xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
15 /// byte of the application memory, poison the shadow of the malloc-ed
16 /// or alloca-ed memory, load the shadow bits on every memory read,
17 /// propagate the shadow bits through some of the arithmetic
18 /// instruction (including MOV), store the shadow bits on every memory
19 /// write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 ///                           Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwriting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 ///                            Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91 ///
92 ///                      Instrumenting inline assembly.
93 ///
94 /// For inline assembly code LLVM has little idea about which memory locations
95 /// become initialized depending on the arguments. It can be possible to figure
96 /// out which arguments are meant to point to inputs and outputs, but the
97 /// actual semantics can be only visible at runtime. In the Linux kernel it's
98 /// also possible that the arguments only indicate the offset for a base taken
99 /// from a segment register, so it's dangerous to treat any asm() arguments as
100 /// pointers. We take a conservative approach generating calls to
101 ///   __msan_instrument_asm_store(ptr, size)
102 /// , which defer the memory unpoisoning to the runtime library.
103 /// The latter can perform more complex address checks to figure out whether
104 /// it's safe to touch the shadow memory.
105 /// Like with atomic operations, we call __msan_instrument_asm_store() before
106 /// the assembly call, so that changes to the shadow memory will be seen by
107 /// other threads together with main memory initialization.
108 ///
109 ///                  KernelMemorySanitizer (KMSAN) implementation.
110 ///
111 /// The major differences between KMSAN and MSan instrumentation are:
112 ///  - KMSAN always tracks the origins and implies msan-keep-going=true;
113 ///  - KMSAN allocates shadow and origin memory for each page separately, so
114 ///    there are no explicit accesses to shadow and origin in the
115 ///    instrumentation.
116 ///    Shadow and origin values for a particular X-byte memory location
117 ///    (X=1,2,4,8) are accessed through pointers obtained via the
118 ///      __msan_metadata_ptr_for_load_X(ptr)
119 ///      __msan_metadata_ptr_for_store_X(ptr)
120 ///    functions. The corresponding functions check that the X-byte accesses
121 ///    are possible and returns the pointers to shadow and origin memory.
122 ///    Arbitrary sized accesses are handled with:
123 ///      __msan_metadata_ptr_for_load_n(ptr, size)
124 ///      __msan_metadata_ptr_for_store_n(ptr, size);
125 ///  - TLS variables are stored in a single per-task struct. A call to a
126 ///    function __msan_get_context_state() returning a pointer to that struct
127 ///    is inserted into every instrumented function before the entry block;
128 ///  - __msan_warning() takes a 32-bit origin parameter;
129 ///  - local variables are poisoned with __msan_poison_alloca() upon function
130 ///    entry and unpoisoned with __msan_unpoison_alloca() before leaving the
131 ///    function;
132 ///  - the pass doesn't declare any global variables or add global constructors
133 ///    to the translation unit.
134 ///
135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm
136 /// calls, making sure we're on the safe side wrt. possible false positives.
137 ///
138 ///  KernelMemorySanitizer only supports X86_64 at the moment.
139 ///
140 //
141 // FIXME: This sanitizer does not yet handle scalable vectors
142 //
143 //===----------------------------------------------------------------------===//
144 
145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
146 #include "llvm/ADT/APInt.h"
147 #include "llvm/ADT/ArrayRef.h"
148 #include "llvm/ADT/DenseMap.h"
149 #include "llvm/ADT/DepthFirstIterator.h"
150 #include "llvm/ADT/SetVector.h"
151 #include "llvm/ADT/SmallString.h"
152 #include "llvm/ADT/SmallVector.h"
153 #include "llvm/ADT/StringExtras.h"
154 #include "llvm/ADT/StringRef.h"
155 #include "llvm/ADT/Triple.h"
156 #include "llvm/Analysis/GlobalsModRef.h"
157 #include "llvm/Analysis/TargetLibraryInfo.h"
158 #include "llvm/Analysis/ValueTracking.h"
159 #include "llvm/IR/Argument.h"
160 #include "llvm/IR/Attributes.h"
161 #include "llvm/IR/BasicBlock.h"
162 #include "llvm/IR/CallingConv.h"
163 #include "llvm/IR/Constant.h"
164 #include "llvm/IR/Constants.h"
165 #include "llvm/IR/DataLayout.h"
166 #include "llvm/IR/DerivedTypes.h"
167 #include "llvm/IR/Function.h"
168 #include "llvm/IR/GlobalValue.h"
169 #include "llvm/IR/GlobalVariable.h"
170 #include "llvm/IR/IRBuilder.h"
171 #include "llvm/IR/InlineAsm.h"
172 #include "llvm/IR/InstVisitor.h"
173 #include "llvm/IR/InstrTypes.h"
174 #include "llvm/IR/Instruction.h"
175 #include "llvm/IR/Instructions.h"
176 #include "llvm/IR/IntrinsicInst.h"
177 #include "llvm/IR/Intrinsics.h"
178 #include "llvm/IR/IntrinsicsX86.h"
179 #include "llvm/IR/MDBuilder.h"
180 #include "llvm/IR/Module.h"
181 #include "llvm/IR/Type.h"
182 #include "llvm/IR/Value.h"
183 #include "llvm/IR/ValueMap.h"
184 #include "llvm/Support/Alignment.h"
185 #include "llvm/Support/AtomicOrdering.h"
186 #include "llvm/Support/Casting.h"
187 #include "llvm/Support/CommandLine.h"
188 #include "llvm/Support/Debug.h"
189 #include "llvm/Support/DebugCounter.h"
190 #include "llvm/Support/ErrorHandling.h"
191 #include "llvm/Support/MathExtras.h"
192 #include "llvm/Support/raw_ostream.h"
193 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
194 #include "llvm/Transforms/Utils/Local.h"
195 #include "llvm/Transforms/Utils/ModuleUtils.h"
196 #include <algorithm>
197 #include <cassert>
198 #include <cstddef>
199 #include <cstdint>
200 #include <memory>
201 #include <string>
202 #include <tuple>
203 
204 using namespace llvm;
205 
206 #define DEBUG_TYPE "msan"
207 
208 DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check",
209               "Controls which checks to insert");
210 
211 static const unsigned kOriginSize = 4;
212 static const Align kMinOriginAlignment = Align(4);
213 static const Align kShadowTLSAlignment = Align(8);
214 
215 // These constants must be kept in sync with the ones in msan.h.
216 static const unsigned kParamTLSSize = 800;
217 static const unsigned kRetvalTLSSize = 800;
218 
219 // Accesses sizes are powers of two: 1, 2, 4, 8.
220 static const size_t kNumberOfAccessSizes = 4;
221 
222 /// Track origins of uninitialized values.
223 ///
224 /// Adds a section to MemorySanitizer report that points to the allocation
225 /// (stack or heap) the uninitialized bits came from originally.
226 static cl::opt<int> ClTrackOrigins(
227     "msan-track-origins",
228     cl::desc("Track origins (allocation sites) of poisoned memory"), cl::Hidden,
229     cl::init(0));
230 
231 static cl::opt<bool> ClKeepGoing("msan-keep-going",
232                                  cl::desc("keep going after reporting a UMR"),
233                                  cl::Hidden, cl::init(false));
234 
235 static cl::opt<bool>
236     ClPoisonStack("msan-poison-stack",
237                   cl::desc("poison uninitialized stack variables"), cl::Hidden,
238                   cl::init(true));
239 
240 static cl::opt<bool> ClPoisonStackWithCall(
241     "msan-poison-stack-with-call",
242     cl::desc("poison uninitialized stack variables with a call"), cl::Hidden,
243     cl::init(false));
244 
245 static cl::opt<int> ClPoisonStackPattern(
246     "msan-poison-stack-pattern",
247     cl::desc("poison uninitialized stack variables with the given pattern"),
248     cl::Hidden, cl::init(0xff));
249 
250 static cl::opt<bool>
251     ClPrintStackNames("msan-print-stack-names",
252                       cl::desc("Print name of local stack variable"),
253                       cl::Hidden, cl::init(true));
254 
255 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
256                                    cl::desc("poison undef temps"), cl::Hidden,
257                                    cl::init(true));
258 
259 static cl::opt<bool>
260     ClHandleICmp("msan-handle-icmp",
261                  cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
262                  cl::Hidden, cl::init(true));
263 
264 static cl::opt<bool>
265     ClHandleICmpExact("msan-handle-icmp-exact",
266                       cl::desc("exact handling of relational integer ICmp"),
267                       cl::Hidden, cl::init(false));
268 
269 static cl::opt<bool> ClHandleLifetimeIntrinsics(
270     "msan-handle-lifetime-intrinsics",
271     cl::desc(
272         "when possible, poison scoped variables at the beginning of the scope "
273         "(slower, but more precise)"),
274     cl::Hidden, cl::init(true));
275 
276 // When compiling the Linux kernel, we sometimes see false positives related to
277 // MSan being unable to understand that inline assembly calls may initialize
278 // local variables.
279 // This flag makes the compiler conservatively unpoison every memory location
280 // passed into an assembly call. Note that this may cause false positives.
281 // Because it's impossible to figure out the array sizes, we can only unpoison
282 // the first sizeof(type) bytes for each type* pointer.
283 // The instrumentation is only enabled in KMSAN builds, and only if
284 // -msan-handle-asm-conservative is on. This is done because we may want to
285 // quickly disable assembly instrumentation when it breaks.
286 static cl::opt<bool> ClHandleAsmConservative(
287     "msan-handle-asm-conservative",
288     cl::desc("conservative handling of inline assembly"), cl::Hidden,
289     cl::init(true));
290 
291 // This flag controls whether we check the shadow of the address
292 // operand of load or store. Such bugs are very rare, since load from
293 // a garbage address typically results in SEGV, but still happen
294 // (e.g. only lower bits of address are garbage, or the access happens
295 // early at program startup where malloc-ed memory is more likely to
296 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
297 static cl::opt<bool> ClCheckAccessAddress(
298     "msan-check-access-address",
299     cl::desc("report accesses through a pointer which has poisoned shadow"),
300     cl::Hidden, cl::init(true));
301 
302 static cl::opt<bool> ClEagerChecks(
303     "msan-eager-checks",
304     cl::desc("check arguments and return values at function call boundaries"),
305     cl::Hidden, cl::init(false));
306 
307 static cl::opt<bool> ClDumpStrictInstructions(
308     "msan-dump-strict-instructions",
309     cl::desc("print out instructions with default strict semantics"),
310     cl::Hidden, cl::init(false));
311 
312 static cl::opt<int> ClInstrumentationWithCallThreshold(
313     "msan-instrumentation-with-call-threshold",
314     cl::desc(
315         "If the function being instrumented requires more than "
316         "this number of checks and origin stores, use callbacks instead of "
317         "inline checks (-1 means never use callbacks)."),
318     cl::Hidden, cl::init(3500));
319 
320 static cl::opt<bool>
321     ClEnableKmsan("msan-kernel",
322                   cl::desc("Enable KernelMemorySanitizer instrumentation"),
323                   cl::Hidden, cl::init(false));
324 
325 static cl::opt<bool>
326     ClDisableChecks("msan-disable-checks",
327                     cl::desc("Apply no_sanitize to the whole file"), cl::Hidden,
328                     cl::init(false));
329 
330 static cl::opt<bool>
331     ClCheckConstantShadow("msan-check-constant-shadow",
332                           cl::desc("Insert checks for constant shadow values"),
333                           cl::Hidden, cl::init(true));
334 
335 // This is off by default because of a bug in gold:
336 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
337 static cl::opt<bool>
338     ClWithComdat("msan-with-comdat",
339                  cl::desc("Place MSan constructors in comdat sections"),
340                  cl::Hidden, cl::init(false));
341 
342 // These options allow to specify custom memory map parameters
343 // See MemoryMapParams for details.
344 static cl::opt<uint64_t> ClAndMask("msan-and-mask",
345                                    cl::desc("Define custom MSan AndMask"),
346                                    cl::Hidden, cl::init(0));
347 
348 static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
349                                    cl::desc("Define custom MSan XorMask"),
350                                    cl::Hidden, cl::init(0));
351 
352 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
353                                       cl::desc("Define custom MSan ShadowBase"),
354                                       cl::Hidden, cl::init(0));
355 
356 static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
357                                       cl::desc("Define custom MSan OriginBase"),
358                                       cl::Hidden, cl::init(0));
359 
360 static cl::opt<int>
361     ClDisambiguateWarning("msan-disambiguate-warning-threshold",
362                           cl::desc("Define threshold for number of checks per "
363                                    "debug location to force origin update."),
364                           cl::Hidden, cl::init(3));
365 
366 const char kMsanModuleCtorName[] = "msan.module_ctor";
367 const char kMsanInitName[] = "__msan_init";
368 
369 namespace {
370 
371 // Memory map parameters used in application-to-shadow address calculation.
372 // Offset = (Addr & ~AndMask) ^ XorMask
373 // Shadow = ShadowBase + Offset
374 // Origin = OriginBase + Offset
375 struct MemoryMapParams {
376   uint64_t AndMask;
377   uint64_t XorMask;
378   uint64_t ShadowBase;
379   uint64_t OriginBase;
380 };
381 
382 struct PlatformMemoryMapParams {
383   const MemoryMapParams *bits32;
384   const MemoryMapParams *bits64;
385 };
386 
387 } // end anonymous namespace
388 
389 // i386 Linux
390 static const MemoryMapParams Linux_I386_MemoryMapParams = {
391     0x000080000000, // AndMask
392     0,              // XorMask (not used)
393     0,              // ShadowBase (not used)
394     0x000040000000, // OriginBase
395 };
396 
397 // x86_64 Linux
398 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
399     0,              // AndMask (not used)
400     0x500000000000, // XorMask
401     0,              // ShadowBase (not used)
402     0x100000000000, // OriginBase
403 };
404 
405 // mips64 Linux
406 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
407     0,              // AndMask (not used)
408     0x008000000000, // XorMask
409     0,              // ShadowBase (not used)
410     0x002000000000, // OriginBase
411 };
412 
413 // ppc64 Linux
414 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
415     0xE00000000000, // AndMask
416     0x100000000000, // XorMask
417     0x080000000000, // ShadowBase
418     0x1C0000000000, // OriginBase
419 };
420 
421 // s390x Linux
422 static const MemoryMapParams Linux_S390X_MemoryMapParams = {
423     0xC00000000000, // AndMask
424     0,              // XorMask (not used)
425     0x080000000000, // ShadowBase
426     0x1C0000000000, // OriginBase
427 };
428 
429 // aarch64 Linux
430 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
431     0,               // AndMask (not used)
432     0x0B00000000000, // XorMask
433     0,               // ShadowBase (not used)
434     0x0200000000000, // OriginBase
435 };
436 
437 // aarch64 FreeBSD
438 static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = {
439     0x1800000000000, // AndMask
440     0x0400000000000, // XorMask
441     0x0200000000000, // ShadowBase
442     0x0700000000000, // OriginBase
443 };
444 
445 // i386 FreeBSD
446 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
447     0x000180000000, // AndMask
448     0x000040000000, // XorMask
449     0x000020000000, // ShadowBase
450     0x000700000000, // OriginBase
451 };
452 
453 // x86_64 FreeBSD
454 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
455     0xc00000000000, // AndMask
456     0x200000000000, // XorMask
457     0x100000000000, // ShadowBase
458     0x380000000000, // OriginBase
459 };
460 
461 // x86_64 NetBSD
462 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
463     0,              // AndMask
464     0x500000000000, // XorMask
465     0,              // ShadowBase
466     0x100000000000, // OriginBase
467 };
468 
469 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
470     &Linux_I386_MemoryMapParams,
471     &Linux_X86_64_MemoryMapParams,
472 };
473 
474 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
475     nullptr,
476     &Linux_MIPS64_MemoryMapParams,
477 };
478 
479 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
480     nullptr,
481     &Linux_PowerPC64_MemoryMapParams,
482 };
483 
484 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = {
485     nullptr,
486     &Linux_S390X_MemoryMapParams,
487 };
488 
489 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
490     nullptr,
491     &Linux_AArch64_MemoryMapParams,
492 };
493 
494 static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = {
495     nullptr,
496     &FreeBSD_AArch64_MemoryMapParams,
497 };
498 
499 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
500     &FreeBSD_I386_MemoryMapParams,
501     &FreeBSD_X86_64_MemoryMapParams,
502 };
503 
504 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
505     nullptr,
506     &NetBSD_X86_64_MemoryMapParams,
507 };
508 
509 namespace {
510 
511 /// Instrument functions of a module to detect uninitialized reads.
512 ///
513 /// Instantiating MemorySanitizer inserts the msan runtime library API function
514 /// declarations into the module if they don't exist already. Instantiating
515 /// ensures the __msan_init function is in the list of global constructors for
516 /// the module.
517 class MemorySanitizer {
518 public:
519   MemorySanitizer(Module &M, MemorySanitizerOptions Options)
520       : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins),
521         Recover(Options.Recover), EagerChecks(Options.EagerChecks) {
522     initializeModule(M);
523   }
524 
525   // MSan cannot be moved or copied because of MapParams.
526   MemorySanitizer(MemorySanitizer &&) = delete;
527   MemorySanitizer &operator=(MemorySanitizer &&) = delete;
528   MemorySanitizer(const MemorySanitizer &) = delete;
529   MemorySanitizer &operator=(const MemorySanitizer &) = delete;
530 
531   bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
532 
533 private:
534   friend struct MemorySanitizerVisitor;
535   friend struct VarArgAMD64Helper;
536   friend struct VarArgMIPS64Helper;
537   friend struct VarArgAArch64Helper;
538   friend struct VarArgPowerPC64Helper;
539   friend struct VarArgSystemZHelper;
540 
541   void initializeModule(Module &M);
542   void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI);
543   void createKernelApi(Module &M, const TargetLibraryInfo &TLI);
544   void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI);
545 
546   /// True if we're compiling the Linux kernel.
547   bool CompileKernel;
548   /// Track origins (allocation points) of uninitialized values.
549   int TrackOrigins;
550   bool Recover;
551   bool EagerChecks;
552 
553   LLVMContext *C;
554   Type *IntptrTy;
555   Type *OriginTy;
556 
557   // XxxTLS variables represent the per-thread state in MSan and per-task state
558   // in KMSAN.
559   // For the userspace these point to thread-local globals. In the kernel land
560   // they point to the members of a per-task struct obtained via a call to
561   // __msan_get_context_state().
562 
563   /// Thread-local shadow storage for function parameters.
564   Value *ParamTLS;
565 
566   /// Thread-local origin storage for function parameters.
567   Value *ParamOriginTLS;
568 
569   /// Thread-local shadow storage for function return value.
570   Value *RetvalTLS;
571 
572   /// Thread-local origin storage for function return value.
573   Value *RetvalOriginTLS;
574 
575   /// Thread-local shadow storage for in-register va_arg function
576   /// parameters (x86_64-specific).
577   Value *VAArgTLS;
578 
579   /// Thread-local shadow storage for in-register va_arg function
580   /// parameters (x86_64-specific).
581   Value *VAArgOriginTLS;
582 
583   /// Thread-local shadow storage for va_arg overflow area
584   /// (x86_64-specific).
585   Value *VAArgOverflowSizeTLS;
586 
587   /// Are the instrumentation callbacks set up?
588   bool CallbacksInitialized = false;
589 
590   /// The run-time callback to print a warning.
591   FunctionCallee WarningFn;
592 
593   // These arrays are indexed by log2(AccessSize).
594   FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
595   FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
596 
597   /// Run-time helper that generates a new origin value for a stack
598   /// allocation.
599   FunctionCallee MsanSetAllocaOriginWithDescriptionFn;
600   // No description version
601   FunctionCallee MsanSetAllocaOriginNoDescriptionFn;
602 
603   /// Run-time helper that poisons stack on function entry.
604   FunctionCallee MsanPoisonStackFn;
605 
606   /// Run-time helper that records a store (or any event) of an
607   /// uninitialized value and returns an updated origin id encoding this info.
608   FunctionCallee MsanChainOriginFn;
609 
610   /// Run-time helper that paints an origin over a region.
611   FunctionCallee MsanSetOriginFn;
612 
613   /// MSan runtime replacements for memmove, memcpy and memset.
614   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
615 
616   /// KMSAN callback for task-local function argument shadow.
617   StructType *MsanContextStateTy;
618   FunctionCallee MsanGetContextStateFn;
619 
620   /// Functions for poisoning/unpoisoning local variables
621   FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
622 
623   /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin
624   /// pointers.
625   FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
626   FunctionCallee MsanMetadataPtrForLoad_1_8[4];
627   FunctionCallee MsanMetadataPtrForStore_1_8[4];
628   FunctionCallee MsanInstrumentAsmStoreFn;
629 
630   /// Helper to choose between different MsanMetadataPtrXxx().
631   FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
632 
633   /// Memory map parameters used in application-to-shadow calculation.
634   const MemoryMapParams *MapParams;
635 
636   /// Custom memory map parameters used when -msan-shadow-base or
637   // -msan-origin-base is provided.
638   MemoryMapParams CustomMapParams;
639 
640   MDNode *ColdCallWeights;
641 
642   /// Branch weights for origin store.
643   MDNode *OriginStoreWeights;
644 };
645 
646 void insertModuleCtor(Module &M) {
647   getOrCreateSanitizerCtorAndInitFunctions(
648       M, kMsanModuleCtorName, kMsanInitName,
649       /*InitArgTypes=*/{},
650       /*InitArgs=*/{},
651       // This callback is invoked when the functions are created the first
652       // time. Hook them into the global ctors list in that case:
653       [&](Function *Ctor, FunctionCallee) {
654         if (!ClWithComdat) {
655           appendToGlobalCtors(M, Ctor, 0);
656           return;
657         }
658         Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
659         Ctor->setComdat(MsanCtorComdat);
660         appendToGlobalCtors(M, Ctor, 0, Ctor);
661       });
662 }
663 
664 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) {
665   return (Opt.getNumOccurrences() > 0) ? Opt : Default;
666 }
667 
668 } // end anonymous namespace
669 
670 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K,
671                                                bool EagerChecks)
672     : Kernel(getOptOrDefault(ClEnableKmsan, K)),
673       TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)),
674       Recover(getOptOrDefault(ClKeepGoing, Kernel || R)),
675       EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {}
676 
677 PreservedAnalyses MemorySanitizerPass::run(Module &M,
678                                            ModuleAnalysisManager &AM) {
679   bool Modified = false;
680   if (!Options.Kernel) {
681     insertModuleCtor(M);
682     Modified = true;
683   }
684 
685   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
686   for (Function &F : M) {
687     if (F.empty())
688       continue;
689     MemorySanitizer Msan(*F.getParent(), Options);
690     Modified |=
691         Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F));
692   }
693 
694   if (!Modified)
695     return PreservedAnalyses::all();
696 
697   PreservedAnalyses PA = PreservedAnalyses::none();
698   // GlobalsAA is considered stateless and does not get invalidated unless
699   // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
700   // make changes that require GlobalsAA to be invalidated.
701   PA.abandon<GlobalsAA>();
702   return PA;
703 }
704 
705 void MemorySanitizerPass::printPipeline(
706     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
707   static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline(
708       OS, MapClassName2PassName);
709   OS << "<";
710   if (Options.Recover)
711     OS << "recover;";
712   if (Options.Kernel)
713     OS << "kernel;";
714   if (Options.EagerChecks)
715     OS << "eager-checks;";
716   OS << "track-origins=" << Options.TrackOrigins;
717   OS << ">";
718 }
719 
720 /// Create a non-const global initialized with the given string.
721 ///
722 /// Creates a writable global for Str so that we can pass it to the
723 /// run-time lib. Runtime uses first 4 bytes of the string to store the
724 /// frame ID, so the string needs to be mutable.
725 static GlobalVariable *createPrivateConstGlobalForString(Module &M,
726                                                          StringRef Str) {
727   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
728   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true,
729                             GlobalValue::PrivateLinkage, StrConst, "");
730 }
731 
732 /// Create KMSAN API callbacks.
733 void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) {
734   IRBuilder<> IRB(*C);
735 
736   // These will be initialized in insertKmsanPrologue().
737   RetvalTLS = nullptr;
738   RetvalOriginTLS = nullptr;
739   ParamTLS = nullptr;
740   ParamOriginTLS = nullptr;
741   VAArgTLS = nullptr;
742   VAArgOriginTLS = nullptr;
743   VAArgOverflowSizeTLS = nullptr;
744 
745   WarningFn = M.getOrInsertFunction("__msan_warning",
746                                     TLI.getAttrList(C, {0}, /*Signed=*/false),
747                                     IRB.getVoidTy(), IRB.getInt32Ty());
748 
749   // Requests the per-task context state (kmsan_context_state*) from the
750   // runtime library.
751   MsanContextStateTy = StructType::get(
752       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
753       ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
754       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
755       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
756       IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
757       OriginTy);
758   MsanGetContextStateFn = M.getOrInsertFunction(
759       "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
760 
761   Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
762                                 PointerType::get(IRB.getInt32Ty(), 0));
763 
764   for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
765     std::string name_load =
766         "__msan_metadata_ptr_for_load_" + std::to_string(size);
767     std::string name_store =
768         "__msan_metadata_ptr_for_store_" + std::to_string(size);
769     MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction(
770         name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
771     MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction(
772         name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
773   }
774 
775   MsanMetadataPtrForLoadN = M.getOrInsertFunction(
776       "__msan_metadata_ptr_for_load_n", RetTy,
777       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
778   MsanMetadataPtrForStoreN = M.getOrInsertFunction(
779       "__msan_metadata_ptr_for_store_n", RetTy,
780       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
781 
782   // Functions for poisoning and unpoisoning memory.
783   MsanPoisonAllocaFn =
784       M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
785                             IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
786   MsanUnpoisonAllocaFn = M.getOrInsertFunction(
787       "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
788 }
789 
790 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
791   return M.getOrInsertGlobal(Name, Ty, [&] {
792     return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
793                               nullptr, Name, nullptr,
794                               GlobalVariable::InitialExecTLSModel);
795   });
796 }
797 
798 /// Insert declarations for userspace-specific functions and globals.
799 void MemorySanitizer::createUserspaceApi(Module &M, const TargetLibraryInfo &TLI) {
800   IRBuilder<> IRB(*C);
801 
802   // Create the callback.
803   // FIXME: this function should have "Cold" calling conv,
804   // which is not yet implemented.
805   if (TrackOrigins) {
806     StringRef WarningFnName = Recover ? "__msan_warning_with_origin"
807                                       : "__msan_warning_with_origin_noreturn";
808     WarningFn = M.getOrInsertFunction(WarningFnName,
809                                       TLI.getAttrList(C, {0}, /*Signed=*/false),
810                                       IRB.getVoidTy(), IRB.getInt32Ty());
811   } else {
812     StringRef WarningFnName =
813         Recover ? "__msan_warning" : "__msan_warning_noreturn";
814     WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy());
815   }
816 
817   // Create the global TLS variables.
818   RetvalTLS =
819       getOrInsertGlobal(M, "__msan_retval_tls",
820                         ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
821 
822   RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
823 
824   ParamTLS =
825       getOrInsertGlobal(M, "__msan_param_tls",
826                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
827 
828   ParamOriginTLS =
829       getOrInsertGlobal(M, "__msan_param_origin_tls",
830                         ArrayType::get(OriginTy, kParamTLSSize / 4));
831 
832   VAArgTLS =
833       getOrInsertGlobal(M, "__msan_va_arg_tls",
834                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
835 
836   VAArgOriginTLS =
837       getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
838                         ArrayType::get(OriginTy, kParamTLSSize / 4));
839 
840   VAArgOverflowSizeTLS =
841       getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
842 
843   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
844        AccessSizeIndex++) {
845     unsigned AccessSize = 1 << AccessSizeIndex;
846     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
847     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
848         FunctionName, TLI.getAttrList(C, {0, 1}, /*Signed=*/false),
849         IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty());
850 
851     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
852     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
853         FunctionName, TLI.getAttrList(C, {0, 2}, /*Signed=*/false),
854         IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(),
855         IRB.getInt32Ty());
856   }
857 
858   MsanSetAllocaOriginWithDescriptionFn = M.getOrInsertFunction(
859       "__msan_set_alloca_origin_with_descr", IRB.getVoidTy(),
860       IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy(), IRB.getInt8PtrTy());
861   MsanSetAllocaOriginNoDescriptionFn = M.getOrInsertFunction(
862       "__msan_set_alloca_origin_no_descr", IRB.getVoidTy(), IRB.getInt8PtrTy(),
863       IntptrTy, IRB.getInt8PtrTy());
864   MsanPoisonStackFn = M.getOrInsertFunction(
865       "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
866 }
867 
868 /// Insert extern declaration of runtime-provided functions and globals.
869 void MemorySanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo &TLI) {
870   // Only do this once.
871   if (CallbacksInitialized)
872     return;
873 
874   IRBuilder<> IRB(*C);
875   // Initialize callbacks that are common for kernel and userspace
876   // instrumentation.
877   MsanChainOriginFn = M.getOrInsertFunction(
878       "__msan_chain_origin",
879       TLI.getAttrList(C, {0}, /*Signed=*/false, /*Ret=*/true), IRB.getInt32Ty(),
880       IRB.getInt32Ty());
881   MsanSetOriginFn = M.getOrInsertFunction(
882       "__msan_set_origin", TLI.getAttrList(C, {2}, /*Signed=*/false),
883       IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty());
884   MemmoveFn =
885       M.getOrInsertFunction("__msan_memmove", IRB.getInt8PtrTy(),
886                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
887   MemcpyFn =
888       M.getOrInsertFunction("__msan_memcpy", IRB.getInt8PtrTy(),
889                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
890   MemsetFn = M.getOrInsertFunction(
891       "__msan_memset", TLI.getAttrList(C, {1}, /*Signed=*/true),
892       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy);
893 
894   MsanInstrumentAsmStoreFn =
895       M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
896                             PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
897 
898   if (CompileKernel) {
899     createKernelApi(M, TLI);
900   } else {
901     createUserspaceApi(M, TLI);
902   }
903   CallbacksInitialized = true;
904 }
905 
906 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
907                                                              int size) {
908   FunctionCallee *Fns =
909       isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
910   switch (size) {
911   case 1:
912     return Fns[0];
913   case 2:
914     return Fns[1];
915   case 4:
916     return Fns[2];
917   case 8:
918     return Fns[3];
919   default:
920     return nullptr;
921   }
922 }
923 
924 /// Module-level initialization.
925 ///
926 /// inserts a call to __msan_init to the module's constructor list.
927 void MemorySanitizer::initializeModule(Module &M) {
928   auto &DL = M.getDataLayout();
929 
930   bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
931   bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
932   // Check the overrides first
933   if (ShadowPassed || OriginPassed) {
934     CustomMapParams.AndMask = ClAndMask;
935     CustomMapParams.XorMask = ClXorMask;
936     CustomMapParams.ShadowBase = ClShadowBase;
937     CustomMapParams.OriginBase = ClOriginBase;
938     MapParams = &CustomMapParams;
939   } else {
940     Triple TargetTriple(M.getTargetTriple());
941     switch (TargetTriple.getOS()) {
942     case Triple::FreeBSD:
943       switch (TargetTriple.getArch()) {
944       case Triple::aarch64:
945         MapParams = FreeBSD_ARM_MemoryMapParams.bits64;
946         break;
947       case Triple::x86_64:
948         MapParams = FreeBSD_X86_MemoryMapParams.bits64;
949         break;
950       case Triple::x86:
951         MapParams = FreeBSD_X86_MemoryMapParams.bits32;
952         break;
953       default:
954         report_fatal_error("unsupported architecture");
955       }
956       break;
957     case Triple::NetBSD:
958       switch (TargetTriple.getArch()) {
959       case Triple::x86_64:
960         MapParams = NetBSD_X86_MemoryMapParams.bits64;
961         break;
962       default:
963         report_fatal_error("unsupported architecture");
964       }
965       break;
966     case Triple::Linux:
967       switch (TargetTriple.getArch()) {
968       case Triple::x86_64:
969         MapParams = Linux_X86_MemoryMapParams.bits64;
970         break;
971       case Triple::x86:
972         MapParams = Linux_X86_MemoryMapParams.bits32;
973         break;
974       case Triple::mips64:
975       case Triple::mips64el:
976         MapParams = Linux_MIPS_MemoryMapParams.bits64;
977         break;
978       case Triple::ppc64:
979       case Triple::ppc64le:
980         MapParams = Linux_PowerPC_MemoryMapParams.bits64;
981         break;
982       case Triple::systemz:
983         MapParams = Linux_S390_MemoryMapParams.bits64;
984         break;
985       case Triple::aarch64:
986       case Triple::aarch64_be:
987         MapParams = Linux_ARM_MemoryMapParams.bits64;
988         break;
989       default:
990         report_fatal_error("unsupported architecture");
991       }
992       break;
993     default:
994       report_fatal_error("unsupported operating system");
995     }
996   }
997 
998   C = &(M.getContext());
999   IRBuilder<> IRB(*C);
1000   IntptrTy = IRB.getIntPtrTy(DL);
1001   OriginTy = IRB.getInt32Ty();
1002 
1003   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
1004   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
1005 
1006   if (!CompileKernel) {
1007     if (TrackOrigins)
1008       M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
1009         return new GlobalVariable(
1010             M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
1011             IRB.getInt32(TrackOrigins), "__msan_track_origins");
1012       });
1013 
1014     if (Recover)
1015       M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
1016         return new GlobalVariable(M, IRB.getInt32Ty(), true,
1017                                   GlobalValue::WeakODRLinkage,
1018                                   IRB.getInt32(Recover), "__msan_keep_going");
1019       });
1020   }
1021 }
1022 
1023 namespace {
1024 
1025 /// A helper class that handles instrumentation of VarArg
1026 /// functions on a particular platform.
1027 ///
1028 /// Implementations are expected to insert the instrumentation
1029 /// necessary to propagate argument shadow through VarArg function
1030 /// calls. Visit* methods are called during an InstVisitor pass over
1031 /// the function, and should avoid creating new basic blocks. A new
1032 /// instance of this class is created for each instrumented function.
1033 struct VarArgHelper {
1034   virtual ~VarArgHelper() = default;
1035 
1036   /// Visit a CallBase.
1037   virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0;
1038 
1039   /// Visit a va_start call.
1040   virtual void visitVAStartInst(VAStartInst &I) = 0;
1041 
1042   /// Visit a va_copy call.
1043   virtual void visitVACopyInst(VACopyInst &I) = 0;
1044 
1045   /// Finalize function instrumentation.
1046   ///
1047   /// This method is called after visiting all interesting (see above)
1048   /// instructions in a function.
1049   virtual void finalizeInstrumentation() = 0;
1050 };
1051 
1052 struct MemorySanitizerVisitor;
1053 
1054 } // end anonymous namespace
1055 
1056 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1057                                         MemorySanitizerVisitor &Visitor);
1058 
1059 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
1060   if (TypeSize <= 8)
1061     return 0;
1062   return Log2_32_Ceil((TypeSize + 7) / 8);
1063 }
1064 
1065 namespace {
1066 
1067 /// Helper class to attach debug information of the given instruction onto new
1068 /// instructions inserted after.
1069 class NextNodeIRBuilder : public IRBuilder<> {
1070 public:
1071   explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) {
1072     SetCurrentDebugLocation(IP->getDebugLoc());
1073   }
1074 };
1075 
1076 /// This class does all the work for a given function. Store and Load
1077 /// instructions store and load corresponding shadow and origin
1078 /// values. Most instructions propagate shadow from arguments to their
1079 /// return values. Certain instructions (most importantly, BranchInst)
1080 /// test their argument shadow and print reports (with a runtime call) if it's
1081 /// non-zero.
1082 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
1083   Function &F;
1084   MemorySanitizer &MS;
1085   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
1086   ValueMap<Value *, Value *> ShadowMap, OriginMap;
1087   std::unique_ptr<VarArgHelper> VAHelper;
1088   const TargetLibraryInfo *TLI;
1089   Instruction *FnPrologueEnd;
1090 
1091   // The following flags disable parts of MSan instrumentation based on
1092   // exclusion list contents and command-line options.
1093   bool InsertChecks;
1094   bool PropagateShadow;
1095   bool PoisonStack;
1096   bool PoisonUndef;
1097 
1098   struct ShadowOriginAndInsertPoint {
1099     Value *Shadow;
1100     Value *Origin;
1101     Instruction *OrigIns;
1102 
1103     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
1104         : Shadow(S), Origin(O), OrigIns(I) {}
1105   };
1106   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
1107   DenseMap<const DILocation *, int> LazyWarningDebugLocationCount;
1108   bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
1109   SmallSetVector<AllocaInst *, 16> AllocaSet;
1110   SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
1111   SmallVector<StoreInst *, 16> StoreList;
1112   int64_t SplittableBlocksCount = 0;
1113 
1114   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
1115                          const TargetLibraryInfo &TLI)
1116       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
1117     bool SanitizeFunction =
1118         F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks;
1119     InsertChecks = SanitizeFunction;
1120     PropagateShadow = SanitizeFunction;
1121     PoisonStack = SanitizeFunction && ClPoisonStack;
1122     PoisonUndef = SanitizeFunction && ClPoisonUndef;
1123 
1124     // In the presence of unreachable blocks, we may see Phi nodes with
1125     // incoming nodes from such blocks. Since InstVisitor skips unreachable
1126     // blocks, such nodes will not have any shadow value associated with them.
1127     // It's easier to remove unreachable blocks than deal with missing shadow.
1128     removeUnreachableBlocks(F);
1129 
1130     MS.initializeCallbacks(*F.getParent(), TLI);
1131     FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI())
1132                         .CreateIntrinsic(Intrinsic::donothing, {}, {});
1133 
1134     if (MS.CompileKernel) {
1135       IRBuilder<> IRB(FnPrologueEnd);
1136       insertKmsanPrologue(IRB);
1137     }
1138 
1139     LLVM_DEBUG(if (!InsertChecks) dbgs()
1140                << "MemorySanitizer is not inserting checks into '"
1141                << F.getName() << "'\n");
1142   }
1143 
1144   bool instrumentWithCalls(Value *V) {
1145     // Constants likely will be eliminated by follow-up passes.
1146     if (isa<Constant>(V))
1147       return false;
1148 
1149     ++SplittableBlocksCount;
1150     return ClInstrumentationWithCallThreshold >= 0 &&
1151            SplittableBlocksCount > ClInstrumentationWithCallThreshold;
1152   }
1153 
1154   bool isInPrologue(Instruction &I) {
1155     return I.getParent() == FnPrologueEnd->getParent() &&
1156            (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd));
1157   }
1158 
1159   // Creates a new origin and records the stack trace. In general we can call
1160   // this function for any origin manipulation we like. However it will cost
1161   // runtime resources. So use this wisely only if it can provide additional
1162   // information helpful to a user.
1163   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
1164     if (MS.TrackOrigins <= 1)
1165       return V;
1166     return IRB.CreateCall(MS.MsanChainOriginFn, V);
1167   }
1168 
1169   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
1170     const DataLayout &DL = F.getParent()->getDataLayout();
1171     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1172     if (IntptrSize == kOriginSize)
1173       return Origin;
1174     assert(IntptrSize == kOriginSize * 2);
1175     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
1176     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
1177   }
1178 
1179   /// Fill memory range with the given origin value.
1180   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
1181                    unsigned Size, Align Alignment) {
1182     const DataLayout &DL = F.getParent()->getDataLayout();
1183     const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy);
1184     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1185     assert(IntptrAlignment >= kMinOriginAlignment);
1186     assert(IntptrSize >= kOriginSize);
1187 
1188     unsigned Ofs = 0;
1189     Align CurrentAlignment = Alignment;
1190     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
1191       Value *IntptrOrigin = originToIntptr(IRB, Origin);
1192       Value *IntptrOriginPtr =
1193           IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
1194       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
1195         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
1196                        : IntptrOriginPtr;
1197         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
1198         Ofs += IntptrSize / kOriginSize;
1199         CurrentAlignment = IntptrAlignment;
1200       }
1201     }
1202 
1203     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
1204       Value *GEP =
1205           i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
1206       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
1207       CurrentAlignment = kMinOriginAlignment;
1208     }
1209   }
1210 
1211   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
1212                    Value *OriginPtr, Align Alignment) {
1213     const DataLayout &DL = F.getParent()->getDataLayout();
1214     const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1215     unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
1216     Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB);
1217     if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1218       if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) {
1219         // Origin is not needed: value is initialized or const shadow is
1220         // ignored.
1221         return;
1222       }
1223       if (llvm::isKnownNonZero(ConvertedShadow, DL)) {
1224         // Copy origin as the value is definitely uninitialized.
1225         paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1226                     OriginAlignment);
1227         return;
1228       }
1229       // Fallback to runtime check, which still can be optimized out later.
1230     }
1231 
1232     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1233     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1234     if (instrumentWithCalls(ConvertedShadow) &&
1235         SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1236       FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
1237       Value *ConvertedShadow2 =
1238           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1239       CallBase *CB = IRB.CreateCall(
1240           Fn, {ConvertedShadow2,
1241                IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin});
1242       CB->addParamAttr(0, Attribute::ZExt);
1243       CB->addParamAttr(2, Attribute::ZExt);
1244     } else {
1245       Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1246       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1247           Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
1248       IRBuilder<> IRBNew(CheckTerm);
1249       paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
1250                   OriginAlignment);
1251     }
1252   }
1253 
1254   void materializeStores() {
1255     for (StoreInst *SI : StoreList) {
1256       IRBuilder<> IRB(SI);
1257       Value *Val = SI->getValueOperand();
1258       Value *Addr = SI->getPointerOperand();
1259       Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
1260       Value *ShadowPtr, *OriginPtr;
1261       Type *ShadowTy = Shadow->getType();
1262       const Align Alignment = SI->getAlign();
1263       const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1264       std::tie(ShadowPtr, OriginPtr) =
1265           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
1266 
1267       StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
1268       LLVM_DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
1269       (void)NewSI;
1270 
1271       if (SI->isAtomic())
1272         SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
1273 
1274       if (MS.TrackOrigins && !SI->isAtomic())
1275         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
1276                     OriginAlignment);
1277     }
1278   }
1279 
1280   // Returns true if Debug Location curresponds to multiple warnings.
1281   bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) {
1282     if (MS.TrackOrigins < 2)
1283       return false;
1284 
1285     if (LazyWarningDebugLocationCount.empty())
1286       for (const auto &I : InstrumentationList)
1287         ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()];
1288 
1289     return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning;
1290   }
1291 
1292   /// Helper function to insert a warning at IRB's current insert point.
1293   void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
1294     if (!Origin)
1295       Origin = (Value *)IRB.getInt32(0);
1296     assert(Origin->getType()->isIntegerTy());
1297 
1298     if (shouldDisambiguateWarningLocation(IRB.getCurrentDebugLocation())) {
1299       // Try to create additional origin with debug info of the last origin
1300       // instruction. It may provide additional information to the user.
1301       if (Instruction *OI = dyn_cast_or_null<Instruction>(Origin)) {
1302         assert(MS.TrackOrigins);
1303         auto NewDebugLoc = OI->getDebugLoc();
1304         // Origin update with missing or the same debug location provides no
1305         // additional value.
1306         if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) {
1307           // Insert update just before the check, so we call runtime only just
1308           // before the report.
1309           IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint());
1310           IRBOrigin.SetCurrentDebugLocation(NewDebugLoc);
1311           Origin = updateOrigin(Origin, IRBOrigin);
1312         }
1313       }
1314     }
1315 
1316     if (MS.CompileKernel || MS.TrackOrigins)
1317       IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge();
1318     else
1319       IRB.CreateCall(MS.WarningFn)->setCannotMerge();
1320     // FIXME: Insert UnreachableInst if !MS.Recover?
1321     // This may invalidate some of the following checks and needs to be done
1322     // at the very end.
1323   }
1324 
1325   void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow,
1326                            Value *Origin) {
1327     const DataLayout &DL = F.getParent()->getDataLayout();
1328     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1329     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1330     if (instrumentWithCalls(ConvertedShadow) &&
1331         SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1332       FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
1333       Value *ConvertedShadow2 =
1334           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1335       CallBase *CB = IRB.CreateCall(
1336           Fn, {ConvertedShadow2,
1337                MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)});
1338       CB->addParamAttr(0, Attribute::ZExt);
1339       CB->addParamAttr(1, Attribute::ZExt);
1340     } else {
1341       Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1342       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1343           Cmp, &*IRB.GetInsertPoint(),
1344           /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
1345 
1346       IRB.SetInsertPoint(CheckTerm);
1347       insertWarningFn(IRB, Origin);
1348       LLVM_DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
1349     }
1350   }
1351 
1352   void materializeInstructionChecks(
1353       ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) {
1354     const DataLayout &DL = F.getParent()->getDataLayout();
1355     // Disable combining in some cases. TrackOrigins checks each shadow to pick
1356     // correct origin.
1357     bool Combine = !MS.TrackOrigins;
1358     Instruction *Instruction = InstructionChecks.front().OrigIns;
1359     Value *Shadow = nullptr;
1360     for (const auto &ShadowData : InstructionChecks) {
1361       assert(ShadowData.OrigIns == Instruction);
1362       IRBuilder<> IRB(Instruction);
1363 
1364       Value *ConvertedShadow = ShadowData.Shadow;
1365 
1366       if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1367         if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) {
1368           // Skip, value is initialized or const shadow is ignored.
1369           continue;
1370         }
1371         if (llvm::isKnownNonZero(ConvertedShadow, DL)) {
1372           // Report as the value is definitely uninitialized.
1373           insertWarningFn(IRB, ShadowData.Origin);
1374           if (!MS.Recover)
1375             return; // Always fail and stop here, not need to check the rest.
1376           // Skip entire instruction,
1377           continue;
1378         }
1379         // Fallback to runtime check, which still can be optimized out later.
1380       }
1381 
1382       if (!Combine) {
1383         materializeOneCheck(IRB, ConvertedShadow, ShadowData.Origin);
1384         continue;
1385       }
1386 
1387       if (!Shadow) {
1388         Shadow = ConvertedShadow;
1389         continue;
1390       }
1391 
1392       Shadow = convertToBool(Shadow, IRB, "_mscmp");
1393       ConvertedShadow = convertToBool(ConvertedShadow, IRB, "_mscmp");
1394       Shadow = IRB.CreateOr(Shadow, ConvertedShadow, "_msor");
1395     }
1396 
1397     if (Shadow) {
1398       assert(Combine);
1399       IRBuilder<> IRB(Instruction);
1400       materializeOneCheck(IRB, Shadow, nullptr);
1401     }
1402   }
1403 
1404   void materializeChecks() {
1405     llvm::stable_sort(InstrumentationList,
1406                       [](const ShadowOriginAndInsertPoint &L,
1407                          const ShadowOriginAndInsertPoint &R) {
1408                         return L.OrigIns < R.OrigIns;
1409                       });
1410 
1411     for (auto I = InstrumentationList.begin();
1412          I != InstrumentationList.end();) {
1413       auto J =
1414           std::find_if(I + 1, InstrumentationList.end(),
1415                        [L = I->OrigIns](const ShadowOriginAndInsertPoint &R) {
1416                          return L != R.OrigIns;
1417                        });
1418       // Process all checks of instruction at once.
1419       materializeInstructionChecks(ArrayRef<ShadowOriginAndInsertPoint>(I, J));
1420       I = J;
1421     }
1422 
1423     LLVM_DEBUG(dbgs() << "DONE:\n" << F);
1424   }
1425 
1426   // Returns the last instruction in the new prologue
1427   void insertKmsanPrologue(IRBuilder<> &IRB) {
1428     Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
1429     Constant *Zero = IRB.getInt32(0);
1430     MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1431                                 {Zero, IRB.getInt32(0)}, "param_shadow");
1432     MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1433                                  {Zero, IRB.getInt32(1)}, "retval_shadow");
1434     MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1435                                 {Zero, IRB.getInt32(2)}, "va_arg_shadow");
1436     MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1437                                       {Zero, IRB.getInt32(3)}, "va_arg_origin");
1438     MS.VAArgOverflowSizeTLS =
1439         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1440                       {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
1441     MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1442                                       {Zero, IRB.getInt32(5)}, "param_origin");
1443     MS.RetvalOriginTLS =
1444         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1445                       {Zero, IRB.getInt32(6)}, "retval_origin");
1446   }
1447 
1448   /// Add MemorySanitizer instrumentation to a function.
1449   bool runOnFunction() {
1450     // Iterate all BBs in depth-first order and create shadow instructions
1451     // for all instructions (where applicable).
1452     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1453     for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent()))
1454       visit(*BB);
1455 
1456     // Finalize PHI nodes.
1457     for (PHINode *PN : ShadowPHINodes) {
1458       PHINode *PNS = cast<PHINode>(getShadow(PN));
1459       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
1460       size_t NumValues = PN->getNumIncomingValues();
1461       for (size_t v = 0; v < NumValues; v++) {
1462         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1463         if (PNO)
1464           PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1465       }
1466     }
1467 
1468     VAHelper->finalizeInstrumentation();
1469 
1470     // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
1471     // instrumenting only allocas.
1472     if (InstrumentLifetimeStart) {
1473       for (auto Item : LifetimeStartList) {
1474         instrumentAlloca(*Item.second, Item.first);
1475         AllocaSet.remove(Item.second);
1476       }
1477     }
1478     // Poison the allocas for which we didn't instrument the corresponding
1479     // lifetime intrinsics.
1480     for (AllocaInst *AI : AllocaSet)
1481       instrumentAlloca(*AI);
1482 
1483     // Insert shadow value checks.
1484     materializeChecks();
1485 
1486     // Delayed instrumentation of StoreInst.
1487     // This may not add new address checks.
1488     materializeStores();
1489 
1490     return true;
1491   }
1492 
1493   /// Compute the shadow type that corresponds to a given Value.
1494   Type *getShadowTy(Value *V) { return getShadowTy(V->getType()); }
1495 
1496   /// Compute the shadow type that corresponds to a given Type.
1497   Type *getShadowTy(Type *OrigTy) {
1498     if (!OrigTy->isSized()) {
1499       return nullptr;
1500     }
1501     // For integer type, shadow is the same as the original type.
1502     // This may return weird-sized types like i1.
1503     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1504       return IT;
1505     const DataLayout &DL = F.getParent()->getDataLayout();
1506     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1507       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1508       return FixedVectorType::get(IntegerType::get(*MS.C, EltSize),
1509                                   cast<FixedVectorType>(VT)->getNumElements());
1510     }
1511     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1512       return ArrayType::get(getShadowTy(AT->getElementType()),
1513                             AT->getNumElements());
1514     }
1515     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1516       SmallVector<Type *, 4> Elements;
1517       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1518         Elements.push_back(getShadowTy(ST->getElementType(i)));
1519       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1520       LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
1521       return Res;
1522     }
1523     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1524     return IntegerType::get(*MS.C, TypeSize);
1525   }
1526 
1527   /// Flatten a vector type.
1528   Type *getShadowTyNoVec(Type *ty) {
1529     if (VectorType *vt = dyn_cast<VectorType>(ty))
1530       return IntegerType::get(*MS.C,
1531                               vt->getPrimitiveSizeInBits().getFixedValue());
1532     return ty;
1533   }
1534 
1535   /// Extract combined shadow of struct elements as a bool
1536   Value *collapseStructShadow(StructType *Struct, Value *Shadow,
1537                               IRBuilder<> &IRB) {
1538     Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0);
1539     Value *Aggregator = FalseVal;
1540 
1541     for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) {
1542       // Combine by ORing together each element's bool shadow
1543       Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1544       Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1545       Value *ShadowBool = convertToBool(ShadowInner, IRB);
1546 
1547       if (Aggregator != FalseVal)
1548         Aggregator = IRB.CreateOr(Aggregator, ShadowBool);
1549       else
1550         Aggregator = ShadowBool;
1551     }
1552 
1553     return Aggregator;
1554   }
1555 
1556   // Extract combined shadow of array elements
1557   Value *collapseArrayShadow(ArrayType *Array, Value *Shadow,
1558                              IRBuilder<> &IRB) {
1559     if (!Array->getNumElements())
1560       return IRB.getIntN(/* width */ 1, /* value */ 0);
1561 
1562     Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
1563     Value *Aggregator = convertShadowToScalar(FirstItem, IRB);
1564 
1565     for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) {
1566       Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1567       Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1568       Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1569     }
1570     return Aggregator;
1571   }
1572 
1573   /// Convert a shadow value to it's flattened variant. The resulting
1574   /// shadow may not necessarily have the same bit width as the input
1575   /// value, but it will always be comparable to zero.
1576   Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) {
1577     if (StructType *Struct = dyn_cast<StructType>(V->getType()))
1578       return collapseStructShadow(Struct, V, IRB);
1579     if (ArrayType *Array = dyn_cast<ArrayType>(V->getType()))
1580       return collapseArrayShadow(Array, V, IRB);
1581     Type *Ty = V->getType();
1582     Type *NoVecTy = getShadowTyNoVec(Ty);
1583     if (Ty == NoVecTy)
1584       return V;
1585     return IRB.CreateBitCast(V, NoVecTy);
1586   }
1587 
1588   // Convert a scalar value to an i1 by comparing with 0
1589   Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") {
1590     Type *VTy = V->getType();
1591     if (!VTy->isIntegerTy())
1592       return convertToBool(convertShadowToScalar(V, IRB), IRB, name);
1593     if (VTy->getIntegerBitWidth() == 1)
1594       // Just converting a bool to a bool, so do nothing.
1595       return V;
1596     return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name);
1597   }
1598 
1599   Type *ptrToIntPtrType(Type *PtrTy) const {
1600     if (FixedVectorType *VectTy = dyn_cast<FixedVectorType>(PtrTy)) {
1601       return FixedVectorType::get(ptrToIntPtrType(VectTy->getElementType()),
1602                                   VectTy->getNumElements());
1603     }
1604     assert(PtrTy->isIntOrPtrTy());
1605     return MS.IntptrTy;
1606   }
1607 
1608   Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const {
1609     if (FixedVectorType *VectTy = dyn_cast<FixedVectorType>(IntPtrTy)) {
1610       return FixedVectorType::get(
1611           getPtrToShadowPtrType(VectTy->getElementType(), ShadowTy),
1612           VectTy->getNumElements());
1613     }
1614     assert(IntPtrTy == MS.IntptrTy);
1615     return ShadowTy->getPointerTo();
1616   }
1617 
1618   Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const {
1619     if (FixedVectorType *VectTy = dyn_cast<FixedVectorType>(IntPtrTy)) {
1620       return ConstantDataVector::getSplat(
1621           VectTy->getNumElements(), constToIntPtr(VectTy->getElementType(), C));
1622     }
1623     assert(IntPtrTy == MS.IntptrTy);
1624     return ConstantInt::get(MS.IntptrTy, C);
1625   }
1626 
1627   /// Compute the integer shadow offset that corresponds to a given
1628   /// application address.
1629   ///
1630   /// Offset = (Addr & ~AndMask) ^ XorMask
1631   /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of
1632   /// a single pointee.
1633   /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>.
1634   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1635     Type *IntptrTy = ptrToIntPtrType(Addr->getType());
1636     Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
1637 
1638     if (uint64_t AndMask = MS.MapParams->AndMask)
1639       OffsetLong = IRB.CreateAnd(OffsetLong, constToIntPtr(IntptrTy, ~AndMask));
1640 
1641     if (uint64_t XorMask = MS.MapParams->XorMask)
1642       OffsetLong = IRB.CreateXor(OffsetLong, constToIntPtr(IntptrTy, XorMask));
1643     return OffsetLong;
1644   }
1645 
1646   /// Compute the shadow and origin addresses corresponding to a given
1647   /// application address.
1648   ///
1649   /// Shadow = ShadowBase + Offset
1650   /// Origin = (OriginBase + Offset) & ~3ULL
1651   /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of
1652   /// a single pointee.
1653   /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>.
1654   std::pair<Value *, Value *>
1655   getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
1656                               MaybeAlign Alignment) {
1657     Type *IntptrTy = ptrToIntPtrType(Addr->getType());
1658     Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1659     Value *ShadowLong = ShadowOffset;
1660     if (uint64_t ShadowBase = MS.MapParams->ShadowBase) {
1661       ShadowLong =
1662           IRB.CreateAdd(ShadowLong, constToIntPtr(IntptrTy, ShadowBase));
1663     }
1664     Value *ShadowPtr = IRB.CreateIntToPtr(
1665         ShadowLong, getPtrToShadowPtrType(IntptrTy, ShadowTy));
1666 
1667     Value *OriginPtr = nullptr;
1668     if (MS.TrackOrigins) {
1669       Value *OriginLong = ShadowOffset;
1670       uint64_t OriginBase = MS.MapParams->OriginBase;
1671       if (OriginBase != 0)
1672         OriginLong =
1673             IRB.CreateAdd(OriginLong, constToIntPtr(IntptrTy, OriginBase));
1674       if (!Alignment || *Alignment < kMinOriginAlignment) {
1675         uint64_t Mask = kMinOriginAlignment.value() - 1;
1676         OriginLong = IRB.CreateAnd(OriginLong, constToIntPtr(IntptrTy, ~Mask));
1677       }
1678       OriginPtr = IRB.CreateIntToPtr(
1679           OriginLong, getPtrToShadowPtrType(IntptrTy, MS.OriginTy));
1680     }
1681     return std::make_pair(ShadowPtr, OriginPtr);
1682   }
1683 
1684   std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr,
1685                                                             IRBuilder<> &IRB,
1686                                                             Type *ShadowTy,
1687                                                             bool isStore) {
1688     Value *ShadowOriginPtrs;
1689     const DataLayout &DL = F.getParent()->getDataLayout();
1690     int Size = DL.getTypeStoreSize(ShadowTy);
1691 
1692     FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
1693     Value *AddrCast =
1694         IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
1695     if (Getter) {
1696       ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast);
1697     } else {
1698       Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
1699       ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN
1700                                                 : MS.MsanMetadataPtrForLoadN,
1701                                         {AddrCast, SizeVal});
1702     }
1703     Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
1704     ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
1705     Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
1706 
1707     return std::make_pair(ShadowPtr, OriginPtr);
1708   }
1709 
1710   /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of
1711   /// a single pointee.
1712   /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>.
1713   std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr,
1714                                                        IRBuilder<> &IRB,
1715                                                        Type *ShadowTy,
1716                                                        bool isStore) {
1717     FixedVectorType *VectTy = dyn_cast<FixedVectorType>(Addr->getType());
1718     if (!VectTy) {
1719       assert(Addr->getType()->isPointerTy());
1720       return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore);
1721     }
1722 
1723     // TODO: Support callbacs with vectors of addresses.
1724     unsigned NumElements = VectTy->getNumElements();
1725     Value *ShadowPtrs = ConstantInt::getNullValue(
1726         FixedVectorType::get(ShadowTy->getPointerTo(), NumElements));
1727     Value *OriginPtrs = nullptr;
1728     if (MS.TrackOrigins)
1729       OriginPtrs = ConstantInt::getNullValue(
1730           FixedVectorType::get(MS.OriginTy->getPointerTo(), NumElements));
1731     for (unsigned i = 0; i < NumElements; ++i) {
1732       Value *OneAddr =
1733           IRB.CreateExtractElement(Addr, ConstantInt::get(IRB.getInt32Ty(), i));
1734       auto [ShadowPtr, OriginPtr] =
1735           getShadowOriginPtrKernelNoVec(OneAddr, IRB, ShadowTy, isStore);
1736 
1737       ShadowPtrs = IRB.CreateInsertElement(
1738           ShadowPtrs, ShadowPtr, ConstantInt::get(IRB.getInt32Ty(), i));
1739       if (MS.TrackOrigins)
1740         OriginPtrs = IRB.CreateInsertElement(
1741             OriginPtrs, OriginPtr, ConstantInt::get(IRB.getInt32Ty(), i));
1742     }
1743     return {ShadowPtrs, OriginPtrs};
1744   }
1745 
1746   std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1747                                                  Type *ShadowTy,
1748                                                  MaybeAlign Alignment,
1749                                                  bool isStore) {
1750     if (MS.CompileKernel)
1751       return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore);
1752     return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
1753   }
1754 
1755   /// Compute the shadow address for a given function argument.
1756   ///
1757   /// Shadow = ParamTLS+ArgOffset.
1758   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, int ArgOffset) {
1759     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1760     if (ArgOffset)
1761       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1762     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1763                               "_msarg");
1764   }
1765 
1766   /// Compute the origin address for a given function argument.
1767   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, int ArgOffset) {
1768     if (!MS.TrackOrigins)
1769       return nullptr;
1770     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1771     if (ArgOffset)
1772       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1773     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1774                               "_msarg_o");
1775   }
1776 
1777   /// Compute the shadow address for a retval.
1778   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1779     return IRB.CreatePointerCast(MS.RetvalTLS,
1780                                  PointerType::get(getShadowTy(A), 0), "_msret");
1781   }
1782 
1783   /// Compute the origin address for a retval.
1784   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1785     // We keep a single origin for the entire retval. Might be too optimistic.
1786     return MS.RetvalOriginTLS;
1787   }
1788 
1789   /// Set SV to be the shadow value for V.
1790   void setShadow(Value *V, Value *SV) {
1791     assert(!ShadowMap.count(V) && "Values may only have one shadow");
1792     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1793   }
1794 
1795   /// Set Origin to be the origin value for V.
1796   void setOrigin(Value *V, Value *Origin) {
1797     if (!MS.TrackOrigins)
1798       return;
1799     assert(!OriginMap.count(V) && "Values may only have one origin");
1800     LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
1801     OriginMap[V] = Origin;
1802   }
1803 
1804   Constant *getCleanShadow(Type *OrigTy) {
1805     Type *ShadowTy = getShadowTy(OrigTy);
1806     if (!ShadowTy)
1807       return nullptr;
1808     return Constant::getNullValue(ShadowTy);
1809   }
1810 
1811   /// Create a clean shadow value for a given value.
1812   ///
1813   /// Clean shadow (all zeroes) means all bits of the value are defined
1814   /// (initialized).
1815   Constant *getCleanShadow(Value *V) { return getCleanShadow(V->getType()); }
1816 
1817   /// Create a dirty shadow of a given shadow type.
1818   Constant *getPoisonedShadow(Type *ShadowTy) {
1819     assert(ShadowTy);
1820     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1821       return Constant::getAllOnesValue(ShadowTy);
1822     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1823       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1824                                       getPoisonedShadow(AT->getElementType()));
1825       return ConstantArray::get(AT, Vals);
1826     }
1827     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1828       SmallVector<Constant *, 4> Vals;
1829       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1830         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1831       return ConstantStruct::get(ST, Vals);
1832     }
1833     llvm_unreachable("Unexpected shadow type");
1834   }
1835 
1836   /// Create a dirty shadow for a given value.
1837   Constant *getPoisonedShadow(Value *V) {
1838     Type *ShadowTy = getShadowTy(V);
1839     if (!ShadowTy)
1840       return nullptr;
1841     return getPoisonedShadow(ShadowTy);
1842   }
1843 
1844   /// Create a clean (zero) origin.
1845   Value *getCleanOrigin() { return Constant::getNullValue(MS.OriginTy); }
1846 
1847   /// Get the shadow value for a given Value.
1848   ///
1849   /// This function either returns the value set earlier with setShadow,
1850   /// or extracts if from ParamTLS (for function arguments).
1851   Value *getShadow(Value *V) {
1852     if (Instruction *I = dyn_cast<Instruction>(V)) {
1853       if (!PropagateShadow || I->getMetadata(LLVMContext::MD_nosanitize))
1854         return getCleanShadow(V);
1855       // For instructions the shadow is already stored in the map.
1856       Value *Shadow = ShadowMap[V];
1857       if (!Shadow) {
1858         LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1859         (void)I;
1860         assert(Shadow && "No shadow for a value");
1861       }
1862       return Shadow;
1863     }
1864     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1865       Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V)
1866                                                         : getCleanShadow(V);
1867       LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1868       (void)U;
1869       return AllOnes;
1870     }
1871     if (Argument *A = dyn_cast<Argument>(V)) {
1872       // For arguments we compute the shadow on demand and store it in the map.
1873       Value *&ShadowPtr = ShadowMap[V];
1874       if (ShadowPtr)
1875         return ShadowPtr;
1876       Function *F = A->getParent();
1877       IRBuilder<> EntryIRB(FnPrologueEnd);
1878       unsigned ArgOffset = 0;
1879       const DataLayout &DL = F->getParent()->getDataLayout();
1880       for (auto &FArg : F->args()) {
1881         if (!FArg.getType()->isSized()) {
1882           LLVM_DEBUG(dbgs() << "Arg is not sized\n");
1883           continue;
1884         }
1885 
1886         unsigned Size = FArg.hasByValAttr()
1887                             ? DL.getTypeAllocSize(FArg.getParamByValType())
1888                             : DL.getTypeAllocSize(FArg.getType());
1889 
1890         if (A == &FArg) {
1891           bool Overflow = ArgOffset + Size > kParamTLSSize;
1892           if (FArg.hasByValAttr()) {
1893             // ByVal pointer itself has clean shadow. We copy the actual
1894             // argument shadow to the underlying memory.
1895             // Figure out maximal valid memcpy alignment.
1896             const Align ArgAlign = DL.getValueOrABITypeAlignment(
1897                 FArg.getParamAlign(), FArg.getParamByValType());
1898             Value *CpShadowPtr, *CpOriginPtr;
1899             std::tie(CpShadowPtr, CpOriginPtr) =
1900                 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
1901                                    /*isStore*/ true);
1902             if (!PropagateShadow || Overflow) {
1903               // ParamTLS overflow.
1904               EntryIRB.CreateMemSet(
1905                   CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
1906                   Size, ArgAlign);
1907             } else {
1908               Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1909               const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1910               Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
1911                                                  CopyAlign, Size);
1912               LLVM_DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
1913               (void)Cpy;
1914 
1915               if (MS.TrackOrigins) {
1916                 Value *OriginPtr =
1917                     getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1918                 // FIXME: OriginSize should be:
1919                 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment)
1920                 unsigned OriginSize = alignTo(Size, kMinOriginAlignment);
1921                 EntryIRB.CreateMemCpy(
1922                     CpOriginPtr,
1923                     /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr,
1924                     /* by origin_tls[ArgOffset] */ kMinOriginAlignment,
1925                     OriginSize);
1926               }
1927             }
1928           }
1929 
1930           if (!PropagateShadow || Overflow || FArg.hasByValAttr() ||
1931               (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) {
1932             ShadowPtr = getCleanShadow(V);
1933             setOrigin(A, getCleanOrigin());
1934           } else {
1935             // Shadow over TLS
1936             Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1937             ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
1938                                                    kShadowTLSAlignment);
1939             if (MS.TrackOrigins) {
1940               Value *OriginPtr =
1941                   getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1942               setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
1943             }
1944           }
1945           LLVM_DEBUG(dbgs()
1946                      << "  ARG:    " << FArg << " ==> " << *ShadowPtr << "\n");
1947           break;
1948         }
1949 
1950         ArgOffset += alignTo(Size, kShadowTLSAlignment);
1951       }
1952       assert(ShadowPtr && "Could not find shadow for an argument");
1953       return ShadowPtr;
1954     }
1955     // For everything else the shadow is zero.
1956     return getCleanShadow(V);
1957   }
1958 
1959   /// Get the shadow for i-th argument of the instruction I.
1960   Value *getShadow(Instruction *I, int i) {
1961     return getShadow(I->getOperand(i));
1962   }
1963 
1964   /// Get the origin for a value.
1965   Value *getOrigin(Value *V) {
1966     if (!MS.TrackOrigins)
1967       return nullptr;
1968     if (!PropagateShadow || isa<Constant>(V) || isa<InlineAsm>(V))
1969       return getCleanOrigin();
1970     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1971            "Unexpected value type in getOrigin()");
1972     if (Instruction *I = dyn_cast<Instruction>(V)) {
1973       if (I->getMetadata(LLVMContext::MD_nosanitize))
1974         return getCleanOrigin();
1975     }
1976     Value *Origin = OriginMap[V];
1977     assert(Origin && "Missing origin");
1978     return Origin;
1979   }
1980 
1981   /// Get the origin for i-th argument of the instruction I.
1982   Value *getOrigin(Instruction *I, int i) {
1983     return getOrigin(I->getOperand(i));
1984   }
1985 
1986   /// Remember the place where a shadow check should be inserted.
1987   ///
1988   /// This location will be later instrumented with a check that will print a
1989   /// UMR warning in runtime if the shadow value is not 0.
1990   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1991     assert(Shadow);
1992     if (!InsertChecks)
1993       return;
1994 
1995     if (!DebugCounter::shouldExecute(DebugInsertCheck)) {
1996       LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before "
1997                         << *OrigIns << "\n");
1998       return;
1999     }
2000 #ifndef NDEBUG
2001     Type *ShadowTy = Shadow->getType();
2002     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) ||
2003             isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) &&
2004            "Can only insert checks for integer, vector, and aggregate shadow "
2005            "types");
2006 #endif
2007     InstrumentationList.push_back(
2008         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
2009   }
2010 
2011   /// Remember the place where a shadow check should be inserted.
2012   ///
2013   /// This location will be later instrumented with a check that will print a
2014   /// UMR warning in runtime if the value is not fully defined.
2015   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
2016     assert(Val);
2017     Value *Shadow, *Origin;
2018     if (ClCheckConstantShadow) {
2019       Shadow = getShadow(Val);
2020       if (!Shadow)
2021         return;
2022       Origin = getOrigin(Val);
2023     } else {
2024       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
2025       if (!Shadow)
2026         return;
2027       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
2028     }
2029     insertShadowCheck(Shadow, Origin, OrigIns);
2030   }
2031 
2032   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
2033     switch (a) {
2034     case AtomicOrdering::NotAtomic:
2035       return AtomicOrdering::NotAtomic;
2036     case AtomicOrdering::Unordered:
2037     case AtomicOrdering::Monotonic:
2038     case AtomicOrdering::Release:
2039       return AtomicOrdering::Release;
2040     case AtomicOrdering::Acquire:
2041     case AtomicOrdering::AcquireRelease:
2042       return AtomicOrdering::AcquireRelease;
2043     case AtomicOrdering::SequentiallyConsistent:
2044       return AtomicOrdering::SequentiallyConsistent;
2045     }
2046     llvm_unreachable("Unknown ordering");
2047   }
2048 
2049   Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
2050     constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
2051     uint32_t OrderingTable[NumOrderings] = {};
2052 
2053     OrderingTable[(int)AtomicOrderingCABI::relaxed] =
2054         OrderingTable[(int)AtomicOrderingCABI::release] =
2055             (int)AtomicOrderingCABI::release;
2056     OrderingTable[(int)AtomicOrderingCABI::consume] =
2057         OrderingTable[(int)AtomicOrderingCABI::acquire] =
2058             OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
2059                 (int)AtomicOrderingCABI::acq_rel;
2060     OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
2061         (int)AtomicOrderingCABI::seq_cst;
2062 
2063     return ConstantDataVector::get(IRB.getContext(),
2064                                    ArrayRef(OrderingTable, NumOrderings));
2065   }
2066 
2067   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
2068     switch (a) {
2069     case AtomicOrdering::NotAtomic:
2070       return AtomicOrdering::NotAtomic;
2071     case AtomicOrdering::Unordered:
2072     case AtomicOrdering::Monotonic:
2073     case AtomicOrdering::Acquire:
2074       return AtomicOrdering::Acquire;
2075     case AtomicOrdering::Release:
2076     case AtomicOrdering::AcquireRelease:
2077       return AtomicOrdering::AcquireRelease;
2078     case AtomicOrdering::SequentiallyConsistent:
2079       return AtomicOrdering::SequentiallyConsistent;
2080     }
2081     llvm_unreachable("Unknown ordering");
2082   }
2083 
2084   Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
2085     constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
2086     uint32_t OrderingTable[NumOrderings] = {};
2087 
2088     OrderingTable[(int)AtomicOrderingCABI::relaxed] =
2089         OrderingTable[(int)AtomicOrderingCABI::acquire] =
2090             OrderingTable[(int)AtomicOrderingCABI::consume] =
2091                 (int)AtomicOrderingCABI::acquire;
2092     OrderingTable[(int)AtomicOrderingCABI::release] =
2093         OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
2094             (int)AtomicOrderingCABI::acq_rel;
2095     OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
2096         (int)AtomicOrderingCABI::seq_cst;
2097 
2098     return ConstantDataVector::get(IRB.getContext(),
2099                                    ArrayRef(OrderingTable, NumOrderings));
2100   }
2101 
2102   // ------------------- Visitors.
2103   using InstVisitor<MemorySanitizerVisitor>::visit;
2104   void visit(Instruction &I) {
2105     if (I.getMetadata(LLVMContext::MD_nosanitize))
2106       return;
2107     // Don't want to visit if we're in the prologue
2108     if (isInPrologue(I))
2109       return;
2110     InstVisitor<MemorySanitizerVisitor>::visit(I);
2111   }
2112 
2113   /// Instrument LoadInst
2114   ///
2115   /// Loads the corresponding shadow and (optionally) origin.
2116   /// Optionally, checks that the load address is fully defined.
2117   void visitLoadInst(LoadInst &I) {
2118     assert(I.getType()->isSized() && "Load type must have size");
2119     assert(!I.getMetadata(LLVMContext::MD_nosanitize));
2120     NextNodeIRBuilder IRB(&I);
2121     Type *ShadowTy = getShadowTy(&I);
2122     Value *Addr = I.getPointerOperand();
2123     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2124     const Align Alignment = I.getAlign();
2125     if (PropagateShadow) {
2126       std::tie(ShadowPtr, OriginPtr) =
2127           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2128       setShadow(&I,
2129                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2130     } else {
2131       setShadow(&I, getCleanShadow(&I));
2132     }
2133 
2134     if (ClCheckAccessAddress)
2135       insertShadowCheck(I.getPointerOperand(), &I);
2136 
2137     if (I.isAtomic())
2138       I.setOrdering(addAcquireOrdering(I.getOrdering()));
2139 
2140     if (MS.TrackOrigins) {
2141       if (PropagateShadow) {
2142         const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
2143         setOrigin(
2144             &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
2145       } else {
2146         setOrigin(&I, getCleanOrigin());
2147       }
2148     }
2149   }
2150 
2151   /// Instrument StoreInst
2152   ///
2153   /// Stores the corresponding shadow and (optionally) origin.
2154   /// Optionally, checks that the store address is fully defined.
2155   void visitStoreInst(StoreInst &I) {
2156     StoreList.push_back(&I);
2157     if (ClCheckAccessAddress)
2158       insertShadowCheck(I.getPointerOperand(), &I);
2159   }
2160 
2161   void handleCASOrRMW(Instruction &I) {
2162     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
2163 
2164     IRBuilder<> IRB(&I);
2165     Value *Addr = I.getOperand(0);
2166     Value *Val = I.getOperand(1);
2167     Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, getShadowTy(Val), Align(1),
2168                                           /*isStore*/ true)
2169                            .first;
2170 
2171     if (ClCheckAccessAddress)
2172       insertShadowCheck(Addr, &I);
2173 
2174     // Only test the conditional argument of cmpxchg instruction.
2175     // The other argument can potentially be uninitialized, but we can not
2176     // detect this situation reliably without possible false positives.
2177     if (isa<AtomicCmpXchgInst>(I))
2178       insertShadowCheck(Val, &I);
2179 
2180     IRB.CreateStore(getCleanShadow(Val), ShadowPtr);
2181 
2182     setShadow(&I, getCleanShadow(&I));
2183     setOrigin(&I, getCleanOrigin());
2184   }
2185 
2186   void visitAtomicRMWInst(AtomicRMWInst &I) {
2187     handleCASOrRMW(I);
2188     I.setOrdering(addReleaseOrdering(I.getOrdering()));
2189   }
2190 
2191   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2192     handleCASOrRMW(I);
2193     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2194   }
2195 
2196   // Vector manipulation.
2197   void visitExtractElementInst(ExtractElementInst &I) {
2198     insertShadowCheck(I.getOperand(1), &I);
2199     IRBuilder<> IRB(&I);
2200     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
2201                                            "_msprop"));
2202     setOrigin(&I, getOrigin(&I, 0));
2203   }
2204 
2205   void visitInsertElementInst(InsertElementInst &I) {
2206     insertShadowCheck(I.getOperand(2), &I);
2207     IRBuilder<> IRB(&I);
2208     auto *Shadow0 = getShadow(&I, 0);
2209     auto *Shadow1 = getShadow(&I, 1);
2210     setShadow(&I, IRB.CreateInsertElement(Shadow0, Shadow1, I.getOperand(2),
2211                                           "_msprop"));
2212     setOriginForNaryOp(I);
2213   }
2214 
2215   void visitShuffleVectorInst(ShuffleVectorInst &I) {
2216     IRBuilder<> IRB(&I);
2217     auto *Shadow0 = getShadow(&I, 0);
2218     auto *Shadow1 = getShadow(&I, 1);
2219     setShadow(&I, IRB.CreateShuffleVector(Shadow0, Shadow1, I.getShuffleMask(),
2220                                           "_msprop"));
2221     setOriginForNaryOp(I);
2222   }
2223 
2224   // Casts.
2225   void visitSExtInst(SExtInst &I) {
2226     IRBuilder<> IRB(&I);
2227     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
2228     setOrigin(&I, getOrigin(&I, 0));
2229   }
2230 
2231   void visitZExtInst(ZExtInst &I) {
2232     IRBuilder<> IRB(&I);
2233     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
2234     setOrigin(&I, getOrigin(&I, 0));
2235   }
2236 
2237   void visitTruncInst(TruncInst &I) {
2238     IRBuilder<> IRB(&I);
2239     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
2240     setOrigin(&I, getOrigin(&I, 0));
2241   }
2242 
2243   void visitBitCastInst(BitCastInst &I) {
2244     // Special case: if this is the bitcast (there is exactly 1 allowed) between
2245     // a musttail call and a ret, don't instrument. New instructions are not
2246     // allowed after a musttail call.
2247     if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
2248       if (CI->isMustTailCall())
2249         return;
2250     IRBuilder<> IRB(&I);
2251     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
2252     setOrigin(&I, getOrigin(&I, 0));
2253   }
2254 
2255   void visitPtrToIntInst(PtrToIntInst &I) {
2256     IRBuilder<> IRB(&I);
2257     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2258                                     "_msprop_ptrtoint"));
2259     setOrigin(&I, getOrigin(&I, 0));
2260   }
2261 
2262   void visitIntToPtrInst(IntToPtrInst &I) {
2263     IRBuilder<> IRB(&I);
2264     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2265                                     "_msprop_inttoptr"));
2266     setOrigin(&I, getOrigin(&I, 0));
2267   }
2268 
2269   void visitFPToSIInst(CastInst &I) { handleShadowOr(I); }
2270   void visitFPToUIInst(CastInst &I) { handleShadowOr(I); }
2271   void visitSIToFPInst(CastInst &I) { handleShadowOr(I); }
2272   void visitUIToFPInst(CastInst &I) { handleShadowOr(I); }
2273   void visitFPExtInst(CastInst &I) { handleShadowOr(I); }
2274   void visitFPTruncInst(CastInst &I) { handleShadowOr(I); }
2275 
2276   /// Propagate shadow for bitwise AND.
2277   ///
2278   /// This code is exact, i.e. if, for example, a bit in the left argument
2279   /// is defined and 0, then neither the value not definedness of the
2280   /// corresponding bit in B don't affect the resulting shadow.
2281   void visitAnd(BinaryOperator &I) {
2282     IRBuilder<> IRB(&I);
2283     //  "And" of 0 and a poisoned value results in unpoisoned value.
2284     //  1&1 => 1;     0&1 => 0;     p&1 => p;
2285     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
2286     //  1&p => p;     0&p => 0;     p&p => p;
2287     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
2288     Value *S1 = getShadow(&I, 0);
2289     Value *S2 = getShadow(&I, 1);
2290     Value *V1 = I.getOperand(0);
2291     Value *V2 = I.getOperand(1);
2292     if (V1->getType() != S1->getType()) {
2293       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2294       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2295     }
2296     Value *S1S2 = IRB.CreateAnd(S1, S2);
2297     Value *V1S2 = IRB.CreateAnd(V1, S2);
2298     Value *S1V2 = IRB.CreateAnd(S1, V2);
2299     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2300     setOriginForNaryOp(I);
2301   }
2302 
2303   void visitOr(BinaryOperator &I) {
2304     IRBuilder<> IRB(&I);
2305     //  "Or" of 1 and a poisoned value results in unpoisoned value.
2306     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
2307     //  1|0 => 1;     0|0 => 0;     p|0 => p;
2308     //  1|p => 1;     0|p => p;     p|p => p;
2309     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
2310     Value *S1 = getShadow(&I, 0);
2311     Value *S2 = getShadow(&I, 1);
2312     Value *V1 = IRB.CreateNot(I.getOperand(0));
2313     Value *V2 = IRB.CreateNot(I.getOperand(1));
2314     if (V1->getType() != S1->getType()) {
2315       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2316       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2317     }
2318     Value *S1S2 = IRB.CreateAnd(S1, S2);
2319     Value *V1S2 = IRB.CreateAnd(V1, S2);
2320     Value *S1V2 = IRB.CreateAnd(S1, V2);
2321     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2322     setOriginForNaryOp(I);
2323   }
2324 
2325   /// Default propagation of shadow and/or origin.
2326   ///
2327   /// This class implements the general case of shadow propagation, used in all
2328   /// cases where we don't know and/or don't care about what the operation
2329   /// actually does. It converts all input shadow values to a common type
2330   /// (extending or truncating as necessary), and bitwise OR's them.
2331   ///
2332   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
2333   /// fully initialized), and less prone to false positives.
2334   ///
2335   /// This class also implements the general case of origin propagation. For a
2336   /// Nary operation, result origin is set to the origin of an argument that is
2337   /// not entirely initialized. If there is more than one such arguments, the
2338   /// rightmost of them is picked. It does not matter which one is picked if all
2339   /// arguments are initialized.
2340   template <bool CombineShadow> class Combiner {
2341     Value *Shadow = nullptr;
2342     Value *Origin = nullptr;
2343     IRBuilder<> &IRB;
2344     MemorySanitizerVisitor *MSV;
2345 
2346   public:
2347     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
2348         : IRB(IRB), MSV(MSV) {}
2349 
2350     /// Add a pair of shadow and origin values to the mix.
2351     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
2352       if (CombineShadow) {
2353         assert(OpShadow);
2354         if (!Shadow)
2355           Shadow = OpShadow;
2356         else {
2357           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
2358           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
2359         }
2360       }
2361 
2362       if (MSV->MS.TrackOrigins) {
2363         assert(OpOrigin);
2364         if (!Origin) {
2365           Origin = OpOrigin;
2366         } else {
2367           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
2368           // No point in adding something that might result in 0 origin value.
2369           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
2370             Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB);
2371             Value *Cond =
2372                 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
2373             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2374           }
2375         }
2376       }
2377       return *this;
2378     }
2379 
2380     /// Add an application value to the mix.
2381     Combiner &Add(Value *V) {
2382       Value *OpShadow = MSV->getShadow(V);
2383       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
2384       return Add(OpShadow, OpOrigin);
2385     }
2386 
2387     /// Set the current combined values as the given instruction's shadow
2388     /// and origin.
2389     void Done(Instruction *I) {
2390       if (CombineShadow) {
2391         assert(Shadow);
2392         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
2393         MSV->setShadow(I, Shadow);
2394       }
2395       if (MSV->MS.TrackOrigins) {
2396         assert(Origin);
2397         MSV->setOrigin(I, Origin);
2398       }
2399     }
2400   };
2401 
2402   using ShadowAndOriginCombiner = Combiner<true>;
2403   using OriginCombiner = Combiner<false>;
2404 
2405   /// Propagate origin for arbitrary operation.
2406   void setOriginForNaryOp(Instruction &I) {
2407     if (!MS.TrackOrigins)
2408       return;
2409     IRBuilder<> IRB(&I);
2410     OriginCombiner OC(this, IRB);
2411     for (Use &Op : I.operands())
2412       OC.Add(Op.get());
2413     OC.Done(&I);
2414   }
2415 
2416   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
2417     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
2418            "Vector of pointers is not a valid shadow type");
2419     return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() *
2420                                   Ty->getScalarSizeInBits()
2421                             : Ty->getPrimitiveSizeInBits();
2422   }
2423 
2424   /// Cast between two shadow types, extending or truncating as
2425   /// necessary.
2426   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
2427                           bool Signed = false) {
2428     Type *srcTy = V->getType();
2429     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
2430     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
2431     if (srcSizeInBits > 1 && dstSizeInBits == 1)
2432       return IRB.CreateICmpNE(V, getCleanShadow(V));
2433 
2434     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
2435       return IRB.CreateIntCast(V, dstTy, Signed);
2436     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
2437         cast<FixedVectorType>(dstTy)->getNumElements() ==
2438             cast<FixedVectorType>(srcTy)->getNumElements())
2439       return IRB.CreateIntCast(V, dstTy, Signed);
2440     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
2441     Value *V2 =
2442         IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
2443     return IRB.CreateBitCast(V2, dstTy);
2444     // TODO: handle struct types.
2445   }
2446 
2447   /// Cast an application value to the type of its own shadow.
2448   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
2449     Type *ShadowTy = getShadowTy(V);
2450     if (V->getType() == ShadowTy)
2451       return V;
2452     if (V->getType()->isPtrOrPtrVectorTy())
2453       return IRB.CreatePtrToInt(V, ShadowTy);
2454     else
2455       return IRB.CreateBitCast(V, ShadowTy);
2456   }
2457 
2458   /// Propagate shadow for arbitrary operation.
2459   void handleShadowOr(Instruction &I) {
2460     IRBuilder<> IRB(&I);
2461     ShadowAndOriginCombiner SC(this, IRB);
2462     for (Use &Op : I.operands())
2463       SC.Add(Op.get());
2464     SC.Done(&I);
2465   }
2466 
2467   void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
2468 
2469   // Handle multiplication by constant.
2470   //
2471   // Handle a special case of multiplication by constant that may have one or
2472   // more zeros in the lower bits. This makes corresponding number of lower bits
2473   // of the result zero as well. We model it by shifting the other operand
2474   // shadow left by the required number of bits. Effectively, we transform
2475   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
2476   // We use multiplication by 2**N instead of shift to cover the case of
2477   // multiplication by 0, which may occur in some elements of a vector operand.
2478   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
2479                            Value *OtherArg) {
2480     Constant *ShadowMul;
2481     Type *Ty = ConstArg->getType();
2482     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2483       unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements();
2484       Type *EltTy = VTy->getElementType();
2485       SmallVector<Constant *, 16> Elements;
2486       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
2487         if (ConstantInt *Elt =
2488                 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
2489           const APInt &V = Elt->getValue();
2490           APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2491           Elements.push_back(ConstantInt::get(EltTy, V2));
2492         } else {
2493           Elements.push_back(ConstantInt::get(EltTy, 1));
2494         }
2495       }
2496       ShadowMul = ConstantVector::get(Elements);
2497     } else {
2498       if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
2499         const APInt &V = Elt->getValue();
2500         APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2501         ShadowMul = ConstantInt::get(Ty, V2);
2502       } else {
2503         ShadowMul = ConstantInt::get(Ty, 1);
2504       }
2505     }
2506 
2507     IRBuilder<> IRB(&I);
2508     setShadow(&I,
2509               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
2510     setOrigin(&I, getOrigin(OtherArg));
2511   }
2512 
2513   void visitMul(BinaryOperator &I) {
2514     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
2515     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
2516     if (constOp0 && !constOp1)
2517       handleMulByConstant(I, constOp0, I.getOperand(1));
2518     else if (constOp1 && !constOp0)
2519       handleMulByConstant(I, constOp1, I.getOperand(0));
2520     else
2521       handleShadowOr(I);
2522   }
2523 
2524   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
2525   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
2526   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
2527   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
2528   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
2529   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
2530 
2531   void handleIntegerDiv(Instruction &I) {
2532     IRBuilder<> IRB(&I);
2533     // Strict on the second argument.
2534     insertShadowCheck(I.getOperand(1), &I);
2535     setShadow(&I, getShadow(&I, 0));
2536     setOrigin(&I, getOrigin(&I, 0));
2537   }
2538 
2539   void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2540   void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2541   void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
2542   void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
2543 
2544   // Floating point division is side-effect free. We can not require that the
2545   // divisor is fully initialized and must propagate shadow. See PR37523.
2546   void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
2547   void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
2548 
2549   /// Instrument == and != comparisons.
2550   ///
2551   /// Sometimes the comparison result is known even if some of the bits of the
2552   /// arguments are not.
2553   void handleEqualityComparison(ICmpInst &I) {
2554     IRBuilder<> IRB(&I);
2555     Value *A = I.getOperand(0);
2556     Value *B = I.getOperand(1);
2557     Value *Sa = getShadow(A);
2558     Value *Sb = getShadow(B);
2559 
2560     // Get rid of pointers and vectors of pointers.
2561     // For ints (and vectors of ints), types of A and Sa match,
2562     // and this is a no-op.
2563     A = IRB.CreatePointerCast(A, Sa->getType());
2564     B = IRB.CreatePointerCast(B, Sb->getType());
2565 
2566     // A == B  <==>  (C = A^B) == 0
2567     // A != B  <==>  (C = A^B) != 0
2568     // Sc = Sa | Sb
2569     Value *C = IRB.CreateXor(A, B);
2570     Value *Sc = IRB.CreateOr(Sa, Sb);
2571     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
2572     // Result is defined if one of the following is true
2573     // * there is a defined 1 bit in C
2574     // * C is fully defined
2575     // Si = !(C & ~Sc) && Sc
2576     Value *Zero = Constant::getNullValue(Sc->getType());
2577     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
2578     Value *LHS = IRB.CreateICmpNE(Sc, Zero);
2579     Value *RHS =
2580         IRB.CreateICmpEQ(IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero);
2581     Value *Si = IRB.CreateAnd(LHS, RHS);
2582     Si->setName("_msprop_icmp");
2583     setShadow(&I, Si);
2584     setOriginForNaryOp(I);
2585   }
2586 
2587   /// Build the lowest possible value of V, taking into account V's
2588   ///        uninitialized bits.
2589   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2590                                 bool isSigned) {
2591     if (isSigned) {
2592       // Split shadow into sign bit and other bits.
2593       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2594       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2595       // Maximise the undefined shadow bit, minimize other undefined bits.
2596       return IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)),
2597                           SaSignBit);
2598     } else {
2599       // Minimize undefined bits.
2600       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
2601     }
2602   }
2603 
2604   /// Build the highest possible value of V, taking into account V's
2605   ///        uninitialized bits.
2606   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2607                                  bool isSigned) {
2608     if (isSigned) {
2609       // Split shadow into sign bit and other bits.
2610       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2611       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2612       // Minimise the undefined shadow bit, maximise other undefined bits.
2613       return IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)),
2614                           SaOtherBits);
2615     } else {
2616       // Maximize undefined bits.
2617       return IRB.CreateOr(A, Sa);
2618     }
2619   }
2620 
2621   /// Instrument relational comparisons.
2622   ///
2623   /// This function does exact shadow propagation for all relational
2624   /// comparisons of integers, pointers and vectors of those.
2625   /// FIXME: output seems suboptimal when one of the operands is a constant
2626   void handleRelationalComparisonExact(ICmpInst &I) {
2627     IRBuilder<> IRB(&I);
2628     Value *A = I.getOperand(0);
2629     Value *B = I.getOperand(1);
2630     Value *Sa = getShadow(A);
2631     Value *Sb = getShadow(B);
2632 
2633     // Get rid of pointers and vectors of pointers.
2634     // For ints (and vectors of ints), types of A and Sa match,
2635     // and this is a no-op.
2636     A = IRB.CreatePointerCast(A, Sa->getType());
2637     B = IRB.CreatePointerCast(B, Sb->getType());
2638 
2639     // Let [a0, a1] be the interval of possible values of A, taking into account
2640     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
2641     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
2642     bool IsSigned = I.isSigned();
2643     Value *S1 = IRB.CreateICmp(I.getPredicate(),
2644                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
2645                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
2646     Value *S2 = IRB.CreateICmp(I.getPredicate(),
2647                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
2648                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
2649     Value *Si = IRB.CreateXor(S1, S2);
2650     setShadow(&I, Si);
2651     setOriginForNaryOp(I);
2652   }
2653 
2654   /// Instrument signed relational comparisons.
2655   ///
2656   /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
2657   /// bit of the shadow. Everything else is delegated to handleShadowOr().
2658   void handleSignedRelationalComparison(ICmpInst &I) {
2659     Constant *constOp;
2660     Value *op = nullptr;
2661     CmpInst::Predicate pre;
2662     if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
2663       op = I.getOperand(0);
2664       pre = I.getPredicate();
2665     } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
2666       op = I.getOperand(1);
2667       pre = I.getSwappedPredicate();
2668     } else {
2669       handleShadowOr(I);
2670       return;
2671     }
2672 
2673     if ((constOp->isNullValue() &&
2674          (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
2675         (constOp->isAllOnesValue() &&
2676          (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
2677       IRBuilder<> IRB(&I);
2678       Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
2679                                         "_msprop_icmp_s");
2680       setShadow(&I, Shadow);
2681       setOrigin(&I, getOrigin(op));
2682     } else {
2683       handleShadowOr(I);
2684     }
2685   }
2686 
2687   void visitICmpInst(ICmpInst &I) {
2688     if (!ClHandleICmp) {
2689       handleShadowOr(I);
2690       return;
2691     }
2692     if (I.isEquality()) {
2693       handleEqualityComparison(I);
2694       return;
2695     }
2696 
2697     assert(I.isRelational());
2698     if (ClHandleICmpExact) {
2699       handleRelationalComparisonExact(I);
2700       return;
2701     }
2702     if (I.isSigned()) {
2703       handleSignedRelationalComparison(I);
2704       return;
2705     }
2706 
2707     assert(I.isUnsigned());
2708     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2709       handleRelationalComparisonExact(I);
2710       return;
2711     }
2712 
2713     handleShadowOr(I);
2714   }
2715 
2716   void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); }
2717 
2718   void handleShift(BinaryOperator &I) {
2719     IRBuilder<> IRB(&I);
2720     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2721     // Otherwise perform the same shift on S1.
2722     Value *S1 = getShadow(&I, 0);
2723     Value *S2 = getShadow(&I, 1);
2724     Value *S2Conv =
2725         IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType());
2726     Value *V2 = I.getOperand(1);
2727     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2728     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2729     setOriginForNaryOp(I);
2730   }
2731 
2732   void visitShl(BinaryOperator &I) { handleShift(I); }
2733   void visitAShr(BinaryOperator &I) { handleShift(I); }
2734   void visitLShr(BinaryOperator &I) { handleShift(I); }
2735 
2736   void handleFunnelShift(IntrinsicInst &I) {
2737     IRBuilder<> IRB(&I);
2738     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2739     // Otherwise perform the same shift on S0 and S1.
2740     Value *S0 = getShadow(&I, 0);
2741     Value *S1 = getShadow(&I, 1);
2742     Value *S2 = getShadow(&I, 2);
2743     Value *S2Conv =
2744         IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType());
2745     Value *V2 = I.getOperand(2);
2746     Function *Intrin = Intrinsic::getDeclaration(
2747         I.getModule(), I.getIntrinsicID(), S2Conv->getType());
2748     Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2});
2749     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2750     setOriginForNaryOp(I);
2751   }
2752 
2753   /// Instrument llvm.memmove
2754   ///
2755   /// At this point we don't know if llvm.memmove will be inlined or not.
2756   /// If we don't instrument it and it gets inlined,
2757   /// our interceptor will not kick in and we will lose the memmove.
2758   /// If we instrument the call here, but it does not get inlined,
2759   /// we will memove the shadow twice: which is bad in case
2760   /// of overlapping regions. So, we simply lower the intrinsic to a call.
2761   ///
2762   /// Similar situation exists for memcpy and memset.
2763   void visitMemMoveInst(MemMoveInst &I) {
2764     getShadow(I.getArgOperand(1)); // Ensure shadow initialized
2765     IRBuilder<> IRB(&I);
2766     IRB.CreateCall(
2767         MS.MemmoveFn,
2768         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2769          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2770          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2771     I.eraseFromParent();
2772   }
2773 
2774   /// Instrument memcpy
2775   ///
2776   /// Similar to memmove: avoid copying shadow twice. This is somewhat
2777   /// unfortunate as it may slowdown small constant memcpys.
2778   /// FIXME: consider doing manual inline for small constant sizes and proper
2779   /// alignment.
2780   ///
2781   /// Note: This also handles memcpy.inline, which promises no calls to external
2782   /// functions as an optimization. However, with instrumentation enabled this
2783   /// is difficult to promise; additionally, we know that the MSan runtime
2784   /// exists and provides __msan_memcpy(). Therefore, we assume that with
2785   /// instrumentation it's safe to turn memcpy.inline into a call to
2786   /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy()
2787   /// itself, instrumentation should be disabled with the no_sanitize attribute.
2788   void visitMemCpyInst(MemCpyInst &I) {
2789     getShadow(I.getArgOperand(1)); // Ensure shadow initialized
2790     IRBuilder<> IRB(&I);
2791     IRB.CreateCall(
2792         MS.MemcpyFn,
2793         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2794          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2795          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2796     I.eraseFromParent();
2797   }
2798 
2799   // Same as memcpy.
2800   void visitMemSetInst(MemSetInst &I) {
2801     IRBuilder<> IRB(&I);
2802     IRB.CreateCall(
2803         MS.MemsetFn,
2804         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2805          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2806          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2807     I.eraseFromParent();
2808   }
2809 
2810   void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); }
2811 
2812   void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); }
2813 
2814   /// Handle vector store-like intrinsics.
2815   ///
2816   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2817   /// has 1 pointer argument and 1 vector argument, returns void.
2818   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2819     IRBuilder<> IRB(&I);
2820     Value *Addr = I.getArgOperand(0);
2821     Value *Shadow = getShadow(&I, 1);
2822     Value *ShadowPtr, *OriginPtr;
2823 
2824     // We don't know the pointer alignment (could be unaligned SSE store!).
2825     // Have to assume to worst case.
2826     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2827         Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true);
2828     IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1));
2829 
2830     if (ClCheckAccessAddress)
2831       insertShadowCheck(Addr, &I);
2832 
2833     // FIXME: factor out common code from materializeStores
2834     if (MS.TrackOrigins)
2835       IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2836     return true;
2837   }
2838 
2839   /// Handle vector load-like intrinsics.
2840   ///
2841   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2842   /// has 1 pointer argument, returns a vector.
2843   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2844     IRBuilder<> IRB(&I);
2845     Value *Addr = I.getArgOperand(0);
2846 
2847     Type *ShadowTy = getShadowTy(&I);
2848     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2849     if (PropagateShadow) {
2850       // We don't know the pointer alignment (could be unaligned SSE load!).
2851       // Have to assume to worst case.
2852       const Align Alignment = Align(1);
2853       std::tie(ShadowPtr, OriginPtr) =
2854           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2855       setShadow(&I,
2856                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2857     } else {
2858       setShadow(&I, getCleanShadow(&I));
2859     }
2860 
2861     if (ClCheckAccessAddress)
2862       insertShadowCheck(Addr, &I);
2863 
2864     if (MS.TrackOrigins) {
2865       if (PropagateShadow)
2866         setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
2867       else
2868         setOrigin(&I, getCleanOrigin());
2869     }
2870     return true;
2871   }
2872 
2873   /// Handle (SIMD arithmetic)-like intrinsics.
2874   ///
2875   /// Instrument intrinsics with any number of arguments of the same type,
2876   /// equal to the return type. The type should be simple (no aggregates or
2877   /// pointers; vectors are fine).
2878   /// Caller guarantees that this intrinsic does not access memory.
2879   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2880     Type *RetTy = I.getType();
2881     if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy() ||
2882           RetTy->isX86_MMXTy()))
2883       return false;
2884 
2885     unsigned NumArgOperands = I.arg_size();
2886     for (unsigned i = 0; i < NumArgOperands; ++i) {
2887       Type *Ty = I.getArgOperand(i)->getType();
2888       if (Ty != RetTy)
2889         return false;
2890     }
2891 
2892     IRBuilder<> IRB(&I);
2893     ShadowAndOriginCombiner SC(this, IRB);
2894     for (unsigned i = 0; i < NumArgOperands; ++i)
2895       SC.Add(I.getArgOperand(i));
2896     SC.Done(&I);
2897 
2898     return true;
2899   }
2900 
2901   /// Heuristically instrument unknown intrinsics.
2902   ///
2903   /// The main purpose of this code is to do something reasonable with all
2904   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2905   /// We recognize several classes of intrinsics by their argument types and
2906   /// ModRefBehaviour and apply special instrumentation when we are reasonably
2907   /// sure that we know what the intrinsic does.
2908   ///
2909   /// We special-case intrinsics where this approach fails. See llvm.bswap
2910   /// handling as an example of that.
2911   bool handleUnknownIntrinsic(IntrinsicInst &I) {
2912     unsigned NumArgOperands = I.arg_size();
2913     if (NumArgOperands == 0)
2914       return false;
2915 
2916     if (NumArgOperands == 2 && I.getArgOperand(0)->getType()->isPointerTy() &&
2917         I.getArgOperand(1)->getType()->isVectorTy() &&
2918         I.getType()->isVoidTy() && !I.onlyReadsMemory()) {
2919       // This looks like a vector store.
2920       return handleVectorStoreIntrinsic(I);
2921     }
2922 
2923     if (NumArgOperands == 1 && I.getArgOperand(0)->getType()->isPointerTy() &&
2924         I.getType()->isVectorTy() && I.onlyReadsMemory()) {
2925       // This looks like a vector load.
2926       return handleVectorLoadIntrinsic(I);
2927     }
2928 
2929     if (I.doesNotAccessMemory())
2930       if (maybeHandleSimpleNomemIntrinsic(I))
2931         return true;
2932 
2933     // FIXME: detect and handle SSE maskstore/maskload
2934     return false;
2935   }
2936 
2937   void handleInvariantGroup(IntrinsicInst &I) {
2938     setShadow(&I, getShadow(&I, 0));
2939     setOrigin(&I, getOrigin(&I, 0));
2940   }
2941 
2942   void handleLifetimeStart(IntrinsicInst &I) {
2943     if (!PoisonStack)
2944       return;
2945     AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1));
2946     if (!AI)
2947       InstrumentLifetimeStart = false;
2948     LifetimeStartList.push_back(std::make_pair(&I, AI));
2949   }
2950 
2951   void handleBswap(IntrinsicInst &I) {
2952     IRBuilder<> IRB(&I);
2953     Value *Op = I.getArgOperand(0);
2954     Type *OpType = Op->getType();
2955     Function *BswapFunc = Intrinsic::getDeclaration(
2956         F.getParent(), Intrinsic::bswap, ArrayRef(&OpType, 1));
2957     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
2958     setOrigin(&I, getOrigin(Op));
2959   }
2960 
2961   void handleCountZeroes(IntrinsicInst &I) {
2962     IRBuilder<> IRB(&I);
2963     Value *Src = I.getArgOperand(0);
2964 
2965     // Set the Output shadow based on input Shadow
2966     Value *BoolShadow = IRB.CreateIsNotNull(getShadow(Src), "_mscz_bs");
2967 
2968     // If zero poison is requested, mix in with the shadow
2969     Constant *IsZeroPoison = cast<Constant>(I.getOperand(1));
2970     if (!IsZeroPoison->isZeroValue()) {
2971       Value *BoolZeroPoison = IRB.CreateIsNull(Src, "_mscz_bzp");
2972       BoolShadow = IRB.CreateOr(BoolShadow, BoolZeroPoison, "_mscz_bs");
2973     }
2974 
2975     Value *OutputShadow =
2976         IRB.CreateSExt(BoolShadow, getShadowTy(Src), "_mscz_os");
2977 
2978     setShadow(&I, OutputShadow);
2979     setOriginForNaryOp(I);
2980   }
2981 
2982   // Instrument vector convert intrinsic.
2983   //
2984   // This function instruments intrinsics like cvtsi2ss:
2985   // %Out = int_xxx_cvtyyy(%ConvertOp)
2986   // or
2987   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2988   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2989   // number \p Out elements, and (if has 2 arguments) copies the rest of the
2990   // elements from \p CopyOp.
2991   // In most cases conversion involves floating-point value which may trigger a
2992   // hardware exception when not fully initialized. For this reason we require
2993   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2994   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2995   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2996   // return a fully initialized value.
2997   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements,
2998                                     bool HasRoundingMode = false) {
2999     IRBuilder<> IRB(&I);
3000     Value *CopyOp, *ConvertOp;
3001 
3002     assert((!HasRoundingMode ||
3003             isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) &&
3004            "Invalid rounding mode");
3005 
3006     switch (I.arg_size() - HasRoundingMode) {
3007     case 2:
3008       CopyOp = I.getArgOperand(0);
3009       ConvertOp = I.getArgOperand(1);
3010       break;
3011     case 1:
3012       ConvertOp = I.getArgOperand(0);
3013       CopyOp = nullptr;
3014       break;
3015     default:
3016       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
3017     }
3018 
3019     // The first *NumUsedElements* elements of ConvertOp are converted to the
3020     // same number of output elements. The rest of the output is copied from
3021     // CopyOp, or (if not available) filled with zeroes.
3022     // Combine shadow for elements of ConvertOp that are used in this operation,
3023     // and insert a check.
3024     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
3025     // int->any conversion.
3026     Value *ConvertShadow = getShadow(ConvertOp);
3027     Value *AggShadow = nullptr;
3028     if (ConvertOp->getType()->isVectorTy()) {
3029       AggShadow = IRB.CreateExtractElement(
3030           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
3031       for (int i = 1; i < NumUsedElements; ++i) {
3032         Value *MoreShadow = IRB.CreateExtractElement(
3033             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
3034         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
3035       }
3036     } else {
3037       AggShadow = ConvertShadow;
3038     }
3039     assert(AggShadow->getType()->isIntegerTy());
3040     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
3041 
3042     // Build result shadow by zero-filling parts of CopyOp shadow that come from
3043     // ConvertOp.
3044     if (CopyOp) {
3045       assert(CopyOp->getType() == I.getType());
3046       assert(CopyOp->getType()->isVectorTy());
3047       Value *ResultShadow = getShadow(CopyOp);
3048       Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType();
3049       for (int i = 0; i < NumUsedElements; ++i) {
3050         ResultShadow = IRB.CreateInsertElement(
3051             ResultShadow, ConstantInt::getNullValue(EltTy),
3052             ConstantInt::get(IRB.getInt32Ty(), i));
3053       }
3054       setShadow(&I, ResultShadow);
3055       setOrigin(&I, getOrigin(CopyOp));
3056     } else {
3057       setShadow(&I, getCleanShadow(&I));
3058       setOrigin(&I, getCleanOrigin());
3059     }
3060   }
3061 
3062   // Given a scalar or vector, extract lower 64 bits (or less), and return all
3063   // zeroes if it is zero, and all ones otherwise.
3064   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
3065     if (S->getType()->isVectorTy())
3066       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
3067     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
3068     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
3069     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
3070   }
3071 
3072   // Given a vector, extract its first element, and return all
3073   // zeroes if it is zero, and all ones otherwise.
3074   Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
3075     Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
3076     Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
3077     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
3078   }
3079 
3080   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
3081     Type *T = S->getType();
3082     assert(T->isVectorTy());
3083     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
3084     return IRB.CreateSExt(S2, T);
3085   }
3086 
3087   // Instrument vector shift intrinsic.
3088   //
3089   // This function instruments intrinsics like int_x86_avx2_psll_w.
3090   // Intrinsic shifts %In by %ShiftSize bits.
3091   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
3092   // size, and the rest is ignored. Behavior is defined even if shift size is
3093   // greater than register (or field) width.
3094   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
3095     assert(I.arg_size() == 2);
3096     IRBuilder<> IRB(&I);
3097     // If any of the S2 bits are poisoned, the whole thing is poisoned.
3098     // Otherwise perform the same shift on S1.
3099     Value *S1 = getShadow(&I, 0);
3100     Value *S2 = getShadow(&I, 1);
3101     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
3102                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
3103     Value *V1 = I.getOperand(0);
3104     Value *V2 = I.getOperand(1);
3105     Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
3106                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
3107     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
3108     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
3109     setOriginForNaryOp(I);
3110   }
3111 
3112   // Get an X86_MMX-sized vector type.
3113   Type *getMMXVectorTy(unsigned EltSizeInBits) {
3114     const unsigned X86_MMXSizeInBits = 64;
3115     assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
3116            "Illegal MMX vector element size");
3117     return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
3118                                 X86_MMXSizeInBits / EltSizeInBits);
3119   }
3120 
3121   // Returns a signed counterpart for an (un)signed-saturate-and-pack
3122   // intrinsic.
3123   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
3124     switch (id) {
3125     case Intrinsic::x86_sse2_packsswb_128:
3126     case Intrinsic::x86_sse2_packuswb_128:
3127       return Intrinsic::x86_sse2_packsswb_128;
3128 
3129     case Intrinsic::x86_sse2_packssdw_128:
3130     case Intrinsic::x86_sse41_packusdw:
3131       return Intrinsic::x86_sse2_packssdw_128;
3132 
3133     case Intrinsic::x86_avx2_packsswb:
3134     case Intrinsic::x86_avx2_packuswb:
3135       return Intrinsic::x86_avx2_packsswb;
3136 
3137     case Intrinsic::x86_avx2_packssdw:
3138     case Intrinsic::x86_avx2_packusdw:
3139       return Intrinsic::x86_avx2_packssdw;
3140 
3141     case Intrinsic::x86_mmx_packsswb:
3142     case Intrinsic::x86_mmx_packuswb:
3143       return Intrinsic::x86_mmx_packsswb;
3144 
3145     case Intrinsic::x86_mmx_packssdw:
3146       return Intrinsic::x86_mmx_packssdw;
3147     default:
3148       llvm_unreachable("unexpected intrinsic id");
3149     }
3150   }
3151 
3152   // Instrument vector pack intrinsic.
3153   //
3154   // This function instruments intrinsics like x86_mmx_packsswb, that
3155   // packs elements of 2 input vectors into half as many bits with saturation.
3156   // Shadow is propagated with the signed variant of the same intrinsic applied
3157   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
3158   // EltSizeInBits is used only for x86mmx arguments.
3159   void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
3160     assert(I.arg_size() == 2);
3161     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
3162     IRBuilder<> IRB(&I);
3163     Value *S1 = getShadow(&I, 0);
3164     Value *S2 = getShadow(&I, 1);
3165     assert(isX86_MMX || S1->getType()->isVectorTy());
3166 
3167     // SExt and ICmpNE below must apply to individual elements of input vectors.
3168     // In case of x86mmx arguments, cast them to appropriate vector types and
3169     // back.
3170     Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
3171     if (isX86_MMX) {
3172       S1 = IRB.CreateBitCast(S1, T);
3173       S2 = IRB.CreateBitCast(S2, T);
3174     }
3175     Value *S1_ext =
3176         IRB.CreateSExt(IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
3177     Value *S2_ext =
3178         IRB.CreateSExt(IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
3179     if (isX86_MMX) {
3180       Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
3181       S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
3182       S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
3183     }
3184 
3185     Function *ShadowFn = Intrinsic::getDeclaration(
3186         F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
3187 
3188     Value *S =
3189         IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
3190     if (isX86_MMX)
3191       S = IRB.CreateBitCast(S, getShadowTy(&I));
3192     setShadow(&I, S);
3193     setOriginForNaryOp(I);
3194   }
3195 
3196   // Instrument sum-of-absolute-differences intrinsic.
3197   void handleVectorSadIntrinsic(IntrinsicInst &I) {
3198     const unsigned SignificantBitsPerResultElement = 16;
3199     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
3200     Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
3201     unsigned ZeroBitsPerResultElement =
3202         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
3203 
3204     IRBuilder<> IRB(&I);
3205     auto *Shadow0 = getShadow(&I, 0);
3206     auto *Shadow1 = getShadow(&I, 1);
3207     Value *S = IRB.CreateOr(Shadow0, Shadow1);
3208     S = IRB.CreateBitCast(S, ResTy);
3209     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
3210                        ResTy);
3211     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
3212     S = IRB.CreateBitCast(S, getShadowTy(&I));
3213     setShadow(&I, S);
3214     setOriginForNaryOp(I);
3215   }
3216 
3217   // Instrument multiply-add intrinsic.
3218   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
3219                                   unsigned EltSizeInBits = 0) {
3220     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
3221     Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
3222     IRBuilder<> IRB(&I);
3223     auto *Shadow0 = getShadow(&I, 0);
3224     auto *Shadow1 = getShadow(&I, 1);
3225     Value *S = IRB.CreateOr(Shadow0, Shadow1);
3226     S = IRB.CreateBitCast(S, ResTy);
3227     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
3228                        ResTy);
3229     S = IRB.CreateBitCast(S, getShadowTy(&I));
3230     setShadow(&I, S);
3231     setOriginForNaryOp(I);
3232   }
3233 
3234   // Instrument compare-packed intrinsic.
3235   // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
3236   // all-ones shadow.
3237   void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
3238     IRBuilder<> IRB(&I);
3239     Type *ResTy = getShadowTy(&I);
3240     auto *Shadow0 = getShadow(&I, 0);
3241     auto *Shadow1 = getShadow(&I, 1);
3242     Value *S0 = IRB.CreateOr(Shadow0, Shadow1);
3243     Value *S = IRB.CreateSExt(
3244         IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
3245     setShadow(&I, S);
3246     setOriginForNaryOp(I);
3247   }
3248 
3249   // Instrument compare-scalar intrinsic.
3250   // This handles both cmp* intrinsics which return the result in the first
3251   // element of a vector, and comi* which return the result as i32.
3252   void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
3253     IRBuilder<> IRB(&I);
3254     auto *Shadow0 = getShadow(&I, 0);
3255     auto *Shadow1 = getShadow(&I, 1);
3256     Value *S0 = IRB.CreateOr(Shadow0, Shadow1);
3257     Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
3258     setShadow(&I, S);
3259     setOriginForNaryOp(I);
3260   }
3261 
3262   // Instrument generic vector reduction intrinsics
3263   // by ORing together all their fields.
3264   void handleVectorReduceIntrinsic(IntrinsicInst &I) {
3265     IRBuilder<> IRB(&I);
3266     Value *S = IRB.CreateOrReduce(getShadow(&I, 0));
3267     setShadow(&I, S);
3268     setOrigin(&I, getOrigin(&I, 0));
3269   }
3270 
3271   // Instrument vector.reduce.or intrinsic.
3272   // Valid (non-poisoned) set bits in the operand pull low the
3273   // corresponding shadow bits.
3274   void handleVectorReduceOrIntrinsic(IntrinsicInst &I) {
3275     IRBuilder<> IRB(&I);
3276     Value *OperandShadow = getShadow(&I, 0);
3277     Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0));
3278     Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow);
3279     // Bit N is clean if any field's bit N is 1 and unpoison
3280     Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison);
3281     // Otherwise, it is clean if every field's bit N is unpoison
3282     Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3283     Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3284 
3285     setShadow(&I, S);
3286     setOrigin(&I, getOrigin(&I, 0));
3287   }
3288 
3289   // Instrument vector.reduce.and intrinsic.
3290   // Valid (non-poisoned) unset bits in the operand pull down the
3291   // corresponding shadow bits.
3292   void handleVectorReduceAndIntrinsic(IntrinsicInst &I) {
3293     IRBuilder<> IRB(&I);
3294     Value *OperandShadow = getShadow(&I, 0);
3295     Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow);
3296     // Bit N is clean if any field's bit N is 0 and unpoison
3297     Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison);
3298     // Otherwise, it is clean if every field's bit N is unpoison
3299     Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3300     Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3301 
3302     setShadow(&I, S);
3303     setOrigin(&I, getOrigin(&I, 0));
3304   }
3305 
3306   void handleStmxcsr(IntrinsicInst &I) {
3307     IRBuilder<> IRB(&I);
3308     Value *Addr = I.getArgOperand(0);
3309     Type *Ty = IRB.getInt32Ty();
3310     Value *ShadowPtr =
3311         getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first;
3312 
3313     IRB.CreateStore(getCleanShadow(Ty),
3314                     IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
3315 
3316     if (ClCheckAccessAddress)
3317       insertShadowCheck(Addr, &I);
3318   }
3319 
3320   void handleLdmxcsr(IntrinsicInst &I) {
3321     if (!InsertChecks)
3322       return;
3323 
3324     IRBuilder<> IRB(&I);
3325     Value *Addr = I.getArgOperand(0);
3326     Type *Ty = IRB.getInt32Ty();
3327     const Align Alignment = Align(1);
3328     Value *ShadowPtr, *OriginPtr;
3329     std::tie(ShadowPtr, OriginPtr) =
3330         getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
3331 
3332     if (ClCheckAccessAddress)
3333       insertShadowCheck(Addr, &I);
3334 
3335     Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
3336     Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
3337                                     : getCleanOrigin();
3338     insertShadowCheck(Shadow, Origin, &I);
3339   }
3340 
3341   void handleMaskedExpandLoad(IntrinsicInst &I) {
3342     IRBuilder<> IRB(&I);
3343     Value *Ptr = I.getArgOperand(0);
3344     Value *Mask = I.getArgOperand(1);
3345     Value *PassThru = I.getArgOperand(2);
3346 
3347     if (ClCheckAccessAddress) {
3348       insertShadowCheck(Ptr, &I);
3349       insertShadowCheck(Mask, &I);
3350     }
3351 
3352     if (!PropagateShadow) {
3353       setShadow(&I, getCleanShadow(&I));
3354       setOrigin(&I, getCleanOrigin());
3355       return;
3356     }
3357 
3358     Type *ShadowTy = getShadowTy(&I);
3359     Type *ElementShadowTy = cast<FixedVectorType>(ShadowTy)->getElementType();
3360     auto [ShadowPtr, OriginPtr] =
3361         getShadowOriginPtr(Ptr, IRB, ElementShadowTy, {}, /*isStore*/ false);
3362 
3363     Value *Shadow = IRB.CreateMaskedExpandLoad(
3364         ShadowTy, ShadowPtr, Mask, getShadow(PassThru), "_msmaskedexpload");
3365 
3366     setShadow(&I, Shadow);
3367 
3368     // TODO: Store origins.
3369     setOrigin(&I, getCleanOrigin());
3370   }
3371 
3372   void handleMaskedCompressStore(IntrinsicInst &I) {
3373     IRBuilder<> IRB(&I);
3374     Value *Values = I.getArgOperand(0);
3375     Value *Ptr = I.getArgOperand(1);
3376     Value *Mask = I.getArgOperand(2);
3377 
3378     if (ClCheckAccessAddress) {
3379       insertShadowCheck(Ptr, &I);
3380       insertShadowCheck(Mask, &I);
3381     }
3382 
3383     Value *Shadow = getShadow(Values);
3384     Type *ElementShadowTy =
3385         getShadowTy(cast<FixedVectorType>(Values->getType())->getElementType());
3386     auto [ShadowPtr, OriginPtrs] =
3387         getShadowOriginPtr(Ptr, IRB, ElementShadowTy, {}, /*isStore*/ true);
3388 
3389     IRB.CreateMaskedCompressStore(Shadow, ShadowPtr, Mask);
3390 
3391     // TODO: Store origins.
3392   }
3393 
3394   void handleMaskedGather(IntrinsicInst &I) {
3395     IRBuilder<> IRB(&I);
3396     Value *Ptrs = I.getArgOperand(0);
3397     const Align Alignment(
3398         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3399     Value *Mask = I.getArgOperand(2);
3400     Value *PassThru = I.getArgOperand(3);
3401 
3402     Type *PtrsShadowTy = getShadowTy(Ptrs);
3403     if (ClCheckAccessAddress) {
3404       insertShadowCheck(Mask, &I);
3405       Value *MaskedPtrShadow = IRB.CreateSelect(
3406           Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)),
3407           "_msmaskedptrs");
3408       insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I);
3409     }
3410 
3411     if (!PropagateShadow) {
3412       setShadow(&I, getCleanShadow(&I));
3413       setOrigin(&I, getCleanOrigin());
3414       return;
3415     }
3416 
3417     Type *ShadowTy = getShadowTy(&I);
3418     Type *ElementShadowTy = cast<FixedVectorType>(ShadowTy)->getElementType();
3419     auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr(
3420         Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ false);
3421 
3422     Value *Shadow =
3423         IRB.CreateMaskedGather(ShadowTy, ShadowPtrs, Alignment, Mask,
3424                                getShadow(PassThru), "_msmaskedgather");
3425 
3426     setShadow(&I, Shadow);
3427 
3428     // TODO: Store origins.
3429     setOrigin(&I, getCleanOrigin());
3430   }
3431 
3432   void handleMaskedScatter(IntrinsicInst &I) {
3433     IRBuilder<> IRB(&I);
3434     Value *Values = I.getArgOperand(0);
3435     Value *Ptrs = I.getArgOperand(1);
3436     const Align Alignment(
3437         cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
3438     Value *Mask = I.getArgOperand(3);
3439 
3440     Type *PtrsShadowTy = getShadowTy(Ptrs);
3441     if (ClCheckAccessAddress) {
3442       insertShadowCheck(Mask, &I);
3443       Value *MaskedPtrShadow = IRB.CreateSelect(
3444           Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)),
3445           "_msmaskedptrs");
3446       insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I);
3447     }
3448 
3449     Value *Shadow = getShadow(Values);
3450     Type *ElementShadowTy =
3451         getShadowTy(cast<FixedVectorType>(Values->getType())->getElementType());
3452     auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr(
3453         Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ true);
3454 
3455     IRB.CreateMaskedScatter(Shadow, ShadowPtrs, Alignment, Mask);
3456 
3457     // TODO: Store origin.
3458   }
3459 
3460   void handleMaskedStore(IntrinsicInst &I) {
3461     IRBuilder<> IRB(&I);
3462     Value *V = I.getArgOperand(0);
3463     Value *Ptr = I.getArgOperand(1);
3464     const Align Alignment(
3465         cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
3466     Value *Mask = I.getArgOperand(3);
3467     Value *Shadow = getShadow(V);
3468 
3469     if (ClCheckAccessAddress) {
3470       insertShadowCheck(Ptr, &I);
3471       insertShadowCheck(Mask, &I);
3472     }
3473 
3474     Value *ShadowPtr;
3475     Value *OriginPtr;
3476     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
3477         Ptr, IRB, Shadow->getType(), Alignment, /*isStore*/ true);
3478 
3479     IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask);
3480 
3481     if (!MS.TrackOrigins)
3482       return;
3483 
3484     auto &DL = F.getParent()->getDataLayout();
3485     paintOrigin(IRB, getOrigin(V), OriginPtr,
3486                 DL.getTypeStoreSize(Shadow->getType()),
3487                 std::max(Alignment, kMinOriginAlignment));
3488   }
3489 
3490   void handleMaskedLoad(IntrinsicInst &I) {
3491     IRBuilder<> IRB(&I);
3492     Value *Ptr = I.getArgOperand(0);
3493     const Align Alignment(
3494         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3495     Value *Mask = I.getArgOperand(2);
3496     Value *PassThru = I.getArgOperand(3);
3497 
3498     if (ClCheckAccessAddress) {
3499       insertShadowCheck(Ptr, &I);
3500       insertShadowCheck(Mask, &I);
3501     }
3502 
3503     if (!PropagateShadow) {
3504       setShadow(&I, getCleanShadow(&I));
3505       setOrigin(&I, getCleanOrigin());
3506       return;
3507     }
3508 
3509     Type *ShadowTy = getShadowTy(&I);
3510     Value *ShadowPtr, *OriginPtr;
3511     std::tie(ShadowPtr, OriginPtr) =
3512         getShadowOriginPtr(Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false);
3513     setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask,
3514                                        getShadow(PassThru), "_msmaskedld"));
3515 
3516     if (!MS.TrackOrigins)
3517       return;
3518 
3519     // Choose between PassThru's and the loaded value's origins.
3520     Value *MaskedPassThruShadow = IRB.CreateAnd(
3521         getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
3522 
3523     Value *ConvertedShadow = convertShadowToScalar(MaskedPassThruShadow, IRB);
3524     Value *NotNull = convertToBool(ConvertedShadow, IRB, "_mscmp");
3525 
3526     Value *PtrOrigin = IRB.CreateLoad(MS.OriginTy, OriginPtr);
3527     Value *Origin = IRB.CreateSelect(NotNull, getOrigin(PassThru), PtrOrigin);
3528 
3529     setOrigin(&I, Origin);
3530   }
3531 
3532   // Instrument BMI / BMI2 intrinsics.
3533   // All of these intrinsics are Z = I(X, Y)
3534   // where the types of all operands and the result match, and are either i32 or
3535   // i64. The following instrumentation happens to work for all of them:
3536   //   Sz = I(Sx, Y) | (sext (Sy != 0))
3537   void handleBmiIntrinsic(IntrinsicInst &I) {
3538     IRBuilder<> IRB(&I);
3539     Type *ShadowTy = getShadowTy(&I);
3540 
3541     // If any bit of the mask operand is poisoned, then the whole thing is.
3542     Value *SMask = getShadow(&I, 1);
3543     SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
3544                            ShadowTy);
3545     // Apply the same intrinsic to the shadow of the first operand.
3546     Value *S = IRB.CreateCall(I.getCalledFunction(),
3547                               {getShadow(&I, 0), I.getOperand(1)});
3548     S = IRB.CreateOr(SMask, S);
3549     setShadow(&I, S);
3550     setOriginForNaryOp(I);
3551   }
3552 
3553   SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) {
3554     SmallVector<int, 8> Mask;
3555     for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) {
3556       Mask.append(2, X);
3557     }
3558     return Mask;
3559   }
3560 
3561   // Instrument pclmul intrinsics.
3562   // These intrinsics operate either on odd or on even elements of the input
3563   // vectors, depending on the constant in the 3rd argument, ignoring the rest.
3564   // Replace the unused elements with copies of the used ones, ex:
3565   //   (0, 1, 2, 3) -> (0, 0, 2, 2) (even case)
3566   // or
3567   //   (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case)
3568   // and then apply the usual shadow combining logic.
3569   void handlePclmulIntrinsic(IntrinsicInst &I) {
3570     IRBuilder<> IRB(&I);
3571     unsigned Width =
3572         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3573     assert(isa<ConstantInt>(I.getArgOperand(2)) &&
3574            "pclmul 3rd operand must be a constant");
3575     unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3576     Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0),
3577                                            getPclmulMask(Width, Imm & 0x01));
3578     Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1),
3579                                            getPclmulMask(Width, Imm & 0x10));
3580     ShadowAndOriginCombiner SOC(this, IRB);
3581     SOC.Add(Shuf0, getOrigin(&I, 0));
3582     SOC.Add(Shuf1, getOrigin(&I, 1));
3583     SOC.Done(&I);
3584   }
3585 
3586   // Instrument _mm_*_sd|ss intrinsics
3587   void handleUnarySdSsIntrinsic(IntrinsicInst &I) {
3588     IRBuilder<> IRB(&I);
3589     unsigned Width =
3590         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3591     Value *First = getShadow(&I, 0);
3592     Value *Second = getShadow(&I, 1);
3593     // First element of second operand, remaining elements of first operand
3594     SmallVector<int, 16> Mask;
3595     Mask.push_back(Width);
3596     for (unsigned i = 1; i < Width; i++)
3597       Mask.push_back(i);
3598     Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask);
3599 
3600     setShadow(&I, Shadow);
3601     setOriginForNaryOp(I);
3602   }
3603 
3604   void handleVtestIntrinsic(IntrinsicInst &I) {
3605     IRBuilder<> IRB(&I);
3606     Value *Shadow0 = getShadow(&I, 0);
3607     Value *Shadow1 = getShadow(&I, 1);
3608     Value *Or = IRB.CreateOr(Shadow0, Shadow1);
3609     Value *NZ = IRB.CreateICmpNE(Or, Constant::getNullValue(Or->getType()));
3610     Value *Scalar = convertShadowToScalar(NZ, IRB);
3611     Value *Shadow = IRB.CreateZExt(Scalar, getShadowTy(&I));
3612 
3613     setShadow(&I, Shadow);
3614     setOriginForNaryOp(I);
3615   }
3616 
3617   void handleBinarySdSsIntrinsic(IntrinsicInst &I) {
3618     IRBuilder<> IRB(&I);
3619     unsigned Width =
3620         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3621     Value *First = getShadow(&I, 0);
3622     Value *Second = getShadow(&I, 1);
3623     Value *OrShadow = IRB.CreateOr(First, Second);
3624     // First element of both OR'd together, remaining elements of first operand
3625     SmallVector<int, 16> Mask;
3626     Mask.push_back(Width);
3627     for (unsigned i = 1; i < Width; i++)
3628       Mask.push_back(i);
3629     Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask);
3630 
3631     setShadow(&I, Shadow);
3632     setOriginForNaryOp(I);
3633   }
3634 
3635   // Instrument abs intrinsic.
3636   // handleUnknownIntrinsic can't handle it because of the last
3637   // is_int_min_poison argument which does not match the result type.
3638   void handleAbsIntrinsic(IntrinsicInst &I) {
3639     assert(I.getType()->isIntOrIntVectorTy());
3640     assert(I.getArgOperand(0)->getType() == I.getType());
3641 
3642     // FIXME: Handle is_int_min_poison.
3643     IRBuilder<> IRB(&I);
3644     setShadow(&I, getShadow(&I, 0));
3645     setOrigin(&I, getOrigin(&I, 0));
3646   }
3647 
3648   void visitIntrinsicInst(IntrinsicInst &I) {
3649     switch (I.getIntrinsicID()) {
3650     case Intrinsic::abs:
3651       handleAbsIntrinsic(I);
3652       break;
3653     case Intrinsic::lifetime_start:
3654       handleLifetimeStart(I);
3655       break;
3656     case Intrinsic::launder_invariant_group:
3657     case Intrinsic::strip_invariant_group:
3658       handleInvariantGroup(I);
3659       break;
3660     case Intrinsic::bswap:
3661       handleBswap(I);
3662       break;
3663     case Intrinsic::ctlz:
3664     case Intrinsic::cttz:
3665       handleCountZeroes(I);
3666       break;
3667     case Intrinsic::masked_compressstore:
3668       handleMaskedCompressStore(I);
3669       break;
3670     case Intrinsic::masked_expandload:
3671       handleMaskedExpandLoad(I);
3672       break;
3673     case Intrinsic::masked_gather:
3674       handleMaskedGather(I);
3675       break;
3676     case Intrinsic::masked_scatter:
3677       handleMaskedScatter(I);
3678       break;
3679     case Intrinsic::masked_store:
3680       handleMaskedStore(I);
3681       break;
3682     case Intrinsic::masked_load:
3683       handleMaskedLoad(I);
3684       break;
3685     case Intrinsic::vector_reduce_and:
3686       handleVectorReduceAndIntrinsic(I);
3687       break;
3688     case Intrinsic::vector_reduce_or:
3689       handleVectorReduceOrIntrinsic(I);
3690       break;
3691     case Intrinsic::vector_reduce_add:
3692     case Intrinsic::vector_reduce_xor:
3693     case Intrinsic::vector_reduce_mul:
3694       handleVectorReduceIntrinsic(I);
3695       break;
3696     case Intrinsic::x86_sse_stmxcsr:
3697       handleStmxcsr(I);
3698       break;
3699     case Intrinsic::x86_sse_ldmxcsr:
3700       handleLdmxcsr(I);
3701       break;
3702     case Intrinsic::x86_avx512_vcvtsd2usi64:
3703     case Intrinsic::x86_avx512_vcvtsd2usi32:
3704     case Intrinsic::x86_avx512_vcvtss2usi64:
3705     case Intrinsic::x86_avx512_vcvtss2usi32:
3706     case Intrinsic::x86_avx512_cvttss2usi64:
3707     case Intrinsic::x86_avx512_cvttss2usi:
3708     case Intrinsic::x86_avx512_cvttsd2usi64:
3709     case Intrinsic::x86_avx512_cvttsd2usi:
3710     case Intrinsic::x86_avx512_cvtusi2ss:
3711     case Intrinsic::x86_avx512_cvtusi642sd:
3712     case Intrinsic::x86_avx512_cvtusi642ss:
3713       handleVectorConvertIntrinsic(I, 1, true);
3714       break;
3715     case Intrinsic::x86_sse2_cvtsd2si64:
3716     case Intrinsic::x86_sse2_cvtsd2si:
3717     case Intrinsic::x86_sse2_cvtsd2ss:
3718     case Intrinsic::x86_sse2_cvttsd2si64:
3719     case Intrinsic::x86_sse2_cvttsd2si:
3720     case Intrinsic::x86_sse_cvtss2si64:
3721     case Intrinsic::x86_sse_cvtss2si:
3722     case Intrinsic::x86_sse_cvttss2si64:
3723     case Intrinsic::x86_sse_cvttss2si:
3724       handleVectorConvertIntrinsic(I, 1);
3725       break;
3726     case Intrinsic::x86_sse_cvtps2pi:
3727     case Intrinsic::x86_sse_cvttps2pi:
3728       handleVectorConvertIntrinsic(I, 2);
3729       break;
3730 
3731     case Intrinsic::x86_avx512_psll_w_512:
3732     case Intrinsic::x86_avx512_psll_d_512:
3733     case Intrinsic::x86_avx512_psll_q_512:
3734     case Intrinsic::x86_avx512_pslli_w_512:
3735     case Intrinsic::x86_avx512_pslli_d_512:
3736     case Intrinsic::x86_avx512_pslli_q_512:
3737     case Intrinsic::x86_avx512_psrl_w_512:
3738     case Intrinsic::x86_avx512_psrl_d_512:
3739     case Intrinsic::x86_avx512_psrl_q_512:
3740     case Intrinsic::x86_avx512_psra_w_512:
3741     case Intrinsic::x86_avx512_psra_d_512:
3742     case Intrinsic::x86_avx512_psra_q_512:
3743     case Intrinsic::x86_avx512_psrli_w_512:
3744     case Intrinsic::x86_avx512_psrli_d_512:
3745     case Intrinsic::x86_avx512_psrli_q_512:
3746     case Intrinsic::x86_avx512_psrai_w_512:
3747     case Intrinsic::x86_avx512_psrai_d_512:
3748     case Intrinsic::x86_avx512_psrai_q_512:
3749     case Intrinsic::x86_avx512_psra_q_256:
3750     case Intrinsic::x86_avx512_psra_q_128:
3751     case Intrinsic::x86_avx512_psrai_q_256:
3752     case Intrinsic::x86_avx512_psrai_q_128:
3753     case Intrinsic::x86_avx2_psll_w:
3754     case Intrinsic::x86_avx2_psll_d:
3755     case Intrinsic::x86_avx2_psll_q:
3756     case Intrinsic::x86_avx2_pslli_w:
3757     case Intrinsic::x86_avx2_pslli_d:
3758     case Intrinsic::x86_avx2_pslli_q:
3759     case Intrinsic::x86_avx2_psrl_w:
3760     case Intrinsic::x86_avx2_psrl_d:
3761     case Intrinsic::x86_avx2_psrl_q:
3762     case Intrinsic::x86_avx2_psra_w:
3763     case Intrinsic::x86_avx2_psra_d:
3764     case Intrinsic::x86_avx2_psrli_w:
3765     case Intrinsic::x86_avx2_psrli_d:
3766     case Intrinsic::x86_avx2_psrli_q:
3767     case Intrinsic::x86_avx2_psrai_w:
3768     case Intrinsic::x86_avx2_psrai_d:
3769     case Intrinsic::x86_sse2_psll_w:
3770     case Intrinsic::x86_sse2_psll_d:
3771     case Intrinsic::x86_sse2_psll_q:
3772     case Intrinsic::x86_sse2_pslli_w:
3773     case Intrinsic::x86_sse2_pslli_d:
3774     case Intrinsic::x86_sse2_pslli_q:
3775     case Intrinsic::x86_sse2_psrl_w:
3776     case Intrinsic::x86_sse2_psrl_d:
3777     case Intrinsic::x86_sse2_psrl_q:
3778     case Intrinsic::x86_sse2_psra_w:
3779     case Intrinsic::x86_sse2_psra_d:
3780     case Intrinsic::x86_sse2_psrli_w:
3781     case Intrinsic::x86_sse2_psrli_d:
3782     case Intrinsic::x86_sse2_psrli_q:
3783     case Intrinsic::x86_sse2_psrai_w:
3784     case Intrinsic::x86_sse2_psrai_d:
3785     case Intrinsic::x86_mmx_psll_w:
3786     case Intrinsic::x86_mmx_psll_d:
3787     case Intrinsic::x86_mmx_psll_q:
3788     case Intrinsic::x86_mmx_pslli_w:
3789     case Intrinsic::x86_mmx_pslli_d:
3790     case Intrinsic::x86_mmx_pslli_q:
3791     case Intrinsic::x86_mmx_psrl_w:
3792     case Intrinsic::x86_mmx_psrl_d:
3793     case Intrinsic::x86_mmx_psrl_q:
3794     case Intrinsic::x86_mmx_psra_w:
3795     case Intrinsic::x86_mmx_psra_d:
3796     case Intrinsic::x86_mmx_psrli_w:
3797     case Intrinsic::x86_mmx_psrli_d:
3798     case Intrinsic::x86_mmx_psrli_q:
3799     case Intrinsic::x86_mmx_psrai_w:
3800     case Intrinsic::x86_mmx_psrai_d:
3801       handleVectorShiftIntrinsic(I, /* Variable */ false);
3802       break;
3803     case Intrinsic::x86_avx2_psllv_d:
3804     case Intrinsic::x86_avx2_psllv_d_256:
3805     case Intrinsic::x86_avx512_psllv_d_512:
3806     case Intrinsic::x86_avx2_psllv_q:
3807     case Intrinsic::x86_avx2_psllv_q_256:
3808     case Intrinsic::x86_avx512_psllv_q_512:
3809     case Intrinsic::x86_avx2_psrlv_d:
3810     case Intrinsic::x86_avx2_psrlv_d_256:
3811     case Intrinsic::x86_avx512_psrlv_d_512:
3812     case Intrinsic::x86_avx2_psrlv_q:
3813     case Intrinsic::x86_avx2_psrlv_q_256:
3814     case Intrinsic::x86_avx512_psrlv_q_512:
3815     case Intrinsic::x86_avx2_psrav_d:
3816     case Intrinsic::x86_avx2_psrav_d_256:
3817     case Intrinsic::x86_avx512_psrav_d_512:
3818     case Intrinsic::x86_avx512_psrav_q_128:
3819     case Intrinsic::x86_avx512_psrav_q_256:
3820     case Intrinsic::x86_avx512_psrav_q_512:
3821       handleVectorShiftIntrinsic(I, /* Variable */ true);
3822       break;
3823 
3824     case Intrinsic::x86_sse2_packsswb_128:
3825     case Intrinsic::x86_sse2_packssdw_128:
3826     case Intrinsic::x86_sse2_packuswb_128:
3827     case Intrinsic::x86_sse41_packusdw:
3828     case Intrinsic::x86_avx2_packsswb:
3829     case Intrinsic::x86_avx2_packssdw:
3830     case Intrinsic::x86_avx2_packuswb:
3831     case Intrinsic::x86_avx2_packusdw:
3832       handleVectorPackIntrinsic(I);
3833       break;
3834 
3835     case Intrinsic::x86_mmx_packsswb:
3836     case Intrinsic::x86_mmx_packuswb:
3837       handleVectorPackIntrinsic(I, 16);
3838       break;
3839 
3840     case Intrinsic::x86_mmx_packssdw:
3841       handleVectorPackIntrinsic(I, 32);
3842       break;
3843 
3844     case Intrinsic::x86_mmx_psad_bw:
3845     case Intrinsic::x86_sse2_psad_bw:
3846     case Intrinsic::x86_avx2_psad_bw:
3847       handleVectorSadIntrinsic(I);
3848       break;
3849 
3850     case Intrinsic::x86_sse2_pmadd_wd:
3851     case Intrinsic::x86_avx2_pmadd_wd:
3852     case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
3853     case Intrinsic::x86_avx2_pmadd_ub_sw:
3854       handleVectorPmaddIntrinsic(I);
3855       break;
3856 
3857     case Intrinsic::x86_ssse3_pmadd_ub_sw:
3858       handleVectorPmaddIntrinsic(I, 8);
3859       break;
3860 
3861     case Intrinsic::x86_mmx_pmadd_wd:
3862       handleVectorPmaddIntrinsic(I, 16);
3863       break;
3864 
3865     case Intrinsic::x86_sse_cmp_ss:
3866     case Intrinsic::x86_sse2_cmp_sd:
3867     case Intrinsic::x86_sse_comieq_ss:
3868     case Intrinsic::x86_sse_comilt_ss:
3869     case Intrinsic::x86_sse_comile_ss:
3870     case Intrinsic::x86_sse_comigt_ss:
3871     case Intrinsic::x86_sse_comige_ss:
3872     case Intrinsic::x86_sse_comineq_ss:
3873     case Intrinsic::x86_sse_ucomieq_ss:
3874     case Intrinsic::x86_sse_ucomilt_ss:
3875     case Intrinsic::x86_sse_ucomile_ss:
3876     case Intrinsic::x86_sse_ucomigt_ss:
3877     case Intrinsic::x86_sse_ucomige_ss:
3878     case Intrinsic::x86_sse_ucomineq_ss:
3879     case Intrinsic::x86_sse2_comieq_sd:
3880     case Intrinsic::x86_sse2_comilt_sd:
3881     case Intrinsic::x86_sse2_comile_sd:
3882     case Intrinsic::x86_sse2_comigt_sd:
3883     case Intrinsic::x86_sse2_comige_sd:
3884     case Intrinsic::x86_sse2_comineq_sd:
3885     case Intrinsic::x86_sse2_ucomieq_sd:
3886     case Intrinsic::x86_sse2_ucomilt_sd:
3887     case Intrinsic::x86_sse2_ucomile_sd:
3888     case Intrinsic::x86_sse2_ucomigt_sd:
3889     case Intrinsic::x86_sse2_ucomige_sd:
3890     case Intrinsic::x86_sse2_ucomineq_sd:
3891       handleVectorCompareScalarIntrinsic(I);
3892       break;
3893 
3894     case Intrinsic::x86_avx_cmp_pd_256:
3895     case Intrinsic::x86_avx_cmp_ps_256:
3896     case Intrinsic::x86_sse2_cmp_pd:
3897     case Intrinsic::x86_sse_cmp_ps:
3898       handleVectorComparePackedIntrinsic(I);
3899       break;
3900 
3901     case Intrinsic::x86_bmi_bextr_32:
3902     case Intrinsic::x86_bmi_bextr_64:
3903     case Intrinsic::x86_bmi_bzhi_32:
3904     case Intrinsic::x86_bmi_bzhi_64:
3905     case Intrinsic::x86_bmi_pdep_32:
3906     case Intrinsic::x86_bmi_pdep_64:
3907     case Intrinsic::x86_bmi_pext_32:
3908     case Intrinsic::x86_bmi_pext_64:
3909       handleBmiIntrinsic(I);
3910       break;
3911 
3912     case Intrinsic::x86_pclmulqdq:
3913     case Intrinsic::x86_pclmulqdq_256:
3914     case Intrinsic::x86_pclmulqdq_512:
3915       handlePclmulIntrinsic(I);
3916       break;
3917 
3918     case Intrinsic::x86_sse41_round_sd:
3919     case Intrinsic::x86_sse41_round_ss:
3920       handleUnarySdSsIntrinsic(I);
3921       break;
3922     case Intrinsic::x86_sse2_max_sd:
3923     case Intrinsic::x86_sse_max_ss:
3924     case Intrinsic::x86_sse2_min_sd:
3925     case Intrinsic::x86_sse_min_ss:
3926       handleBinarySdSsIntrinsic(I);
3927       break;
3928 
3929     case Intrinsic::x86_avx_vtestc_pd:
3930     case Intrinsic::x86_avx_vtestc_pd_256:
3931     case Intrinsic::x86_avx_vtestc_ps:
3932     case Intrinsic::x86_avx_vtestc_ps_256:
3933     case Intrinsic::x86_avx_vtestnzc_pd:
3934     case Intrinsic::x86_avx_vtestnzc_pd_256:
3935     case Intrinsic::x86_avx_vtestnzc_ps:
3936     case Intrinsic::x86_avx_vtestnzc_ps_256:
3937     case Intrinsic::x86_avx_vtestz_pd:
3938     case Intrinsic::x86_avx_vtestz_pd_256:
3939     case Intrinsic::x86_avx_vtestz_ps:
3940     case Intrinsic::x86_avx_vtestz_ps_256:
3941     case Intrinsic::x86_avx_ptestc_256:
3942     case Intrinsic::x86_avx_ptestnzc_256:
3943     case Intrinsic::x86_avx_ptestz_256:
3944     case Intrinsic::x86_sse41_ptestc:
3945     case Intrinsic::x86_sse41_ptestnzc:
3946     case Intrinsic::x86_sse41_ptestz:
3947       handleVtestIntrinsic(I);
3948       break;
3949 
3950     case Intrinsic::fshl:
3951     case Intrinsic::fshr:
3952       handleFunnelShift(I);
3953       break;
3954 
3955     case Intrinsic::is_constant:
3956       // The result of llvm.is.constant() is always defined.
3957       setShadow(&I, getCleanShadow(&I));
3958       setOrigin(&I, getCleanOrigin());
3959       break;
3960 
3961     default:
3962       if (!handleUnknownIntrinsic(I))
3963         visitInstruction(I);
3964       break;
3965     }
3966   }
3967 
3968   void visitLibAtomicLoad(CallBase &CB) {
3969     // Since we use getNextNode here, we can't have CB terminate the BB.
3970     assert(isa<CallInst>(CB));
3971 
3972     IRBuilder<> IRB(&CB);
3973     Value *Size = CB.getArgOperand(0);
3974     Value *SrcPtr = CB.getArgOperand(1);
3975     Value *DstPtr = CB.getArgOperand(2);
3976     Value *Ordering = CB.getArgOperand(3);
3977     // Convert the call to have at least Acquire ordering to make sure
3978     // the shadow operations aren't reordered before it.
3979     Value *NewOrdering =
3980         IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
3981     CB.setArgOperand(3, NewOrdering);
3982 
3983     NextNodeIRBuilder NextIRB(&CB);
3984     Value *SrcShadowPtr, *SrcOriginPtr;
3985     std::tie(SrcShadowPtr, SrcOriginPtr) =
3986         getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
3987                            /*isStore*/ false);
3988     Value *DstShadowPtr =
3989         getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
3990                            /*isStore*/ true)
3991             .first;
3992 
3993     NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size);
3994     if (MS.TrackOrigins) {
3995       Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr,
3996                                                    kMinOriginAlignment);
3997       Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB);
3998       NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin});
3999     }
4000   }
4001 
4002   void visitLibAtomicStore(CallBase &CB) {
4003     IRBuilder<> IRB(&CB);
4004     Value *Size = CB.getArgOperand(0);
4005     Value *DstPtr = CB.getArgOperand(2);
4006     Value *Ordering = CB.getArgOperand(3);
4007     // Convert the call to have at least Release ordering to make sure
4008     // the shadow operations aren't reordered after it.
4009     Value *NewOrdering =
4010         IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
4011     CB.setArgOperand(3, NewOrdering);
4012 
4013     Value *DstShadowPtr =
4014         getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1),
4015                            /*isStore*/ true)
4016             .first;
4017 
4018     // Atomic store always paints clean shadow/origin. See file header.
4019     IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size,
4020                      Align(1));
4021   }
4022 
4023   void visitCallBase(CallBase &CB) {
4024     assert(!CB.getMetadata(LLVMContext::MD_nosanitize));
4025     if (CB.isInlineAsm()) {
4026       // For inline asm (either a call to asm function, or callbr instruction),
4027       // do the usual thing: check argument shadow and mark all outputs as
4028       // clean. Note that any side effects of the inline asm that are not
4029       // immediately visible in its constraints are not handled.
4030       if (ClHandleAsmConservative && MS.CompileKernel)
4031         visitAsmInstruction(CB);
4032       else
4033         visitInstruction(CB);
4034       return;
4035     }
4036     LibFunc LF;
4037     if (TLI->getLibFunc(CB, LF)) {
4038       // libatomic.a functions need to have special handling because there isn't
4039       // a good way to intercept them or compile the library with
4040       // instrumentation.
4041       switch (LF) {
4042       case LibFunc_atomic_load:
4043         if (!isa<CallInst>(CB)) {
4044           llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load."
4045                           "Ignoring!\n";
4046           break;
4047         }
4048         visitLibAtomicLoad(CB);
4049         return;
4050       case LibFunc_atomic_store:
4051         visitLibAtomicStore(CB);
4052         return;
4053       default:
4054         break;
4055       }
4056     }
4057 
4058     if (auto *Call = dyn_cast<CallInst>(&CB)) {
4059       assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere");
4060 
4061       // We are going to insert code that relies on the fact that the callee
4062       // will become a non-readonly function after it is instrumented by us. To
4063       // prevent this code from being optimized out, mark that function
4064       // non-readonly in advance.
4065       // TODO: We can likely do better than dropping memory() completely here.
4066       AttributeMask B;
4067       B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable);
4068 
4069       Call->removeFnAttrs(B);
4070       if (Function *Func = Call->getCalledFunction()) {
4071         Func->removeFnAttrs(B);
4072       }
4073 
4074       maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
4075     }
4076     IRBuilder<> IRB(&CB);
4077     bool MayCheckCall = MS.EagerChecks;
4078     if (Function *Func = CB.getCalledFunction()) {
4079       // __sanitizer_unaligned_{load,store} functions may be called by users
4080       // and always expects shadows in the TLS. So don't check them.
4081       MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_");
4082     }
4083 
4084     unsigned ArgOffset = 0;
4085     LLVM_DEBUG(dbgs() << "  CallSite: " << CB << "\n");
4086     for (const auto &[i, A] : llvm::enumerate(CB.args())) {
4087       if (!A->getType()->isSized()) {
4088         LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n");
4089         continue;
4090       }
4091       unsigned Size = 0;
4092       const DataLayout &DL = F.getParent()->getDataLayout();
4093 
4094       bool ByVal = CB.paramHasAttr(i, Attribute::ByVal);
4095       bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef);
4096       bool EagerCheck = MayCheckCall && !ByVal && NoUndef;
4097 
4098       if (EagerCheck) {
4099         insertShadowCheck(A, &CB);
4100         Size = DL.getTypeAllocSize(A->getType());
4101       } else {
4102         Value *Store = nullptr;
4103         // Compute the Shadow for arg even if it is ByVal, because
4104         // in that case getShadow() will copy the actual arg shadow to
4105         // __msan_param_tls.
4106         Value *ArgShadow = getShadow(A);
4107         Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
4108         LLVM_DEBUG(dbgs() << "  Arg#" << i << ": " << *A
4109                           << " Shadow: " << *ArgShadow << "\n");
4110         if (ByVal) {
4111           // ByVal requires some special handling as it's too big for a single
4112           // load
4113           assert(A->getType()->isPointerTy() &&
4114                  "ByVal argument is not a pointer!");
4115           Size = DL.getTypeAllocSize(CB.getParamByValType(i));
4116           if (ArgOffset + Size > kParamTLSSize)
4117             break;
4118           const MaybeAlign ParamAlignment(CB.getParamAlign(i));
4119           MaybeAlign Alignment = std::nullopt;
4120           if (ParamAlignment)
4121             Alignment = std::min(*ParamAlignment, kShadowTLSAlignment);
4122           Value *AShadowPtr, *AOriginPtr;
4123           std::tie(AShadowPtr, AOriginPtr) =
4124               getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
4125                                  /*isStore*/ false);
4126           if (!PropagateShadow) {
4127             Store = IRB.CreateMemSet(ArgShadowBase,
4128                                      Constant::getNullValue(IRB.getInt8Ty()),
4129                                      Size, Alignment);
4130           } else {
4131             Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
4132                                      Alignment, Size);
4133             if (MS.TrackOrigins) {
4134               Value *ArgOriginBase = getOriginPtrForArgument(A, IRB, ArgOffset);
4135               // FIXME: OriginSize should be:
4136               // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment)
4137               unsigned OriginSize = alignTo(Size, kMinOriginAlignment);
4138               IRB.CreateMemCpy(
4139                   ArgOriginBase,
4140                   /* by origin_tls[ArgOffset] */ kMinOriginAlignment,
4141                   AOriginPtr,
4142                   /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize);
4143             }
4144           }
4145         } else {
4146           // Any other parameters mean we need bit-grained tracking of uninit
4147           // data
4148           Size = DL.getTypeAllocSize(A->getType());
4149           if (ArgOffset + Size > kParamTLSSize)
4150             break;
4151           Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
4152                                          kShadowTLSAlignment);
4153           Constant *Cst = dyn_cast<Constant>(ArgShadow);
4154           if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) {
4155             IRB.CreateStore(getOrigin(A),
4156                             getOriginPtrForArgument(A, IRB, ArgOffset));
4157           }
4158         }
4159         (void)Store;
4160         assert(Store != nullptr);
4161         LLVM_DEBUG(dbgs() << "  Param:" << *Store << "\n");
4162       }
4163       assert(Size != 0);
4164       ArgOffset += alignTo(Size, kShadowTLSAlignment);
4165     }
4166     LLVM_DEBUG(dbgs() << "  done with call args\n");
4167 
4168     FunctionType *FT = CB.getFunctionType();
4169     if (FT->isVarArg()) {
4170       VAHelper->visitCallBase(CB, IRB);
4171     }
4172 
4173     // Now, get the shadow for the RetVal.
4174     if (!CB.getType()->isSized())
4175       return;
4176     // Don't emit the epilogue for musttail call returns.
4177     if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
4178       return;
4179 
4180     if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) {
4181       setShadow(&CB, getCleanShadow(&CB));
4182       setOrigin(&CB, getCleanOrigin());
4183       return;
4184     }
4185 
4186     IRBuilder<> IRBBefore(&CB);
4187     // Until we have full dynamic coverage, make sure the retval shadow is 0.
4188     Value *Base = getShadowPtrForRetval(&CB, IRBBefore);
4189     IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base,
4190                                  kShadowTLSAlignment);
4191     BasicBlock::iterator NextInsn;
4192     if (isa<CallInst>(CB)) {
4193       NextInsn = ++CB.getIterator();
4194       assert(NextInsn != CB.getParent()->end());
4195     } else {
4196       BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest();
4197       if (!NormalDest->getSinglePredecessor()) {
4198         // FIXME: this case is tricky, so we are just conservative here.
4199         // Perhaps we need to split the edge between this BB and NormalDest,
4200         // but a naive attempt to use SplitEdge leads to a crash.
4201         setShadow(&CB, getCleanShadow(&CB));
4202         setOrigin(&CB, getCleanOrigin());
4203         return;
4204       }
4205       // FIXME: NextInsn is likely in a basic block that has not been visited
4206       // yet. Anything inserted there will be instrumented by MSan later!
4207       NextInsn = NormalDest->getFirstInsertionPt();
4208       assert(NextInsn != NormalDest->end() &&
4209              "Could not find insertion point for retval shadow load");
4210     }
4211     IRBuilder<> IRBAfter(&*NextInsn);
4212     Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
4213         getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter),
4214         kShadowTLSAlignment, "_msret");
4215     setShadow(&CB, RetvalShadow);
4216     if (MS.TrackOrigins)
4217       setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy,
4218                                          getOriginPtrForRetval(IRBAfter)));
4219   }
4220 
4221   bool isAMustTailRetVal(Value *RetVal) {
4222     if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
4223       RetVal = I->getOperand(0);
4224     }
4225     if (auto *I = dyn_cast<CallInst>(RetVal)) {
4226       return I->isMustTailCall();
4227     }
4228     return false;
4229   }
4230 
4231   void visitReturnInst(ReturnInst &I) {
4232     IRBuilder<> IRB(&I);
4233     Value *RetVal = I.getReturnValue();
4234     if (!RetVal)
4235       return;
4236     // Don't emit the epilogue for musttail call returns.
4237     if (isAMustTailRetVal(RetVal))
4238       return;
4239     Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
4240     bool HasNoUndef = F.hasRetAttribute(Attribute::NoUndef);
4241     bool StoreShadow = !(MS.EagerChecks && HasNoUndef);
4242     // FIXME: Consider using SpecialCaseList to specify a list of functions that
4243     // must always return fully initialized values. For now, we hardcode "main".
4244     bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main");
4245 
4246     Value *Shadow = getShadow(RetVal);
4247     bool StoreOrigin = true;
4248     if (EagerCheck) {
4249       insertShadowCheck(RetVal, &I);
4250       Shadow = getCleanShadow(RetVal);
4251       StoreOrigin = false;
4252     }
4253 
4254     // The caller may still expect information passed over TLS if we pass our
4255     // check
4256     if (StoreShadow) {
4257       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
4258       if (MS.TrackOrigins && StoreOrigin)
4259         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
4260     }
4261   }
4262 
4263   void visitPHINode(PHINode &I) {
4264     IRBuilder<> IRB(&I);
4265     if (!PropagateShadow) {
4266       setShadow(&I, getCleanShadow(&I));
4267       setOrigin(&I, getCleanOrigin());
4268       return;
4269     }
4270 
4271     ShadowPHINodes.push_back(&I);
4272     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
4273                                 "_msphi_s"));
4274     if (MS.TrackOrigins)
4275       setOrigin(
4276           &I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), "_msphi_o"));
4277   }
4278 
4279   Value *getLocalVarIdptr(AllocaInst &I) {
4280     ConstantInt *IntConst =
4281         ConstantInt::get(Type::getInt32Ty((*F.getParent()).getContext()), 0);
4282     return new GlobalVariable(*F.getParent(), IntConst->getType(),
4283                               /*isConstant=*/false, GlobalValue::PrivateLinkage,
4284                               IntConst);
4285   }
4286 
4287   Value *getLocalVarDescription(AllocaInst &I) {
4288     return createPrivateConstGlobalForString(*F.getParent(), I.getName());
4289   }
4290 
4291   void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
4292     if (PoisonStack && ClPoisonStackWithCall) {
4293       IRB.CreateCall(MS.MsanPoisonStackFn,
4294                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
4295     } else {
4296       Value *ShadowBase, *OriginBase;
4297       std::tie(ShadowBase, OriginBase) = getShadowOriginPtr(
4298           &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true);
4299 
4300       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
4301       IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign());
4302     }
4303 
4304     if (PoisonStack && MS.TrackOrigins) {
4305       Value *Idptr = getLocalVarIdptr(I);
4306       if (ClPrintStackNames) {
4307         Value *Descr = getLocalVarDescription(I);
4308         IRB.CreateCall(MS.MsanSetAllocaOriginWithDescriptionFn,
4309                        {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
4310                         IRB.CreatePointerCast(Idptr, IRB.getInt8PtrTy()),
4311                         IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
4312       } else {
4313         IRB.CreateCall(MS.MsanSetAllocaOriginNoDescriptionFn,
4314                        {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
4315                         IRB.CreatePointerCast(Idptr, IRB.getInt8PtrTy())});
4316       }
4317     }
4318   }
4319 
4320   void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
4321     Value *Descr = getLocalVarDescription(I);
4322     if (PoisonStack) {
4323       IRB.CreateCall(MS.MsanPoisonAllocaFn,
4324                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
4325                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
4326     } else {
4327       IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
4328                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
4329     }
4330   }
4331 
4332   void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
4333     if (!InsPoint)
4334       InsPoint = &I;
4335     NextNodeIRBuilder IRB(InsPoint);
4336     const DataLayout &DL = F.getParent()->getDataLayout();
4337     uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
4338     Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
4339     if (I.isArrayAllocation())
4340       Len = IRB.CreateMul(Len,
4341                           IRB.CreateZExtOrTrunc(I.getArraySize(), MS.IntptrTy));
4342 
4343     if (MS.CompileKernel)
4344       poisonAllocaKmsan(I, IRB, Len);
4345     else
4346       poisonAllocaUserspace(I, IRB, Len);
4347   }
4348 
4349   void visitAllocaInst(AllocaInst &I) {
4350     setShadow(&I, getCleanShadow(&I));
4351     setOrigin(&I, getCleanOrigin());
4352     // We'll get to this alloca later unless it's poisoned at the corresponding
4353     // llvm.lifetime.start.
4354     AllocaSet.insert(&I);
4355   }
4356 
4357   void visitSelectInst(SelectInst &I) {
4358     IRBuilder<> IRB(&I);
4359     // a = select b, c, d
4360     Value *B = I.getCondition();
4361     Value *C = I.getTrueValue();
4362     Value *D = I.getFalseValue();
4363     Value *Sb = getShadow(B);
4364     Value *Sc = getShadow(C);
4365     Value *Sd = getShadow(D);
4366 
4367     // Result shadow if condition shadow is 0.
4368     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
4369     Value *Sa1;
4370     if (I.getType()->isAggregateType()) {
4371       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
4372       // an extra "select". This results in much more compact IR.
4373       // Sa = select Sb, poisoned, (select b, Sc, Sd)
4374       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
4375     } else {
4376       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
4377       // If Sb (condition is poisoned), look for bits in c and d that are equal
4378       // and both unpoisoned.
4379       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
4380 
4381       // Cast arguments to shadow-compatible type.
4382       C = CreateAppToShadowCast(IRB, C);
4383       D = CreateAppToShadowCast(IRB, D);
4384 
4385       // Result shadow if condition shadow is 1.
4386       Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
4387     }
4388     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
4389     setShadow(&I, Sa);
4390     if (MS.TrackOrigins) {
4391       // Origins are always i32, so any vector conditions must be flattened.
4392       // FIXME: consider tracking vector origins for app vectors?
4393       if (B->getType()->isVectorTy()) {
4394         Type *FlatTy = getShadowTyNoVec(B->getType());
4395         B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
4396                              ConstantInt::getNullValue(FlatTy));
4397         Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
4398                               ConstantInt::getNullValue(FlatTy));
4399       }
4400       // a = select b, c, d
4401       // Oa = Sb ? Ob : (b ? Oc : Od)
4402       setOrigin(
4403           &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
4404                                IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
4405                                                 getOrigin(I.getFalseValue()))));
4406     }
4407   }
4408 
4409   void visitLandingPadInst(LandingPadInst &I) {
4410     // Do nothing.
4411     // See https://github.com/google/sanitizers/issues/504
4412     setShadow(&I, getCleanShadow(&I));
4413     setOrigin(&I, getCleanOrigin());
4414   }
4415 
4416   void visitCatchSwitchInst(CatchSwitchInst &I) {
4417     setShadow(&I, getCleanShadow(&I));
4418     setOrigin(&I, getCleanOrigin());
4419   }
4420 
4421   void visitFuncletPadInst(FuncletPadInst &I) {
4422     setShadow(&I, getCleanShadow(&I));
4423     setOrigin(&I, getCleanOrigin());
4424   }
4425 
4426   void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); }
4427 
4428   void visitExtractValueInst(ExtractValueInst &I) {
4429     IRBuilder<> IRB(&I);
4430     Value *Agg = I.getAggregateOperand();
4431     LLVM_DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
4432     Value *AggShadow = getShadow(Agg);
4433     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
4434     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
4435     LLVM_DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
4436     setShadow(&I, ResShadow);
4437     setOriginForNaryOp(I);
4438   }
4439 
4440   void visitInsertValueInst(InsertValueInst &I) {
4441     IRBuilder<> IRB(&I);
4442     LLVM_DEBUG(dbgs() << "InsertValue:  " << I << "\n");
4443     Value *AggShadow = getShadow(I.getAggregateOperand());
4444     Value *InsShadow = getShadow(I.getInsertedValueOperand());
4445     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
4446     LLVM_DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
4447     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
4448     LLVM_DEBUG(dbgs() << "   Res:        " << *Res << "\n");
4449     setShadow(&I, Res);
4450     setOriginForNaryOp(I);
4451   }
4452 
4453   void dumpInst(Instruction &I) {
4454     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
4455       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
4456     } else {
4457       errs() << "ZZZ " << I.getOpcodeName() << "\n";
4458     }
4459     errs() << "QQQ " << I << "\n";
4460   }
4461 
4462   void visitResumeInst(ResumeInst &I) {
4463     LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
4464     // Nothing to do here.
4465   }
4466 
4467   void visitCleanupReturnInst(CleanupReturnInst &CRI) {
4468     LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
4469     // Nothing to do here.
4470   }
4471 
4472   void visitCatchReturnInst(CatchReturnInst &CRI) {
4473     LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
4474     // Nothing to do here.
4475   }
4476 
4477   void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I,
4478                              IRBuilder<> &IRB, const DataLayout &DL,
4479                              bool isOutput) {
4480     // For each assembly argument, we check its value for being initialized.
4481     // If the argument is a pointer, we assume it points to a single element
4482     // of the corresponding type (or to a 8-byte word, if the type is unsized).
4483     // Each such pointer is instrumented with a call to the runtime library.
4484     Type *OpType = Operand->getType();
4485     // Check the operand value itself.
4486     insertShadowCheck(Operand, &I);
4487     if (!OpType->isPointerTy() || !isOutput) {
4488       assert(!isOutput);
4489       return;
4490     }
4491     if (!ElemTy->isSized())
4492       return;
4493     int Size = DL.getTypeStoreSize(ElemTy);
4494     Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
4495     Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
4496     IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
4497   }
4498 
4499   /// Get the number of output arguments returned by pointers.
4500   int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
4501     int NumRetOutputs = 0;
4502     int NumOutputs = 0;
4503     Type *RetTy = cast<Value>(CB)->getType();
4504     if (!RetTy->isVoidTy()) {
4505       // Register outputs are returned via the CallInst return value.
4506       auto *ST = dyn_cast<StructType>(RetTy);
4507       if (ST)
4508         NumRetOutputs = ST->getNumElements();
4509       else
4510         NumRetOutputs = 1;
4511     }
4512     InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
4513     for (const InlineAsm::ConstraintInfo &Info : Constraints) {
4514       switch (Info.Type) {
4515       case InlineAsm::isOutput:
4516         NumOutputs++;
4517         break;
4518       default:
4519         break;
4520       }
4521     }
4522     return NumOutputs - NumRetOutputs;
4523   }
4524 
4525   void visitAsmInstruction(Instruction &I) {
4526     // Conservative inline assembly handling: check for poisoned shadow of
4527     // asm() arguments, then unpoison the result and all the memory locations
4528     // pointed to by those arguments.
4529     // An inline asm() statement in C++ contains lists of input and output
4530     // arguments used by the assembly code. These are mapped to operands of the
4531     // CallInst as follows:
4532     //  - nR register outputs ("=r) are returned by value in a single structure
4533     //  (SSA value of the CallInst);
4534     //  - nO other outputs ("=m" and others) are returned by pointer as first
4535     // nO operands of the CallInst;
4536     //  - nI inputs ("r", "m" and others) are passed to CallInst as the
4537     // remaining nI operands.
4538     // The total number of asm() arguments in the source is nR+nO+nI, and the
4539     // corresponding CallInst has nO+nI+1 operands (the last operand is the
4540     // function to be called).
4541     const DataLayout &DL = F.getParent()->getDataLayout();
4542     CallBase *CB = cast<CallBase>(&I);
4543     IRBuilder<> IRB(&I);
4544     InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4545     int OutputArgs = getNumOutputArgs(IA, CB);
4546     // The last operand of a CallInst is the function itself.
4547     int NumOperands = CB->getNumOperands() - 1;
4548 
4549     // Check input arguments. Doing so before unpoisoning output arguments, so
4550     // that we won't overwrite uninit values before checking them.
4551     for (int i = OutputArgs; i < NumOperands; i++) {
4552       Value *Operand = CB->getOperand(i);
4553       instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL,
4554                             /*isOutput*/ false);
4555     }
4556     // Unpoison output arguments. This must happen before the actual InlineAsm
4557     // call, so that the shadow for memory published in the asm() statement
4558     // remains valid.
4559     for (int i = 0; i < OutputArgs; i++) {
4560       Value *Operand = CB->getOperand(i);
4561       instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL,
4562                             /*isOutput*/ true);
4563     }
4564 
4565     setShadow(&I, getCleanShadow(&I));
4566     setOrigin(&I, getCleanOrigin());
4567   }
4568 
4569   void visitFreezeInst(FreezeInst &I) {
4570     // Freeze always returns a fully defined value.
4571     setShadow(&I, getCleanShadow(&I));
4572     setOrigin(&I, getCleanOrigin());
4573   }
4574 
4575   void visitInstruction(Instruction &I) {
4576     // Everything else: stop propagating and check for poisoned shadow.
4577     if (ClDumpStrictInstructions)
4578       dumpInst(I);
4579     LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
4580     for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
4581       Value *Operand = I.getOperand(i);
4582       if (Operand->getType()->isSized())
4583         insertShadowCheck(Operand, &I);
4584     }
4585     setShadow(&I, getCleanShadow(&I));
4586     setOrigin(&I, getCleanOrigin());
4587   }
4588 };
4589 
4590 /// AMD64-specific implementation of VarArgHelper.
4591 struct VarArgAMD64Helper : public VarArgHelper {
4592   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
4593   // See a comment in visitCallBase for more details.
4594   static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
4595   static const unsigned AMD64FpEndOffsetSSE = 176;
4596   // If SSE is disabled, fp_offset in va_list is zero.
4597   static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
4598 
4599   unsigned AMD64FpEndOffset;
4600   Function &F;
4601   MemorySanitizer &MS;
4602   MemorySanitizerVisitor &MSV;
4603   Value *VAArgTLSCopy = nullptr;
4604   Value *VAArgTLSOriginCopy = nullptr;
4605   Value *VAArgOverflowSize = nullptr;
4606 
4607   SmallVector<CallInst *, 16> VAStartInstrumentationList;
4608 
4609   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4610 
4611   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
4612                     MemorySanitizerVisitor &MSV)
4613       : F(F), MS(MS), MSV(MSV) {
4614     AMD64FpEndOffset = AMD64FpEndOffsetSSE;
4615     for (const auto &Attr : F.getAttributes().getFnAttrs()) {
4616       if (Attr.isStringAttribute() &&
4617           (Attr.getKindAsString() == "target-features")) {
4618         if (Attr.getValueAsString().contains("-sse"))
4619           AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
4620         break;
4621       }
4622     }
4623   }
4624 
4625   ArgKind classifyArgument(Value *arg) {
4626     // A very rough approximation of X86_64 argument classification rules.
4627     Type *T = arg->getType();
4628     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
4629       return AK_FloatingPoint;
4630     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4631       return AK_GeneralPurpose;
4632     if (T->isPointerTy())
4633       return AK_GeneralPurpose;
4634     return AK_Memory;
4635   }
4636 
4637   // For VarArg functions, store the argument shadow in an ABI-specific format
4638   // that corresponds to va_list layout.
4639   // We do this because Clang lowers va_arg in the frontend, and this pass
4640   // only sees the low level code that deals with va_list internals.
4641   // A much easier alternative (provided that Clang emits va_arg instructions)
4642   // would have been to associate each live instance of va_list with a copy of
4643   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
4644   // order.
4645   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4646     unsigned GpOffset = 0;
4647     unsigned FpOffset = AMD64GpEndOffset;
4648     unsigned OverflowOffset = AMD64FpEndOffset;
4649     const DataLayout &DL = F.getParent()->getDataLayout();
4650     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
4651       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4652       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
4653       if (IsByVal) {
4654         // ByVal arguments always go to the overflow area.
4655         // Fixed arguments passed through the overflow area will be stepped
4656         // over by va_start, so don't count them towards the offset.
4657         if (IsFixed)
4658           continue;
4659         assert(A->getType()->isPointerTy());
4660         Type *RealTy = CB.getParamByValType(ArgNo);
4661         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4662         Value *ShadowBase = getShadowPtrForVAArgument(
4663             RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
4664         Value *OriginBase = nullptr;
4665         if (MS.TrackOrigins)
4666           OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
4667         OverflowOffset += alignTo(ArgSize, 8);
4668         if (!ShadowBase)
4669           continue;
4670         Value *ShadowPtr, *OriginPtr;
4671         std::tie(ShadowPtr, OriginPtr) =
4672             MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
4673                                    /*isStore*/ false);
4674 
4675         IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
4676                          kShadowTLSAlignment, ArgSize);
4677         if (MS.TrackOrigins)
4678           IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
4679                            kShadowTLSAlignment, ArgSize);
4680       } else {
4681         ArgKind AK = classifyArgument(A);
4682         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
4683           AK = AK_Memory;
4684         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
4685           AK = AK_Memory;
4686         Value *ShadowBase, *OriginBase = nullptr;
4687         switch (AK) {
4688         case AK_GeneralPurpose:
4689           ShadowBase =
4690               getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
4691           if (MS.TrackOrigins)
4692             OriginBase = getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
4693           GpOffset += 8;
4694           break;
4695         case AK_FloatingPoint:
4696           ShadowBase =
4697               getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
4698           if (MS.TrackOrigins)
4699             OriginBase = getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
4700           FpOffset += 16;
4701           break;
4702         case AK_Memory:
4703           if (IsFixed)
4704             continue;
4705           uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4706           ShadowBase =
4707               getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
4708           if (MS.TrackOrigins)
4709             OriginBase =
4710                 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
4711           OverflowOffset += alignTo(ArgSize, 8);
4712         }
4713         // Take fixed arguments into account for GpOffset and FpOffset,
4714         // but don't actually store shadows for them.
4715         // TODO(glider): don't call get*PtrForVAArgument() for them.
4716         if (IsFixed)
4717           continue;
4718         if (!ShadowBase)
4719           continue;
4720         Value *Shadow = MSV.getShadow(A);
4721         IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
4722         if (MS.TrackOrigins) {
4723           Value *Origin = MSV.getOrigin(A);
4724           unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
4725           MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
4726                           std::max(kShadowTLSAlignment, kMinOriginAlignment));
4727         }
4728       }
4729     }
4730     Constant *OverflowSize =
4731         ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
4732     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4733   }
4734 
4735   /// Compute the shadow address for a given va_arg.
4736   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4737                                    unsigned ArgOffset, unsigned ArgSize) {
4738     // Make sure we don't overflow __msan_va_arg_tls.
4739     if (ArgOffset + ArgSize > kParamTLSSize)
4740       return nullptr;
4741     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4742     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4743     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4744                               "_msarg_va_s");
4745   }
4746 
4747   /// Compute the origin address for a given va_arg.
4748   Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
4749     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
4750     // getOriginPtrForVAArgument() is always called after
4751     // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
4752     // overflow.
4753     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4754     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
4755                               "_msarg_va_o");
4756   }
4757 
4758   void unpoisonVAListTagForInst(IntrinsicInst &I) {
4759     IRBuilder<> IRB(&I);
4760     Value *VAListTag = I.getArgOperand(0);
4761     Value *ShadowPtr, *OriginPtr;
4762     const Align Alignment = Align(8);
4763     std::tie(ShadowPtr, OriginPtr) =
4764         MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
4765                                /*isStore*/ true);
4766 
4767     // Unpoison the whole __va_list_tag.
4768     // FIXME: magic ABI constants.
4769     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4770                      /* size */ 24, Alignment, false);
4771     // We shouldn't need to zero out the origins, as they're only checked for
4772     // nonzero shadow.
4773   }
4774 
4775   void visitVAStartInst(VAStartInst &I) override {
4776     if (F.getCallingConv() == CallingConv::Win64)
4777       return;
4778     VAStartInstrumentationList.push_back(&I);
4779     unpoisonVAListTagForInst(I);
4780   }
4781 
4782   void visitVACopyInst(VACopyInst &I) override {
4783     if (F.getCallingConv() == CallingConv::Win64)
4784       return;
4785     unpoisonVAListTagForInst(I);
4786   }
4787 
4788   void finalizeInstrumentation() override {
4789     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
4790            "finalizeInstrumentation called twice");
4791     if (!VAStartInstrumentationList.empty()) {
4792       // If there is a va_start in this function, make a backup copy of
4793       // va_arg_tls somewhere in the function entry block.
4794       IRBuilder<> IRB(MSV.FnPrologueEnd);
4795       VAArgOverflowSize =
4796           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4797       Value *CopySize = IRB.CreateAdd(
4798           ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), VAArgOverflowSize);
4799       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4800       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4801       if (MS.TrackOrigins) {
4802         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4803         IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS,
4804                          Align(8), CopySize);
4805       }
4806     }
4807 
4808     // Instrument va_start.
4809     // Copy va_list shadow from the backup copy of the TLS contents.
4810     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4811       CallInst *OrigInst = VAStartInstrumentationList[i];
4812       NextNodeIRBuilder IRB(OrigInst);
4813       Value *VAListTag = OrigInst->getArgOperand(0);
4814 
4815       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4816       Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
4817           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4818                         ConstantInt::get(MS.IntptrTy, 16)),
4819           PointerType::get(RegSaveAreaPtrTy, 0));
4820       Value *RegSaveAreaPtr =
4821           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4822       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4823       const Align Alignment = Align(16);
4824       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4825           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4826                                  Alignment, /*isStore*/ true);
4827       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4828                        AMD64FpEndOffset);
4829       if (MS.TrackOrigins)
4830         IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
4831                          Alignment, AMD64FpEndOffset);
4832       Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4833       Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
4834           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4835                         ConstantInt::get(MS.IntptrTy, 8)),
4836           PointerType::get(OverflowArgAreaPtrTy, 0));
4837       Value *OverflowArgAreaPtr =
4838           IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
4839       Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
4840       std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
4841           MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
4842                                  Alignment, /*isStore*/ true);
4843       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
4844                                              AMD64FpEndOffset);
4845       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
4846                        VAArgOverflowSize);
4847       if (MS.TrackOrigins) {
4848         SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
4849                                         AMD64FpEndOffset);
4850         IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
4851                          VAArgOverflowSize);
4852       }
4853     }
4854   }
4855 };
4856 
4857 /// MIPS64-specific implementation of VarArgHelper.
4858 struct VarArgMIPS64Helper : public VarArgHelper {
4859   Function &F;
4860   MemorySanitizer &MS;
4861   MemorySanitizerVisitor &MSV;
4862   Value *VAArgTLSCopy = nullptr;
4863   Value *VAArgSize = nullptr;
4864 
4865   SmallVector<CallInst *, 16> VAStartInstrumentationList;
4866 
4867   VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
4868                      MemorySanitizerVisitor &MSV)
4869       : F(F), MS(MS), MSV(MSV) {}
4870 
4871   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4872     unsigned VAArgOffset = 0;
4873     const DataLayout &DL = F.getParent()->getDataLayout();
4874     for (Value *A :
4875          llvm::drop_begin(CB.args(), CB.getFunctionType()->getNumParams())) {
4876       Triple TargetTriple(F.getParent()->getTargetTriple());
4877       Value *Base;
4878       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4879       if (TargetTriple.getArch() == Triple::mips64) {
4880         // Adjusting the shadow for argument with size < 8 to match the
4881         // placement of bits in big endian system
4882         if (ArgSize < 8)
4883           VAArgOffset += (8 - ArgSize);
4884       }
4885       Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
4886       VAArgOffset += ArgSize;
4887       VAArgOffset = alignTo(VAArgOffset, 8);
4888       if (!Base)
4889         continue;
4890       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4891     }
4892 
4893     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
4894     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4895     // a new class member i.e. it is the total size of all VarArgs.
4896     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4897   }
4898 
4899   /// Compute the shadow address for a given va_arg.
4900   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4901                                    unsigned ArgOffset, unsigned ArgSize) {
4902     // Make sure we don't overflow __msan_va_arg_tls.
4903     if (ArgOffset + ArgSize > kParamTLSSize)
4904       return nullptr;
4905     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4906     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4907     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4908                               "_msarg");
4909   }
4910 
4911   void visitVAStartInst(VAStartInst &I) override {
4912     IRBuilder<> IRB(&I);
4913     VAStartInstrumentationList.push_back(&I);
4914     Value *VAListTag = I.getArgOperand(0);
4915     Value *ShadowPtr, *OriginPtr;
4916     const Align Alignment = Align(8);
4917     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4918         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4919     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4920                      /* size */ 8, Alignment, false);
4921   }
4922 
4923   void visitVACopyInst(VACopyInst &I) override {
4924     IRBuilder<> IRB(&I);
4925     VAStartInstrumentationList.push_back(&I);
4926     Value *VAListTag = I.getArgOperand(0);
4927     Value *ShadowPtr, *OriginPtr;
4928     const Align Alignment = Align(8);
4929     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4930         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4931     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4932                      /* size */ 8, Alignment, false);
4933   }
4934 
4935   void finalizeInstrumentation() override {
4936     assert(!VAArgSize && !VAArgTLSCopy &&
4937            "finalizeInstrumentation called twice");
4938     IRBuilder<> IRB(MSV.FnPrologueEnd);
4939     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4940     Value *CopySize =
4941         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), VAArgSize);
4942 
4943     if (!VAStartInstrumentationList.empty()) {
4944       // If there is a va_start in this function, make a backup copy of
4945       // va_arg_tls somewhere in the function entry block.
4946       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4947       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4948     }
4949 
4950     // Instrument va_start.
4951     // Copy va_list shadow from the backup copy of the TLS contents.
4952     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4953       CallInst *OrigInst = VAStartInstrumentationList[i];
4954       NextNodeIRBuilder IRB(OrigInst);
4955       Value *VAListTag = OrigInst->getArgOperand(0);
4956       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4957       Value *RegSaveAreaPtrPtr =
4958           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4959                              PointerType::get(RegSaveAreaPtrTy, 0));
4960       Value *RegSaveAreaPtr =
4961           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4962       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4963       const Align Alignment = Align(8);
4964       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4965           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4966                                  Alignment, /*isStore*/ true);
4967       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4968                        CopySize);
4969     }
4970   }
4971 };
4972 
4973 /// AArch64-specific implementation of VarArgHelper.
4974 struct VarArgAArch64Helper : public VarArgHelper {
4975   static const unsigned kAArch64GrArgSize = 64;
4976   static const unsigned kAArch64VrArgSize = 128;
4977 
4978   static const unsigned AArch64GrBegOffset = 0;
4979   static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
4980   // Make VR space aligned to 16 bytes.
4981   static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
4982   static const unsigned AArch64VrEndOffset =
4983       AArch64VrBegOffset + kAArch64VrArgSize;
4984   static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
4985 
4986   Function &F;
4987   MemorySanitizer &MS;
4988   MemorySanitizerVisitor &MSV;
4989   Value *VAArgTLSCopy = nullptr;
4990   Value *VAArgOverflowSize = nullptr;
4991 
4992   SmallVector<CallInst *, 16> VAStartInstrumentationList;
4993 
4994   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4995 
4996   VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
4997                       MemorySanitizerVisitor &MSV)
4998       : F(F), MS(MS), MSV(MSV) {}
4999 
5000   ArgKind classifyArgument(Value *arg) {
5001     Type *T = arg->getType();
5002     if (T->isFPOrFPVectorTy())
5003       return AK_FloatingPoint;
5004     if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) ||
5005         (T->isPointerTy()))
5006       return AK_GeneralPurpose;
5007     return AK_Memory;
5008   }
5009 
5010   // The instrumentation stores the argument shadow in a non ABI-specific
5011   // format because it does not know which argument is named (since Clang,
5012   // like x86_64 case, lowers the va_args in the frontend and this pass only
5013   // sees the low level code that deals with va_list internals).
5014   // The first seven GR registers are saved in the first 56 bytes of the
5015   // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
5016   // the remaining arguments.
5017   // Using constant offset within the va_arg TLS array allows fast copy
5018   // in the finalize instrumentation.
5019   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5020     unsigned GrOffset = AArch64GrBegOffset;
5021     unsigned VrOffset = AArch64VrBegOffset;
5022     unsigned OverflowOffset = AArch64VAEndOffset;
5023 
5024     const DataLayout &DL = F.getParent()->getDataLayout();
5025     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5026       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5027       ArgKind AK = classifyArgument(A);
5028       if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
5029         AK = AK_Memory;
5030       if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
5031         AK = AK_Memory;
5032       Value *Base;
5033       switch (AK) {
5034       case AK_GeneralPurpose:
5035         Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
5036         GrOffset += 8;
5037         break;
5038       case AK_FloatingPoint:
5039         Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
5040         VrOffset += 16;
5041         break;
5042       case AK_Memory:
5043         // Don't count fixed arguments in the overflow area - va_start will
5044         // skip right over them.
5045         if (IsFixed)
5046           continue;
5047         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
5048         Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
5049                                          alignTo(ArgSize, 8));
5050         OverflowOffset += alignTo(ArgSize, 8);
5051         break;
5052       }
5053       // Count Gp/Vr fixed arguments to their respective offsets, but don't
5054       // bother to actually store a shadow.
5055       if (IsFixed)
5056         continue;
5057       if (!Base)
5058         continue;
5059       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
5060     }
5061     Constant *OverflowSize =
5062         ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
5063     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
5064   }
5065 
5066   /// Compute the shadow address for a given va_arg.
5067   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
5068                                    unsigned ArgOffset, unsigned ArgSize) {
5069     // Make sure we don't overflow __msan_va_arg_tls.
5070     if (ArgOffset + ArgSize > kParamTLSSize)
5071       return nullptr;
5072     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5073     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5074     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
5075                               "_msarg");
5076   }
5077 
5078   void visitVAStartInst(VAStartInst &I) override {
5079     IRBuilder<> IRB(&I);
5080     VAStartInstrumentationList.push_back(&I);
5081     Value *VAListTag = I.getArgOperand(0);
5082     Value *ShadowPtr, *OriginPtr;
5083     const Align Alignment = Align(8);
5084     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
5085         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
5086     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5087                      /* size */ 32, Alignment, false);
5088   }
5089 
5090   void visitVACopyInst(VACopyInst &I) override {
5091     IRBuilder<> IRB(&I);
5092     VAStartInstrumentationList.push_back(&I);
5093     Value *VAListTag = I.getArgOperand(0);
5094     Value *ShadowPtr, *OriginPtr;
5095     const Align Alignment = Align(8);
5096     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
5097         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
5098     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5099                      /* size */ 32, Alignment, false);
5100   }
5101 
5102   // Retrieve a va_list field of 'void*' size.
5103   Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
5104     Value *SaveAreaPtrPtr = IRB.CreateIntToPtr(
5105         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5106                       ConstantInt::get(MS.IntptrTy, offset)),
5107         Type::getInt64PtrTy(*MS.C));
5108     return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
5109   }
5110 
5111   // Retrieve a va_list field of 'int' size.
5112   Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
5113     Value *SaveAreaPtr = IRB.CreateIntToPtr(
5114         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5115                       ConstantInt::get(MS.IntptrTy, offset)),
5116         Type::getInt32PtrTy(*MS.C));
5117     Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
5118     return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
5119   }
5120 
5121   void finalizeInstrumentation() override {
5122     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
5123            "finalizeInstrumentation called twice");
5124     if (!VAStartInstrumentationList.empty()) {
5125       // If there is a va_start in this function, make a backup copy of
5126       // va_arg_tls somewhere in the function entry block.
5127       IRBuilder<> IRB(MSV.FnPrologueEnd);
5128       VAArgOverflowSize =
5129           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5130       Value *CopySize = IRB.CreateAdd(
5131           ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), VAArgOverflowSize);
5132       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5133       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
5134     }
5135 
5136     Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
5137     Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
5138 
5139     // Instrument va_start, copy va_list shadow from the backup copy of
5140     // the TLS contents.
5141     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
5142       CallInst *OrigInst = VAStartInstrumentationList[i];
5143       NextNodeIRBuilder IRB(OrigInst);
5144 
5145       Value *VAListTag = OrigInst->getArgOperand(0);
5146 
5147       // The variadic ABI for AArch64 creates two areas to save the incoming
5148       // argument registers (one for 64-bit general register xn-x7 and another
5149       // for 128-bit FP/SIMD vn-v7).
5150       // We need then to propagate the shadow arguments on both regions
5151       // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
5152       // The remaining arguments are saved on shadow for 'va::stack'.
5153       // One caveat is it requires only to propagate the non-named arguments,
5154       // however on the call site instrumentation 'all' the arguments are
5155       // saved. So to copy the shadow values from the va_arg TLS array
5156       // we need to adjust the offset for both GR and VR fields based on
5157       // the __{gr,vr}_offs value (since they are stores based on incoming
5158       // named arguments).
5159 
5160       // Read the stack pointer from the va_list.
5161       Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
5162 
5163       // Read both the __gr_top and __gr_off and add them up.
5164       Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
5165       Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
5166 
5167       Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
5168 
5169       // Read both the __vr_top and __vr_off and add them up.
5170       Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
5171       Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
5172 
5173       Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
5174 
5175       // It does not know how many named arguments is being used and, on the
5176       // callsite all the arguments were saved.  Since __gr_off is defined as
5177       // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
5178       // argument by ignoring the bytes of shadow from named arguments.
5179       Value *GrRegSaveAreaShadowPtrOff =
5180           IRB.CreateAdd(GrArgSize, GrOffSaveArea);
5181 
5182       Value *GrRegSaveAreaShadowPtr =
5183           MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5184                                  Align(8), /*isStore*/ true)
5185               .first;
5186 
5187       Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
5188                                               GrRegSaveAreaShadowPtrOff);
5189       Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
5190 
5191       IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8),
5192                        GrCopySize);
5193 
5194       // Again, but for FP/SIMD values.
5195       Value *VrRegSaveAreaShadowPtrOff =
5196           IRB.CreateAdd(VrArgSize, VrOffSaveArea);
5197 
5198       Value *VrRegSaveAreaShadowPtr =
5199           MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5200                                  Align(8), /*isStore*/ true)
5201               .first;
5202 
5203       Value *VrSrcPtr = IRB.CreateInBoundsGEP(
5204           IRB.getInt8Ty(),
5205           IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
5206                                 IRB.getInt32(AArch64VrBegOffset)),
5207           VrRegSaveAreaShadowPtrOff);
5208       Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
5209 
5210       IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8),
5211                        VrCopySize);
5212 
5213       // And finally for remaining arguments.
5214       Value *StackSaveAreaShadowPtr =
5215           MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
5216                                  Align(16), /*isStore*/ true)
5217               .first;
5218 
5219       Value *StackSrcPtr = IRB.CreateInBoundsGEP(
5220           IRB.getInt8Ty(), VAArgTLSCopy, IRB.getInt32(AArch64VAEndOffset));
5221 
5222       IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr,
5223                        Align(16), VAArgOverflowSize);
5224     }
5225   }
5226 };
5227 
5228 /// PowerPC64-specific implementation of VarArgHelper.
5229 struct VarArgPowerPC64Helper : public VarArgHelper {
5230   Function &F;
5231   MemorySanitizer &MS;
5232   MemorySanitizerVisitor &MSV;
5233   Value *VAArgTLSCopy = nullptr;
5234   Value *VAArgSize = nullptr;
5235 
5236   SmallVector<CallInst *, 16> VAStartInstrumentationList;
5237 
5238   VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
5239                         MemorySanitizerVisitor &MSV)
5240       : F(F), MS(MS), MSV(MSV) {}
5241 
5242   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5243     // For PowerPC, we need to deal with alignment of stack arguments -
5244     // they are mostly aligned to 8 bytes, but vectors and i128 arrays
5245     // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
5246     // For that reason, we compute current offset from stack pointer (which is
5247     // always properly aligned), and offset for the first vararg, then subtract
5248     // them.
5249     unsigned VAArgBase;
5250     Triple TargetTriple(F.getParent()->getTargetTriple());
5251     // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
5252     // and 32 bytes for ABIv2.  This is usually determined by target
5253     // endianness, but in theory could be overridden by function attribute.
5254     if (TargetTriple.getArch() == Triple::ppc64)
5255       VAArgBase = 48;
5256     else
5257       VAArgBase = 32;
5258     unsigned VAArgOffset = VAArgBase;
5259     const DataLayout &DL = F.getParent()->getDataLayout();
5260     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5261       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5262       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
5263       if (IsByVal) {
5264         assert(A->getType()->isPointerTy());
5265         Type *RealTy = CB.getParamByValType(ArgNo);
5266         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
5267         Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(8));
5268         if (ArgAlign < 8)
5269           ArgAlign = Align(8);
5270         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
5271         if (!IsFixed) {
5272           Value *Base = getShadowPtrForVAArgument(
5273               RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
5274           if (Base) {
5275             Value *AShadowPtr, *AOriginPtr;
5276             std::tie(AShadowPtr, AOriginPtr) =
5277                 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
5278                                        kShadowTLSAlignment, /*isStore*/ false);
5279 
5280             IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
5281                              kShadowTLSAlignment, ArgSize);
5282           }
5283         }
5284         VAArgOffset += alignTo(ArgSize, Align(8));
5285       } else {
5286         Value *Base;
5287         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
5288         Align ArgAlign = Align(8);
5289         if (A->getType()->isArrayTy()) {
5290           // Arrays are aligned to element size, except for long double
5291           // arrays, which are aligned to 8 bytes.
5292           Type *ElementTy = A->getType()->getArrayElementType();
5293           if (!ElementTy->isPPC_FP128Ty())
5294             ArgAlign = Align(DL.getTypeAllocSize(ElementTy));
5295         } else if (A->getType()->isVectorTy()) {
5296           // Vectors are naturally aligned.
5297           ArgAlign = Align(ArgSize);
5298         }
5299         if (ArgAlign < 8)
5300           ArgAlign = Align(8);
5301         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
5302         if (DL.isBigEndian()) {
5303           // Adjusting the shadow for argument with size < 8 to match the
5304           // placement of bits in big endian system
5305           if (ArgSize < 8)
5306             VAArgOffset += (8 - ArgSize);
5307         }
5308         if (!IsFixed) {
5309           Base = getShadowPtrForVAArgument(A->getType(), IRB,
5310                                            VAArgOffset - VAArgBase, ArgSize);
5311           if (Base)
5312             IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
5313         }
5314         VAArgOffset += ArgSize;
5315         VAArgOffset = alignTo(VAArgOffset, Align(8));
5316       }
5317       if (IsFixed)
5318         VAArgBase = VAArgOffset;
5319     }
5320 
5321     Constant *TotalVAArgSize =
5322         ConstantInt::get(IRB.getInt64Ty(), VAArgOffset - VAArgBase);
5323     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
5324     // a new class member i.e. it is the total size of all VarArgs.
5325     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
5326   }
5327 
5328   /// Compute the shadow address for a given va_arg.
5329   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
5330                                    unsigned ArgOffset, unsigned ArgSize) {
5331     // Make sure we don't overflow __msan_va_arg_tls.
5332     if (ArgOffset + ArgSize > kParamTLSSize)
5333       return nullptr;
5334     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5335     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5336     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
5337                               "_msarg");
5338   }
5339 
5340   void visitVAStartInst(VAStartInst &I) override {
5341     IRBuilder<> IRB(&I);
5342     VAStartInstrumentationList.push_back(&I);
5343     Value *VAListTag = I.getArgOperand(0);
5344     Value *ShadowPtr, *OriginPtr;
5345     const Align Alignment = Align(8);
5346     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
5347         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
5348     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5349                      /* size */ 8, Alignment, false);
5350   }
5351 
5352   void visitVACopyInst(VACopyInst &I) override {
5353     IRBuilder<> IRB(&I);
5354     Value *VAListTag = I.getArgOperand(0);
5355     Value *ShadowPtr, *OriginPtr;
5356     const Align Alignment = Align(8);
5357     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
5358         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
5359     // Unpoison the whole __va_list_tag.
5360     // FIXME: magic ABI constants.
5361     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5362                      /* size */ 8, Alignment, false);
5363   }
5364 
5365   void finalizeInstrumentation() override {
5366     assert(!VAArgSize && !VAArgTLSCopy &&
5367            "finalizeInstrumentation called twice");
5368     IRBuilder<> IRB(MSV.FnPrologueEnd);
5369     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5370     Value *CopySize =
5371         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), VAArgSize);
5372 
5373     if (!VAStartInstrumentationList.empty()) {
5374       // If there is a va_start in this function, make a backup copy of
5375       // va_arg_tls somewhere in the function entry block.
5376       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5377       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
5378     }
5379 
5380     // Instrument va_start.
5381     // Copy va_list shadow from the backup copy of the TLS contents.
5382     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
5383       CallInst *OrigInst = VAStartInstrumentationList[i];
5384       NextNodeIRBuilder IRB(OrigInst);
5385       Value *VAListTag = OrigInst->getArgOperand(0);
5386       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5387       Value *RegSaveAreaPtrPtr =
5388           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5389                              PointerType::get(RegSaveAreaPtrTy, 0));
5390       Value *RegSaveAreaPtr =
5391           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
5392       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5393       const Align Alignment = Align(8);
5394       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5395           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
5396                                  Alignment, /*isStore*/ true);
5397       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5398                        CopySize);
5399     }
5400   }
5401 };
5402 
5403 /// SystemZ-specific implementation of VarArgHelper.
5404 struct VarArgSystemZHelper : public VarArgHelper {
5405   static const unsigned SystemZGpOffset = 16;
5406   static const unsigned SystemZGpEndOffset = 56;
5407   static const unsigned SystemZFpOffset = 128;
5408   static const unsigned SystemZFpEndOffset = 160;
5409   static const unsigned SystemZMaxVrArgs = 8;
5410   static const unsigned SystemZRegSaveAreaSize = 160;
5411   static const unsigned SystemZOverflowOffset = 160;
5412   static const unsigned SystemZVAListTagSize = 32;
5413   static const unsigned SystemZOverflowArgAreaPtrOffset = 16;
5414   static const unsigned SystemZRegSaveAreaPtrOffset = 24;
5415 
5416   Function &F;
5417   MemorySanitizer &MS;
5418   MemorySanitizerVisitor &MSV;
5419   Value *VAArgTLSCopy = nullptr;
5420   Value *VAArgTLSOriginCopy = nullptr;
5421   Value *VAArgOverflowSize = nullptr;
5422 
5423   SmallVector<CallInst *, 16> VAStartInstrumentationList;
5424 
5425   enum class ArgKind {
5426     GeneralPurpose,
5427     FloatingPoint,
5428     Vector,
5429     Memory,
5430     Indirect,
5431   };
5432 
5433   enum class ShadowExtension { None, Zero, Sign };
5434 
5435   VarArgSystemZHelper(Function &F, MemorySanitizer &MS,
5436                       MemorySanitizerVisitor &MSV)
5437       : F(F), MS(MS), MSV(MSV) {}
5438 
5439   ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) {
5440     // T is a SystemZABIInfo::classifyArgumentType() output, and there are
5441     // only a few possibilities of what it can be. In particular, enums, single
5442     // element structs and large types have already been taken care of.
5443 
5444     // Some i128 and fp128 arguments are converted to pointers only in the
5445     // back end.
5446     if (T->isIntegerTy(128) || T->isFP128Ty())
5447       return ArgKind::Indirect;
5448     if (T->isFloatingPointTy())
5449       return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint;
5450     if (T->isIntegerTy() || T->isPointerTy())
5451       return ArgKind::GeneralPurpose;
5452     if (T->isVectorTy())
5453       return ArgKind::Vector;
5454     return ArgKind::Memory;
5455   }
5456 
5457   ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) {
5458     // ABI says: "One of the simple integer types no more than 64 bits wide.
5459     // ... If such an argument is shorter than 64 bits, replace it by a full
5460     // 64-bit integer representing the same number, using sign or zero
5461     // extension". Shadow for an integer argument has the same type as the
5462     // argument itself, so it can be sign or zero extended as well.
5463     bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt);
5464     bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt);
5465     if (ZExt) {
5466       assert(!SExt);
5467       return ShadowExtension::Zero;
5468     }
5469     if (SExt) {
5470       assert(!ZExt);
5471       return ShadowExtension::Sign;
5472     }
5473     return ShadowExtension::None;
5474   }
5475 
5476   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5477     bool IsSoftFloatABI = CB.getCalledFunction()
5478                               ->getFnAttribute("use-soft-float")
5479                               .getValueAsBool();
5480     unsigned GpOffset = SystemZGpOffset;
5481     unsigned FpOffset = SystemZFpOffset;
5482     unsigned VrIndex = 0;
5483     unsigned OverflowOffset = SystemZOverflowOffset;
5484     const DataLayout &DL = F.getParent()->getDataLayout();
5485     for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) {
5486       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5487       // SystemZABIInfo does not produce ByVal parameters.
5488       assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal));
5489       Type *T = A->getType();
5490       ArgKind AK = classifyArgument(T, IsSoftFloatABI);
5491       if (AK == ArgKind::Indirect) {
5492         T = PointerType::get(T, 0);
5493         AK = ArgKind::GeneralPurpose;
5494       }
5495       if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset)
5496         AK = ArgKind::Memory;
5497       if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset)
5498         AK = ArgKind::Memory;
5499       if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed))
5500         AK = ArgKind::Memory;
5501       Value *ShadowBase = nullptr;
5502       Value *OriginBase = nullptr;
5503       ShadowExtension SE = ShadowExtension::None;
5504       switch (AK) {
5505       case ArgKind::GeneralPurpose: {
5506         // Always keep track of GpOffset, but store shadow only for varargs.
5507         uint64_t ArgSize = 8;
5508         if (GpOffset + ArgSize <= kParamTLSSize) {
5509           if (!IsFixed) {
5510             SE = getShadowExtension(CB, ArgNo);
5511             uint64_t GapSize = 0;
5512             if (SE == ShadowExtension::None) {
5513               uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5514               assert(ArgAllocSize <= ArgSize);
5515               GapSize = ArgSize - ArgAllocSize;
5516             }
5517             ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize);
5518             if (MS.TrackOrigins)
5519               OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize);
5520           }
5521           GpOffset += ArgSize;
5522         } else {
5523           GpOffset = kParamTLSSize;
5524         }
5525         break;
5526       }
5527       case ArgKind::FloatingPoint: {
5528         // Always keep track of FpOffset, but store shadow only for varargs.
5529         uint64_t ArgSize = 8;
5530         if (FpOffset + ArgSize <= kParamTLSSize) {
5531           if (!IsFixed) {
5532             // PoP says: "A short floating-point datum requires only the
5533             // left-most 32 bit positions of a floating-point register".
5534             // Therefore, in contrast to AK_GeneralPurpose and AK_Memory,
5535             // don't extend shadow and don't mind the gap.
5536             ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset);
5537             if (MS.TrackOrigins)
5538               OriginBase = getOriginPtrForVAArgument(IRB, FpOffset);
5539           }
5540           FpOffset += ArgSize;
5541         } else {
5542           FpOffset = kParamTLSSize;
5543         }
5544         break;
5545       }
5546       case ArgKind::Vector: {
5547         // Keep track of VrIndex. No need to store shadow, since vector varargs
5548         // go through AK_Memory.
5549         assert(IsFixed);
5550         VrIndex++;
5551         break;
5552       }
5553       case ArgKind::Memory: {
5554         // Keep track of OverflowOffset and store shadow only for varargs.
5555         // Ignore fixed args, since we need to copy only the vararg portion of
5556         // the overflow area shadow.
5557         if (!IsFixed) {
5558           uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5559           uint64_t ArgSize = alignTo(ArgAllocSize, 8);
5560           if (OverflowOffset + ArgSize <= kParamTLSSize) {
5561             SE = getShadowExtension(CB, ArgNo);
5562             uint64_t GapSize =
5563                 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0;
5564             ShadowBase =
5565                 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize);
5566             if (MS.TrackOrigins)
5567               OriginBase =
5568                   getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize);
5569             OverflowOffset += ArgSize;
5570           } else {
5571             OverflowOffset = kParamTLSSize;
5572           }
5573         }
5574         break;
5575       }
5576       case ArgKind::Indirect:
5577         llvm_unreachable("Indirect must be converted to GeneralPurpose");
5578       }
5579       if (ShadowBase == nullptr)
5580         continue;
5581       Value *Shadow = MSV.getShadow(A);
5582       if (SE != ShadowExtension::None)
5583         Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(),
5584                                       /*Signed*/ SE == ShadowExtension::Sign);
5585       ShadowBase = IRB.CreateIntToPtr(
5586           ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s");
5587       IRB.CreateStore(Shadow, ShadowBase);
5588       if (MS.TrackOrigins) {
5589         Value *Origin = MSV.getOrigin(A);
5590         unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
5591         MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
5592                         kMinOriginAlignment);
5593       }
5594     }
5595     Constant *OverflowSize = ConstantInt::get(
5596         IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset);
5597     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
5598   }
5599 
5600   Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) {
5601     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5602     return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5603   }
5604 
5605   Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) {
5606     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
5607     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5608     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
5609                               "_msarg_va_o");
5610   }
5611 
5612   void unpoisonVAListTagForInst(IntrinsicInst &I) {
5613     IRBuilder<> IRB(&I);
5614     Value *VAListTag = I.getArgOperand(0);
5615     Value *ShadowPtr, *OriginPtr;
5616     const Align Alignment = Align(8);
5617     std::tie(ShadowPtr, OriginPtr) =
5618         MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
5619                                /*isStore*/ true);
5620     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5621                      SystemZVAListTagSize, Alignment, false);
5622   }
5623 
5624   void visitVAStartInst(VAStartInst &I) override {
5625     VAStartInstrumentationList.push_back(&I);
5626     unpoisonVAListTagForInst(I);
5627   }
5628 
5629   void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); }
5630 
5631   void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) {
5632     Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5633     Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
5634         IRB.CreateAdd(
5635             IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5636             ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)),
5637         PointerType::get(RegSaveAreaPtrTy, 0));
5638     Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
5639     Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5640     const Align Alignment = Align(8);
5641     std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5642         MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment,
5643                                /*isStore*/ true);
5644     // TODO(iii): copy only fragments filled by visitCallBase()
5645     IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5646                      SystemZRegSaveAreaSize);
5647     if (MS.TrackOrigins)
5648       IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
5649                        Alignment, SystemZRegSaveAreaSize);
5650   }
5651 
5652   void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) {
5653     Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5654     Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
5655         IRB.CreateAdd(
5656             IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5657             ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)),
5658         PointerType::get(OverflowArgAreaPtrTy, 0));
5659     Value *OverflowArgAreaPtr =
5660         IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
5661     Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
5662     const Align Alignment = Align(8);
5663     std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
5664         MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
5665                                Alignment, /*isStore*/ true);
5666     Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
5667                                            SystemZOverflowOffset);
5668     IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
5669                      VAArgOverflowSize);
5670     if (MS.TrackOrigins) {
5671       SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
5672                                       SystemZOverflowOffset);
5673       IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
5674                        VAArgOverflowSize);
5675     }
5676   }
5677 
5678   void finalizeInstrumentation() override {
5679     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
5680            "finalizeInstrumentation called twice");
5681     if (!VAStartInstrumentationList.empty()) {
5682       // If there is a va_start in this function, make a backup copy of
5683       // va_arg_tls somewhere in the function entry block.
5684       IRBuilder<> IRB(MSV.FnPrologueEnd);
5685       VAArgOverflowSize =
5686           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5687       Value *CopySize =
5688           IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset),
5689                         VAArgOverflowSize);
5690       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5691       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
5692       if (MS.TrackOrigins) {
5693         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5694         IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS,
5695                          Align(8), CopySize);
5696       }
5697     }
5698 
5699     // Instrument va_start.
5700     // Copy va_list shadow from the backup copy of the TLS contents.
5701     for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size();
5702          VaStartNo < VaStartNum; VaStartNo++) {
5703       CallInst *OrigInst = VAStartInstrumentationList[VaStartNo];
5704       NextNodeIRBuilder IRB(OrigInst);
5705       Value *VAListTag = OrigInst->getArgOperand(0);
5706       copyRegSaveArea(IRB, VAListTag);
5707       copyOverflowArea(IRB, VAListTag);
5708     }
5709   }
5710 };
5711 
5712 /// A no-op implementation of VarArgHelper.
5713 struct VarArgNoOpHelper : public VarArgHelper {
5714   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
5715                    MemorySanitizerVisitor &MSV) {}
5716 
5717   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {}
5718 
5719   void visitVAStartInst(VAStartInst &I) override {}
5720 
5721   void visitVACopyInst(VACopyInst &I) override {}
5722 
5723   void finalizeInstrumentation() override {}
5724 };
5725 
5726 } // end anonymous namespace
5727 
5728 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
5729                                         MemorySanitizerVisitor &Visitor) {
5730   // VarArg handling is only implemented on AMD64. False positives are possible
5731   // on other platforms.
5732   Triple TargetTriple(Func.getParent()->getTargetTriple());
5733   if (TargetTriple.getArch() == Triple::x86_64)
5734     return new VarArgAMD64Helper(Func, Msan, Visitor);
5735   else if (TargetTriple.isMIPS64())
5736     return new VarArgMIPS64Helper(Func, Msan, Visitor);
5737   else if (TargetTriple.getArch() == Triple::aarch64)
5738     return new VarArgAArch64Helper(Func, Msan, Visitor);
5739   else if (TargetTriple.getArch() == Triple::ppc64 ||
5740            TargetTriple.getArch() == Triple::ppc64le)
5741     return new VarArgPowerPC64Helper(Func, Msan, Visitor);
5742   else if (TargetTriple.getArch() == Triple::systemz)
5743     return new VarArgSystemZHelper(Func, Msan, Visitor);
5744   else
5745     return new VarArgNoOpHelper(Func, Msan, Visitor);
5746 }
5747 
5748 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
5749   if (!CompileKernel && F.getName() == kMsanModuleCtorName)
5750     return false;
5751 
5752   if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
5753     return false;
5754 
5755   MemorySanitizerVisitor Visitor(F, *this, TLI);
5756 
5757   // Clear out memory attributes.
5758   AttributeMask B;
5759   B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable);
5760   F.removeFnAttrs(B);
5761 
5762   return Visitor.runOnFunction();
5763 }
5764