1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwritting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 //===----------------------------------------------------------------------===// 141 142 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 143 #include "llvm/ADT/APInt.h" 144 #include "llvm/ADT/ArrayRef.h" 145 #include "llvm/ADT/DepthFirstIterator.h" 146 #include "llvm/ADT/SmallSet.h" 147 #include "llvm/ADT/SmallString.h" 148 #include "llvm/ADT/SmallVector.h" 149 #include "llvm/ADT/StringExtras.h" 150 #include "llvm/ADT/StringRef.h" 151 #include "llvm/ADT/Triple.h" 152 #include "llvm/Analysis/TargetLibraryInfo.h" 153 #include "llvm/IR/Argument.h" 154 #include "llvm/IR/Attributes.h" 155 #include "llvm/IR/BasicBlock.h" 156 #include "llvm/IR/CallSite.h" 157 #include "llvm/IR/CallingConv.h" 158 #include "llvm/IR/Constant.h" 159 #include "llvm/IR/Constants.h" 160 #include "llvm/IR/DataLayout.h" 161 #include "llvm/IR/DerivedTypes.h" 162 #include "llvm/IR/Function.h" 163 #include "llvm/IR/GlobalValue.h" 164 #include "llvm/IR/GlobalVariable.h" 165 #include "llvm/IR/IRBuilder.h" 166 #include "llvm/IR/InlineAsm.h" 167 #include "llvm/IR/InstVisitor.h" 168 #include "llvm/IR/InstrTypes.h" 169 #include "llvm/IR/Instruction.h" 170 #include "llvm/IR/Instructions.h" 171 #include "llvm/IR/IntrinsicInst.h" 172 #include "llvm/IR/Intrinsics.h" 173 #include "llvm/IR/IntrinsicsX86.h" 174 #include "llvm/IR/LLVMContext.h" 175 #include "llvm/IR/MDBuilder.h" 176 #include "llvm/IR/Module.h" 177 #include "llvm/IR/Type.h" 178 #include "llvm/IR/Value.h" 179 #include "llvm/IR/ValueMap.h" 180 #include "llvm/InitializePasses.h" 181 #include "llvm/Pass.h" 182 #include "llvm/Support/AtomicOrdering.h" 183 #include "llvm/Support/Casting.h" 184 #include "llvm/Support/CommandLine.h" 185 #include "llvm/Support/Compiler.h" 186 #include "llvm/Support/Debug.h" 187 #include "llvm/Support/ErrorHandling.h" 188 #include "llvm/Support/MathExtras.h" 189 #include "llvm/Support/raw_ostream.h" 190 #include "llvm/Transforms/Instrumentation.h" 191 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 192 #include "llvm/Transforms/Utils/Local.h" 193 #include "llvm/Transforms/Utils/ModuleUtils.h" 194 #include <algorithm> 195 #include <cassert> 196 #include <cstddef> 197 #include <cstdint> 198 #include <memory> 199 #include <string> 200 #include <tuple> 201 202 using namespace llvm; 203 204 #define DEBUG_TYPE "msan" 205 206 static const unsigned kOriginSize = 4; 207 static const Align kMinOriginAlignment = Align(4); 208 static const Align kShadowTLSAlignment = Align(8); 209 210 // These constants must be kept in sync with the ones in msan.h. 211 static const unsigned kParamTLSSize = 800; 212 static const unsigned kRetvalTLSSize = 800; 213 214 // Accesses sizes are powers of two: 1, 2, 4, 8. 215 static const size_t kNumberOfAccessSizes = 4; 216 217 /// Track origins of uninitialized values. 218 /// 219 /// Adds a section to MemorySanitizer report that points to the allocation 220 /// (stack or heap) the uninitialized bits came from originally. 221 static cl::opt<int> ClTrackOrigins("msan-track-origins", 222 cl::desc("Track origins (allocation sites) of poisoned memory"), 223 cl::Hidden, cl::init(0)); 224 225 static cl::opt<bool> ClKeepGoing("msan-keep-going", 226 cl::desc("keep going after reporting a UMR"), 227 cl::Hidden, cl::init(false)); 228 229 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 230 cl::desc("poison uninitialized stack variables"), 231 cl::Hidden, cl::init(true)); 232 233 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 234 cl::desc("poison uninitialized stack variables with a call"), 235 cl::Hidden, cl::init(false)); 236 237 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 238 cl::desc("poison uninitialized stack variables with the given pattern"), 239 cl::Hidden, cl::init(0xff)); 240 241 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 242 cl::desc("poison undef temps"), 243 cl::Hidden, cl::init(true)); 244 245 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 246 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 247 cl::Hidden, cl::init(true)); 248 249 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 250 cl::desc("exact handling of relational integer ICmp"), 251 cl::Hidden, cl::init(false)); 252 253 static cl::opt<bool> ClHandleLifetimeIntrinsics( 254 "msan-handle-lifetime-intrinsics", 255 cl::desc( 256 "when possible, poison scoped variables at the beginning of the scope " 257 "(slower, but more precise)"), 258 cl::Hidden, cl::init(true)); 259 260 // When compiling the Linux kernel, we sometimes see false positives related to 261 // MSan being unable to understand that inline assembly calls may initialize 262 // local variables. 263 // This flag makes the compiler conservatively unpoison every memory location 264 // passed into an assembly call. Note that this may cause false positives. 265 // Because it's impossible to figure out the array sizes, we can only unpoison 266 // the first sizeof(type) bytes for each type* pointer. 267 // The instrumentation is only enabled in KMSAN builds, and only if 268 // -msan-handle-asm-conservative is on. This is done because we may want to 269 // quickly disable assembly instrumentation when it breaks. 270 static cl::opt<bool> ClHandleAsmConservative( 271 "msan-handle-asm-conservative", 272 cl::desc("conservative handling of inline assembly"), cl::Hidden, 273 cl::init(true)); 274 275 // This flag controls whether we check the shadow of the address 276 // operand of load or store. Such bugs are very rare, since load from 277 // a garbage address typically results in SEGV, but still happen 278 // (e.g. only lower bits of address are garbage, or the access happens 279 // early at program startup where malloc-ed memory is more likely to 280 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 281 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 282 cl::desc("report accesses through a pointer which has poisoned shadow"), 283 cl::Hidden, cl::init(true)); 284 285 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 286 cl::desc("print out instructions with default strict semantics"), 287 cl::Hidden, cl::init(false)); 288 289 static cl::opt<int> ClInstrumentationWithCallThreshold( 290 "msan-instrumentation-with-call-threshold", 291 cl::desc( 292 "If the function being instrumented requires more than " 293 "this number of checks and origin stores, use callbacks instead of " 294 "inline checks (-1 means never use callbacks)."), 295 cl::Hidden, cl::init(3500)); 296 297 static cl::opt<bool> 298 ClEnableKmsan("msan-kernel", 299 cl::desc("Enable KernelMemorySanitizer instrumentation"), 300 cl::Hidden, cl::init(false)); 301 302 // This is an experiment to enable handling of cases where shadow is a non-zero 303 // compile-time constant. For some unexplainable reason they were silently 304 // ignored in the instrumentation. 305 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 306 cl::desc("Insert checks for constant shadow values"), 307 cl::Hidden, cl::init(false)); 308 309 // This is off by default because of a bug in gold: 310 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 311 static cl::opt<bool> ClWithComdat("msan-with-comdat", 312 cl::desc("Place MSan constructors in comdat sections"), 313 cl::Hidden, cl::init(false)); 314 315 // These options allow to specify custom memory map parameters 316 // See MemoryMapParams for details. 317 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 318 cl::desc("Define custom MSan AndMask"), 319 cl::Hidden, cl::init(0)); 320 321 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 322 cl::desc("Define custom MSan XorMask"), 323 cl::Hidden, cl::init(0)); 324 325 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 326 cl::desc("Define custom MSan ShadowBase"), 327 cl::Hidden, cl::init(0)); 328 329 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 330 cl::desc("Define custom MSan OriginBase"), 331 cl::Hidden, cl::init(0)); 332 333 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 334 static const char *const kMsanInitName = "__msan_init"; 335 336 namespace { 337 338 // Memory map parameters used in application-to-shadow address calculation. 339 // Offset = (Addr & ~AndMask) ^ XorMask 340 // Shadow = ShadowBase + Offset 341 // Origin = OriginBase + Offset 342 struct MemoryMapParams { 343 uint64_t AndMask; 344 uint64_t XorMask; 345 uint64_t ShadowBase; 346 uint64_t OriginBase; 347 }; 348 349 struct PlatformMemoryMapParams { 350 const MemoryMapParams *bits32; 351 const MemoryMapParams *bits64; 352 }; 353 354 } // end anonymous namespace 355 356 // i386 Linux 357 static const MemoryMapParams Linux_I386_MemoryMapParams = { 358 0x000080000000, // AndMask 359 0, // XorMask (not used) 360 0, // ShadowBase (not used) 361 0x000040000000, // OriginBase 362 }; 363 364 // x86_64 Linux 365 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 366 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 367 0x400000000000, // AndMask 368 0, // XorMask (not used) 369 0, // ShadowBase (not used) 370 0x200000000000, // OriginBase 371 #else 372 0, // AndMask (not used) 373 0x500000000000, // XorMask 374 0, // ShadowBase (not used) 375 0x100000000000, // OriginBase 376 #endif 377 }; 378 379 // mips64 Linux 380 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 381 0, // AndMask (not used) 382 0x008000000000, // XorMask 383 0, // ShadowBase (not used) 384 0x002000000000, // OriginBase 385 }; 386 387 // ppc64 Linux 388 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 389 0xE00000000000, // AndMask 390 0x100000000000, // XorMask 391 0x080000000000, // ShadowBase 392 0x1C0000000000, // OriginBase 393 }; 394 395 // aarch64 Linux 396 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 397 0, // AndMask (not used) 398 0x06000000000, // XorMask 399 0, // ShadowBase (not used) 400 0x01000000000, // OriginBase 401 }; 402 403 // i386 FreeBSD 404 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 405 0x000180000000, // AndMask 406 0x000040000000, // XorMask 407 0x000020000000, // ShadowBase 408 0x000700000000, // OriginBase 409 }; 410 411 // x86_64 FreeBSD 412 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 413 0xc00000000000, // AndMask 414 0x200000000000, // XorMask 415 0x100000000000, // ShadowBase 416 0x380000000000, // OriginBase 417 }; 418 419 // x86_64 NetBSD 420 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 421 0, // AndMask 422 0x500000000000, // XorMask 423 0, // ShadowBase 424 0x100000000000, // OriginBase 425 }; 426 427 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 428 &Linux_I386_MemoryMapParams, 429 &Linux_X86_64_MemoryMapParams, 430 }; 431 432 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 433 nullptr, 434 &Linux_MIPS64_MemoryMapParams, 435 }; 436 437 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 438 nullptr, 439 &Linux_PowerPC64_MemoryMapParams, 440 }; 441 442 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 443 nullptr, 444 &Linux_AArch64_MemoryMapParams, 445 }; 446 447 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 448 &FreeBSD_I386_MemoryMapParams, 449 &FreeBSD_X86_64_MemoryMapParams, 450 }; 451 452 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 453 nullptr, 454 &NetBSD_X86_64_MemoryMapParams, 455 }; 456 457 namespace { 458 459 /// Instrument functions of a module to detect uninitialized reads. 460 /// 461 /// Instantiating MemorySanitizer inserts the msan runtime library API function 462 /// declarations into the module if they don't exist already. Instantiating 463 /// ensures the __msan_init function is in the list of global constructors for 464 /// the module. 465 class MemorySanitizer { 466 public: 467 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 468 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 469 Recover(Options.Recover) { 470 initializeModule(M); 471 } 472 473 // MSan cannot be moved or copied because of MapParams. 474 MemorySanitizer(MemorySanitizer &&) = delete; 475 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 476 MemorySanitizer(const MemorySanitizer &) = delete; 477 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 478 479 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 480 481 private: 482 friend struct MemorySanitizerVisitor; 483 friend struct VarArgAMD64Helper; 484 friend struct VarArgMIPS64Helper; 485 friend struct VarArgAArch64Helper; 486 friend struct VarArgPowerPC64Helper; 487 488 void initializeModule(Module &M); 489 void initializeCallbacks(Module &M); 490 void createKernelApi(Module &M); 491 void createUserspaceApi(Module &M); 492 493 /// True if we're compiling the Linux kernel. 494 bool CompileKernel; 495 /// Track origins (allocation points) of uninitialized values. 496 int TrackOrigins; 497 bool Recover; 498 499 LLVMContext *C; 500 Type *IntptrTy; 501 Type *OriginTy; 502 503 // XxxTLS variables represent the per-thread state in MSan and per-task state 504 // in KMSAN. 505 // For the userspace these point to thread-local globals. In the kernel land 506 // they point to the members of a per-task struct obtained via a call to 507 // __msan_get_context_state(). 508 509 /// Thread-local shadow storage for function parameters. 510 Value *ParamTLS; 511 512 /// Thread-local origin storage for function parameters. 513 Value *ParamOriginTLS; 514 515 /// Thread-local shadow storage for function return value. 516 Value *RetvalTLS; 517 518 /// Thread-local origin storage for function return value. 519 Value *RetvalOriginTLS; 520 521 /// Thread-local shadow storage for in-register va_arg function 522 /// parameters (x86_64-specific). 523 Value *VAArgTLS; 524 525 /// Thread-local shadow storage for in-register va_arg function 526 /// parameters (x86_64-specific). 527 Value *VAArgOriginTLS; 528 529 /// Thread-local shadow storage for va_arg overflow area 530 /// (x86_64-specific). 531 Value *VAArgOverflowSizeTLS; 532 533 /// Thread-local space used to pass origin value to the UMR reporting 534 /// function. 535 Value *OriginTLS; 536 537 /// Are the instrumentation callbacks set up? 538 bool CallbacksInitialized = false; 539 540 /// The run-time callback to print a warning. 541 FunctionCallee WarningFn; 542 543 // These arrays are indexed by log2(AccessSize). 544 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 545 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 546 547 /// Run-time helper that generates a new origin value for a stack 548 /// allocation. 549 FunctionCallee MsanSetAllocaOrigin4Fn; 550 551 /// Run-time helper that poisons stack on function entry. 552 FunctionCallee MsanPoisonStackFn; 553 554 /// Run-time helper that records a store (or any event) of an 555 /// uninitialized value and returns an updated origin id encoding this info. 556 FunctionCallee MsanChainOriginFn; 557 558 /// MSan runtime replacements for memmove, memcpy and memset. 559 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 560 561 /// KMSAN callback for task-local function argument shadow. 562 StructType *MsanContextStateTy; 563 FunctionCallee MsanGetContextStateFn; 564 565 /// Functions for poisoning/unpoisoning local variables 566 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 567 568 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 569 /// pointers. 570 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 571 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 572 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 573 FunctionCallee MsanInstrumentAsmStoreFn; 574 575 /// Helper to choose between different MsanMetadataPtrXxx(). 576 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 577 578 /// Memory map parameters used in application-to-shadow calculation. 579 const MemoryMapParams *MapParams; 580 581 /// Custom memory map parameters used when -msan-shadow-base or 582 // -msan-origin-base is provided. 583 MemoryMapParams CustomMapParams; 584 585 MDNode *ColdCallWeights; 586 587 /// Branch weights for origin store. 588 MDNode *OriginStoreWeights; 589 590 /// An empty volatile inline asm that prevents callback merge. 591 InlineAsm *EmptyAsm; 592 }; 593 594 void insertModuleCtor(Module &M) { 595 getOrCreateSanitizerCtorAndInitFunctions( 596 M, kMsanModuleCtorName, kMsanInitName, 597 /*InitArgTypes=*/{}, 598 /*InitArgs=*/{}, 599 // This callback is invoked when the functions are created the first 600 // time. Hook them into the global ctors list in that case: 601 [&](Function *Ctor, FunctionCallee) { 602 if (!ClWithComdat) { 603 appendToGlobalCtors(M, Ctor, 0); 604 return; 605 } 606 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 607 Ctor->setComdat(MsanCtorComdat); 608 appendToGlobalCtors(M, Ctor, 0, Ctor); 609 }); 610 } 611 612 /// A legacy function pass for msan instrumentation. 613 /// 614 /// Instruments functions to detect unitialized reads. 615 struct MemorySanitizerLegacyPass : public FunctionPass { 616 // Pass identification, replacement for typeid. 617 static char ID; 618 619 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 620 : FunctionPass(ID), Options(Options) {} 621 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 622 623 void getAnalysisUsage(AnalysisUsage &AU) const override { 624 AU.addRequired<TargetLibraryInfoWrapperPass>(); 625 } 626 627 bool runOnFunction(Function &F) override { 628 return MSan->sanitizeFunction( 629 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 630 } 631 bool doInitialization(Module &M) override; 632 633 Optional<MemorySanitizer> MSan; 634 MemorySanitizerOptions Options; 635 }; 636 637 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 638 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 639 } 640 641 } // end anonymous namespace 642 643 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 644 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 645 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 646 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 647 648 PreservedAnalyses MemorySanitizerPass::run(Function &F, 649 FunctionAnalysisManager &FAM) { 650 MemorySanitizer Msan(*F.getParent(), Options); 651 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 652 return PreservedAnalyses::none(); 653 return PreservedAnalyses::all(); 654 } 655 656 PreservedAnalyses MemorySanitizerPass::run(Module &M, 657 ModuleAnalysisManager &AM) { 658 if (Options.Kernel) 659 return PreservedAnalyses::all(); 660 insertModuleCtor(M); 661 return PreservedAnalyses::none(); 662 } 663 664 char MemorySanitizerLegacyPass::ID = 0; 665 666 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 667 "MemorySanitizer: detects uninitialized reads.", false, 668 false) 669 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 670 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 671 "MemorySanitizer: detects uninitialized reads.", false, 672 false) 673 674 FunctionPass * 675 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 676 return new MemorySanitizerLegacyPass(Options); 677 } 678 679 /// Create a non-const global initialized with the given string. 680 /// 681 /// Creates a writable global for Str so that we can pass it to the 682 /// run-time lib. Runtime uses first 4 bytes of the string to store the 683 /// frame ID, so the string needs to be mutable. 684 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 685 StringRef Str) { 686 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 687 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 688 GlobalValue::PrivateLinkage, StrConst, ""); 689 } 690 691 /// Create KMSAN API callbacks. 692 void MemorySanitizer::createKernelApi(Module &M) { 693 IRBuilder<> IRB(*C); 694 695 // These will be initialized in insertKmsanPrologue(). 696 RetvalTLS = nullptr; 697 RetvalOriginTLS = nullptr; 698 ParamTLS = nullptr; 699 ParamOriginTLS = nullptr; 700 VAArgTLS = nullptr; 701 VAArgOriginTLS = nullptr; 702 VAArgOverflowSizeTLS = nullptr; 703 // OriginTLS is unused in the kernel. 704 OriginTLS = nullptr; 705 706 // __msan_warning() in the kernel takes an origin. 707 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 708 IRB.getInt32Ty()); 709 // Requests the per-task context state (kmsan_context_state*) from the 710 // runtime library. 711 MsanContextStateTy = StructType::get( 712 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 713 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 714 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 715 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 716 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 717 OriginTy); 718 MsanGetContextStateFn = M.getOrInsertFunction( 719 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 720 721 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 722 PointerType::get(IRB.getInt32Ty(), 0)); 723 724 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 725 std::string name_load = 726 "__msan_metadata_ptr_for_load_" + std::to_string(size); 727 std::string name_store = 728 "__msan_metadata_ptr_for_store_" + std::to_string(size); 729 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 730 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 731 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 732 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 733 } 734 735 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 736 "__msan_metadata_ptr_for_load_n", RetTy, 737 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 738 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 739 "__msan_metadata_ptr_for_store_n", RetTy, 740 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 741 742 // Functions for poisoning and unpoisoning memory. 743 MsanPoisonAllocaFn = 744 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 745 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 746 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 747 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 748 } 749 750 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 751 return M.getOrInsertGlobal(Name, Ty, [&] { 752 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 753 nullptr, Name, nullptr, 754 GlobalVariable::InitialExecTLSModel); 755 }); 756 } 757 758 /// Insert declarations for userspace-specific functions and globals. 759 void MemorySanitizer::createUserspaceApi(Module &M) { 760 IRBuilder<> IRB(*C); 761 // Create the callback. 762 // FIXME: this function should have "Cold" calling conv, 763 // which is not yet implemented. 764 StringRef WarningFnName = Recover ? "__msan_warning" 765 : "__msan_warning_noreturn"; 766 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 767 768 // Create the global TLS variables. 769 RetvalTLS = 770 getOrInsertGlobal(M, "__msan_retval_tls", 771 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 772 773 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 774 775 ParamTLS = 776 getOrInsertGlobal(M, "__msan_param_tls", 777 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 778 779 ParamOriginTLS = 780 getOrInsertGlobal(M, "__msan_param_origin_tls", 781 ArrayType::get(OriginTy, kParamTLSSize / 4)); 782 783 VAArgTLS = 784 getOrInsertGlobal(M, "__msan_va_arg_tls", 785 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 786 787 VAArgOriginTLS = 788 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 789 ArrayType::get(OriginTy, kParamTLSSize / 4)); 790 791 VAArgOverflowSizeTLS = 792 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 793 OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty()); 794 795 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 796 AccessSizeIndex++) { 797 unsigned AccessSize = 1 << AccessSizeIndex; 798 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 799 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 800 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 801 IRB.getInt32Ty()); 802 803 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 804 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 805 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 806 IRB.getInt8PtrTy(), IRB.getInt32Ty()); 807 } 808 809 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 810 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 811 IRB.getInt8PtrTy(), IntptrTy); 812 MsanPoisonStackFn = 813 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 814 IRB.getInt8PtrTy(), IntptrTy); 815 } 816 817 /// Insert extern declaration of runtime-provided functions and globals. 818 void MemorySanitizer::initializeCallbacks(Module &M) { 819 // Only do this once. 820 if (CallbacksInitialized) 821 return; 822 823 IRBuilder<> IRB(*C); 824 // Initialize callbacks that are common for kernel and userspace 825 // instrumentation. 826 MsanChainOriginFn = M.getOrInsertFunction( 827 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 828 MemmoveFn = M.getOrInsertFunction( 829 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 830 IRB.getInt8PtrTy(), IntptrTy); 831 MemcpyFn = M.getOrInsertFunction( 832 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 833 IntptrTy); 834 MemsetFn = M.getOrInsertFunction( 835 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 836 IntptrTy); 837 // We insert an empty inline asm after __msan_report* to avoid callback merge. 838 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 839 StringRef(""), StringRef(""), 840 /*hasSideEffects=*/true); 841 842 MsanInstrumentAsmStoreFn = 843 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 844 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 845 846 if (CompileKernel) { 847 createKernelApi(M); 848 } else { 849 createUserspaceApi(M); 850 } 851 CallbacksInitialized = true; 852 } 853 854 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 855 int size) { 856 FunctionCallee *Fns = 857 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 858 switch (size) { 859 case 1: 860 return Fns[0]; 861 case 2: 862 return Fns[1]; 863 case 4: 864 return Fns[2]; 865 case 8: 866 return Fns[3]; 867 default: 868 return nullptr; 869 } 870 } 871 872 /// Module-level initialization. 873 /// 874 /// inserts a call to __msan_init to the module's constructor list. 875 void MemorySanitizer::initializeModule(Module &M) { 876 auto &DL = M.getDataLayout(); 877 878 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 879 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 880 // Check the overrides first 881 if (ShadowPassed || OriginPassed) { 882 CustomMapParams.AndMask = ClAndMask; 883 CustomMapParams.XorMask = ClXorMask; 884 CustomMapParams.ShadowBase = ClShadowBase; 885 CustomMapParams.OriginBase = ClOriginBase; 886 MapParams = &CustomMapParams; 887 } else { 888 Triple TargetTriple(M.getTargetTriple()); 889 switch (TargetTriple.getOS()) { 890 case Triple::FreeBSD: 891 switch (TargetTriple.getArch()) { 892 case Triple::x86_64: 893 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 894 break; 895 case Triple::x86: 896 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 897 break; 898 default: 899 report_fatal_error("unsupported architecture"); 900 } 901 break; 902 case Triple::NetBSD: 903 switch (TargetTriple.getArch()) { 904 case Triple::x86_64: 905 MapParams = NetBSD_X86_MemoryMapParams.bits64; 906 break; 907 default: 908 report_fatal_error("unsupported architecture"); 909 } 910 break; 911 case Triple::Linux: 912 switch (TargetTriple.getArch()) { 913 case Triple::x86_64: 914 MapParams = Linux_X86_MemoryMapParams.bits64; 915 break; 916 case Triple::x86: 917 MapParams = Linux_X86_MemoryMapParams.bits32; 918 break; 919 case Triple::mips64: 920 case Triple::mips64el: 921 MapParams = Linux_MIPS_MemoryMapParams.bits64; 922 break; 923 case Triple::ppc64: 924 case Triple::ppc64le: 925 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 926 break; 927 case Triple::aarch64: 928 case Triple::aarch64_be: 929 MapParams = Linux_ARM_MemoryMapParams.bits64; 930 break; 931 default: 932 report_fatal_error("unsupported architecture"); 933 } 934 break; 935 default: 936 report_fatal_error("unsupported operating system"); 937 } 938 } 939 940 C = &(M.getContext()); 941 IRBuilder<> IRB(*C); 942 IntptrTy = IRB.getIntPtrTy(DL); 943 OriginTy = IRB.getInt32Ty(); 944 945 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 946 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 947 948 if (!CompileKernel) { 949 if (TrackOrigins) 950 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 951 return new GlobalVariable( 952 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 953 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 954 }); 955 956 if (Recover) 957 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 958 return new GlobalVariable(M, IRB.getInt32Ty(), true, 959 GlobalValue::WeakODRLinkage, 960 IRB.getInt32(Recover), "__msan_keep_going"); 961 }); 962 } 963 } 964 965 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 966 if (!Options.Kernel) 967 insertModuleCtor(M); 968 MSan.emplace(M, Options); 969 return true; 970 } 971 972 namespace { 973 974 /// A helper class that handles instrumentation of VarArg 975 /// functions on a particular platform. 976 /// 977 /// Implementations are expected to insert the instrumentation 978 /// necessary to propagate argument shadow through VarArg function 979 /// calls. Visit* methods are called during an InstVisitor pass over 980 /// the function, and should avoid creating new basic blocks. A new 981 /// instance of this class is created for each instrumented function. 982 struct VarArgHelper { 983 virtual ~VarArgHelper() = default; 984 985 /// Visit a CallSite. 986 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 987 988 /// Visit a va_start call. 989 virtual void visitVAStartInst(VAStartInst &I) = 0; 990 991 /// Visit a va_copy call. 992 virtual void visitVACopyInst(VACopyInst &I) = 0; 993 994 /// Finalize function instrumentation. 995 /// 996 /// This method is called after visiting all interesting (see above) 997 /// instructions in a function. 998 virtual void finalizeInstrumentation() = 0; 999 }; 1000 1001 struct MemorySanitizerVisitor; 1002 1003 } // end anonymous namespace 1004 1005 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1006 MemorySanitizerVisitor &Visitor); 1007 1008 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1009 if (TypeSize <= 8) return 0; 1010 return Log2_32_Ceil((TypeSize + 7) / 8); 1011 } 1012 1013 namespace { 1014 1015 /// This class does all the work for a given function. Store and Load 1016 /// instructions store and load corresponding shadow and origin 1017 /// values. Most instructions propagate shadow from arguments to their 1018 /// return values. Certain instructions (most importantly, BranchInst) 1019 /// test their argument shadow and print reports (with a runtime call) if it's 1020 /// non-zero. 1021 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1022 Function &F; 1023 MemorySanitizer &MS; 1024 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1025 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1026 std::unique_ptr<VarArgHelper> VAHelper; 1027 const TargetLibraryInfo *TLI; 1028 BasicBlock *ActualFnStart; 1029 1030 // The following flags disable parts of MSan instrumentation based on 1031 // blacklist contents and command-line options. 1032 bool InsertChecks; 1033 bool PropagateShadow; 1034 bool PoisonStack; 1035 bool PoisonUndef; 1036 bool CheckReturnValue; 1037 1038 struct ShadowOriginAndInsertPoint { 1039 Value *Shadow; 1040 Value *Origin; 1041 Instruction *OrigIns; 1042 1043 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1044 : Shadow(S), Origin(O), OrigIns(I) {} 1045 }; 1046 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1047 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1048 SmallSet<AllocaInst *, 16> AllocaSet; 1049 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1050 SmallVector<StoreInst *, 16> StoreList; 1051 1052 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1053 const TargetLibraryInfo &TLI) 1054 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1055 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1056 InsertChecks = SanitizeFunction; 1057 PropagateShadow = SanitizeFunction; 1058 PoisonStack = SanitizeFunction && ClPoisonStack; 1059 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1060 // FIXME: Consider using SpecialCaseList to specify a list of functions that 1061 // must always return fully initialized values. For now, we hardcode "main". 1062 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 1063 1064 MS.initializeCallbacks(*F.getParent()); 1065 if (MS.CompileKernel) 1066 ActualFnStart = insertKmsanPrologue(F); 1067 else 1068 ActualFnStart = &F.getEntryBlock(); 1069 1070 LLVM_DEBUG(if (!InsertChecks) dbgs() 1071 << "MemorySanitizer is not inserting checks into '" 1072 << F.getName() << "'\n"); 1073 } 1074 1075 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1076 if (MS.TrackOrigins <= 1) return V; 1077 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1078 } 1079 1080 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1081 const DataLayout &DL = F.getParent()->getDataLayout(); 1082 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1083 if (IntptrSize == kOriginSize) return Origin; 1084 assert(IntptrSize == kOriginSize * 2); 1085 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1086 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1087 } 1088 1089 /// Fill memory range with the given origin value. 1090 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1091 unsigned Size, Align Alignment) { 1092 const DataLayout &DL = F.getParent()->getDataLayout(); 1093 const Align IntptrAlignment = Align(DL.getABITypeAlignment(MS.IntptrTy)); 1094 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1095 assert(IntptrAlignment >= kMinOriginAlignment); 1096 assert(IntptrSize >= kOriginSize); 1097 1098 unsigned Ofs = 0; 1099 Align CurrentAlignment = Alignment; 1100 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1101 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1102 Value *IntptrOriginPtr = 1103 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1104 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1105 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1106 : IntptrOriginPtr; 1107 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment.value()); 1108 Ofs += IntptrSize / kOriginSize; 1109 CurrentAlignment = IntptrAlignment; 1110 } 1111 } 1112 1113 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1114 Value *GEP = 1115 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1116 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment.value()); 1117 CurrentAlignment = kMinOriginAlignment; 1118 } 1119 } 1120 1121 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1122 Value *OriginPtr, Align Alignment, bool AsCall) { 1123 const DataLayout &DL = F.getParent()->getDataLayout(); 1124 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1125 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1126 if (Shadow->getType()->isAggregateType()) { 1127 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1128 OriginAlignment); 1129 } else { 1130 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1131 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1132 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1133 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1134 OriginAlignment); 1135 return; 1136 } 1137 1138 unsigned TypeSizeInBits = 1139 DL.getTypeSizeInBits(ConvertedShadow->getType()); 1140 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1141 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1142 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1143 Value *ConvertedShadow2 = IRB.CreateZExt( 1144 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1145 IRB.CreateCall(Fn, {ConvertedShadow2, 1146 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 1147 Origin}); 1148 } else { 1149 Value *Cmp = IRB.CreateICmpNE( 1150 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 1151 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1152 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1153 IRBuilder<> IRBNew(CheckTerm); 1154 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1155 OriginAlignment); 1156 } 1157 } 1158 } 1159 1160 void materializeStores(bool InstrumentWithCalls) { 1161 for (StoreInst *SI : StoreList) { 1162 IRBuilder<> IRB(SI); 1163 Value *Val = SI->getValueOperand(); 1164 Value *Addr = SI->getPointerOperand(); 1165 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1166 Value *ShadowPtr, *OriginPtr; 1167 Type *ShadowTy = Shadow->getType(); 1168 const Align Alignment = assumeAligned(SI->getAlignment()); 1169 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1170 std::tie(ShadowPtr, OriginPtr) = 1171 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1172 1173 StoreInst *NewSI = 1174 IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment.value()); 1175 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1176 (void)NewSI; 1177 1178 if (SI->isAtomic()) 1179 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1180 1181 if (MS.TrackOrigins && !SI->isAtomic()) 1182 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1183 OriginAlignment, InstrumentWithCalls); 1184 } 1185 } 1186 1187 /// Helper function to insert a warning at IRB's current insert point. 1188 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1189 if (!Origin) 1190 Origin = (Value *)IRB.getInt32(0); 1191 if (MS.CompileKernel) { 1192 IRB.CreateCall(MS.WarningFn, Origin); 1193 } else { 1194 if (MS.TrackOrigins) { 1195 IRB.CreateStore(Origin, MS.OriginTLS); 1196 } 1197 IRB.CreateCall(MS.WarningFn, {}); 1198 } 1199 IRB.CreateCall(MS.EmptyAsm, {}); 1200 // FIXME: Insert UnreachableInst if !MS.Recover? 1201 // This may invalidate some of the following checks and needs to be done 1202 // at the very end. 1203 } 1204 1205 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1206 bool AsCall) { 1207 IRBuilder<> IRB(OrigIns); 1208 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1209 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1210 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1211 1212 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1213 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1214 insertWarningFn(IRB, Origin); 1215 } 1216 return; 1217 } 1218 1219 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1220 1221 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1222 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1223 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1224 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1225 Value *ConvertedShadow2 = 1226 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1227 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1228 ? Origin 1229 : (Value *)IRB.getInt32(0)}); 1230 } else { 1231 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 1232 getCleanShadow(ConvertedShadow), "_mscmp"); 1233 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1234 Cmp, OrigIns, 1235 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1236 1237 IRB.SetInsertPoint(CheckTerm); 1238 insertWarningFn(IRB, Origin); 1239 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1240 } 1241 } 1242 1243 void materializeChecks(bool InstrumentWithCalls) { 1244 for (const auto &ShadowData : InstrumentationList) { 1245 Instruction *OrigIns = ShadowData.OrigIns; 1246 Value *Shadow = ShadowData.Shadow; 1247 Value *Origin = ShadowData.Origin; 1248 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1249 } 1250 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1251 } 1252 1253 BasicBlock *insertKmsanPrologue(Function &F) { 1254 BasicBlock *ret = 1255 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1256 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1257 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1258 Constant *Zero = IRB.getInt32(0); 1259 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1260 {Zero, IRB.getInt32(0)}, "param_shadow"); 1261 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1262 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1263 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1264 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1265 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1266 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1267 MS.VAArgOverflowSizeTLS = 1268 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1269 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1270 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1271 {Zero, IRB.getInt32(5)}, "param_origin"); 1272 MS.RetvalOriginTLS = 1273 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1274 {Zero, IRB.getInt32(6)}, "retval_origin"); 1275 return ret; 1276 } 1277 1278 /// Add MemorySanitizer instrumentation to a function. 1279 bool runOnFunction() { 1280 // In the presence of unreachable blocks, we may see Phi nodes with 1281 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1282 // blocks, such nodes will not have any shadow value associated with them. 1283 // It's easier to remove unreachable blocks than deal with missing shadow. 1284 removeUnreachableBlocks(F); 1285 1286 // Iterate all BBs in depth-first order and create shadow instructions 1287 // for all instructions (where applicable). 1288 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1289 for (BasicBlock *BB : depth_first(ActualFnStart)) 1290 visit(*BB); 1291 1292 // Finalize PHI nodes. 1293 for (PHINode *PN : ShadowPHINodes) { 1294 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1295 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1296 size_t NumValues = PN->getNumIncomingValues(); 1297 for (size_t v = 0; v < NumValues; v++) { 1298 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1299 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1300 } 1301 } 1302 1303 VAHelper->finalizeInstrumentation(); 1304 1305 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1306 // instrumenting only allocas. 1307 if (InstrumentLifetimeStart) { 1308 for (auto Item : LifetimeStartList) { 1309 instrumentAlloca(*Item.second, Item.first); 1310 AllocaSet.erase(Item.second); 1311 } 1312 } 1313 // Poison the allocas for which we didn't instrument the corresponding 1314 // lifetime intrinsics. 1315 for (AllocaInst *AI : AllocaSet) 1316 instrumentAlloca(*AI); 1317 1318 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1319 InstrumentationList.size() + StoreList.size() > 1320 (unsigned)ClInstrumentationWithCallThreshold; 1321 1322 // Insert shadow value checks. 1323 materializeChecks(InstrumentWithCalls); 1324 1325 // Delayed instrumentation of StoreInst. 1326 // This may not add new address checks. 1327 materializeStores(InstrumentWithCalls); 1328 1329 return true; 1330 } 1331 1332 /// Compute the shadow type that corresponds to a given Value. 1333 Type *getShadowTy(Value *V) { 1334 return getShadowTy(V->getType()); 1335 } 1336 1337 /// Compute the shadow type that corresponds to a given Type. 1338 Type *getShadowTy(Type *OrigTy) { 1339 if (!OrigTy->isSized()) { 1340 return nullptr; 1341 } 1342 // For integer type, shadow is the same as the original type. 1343 // This may return weird-sized types like i1. 1344 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1345 return IT; 1346 const DataLayout &DL = F.getParent()->getDataLayout(); 1347 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1348 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1349 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1350 VT->getNumElements()); 1351 } 1352 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1353 return ArrayType::get(getShadowTy(AT->getElementType()), 1354 AT->getNumElements()); 1355 } 1356 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1357 SmallVector<Type*, 4> Elements; 1358 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1359 Elements.push_back(getShadowTy(ST->getElementType(i))); 1360 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1361 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1362 return Res; 1363 } 1364 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1365 return IntegerType::get(*MS.C, TypeSize); 1366 } 1367 1368 /// Flatten a vector type. 1369 Type *getShadowTyNoVec(Type *ty) { 1370 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1371 return IntegerType::get(*MS.C, vt->getBitWidth()); 1372 return ty; 1373 } 1374 1375 /// Convert a shadow value to it's flattened variant. 1376 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 1377 Type *Ty = V->getType(); 1378 Type *NoVecTy = getShadowTyNoVec(Ty); 1379 if (Ty == NoVecTy) return V; 1380 return IRB.CreateBitCast(V, NoVecTy); 1381 } 1382 1383 /// Compute the integer shadow offset that corresponds to a given 1384 /// application address. 1385 /// 1386 /// Offset = (Addr & ~AndMask) ^ XorMask 1387 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1388 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1389 1390 uint64_t AndMask = MS.MapParams->AndMask; 1391 if (AndMask) 1392 OffsetLong = 1393 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1394 1395 uint64_t XorMask = MS.MapParams->XorMask; 1396 if (XorMask) 1397 OffsetLong = 1398 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1399 return OffsetLong; 1400 } 1401 1402 /// Compute the shadow and origin addresses corresponding to a given 1403 /// application address. 1404 /// 1405 /// Shadow = ShadowBase + Offset 1406 /// Origin = (OriginBase + Offset) & ~3ULL 1407 std::pair<Value *, Value *> 1408 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1409 MaybeAlign Alignment) { 1410 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1411 Value *ShadowLong = ShadowOffset; 1412 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1413 if (ShadowBase != 0) { 1414 ShadowLong = 1415 IRB.CreateAdd(ShadowLong, 1416 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1417 } 1418 Value *ShadowPtr = 1419 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1420 Value *OriginPtr = nullptr; 1421 if (MS.TrackOrigins) { 1422 Value *OriginLong = ShadowOffset; 1423 uint64_t OriginBase = MS.MapParams->OriginBase; 1424 if (OriginBase != 0) 1425 OriginLong = IRB.CreateAdd(OriginLong, 1426 ConstantInt::get(MS.IntptrTy, OriginBase)); 1427 if (!Alignment || *Alignment < kMinOriginAlignment) { 1428 uint64_t Mask = kMinOriginAlignment.value() - 1; 1429 OriginLong = 1430 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1431 } 1432 OriginPtr = 1433 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1434 } 1435 return std::make_pair(ShadowPtr, OriginPtr); 1436 } 1437 1438 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1439 IRBuilder<> &IRB, 1440 Type *ShadowTy, 1441 bool isStore) { 1442 Value *ShadowOriginPtrs; 1443 const DataLayout &DL = F.getParent()->getDataLayout(); 1444 int Size = DL.getTypeStoreSize(ShadowTy); 1445 1446 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1447 Value *AddrCast = 1448 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1449 if (Getter) { 1450 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1451 } else { 1452 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1453 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1454 : MS.MsanMetadataPtrForLoadN, 1455 {AddrCast, SizeVal}); 1456 } 1457 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1458 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1459 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1460 1461 return std::make_pair(ShadowPtr, OriginPtr); 1462 } 1463 1464 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1465 Type *ShadowTy, 1466 MaybeAlign Alignment, 1467 bool isStore) { 1468 if (MS.CompileKernel) 1469 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1470 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1471 } 1472 1473 /// Compute the shadow address for a given function argument. 1474 /// 1475 /// Shadow = ParamTLS+ArgOffset. 1476 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1477 int ArgOffset) { 1478 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1479 if (ArgOffset) 1480 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1481 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1482 "_msarg"); 1483 } 1484 1485 /// Compute the origin address for a given function argument. 1486 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1487 int ArgOffset) { 1488 if (!MS.TrackOrigins) 1489 return nullptr; 1490 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1491 if (ArgOffset) 1492 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1493 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1494 "_msarg_o"); 1495 } 1496 1497 /// Compute the shadow address for a retval. 1498 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1499 return IRB.CreatePointerCast(MS.RetvalTLS, 1500 PointerType::get(getShadowTy(A), 0), 1501 "_msret"); 1502 } 1503 1504 /// Compute the origin address for a retval. 1505 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1506 // We keep a single origin for the entire retval. Might be too optimistic. 1507 return MS.RetvalOriginTLS; 1508 } 1509 1510 /// Set SV to be the shadow value for V. 1511 void setShadow(Value *V, Value *SV) { 1512 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1513 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1514 } 1515 1516 /// Set Origin to be the origin value for V. 1517 void setOrigin(Value *V, Value *Origin) { 1518 if (!MS.TrackOrigins) return; 1519 assert(!OriginMap.count(V) && "Values may only have one origin"); 1520 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1521 OriginMap[V] = Origin; 1522 } 1523 1524 Constant *getCleanShadow(Type *OrigTy) { 1525 Type *ShadowTy = getShadowTy(OrigTy); 1526 if (!ShadowTy) 1527 return nullptr; 1528 return Constant::getNullValue(ShadowTy); 1529 } 1530 1531 /// Create a clean shadow value for a given value. 1532 /// 1533 /// Clean shadow (all zeroes) means all bits of the value are defined 1534 /// (initialized). 1535 Constant *getCleanShadow(Value *V) { 1536 return getCleanShadow(V->getType()); 1537 } 1538 1539 /// Create a dirty shadow of a given shadow type. 1540 Constant *getPoisonedShadow(Type *ShadowTy) { 1541 assert(ShadowTy); 1542 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1543 return Constant::getAllOnesValue(ShadowTy); 1544 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1545 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1546 getPoisonedShadow(AT->getElementType())); 1547 return ConstantArray::get(AT, Vals); 1548 } 1549 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1550 SmallVector<Constant *, 4> Vals; 1551 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1552 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1553 return ConstantStruct::get(ST, Vals); 1554 } 1555 llvm_unreachable("Unexpected shadow type"); 1556 } 1557 1558 /// Create a dirty shadow for a given value. 1559 Constant *getPoisonedShadow(Value *V) { 1560 Type *ShadowTy = getShadowTy(V); 1561 if (!ShadowTy) 1562 return nullptr; 1563 return getPoisonedShadow(ShadowTy); 1564 } 1565 1566 /// Create a clean (zero) origin. 1567 Value *getCleanOrigin() { 1568 return Constant::getNullValue(MS.OriginTy); 1569 } 1570 1571 /// Get the shadow value for a given Value. 1572 /// 1573 /// This function either returns the value set earlier with setShadow, 1574 /// or extracts if from ParamTLS (for function arguments). 1575 Value *getShadow(Value *V) { 1576 if (!PropagateShadow) return getCleanShadow(V); 1577 if (Instruction *I = dyn_cast<Instruction>(V)) { 1578 if (I->getMetadata("nosanitize")) 1579 return getCleanShadow(V); 1580 // For instructions the shadow is already stored in the map. 1581 Value *Shadow = ShadowMap[V]; 1582 if (!Shadow) { 1583 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1584 (void)I; 1585 assert(Shadow && "No shadow for a value"); 1586 } 1587 return Shadow; 1588 } 1589 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1590 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1591 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1592 (void)U; 1593 return AllOnes; 1594 } 1595 if (Argument *A = dyn_cast<Argument>(V)) { 1596 // For arguments we compute the shadow on demand and store it in the map. 1597 Value **ShadowPtr = &ShadowMap[V]; 1598 if (*ShadowPtr) 1599 return *ShadowPtr; 1600 Function *F = A->getParent(); 1601 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1602 unsigned ArgOffset = 0; 1603 const DataLayout &DL = F->getParent()->getDataLayout(); 1604 for (auto &FArg : F->args()) { 1605 if (!FArg.getType()->isSized()) { 1606 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1607 continue; 1608 } 1609 unsigned Size = 1610 FArg.hasByValAttr() 1611 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1612 : DL.getTypeAllocSize(FArg.getType()); 1613 if (A == &FArg) { 1614 bool Overflow = ArgOffset + Size > kParamTLSSize; 1615 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1616 if (FArg.hasByValAttr()) { 1617 // ByVal pointer itself has clean shadow. We copy the actual 1618 // argument shadow to the underlying memory. 1619 // Figure out maximal valid memcpy alignment. 1620 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1621 MaybeAlign(FArg.getParamAlignment()), 1622 A->getType()->getPointerElementType()); 1623 Value *CpShadowPtr = 1624 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1625 /*isStore*/ true) 1626 .first; 1627 // TODO(glider): need to copy origins. 1628 if (Overflow) { 1629 // ParamTLS overflow. 1630 EntryIRB.CreateMemSet( 1631 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1632 Size, ArgAlign); 1633 } else { 1634 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1635 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1636 CopyAlign, Size); 1637 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1638 (void)Cpy; 1639 } 1640 *ShadowPtr = getCleanShadow(V); 1641 } else { 1642 if (Overflow) { 1643 // ParamTLS overflow. 1644 *ShadowPtr = getCleanShadow(V); 1645 } else { 1646 *ShadowPtr = EntryIRB.CreateAlignedLoad( 1647 getShadowTy(&FArg), Base, kShadowTLSAlignment.value()); 1648 } 1649 } 1650 LLVM_DEBUG(dbgs() 1651 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1652 if (MS.TrackOrigins && !Overflow) { 1653 Value *OriginPtr = 1654 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1655 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1656 } else { 1657 setOrigin(A, getCleanOrigin()); 1658 } 1659 } 1660 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1661 } 1662 assert(*ShadowPtr && "Could not find shadow for an argument"); 1663 return *ShadowPtr; 1664 } 1665 // For everything else the shadow is zero. 1666 return getCleanShadow(V); 1667 } 1668 1669 /// Get the shadow for i-th argument of the instruction I. 1670 Value *getShadow(Instruction *I, int i) { 1671 return getShadow(I->getOperand(i)); 1672 } 1673 1674 /// Get the origin for a value. 1675 Value *getOrigin(Value *V) { 1676 if (!MS.TrackOrigins) return nullptr; 1677 if (!PropagateShadow) return getCleanOrigin(); 1678 if (isa<Constant>(V)) return getCleanOrigin(); 1679 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1680 "Unexpected value type in getOrigin()"); 1681 if (Instruction *I = dyn_cast<Instruction>(V)) { 1682 if (I->getMetadata("nosanitize")) 1683 return getCleanOrigin(); 1684 } 1685 Value *Origin = OriginMap[V]; 1686 assert(Origin && "Missing origin"); 1687 return Origin; 1688 } 1689 1690 /// Get the origin for i-th argument of the instruction I. 1691 Value *getOrigin(Instruction *I, int i) { 1692 return getOrigin(I->getOperand(i)); 1693 } 1694 1695 /// Remember the place where a shadow check should be inserted. 1696 /// 1697 /// This location will be later instrumented with a check that will print a 1698 /// UMR warning in runtime if the shadow value is not 0. 1699 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1700 assert(Shadow); 1701 if (!InsertChecks) return; 1702 #ifndef NDEBUG 1703 Type *ShadowTy = Shadow->getType(); 1704 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1705 "Can only insert checks for integer and vector shadow types"); 1706 #endif 1707 InstrumentationList.push_back( 1708 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1709 } 1710 1711 /// Remember the place where a shadow check should be inserted. 1712 /// 1713 /// This location will be later instrumented with a check that will print a 1714 /// UMR warning in runtime if the value is not fully defined. 1715 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1716 assert(Val); 1717 Value *Shadow, *Origin; 1718 if (ClCheckConstantShadow) { 1719 Shadow = getShadow(Val); 1720 if (!Shadow) return; 1721 Origin = getOrigin(Val); 1722 } else { 1723 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1724 if (!Shadow) return; 1725 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1726 } 1727 insertShadowCheck(Shadow, Origin, OrigIns); 1728 } 1729 1730 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1731 switch (a) { 1732 case AtomicOrdering::NotAtomic: 1733 return AtomicOrdering::NotAtomic; 1734 case AtomicOrdering::Unordered: 1735 case AtomicOrdering::Monotonic: 1736 case AtomicOrdering::Release: 1737 return AtomicOrdering::Release; 1738 case AtomicOrdering::Acquire: 1739 case AtomicOrdering::AcquireRelease: 1740 return AtomicOrdering::AcquireRelease; 1741 case AtomicOrdering::SequentiallyConsistent: 1742 return AtomicOrdering::SequentiallyConsistent; 1743 } 1744 llvm_unreachable("Unknown ordering"); 1745 } 1746 1747 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1748 switch (a) { 1749 case AtomicOrdering::NotAtomic: 1750 return AtomicOrdering::NotAtomic; 1751 case AtomicOrdering::Unordered: 1752 case AtomicOrdering::Monotonic: 1753 case AtomicOrdering::Acquire: 1754 return AtomicOrdering::Acquire; 1755 case AtomicOrdering::Release: 1756 case AtomicOrdering::AcquireRelease: 1757 return AtomicOrdering::AcquireRelease; 1758 case AtomicOrdering::SequentiallyConsistent: 1759 return AtomicOrdering::SequentiallyConsistent; 1760 } 1761 llvm_unreachable("Unknown ordering"); 1762 } 1763 1764 // ------------------- Visitors. 1765 using InstVisitor<MemorySanitizerVisitor>::visit; 1766 void visit(Instruction &I) { 1767 if (!I.getMetadata("nosanitize")) 1768 InstVisitor<MemorySanitizerVisitor>::visit(I); 1769 } 1770 1771 /// Instrument LoadInst 1772 /// 1773 /// Loads the corresponding shadow and (optionally) origin. 1774 /// Optionally, checks that the load address is fully defined. 1775 void visitLoadInst(LoadInst &I) { 1776 assert(I.getType()->isSized() && "Load type must have size"); 1777 assert(!I.getMetadata("nosanitize")); 1778 IRBuilder<> IRB(I.getNextNode()); 1779 Type *ShadowTy = getShadowTy(&I); 1780 Value *Addr = I.getPointerOperand(); 1781 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1782 const Align Alignment = assumeAligned(I.getAlignment()); 1783 if (PropagateShadow) { 1784 std::tie(ShadowPtr, OriginPtr) = 1785 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1786 setShadow(&I, IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, 1787 Alignment.value(), "_msld")); 1788 } else { 1789 setShadow(&I, getCleanShadow(&I)); 1790 } 1791 1792 if (ClCheckAccessAddress) 1793 insertShadowCheck(I.getPointerOperand(), &I); 1794 1795 if (I.isAtomic()) 1796 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1797 1798 if (MS.TrackOrigins) { 1799 if (PropagateShadow) { 1800 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1801 setOrigin(&I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, 1802 OriginAlignment.value())); 1803 } else { 1804 setOrigin(&I, getCleanOrigin()); 1805 } 1806 } 1807 } 1808 1809 /// Instrument StoreInst 1810 /// 1811 /// Stores the corresponding shadow and (optionally) origin. 1812 /// Optionally, checks that the store address is fully defined. 1813 void visitStoreInst(StoreInst &I) { 1814 StoreList.push_back(&I); 1815 if (ClCheckAccessAddress) 1816 insertShadowCheck(I.getPointerOperand(), &I); 1817 } 1818 1819 void handleCASOrRMW(Instruction &I) { 1820 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1821 1822 IRBuilder<> IRB(&I); 1823 Value *Addr = I.getOperand(0); 1824 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align::None(), 1825 /*isStore*/ true) 1826 .first; 1827 1828 if (ClCheckAccessAddress) 1829 insertShadowCheck(Addr, &I); 1830 1831 // Only test the conditional argument of cmpxchg instruction. 1832 // The other argument can potentially be uninitialized, but we can not 1833 // detect this situation reliably without possible false positives. 1834 if (isa<AtomicCmpXchgInst>(I)) 1835 insertShadowCheck(I.getOperand(1), &I); 1836 1837 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1838 1839 setShadow(&I, getCleanShadow(&I)); 1840 setOrigin(&I, getCleanOrigin()); 1841 } 1842 1843 void visitAtomicRMWInst(AtomicRMWInst &I) { 1844 handleCASOrRMW(I); 1845 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1846 } 1847 1848 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1849 handleCASOrRMW(I); 1850 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1851 } 1852 1853 // Vector manipulation. 1854 void visitExtractElementInst(ExtractElementInst &I) { 1855 insertShadowCheck(I.getOperand(1), &I); 1856 IRBuilder<> IRB(&I); 1857 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1858 "_msprop")); 1859 setOrigin(&I, getOrigin(&I, 0)); 1860 } 1861 1862 void visitInsertElementInst(InsertElementInst &I) { 1863 insertShadowCheck(I.getOperand(2), &I); 1864 IRBuilder<> IRB(&I); 1865 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1866 I.getOperand(2), "_msprop")); 1867 setOriginForNaryOp(I); 1868 } 1869 1870 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1871 insertShadowCheck(I.getOperand(2), &I); 1872 IRBuilder<> IRB(&I); 1873 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1874 I.getOperand(2), "_msprop")); 1875 setOriginForNaryOp(I); 1876 } 1877 1878 // Casts. 1879 void visitSExtInst(SExtInst &I) { 1880 IRBuilder<> IRB(&I); 1881 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1882 setOrigin(&I, getOrigin(&I, 0)); 1883 } 1884 1885 void visitZExtInst(ZExtInst &I) { 1886 IRBuilder<> IRB(&I); 1887 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1888 setOrigin(&I, getOrigin(&I, 0)); 1889 } 1890 1891 void visitTruncInst(TruncInst &I) { 1892 IRBuilder<> IRB(&I); 1893 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1894 setOrigin(&I, getOrigin(&I, 0)); 1895 } 1896 1897 void visitBitCastInst(BitCastInst &I) { 1898 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1899 // a musttail call and a ret, don't instrument. New instructions are not 1900 // allowed after a musttail call. 1901 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1902 if (CI->isMustTailCall()) 1903 return; 1904 IRBuilder<> IRB(&I); 1905 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1906 setOrigin(&I, getOrigin(&I, 0)); 1907 } 1908 1909 void visitPtrToIntInst(PtrToIntInst &I) { 1910 IRBuilder<> IRB(&I); 1911 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1912 "_msprop_ptrtoint")); 1913 setOrigin(&I, getOrigin(&I, 0)); 1914 } 1915 1916 void visitIntToPtrInst(IntToPtrInst &I) { 1917 IRBuilder<> IRB(&I); 1918 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1919 "_msprop_inttoptr")); 1920 setOrigin(&I, getOrigin(&I, 0)); 1921 } 1922 1923 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1924 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1925 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1926 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1927 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1928 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1929 1930 /// Propagate shadow for bitwise AND. 1931 /// 1932 /// This code is exact, i.e. if, for example, a bit in the left argument 1933 /// is defined and 0, then neither the value not definedness of the 1934 /// corresponding bit in B don't affect the resulting shadow. 1935 void visitAnd(BinaryOperator &I) { 1936 IRBuilder<> IRB(&I); 1937 // "And" of 0 and a poisoned value results in unpoisoned value. 1938 // 1&1 => 1; 0&1 => 0; p&1 => p; 1939 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1940 // 1&p => p; 0&p => 0; p&p => p; 1941 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1942 Value *S1 = getShadow(&I, 0); 1943 Value *S2 = getShadow(&I, 1); 1944 Value *V1 = I.getOperand(0); 1945 Value *V2 = I.getOperand(1); 1946 if (V1->getType() != S1->getType()) { 1947 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1948 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1949 } 1950 Value *S1S2 = IRB.CreateAnd(S1, S2); 1951 Value *V1S2 = IRB.CreateAnd(V1, S2); 1952 Value *S1V2 = IRB.CreateAnd(S1, V2); 1953 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1954 setOriginForNaryOp(I); 1955 } 1956 1957 void visitOr(BinaryOperator &I) { 1958 IRBuilder<> IRB(&I); 1959 // "Or" of 1 and a poisoned value results in unpoisoned value. 1960 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1961 // 1|0 => 1; 0|0 => 0; p|0 => p; 1962 // 1|p => 1; 0|p => p; p|p => p; 1963 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1964 Value *S1 = getShadow(&I, 0); 1965 Value *S2 = getShadow(&I, 1); 1966 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1967 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1968 if (V1->getType() != S1->getType()) { 1969 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1970 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1971 } 1972 Value *S1S2 = IRB.CreateAnd(S1, S2); 1973 Value *V1S2 = IRB.CreateAnd(V1, S2); 1974 Value *S1V2 = IRB.CreateAnd(S1, V2); 1975 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 1976 setOriginForNaryOp(I); 1977 } 1978 1979 /// Default propagation of shadow and/or origin. 1980 /// 1981 /// This class implements the general case of shadow propagation, used in all 1982 /// cases where we don't know and/or don't care about what the operation 1983 /// actually does. It converts all input shadow values to a common type 1984 /// (extending or truncating as necessary), and bitwise OR's them. 1985 /// 1986 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1987 /// fully initialized), and less prone to false positives. 1988 /// 1989 /// This class also implements the general case of origin propagation. For a 1990 /// Nary operation, result origin is set to the origin of an argument that is 1991 /// not entirely initialized. If there is more than one such arguments, the 1992 /// rightmost of them is picked. It does not matter which one is picked if all 1993 /// arguments are initialized. 1994 template <bool CombineShadow> 1995 class Combiner { 1996 Value *Shadow = nullptr; 1997 Value *Origin = nullptr; 1998 IRBuilder<> &IRB; 1999 MemorySanitizerVisitor *MSV; 2000 2001 public: 2002 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2003 : IRB(IRB), MSV(MSV) {} 2004 2005 /// Add a pair of shadow and origin values to the mix. 2006 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2007 if (CombineShadow) { 2008 assert(OpShadow); 2009 if (!Shadow) 2010 Shadow = OpShadow; 2011 else { 2012 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2013 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2014 } 2015 } 2016 2017 if (MSV->MS.TrackOrigins) { 2018 assert(OpOrigin); 2019 if (!Origin) { 2020 Origin = OpOrigin; 2021 } else { 2022 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2023 // No point in adding something that might result in 0 origin value. 2024 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2025 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 2026 Value *Cond = 2027 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2028 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2029 } 2030 } 2031 } 2032 return *this; 2033 } 2034 2035 /// Add an application value to the mix. 2036 Combiner &Add(Value *V) { 2037 Value *OpShadow = MSV->getShadow(V); 2038 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2039 return Add(OpShadow, OpOrigin); 2040 } 2041 2042 /// Set the current combined values as the given instruction's shadow 2043 /// and origin. 2044 void Done(Instruction *I) { 2045 if (CombineShadow) { 2046 assert(Shadow); 2047 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2048 MSV->setShadow(I, Shadow); 2049 } 2050 if (MSV->MS.TrackOrigins) { 2051 assert(Origin); 2052 MSV->setOrigin(I, Origin); 2053 } 2054 } 2055 }; 2056 2057 using ShadowAndOriginCombiner = Combiner<true>; 2058 using OriginCombiner = Combiner<false>; 2059 2060 /// Propagate origin for arbitrary operation. 2061 void setOriginForNaryOp(Instruction &I) { 2062 if (!MS.TrackOrigins) return; 2063 IRBuilder<> IRB(&I); 2064 OriginCombiner OC(this, IRB); 2065 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2066 OC.Add(OI->get()); 2067 OC.Done(&I); 2068 } 2069 2070 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2071 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2072 "Vector of pointers is not a valid shadow type"); 2073 return Ty->isVectorTy() ? 2074 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 2075 Ty->getPrimitiveSizeInBits(); 2076 } 2077 2078 /// Cast between two shadow types, extending or truncating as 2079 /// necessary. 2080 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2081 bool Signed = false) { 2082 Type *srcTy = V->getType(); 2083 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2084 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2085 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2086 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2087 2088 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2089 return IRB.CreateIntCast(V, dstTy, Signed); 2090 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2091 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 2092 return IRB.CreateIntCast(V, dstTy, Signed); 2093 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2094 Value *V2 = 2095 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2096 return IRB.CreateBitCast(V2, dstTy); 2097 // TODO: handle struct types. 2098 } 2099 2100 /// Cast an application value to the type of its own shadow. 2101 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2102 Type *ShadowTy = getShadowTy(V); 2103 if (V->getType() == ShadowTy) 2104 return V; 2105 if (V->getType()->isPtrOrPtrVectorTy()) 2106 return IRB.CreatePtrToInt(V, ShadowTy); 2107 else 2108 return IRB.CreateBitCast(V, ShadowTy); 2109 } 2110 2111 /// Propagate shadow for arbitrary operation. 2112 void handleShadowOr(Instruction &I) { 2113 IRBuilder<> IRB(&I); 2114 ShadowAndOriginCombiner SC(this, IRB); 2115 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2116 SC.Add(OI->get()); 2117 SC.Done(&I); 2118 } 2119 2120 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2121 2122 // Handle multiplication by constant. 2123 // 2124 // Handle a special case of multiplication by constant that may have one or 2125 // more zeros in the lower bits. This makes corresponding number of lower bits 2126 // of the result zero as well. We model it by shifting the other operand 2127 // shadow left by the required number of bits. Effectively, we transform 2128 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2129 // We use multiplication by 2**N instead of shift to cover the case of 2130 // multiplication by 0, which may occur in some elements of a vector operand. 2131 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2132 Value *OtherArg) { 2133 Constant *ShadowMul; 2134 Type *Ty = ConstArg->getType(); 2135 if (Ty->isVectorTy()) { 2136 unsigned NumElements = Ty->getVectorNumElements(); 2137 Type *EltTy = Ty->getSequentialElementType(); 2138 SmallVector<Constant *, 16> Elements; 2139 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2140 if (ConstantInt *Elt = 2141 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2142 const APInt &V = Elt->getValue(); 2143 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2144 Elements.push_back(ConstantInt::get(EltTy, V2)); 2145 } else { 2146 Elements.push_back(ConstantInt::get(EltTy, 1)); 2147 } 2148 } 2149 ShadowMul = ConstantVector::get(Elements); 2150 } else { 2151 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2152 const APInt &V = Elt->getValue(); 2153 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2154 ShadowMul = ConstantInt::get(Ty, V2); 2155 } else { 2156 ShadowMul = ConstantInt::get(Ty, 1); 2157 } 2158 } 2159 2160 IRBuilder<> IRB(&I); 2161 setShadow(&I, 2162 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2163 setOrigin(&I, getOrigin(OtherArg)); 2164 } 2165 2166 void visitMul(BinaryOperator &I) { 2167 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2168 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2169 if (constOp0 && !constOp1) 2170 handleMulByConstant(I, constOp0, I.getOperand(1)); 2171 else if (constOp1 && !constOp0) 2172 handleMulByConstant(I, constOp1, I.getOperand(0)); 2173 else 2174 handleShadowOr(I); 2175 } 2176 2177 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2178 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2179 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2180 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2181 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2182 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2183 2184 void handleIntegerDiv(Instruction &I) { 2185 IRBuilder<> IRB(&I); 2186 // Strict on the second argument. 2187 insertShadowCheck(I.getOperand(1), &I); 2188 setShadow(&I, getShadow(&I, 0)); 2189 setOrigin(&I, getOrigin(&I, 0)); 2190 } 2191 2192 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2193 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2194 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2195 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2196 2197 // Floating point division is side-effect free. We can not require that the 2198 // divisor is fully initialized and must propagate shadow. See PR37523. 2199 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2200 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2201 2202 /// Instrument == and != comparisons. 2203 /// 2204 /// Sometimes the comparison result is known even if some of the bits of the 2205 /// arguments are not. 2206 void handleEqualityComparison(ICmpInst &I) { 2207 IRBuilder<> IRB(&I); 2208 Value *A = I.getOperand(0); 2209 Value *B = I.getOperand(1); 2210 Value *Sa = getShadow(A); 2211 Value *Sb = getShadow(B); 2212 2213 // Get rid of pointers and vectors of pointers. 2214 // For ints (and vectors of ints), types of A and Sa match, 2215 // and this is a no-op. 2216 A = IRB.CreatePointerCast(A, Sa->getType()); 2217 B = IRB.CreatePointerCast(B, Sb->getType()); 2218 2219 // A == B <==> (C = A^B) == 0 2220 // A != B <==> (C = A^B) != 0 2221 // Sc = Sa | Sb 2222 Value *C = IRB.CreateXor(A, B); 2223 Value *Sc = IRB.CreateOr(Sa, Sb); 2224 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2225 // Result is defined if one of the following is true 2226 // * there is a defined 1 bit in C 2227 // * C is fully defined 2228 // Si = !(C & ~Sc) && Sc 2229 Value *Zero = Constant::getNullValue(Sc->getType()); 2230 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2231 Value *Si = 2232 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2233 IRB.CreateICmpEQ( 2234 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2235 Si->setName("_msprop_icmp"); 2236 setShadow(&I, Si); 2237 setOriginForNaryOp(I); 2238 } 2239 2240 /// Build the lowest possible value of V, taking into account V's 2241 /// uninitialized bits. 2242 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2243 bool isSigned) { 2244 if (isSigned) { 2245 // Split shadow into sign bit and other bits. 2246 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2247 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2248 // Maximise the undefined shadow bit, minimize other undefined bits. 2249 return 2250 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2251 } else { 2252 // Minimize undefined bits. 2253 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2254 } 2255 } 2256 2257 /// Build the highest possible value of V, taking into account V's 2258 /// uninitialized bits. 2259 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2260 bool isSigned) { 2261 if (isSigned) { 2262 // Split shadow into sign bit and other bits. 2263 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2264 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2265 // Minimise the undefined shadow bit, maximise other undefined bits. 2266 return 2267 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2268 } else { 2269 // Maximize undefined bits. 2270 return IRB.CreateOr(A, Sa); 2271 } 2272 } 2273 2274 /// Instrument relational comparisons. 2275 /// 2276 /// This function does exact shadow propagation for all relational 2277 /// comparisons of integers, pointers and vectors of those. 2278 /// FIXME: output seems suboptimal when one of the operands is a constant 2279 void handleRelationalComparisonExact(ICmpInst &I) { 2280 IRBuilder<> IRB(&I); 2281 Value *A = I.getOperand(0); 2282 Value *B = I.getOperand(1); 2283 Value *Sa = getShadow(A); 2284 Value *Sb = getShadow(B); 2285 2286 // Get rid of pointers and vectors of pointers. 2287 // For ints (and vectors of ints), types of A and Sa match, 2288 // and this is a no-op. 2289 A = IRB.CreatePointerCast(A, Sa->getType()); 2290 B = IRB.CreatePointerCast(B, Sb->getType()); 2291 2292 // Let [a0, a1] be the interval of possible values of A, taking into account 2293 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2294 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2295 bool IsSigned = I.isSigned(); 2296 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2297 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2298 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2299 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2300 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2301 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2302 Value *Si = IRB.CreateXor(S1, S2); 2303 setShadow(&I, Si); 2304 setOriginForNaryOp(I); 2305 } 2306 2307 /// Instrument signed relational comparisons. 2308 /// 2309 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2310 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2311 void handleSignedRelationalComparison(ICmpInst &I) { 2312 Constant *constOp; 2313 Value *op = nullptr; 2314 CmpInst::Predicate pre; 2315 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2316 op = I.getOperand(0); 2317 pre = I.getPredicate(); 2318 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2319 op = I.getOperand(1); 2320 pre = I.getSwappedPredicate(); 2321 } else { 2322 handleShadowOr(I); 2323 return; 2324 } 2325 2326 if ((constOp->isNullValue() && 2327 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2328 (constOp->isAllOnesValue() && 2329 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2330 IRBuilder<> IRB(&I); 2331 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2332 "_msprop_icmp_s"); 2333 setShadow(&I, Shadow); 2334 setOrigin(&I, getOrigin(op)); 2335 } else { 2336 handleShadowOr(I); 2337 } 2338 } 2339 2340 void visitICmpInst(ICmpInst &I) { 2341 if (!ClHandleICmp) { 2342 handleShadowOr(I); 2343 return; 2344 } 2345 if (I.isEquality()) { 2346 handleEqualityComparison(I); 2347 return; 2348 } 2349 2350 assert(I.isRelational()); 2351 if (ClHandleICmpExact) { 2352 handleRelationalComparisonExact(I); 2353 return; 2354 } 2355 if (I.isSigned()) { 2356 handleSignedRelationalComparison(I); 2357 return; 2358 } 2359 2360 assert(I.isUnsigned()); 2361 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2362 handleRelationalComparisonExact(I); 2363 return; 2364 } 2365 2366 handleShadowOr(I); 2367 } 2368 2369 void visitFCmpInst(FCmpInst &I) { 2370 handleShadowOr(I); 2371 } 2372 2373 void handleShift(BinaryOperator &I) { 2374 IRBuilder<> IRB(&I); 2375 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2376 // Otherwise perform the same shift on S1. 2377 Value *S1 = getShadow(&I, 0); 2378 Value *S2 = getShadow(&I, 1); 2379 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2380 S2->getType()); 2381 Value *V2 = I.getOperand(1); 2382 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2383 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2384 setOriginForNaryOp(I); 2385 } 2386 2387 void visitShl(BinaryOperator &I) { handleShift(I); } 2388 void visitAShr(BinaryOperator &I) { handleShift(I); } 2389 void visitLShr(BinaryOperator &I) { handleShift(I); } 2390 2391 /// Instrument llvm.memmove 2392 /// 2393 /// At this point we don't know if llvm.memmove will be inlined or not. 2394 /// If we don't instrument it and it gets inlined, 2395 /// our interceptor will not kick in and we will lose the memmove. 2396 /// If we instrument the call here, but it does not get inlined, 2397 /// we will memove the shadow twice: which is bad in case 2398 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2399 /// 2400 /// Similar situation exists for memcpy and memset. 2401 void visitMemMoveInst(MemMoveInst &I) { 2402 IRBuilder<> IRB(&I); 2403 IRB.CreateCall( 2404 MS.MemmoveFn, 2405 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2406 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2407 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2408 I.eraseFromParent(); 2409 } 2410 2411 // Similar to memmove: avoid copying shadow twice. 2412 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2413 // FIXME: consider doing manual inline for small constant sizes and proper 2414 // alignment. 2415 void visitMemCpyInst(MemCpyInst &I) { 2416 IRBuilder<> IRB(&I); 2417 IRB.CreateCall( 2418 MS.MemcpyFn, 2419 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2420 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2421 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2422 I.eraseFromParent(); 2423 } 2424 2425 // Same as memcpy. 2426 void visitMemSetInst(MemSetInst &I) { 2427 IRBuilder<> IRB(&I); 2428 IRB.CreateCall( 2429 MS.MemsetFn, 2430 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2431 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2432 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2433 I.eraseFromParent(); 2434 } 2435 2436 void visitVAStartInst(VAStartInst &I) { 2437 VAHelper->visitVAStartInst(I); 2438 } 2439 2440 void visitVACopyInst(VACopyInst &I) { 2441 VAHelper->visitVACopyInst(I); 2442 } 2443 2444 /// Handle vector store-like intrinsics. 2445 /// 2446 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2447 /// has 1 pointer argument and 1 vector argument, returns void. 2448 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2449 IRBuilder<> IRB(&I); 2450 Value* Addr = I.getArgOperand(0); 2451 Value *Shadow = getShadow(&I, 1); 2452 Value *ShadowPtr, *OriginPtr; 2453 2454 // We don't know the pointer alignment (could be unaligned SSE store!). 2455 // Have to assume to worst case. 2456 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2457 Addr, IRB, Shadow->getType(), Align::None(), /*isStore*/ true); 2458 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 2459 2460 if (ClCheckAccessAddress) 2461 insertShadowCheck(Addr, &I); 2462 2463 // FIXME: factor out common code from materializeStores 2464 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2465 return true; 2466 } 2467 2468 /// Handle vector load-like intrinsics. 2469 /// 2470 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2471 /// has 1 pointer argument, returns a vector. 2472 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2473 IRBuilder<> IRB(&I); 2474 Value *Addr = I.getArgOperand(0); 2475 2476 Type *ShadowTy = getShadowTy(&I); 2477 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2478 if (PropagateShadow) { 2479 // We don't know the pointer alignment (could be unaligned SSE load!). 2480 // Have to assume to worst case. 2481 const Align Alignment = Align::None(); 2482 std::tie(ShadowPtr, OriginPtr) = 2483 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2484 setShadow(&I, IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, 2485 Alignment.value(), "_msld")); 2486 } else { 2487 setShadow(&I, getCleanShadow(&I)); 2488 } 2489 2490 if (ClCheckAccessAddress) 2491 insertShadowCheck(Addr, &I); 2492 2493 if (MS.TrackOrigins) { 2494 if (PropagateShadow) 2495 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2496 else 2497 setOrigin(&I, getCleanOrigin()); 2498 } 2499 return true; 2500 } 2501 2502 /// Handle (SIMD arithmetic)-like intrinsics. 2503 /// 2504 /// Instrument intrinsics with any number of arguments of the same type, 2505 /// equal to the return type. The type should be simple (no aggregates or 2506 /// pointers; vectors are fine). 2507 /// Caller guarantees that this intrinsic does not access memory. 2508 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2509 Type *RetTy = I.getType(); 2510 if (!(RetTy->isIntOrIntVectorTy() || 2511 RetTy->isFPOrFPVectorTy() || 2512 RetTy->isX86_MMXTy())) 2513 return false; 2514 2515 unsigned NumArgOperands = I.getNumArgOperands(); 2516 2517 for (unsigned i = 0; i < NumArgOperands; ++i) { 2518 Type *Ty = I.getArgOperand(i)->getType(); 2519 if (Ty != RetTy) 2520 return false; 2521 } 2522 2523 IRBuilder<> IRB(&I); 2524 ShadowAndOriginCombiner SC(this, IRB); 2525 for (unsigned i = 0; i < NumArgOperands; ++i) 2526 SC.Add(I.getArgOperand(i)); 2527 SC.Done(&I); 2528 2529 return true; 2530 } 2531 2532 /// Heuristically instrument unknown intrinsics. 2533 /// 2534 /// The main purpose of this code is to do something reasonable with all 2535 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2536 /// We recognize several classes of intrinsics by their argument types and 2537 /// ModRefBehaviour and apply special intrumentation when we are reasonably 2538 /// sure that we know what the intrinsic does. 2539 /// 2540 /// We special-case intrinsics where this approach fails. See llvm.bswap 2541 /// handling as an example of that. 2542 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2543 unsigned NumArgOperands = I.getNumArgOperands(); 2544 if (NumArgOperands == 0) 2545 return false; 2546 2547 if (NumArgOperands == 2 && 2548 I.getArgOperand(0)->getType()->isPointerTy() && 2549 I.getArgOperand(1)->getType()->isVectorTy() && 2550 I.getType()->isVoidTy() && 2551 !I.onlyReadsMemory()) { 2552 // This looks like a vector store. 2553 return handleVectorStoreIntrinsic(I); 2554 } 2555 2556 if (NumArgOperands == 1 && 2557 I.getArgOperand(0)->getType()->isPointerTy() && 2558 I.getType()->isVectorTy() && 2559 I.onlyReadsMemory()) { 2560 // This looks like a vector load. 2561 return handleVectorLoadIntrinsic(I); 2562 } 2563 2564 if (I.doesNotAccessMemory()) 2565 if (maybeHandleSimpleNomemIntrinsic(I)) 2566 return true; 2567 2568 // FIXME: detect and handle SSE maskstore/maskload 2569 return false; 2570 } 2571 2572 void handleInvariantGroup(IntrinsicInst &I) { 2573 setShadow(&I, getShadow(&I, 0)); 2574 setOrigin(&I, getOrigin(&I, 0)); 2575 } 2576 2577 void handleLifetimeStart(IntrinsicInst &I) { 2578 if (!PoisonStack) 2579 return; 2580 DenseMap<Value *, AllocaInst *> AllocaForValue; 2581 AllocaInst *AI = 2582 llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); 2583 if (!AI) 2584 InstrumentLifetimeStart = false; 2585 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2586 } 2587 2588 void handleBswap(IntrinsicInst &I) { 2589 IRBuilder<> IRB(&I); 2590 Value *Op = I.getArgOperand(0); 2591 Type *OpType = Op->getType(); 2592 Function *BswapFunc = Intrinsic::getDeclaration( 2593 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2594 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2595 setOrigin(&I, getOrigin(Op)); 2596 } 2597 2598 // Instrument vector convert instrinsic. 2599 // 2600 // This function instruments intrinsics like cvtsi2ss: 2601 // %Out = int_xxx_cvtyyy(%ConvertOp) 2602 // or 2603 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2604 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2605 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2606 // elements from \p CopyOp. 2607 // In most cases conversion involves floating-point value which may trigger a 2608 // hardware exception when not fully initialized. For this reason we require 2609 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2610 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2611 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2612 // return a fully initialized value. 2613 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2614 IRBuilder<> IRB(&I); 2615 Value *CopyOp, *ConvertOp; 2616 2617 switch (I.getNumArgOperands()) { 2618 case 3: 2619 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2620 LLVM_FALLTHROUGH; 2621 case 2: 2622 CopyOp = I.getArgOperand(0); 2623 ConvertOp = I.getArgOperand(1); 2624 break; 2625 case 1: 2626 ConvertOp = I.getArgOperand(0); 2627 CopyOp = nullptr; 2628 break; 2629 default: 2630 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2631 } 2632 2633 // The first *NumUsedElements* elements of ConvertOp are converted to the 2634 // same number of output elements. The rest of the output is copied from 2635 // CopyOp, or (if not available) filled with zeroes. 2636 // Combine shadow for elements of ConvertOp that are used in this operation, 2637 // and insert a check. 2638 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2639 // int->any conversion. 2640 Value *ConvertShadow = getShadow(ConvertOp); 2641 Value *AggShadow = nullptr; 2642 if (ConvertOp->getType()->isVectorTy()) { 2643 AggShadow = IRB.CreateExtractElement( 2644 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2645 for (int i = 1; i < NumUsedElements; ++i) { 2646 Value *MoreShadow = IRB.CreateExtractElement( 2647 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2648 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2649 } 2650 } else { 2651 AggShadow = ConvertShadow; 2652 } 2653 assert(AggShadow->getType()->isIntegerTy()); 2654 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2655 2656 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2657 // ConvertOp. 2658 if (CopyOp) { 2659 assert(CopyOp->getType() == I.getType()); 2660 assert(CopyOp->getType()->isVectorTy()); 2661 Value *ResultShadow = getShadow(CopyOp); 2662 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2663 for (int i = 0; i < NumUsedElements; ++i) { 2664 ResultShadow = IRB.CreateInsertElement( 2665 ResultShadow, ConstantInt::getNullValue(EltTy), 2666 ConstantInt::get(IRB.getInt32Ty(), i)); 2667 } 2668 setShadow(&I, ResultShadow); 2669 setOrigin(&I, getOrigin(CopyOp)); 2670 } else { 2671 setShadow(&I, getCleanShadow(&I)); 2672 setOrigin(&I, getCleanOrigin()); 2673 } 2674 } 2675 2676 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2677 // zeroes if it is zero, and all ones otherwise. 2678 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2679 if (S->getType()->isVectorTy()) 2680 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2681 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2682 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2683 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2684 } 2685 2686 // Given a vector, extract its first element, and return all 2687 // zeroes if it is zero, and all ones otherwise. 2688 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2689 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2690 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2691 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2692 } 2693 2694 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2695 Type *T = S->getType(); 2696 assert(T->isVectorTy()); 2697 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2698 return IRB.CreateSExt(S2, T); 2699 } 2700 2701 // Instrument vector shift instrinsic. 2702 // 2703 // This function instruments intrinsics like int_x86_avx2_psll_w. 2704 // Intrinsic shifts %In by %ShiftSize bits. 2705 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2706 // size, and the rest is ignored. Behavior is defined even if shift size is 2707 // greater than register (or field) width. 2708 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2709 assert(I.getNumArgOperands() == 2); 2710 IRBuilder<> IRB(&I); 2711 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2712 // Otherwise perform the same shift on S1. 2713 Value *S1 = getShadow(&I, 0); 2714 Value *S2 = getShadow(&I, 1); 2715 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2716 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2717 Value *V1 = I.getOperand(0); 2718 Value *V2 = I.getOperand(1); 2719 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(), 2720 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2721 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2722 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2723 setOriginForNaryOp(I); 2724 } 2725 2726 // Get an X86_MMX-sized vector type. 2727 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2728 const unsigned X86_MMXSizeInBits = 64; 2729 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2730 "Illegal MMX vector element size"); 2731 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2732 X86_MMXSizeInBits / EltSizeInBits); 2733 } 2734 2735 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2736 // intrinsic. 2737 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2738 switch (id) { 2739 case Intrinsic::x86_sse2_packsswb_128: 2740 case Intrinsic::x86_sse2_packuswb_128: 2741 return Intrinsic::x86_sse2_packsswb_128; 2742 2743 case Intrinsic::x86_sse2_packssdw_128: 2744 case Intrinsic::x86_sse41_packusdw: 2745 return Intrinsic::x86_sse2_packssdw_128; 2746 2747 case Intrinsic::x86_avx2_packsswb: 2748 case Intrinsic::x86_avx2_packuswb: 2749 return Intrinsic::x86_avx2_packsswb; 2750 2751 case Intrinsic::x86_avx2_packssdw: 2752 case Intrinsic::x86_avx2_packusdw: 2753 return Intrinsic::x86_avx2_packssdw; 2754 2755 case Intrinsic::x86_mmx_packsswb: 2756 case Intrinsic::x86_mmx_packuswb: 2757 return Intrinsic::x86_mmx_packsswb; 2758 2759 case Intrinsic::x86_mmx_packssdw: 2760 return Intrinsic::x86_mmx_packssdw; 2761 default: 2762 llvm_unreachable("unexpected intrinsic id"); 2763 } 2764 } 2765 2766 // Instrument vector pack instrinsic. 2767 // 2768 // This function instruments intrinsics like x86_mmx_packsswb, that 2769 // packs elements of 2 input vectors into half as many bits with saturation. 2770 // Shadow is propagated with the signed variant of the same intrinsic applied 2771 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2772 // EltSizeInBits is used only for x86mmx arguments. 2773 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2774 assert(I.getNumArgOperands() == 2); 2775 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2776 IRBuilder<> IRB(&I); 2777 Value *S1 = getShadow(&I, 0); 2778 Value *S2 = getShadow(&I, 1); 2779 assert(isX86_MMX || S1->getType()->isVectorTy()); 2780 2781 // SExt and ICmpNE below must apply to individual elements of input vectors. 2782 // In case of x86mmx arguments, cast them to appropriate vector types and 2783 // back. 2784 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2785 if (isX86_MMX) { 2786 S1 = IRB.CreateBitCast(S1, T); 2787 S2 = IRB.CreateBitCast(S2, T); 2788 } 2789 Value *S1_ext = IRB.CreateSExt( 2790 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2791 Value *S2_ext = IRB.CreateSExt( 2792 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2793 if (isX86_MMX) { 2794 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2795 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2796 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2797 } 2798 2799 Function *ShadowFn = Intrinsic::getDeclaration( 2800 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2801 2802 Value *S = 2803 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2804 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2805 setShadow(&I, S); 2806 setOriginForNaryOp(I); 2807 } 2808 2809 // Instrument sum-of-absolute-differencies intrinsic. 2810 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2811 const unsigned SignificantBitsPerResultElement = 16; 2812 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2813 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2814 unsigned ZeroBitsPerResultElement = 2815 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2816 2817 IRBuilder<> IRB(&I); 2818 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2819 S = IRB.CreateBitCast(S, ResTy); 2820 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2821 ResTy); 2822 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2823 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2824 setShadow(&I, S); 2825 setOriginForNaryOp(I); 2826 } 2827 2828 // Instrument multiply-add intrinsic. 2829 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2830 unsigned EltSizeInBits = 0) { 2831 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2832 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2833 IRBuilder<> IRB(&I); 2834 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2835 S = IRB.CreateBitCast(S, ResTy); 2836 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2837 ResTy); 2838 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2839 setShadow(&I, S); 2840 setOriginForNaryOp(I); 2841 } 2842 2843 // Instrument compare-packed intrinsic. 2844 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2845 // all-ones shadow. 2846 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2847 IRBuilder<> IRB(&I); 2848 Type *ResTy = getShadowTy(&I); 2849 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2850 Value *S = IRB.CreateSExt( 2851 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2852 setShadow(&I, S); 2853 setOriginForNaryOp(I); 2854 } 2855 2856 // Instrument compare-scalar intrinsic. 2857 // This handles both cmp* intrinsics which return the result in the first 2858 // element of a vector, and comi* which return the result as i32. 2859 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2860 IRBuilder<> IRB(&I); 2861 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2862 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2863 setShadow(&I, S); 2864 setOriginForNaryOp(I); 2865 } 2866 2867 void handleStmxcsr(IntrinsicInst &I) { 2868 IRBuilder<> IRB(&I); 2869 Value* Addr = I.getArgOperand(0); 2870 Type *Ty = IRB.getInt32Ty(); 2871 Value *ShadowPtr = 2872 getShadowOriginPtr(Addr, IRB, Ty, Align::None(), /*isStore*/ true) 2873 .first; 2874 2875 IRB.CreateStore(getCleanShadow(Ty), 2876 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2877 2878 if (ClCheckAccessAddress) 2879 insertShadowCheck(Addr, &I); 2880 } 2881 2882 void handleLdmxcsr(IntrinsicInst &I) { 2883 if (!InsertChecks) return; 2884 2885 IRBuilder<> IRB(&I); 2886 Value *Addr = I.getArgOperand(0); 2887 Type *Ty = IRB.getInt32Ty(); 2888 const Align Alignment = Align::None(); 2889 Value *ShadowPtr, *OriginPtr; 2890 std::tie(ShadowPtr, OriginPtr) = 2891 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 2892 2893 if (ClCheckAccessAddress) 2894 insertShadowCheck(Addr, &I); 2895 2896 Value *Shadow = 2897 IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment.value(), "_ldmxcsr"); 2898 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 2899 : getCleanOrigin(); 2900 insertShadowCheck(Shadow, Origin, &I); 2901 } 2902 2903 void handleMaskedStore(IntrinsicInst &I) { 2904 IRBuilder<> IRB(&I); 2905 Value *V = I.getArgOperand(0); 2906 Value *Addr = I.getArgOperand(1); 2907 const MaybeAlign Alignment( 2908 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 2909 Value *Mask = I.getArgOperand(3); 2910 Value *Shadow = getShadow(V); 2911 2912 Value *ShadowPtr; 2913 Value *OriginPtr; 2914 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2915 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 2916 2917 if (ClCheckAccessAddress) { 2918 insertShadowCheck(Addr, &I); 2919 // Uninitialized mask is kind of like uninitialized address, but not as 2920 // scary. 2921 insertShadowCheck(Mask, &I); 2922 } 2923 2924 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment ? Alignment->value() : 0, 2925 Mask); 2926 2927 if (MS.TrackOrigins) { 2928 auto &DL = F.getParent()->getDataLayout(); 2929 paintOrigin(IRB, getOrigin(V), OriginPtr, 2930 DL.getTypeStoreSize(Shadow->getType()), 2931 llvm::max(Alignment, kMinOriginAlignment)); 2932 } 2933 } 2934 2935 bool handleMaskedLoad(IntrinsicInst &I) { 2936 IRBuilder<> IRB(&I); 2937 Value *Addr = I.getArgOperand(0); 2938 const MaybeAlign Alignment( 2939 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 2940 Value *Mask = I.getArgOperand(2); 2941 Value *PassThru = I.getArgOperand(3); 2942 2943 Type *ShadowTy = getShadowTy(&I); 2944 Value *ShadowPtr, *OriginPtr; 2945 if (PropagateShadow) { 2946 std::tie(ShadowPtr, OriginPtr) = 2947 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2948 setShadow(&I, IRB.CreateMaskedLoad( 2949 ShadowPtr, Alignment ? Alignment->value() : 0, Mask, 2950 getShadow(PassThru), "_msmaskedld")); 2951 } else { 2952 setShadow(&I, getCleanShadow(&I)); 2953 } 2954 2955 if (ClCheckAccessAddress) { 2956 insertShadowCheck(Addr, &I); 2957 insertShadowCheck(Mask, &I); 2958 } 2959 2960 if (MS.TrackOrigins) { 2961 if (PropagateShadow) { 2962 // Choose between PassThru's and the loaded value's origins. 2963 Value *MaskedPassThruShadow = IRB.CreateAnd( 2964 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 2965 2966 Value *Acc = IRB.CreateExtractElement( 2967 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2968 for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N; 2969 ++i) { 2970 Value *More = IRB.CreateExtractElement( 2971 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2972 Acc = IRB.CreateOr(Acc, More); 2973 } 2974 2975 Value *Origin = IRB.CreateSelect( 2976 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 2977 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2978 2979 setOrigin(&I, Origin); 2980 } else { 2981 setOrigin(&I, getCleanOrigin()); 2982 } 2983 } 2984 return true; 2985 } 2986 2987 // Instrument BMI / BMI2 intrinsics. 2988 // All of these intrinsics are Z = I(X, Y) 2989 // where the types of all operands and the result match, and are either i32 or i64. 2990 // The following instrumentation happens to work for all of them: 2991 // Sz = I(Sx, Y) | (sext (Sy != 0)) 2992 void handleBmiIntrinsic(IntrinsicInst &I) { 2993 IRBuilder<> IRB(&I); 2994 Type *ShadowTy = getShadowTy(&I); 2995 2996 // If any bit of the mask operand is poisoned, then the whole thing is. 2997 Value *SMask = getShadow(&I, 1); 2998 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 2999 ShadowTy); 3000 // Apply the same intrinsic to the shadow of the first operand. 3001 Value *S = IRB.CreateCall(I.getCalledFunction(), 3002 {getShadow(&I, 0), I.getOperand(1)}); 3003 S = IRB.CreateOr(SMask, S); 3004 setShadow(&I, S); 3005 setOriginForNaryOp(I); 3006 } 3007 3008 Constant *getPclmulMask(IRBuilder<> &IRB, unsigned Width, bool OddElements) { 3009 SmallVector<Constant *, 8> Mask; 3010 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3011 Constant *C = ConstantInt::get(IRB.getInt32Ty(), X); 3012 Mask.push_back(C); 3013 Mask.push_back(C); 3014 } 3015 return ConstantVector::get(Mask); 3016 } 3017 3018 // Instrument pclmul intrinsics. 3019 // These intrinsics operate either on odd or on even elements of the input 3020 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3021 // Replace the unused elements with copies of the used ones, ex: 3022 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3023 // or 3024 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3025 // and then apply the usual shadow combining logic. 3026 void handlePclmulIntrinsic(IntrinsicInst &I) { 3027 IRBuilder<> IRB(&I); 3028 Type *ShadowTy = getShadowTy(&I); 3029 unsigned Width = I.getArgOperand(0)->getType()->getVectorNumElements(); 3030 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3031 "pclmul 3rd operand must be a constant"); 3032 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3033 Value *Shuf0 = 3034 IRB.CreateShuffleVector(getShadow(&I, 0), UndefValue::get(ShadowTy), 3035 getPclmulMask(IRB, Width, Imm & 0x01)); 3036 Value *Shuf1 = 3037 IRB.CreateShuffleVector(getShadow(&I, 1), UndefValue::get(ShadowTy), 3038 getPclmulMask(IRB, Width, Imm & 0x10)); 3039 ShadowAndOriginCombiner SOC(this, IRB); 3040 SOC.Add(Shuf0, getOrigin(&I, 0)); 3041 SOC.Add(Shuf1, getOrigin(&I, 1)); 3042 SOC.Done(&I); 3043 } 3044 3045 void visitIntrinsicInst(IntrinsicInst &I) { 3046 switch (I.getIntrinsicID()) { 3047 case Intrinsic::lifetime_start: 3048 handleLifetimeStart(I); 3049 break; 3050 case Intrinsic::launder_invariant_group: 3051 case Intrinsic::strip_invariant_group: 3052 handleInvariantGroup(I); 3053 break; 3054 case Intrinsic::bswap: 3055 handleBswap(I); 3056 break; 3057 case Intrinsic::masked_store: 3058 handleMaskedStore(I); 3059 break; 3060 case Intrinsic::masked_load: 3061 handleMaskedLoad(I); 3062 break; 3063 case Intrinsic::x86_sse_stmxcsr: 3064 handleStmxcsr(I); 3065 break; 3066 case Intrinsic::x86_sse_ldmxcsr: 3067 handleLdmxcsr(I); 3068 break; 3069 case Intrinsic::x86_avx512_vcvtsd2usi64: 3070 case Intrinsic::x86_avx512_vcvtsd2usi32: 3071 case Intrinsic::x86_avx512_vcvtss2usi64: 3072 case Intrinsic::x86_avx512_vcvtss2usi32: 3073 case Intrinsic::x86_avx512_cvttss2usi64: 3074 case Intrinsic::x86_avx512_cvttss2usi: 3075 case Intrinsic::x86_avx512_cvttsd2usi64: 3076 case Intrinsic::x86_avx512_cvttsd2usi: 3077 case Intrinsic::x86_avx512_cvtusi2ss: 3078 case Intrinsic::x86_avx512_cvtusi642sd: 3079 case Intrinsic::x86_avx512_cvtusi642ss: 3080 case Intrinsic::x86_sse2_cvtsd2si64: 3081 case Intrinsic::x86_sse2_cvtsd2si: 3082 case Intrinsic::x86_sse2_cvtsd2ss: 3083 case Intrinsic::x86_sse2_cvttsd2si64: 3084 case Intrinsic::x86_sse2_cvttsd2si: 3085 case Intrinsic::x86_sse_cvtss2si64: 3086 case Intrinsic::x86_sse_cvtss2si: 3087 case Intrinsic::x86_sse_cvttss2si64: 3088 case Intrinsic::x86_sse_cvttss2si: 3089 handleVectorConvertIntrinsic(I, 1); 3090 break; 3091 case Intrinsic::x86_sse_cvtps2pi: 3092 case Intrinsic::x86_sse_cvttps2pi: 3093 handleVectorConvertIntrinsic(I, 2); 3094 break; 3095 3096 case Intrinsic::x86_avx512_psll_w_512: 3097 case Intrinsic::x86_avx512_psll_d_512: 3098 case Intrinsic::x86_avx512_psll_q_512: 3099 case Intrinsic::x86_avx512_pslli_w_512: 3100 case Intrinsic::x86_avx512_pslli_d_512: 3101 case Intrinsic::x86_avx512_pslli_q_512: 3102 case Intrinsic::x86_avx512_psrl_w_512: 3103 case Intrinsic::x86_avx512_psrl_d_512: 3104 case Intrinsic::x86_avx512_psrl_q_512: 3105 case Intrinsic::x86_avx512_psra_w_512: 3106 case Intrinsic::x86_avx512_psra_d_512: 3107 case Intrinsic::x86_avx512_psra_q_512: 3108 case Intrinsic::x86_avx512_psrli_w_512: 3109 case Intrinsic::x86_avx512_psrli_d_512: 3110 case Intrinsic::x86_avx512_psrli_q_512: 3111 case Intrinsic::x86_avx512_psrai_w_512: 3112 case Intrinsic::x86_avx512_psrai_d_512: 3113 case Intrinsic::x86_avx512_psrai_q_512: 3114 case Intrinsic::x86_avx512_psra_q_256: 3115 case Intrinsic::x86_avx512_psra_q_128: 3116 case Intrinsic::x86_avx512_psrai_q_256: 3117 case Intrinsic::x86_avx512_psrai_q_128: 3118 case Intrinsic::x86_avx2_psll_w: 3119 case Intrinsic::x86_avx2_psll_d: 3120 case Intrinsic::x86_avx2_psll_q: 3121 case Intrinsic::x86_avx2_pslli_w: 3122 case Intrinsic::x86_avx2_pslli_d: 3123 case Intrinsic::x86_avx2_pslli_q: 3124 case Intrinsic::x86_avx2_psrl_w: 3125 case Intrinsic::x86_avx2_psrl_d: 3126 case Intrinsic::x86_avx2_psrl_q: 3127 case Intrinsic::x86_avx2_psra_w: 3128 case Intrinsic::x86_avx2_psra_d: 3129 case Intrinsic::x86_avx2_psrli_w: 3130 case Intrinsic::x86_avx2_psrli_d: 3131 case Intrinsic::x86_avx2_psrli_q: 3132 case Intrinsic::x86_avx2_psrai_w: 3133 case Intrinsic::x86_avx2_psrai_d: 3134 case Intrinsic::x86_sse2_psll_w: 3135 case Intrinsic::x86_sse2_psll_d: 3136 case Intrinsic::x86_sse2_psll_q: 3137 case Intrinsic::x86_sse2_pslli_w: 3138 case Intrinsic::x86_sse2_pslli_d: 3139 case Intrinsic::x86_sse2_pslli_q: 3140 case Intrinsic::x86_sse2_psrl_w: 3141 case Intrinsic::x86_sse2_psrl_d: 3142 case Intrinsic::x86_sse2_psrl_q: 3143 case Intrinsic::x86_sse2_psra_w: 3144 case Intrinsic::x86_sse2_psra_d: 3145 case Intrinsic::x86_sse2_psrli_w: 3146 case Intrinsic::x86_sse2_psrli_d: 3147 case Intrinsic::x86_sse2_psrli_q: 3148 case Intrinsic::x86_sse2_psrai_w: 3149 case Intrinsic::x86_sse2_psrai_d: 3150 case Intrinsic::x86_mmx_psll_w: 3151 case Intrinsic::x86_mmx_psll_d: 3152 case Intrinsic::x86_mmx_psll_q: 3153 case Intrinsic::x86_mmx_pslli_w: 3154 case Intrinsic::x86_mmx_pslli_d: 3155 case Intrinsic::x86_mmx_pslli_q: 3156 case Intrinsic::x86_mmx_psrl_w: 3157 case Intrinsic::x86_mmx_psrl_d: 3158 case Intrinsic::x86_mmx_psrl_q: 3159 case Intrinsic::x86_mmx_psra_w: 3160 case Intrinsic::x86_mmx_psra_d: 3161 case Intrinsic::x86_mmx_psrli_w: 3162 case Intrinsic::x86_mmx_psrli_d: 3163 case Intrinsic::x86_mmx_psrli_q: 3164 case Intrinsic::x86_mmx_psrai_w: 3165 case Intrinsic::x86_mmx_psrai_d: 3166 handleVectorShiftIntrinsic(I, /* Variable */ false); 3167 break; 3168 case Intrinsic::x86_avx2_psllv_d: 3169 case Intrinsic::x86_avx2_psllv_d_256: 3170 case Intrinsic::x86_avx512_psllv_d_512: 3171 case Intrinsic::x86_avx2_psllv_q: 3172 case Intrinsic::x86_avx2_psllv_q_256: 3173 case Intrinsic::x86_avx512_psllv_q_512: 3174 case Intrinsic::x86_avx2_psrlv_d: 3175 case Intrinsic::x86_avx2_psrlv_d_256: 3176 case Intrinsic::x86_avx512_psrlv_d_512: 3177 case Intrinsic::x86_avx2_psrlv_q: 3178 case Intrinsic::x86_avx2_psrlv_q_256: 3179 case Intrinsic::x86_avx512_psrlv_q_512: 3180 case Intrinsic::x86_avx2_psrav_d: 3181 case Intrinsic::x86_avx2_psrav_d_256: 3182 case Intrinsic::x86_avx512_psrav_d_512: 3183 case Intrinsic::x86_avx512_psrav_q_128: 3184 case Intrinsic::x86_avx512_psrav_q_256: 3185 case Intrinsic::x86_avx512_psrav_q_512: 3186 handleVectorShiftIntrinsic(I, /* Variable */ true); 3187 break; 3188 3189 case Intrinsic::x86_sse2_packsswb_128: 3190 case Intrinsic::x86_sse2_packssdw_128: 3191 case Intrinsic::x86_sse2_packuswb_128: 3192 case Intrinsic::x86_sse41_packusdw: 3193 case Intrinsic::x86_avx2_packsswb: 3194 case Intrinsic::x86_avx2_packssdw: 3195 case Intrinsic::x86_avx2_packuswb: 3196 case Intrinsic::x86_avx2_packusdw: 3197 handleVectorPackIntrinsic(I); 3198 break; 3199 3200 case Intrinsic::x86_mmx_packsswb: 3201 case Intrinsic::x86_mmx_packuswb: 3202 handleVectorPackIntrinsic(I, 16); 3203 break; 3204 3205 case Intrinsic::x86_mmx_packssdw: 3206 handleVectorPackIntrinsic(I, 32); 3207 break; 3208 3209 case Intrinsic::x86_mmx_psad_bw: 3210 case Intrinsic::x86_sse2_psad_bw: 3211 case Intrinsic::x86_avx2_psad_bw: 3212 handleVectorSadIntrinsic(I); 3213 break; 3214 3215 case Intrinsic::x86_sse2_pmadd_wd: 3216 case Intrinsic::x86_avx2_pmadd_wd: 3217 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3218 case Intrinsic::x86_avx2_pmadd_ub_sw: 3219 handleVectorPmaddIntrinsic(I); 3220 break; 3221 3222 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3223 handleVectorPmaddIntrinsic(I, 8); 3224 break; 3225 3226 case Intrinsic::x86_mmx_pmadd_wd: 3227 handleVectorPmaddIntrinsic(I, 16); 3228 break; 3229 3230 case Intrinsic::x86_sse_cmp_ss: 3231 case Intrinsic::x86_sse2_cmp_sd: 3232 case Intrinsic::x86_sse_comieq_ss: 3233 case Intrinsic::x86_sse_comilt_ss: 3234 case Intrinsic::x86_sse_comile_ss: 3235 case Intrinsic::x86_sse_comigt_ss: 3236 case Intrinsic::x86_sse_comige_ss: 3237 case Intrinsic::x86_sse_comineq_ss: 3238 case Intrinsic::x86_sse_ucomieq_ss: 3239 case Intrinsic::x86_sse_ucomilt_ss: 3240 case Intrinsic::x86_sse_ucomile_ss: 3241 case Intrinsic::x86_sse_ucomigt_ss: 3242 case Intrinsic::x86_sse_ucomige_ss: 3243 case Intrinsic::x86_sse_ucomineq_ss: 3244 case Intrinsic::x86_sse2_comieq_sd: 3245 case Intrinsic::x86_sse2_comilt_sd: 3246 case Intrinsic::x86_sse2_comile_sd: 3247 case Intrinsic::x86_sse2_comigt_sd: 3248 case Intrinsic::x86_sse2_comige_sd: 3249 case Intrinsic::x86_sse2_comineq_sd: 3250 case Intrinsic::x86_sse2_ucomieq_sd: 3251 case Intrinsic::x86_sse2_ucomilt_sd: 3252 case Intrinsic::x86_sse2_ucomile_sd: 3253 case Intrinsic::x86_sse2_ucomigt_sd: 3254 case Intrinsic::x86_sse2_ucomige_sd: 3255 case Intrinsic::x86_sse2_ucomineq_sd: 3256 handleVectorCompareScalarIntrinsic(I); 3257 break; 3258 3259 case Intrinsic::x86_sse_cmp_ps: 3260 case Intrinsic::x86_sse2_cmp_pd: 3261 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3262 // generates reasonably looking IR that fails in the backend with "Do not 3263 // know how to split the result of this operator!". 3264 handleVectorComparePackedIntrinsic(I); 3265 break; 3266 3267 case Intrinsic::x86_bmi_bextr_32: 3268 case Intrinsic::x86_bmi_bextr_64: 3269 case Intrinsic::x86_bmi_bzhi_32: 3270 case Intrinsic::x86_bmi_bzhi_64: 3271 case Intrinsic::x86_bmi_pdep_32: 3272 case Intrinsic::x86_bmi_pdep_64: 3273 case Intrinsic::x86_bmi_pext_32: 3274 case Intrinsic::x86_bmi_pext_64: 3275 handleBmiIntrinsic(I); 3276 break; 3277 3278 case Intrinsic::x86_pclmulqdq: 3279 case Intrinsic::x86_pclmulqdq_256: 3280 case Intrinsic::x86_pclmulqdq_512: 3281 handlePclmulIntrinsic(I); 3282 break; 3283 3284 case Intrinsic::is_constant: 3285 // The result of llvm.is.constant() is always defined. 3286 setShadow(&I, getCleanShadow(&I)); 3287 setOrigin(&I, getCleanOrigin()); 3288 break; 3289 3290 default: 3291 if (!handleUnknownIntrinsic(I)) 3292 visitInstruction(I); 3293 break; 3294 } 3295 } 3296 3297 void visitCallSite(CallSite CS) { 3298 Instruction &I = *CS.getInstruction(); 3299 assert(!I.getMetadata("nosanitize")); 3300 assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) && 3301 "Unknown type of CallSite"); 3302 if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) { 3303 // For inline asm (either a call to asm function, or callbr instruction), 3304 // do the usual thing: check argument shadow and mark all outputs as 3305 // clean. Note that any side effects of the inline asm that are not 3306 // immediately visible in its constraints are not handled. 3307 if (ClHandleAsmConservative && MS.CompileKernel) 3308 visitAsmInstruction(I); 3309 else 3310 visitInstruction(I); 3311 return; 3312 } 3313 if (CS.isCall()) { 3314 CallInst *Call = cast<CallInst>(&I); 3315 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 3316 3317 // We are going to insert code that relies on the fact that the callee 3318 // will become a non-readonly function after it is instrumented by us. To 3319 // prevent this code from being optimized out, mark that function 3320 // non-readonly in advance. 3321 if (Function *Func = Call->getCalledFunction()) { 3322 // Clear out readonly/readnone attributes. 3323 AttrBuilder B; 3324 B.addAttribute(Attribute::ReadOnly) 3325 .addAttribute(Attribute::ReadNone) 3326 .addAttribute(Attribute::WriteOnly) 3327 .addAttribute(Attribute::ArgMemOnly) 3328 .addAttribute(Attribute::Speculatable); 3329 Func->removeAttributes(AttributeList::FunctionIndex, B); 3330 } 3331 3332 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3333 } 3334 IRBuilder<> IRB(&I); 3335 3336 unsigned ArgOffset = 0; 3337 LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n"); 3338 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3339 ArgIt != End; ++ArgIt) { 3340 Value *A = *ArgIt; 3341 unsigned i = ArgIt - CS.arg_begin(); 3342 if (!A->getType()->isSized()) { 3343 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 3344 continue; 3345 } 3346 unsigned Size = 0; 3347 Value *Store = nullptr; 3348 // Compute the Shadow for arg even if it is ByVal, because 3349 // in that case getShadow() will copy the actual arg shadow to 3350 // __msan_param_tls. 3351 Value *ArgShadow = getShadow(A); 3352 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3353 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3354 << " Shadow: " << *ArgShadow << "\n"); 3355 bool ArgIsInitialized = false; 3356 const DataLayout &DL = F.getParent()->getDataLayout(); 3357 if (CS.paramHasAttr(i, Attribute::ByVal)) { 3358 assert(A->getType()->isPointerTy() && 3359 "ByVal argument is not a pointer!"); 3360 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 3361 if (ArgOffset + Size > kParamTLSSize) break; 3362 const MaybeAlign ParamAlignment(CS.getParamAlignment(i)); 3363 MaybeAlign Alignment = llvm::None; 3364 if (ParamAlignment) 3365 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3366 Value *AShadowPtr = 3367 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3368 /*isStore*/ false) 3369 .first; 3370 3371 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3372 Alignment, Size); 3373 // TODO(glider): need to copy origins. 3374 } else { 3375 Size = DL.getTypeAllocSize(A->getType()); 3376 if (ArgOffset + Size > kParamTLSSize) break; 3377 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3378 kShadowTLSAlignment.value()); 3379 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3380 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3381 } 3382 if (MS.TrackOrigins && !ArgIsInitialized) 3383 IRB.CreateStore(getOrigin(A), 3384 getOriginPtrForArgument(A, IRB, ArgOffset)); 3385 (void)Store; 3386 assert(Size != 0 && Store != nullptr); 3387 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3388 ArgOffset += alignTo(Size, 8); 3389 } 3390 LLVM_DEBUG(dbgs() << " done with call args\n"); 3391 3392 FunctionType *FT = CS.getFunctionType(); 3393 if (FT->isVarArg()) { 3394 VAHelper->visitCallSite(CS, IRB); 3395 } 3396 3397 // Now, get the shadow for the RetVal. 3398 if (!I.getType()->isSized()) return; 3399 // Don't emit the epilogue for musttail call returns. 3400 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 3401 IRBuilder<> IRBBefore(&I); 3402 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3403 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 3404 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, 3405 kShadowTLSAlignment.value()); 3406 BasicBlock::iterator NextInsn; 3407 if (CS.isCall()) { 3408 NextInsn = ++I.getIterator(); 3409 assert(NextInsn != I.getParent()->end()); 3410 } else { 3411 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 3412 if (!NormalDest->getSinglePredecessor()) { 3413 // FIXME: this case is tricky, so we are just conservative here. 3414 // Perhaps we need to split the edge between this BB and NormalDest, 3415 // but a naive attempt to use SplitEdge leads to a crash. 3416 setShadow(&I, getCleanShadow(&I)); 3417 setOrigin(&I, getCleanOrigin()); 3418 return; 3419 } 3420 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3421 // Anything inserted there will be instrumented by MSan later! 3422 NextInsn = NormalDest->getFirstInsertionPt(); 3423 assert(NextInsn != NormalDest->end() && 3424 "Could not find insertion point for retval shadow load"); 3425 } 3426 IRBuilder<> IRBAfter(&*NextInsn); 3427 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3428 getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter), 3429 kShadowTLSAlignment.value(), "_msret"); 3430 setShadow(&I, RetvalShadow); 3431 if (MS.TrackOrigins) 3432 setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy, 3433 getOriginPtrForRetval(IRBAfter))); 3434 } 3435 3436 bool isAMustTailRetVal(Value *RetVal) { 3437 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3438 RetVal = I->getOperand(0); 3439 } 3440 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3441 return I->isMustTailCall(); 3442 } 3443 return false; 3444 } 3445 3446 void visitReturnInst(ReturnInst &I) { 3447 IRBuilder<> IRB(&I); 3448 Value *RetVal = I.getReturnValue(); 3449 if (!RetVal) return; 3450 // Don't emit the epilogue for musttail call returns. 3451 if (isAMustTailRetVal(RetVal)) return; 3452 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3453 if (CheckReturnValue) { 3454 insertShadowCheck(RetVal, &I); 3455 Value *Shadow = getCleanShadow(RetVal); 3456 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment.value()); 3457 } else { 3458 Value *Shadow = getShadow(RetVal); 3459 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment.value()); 3460 if (MS.TrackOrigins) 3461 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3462 } 3463 } 3464 3465 void visitPHINode(PHINode &I) { 3466 IRBuilder<> IRB(&I); 3467 if (!PropagateShadow) { 3468 setShadow(&I, getCleanShadow(&I)); 3469 setOrigin(&I, getCleanOrigin()); 3470 return; 3471 } 3472 3473 ShadowPHINodes.push_back(&I); 3474 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3475 "_msphi_s")); 3476 if (MS.TrackOrigins) 3477 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3478 "_msphi_o")); 3479 } 3480 3481 Value *getLocalVarDescription(AllocaInst &I) { 3482 SmallString<2048> StackDescriptionStorage; 3483 raw_svector_ostream StackDescription(StackDescriptionStorage); 3484 // We create a string with a description of the stack allocation and 3485 // pass it into __msan_set_alloca_origin. 3486 // It will be printed by the run-time if stack-originated UMR is found. 3487 // The first 4 bytes of the string are set to '----' and will be replaced 3488 // by __msan_va_arg_overflow_size_tls at the first call. 3489 StackDescription << "----" << I.getName() << "@" << F.getName(); 3490 return createPrivateNonConstGlobalForString(*F.getParent(), 3491 StackDescription.str()); 3492 } 3493 3494 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3495 if (PoisonStack && ClPoisonStackWithCall) { 3496 IRB.CreateCall(MS.MsanPoisonStackFn, 3497 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3498 } else { 3499 Value *ShadowBase, *OriginBase; 3500 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3501 &I, IRB, IRB.getInt8Ty(), Align::None(), /*isStore*/ true); 3502 3503 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3504 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3505 MaybeAlign(I.getAlignment())); 3506 } 3507 3508 if (PoisonStack && MS.TrackOrigins) { 3509 Value *Descr = getLocalVarDescription(I); 3510 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3511 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3512 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3513 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3514 } 3515 } 3516 3517 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3518 Value *Descr = getLocalVarDescription(I); 3519 if (PoisonStack) { 3520 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3521 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3522 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3523 } else { 3524 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3525 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3526 } 3527 } 3528 3529 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3530 if (!InsPoint) 3531 InsPoint = &I; 3532 IRBuilder<> IRB(InsPoint->getNextNode()); 3533 const DataLayout &DL = F.getParent()->getDataLayout(); 3534 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3535 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3536 if (I.isArrayAllocation()) 3537 Len = IRB.CreateMul(Len, I.getArraySize()); 3538 3539 if (MS.CompileKernel) 3540 poisonAllocaKmsan(I, IRB, Len); 3541 else 3542 poisonAllocaUserspace(I, IRB, Len); 3543 } 3544 3545 void visitAllocaInst(AllocaInst &I) { 3546 setShadow(&I, getCleanShadow(&I)); 3547 setOrigin(&I, getCleanOrigin()); 3548 // We'll get to this alloca later unless it's poisoned at the corresponding 3549 // llvm.lifetime.start. 3550 AllocaSet.insert(&I); 3551 } 3552 3553 void visitSelectInst(SelectInst& I) { 3554 IRBuilder<> IRB(&I); 3555 // a = select b, c, d 3556 Value *B = I.getCondition(); 3557 Value *C = I.getTrueValue(); 3558 Value *D = I.getFalseValue(); 3559 Value *Sb = getShadow(B); 3560 Value *Sc = getShadow(C); 3561 Value *Sd = getShadow(D); 3562 3563 // Result shadow if condition shadow is 0. 3564 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3565 Value *Sa1; 3566 if (I.getType()->isAggregateType()) { 3567 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3568 // an extra "select". This results in much more compact IR. 3569 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3570 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3571 } else { 3572 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3573 // If Sb (condition is poisoned), look for bits in c and d that are equal 3574 // and both unpoisoned. 3575 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3576 3577 // Cast arguments to shadow-compatible type. 3578 C = CreateAppToShadowCast(IRB, C); 3579 D = CreateAppToShadowCast(IRB, D); 3580 3581 // Result shadow if condition shadow is 1. 3582 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3583 } 3584 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3585 setShadow(&I, Sa); 3586 if (MS.TrackOrigins) { 3587 // Origins are always i32, so any vector conditions must be flattened. 3588 // FIXME: consider tracking vector origins for app vectors? 3589 if (B->getType()->isVectorTy()) { 3590 Type *FlatTy = getShadowTyNoVec(B->getType()); 3591 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3592 ConstantInt::getNullValue(FlatTy)); 3593 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3594 ConstantInt::getNullValue(FlatTy)); 3595 } 3596 // a = select b, c, d 3597 // Oa = Sb ? Ob : (b ? Oc : Od) 3598 setOrigin( 3599 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3600 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3601 getOrigin(I.getFalseValue())))); 3602 } 3603 } 3604 3605 void visitLandingPadInst(LandingPadInst &I) { 3606 // Do nothing. 3607 // See https://github.com/google/sanitizers/issues/504 3608 setShadow(&I, getCleanShadow(&I)); 3609 setOrigin(&I, getCleanOrigin()); 3610 } 3611 3612 void visitCatchSwitchInst(CatchSwitchInst &I) { 3613 setShadow(&I, getCleanShadow(&I)); 3614 setOrigin(&I, getCleanOrigin()); 3615 } 3616 3617 void visitFuncletPadInst(FuncletPadInst &I) { 3618 setShadow(&I, getCleanShadow(&I)); 3619 setOrigin(&I, getCleanOrigin()); 3620 } 3621 3622 void visitGetElementPtrInst(GetElementPtrInst &I) { 3623 handleShadowOr(I); 3624 } 3625 3626 void visitExtractValueInst(ExtractValueInst &I) { 3627 IRBuilder<> IRB(&I); 3628 Value *Agg = I.getAggregateOperand(); 3629 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3630 Value *AggShadow = getShadow(Agg); 3631 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3632 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3633 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3634 setShadow(&I, ResShadow); 3635 setOriginForNaryOp(I); 3636 } 3637 3638 void visitInsertValueInst(InsertValueInst &I) { 3639 IRBuilder<> IRB(&I); 3640 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3641 Value *AggShadow = getShadow(I.getAggregateOperand()); 3642 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3643 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3644 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3645 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3646 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3647 setShadow(&I, Res); 3648 setOriginForNaryOp(I); 3649 } 3650 3651 void dumpInst(Instruction &I) { 3652 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3653 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3654 } else { 3655 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3656 } 3657 errs() << "QQQ " << I << "\n"; 3658 } 3659 3660 void visitResumeInst(ResumeInst &I) { 3661 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3662 // Nothing to do here. 3663 } 3664 3665 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3666 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3667 // Nothing to do here. 3668 } 3669 3670 void visitCatchReturnInst(CatchReturnInst &CRI) { 3671 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3672 // Nothing to do here. 3673 } 3674 3675 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3676 const DataLayout &DL, bool isOutput) { 3677 // For each assembly argument, we check its value for being initialized. 3678 // If the argument is a pointer, we assume it points to a single element 3679 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3680 // Each such pointer is instrumented with a call to the runtime library. 3681 Type *OpType = Operand->getType(); 3682 // Check the operand value itself. 3683 insertShadowCheck(Operand, &I); 3684 if (!OpType->isPointerTy() || !isOutput) { 3685 assert(!isOutput); 3686 return; 3687 } 3688 Type *ElType = OpType->getPointerElementType(); 3689 if (!ElType->isSized()) 3690 return; 3691 int Size = DL.getTypeStoreSize(ElType); 3692 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3693 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 3694 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 3695 } 3696 3697 /// Get the number of output arguments returned by pointers. 3698 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 3699 int NumRetOutputs = 0; 3700 int NumOutputs = 0; 3701 Type *RetTy = cast<Value>(CB)->getType(); 3702 if (!RetTy->isVoidTy()) { 3703 // Register outputs are returned via the CallInst return value. 3704 auto *ST = dyn_cast<StructType>(RetTy); 3705 if (ST) 3706 NumRetOutputs = ST->getNumElements(); 3707 else 3708 NumRetOutputs = 1; 3709 } 3710 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 3711 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 3712 InlineAsm::ConstraintInfo Info = Constraints[i]; 3713 switch (Info.Type) { 3714 case InlineAsm::isOutput: 3715 NumOutputs++; 3716 break; 3717 default: 3718 break; 3719 } 3720 } 3721 return NumOutputs - NumRetOutputs; 3722 } 3723 3724 void visitAsmInstruction(Instruction &I) { 3725 // Conservative inline assembly handling: check for poisoned shadow of 3726 // asm() arguments, then unpoison the result and all the memory locations 3727 // pointed to by those arguments. 3728 // An inline asm() statement in C++ contains lists of input and output 3729 // arguments used by the assembly code. These are mapped to operands of the 3730 // CallInst as follows: 3731 // - nR register outputs ("=r) are returned by value in a single structure 3732 // (SSA value of the CallInst); 3733 // - nO other outputs ("=m" and others) are returned by pointer as first 3734 // nO operands of the CallInst; 3735 // - nI inputs ("r", "m" and others) are passed to CallInst as the 3736 // remaining nI operands. 3737 // The total number of asm() arguments in the source is nR+nO+nI, and the 3738 // corresponding CallInst has nO+nI+1 operands (the last operand is the 3739 // function to be called). 3740 const DataLayout &DL = F.getParent()->getDataLayout(); 3741 CallBase *CB = cast<CallBase>(&I); 3742 IRBuilder<> IRB(&I); 3743 InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue()); 3744 int OutputArgs = getNumOutputArgs(IA, CB); 3745 // The last operand of a CallInst is the function itself. 3746 int NumOperands = CB->getNumOperands() - 1; 3747 3748 // Check input arguments. Doing so before unpoisoning output arguments, so 3749 // that we won't overwrite uninit values before checking them. 3750 for (int i = OutputArgs; i < NumOperands; i++) { 3751 Value *Operand = CB->getOperand(i); 3752 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 3753 } 3754 // Unpoison output arguments. This must happen before the actual InlineAsm 3755 // call, so that the shadow for memory published in the asm() statement 3756 // remains valid. 3757 for (int i = 0; i < OutputArgs; i++) { 3758 Value *Operand = CB->getOperand(i); 3759 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 3760 } 3761 3762 setShadow(&I, getCleanShadow(&I)); 3763 setOrigin(&I, getCleanOrigin()); 3764 } 3765 3766 void visitInstruction(Instruction &I) { 3767 // Everything else: stop propagating and check for poisoned shadow. 3768 if (ClDumpStrictInstructions) 3769 dumpInst(I); 3770 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 3771 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 3772 Value *Operand = I.getOperand(i); 3773 if (Operand->getType()->isSized()) 3774 insertShadowCheck(Operand, &I); 3775 } 3776 setShadow(&I, getCleanShadow(&I)); 3777 setOrigin(&I, getCleanOrigin()); 3778 } 3779 }; 3780 3781 /// AMD64-specific implementation of VarArgHelper. 3782 struct VarArgAMD64Helper : public VarArgHelper { 3783 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 3784 // See a comment in visitCallSite for more details. 3785 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 3786 static const unsigned AMD64FpEndOffsetSSE = 176; 3787 // If SSE is disabled, fp_offset in va_list is zero. 3788 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 3789 3790 unsigned AMD64FpEndOffset; 3791 Function &F; 3792 MemorySanitizer &MS; 3793 MemorySanitizerVisitor &MSV; 3794 Value *VAArgTLSCopy = nullptr; 3795 Value *VAArgTLSOriginCopy = nullptr; 3796 Value *VAArgOverflowSize = nullptr; 3797 3798 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3799 3800 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3801 3802 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 3803 MemorySanitizerVisitor &MSV) 3804 : F(F), MS(MS), MSV(MSV) { 3805 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 3806 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 3807 if (Attr.isStringAttribute() && 3808 (Attr.getKindAsString() == "target-features")) { 3809 if (Attr.getValueAsString().contains("-sse")) 3810 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 3811 break; 3812 } 3813 } 3814 } 3815 3816 ArgKind classifyArgument(Value* arg) { 3817 // A very rough approximation of X86_64 argument classification rules. 3818 Type *T = arg->getType(); 3819 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 3820 return AK_FloatingPoint; 3821 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3822 return AK_GeneralPurpose; 3823 if (T->isPointerTy()) 3824 return AK_GeneralPurpose; 3825 return AK_Memory; 3826 } 3827 3828 // For VarArg functions, store the argument shadow in an ABI-specific format 3829 // that corresponds to va_list layout. 3830 // We do this because Clang lowers va_arg in the frontend, and this pass 3831 // only sees the low level code that deals with va_list internals. 3832 // A much easier alternative (provided that Clang emits va_arg instructions) 3833 // would have been to associate each live instance of va_list with a copy of 3834 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 3835 // order. 3836 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3837 unsigned GpOffset = 0; 3838 unsigned FpOffset = AMD64GpEndOffset; 3839 unsigned OverflowOffset = AMD64FpEndOffset; 3840 const DataLayout &DL = F.getParent()->getDataLayout(); 3841 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3842 ArgIt != End; ++ArgIt) { 3843 Value *A = *ArgIt; 3844 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3845 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3846 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 3847 if (IsByVal) { 3848 // ByVal arguments always go to the overflow area. 3849 // Fixed arguments passed through the overflow area will be stepped 3850 // over by va_start, so don't count them towards the offset. 3851 if (IsFixed) 3852 continue; 3853 assert(A->getType()->isPointerTy()); 3854 Type *RealTy = A->getType()->getPointerElementType(); 3855 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3856 Value *ShadowBase = getShadowPtrForVAArgument( 3857 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 3858 Value *OriginBase = nullptr; 3859 if (MS.TrackOrigins) 3860 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 3861 OverflowOffset += alignTo(ArgSize, 8); 3862 if (!ShadowBase) 3863 continue; 3864 Value *ShadowPtr, *OriginPtr; 3865 std::tie(ShadowPtr, OriginPtr) = 3866 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 3867 /*isStore*/ false); 3868 3869 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 3870 kShadowTLSAlignment, ArgSize); 3871 if (MS.TrackOrigins) 3872 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 3873 kShadowTLSAlignment, ArgSize); 3874 } else { 3875 ArgKind AK = classifyArgument(A); 3876 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 3877 AK = AK_Memory; 3878 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 3879 AK = AK_Memory; 3880 Value *ShadowBase, *OriginBase = nullptr; 3881 switch (AK) { 3882 case AK_GeneralPurpose: 3883 ShadowBase = 3884 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 3885 if (MS.TrackOrigins) 3886 OriginBase = 3887 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 3888 GpOffset += 8; 3889 break; 3890 case AK_FloatingPoint: 3891 ShadowBase = 3892 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 3893 if (MS.TrackOrigins) 3894 OriginBase = 3895 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 3896 FpOffset += 16; 3897 break; 3898 case AK_Memory: 3899 if (IsFixed) 3900 continue; 3901 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3902 ShadowBase = 3903 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 3904 if (MS.TrackOrigins) 3905 OriginBase = 3906 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3907 OverflowOffset += alignTo(ArgSize, 8); 3908 } 3909 // Take fixed arguments into account for GpOffset and FpOffset, 3910 // but don't actually store shadows for them. 3911 // TODO(glider): don't call get*PtrForVAArgument() for them. 3912 if (IsFixed) 3913 continue; 3914 if (!ShadowBase) 3915 continue; 3916 Value *Shadow = MSV.getShadow(A); 3917 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment.value()); 3918 if (MS.TrackOrigins) { 3919 Value *Origin = MSV.getOrigin(A); 3920 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 3921 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 3922 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 3923 } 3924 } 3925 } 3926 Constant *OverflowSize = 3927 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 3928 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3929 } 3930 3931 /// Compute the shadow address for a given va_arg. 3932 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3933 unsigned ArgOffset, unsigned ArgSize) { 3934 // Make sure we don't overflow __msan_va_arg_tls. 3935 if (ArgOffset + ArgSize > kParamTLSSize) 3936 return nullptr; 3937 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3938 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3939 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3940 "_msarg_va_s"); 3941 } 3942 3943 /// Compute the origin address for a given va_arg. 3944 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 3945 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 3946 // getOriginPtrForVAArgument() is always called after 3947 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 3948 // overflow. 3949 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3950 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 3951 "_msarg_va_o"); 3952 } 3953 3954 void unpoisonVAListTagForInst(IntrinsicInst &I) { 3955 IRBuilder<> IRB(&I); 3956 Value *VAListTag = I.getArgOperand(0); 3957 Value *ShadowPtr, *OriginPtr; 3958 const Align Alignment = Align(8); 3959 std::tie(ShadowPtr, OriginPtr) = 3960 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 3961 /*isStore*/ true); 3962 3963 // Unpoison the whole __va_list_tag. 3964 // FIXME: magic ABI constants. 3965 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3966 /* size */ 24, Alignment, false); 3967 // We shouldn't need to zero out the origins, as they're only checked for 3968 // nonzero shadow. 3969 } 3970 3971 void visitVAStartInst(VAStartInst &I) override { 3972 if (F.getCallingConv() == CallingConv::Win64) 3973 return; 3974 VAStartInstrumentationList.push_back(&I); 3975 unpoisonVAListTagForInst(I); 3976 } 3977 3978 void visitVACopyInst(VACopyInst &I) override { 3979 if (F.getCallingConv() == CallingConv::Win64) return; 3980 unpoisonVAListTagForInst(I); 3981 } 3982 3983 void finalizeInstrumentation() override { 3984 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3985 "finalizeInstrumentation called twice"); 3986 if (!VAStartInstrumentationList.empty()) { 3987 // If there is a va_start in this function, make a backup copy of 3988 // va_arg_tls somewhere in the function entry block. 3989 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 3990 VAArgOverflowSize = 3991 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 3992 Value *CopySize = 3993 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 3994 VAArgOverflowSize); 3995 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3996 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 3997 if (MS.TrackOrigins) { 3998 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3999 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4000 Align(8), CopySize); 4001 } 4002 } 4003 4004 // Instrument va_start. 4005 // Copy va_list shadow from the backup copy of the TLS contents. 4006 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4007 CallInst *OrigInst = VAStartInstrumentationList[i]; 4008 IRBuilder<> IRB(OrigInst->getNextNode()); 4009 Value *VAListTag = OrigInst->getArgOperand(0); 4010 4011 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4012 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4013 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4014 ConstantInt::get(MS.IntptrTy, 16)), 4015 PointerType::get(RegSaveAreaPtrTy, 0)); 4016 Value *RegSaveAreaPtr = 4017 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4018 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4019 const Align Alignment = Align(16); 4020 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4021 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4022 Alignment, /*isStore*/ true); 4023 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4024 AMD64FpEndOffset); 4025 if (MS.TrackOrigins) 4026 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4027 Alignment, AMD64FpEndOffset); 4028 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4029 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4030 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4031 ConstantInt::get(MS.IntptrTy, 8)), 4032 PointerType::get(OverflowArgAreaPtrTy, 0)); 4033 Value *OverflowArgAreaPtr = 4034 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4035 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4036 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4037 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4038 Alignment, /*isStore*/ true); 4039 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4040 AMD64FpEndOffset); 4041 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4042 VAArgOverflowSize); 4043 if (MS.TrackOrigins) { 4044 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4045 AMD64FpEndOffset); 4046 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4047 VAArgOverflowSize); 4048 } 4049 } 4050 } 4051 }; 4052 4053 /// MIPS64-specific implementation of VarArgHelper. 4054 struct VarArgMIPS64Helper : public VarArgHelper { 4055 Function &F; 4056 MemorySanitizer &MS; 4057 MemorySanitizerVisitor &MSV; 4058 Value *VAArgTLSCopy = nullptr; 4059 Value *VAArgSize = nullptr; 4060 4061 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4062 4063 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4064 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4065 4066 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4067 unsigned VAArgOffset = 0; 4068 const DataLayout &DL = F.getParent()->getDataLayout(); 4069 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 4070 CS.getFunctionType()->getNumParams(), End = CS.arg_end(); 4071 ArgIt != End; ++ArgIt) { 4072 Triple TargetTriple(F.getParent()->getTargetTriple()); 4073 Value *A = *ArgIt; 4074 Value *Base; 4075 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4076 if (TargetTriple.getArch() == Triple::mips64) { 4077 // Adjusting the shadow for argument with size < 8 to match the placement 4078 // of bits in big endian system 4079 if (ArgSize < 8) 4080 VAArgOffset += (8 - ArgSize); 4081 } 4082 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4083 VAArgOffset += ArgSize; 4084 VAArgOffset = alignTo(VAArgOffset, 8); 4085 if (!Base) 4086 continue; 4087 IRB.CreateAlignedStore(MSV.getShadow(A), Base, 4088 kShadowTLSAlignment.value()); 4089 } 4090 4091 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4092 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4093 // a new class member i.e. it is the total size of all VarArgs. 4094 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4095 } 4096 4097 /// Compute the shadow address for a given va_arg. 4098 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4099 unsigned ArgOffset, unsigned ArgSize) { 4100 // Make sure we don't overflow __msan_va_arg_tls. 4101 if (ArgOffset + ArgSize > kParamTLSSize) 4102 return nullptr; 4103 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4104 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4105 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4106 "_msarg"); 4107 } 4108 4109 void visitVAStartInst(VAStartInst &I) override { 4110 IRBuilder<> IRB(&I); 4111 VAStartInstrumentationList.push_back(&I); 4112 Value *VAListTag = I.getArgOperand(0); 4113 Value *ShadowPtr, *OriginPtr; 4114 const Align Alignment = Align(8); 4115 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4116 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4117 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4118 /* size */ 8, Alignment, false); 4119 } 4120 4121 void visitVACopyInst(VACopyInst &I) override { 4122 IRBuilder<> IRB(&I); 4123 VAStartInstrumentationList.push_back(&I); 4124 Value *VAListTag = I.getArgOperand(0); 4125 Value *ShadowPtr, *OriginPtr; 4126 const Align Alignment = Align(8); 4127 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4128 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4129 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4130 /* size */ 8, Alignment, false); 4131 } 4132 4133 void finalizeInstrumentation() override { 4134 assert(!VAArgSize && !VAArgTLSCopy && 4135 "finalizeInstrumentation called twice"); 4136 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4137 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4138 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4139 VAArgSize); 4140 4141 if (!VAStartInstrumentationList.empty()) { 4142 // If there is a va_start in this function, make a backup copy of 4143 // va_arg_tls somewhere in the function entry block. 4144 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4145 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4146 } 4147 4148 // Instrument va_start. 4149 // Copy va_list shadow from the backup copy of the TLS contents. 4150 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4151 CallInst *OrigInst = VAStartInstrumentationList[i]; 4152 IRBuilder<> IRB(OrigInst->getNextNode()); 4153 Value *VAListTag = OrigInst->getArgOperand(0); 4154 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4155 Value *RegSaveAreaPtrPtr = 4156 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4157 PointerType::get(RegSaveAreaPtrTy, 0)); 4158 Value *RegSaveAreaPtr = 4159 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4160 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4161 const Align Alignment = Align(8); 4162 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4163 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4164 Alignment, /*isStore*/ true); 4165 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4166 CopySize); 4167 } 4168 } 4169 }; 4170 4171 /// AArch64-specific implementation of VarArgHelper. 4172 struct VarArgAArch64Helper : public VarArgHelper { 4173 static const unsigned kAArch64GrArgSize = 64; 4174 static const unsigned kAArch64VrArgSize = 128; 4175 4176 static const unsigned AArch64GrBegOffset = 0; 4177 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4178 // Make VR space aligned to 16 bytes. 4179 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4180 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4181 + kAArch64VrArgSize; 4182 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4183 4184 Function &F; 4185 MemorySanitizer &MS; 4186 MemorySanitizerVisitor &MSV; 4187 Value *VAArgTLSCopy = nullptr; 4188 Value *VAArgOverflowSize = nullptr; 4189 4190 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4191 4192 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4193 4194 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4195 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4196 4197 ArgKind classifyArgument(Value* arg) { 4198 Type *T = arg->getType(); 4199 if (T->isFPOrFPVectorTy()) 4200 return AK_FloatingPoint; 4201 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4202 || (T->isPointerTy())) 4203 return AK_GeneralPurpose; 4204 return AK_Memory; 4205 } 4206 4207 // The instrumentation stores the argument shadow in a non ABI-specific 4208 // format because it does not know which argument is named (since Clang, 4209 // like x86_64 case, lowers the va_args in the frontend and this pass only 4210 // sees the low level code that deals with va_list internals). 4211 // The first seven GR registers are saved in the first 56 bytes of the 4212 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4213 // the remaining arguments. 4214 // Using constant offset within the va_arg TLS array allows fast copy 4215 // in the finalize instrumentation. 4216 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4217 unsigned GrOffset = AArch64GrBegOffset; 4218 unsigned VrOffset = AArch64VrBegOffset; 4219 unsigned OverflowOffset = AArch64VAEndOffset; 4220 4221 const DataLayout &DL = F.getParent()->getDataLayout(); 4222 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4223 ArgIt != End; ++ArgIt) { 4224 Value *A = *ArgIt; 4225 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4226 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4227 ArgKind AK = classifyArgument(A); 4228 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4229 AK = AK_Memory; 4230 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4231 AK = AK_Memory; 4232 Value *Base; 4233 switch (AK) { 4234 case AK_GeneralPurpose: 4235 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4236 GrOffset += 8; 4237 break; 4238 case AK_FloatingPoint: 4239 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4240 VrOffset += 16; 4241 break; 4242 case AK_Memory: 4243 // Don't count fixed arguments in the overflow area - va_start will 4244 // skip right over them. 4245 if (IsFixed) 4246 continue; 4247 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4248 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4249 alignTo(ArgSize, 8)); 4250 OverflowOffset += alignTo(ArgSize, 8); 4251 break; 4252 } 4253 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4254 // bother to actually store a shadow. 4255 if (IsFixed) 4256 continue; 4257 if (!Base) 4258 continue; 4259 IRB.CreateAlignedStore(MSV.getShadow(A), Base, 4260 kShadowTLSAlignment.value()); 4261 } 4262 Constant *OverflowSize = 4263 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4264 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4265 } 4266 4267 /// Compute the shadow address for a given va_arg. 4268 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4269 unsigned ArgOffset, unsigned ArgSize) { 4270 // Make sure we don't overflow __msan_va_arg_tls. 4271 if (ArgOffset + ArgSize > kParamTLSSize) 4272 return nullptr; 4273 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4274 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4275 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4276 "_msarg"); 4277 } 4278 4279 void visitVAStartInst(VAStartInst &I) override { 4280 IRBuilder<> IRB(&I); 4281 VAStartInstrumentationList.push_back(&I); 4282 Value *VAListTag = I.getArgOperand(0); 4283 Value *ShadowPtr, *OriginPtr; 4284 const Align Alignment = Align(8); 4285 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4286 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4287 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4288 /* size */ 32, Alignment, false); 4289 } 4290 4291 void visitVACopyInst(VACopyInst &I) override { 4292 IRBuilder<> IRB(&I); 4293 VAStartInstrumentationList.push_back(&I); 4294 Value *VAListTag = I.getArgOperand(0); 4295 Value *ShadowPtr, *OriginPtr; 4296 const Align Alignment = Align(8); 4297 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4298 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4299 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4300 /* size */ 32, Alignment, false); 4301 } 4302 4303 // Retrieve a va_list field of 'void*' size. 4304 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4305 Value *SaveAreaPtrPtr = 4306 IRB.CreateIntToPtr( 4307 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4308 ConstantInt::get(MS.IntptrTy, offset)), 4309 Type::getInt64PtrTy(*MS.C)); 4310 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4311 } 4312 4313 // Retrieve a va_list field of 'int' size. 4314 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4315 Value *SaveAreaPtr = 4316 IRB.CreateIntToPtr( 4317 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4318 ConstantInt::get(MS.IntptrTy, offset)), 4319 Type::getInt32PtrTy(*MS.C)); 4320 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4321 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4322 } 4323 4324 void finalizeInstrumentation() override { 4325 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4326 "finalizeInstrumentation called twice"); 4327 if (!VAStartInstrumentationList.empty()) { 4328 // If there is a va_start in this function, make a backup copy of 4329 // va_arg_tls somewhere in the function entry block. 4330 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4331 VAArgOverflowSize = 4332 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4333 Value *CopySize = 4334 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4335 VAArgOverflowSize); 4336 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4337 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4338 } 4339 4340 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4341 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4342 4343 // Instrument va_start, copy va_list shadow from the backup copy of 4344 // the TLS contents. 4345 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4346 CallInst *OrigInst = VAStartInstrumentationList[i]; 4347 IRBuilder<> IRB(OrigInst->getNextNode()); 4348 4349 Value *VAListTag = OrigInst->getArgOperand(0); 4350 4351 // The variadic ABI for AArch64 creates two areas to save the incoming 4352 // argument registers (one for 64-bit general register xn-x7 and another 4353 // for 128-bit FP/SIMD vn-v7). 4354 // We need then to propagate the shadow arguments on both regions 4355 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4356 // The remaning arguments are saved on shadow for 'va::stack'. 4357 // One caveat is it requires only to propagate the non-named arguments, 4358 // however on the call site instrumentation 'all' the arguments are 4359 // saved. So to copy the shadow values from the va_arg TLS array 4360 // we need to adjust the offset for both GR and VR fields based on 4361 // the __{gr,vr}_offs value (since they are stores based on incoming 4362 // named arguments). 4363 4364 // Read the stack pointer from the va_list. 4365 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4366 4367 // Read both the __gr_top and __gr_off and add them up. 4368 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4369 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4370 4371 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4372 4373 // Read both the __vr_top and __vr_off and add them up. 4374 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4375 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4376 4377 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4378 4379 // It does not know how many named arguments is being used and, on the 4380 // callsite all the arguments were saved. Since __gr_off is defined as 4381 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4382 // argument by ignoring the bytes of shadow from named arguments. 4383 Value *GrRegSaveAreaShadowPtrOff = 4384 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4385 4386 Value *GrRegSaveAreaShadowPtr = 4387 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4388 Align(8), /*isStore*/ true) 4389 .first; 4390 4391 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4392 GrRegSaveAreaShadowPtrOff); 4393 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4394 4395 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4396 GrCopySize); 4397 4398 // Again, but for FP/SIMD values. 4399 Value *VrRegSaveAreaShadowPtrOff = 4400 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4401 4402 Value *VrRegSaveAreaShadowPtr = 4403 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4404 Align(8), /*isStore*/ true) 4405 .first; 4406 4407 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4408 IRB.getInt8Ty(), 4409 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4410 IRB.getInt32(AArch64VrBegOffset)), 4411 VrRegSaveAreaShadowPtrOff); 4412 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4413 4414 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4415 VrCopySize); 4416 4417 // And finally for remaining arguments. 4418 Value *StackSaveAreaShadowPtr = 4419 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4420 Align(16), /*isStore*/ true) 4421 .first; 4422 4423 Value *StackSrcPtr = 4424 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4425 IRB.getInt32(AArch64VAEndOffset)); 4426 4427 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4428 Align(16), VAArgOverflowSize); 4429 } 4430 } 4431 }; 4432 4433 /// PowerPC64-specific implementation of VarArgHelper. 4434 struct VarArgPowerPC64Helper : public VarArgHelper { 4435 Function &F; 4436 MemorySanitizer &MS; 4437 MemorySanitizerVisitor &MSV; 4438 Value *VAArgTLSCopy = nullptr; 4439 Value *VAArgSize = nullptr; 4440 4441 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4442 4443 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4444 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4445 4446 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4447 // For PowerPC, we need to deal with alignment of stack arguments - 4448 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4449 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4450 // and QPX vectors are aligned to 32 bytes. For that reason, we 4451 // compute current offset from stack pointer (which is always properly 4452 // aligned), and offset for the first vararg, then subtract them. 4453 unsigned VAArgBase; 4454 Triple TargetTriple(F.getParent()->getTargetTriple()); 4455 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4456 // and 32 bytes for ABIv2. This is usually determined by target 4457 // endianness, but in theory could be overriden by function attribute. 4458 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 4459 if (TargetTriple.getArch() == Triple::ppc64) 4460 VAArgBase = 48; 4461 else 4462 VAArgBase = 32; 4463 unsigned VAArgOffset = VAArgBase; 4464 const DataLayout &DL = F.getParent()->getDataLayout(); 4465 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4466 ArgIt != End; ++ArgIt) { 4467 Value *A = *ArgIt; 4468 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4469 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4470 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 4471 if (IsByVal) { 4472 assert(A->getType()->isPointerTy()); 4473 Type *RealTy = A->getType()->getPointerElementType(); 4474 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4475 uint64_t ArgAlign = CS.getParamAlignment(ArgNo); 4476 if (ArgAlign < 8) 4477 ArgAlign = 8; 4478 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4479 if (!IsFixed) { 4480 Value *Base = getShadowPtrForVAArgument( 4481 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4482 if (Base) { 4483 Value *AShadowPtr, *AOriginPtr; 4484 std::tie(AShadowPtr, AOriginPtr) = 4485 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4486 kShadowTLSAlignment, /*isStore*/ false); 4487 4488 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4489 kShadowTLSAlignment, ArgSize); 4490 } 4491 } 4492 VAArgOffset += alignTo(ArgSize, 8); 4493 } else { 4494 Value *Base; 4495 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4496 uint64_t ArgAlign = 8; 4497 if (A->getType()->isArrayTy()) { 4498 // Arrays are aligned to element size, except for long double 4499 // arrays, which are aligned to 8 bytes. 4500 Type *ElementTy = A->getType()->getArrayElementType(); 4501 if (!ElementTy->isPPC_FP128Ty()) 4502 ArgAlign = DL.getTypeAllocSize(ElementTy); 4503 } else if (A->getType()->isVectorTy()) { 4504 // Vectors are naturally aligned. 4505 ArgAlign = DL.getTypeAllocSize(A->getType()); 4506 } 4507 if (ArgAlign < 8) 4508 ArgAlign = 8; 4509 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4510 if (DL.isBigEndian()) { 4511 // Adjusting the shadow for argument with size < 8 to match the placement 4512 // of bits in big endian system 4513 if (ArgSize < 8) 4514 VAArgOffset += (8 - ArgSize); 4515 } 4516 if (!IsFixed) { 4517 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4518 VAArgOffset - VAArgBase, ArgSize); 4519 if (Base) 4520 IRB.CreateAlignedStore(MSV.getShadow(A), Base, 4521 kShadowTLSAlignment.value()); 4522 } 4523 VAArgOffset += ArgSize; 4524 VAArgOffset = alignTo(VAArgOffset, 8); 4525 } 4526 if (IsFixed) 4527 VAArgBase = VAArgOffset; 4528 } 4529 4530 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4531 VAArgOffset - VAArgBase); 4532 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4533 // a new class member i.e. it is the total size of all VarArgs. 4534 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4535 } 4536 4537 /// Compute the shadow address for a given va_arg. 4538 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4539 unsigned ArgOffset, unsigned ArgSize) { 4540 // Make sure we don't overflow __msan_va_arg_tls. 4541 if (ArgOffset + ArgSize > kParamTLSSize) 4542 return nullptr; 4543 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4544 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4545 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4546 "_msarg"); 4547 } 4548 4549 void visitVAStartInst(VAStartInst &I) override { 4550 IRBuilder<> IRB(&I); 4551 VAStartInstrumentationList.push_back(&I); 4552 Value *VAListTag = I.getArgOperand(0); 4553 Value *ShadowPtr, *OriginPtr; 4554 const Align Alignment = Align(8); 4555 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4556 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4557 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4558 /* size */ 8, Alignment, false); 4559 } 4560 4561 void visitVACopyInst(VACopyInst &I) override { 4562 IRBuilder<> IRB(&I); 4563 Value *VAListTag = I.getArgOperand(0); 4564 Value *ShadowPtr, *OriginPtr; 4565 const Align Alignment = Align(8); 4566 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4567 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4568 // Unpoison the whole __va_list_tag. 4569 // FIXME: magic ABI constants. 4570 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4571 /* size */ 8, Alignment, false); 4572 } 4573 4574 void finalizeInstrumentation() override { 4575 assert(!VAArgSize && !VAArgTLSCopy && 4576 "finalizeInstrumentation called twice"); 4577 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4578 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4579 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4580 VAArgSize); 4581 4582 if (!VAStartInstrumentationList.empty()) { 4583 // If there is a va_start in this function, make a backup copy of 4584 // va_arg_tls somewhere in the function entry block. 4585 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4586 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4587 } 4588 4589 // Instrument va_start. 4590 // Copy va_list shadow from the backup copy of the TLS contents. 4591 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4592 CallInst *OrigInst = VAStartInstrumentationList[i]; 4593 IRBuilder<> IRB(OrigInst->getNextNode()); 4594 Value *VAListTag = OrigInst->getArgOperand(0); 4595 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4596 Value *RegSaveAreaPtrPtr = 4597 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4598 PointerType::get(RegSaveAreaPtrTy, 0)); 4599 Value *RegSaveAreaPtr = 4600 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4601 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4602 const Align Alignment = Align(8); 4603 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4604 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4605 Alignment, /*isStore*/ true); 4606 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4607 CopySize); 4608 } 4609 } 4610 }; 4611 4612 /// A no-op implementation of VarArgHelper. 4613 struct VarArgNoOpHelper : public VarArgHelper { 4614 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 4615 MemorySanitizerVisitor &MSV) {} 4616 4617 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 4618 4619 void visitVAStartInst(VAStartInst &I) override {} 4620 4621 void visitVACopyInst(VACopyInst &I) override {} 4622 4623 void finalizeInstrumentation() override {} 4624 }; 4625 4626 } // end anonymous namespace 4627 4628 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 4629 MemorySanitizerVisitor &Visitor) { 4630 // VarArg handling is only implemented on AMD64. False positives are possible 4631 // on other platforms. 4632 Triple TargetTriple(Func.getParent()->getTargetTriple()); 4633 if (TargetTriple.getArch() == Triple::x86_64) 4634 return new VarArgAMD64Helper(Func, Msan, Visitor); 4635 else if (TargetTriple.isMIPS64()) 4636 return new VarArgMIPS64Helper(Func, Msan, Visitor); 4637 else if (TargetTriple.getArch() == Triple::aarch64) 4638 return new VarArgAArch64Helper(Func, Msan, Visitor); 4639 else if (TargetTriple.getArch() == Triple::ppc64 || 4640 TargetTriple.getArch() == Triple::ppc64le) 4641 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 4642 else 4643 return new VarArgNoOpHelper(Func, Msan, Visitor); 4644 } 4645 4646 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 4647 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 4648 return false; 4649 4650 MemorySanitizerVisitor Visitor(F, *this, TLI); 4651 4652 // Clear out readonly/readnone attributes. 4653 AttrBuilder B; 4654 B.addAttribute(Attribute::ReadOnly) 4655 .addAttribute(Attribute::ReadNone) 4656 .addAttribute(Attribute::WriteOnly) 4657 .addAttribute(Attribute::ArgMemOnly) 4658 .addAttribute(Attribute::Speculatable); 4659 F.removeAttributes(AttributeList::FunctionIndex, B); 4660 4661 return Visitor.runOnFunction(); 4662 } 4663