 
4225   void visitVAStartInst(VAStartInst &I) override {
4226     IRBuilder<> IRB(&I);
4227     VAStartInstrumentationList.push_back(&I);
4228     Value *VAListTag = I.getArgOperand(0);
4229     Value *ShadowPtr, *OriginPtr;
4230     unsigned Alignment = 8;
4231     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4232         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4233     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4234                      /* size */ 32, Alignment, false);
4235   }
4236 
4237   void visitVACopyInst(VACopyInst &I) override {
4238     IRBuilder<> IRB(&I);
4239     VAStartInstrumentationList.push_back(&I);
4240     Value *VAListTag = I.getArgOperand(0);
4241     Value *ShadowPtr, *OriginPtr;
4242     unsigned Alignment = 8;
4243     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4244         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4245     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4246                      /* size */ 32, Alignment, false);
4247   }
4248 
4249   // Retrieve a va_list field of 'void*' size.
4250   Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4251     Value *SaveAreaPtrPtr =
4252       IRB.CreateIntToPtr(
4253         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4254                       ConstantInt::get(MS.IntptrTy, offset)),
4255         Type::getInt64PtrTy(*MS.C));
4256     return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
4257   }
4258 
4259   // Retrieve a va_list field of 'int' size.
4260   Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4261     Value *SaveAreaPtr =
4262       IRB.CreateIntToPtr(
4263         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4264                       ConstantInt::get(MS.IntptrTy, offset)),
4265         Type::getInt32PtrTy(*MS.C));
4266     Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
4267     return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
4268   }
4269 
4270   void finalizeInstrumentation() override {
4271     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
4272            "finalizeInstrumentation called twice");
4273     if (!VAStartInstrumentationList.empty()) {
4274       // If there is a va_start in this function, make a backup copy of
4275       // va_arg_tls somewhere in the function entry block.
4276       IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
4277       VAArgOverflowSize =
4278           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4279       Value *CopySize =
4280         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
4281                       VAArgOverflowSize);
4282       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4283       IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
4284     }
4285 
4286     Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
4287     Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
4288 
4289     // Instrument va_start, copy va_list shadow from the backup copy of
4290     // the TLS contents.
4291     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4292       CallInst *OrigInst = VAStartInstrumentationList[i];
4293       IRBuilder<> IRB(OrigInst->getNextNode());
4294 
4295       Value *VAListTag = OrigInst->getArgOperand(0);
4296 
4297       // The variadic ABI for AArch64 creates two areas to save the incoming
4298       // argument registers (one for 64-bit general register xn-x7 and another
4299       // for 128-bit FP/SIMD vn-v7).
4300       // We need then to propagate the shadow arguments on both regions
4301       // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
4302       // The remaning arguments are saved on shadow for 'va::stack'.
4303       // One caveat is it requires only to propagate the non-named arguments,
4304       // however on the call site instrumentation 'all' the arguments are
4305       // saved. So to copy the shadow values from the va_arg TLS array
4306       // we need to adjust the offset for both GR and VR fields based on
4307       // the __{gr,vr}_offs value (since they are stores based on incoming
4308       // named arguments).
4309 
4310       // Read the stack pointer from the va_list.
4311       Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
4312 
4313       // Read both the __gr_top and __gr_off and add them up.
4314       Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
4315       Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
4316 
4317       Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
4318 
4319       // Read both the __vr_top and __vr_off and add them up.
4320       Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
4321       Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
4322 
4323       Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
4324 
4325       // It does not know how many named arguments is being used and, on the
4326       // callsite all the arguments were saved.  Since __gr_off is defined as
4327       // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
4328       // argument by ignoring the bytes of shadow from named arguments.
4329       Value *GrRegSaveAreaShadowPtrOff =
4330         IRB.CreateAdd(GrArgSize, GrOffSaveArea);
4331 
4332       Value *GrRegSaveAreaShadowPtr =
4333           MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4334                                  /*Alignment*/ 8, /*isStore*/ true)
4335               .first;
4336 
4337       Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4338                                               GrRegSaveAreaShadowPtrOff);
4339       Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
4340 
4341       IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize);
4342 
4343       // Again, but for FP/SIMD values.
4344       Value *VrRegSaveAreaShadowPtrOff =
4345           IRB.CreateAdd(VrArgSize, VrOffSaveArea);
4346 
4347       Value *VrRegSaveAreaShadowPtr =
4348           MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4349                                  /*Alignment*/ 8, /*isStore*/ true)
4350               .first;
4351 
4352       Value *VrSrcPtr = IRB.CreateInBoundsGEP(
4353         IRB.getInt8Ty(),
4354         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4355                               IRB.getInt32(AArch64VrBegOffset)),
4356         VrRegSaveAreaShadowPtrOff);
4357       Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
4358 
4359       IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize);
4360 
4361       // And finally for remaining arguments.
4362       Value *StackSaveAreaShadowPtr =
4363           MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
4364                                  /*Alignment*/ 16, /*isStore*/ true)
4365               .first;
4366 
4367       Value *StackSrcPtr =
4368         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4369                               IRB.getInt32(AArch64VAEndOffset));
4370 
4371       IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16,
4372                        VAArgOverflowSize);
4373     }
4374   }
4375 };
4376 
4377 /// PowerPC64-specific implementation of VarArgHelper.
4378 struct VarArgPowerPC64Helper : public VarArgHelper {
4379   Function &F;
4380   MemorySanitizer &MS;
4381   MemorySanitizerVisitor &MSV;
4382   Value *VAArgTLSCopy = nullptr;
4383   Value *VAArgSize = nullptr;
4384 
4385   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4386 
4387   VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
4388                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4389 
4390   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
4391     // For PowerPC, we need to deal with alignment of stack arguments -
4392     // they are mostly aligned to 8 bytes, but vectors and i128 arrays
4393     // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
4394     // and QPX vectors are aligned to 32 bytes.  For that reason, we
4395     // compute current offset from stack pointer (which is always properly
4396     // aligned), and offset for the first vararg, then subtract them.
4397     unsigned VAArgBase;
4398     Triple TargetTriple(F.getParent()->getTargetTriple());
4399     // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
4400     // and 32 bytes for ABIv2.  This is usually determined by target
4401     // endianness, but in theory could be overriden by function attribute.
4402     // For simplicity, we ignore it here (it'd only matter for QPX vectors).
4403     if (TargetTriple.getArch() == Triple::ppc64)
4404       VAArgBase = 48;
4405     else
4406       VAArgBase = 32;
4407     unsigned VAArgOffset = VAArgBase;
4408     const DataLayout &DL = F.getParent()->getDataLayout();
4409     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
4410          ArgIt != End; ++ArgIt) {
4411       Value *A = *ArgIt;
4412       unsigned ArgNo = CS.getArgumentNo(ArgIt);
4413       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
4414       bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
4415       if (IsByVal) {
4416         assert(A->getType()->isPointerTy());
4417         Type *RealTy = A->getType()->getPointerElementType();
4418         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4419         uint64_t ArgAlign = CS.getParamAlignment(ArgNo);
4420         if (ArgAlign < 8)
4421           ArgAlign = 8;
4422         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4423         if (!IsFixed) {
4424           Value *Base = getShadowPtrForVAArgument(
4425               RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
4426           if (Base) {
4427             Value *AShadowPtr, *AOriginPtr;
4428             std::tie(AShadowPtr, AOriginPtr) =
4429                 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
4430                                        kShadowTLSAlignment, /*isStore*/ false);
4431 
4432             IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
4433                              kShadowTLSAlignment, ArgSize);
4434           }
4435         }
4436         VAArgOffset += alignTo(ArgSize, 8);
4437       } else {
4438         Value *Base;
4439         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4440         uint64_t ArgAlign = 8;
4441         if (A->getType()->isArrayTy()) {
4442           // Arrays are aligned to element size, except for long double
4443           // arrays, which are aligned to 8 bytes.
4444           Type *ElementTy = A->getType()->getArrayElementType();
4445           if (!ElementTy->isPPC_FP128Ty())
4446             ArgAlign = DL.getTypeAllocSize(ElementTy);
4447         } else if (A->getType()->isVectorTy()) {
4448           // Vectors are naturally aligned.
4449           ArgAlign = DL.getTypeAllocSize(A->getType());
4450         }
4451         if (ArgAlign < 8)
4452           ArgAlign = 8;
4453         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4454         if (DL.isBigEndian()) {
4455           // Adjusting the shadow for argument with size < 8 to match the placement
4456           // of bits in big endian system
4457           if (ArgSize < 8)
4458             VAArgOffset += (8 - ArgSize);
4459         }
4460         if (!IsFixed) {
4461           Base = getShadowPtrForVAArgument(A->getType(), IRB,
4462                                            VAArgOffset - VAArgBase, ArgSize);
4463           if (Base)
4464             IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4465         }
4466         VAArgOffset += ArgSize;
4467         VAArgOffset = alignTo(VAArgOffset, 8);
4468       }
4469       if (IsFixed)
4470         VAArgBase = VAArgOffset;
4471     }
4472 
4473     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
4474                                                 VAArgOffset - VAArgBase);
4475     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4476     // a new class member i.e. it is the total size of all VarArgs.
4477     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4478   }
4479 
4480   /// Compute the shadow address for a given va_arg.
4481   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4482                                    unsigned ArgOffset, unsigned ArgSize) {
4483     // Make sure we don't overflow __msan_va_arg_tls.
4484     if (ArgOffset + ArgSize > kParamTLSSize)
4485       return nullptr;
4486     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4487     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4488     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4489                               "_msarg");
4490   }
4491 
4492   void visitVAStartInst(VAStartInst &I) override {
4493     IRBuilder<> IRB(&I);
4494     VAStartInstrumentationList.push_back(&I);
4495     Value *VAListTag = I.getArgOperand(0);
4496     Value *ShadowPtr, *OriginPtr;
4497     unsigned Alignment = 8;
4498     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4499         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4500     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4501                      /* size */ 8, Alignment, false);
4502   }
4503 
4504   void visitVACopyInst(VACopyInst &I) override {
4505     IRBuilder<> IRB(&I);
4506     Value *VAListTag = I.getArgOperand(0);
4507     Value *ShadowPtr, *OriginPtr;
4508     unsigned Alignment = 8;
4509     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4510         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4511     // Unpoison the whole __va_list_tag.
4512     // FIXME: magic ABI constants.
4513     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4514                      /* size */ 8, Alignment, false);
4515   }
4516 
4517   void finalizeInstrumentation() override {
4518     assert(!VAArgSize && !VAArgTLSCopy &&
4519            "finalizeInstrumentation called twice");
4520     IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
4521     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4522     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4523                                     VAArgSize);
4524 
4525     if (!VAStartInstrumentationList.empty()) {
4526       // If there is a va_start in this function, make a backup copy of
4527       // va_arg_tls somewhere in the function entry block.
4528       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4529       IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
4530     }
4531 
4532     // Instrument va_start.
4533     // Copy va_list shadow from the backup copy of the TLS contents.
4534     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4535       CallInst *OrigInst = VAStartInstrumentationList[i];
4536       IRBuilder<> IRB(OrigInst->getNextNode());
4537       Value *VAListTag = OrigInst->getArgOperand(0);
4538       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4539       Value *RegSaveAreaPtrPtr =
4540           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4541                              PointerType::get(RegSaveAreaPtrTy, 0));
4542       Value *RegSaveAreaPtr =
4543           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4544       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4545       unsigned Alignment = 8;
4546       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4547           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4548                                  Alignment, /*isStore*/ true);
4549       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4550                        CopySize);
4551     }
4552   }
4553 };
4554 
4555 /// A no-op implementation of VarArgHelper.
4556 struct VarArgNoOpHelper : public VarArgHelper {
4557   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
4558                    MemorySanitizerVisitor &MSV) {}
4559 
4560   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
4561 
4562   void visitVAStartInst(VAStartInst &I) override {}
4563 
4564   void visitVACopyInst(VACopyInst &I) override {}
4565 
4566   void finalizeInstrumentation() override {}
4567 };
4568 
4569 } // end anonymous namespace
4570 
4571 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
4572                                         MemorySanitizerVisitor &Visitor) {
4573   // VarArg handling is only implemented on AMD64. False positives are possible
4574   // on other platforms.
4575   Triple TargetTriple(Func.getParent()->getTargetTriple());
4576   if (TargetTriple.getArch() == Triple::x86_64)
4577     return new VarArgAMD64Helper(Func, Msan, Visitor);
4578   else if (TargetTriple.isMIPS64())
4579     return new VarArgMIPS64Helper(Func, Msan, Visitor);
4580   else if (TargetTriple.getArch() == Triple::aarch64)
4581     return new VarArgAArch64Helper(Func, Msan, Visitor);
4582   else if (TargetTriple.getArch() == Triple::ppc64 ||
4583            TargetTriple.getArch() == Triple::ppc64le)
4584     return new VarArgPowerPC64Helper(Func, Msan, Visitor);
4585   else
4586     return new VarArgNoOpHelper(Func, Msan, Visitor);
4587 }
4588 
4589 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
4590   if (!CompileKernel && F.getName() == kMsanModuleCtorName)
4591     return false;
4592 
4593   MemorySanitizerVisitor Visitor(F, *this, TLI);
4594 
4595   // Clear out readonly/readnone attributes.
4596   AttrBuilder B;
4597   B.addAttribute(Attribute::ReadOnly)
4598     .addAttribute(Attribute::ReadNone);
4599   F.removeAttributes(AttributeList::FunctionIndex, B);
4600 
4601   return Visitor.runOnFunction();
4602 }
4603