1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DenseMap.h" 149 #include "llvm/ADT/DepthFirstIterator.h" 150 #include "llvm/ADT/SetVector.h" 151 #include "llvm/ADT/SmallString.h" 152 #include "llvm/ADT/SmallVector.h" 153 #include "llvm/ADT/StringExtras.h" 154 #include "llvm/ADT/StringRef.h" 155 #include "llvm/ADT/Triple.h" 156 #include "llvm/Analysis/GlobalsModRef.h" 157 #include "llvm/Analysis/TargetLibraryInfo.h" 158 #include "llvm/Analysis/ValueTracking.h" 159 #include "llvm/IR/Argument.h" 160 #include "llvm/IR/Attributes.h" 161 #include "llvm/IR/BasicBlock.h" 162 #include "llvm/IR/CallingConv.h" 163 #include "llvm/IR/Constant.h" 164 #include "llvm/IR/Constants.h" 165 #include "llvm/IR/DataLayout.h" 166 #include "llvm/IR/DerivedTypes.h" 167 #include "llvm/IR/Function.h" 168 #include "llvm/IR/GlobalValue.h" 169 #include "llvm/IR/GlobalVariable.h" 170 #include "llvm/IR/IRBuilder.h" 171 #include "llvm/IR/InlineAsm.h" 172 #include "llvm/IR/InstVisitor.h" 173 #include "llvm/IR/InstrTypes.h" 174 #include "llvm/IR/Instruction.h" 175 #include "llvm/IR/Instructions.h" 176 #include "llvm/IR/IntrinsicInst.h" 177 #include "llvm/IR/Intrinsics.h" 178 #include "llvm/IR/IntrinsicsX86.h" 179 #include "llvm/IR/MDBuilder.h" 180 #include "llvm/IR/Module.h" 181 #include "llvm/IR/Type.h" 182 #include "llvm/IR/Value.h" 183 #include "llvm/IR/ValueMap.h" 184 #include "llvm/Support/Alignment.h" 185 #include "llvm/Support/AtomicOrdering.h" 186 #include "llvm/Support/Casting.h" 187 #include "llvm/Support/CommandLine.h" 188 #include "llvm/Support/Debug.h" 189 #include "llvm/Support/DebugCounter.h" 190 #include "llvm/Support/ErrorHandling.h" 191 #include "llvm/Support/MathExtras.h" 192 #include "llvm/Support/raw_ostream.h" 193 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 194 #include "llvm/Transforms/Utils/Local.h" 195 #include "llvm/Transforms/Utils/ModuleUtils.h" 196 #include <algorithm> 197 #include <cassert> 198 #include <cstddef> 199 #include <cstdint> 200 #include <memory> 201 #include <string> 202 #include <tuple> 203 204 using namespace llvm; 205 206 #define DEBUG_TYPE "msan" 207 208 DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check", 209 "Controls which checks to insert"); 210 211 static const unsigned kOriginSize = 4; 212 static const Align kMinOriginAlignment = Align(4); 213 static const Align kShadowTLSAlignment = Align(8); 214 215 // These constants must be kept in sync with the ones in msan.h. 216 static const unsigned kParamTLSSize = 800; 217 static const unsigned kRetvalTLSSize = 800; 218 219 // Accesses sizes are powers of two: 1, 2, 4, 8. 220 static const size_t kNumberOfAccessSizes = 4; 221 222 /// Track origins of uninitialized values. 223 /// 224 /// Adds a section to MemorySanitizer report that points to the allocation 225 /// (stack or heap) the uninitialized bits came from originally. 226 static cl::opt<int> ClTrackOrigins( 227 "msan-track-origins", 228 cl::desc("Track origins (allocation sites) of poisoned memory"), cl::Hidden, 229 cl::init(0)); 230 231 static cl::opt<bool> ClKeepGoing("msan-keep-going", 232 cl::desc("keep going after reporting a UMR"), 233 cl::Hidden, cl::init(false)); 234 235 static cl::opt<bool> 236 ClPoisonStack("msan-poison-stack", 237 cl::desc("poison uninitialized stack variables"), cl::Hidden, 238 cl::init(true)); 239 240 static cl::opt<bool> ClPoisonStackWithCall( 241 "msan-poison-stack-with-call", 242 cl::desc("poison uninitialized stack variables with a call"), cl::Hidden, 243 cl::init(false)); 244 245 static cl::opt<int> ClPoisonStackPattern( 246 "msan-poison-stack-pattern", 247 cl::desc("poison uninitialized stack variables with the given pattern"), 248 cl::Hidden, cl::init(0xff)); 249 250 static cl::opt<bool> 251 ClPrintStackNames("msan-print-stack-names", 252 cl::desc("Print name of local stack variable"), 253 cl::Hidden, cl::init(true)); 254 255 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 256 cl::desc("poison undef temps"), cl::Hidden, 257 cl::init(true)); 258 259 static cl::opt<bool> 260 ClHandleICmp("msan-handle-icmp", 261 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 262 cl::Hidden, cl::init(true)); 263 264 static cl::opt<bool> 265 ClHandleICmpExact("msan-handle-icmp-exact", 266 cl::desc("exact handling of relational integer ICmp"), 267 cl::Hidden, cl::init(false)); 268 269 static cl::opt<bool> ClHandleLifetimeIntrinsics( 270 "msan-handle-lifetime-intrinsics", 271 cl::desc( 272 "when possible, poison scoped variables at the beginning of the scope " 273 "(slower, but more precise)"), 274 cl::Hidden, cl::init(true)); 275 276 // When compiling the Linux kernel, we sometimes see false positives related to 277 // MSan being unable to understand that inline assembly calls may initialize 278 // local variables. 279 // This flag makes the compiler conservatively unpoison every memory location 280 // passed into an assembly call. Note that this may cause false positives. 281 // Because it's impossible to figure out the array sizes, we can only unpoison 282 // the first sizeof(type) bytes for each type* pointer. 283 // The instrumentation is only enabled in KMSAN builds, and only if 284 // -msan-handle-asm-conservative is on. This is done because we may want to 285 // quickly disable assembly instrumentation when it breaks. 286 static cl::opt<bool> ClHandleAsmConservative( 287 "msan-handle-asm-conservative", 288 cl::desc("conservative handling of inline assembly"), cl::Hidden, 289 cl::init(true)); 290 291 // This flag controls whether we check the shadow of the address 292 // operand of load or store. Such bugs are very rare, since load from 293 // a garbage address typically results in SEGV, but still happen 294 // (e.g. only lower bits of address are garbage, or the access happens 295 // early at program startup where malloc-ed memory is more likely to 296 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 297 static cl::opt<bool> ClCheckAccessAddress( 298 "msan-check-access-address", 299 cl::desc("report accesses through a pointer which has poisoned shadow"), 300 cl::Hidden, cl::init(true)); 301 302 static cl::opt<bool> ClEagerChecks( 303 "msan-eager-checks", 304 cl::desc("check arguments and return values at function call boundaries"), 305 cl::Hidden, cl::init(false)); 306 307 static cl::opt<bool> ClDumpStrictInstructions( 308 "msan-dump-strict-instructions", 309 cl::desc("print out instructions with default strict semantics"), 310 cl::Hidden, cl::init(false)); 311 312 static cl::opt<int> ClInstrumentationWithCallThreshold( 313 "msan-instrumentation-with-call-threshold", 314 cl::desc( 315 "If the function being instrumented requires more than " 316 "this number of checks and origin stores, use callbacks instead of " 317 "inline checks (-1 means never use callbacks)."), 318 cl::Hidden, cl::init(3500)); 319 320 static cl::opt<bool> 321 ClEnableKmsan("msan-kernel", 322 cl::desc("Enable KernelMemorySanitizer instrumentation"), 323 cl::Hidden, cl::init(false)); 324 325 static cl::opt<bool> 326 ClDisableChecks("msan-disable-checks", 327 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden, 328 cl::init(false)); 329 330 static cl::opt<bool> 331 ClCheckConstantShadow("msan-check-constant-shadow", 332 cl::desc("Insert checks for constant shadow values"), 333 cl::Hidden, cl::init(true)); 334 335 // This is off by default because of a bug in gold: 336 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 337 static cl::opt<bool> 338 ClWithComdat("msan-with-comdat", 339 cl::desc("Place MSan constructors in comdat sections"), 340 cl::Hidden, cl::init(false)); 341 342 // These options allow to specify custom memory map parameters 343 // See MemoryMapParams for details. 344 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 345 cl::desc("Define custom MSan AndMask"), 346 cl::Hidden, cl::init(0)); 347 348 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 349 cl::desc("Define custom MSan XorMask"), 350 cl::Hidden, cl::init(0)); 351 352 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 353 cl::desc("Define custom MSan ShadowBase"), 354 cl::Hidden, cl::init(0)); 355 356 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 357 cl::desc("Define custom MSan OriginBase"), 358 cl::Hidden, cl::init(0)); 359 360 static cl::opt<int> 361 ClDisambiguateWarning("msan-disambiguate-warning-threshold", 362 cl::desc("Define threshold for number of checks per " 363 "debug location to force origin update."), 364 cl::Hidden, cl::init(3)); 365 366 const char kMsanModuleCtorName[] = "msan.module_ctor"; 367 const char kMsanInitName[] = "__msan_init"; 368 369 namespace { 370 371 // Memory map parameters used in application-to-shadow address calculation. 372 // Offset = (Addr & ~AndMask) ^ XorMask 373 // Shadow = ShadowBase + Offset 374 // Origin = OriginBase + Offset 375 struct MemoryMapParams { 376 uint64_t AndMask; 377 uint64_t XorMask; 378 uint64_t ShadowBase; 379 uint64_t OriginBase; 380 }; 381 382 struct PlatformMemoryMapParams { 383 const MemoryMapParams *bits32; 384 const MemoryMapParams *bits64; 385 }; 386 387 } // end anonymous namespace 388 389 // i386 Linux 390 static const MemoryMapParams Linux_I386_MemoryMapParams = { 391 0x000080000000, // AndMask 392 0, // XorMask (not used) 393 0, // ShadowBase (not used) 394 0x000040000000, // OriginBase 395 }; 396 397 // x86_64 Linux 398 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 399 0, // AndMask (not used) 400 0x500000000000, // XorMask 401 0, // ShadowBase (not used) 402 0x100000000000, // OriginBase 403 }; 404 405 // mips64 Linux 406 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 407 0, // AndMask (not used) 408 0x008000000000, // XorMask 409 0, // ShadowBase (not used) 410 0x002000000000, // OriginBase 411 }; 412 413 // ppc64 Linux 414 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 415 0xE00000000000, // AndMask 416 0x100000000000, // XorMask 417 0x080000000000, // ShadowBase 418 0x1C0000000000, // OriginBase 419 }; 420 421 // s390x Linux 422 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 423 0xC00000000000, // AndMask 424 0, // XorMask (not used) 425 0x080000000000, // ShadowBase 426 0x1C0000000000, // OriginBase 427 }; 428 429 // aarch64 Linux 430 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 431 0, // AndMask (not used) 432 0x0B00000000000, // XorMask 433 0, // ShadowBase (not used) 434 0x0200000000000, // OriginBase 435 }; 436 437 // aarch64 FreeBSD 438 static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = { 439 0x1800000000000, // AndMask 440 0x0400000000000, // XorMask 441 0x0200000000000, // ShadowBase 442 0x0700000000000, // OriginBase 443 }; 444 445 // i386 FreeBSD 446 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 447 0x000180000000, // AndMask 448 0x000040000000, // XorMask 449 0x000020000000, // ShadowBase 450 0x000700000000, // OriginBase 451 }; 452 453 // x86_64 FreeBSD 454 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 455 0xc00000000000, // AndMask 456 0x200000000000, // XorMask 457 0x100000000000, // ShadowBase 458 0x380000000000, // OriginBase 459 }; 460 461 // x86_64 NetBSD 462 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 463 0, // AndMask 464 0x500000000000, // XorMask 465 0, // ShadowBase 466 0x100000000000, // OriginBase 467 }; 468 469 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 470 &Linux_I386_MemoryMapParams, 471 &Linux_X86_64_MemoryMapParams, 472 }; 473 474 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 475 nullptr, 476 &Linux_MIPS64_MemoryMapParams, 477 }; 478 479 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 480 nullptr, 481 &Linux_PowerPC64_MemoryMapParams, 482 }; 483 484 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 485 nullptr, 486 &Linux_S390X_MemoryMapParams, 487 }; 488 489 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 490 nullptr, 491 &Linux_AArch64_MemoryMapParams, 492 }; 493 494 static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = { 495 nullptr, 496 &FreeBSD_AArch64_MemoryMapParams, 497 }; 498 499 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 500 &FreeBSD_I386_MemoryMapParams, 501 &FreeBSD_X86_64_MemoryMapParams, 502 }; 503 504 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 505 nullptr, 506 &NetBSD_X86_64_MemoryMapParams, 507 }; 508 509 namespace { 510 511 /// Instrument functions of a module to detect uninitialized reads. 512 /// 513 /// Instantiating MemorySanitizer inserts the msan runtime library API function 514 /// declarations into the module if they don't exist already. Instantiating 515 /// ensures the __msan_init function is in the list of global constructors for 516 /// the module. 517 class MemorySanitizer { 518 public: 519 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 520 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 521 Recover(Options.Recover), EagerChecks(Options.EagerChecks) { 522 initializeModule(M); 523 } 524 525 // MSan cannot be moved or copied because of MapParams. 526 MemorySanitizer(MemorySanitizer &&) = delete; 527 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 528 MemorySanitizer(const MemorySanitizer &) = delete; 529 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 530 531 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 532 533 private: 534 friend struct MemorySanitizerVisitor; 535 friend struct VarArgAMD64Helper; 536 friend struct VarArgMIPS64Helper; 537 friend struct VarArgAArch64Helper; 538 friend struct VarArgPowerPC64Helper; 539 friend struct VarArgSystemZHelper; 540 541 void initializeModule(Module &M); 542 void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI); 543 void createKernelApi(Module &M, const TargetLibraryInfo &TLI); 544 void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI); 545 546 /// True if we're compiling the Linux kernel. 547 bool CompileKernel; 548 /// Track origins (allocation points) of uninitialized values. 549 int TrackOrigins; 550 bool Recover; 551 bool EagerChecks; 552 553 LLVMContext *C; 554 Type *IntptrTy; 555 Type *OriginTy; 556 557 // XxxTLS variables represent the per-thread state in MSan and per-task state 558 // in KMSAN. 559 // For the userspace these point to thread-local globals. In the kernel land 560 // they point to the members of a per-task struct obtained via a call to 561 // __msan_get_context_state(). 562 563 /// Thread-local shadow storage for function parameters. 564 Value *ParamTLS; 565 566 /// Thread-local origin storage for function parameters. 567 Value *ParamOriginTLS; 568 569 /// Thread-local shadow storage for function return value. 570 Value *RetvalTLS; 571 572 /// Thread-local origin storage for function return value. 573 Value *RetvalOriginTLS; 574 575 /// Thread-local shadow storage for in-register va_arg function 576 /// parameters (x86_64-specific). 577 Value *VAArgTLS; 578 579 /// Thread-local shadow storage for in-register va_arg function 580 /// parameters (x86_64-specific). 581 Value *VAArgOriginTLS; 582 583 /// Thread-local shadow storage for va_arg overflow area 584 /// (x86_64-specific). 585 Value *VAArgOverflowSizeTLS; 586 587 /// Are the instrumentation callbacks set up? 588 bool CallbacksInitialized = false; 589 590 /// The run-time callback to print a warning. 591 FunctionCallee WarningFn; 592 593 // These arrays are indexed by log2(AccessSize). 594 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 595 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 596 597 /// Run-time helper that generates a new origin value for a stack 598 /// allocation. 599 FunctionCallee MsanSetAllocaOriginWithDescriptionFn; 600 // No description version 601 FunctionCallee MsanSetAllocaOriginNoDescriptionFn; 602 603 /// Run-time helper that poisons stack on function entry. 604 FunctionCallee MsanPoisonStackFn; 605 606 /// Run-time helper that records a store (or any event) of an 607 /// uninitialized value and returns an updated origin id encoding this info. 608 FunctionCallee MsanChainOriginFn; 609 610 /// Run-time helper that paints an origin over a region. 611 FunctionCallee MsanSetOriginFn; 612 613 /// MSan runtime replacements for memmove, memcpy and memset. 614 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 615 616 /// KMSAN callback for task-local function argument shadow. 617 StructType *MsanContextStateTy; 618 FunctionCallee MsanGetContextStateFn; 619 620 /// Functions for poisoning/unpoisoning local variables 621 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 622 623 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 624 /// pointers. 625 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 626 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 627 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 628 FunctionCallee MsanInstrumentAsmStoreFn; 629 630 /// Helper to choose between different MsanMetadataPtrXxx(). 631 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 632 633 /// Memory map parameters used in application-to-shadow calculation. 634 const MemoryMapParams *MapParams; 635 636 /// Custom memory map parameters used when -msan-shadow-base or 637 // -msan-origin-base is provided. 638 MemoryMapParams CustomMapParams; 639 640 MDNode *ColdCallWeights; 641 642 /// Branch weights for origin store. 643 MDNode *OriginStoreWeights; 644 }; 645 646 void insertModuleCtor(Module &M) { 647 getOrCreateSanitizerCtorAndInitFunctions( 648 M, kMsanModuleCtorName, kMsanInitName, 649 /*InitArgTypes=*/{}, 650 /*InitArgs=*/{}, 651 // This callback is invoked when the functions are created the first 652 // time. Hook them into the global ctors list in that case: 653 [&](Function *Ctor, FunctionCallee) { 654 if (!ClWithComdat) { 655 appendToGlobalCtors(M, Ctor, 0); 656 return; 657 } 658 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 659 Ctor->setComdat(MsanCtorComdat); 660 appendToGlobalCtors(M, Ctor, 0, Ctor); 661 }); 662 } 663 664 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 665 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 666 } 667 668 } // end anonymous namespace 669 670 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, 671 bool EagerChecks) 672 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 673 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 674 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)), 675 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {} 676 677 PreservedAnalyses MemorySanitizerPass::run(Module &M, 678 ModuleAnalysisManager &AM) { 679 bool Modified = false; 680 if (!Options.Kernel) { 681 insertModuleCtor(M); 682 Modified = true; 683 } 684 685 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 686 for (Function &F : M) { 687 if (F.empty()) 688 continue; 689 MemorySanitizer Msan(*F.getParent(), Options); 690 Modified |= 691 Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)); 692 } 693 694 if (!Modified) 695 return PreservedAnalyses::all(); 696 697 PreservedAnalyses PA = PreservedAnalyses::none(); 698 // GlobalsAA is considered stateless and does not get invalidated unless 699 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 700 // make changes that require GlobalsAA to be invalidated. 701 PA.abandon<GlobalsAA>(); 702 return PA; 703 } 704 705 void MemorySanitizerPass::printPipeline( 706 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 707 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( 708 OS, MapClassName2PassName); 709 OS << "<"; 710 if (Options.Recover) 711 OS << "recover;"; 712 if (Options.Kernel) 713 OS << "kernel;"; 714 if (Options.EagerChecks) 715 OS << "eager-checks;"; 716 OS << "track-origins=" << Options.TrackOrigins; 717 OS << ">"; 718 } 719 720 /// Create a non-const global initialized with the given string. 721 /// 722 /// Creates a writable global for Str so that we can pass it to the 723 /// run-time lib. Runtime uses first 4 bytes of the string to store the 724 /// frame ID, so the string needs to be mutable. 725 static GlobalVariable *createPrivateConstGlobalForString(Module &M, 726 StringRef Str) { 727 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 728 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true, 729 GlobalValue::PrivateLinkage, StrConst, ""); 730 } 731 732 /// Create KMSAN API callbacks. 733 void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) { 734 IRBuilder<> IRB(*C); 735 736 // These will be initialized in insertKmsanPrologue(). 737 RetvalTLS = nullptr; 738 RetvalOriginTLS = nullptr; 739 ParamTLS = nullptr; 740 ParamOriginTLS = nullptr; 741 VAArgTLS = nullptr; 742 VAArgOriginTLS = nullptr; 743 VAArgOverflowSizeTLS = nullptr; 744 745 WarningFn = M.getOrInsertFunction("__msan_warning", 746 TLI.getAttrList(C, {0}, /*Signed=*/false), 747 IRB.getVoidTy(), IRB.getInt32Ty()); 748 749 // Requests the per-task context state (kmsan_context_state*) from the 750 // runtime library. 751 MsanContextStateTy = StructType::get( 752 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 753 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 754 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 755 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 756 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 757 OriginTy); 758 MsanGetContextStateFn = M.getOrInsertFunction( 759 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 760 761 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 762 PointerType::get(IRB.getInt32Ty(), 0)); 763 764 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 765 std::string name_load = 766 "__msan_metadata_ptr_for_load_" + std::to_string(size); 767 std::string name_store = 768 "__msan_metadata_ptr_for_store_" + std::to_string(size); 769 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 770 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 771 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 772 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 773 } 774 775 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 776 "__msan_metadata_ptr_for_load_n", RetTy, 777 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 778 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 779 "__msan_metadata_ptr_for_store_n", RetTy, 780 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 781 782 // Functions for poisoning and unpoisoning memory. 783 MsanPoisonAllocaFn = 784 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 785 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 786 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 787 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 788 } 789 790 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 791 return M.getOrInsertGlobal(Name, Ty, [&] { 792 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 793 nullptr, Name, nullptr, 794 GlobalVariable::InitialExecTLSModel); 795 }); 796 } 797 798 /// Insert declarations for userspace-specific functions and globals. 799 void MemorySanitizer::createUserspaceApi(Module &M, const TargetLibraryInfo &TLI) { 800 IRBuilder<> IRB(*C); 801 802 // Create the callback. 803 // FIXME: this function should have "Cold" calling conv, 804 // which is not yet implemented. 805 if (TrackOrigins) { 806 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 807 : "__msan_warning_with_origin_noreturn"; 808 WarningFn = M.getOrInsertFunction(WarningFnName, 809 TLI.getAttrList(C, {0}, /*Signed=*/false), 810 IRB.getVoidTy(), IRB.getInt32Ty()); 811 } else { 812 StringRef WarningFnName = 813 Recover ? "__msan_warning" : "__msan_warning_noreturn"; 814 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 815 } 816 817 // Create the global TLS variables. 818 RetvalTLS = 819 getOrInsertGlobal(M, "__msan_retval_tls", 820 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 821 822 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 823 824 ParamTLS = 825 getOrInsertGlobal(M, "__msan_param_tls", 826 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 827 828 ParamOriginTLS = 829 getOrInsertGlobal(M, "__msan_param_origin_tls", 830 ArrayType::get(OriginTy, kParamTLSSize / 4)); 831 832 VAArgTLS = 833 getOrInsertGlobal(M, "__msan_va_arg_tls", 834 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 835 836 VAArgOriginTLS = 837 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 838 ArrayType::get(OriginTy, kParamTLSSize / 4)); 839 840 VAArgOverflowSizeTLS = 841 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 842 843 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 844 AccessSizeIndex++) { 845 unsigned AccessSize = 1 << AccessSizeIndex; 846 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 847 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 848 FunctionName, TLI.getAttrList(C, {0, 1}, /*Signed=*/false), 849 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 850 851 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 852 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 853 FunctionName, TLI.getAttrList(C, {0, 2}, /*Signed=*/false), 854 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 855 IRB.getInt32Ty()); 856 } 857 858 MsanSetAllocaOriginWithDescriptionFn = M.getOrInsertFunction( 859 "__msan_set_alloca_origin_with_descr", IRB.getVoidTy(), 860 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy(), IRB.getInt8PtrTy()); 861 MsanSetAllocaOriginNoDescriptionFn = M.getOrInsertFunction( 862 "__msan_set_alloca_origin_no_descr", IRB.getVoidTy(), IRB.getInt8PtrTy(), 863 IntptrTy, IRB.getInt8PtrTy()); 864 MsanPoisonStackFn = M.getOrInsertFunction( 865 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 866 } 867 868 /// Insert extern declaration of runtime-provided functions and globals. 869 void MemorySanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo &TLI) { 870 // Only do this once. 871 if (CallbacksInitialized) 872 return; 873 874 IRBuilder<> IRB(*C); 875 // Initialize callbacks that are common for kernel and userspace 876 // instrumentation. 877 MsanChainOriginFn = M.getOrInsertFunction( 878 "__msan_chain_origin", 879 TLI.getAttrList(C, {0}, /*Signed=*/false, /*Ret=*/true), IRB.getInt32Ty(), 880 IRB.getInt32Ty()); 881 MsanSetOriginFn = M.getOrInsertFunction( 882 "__msan_set_origin", TLI.getAttrList(C, {2}, /*Signed=*/false), 883 IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); 884 MemmoveFn = 885 M.getOrInsertFunction("__msan_memmove", IRB.getInt8PtrTy(), 886 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 887 MemcpyFn = 888 M.getOrInsertFunction("__msan_memcpy", IRB.getInt8PtrTy(), 889 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 890 MemsetFn = M.getOrInsertFunction( 891 "__msan_memset", TLI.getAttrList(C, {1}, /*Signed=*/true), 892 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy); 893 894 MsanInstrumentAsmStoreFn = 895 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 896 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 897 898 if (CompileKernel) { 899 createKernelApi(M, TLI); 900 } else { 901 createUserspaceApi(M, TLI); 902 } 903 CallbacksInitialized = true; 904 } 905 906 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 907 int size) { 908 FunctionCallee *Fns = 909 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 910 switch (size) { 911 case 1: 912 return Fns[0]; 913 case 2: 914 return Fns[1]; 915 case 4: 916 return Fns[2]; 917 case 8: 918 return Fns[3]; 919 default: 920 return nullptr; 921 } 922 } 923 924 /// Module-level initialization. 925 /// 926 /// inserts a call to __msan_init to the module's constructor list. 927 void MemorySanitizer::initializeModule(Module &M) { 928 auto &DL = M.getDataLayout(); 929 930 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 931 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 932 // Check the overrides first 933 if (ShadowPassed || OriginPassed) { 934 CustomMapParams.AndMask = ClAndMask; 935 CustomMapParams.XorMask = ClXorMask; 936 CustomMapParams.ShadowBase = ClShadowBase; 937 CustomMapParams.OriginBase = ClOriginBase; 938 MapParams = &CustomMapParams; 939 } else { 940 Triple TargetTriple(M.getTargetTriple()); 941 switch (TargetTriple.getOS()) { 942 case Triple::FreeBSD: 943 switch (TargetTriple.getArch()) { 944 case Triple::aarch64: 945 MapParams = FreeBSD_ARM_MemoryMapParams.bits64; 946 break; 947 case Triple::x86_64: 948 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 949 break; 950 case Triple::x86: 951 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 952 break; 953 default: 954 report_fatal_error("unsupported architecture"); 955 } 956 break; 957 case Triple::NetBSD: 958 switch (TargetTriple.getArch()) { 959 case Triple::x86_64: 960 MapParams = NetBSD_X86_MemoryMapParams.bits64; 961 break; 962 default: 963 report_fatal_error("unsupported architecture"); 964 } 965 break; 966 case Triple::Linux: 967 switch (TargetTriple.getArch()) { 968 case Triple::x86_64: 969 MapParams = Linux_X86_MemoryMapParams.bits64; 970 break; 971 case Triple::x86: 972 MapParams = Linux_X86_MemoryMapParams.bits32; 973 break; 974 case Triple::mips64: 975 case Triple::mips64el: 976 MapParams = Linux_MIPS_MemoryMapParams.bits64; 977 break; 978 case Triple::ppc64: 979 case Triple::ppc64le: 980 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 981 break; 982 case Triple::systemz: 983 MapParams = Linux_S390_MemoryMapParams.bits64; 984 break; 985 case Triple::aarch64: 986 case Triple::aarch64_be: 987 MapParams = Linux_ARM_MemoryMapParams.bits64; 988 break; 989 default: 990 report_fatal_error("unsupported architecture"); 991 } 992 break; 993 default: 994 report_fatal_error("unsupported operating system"); 995 } 996 } 997 998 C = &(M.getContext()); 999 IRBuilder<> IRB(*C); 1000 IntptrTy = IRB.getIntPtrTy(DL); 1001 OriginTy = IRB.getInt32Ty(); 1002 1003 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 1004 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 1005 1006 if (!CompileKernel) { 1007 if (TrackOrigins) 1008 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 1009 return new GlobalVariable( 1010 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 1011 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 1012 }); 1013 1014 if (Recover) 1015 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 1016 return new GlobalVariable(M, IRB.getInt32Ty(), true, 1017 GlobalValue::WeakODRLinkage, 1018 IRB.getInt32(Recover), "__msan_keep_going"); 1019 }); 1020 } 1021 } 1022 1023 namespace { 1024 1025 /// A helper class that handles instrumentation of VarArg 1026 /// functions on a particular platform. 1027 /// 1028 /// Implementations are expected to insert the instrumentation 1029 /// necessary to propagate argument shadow through VarArg function 1030 /// calls. Visit* methods are called during an InstVisitor pass over 1031 /// the function, and should avoid creating new basic blocks. A new 1032 /// instance of this class is created for each instrumented function. 1033 struct VarArgHelper { 1034 virtual ~VarArgHelper() = default; 1035 1036 /// Visit a CallBase. 1037 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1038 1039 /// Visit a va_start call. 1040 virtual void visitVAStartInst(VAStartInst &I) = 0; 1041 1042 /// Visit a va_copy call. 1043 virtual void visitVACopyInst(VACopyInst &I) = 0; 1044 1045 /// Finalize function instrumentation. 1046 /// 1047 /// This method is called after visiting all interesting (see above) 1048 /// instructions in a function. 1049 virtual void finalizeInstrumentation() = 0; 1050 }; 1051 1052 struct MemorySanitizerVisitor; 1053 1054 } // end anonymous namespace 1055 1056 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1057 MemorySanitizerVisitor &Visitor); 1058 1059 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1060 if (TypeSize <= 8) 1061 return 0; 1062 return Log2_32_Ceil((TypeSize + 7) / 8); 1063 } 1064 1065 namespace { 1066 1067 /// Helper class to attach debug information of the given instruction onto new 1068 /// instructions inserted after. 1069 class NextNodeIRBuilder : public IRBuilder<> { 1070 public: 1071 explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) { 1072 SetCurrentDebugLocation(IP->getDebugLoc()); 1073 } 1074 }; 1075 1076 /// This class does all the work for a given function. Store and Load 1077 /// instructions store and load corresponding shadow and origin 1078 /// values. Most instructions propagate shadow from arguments to their 1079 /// return values. Certain instructions (most importantly, BranchInst) 1080 /// test their argument shadow and print reports (with a runtime call) if it's 1081 /// non-zero. 1082 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1083 Function &F; 1084 MemorySanitizer &MS; 1085 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1086 ValueMap<Value *, Value *> ShadowMap, OriginMap; 1087 std::unique_ptr<VarArgHelper> VAHelper; 1088 const TargetLibraryInfo *TLI; 1089 Instruction *FnPrologueEnd; 1090 1091 // The following flags disable parts of MSan instrumentation based on 1092 // exclusion list contents and command-line options. 1093 bool InsertChecks; 1094 bool PropagateShadow; 1095 bool PoisonStack; 1096 bool PoisonUndef; 1097 1098 struct ShadowOriginAndInsertPoint { 1099 Value *Shadow; 1100 Value *Origin; 1101 Instruction *OrigIns; 1102 1103 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1104 : Shadow(S), Origin(O), OrigIns(I) {} 1105 }; 1106 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1107 DenseMap<const DILocation *, int> LazyWarningDebugLocationCount; 1108 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1109 SmallSetVector<AllocaInst *, 16> AllocaSet; 1110 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1111 SmallVector<StoreInst *, 16> StoreList; 1112 int64_t SplittableBlocksCount = 0; 1113 1114 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1115 const TargetLibraryInfo &TLI) 1116 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1117 bool SanitizeFunction = 1118 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks; 1119 InsertChecks = SanitizeFunction; 1120 PropagateShadow = SanitizeFunction; 1121 PoisonStack = SanitizeFunction && ClPoisonStack; 1122 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1123 1124 // In the presence of unreachable blocks, we may see Phi nodes with 1125 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1126 // blocks, such nodes will not have any shadow value associated with them. 1127 // It's easier to remove unreachable blocks than deal with missing shadow. 1128 removeUnreachableBlocks(F); 1129 1130 MS.initializeCallbacks(*F.getParent(), TLI); 1131 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1132 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1133 1134 if (MS.CompileKernel) { 1135 IRBuilder<> IRB(FnPrologueEnd); 1136 insertKmsanPrologue(IRB); 1137 } 1138 1139 LLVM_DEBUG(if (!InsertChecks) dbgs() 1140 << "MemorySanitizer is not inserting checks into '" 1141 << F.getName() << "'\n"); 1142 } 1143 1144 bool instrumentWithCalls(Value *V) { 1145 // Constants likely will be eliminated by follow-up passes. 1146 if (isa<Constant>(V)) 1147 return false; 1148 1149 ++SplittableBlocksCount; 1150 return ClInstrumentationWithCallThreshold >= 0 && 1151 SplittableBlocksCount > ClInstrumentationWithCallThreshold; 1152 } 1153 1154 bool isInPrologue(Instruction &I) { 1155 return I.getParent() == FnPrologueEnd->getParent() && 1156 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1157 } 1158 1159 // Creates a new origin and records the stack trace. In general we can call 1160 // this function for any origin manipulation we like. However it will cost 1161 // runtime resources. So use this wisely only if it can provide additional 1162 // information helpful to a user. 1163 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1164 if (MS.TrackOrigins <= 1) 1165 return V; 1166 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1167 } 1168 1169 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1170 const DataLayout &DL = F.getParent()->getDataLayout(); 1171 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1172 if (IntptrSize == kOriginSize) 1173 return Origin; 1174 assert(IntptrSize == kOriginSize * 2); 1175 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1176 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1177 } 1178 1179 /// Fill memory range with the given origin value. 1180 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1181 unsigned Size, Align Alignment) { 1182 const DataLayout &DL = F.getParent()->getDataLayout(); 1183 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1184 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1185 assert(IntptrAlignment >= kMinOriginAlignment); 1186 assert(IntptrSize >= kOriginSize); 1187 1188 unsigned Ofs = 0; 1189 Align CurrentAlignment = Alignment; 1190 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1191 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1192 Value *IntptrOriginPtr = 1193 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1194 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1195 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1196 : IntptrOriginPtr; 1197 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1198 Ofs += IntptrSize / kOriginSize; 1199 CurrentAlignment = IntptrAlignment; 1200 } 1201 } 1202 1203 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1204 Value *GEP = 1205 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1206 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1207 CurrentAlignment = kMinOriginAlignment; 1208 } 1209 } 1210 1211 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1212 Value *OriginPtr, Align Alignment) { 1213 const DataLayout &DL = F.getParent()->getDataLayout(); 1214 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1215 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1216 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1217 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1218 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { 1219 // Origin is not needed: value is initialized or const shadow is 1220 // ignored. 1221 return; 1222 } 1223 if (llvm::isKnownNonZero(ConvertedShadow, DL)) { 1224 // Copy origin as the value is definitely uninitialized. 1225 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1226 OriginAlignment); 1227 return; 1228 } 1229 // Fallback to runtime check, which still can be optimized out later. 1230 } 1231 1232 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1233 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1234 if (instrumentWithCalls(ConvertedShadow) && 1235 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1236 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1237 Value *ConvertedShadow2 = 1238 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1239 CallBase *CB = IRB.CreateCall( 1240 Fn, {ConvertedShadow2, 1241 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1242 CB->addParamAttr(0, Attribute::ZExt); 1243 CB->addParamAttr(2, Attribute::ZExt); 1244 } else { 1245 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1246 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1247 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1248 IRBuilder<> IRBNew(CheckTerm); 1249 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1250 OriginAlignment); 1251 } 1252 } 1253 1254 void materializeStores() { 1255 for (StoreInst *SI : StoreList) { 1256 IRBuilder<> IRB(SI); 1257 Value *Val = SI->getValueOperand(); 1258 Value *Addr = SI->getPointerOperand(); 1259 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1260 Value *ShadowPtr, *OriginPtr; 1261 Type *ShadowTy = Shadow->getType(); 1262 const Align Alignment = SI->getAlign(); 1263 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1264 std::tie(ShadowPtr, OriginPtr) = 1265 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1266 1267 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1268 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1269 (void)NewSI; 1270 1271 if (SI->isAtomic()) 1272 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1273 1274 if (MS.TrackOrigins && !SI->isAtomic()) 1275 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1276 OriginAlignment); 1277 } 1278 } 1279 1280 // Returns true if Debug Location curresponds to multiple warnings. 1281 bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) { 1282 if (MS.TrackOrigins < 2) 1283 return false; 1284 1285 if (LazyWarningDebugLocationCount.empty()) 1286 for (const auto &I : InstrumentationList) 1287 ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()]; 1288 1289 return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning; 1290 } 1291 1292 /// Helper function to insert a warning at IRB's current insert point. 1293 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1294 if (!Origin) 1295 Origin = (Value *)IRB.getInt32(0); 1296 assert(Origin->getType()->isIntegerTy()); 1297 1298 if (shouldDisambiguateWarningLocation(IRB.getCurrentDebugLocation())) { 1299 // Try to create additional origin with debug info of the last origin 1300 // instruction. It may provide additional information to the user. 1301 if (Instruction *OI = dyn_cast_or_null<Instruction>(Origin)) { 1302 assert(MS.TrackOrigins); 1303 auto NewDebugLoc = OI->getDebugLoc(); 1304 // Origin update with missing or the same debug location provides no 1305 // additional value. 1306 if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) { 1307 // Insert update just before the check, so we call runtime only just 1308 // before the report. 1309 IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint()); 1310 IRBOrigin.SetCurrentDebugLocation(NewDebugLoc); 1311 Origin = updateOrigin(Origin, IRBOrigin); 1312 } 1313 } 1314 } 1315 1316 if (MS.CompileKernel || MS.TrackOrigins) 1317 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1318 else 1319 IRB.CreateCall(MS.WarningFn)->setCannotMerge(); 1320 // FIXME: Insert UnreachableInst if !MS.Recover? 1321 // This may invalidate some of the following checks and needs to be done 1322 // at the very end. 1323 } 1324 1325 void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow, 1326 Value *Origin) { 1327 const DataLayout &DL = F.getParent()->getDataLayout(); 1328 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1329 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1330 if (instrumentWithCalls(ConvertedShadow) && 1331 SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1332 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1333 Value *ConvertedShadow2 = 1334 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1335 CallBase *CB = IRB.CreateCall( 1336 Fn, {ConvertedShadow2, 1337 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1338 CB->addParamAttr(0, Attribute::ZExt); 1339 CB->addParamAttr(1, Attribute::ZExt); 1340 } else { 1341 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1342 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1343 Cmp, &*IRB.GetInsertPoint(), 1344 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1345 1346 IRB.SetInsertPoint(CheckTerm); 1347 insertWarningFn(IRB, Origin); 1348 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1349 } 1350 } 1351 1352 void materializeInstructionChecks( 1353 ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) { 1354 const DataLayout &DL = F.getParent()->getDataLayout(); 1355 // Disable combining in some cases. TrackOrigins checks each shadow to pick 1356 // correct origin. 1357 bool Combine = !MS.TrackOrigins; 1358 Instruction *Instruction = InstructionChecks.front().OrigIns; 1359 Value *Shadow = nullptr; 1360 for (const auto &ShadowData : InstructionChecks) { 1361 assert(ShadowData.OrigIns == Instruction); 1362 IRBuilder<> IRB(Instruction); 1363 1364 Value *ConvertedShadow = ShadowData.Shadow; 1365 1366 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1367 if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { 1368 // Skip, value is initialized or const shadow is ignored. 1369 continue; 1370 } 1371 if (llvm::isKnownNonZero(ConvertedShadow, DL)) { 1372 // Report as the value is definitely uninitialized. 1373 insertWarningFn(IRB, ShadowData.Origin); 1374 if (!MS.Recover) 1375 return; // Always fail and stop here, not need to check the rest. 1376 // Skip entire instruction, 1377 continue; 1378 } 1379 // Fallback to runtime check, which still can be optimized out later. 1380 } 1381 1382 if (!Combine) { 1383 materializeOneCheck(IRB, ConvertedShadow, ShadowData.Origin); 1384 continue; 1385 } 1386 1387 if (!Shadow) { 1388 Shadow = ConvertedShadow; 1389 continue; 1390 } 1391 1392 Shadow = convertToBool(Shadow, IRB, "_mscmp"); 1393 ConvertedShadow = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1394 Shadow = IRB.CreateOr(Shadow, ConvertedShadow, "_msor"); 1395 } 1396 1397 if (Shadow) { 1398 assert(Combine); 1399 IRBuilder<> IRB(Instruction); 1400 materializeOneCheck(IRB, Shadow, nullptr); 1401 } 1402 } 1403 1404 void materializeChecks() { 1405 llvm::stable_sort(InstrumentationList, 1406 [](const ShadowOriginAndInsertPoint &L, 1407 const ShadowOriginAndInsertPoint &R) { 1408 return L.OrigIns < R.OrigIns; 1409 }); 1410 1411 for (auto I = InstrumentationList.begin(); 1412 I != InstrumentationList.end();) { 1413 auto J = 1414 std::find_if(I + 1, InstrumentationList.end(), 1415 [L = I->OrigIns](const ShadowOriginAndInsertPoint &R) { 1416 return L != R.OrigIns; 1417 }); 1418 // Process all checks of instruction at once. 1419 materializeInstructionChecks(ArrayRef<ShadowOriginAndInsertPoint>(I, J)); 1420 I = J; 1421 } 1422 1423 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1424 } 1425 1426 // Returns the last instruction in the new prologue 1427 void insertKmsanPrologue(IRBuilder<> &IRB) { 1428 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1429 Constant *Zero = IRB.getInt32(0); 1430 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1431 {Zero, IRB.getInt32(0)}, "param_shadow"); 1432 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1433 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1434 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1435 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1436 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1437 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1438 MS.VAArgOverflowSizeTLS = 1439 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1440 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1441 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1442 {Zero, IRB.getInt32(5)}, "param_origin"); 1443 MS.RetvalOriginTLS = 1444 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1445 {Zero, IRB.getInt32(6)}, "retval_origin"); 1446 } 1447 1448 /// Add MemorySanitizer instrumentation to a function. 1449 bool runOnFunction() { 1450 // Iterate all BBs in depth-first order and create shadow instructions 1451 // for all instructions (where applicable). 1452 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1453 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1454 visit(*BB); 1455 1456 // Finalize PHI nodes. 1457 for (PHINode *PN : ShadowPHINodes) { 1458 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1459 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1460 size_t NumValues = PN->getNumIncomingValues(); 1461 for (size_t v = 0; v < NumValues; v++) { 1462 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1463 if (PNO) 1464 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1465 } 1466 } 1467 1468 VAHelper->finalizeInstrumentation(); 1469 1470 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1471 // instrumenting only allocas. 1472 if (InstrumentLifetimeStart) { 1473 for (auto Item : LifetimeStartList) { 1474 instrumentAlloca(*Item.second, Item.first); 1475 AllocaSet.remove(Item.second); 1476 } 1477 } 1478 // Poison the allocas for which we didn't instrument the corresponding 1479 // lifetime intrinsics. 1480 for (AllocaInst *AI : AllocaSet) 1481 instrumentAlloca(*AI); 1482 1483 // Insert shadow value checks. 1484 materializeChecks(); 1485 1486 // Delayed instrumentation of StoreInst. 1487 // This may not add new address checks. 1488 materializeStores(); 1489 1490 return true; 1491 } 1492 1493 /// Compute the shadow type that corresponds to a given Value. 1494 Type *getShadowTy(Value *V) { return getShadowTy(V->getType()); } 1495 1496 /// Compute the shadow type that corresponds to a given Type. 1497 Type *getShadowTy(Type *OrigTy) { 1498 if (!OrigTy->isSized()) { 1499 return nullptr; 1500 } 1501 // For integer type, shadow is the same as the original type. 1502 // This may return weird-sized types like i1. 1503 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1504 return IT; 1505 const DataLayout &DL = F.getParent()->getDataLayout(); 1506 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1507 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1508 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1509 cast<FixedVectorType>(VT)->getNumElements()); 1510 } 1511 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1512 return ArrayType::get(getShadowTy(AT->getElementType()), 1513 AT->getNumElements()); 1514 } 1515 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1516 SmallVector<Type *, 4> Elements; 1517 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1518 Elements.push_back(getShadowTy(ST->getElementType(i))); 1519 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1520 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1521 return Res; 1522 } 1523 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1524 return IntegerType::get(*MS.C, TypeSize); 1525 } 1526 1527 /// Flatten a vector type. 1528 Type *getShadowTyNoVec(Type *ty) { 1529 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1530 return IntegerType::get(*MS.C, 1531 vt->getPrimitiveSizeInBits().getFixedValue()); 1532 return ty; 1533 } 1534 1535 /// Extract combined shadow of struct elements as a bool 1536 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1537 IRBuilder<> &IRB) { 1538 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1539 Value *Aggregator = FalseVal; 1540 1541 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1542 // Combine by ORing together each element's bool shadow 1543 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1544 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1545 Value *ShadowBool = convertToBool(ShadowInner, IRB); 1546 1547 if (Aggregator != FalseVal) 1548 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1549 else 1550 Aggregator = ShadowBool; 1551 } 1552 1553 return Aggregator; 1554 } 1555 1556 // Extract combined shadow of array elements 1557 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1558 IRBuilder<> &IRB) { 1559 if (!Array->getNumElements()) 1560 return IRB.getIntN(/* width */ 1, /* value */ 0); 1561 1562 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1563 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1564 1565 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1566 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1567 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1568 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1569 } 1570 return Aggregator; 1571 } 1572 1573 /// Convert a shadow value to it's flattened variant. The resulting 1574 /// shadow may not necessarily have the same bit width as the input 1575 /// value, but it will always be comparable to zero. 1576 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1577 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1578 return collapseStructShadow(Struct, V, IRB); 1579 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1580 return collapseArrayShadow(Array, V, IRB); 1581 Type *Ty = V->getType(); 1582 Type *NoVecTy = getShadowTyNoVec(Ty); 1583 if (Ty == NoVecTy) 1584 return V; 1585 return IRB.CreateBitCast(V, NoVecTy); 1586 } 1587 1588 // Convert a scalar value to an i1 by comparing with 0 1589 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1590 Type *VTy = V->getType(); 1591 if (!VTy->isIntegerTy()) 1592 return convertToBool(convertShadowToScalar(V, IRB), IRB, name); 1593 if (VTy->getIntegerBitWidth() == 1) 1594 // Just converting a bool to a bool, so do nothing. 1595 return V; 1596 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1597 } 1598 1599 Type *ptrToIntPtrType(Type *PtrTy) const { 1600 if (FixedVectorType *VectTy = dyn_cast<FixedVectorType>(PtrTy)) { 1601 return FixedVectorType::get(ptrToIntPtrType(VectTy->getElementType()), 1602 VectTy->getNumElements()); 1603 } 1604 assert(PtrTy->isIntOrPtrTy()); 1605 return MS.IntptrTy; 1606 } 1607 1608 Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const { 1609 if (FixedVectorType *VectTy = dyn_cast<FixedVectorType>(IntPtrTy)) { 1610 return FixedVectorType::get( 1611 getPtrToShadowPtrType(VectTy->getElementType(), ShadowTy), 1612 VectTy->getNumElements()); 1613 } 1614 assert(IntPtrTy == MS.IntptrTy); 1615 return ShadowTy->getPointerTo(); 1616 } 1617 1618 Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const { 1619 if (FixedVectorType *VectTy = dyn_cast<FixedVectorType>(IntPtrTy)) { 1620 return ConstantDataVector::getSplat( 1621 VectTy->getNumElements(), constToIntPtr(VectTy->getElementType(), C)); 1622 } 1623 assert(IntPtrTy == MS.IntptrTy); 1624 return ConstantInt::get(MS.IntptrTy, C); 1625 } 1626 1627 /// Compute the integer shadow offset that corresponds to a given 1628 /// application address. 1629 /// 1630 /// Offset = (Addr & ~AndMask) ^ XorMask 1631 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1632 /// a single pointee. 1633 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1634 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1635 Type *IntptrTy = ptrToIntPtrType(Addr->getType()); 1636 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1637 1638 if (uint64_t AndMask = MS.MapParams->AndMask) 1639 OffsetLong = IRB.CreateAnd(OffsetLong, constToIntPtr(IntptrTy, ~AndMask)); 1640 1641 if (uint64_t XorMask = MS.MapParams->XorMask) 1642 OffsetLong = IRB.CreateXor(OffsetLong, constToIntPtr(IntptrTy, XorMask)); 1643 return OffsetLong; 1644 } 1645 1646 /// Compute the shadow and origin addresses corresponding to a given 1647 /// application address. 1648 /// 1649 /// Shadow = ShadowBase + Offset 1650 /// Origin = (OriginBase + Offset) & ~3ULL 1651 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1652 /// a single pointee. 1653 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1654 std::pair<Value *, Value *> 1655 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1656 MaybeAlign Alignment) { 1657 Type *IntptrTy = ptrToIntPtrType(Addr->getType()); 1658 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1659 Value *ShadowLong = ShadowOffset; 1660 if (uint64_t ShadowBase = MS.MapParams->ShadowBase) { 1661 ShadowLong = 1662 IRB.CreateAdd(ShadowLong, constToIntPtr(IntptrTy, ShadowBase)); 1663 } 1664 Value *ShadowPtr = IRB.CreateIntToPtr( 1665 ShadowLong, getPtrToShadowPtrType(IntptrTy, ShadowTy)); 1666 1667 Value *OriginPtr = nullptr; 1668 if (MS.TrackOrigins) { 1669 Value *OriginLong = ShadowOffset; 1670 uint64_t OriginBase = MS.MapParams->OriginBase; 1671 if (OriginBase != 0) 1672 OriginLong = 1673 IRB.CreateAdd(OriginLong, constToIntPtr(IntptrTy, OriginBase)); 1674 if (!Alignment || *Alignment < kMinOriginAlignment) { 1675 uint64_t Mask = kMinOriginAlignment.value() - 1; 1676 OriginLong = IRB.CreateAnd(OriginLong, constToIntPtr(IntptrTy, ~Mask)); 1677 } 1678 OriginPtr = IRB.CreateIntToPtr( 1679 OriginLong, getPtrToShadowPtrType(IntptrTy, MS.OriginTy)); 1680 } 1681 return std::make_pair(ShadowPtr, OriginPtr); 1682 } 1683 1684 std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr, 1685 IRBuilder<> &IRB, 1686 Type *ShadowTy, 1687 bool isStore) { 1688 Value *ShadowOriginPtrs; 1689 const DataLayout &DL = F.getParent()->getDataLayout(); 1690 int Size = DL.getTypeStoreSize(ShadowTy); 1691 1692 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1693 Value *AddrCast = 1694 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1695 if (Getter) { 1696 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1697 } else { 1698 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1699 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1700 : MS.MsanMetadataPtrForLoadN, 1701 {AddrCast, SizeVal}); 1702 } 1703 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1704 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1705 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1706 1707 return std::make_pair(ShadowPtr, OriginPtr); 1708 } 1709 1710 /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of 1711 /// a single pointee. 1712 /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. 1713 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1714 IRBuilder<> &IRB, 1715 Type *ShadowTy, 1716 bool isStore) { 1717 FixedVectorType *VectTy = dyn_cast<FixedVectorType>(Addr->getType()); 1718 if (!VectTy) { 1719 assert(Addr->getType()->isPointerTy()); 1720 return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore); 1721 } 1722 1723 // TODO: Support callbacs with vectors of addresses. 1724 unsigned NumElements = VectTy->getNumElements(); 1725 Value *ShadowPtrs = ConstantInt::getNullValue( 1726 FixedVectorType::get(ShadowTy->getPointerTo(), NumElements)); 1727 Value *OriginPtrs = nullptr; 1728 if (MS.TrackOrigins) 1729 OriginPtrs = ConstantInt::getNullValue( 1730 FixedVectorType::get(MS.OriginTy->getPointerTo(), NumElements)); 1731 for (unsigned i = 0; i < NumElements; ++i) { 1732 Value *OneAddr = 1733 IRB.CreateExtractElement(Addr, ConstantInt::get(IRB.getInt32Ty(), i)); 1734 auto [ShadowPtr, OriginPtr] = 1735 getShadowOriginPtrKernelNoVec(OneAddr, IRB, ShadowTy, isStore); 1736 1737 ShadowPtrs = IRB.CreateInsertElement( 1738 ShadowPtrs, ShadowPtr, ConstantInt::get(IRB.getInt32Ty(), i)); 1739 if (MS.TrackOrigins) 1740 OriginPtrs = IRB.CreateInsertElement( 1741 OriginPtrs, OriginPtr, ConstantInt::get(IRB.getInt32Ty(), i)); 1742 } 1743 return {ShadowPtrs, OriginPtrs}; 1744 } 1745 1746 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1747 Type *ShadowTy, 1748 MaybeAlign Alignment, 1749 bool isStore) { 1750 if (MS.CompileKernel) 1751 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1752 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1753 } 1754 1755 /// Compute the shadow address for a given function argument. 1756 /// 1757 /// Shadow = ParamTLS+ArgOffset. 1758 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, int ArgOffset) { 1759 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1760 if (ArgOffset) 1761 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1762 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1763 "_msarg"); 1764 } 1765 1766 /// Compute the origin address for a given function argument. 1767 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, int ArgOffset) { 1768 if (!MS.TrackOrigins) 1769 return nullptr; 1770 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1771 if (ArgOffset) 1772 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1773 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1774 "_msarg_o"); 1775 } 1776 1777 /// Compute the shadow address for a retval. 1778 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1779 return IRB.CreatePointerCast(MS.RetvalTLS, 1780 PointerType::get(getShadowTy(A), 0), "_msret"); 1781 } 1782 1783 /// Compute the origin address for a retval. 1784 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1785 // We keep a single origin for the entire retval. Might be too optimistic. 1786 return MS.RetvalOriginTLS; 1787 } 1788 1789 /// Set SV to be the shadow value for V. 1790 void setShadow(Value *V, Value *SV) { 1791 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1792 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1793 } 1794 1795 /// Set Origin to be the origin value for V. 1796 void setOrigin(Value *V, Value *Origin) { 1797 if (!MS.TrackOrigins) 1798 return; 1799 assert(!OriginMap.count(V) && "Values may only have one origin"); 1800 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1801 OriginMap[V] = Origin; 1802 } 1803 1804 Constant *getCleanShadow(Type *OrigTy) { 1805 Type *ShadowTy = getShadowTy(OrigTy); 1806 if (!ShadowTy) 1807 return nullptr; 1808 return Constant::getNullValue(ShadowTy); 1809 } 1810 1811 /// Create a clean shadow value for a given value. 1812 /// 1813 /// Clean shadow (all zeroes) means all bits of the value are defined 1814 /// (initialized). 1815 Constant *getCleanShadow(Value *V) { return getCleanShadow(V->getType()); } 1816 1817 /// Create a dirty shadow of a given shadow type. 1818 Constant *getPoisonedShadow(Type *ShadowTy) { 1819 assert(ShadowTy); 1820 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1821 return Constant::getAllOnesValue(ShadowTy); 1822 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1823 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1824 getPoisonedShadow(AT->getElementType())); 1825 return ConstantArray::get(AT, Vals); 1826 } 1827 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1828 SmallVector<Constant *, 4> Vals; 1829 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1830 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1831 return ConstantStruct::get(ST, Vals); 1832 } 1833 llvm_unreachable("Unexpected shadow type"); 1834 } 1835 1836 /// Create a dirty shadow for a given value. 1837 Constant *getPoisonedShadow(Value *V) { 1838 Type *ShadowTy = getShadowTy(V); 1839 if (!ShadowTy) 1840 return nullptr; 1841 return getPoisonedShadow(ShadowTy); 1842 } 1843 1844 /// Create a clean (zero) origin. 1845 Value *getCleanOrigin() { return Constant::getNullValue(MS.OriginTy); } 1846 1847 /// Get the shadow value for a given Value. 1848 /// 1849 /// This function either returns the value set earlier with setShadow, 1850 /// or extracts if from ParamTLS (for function arguments). 1851 Value *getShadow(Value *V) { 1852 if (Instruction *I = dyn_cast<Instruction>(V)) { 1853 if (!PropagateShadow || I->getMetadata(LLVMContext::MD_nosanitize)) 1854 return getCleanShadow(V); 1855 // For instructions the shadow is already stored in the map. 1856 Value *Shadow = ShadowMap[V]; 1857 if (!Shadow) { 1858 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1859 (void)I; 1860 assert(Shadow && "No shadow for a value"); 1861 } 1862 return Shadow; 1863 } 1864 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1865 Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) 1866 : getCleanShadow(V); 1867 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1868 (void)U; 1869 return AllOnes; 1870 } 1871 if (Argument *A = dyn_cast<Argument>(V)) { 1872 // For arguments we compute the shadow on demand and store it in the map. 1873 Value *&ShadowPtr = ShadowMap[V]; 1874 if (ShadowPtr) 1875 return ShadowPtr; 1876 Function *F = A->getParent(); 1877 IRBuilder<> EntryIRB(FnPrologueEnd); 1878 unsigned ArgOffset = 0; 1879 const DataLayout &DL = F->getParent()->getDataLayout(); 1880 for (auto &FArg : F->args()) { 1881 if (!FArg.getType()->isSized()) { 1882 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1883 continue; 1884 } 1885 1886 unsigned Size = FArg.hasByValAttr() 1887 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1888 : DL.getTypeAllocSize(FArg.getType()); 1889 1890 if (A == &FArg) { 1891 bool Overflow = ArgOffset + Size > kParamTLSSize; 1892 if (FArg.hasByValAttr()) { 1893 // ByVal pointer itself has clean shadow. We copy the actual 1894 // argument shadow to the underlying memory. 1895 // Figure out maximal valid memcpy alignment. 1896 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1897 FArg.getParamAlign(), FArg.getParamByValType()); 1898 Value *CpShadowPtr, *CpOriginPtr; 1899 std::tie(CpShadowPtr, CpOriginPtr) = 1900 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1901 /*isStore*/ true); 1902 if (!PropagateShadow || Overflow) { 1903 // ParamTLS overflow. 1904 EntryIRB.CreateMemSet( 1905 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1906 Size, ArgAlign); 1907 } else { 1908 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1909 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1910 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1911 CopyAlign, Size); 1912 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1913 (void)Cpy; 1914 1915 if (MS.TrackOrigins) { 1916 Value *OriginPtr = 1917 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1918 // FIXME: OriginSize should be: 1919 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) 1920 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 1921 EntryIRB.CreateMemCpy( 1922 CpOriginPtr, 1923 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr, 1924 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 1925 OriginSize); 1926 } 1927 } 1928 } 1929 1930 if (!PropagateShadow || Overflow || FArg.hasByValAttr() || 1931 (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) { 1932 ShadowPtr = getCleanShadow(V); 1933 setOrigin(A, getCleanOrigin()); 1934 } else { 1935 // Shadow over TLS 1936 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1937 ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1938 kShadowTLSAlignment); 1939 if (MS.TrackOrigins) { 1940 Value *OriginPtr = 1941 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1942 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1943 } 1944 } 1945 LLVM_DEBUG(dbgs() 1946 << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n"); 1947 break; 1948 } 1949 1950 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1951 } 1952 assert(ShadowPtr && "Could not find shadow for an argument"); 1953 return ShadowPtr; 1954 } 1955 // For everything else the shadow is zero. 1956 return getCleanShadow(V); 1957 } 1958 1959 /// Get the shadow for i-th argument of the instruction I. 1960 Value *getShadow(Instruction *I, int i) { 1961 return getShadow(I->getOperand(i)); 1962 } 1963 1964 /// Get the origin for a value. 1965 Value *getOrigin(Value *V) { 1966 if (!MS.TrackOrigins) 1967 return nullptr; 1968 if (!PropagateShadow || isa<Constant>(V) || isa<InlineAsm>(V)) 1969 return getCleanOrigin(); 1970 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1971 "Unexpected value type in getOrigin()"); 1972 if (Instruction *I = dyn_cast<Instruction>(V)) { 1973 if (I->getMetadata(LLVMContext::MD_nosanitize)) 1974 return getCleanOrigin(); 1975 } 1976 Value *Origin = OriginMap[V]; 1977 assert(Origin && "Missing origin"); 1978 return Origin; 1979 } 1980 1981 /// Get the origin for i-th argument of the instruction I. 1982 Value *getOrigin(Instruction *I, int i) { 1983 return getOrigin(I->getOperand(i)); 1984 } 1985 1986 /// Remember the place where a shadow check should be inserted. 1987 /// 1988 /// This location will be later instrumented with a check that will print a 1989 /// UMR warning in runtime if the shadow value is not 0. 1990 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1991 assert(Shadow); 1992 if (!InsertChecks) 1993 return; 1994 1995 if (!DebugCounter::shouldExecute(DebugInsertCheck)) { 1996 LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before " 1997 << *OrigIns << "\n"); 1998 return; 1999 } 2000 #ifndef NDEBUG 2001 Type *ShadowTy = Shadow->getType(); 2002 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 2003 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 2004 "Can only insert checks for integer, vector, and aggregate shadow " 2005 "types"); 2006 #endif 2007 InstrumentationList.push_back( 2008 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 2009 } 2010 2011 /// Remember the place where a shadow check should be inserted. 2012 /// 2013 /// This location will be later instrumented with a check that will print a 2014 /// UMR warning in runtime if the value is not fully defined. 2015 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 2016 assert(Val); 2017 Value *Shadow, *Origin; 2018 if (ClCheckConstantShadow) { 2019 Shadow = getShadow(Val); 2020 if (!Shadow) 2021 return; 2022 Origin = getOrigin(Val); 2023 } else { 2024 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 2025 if (!Shadow) 2026 return; 2027 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 2028 } 2029 insertShadowCheck(Shadow, Origin, OrigIns); 2030 } 2031 2032 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 2033 switch (a) { 2034 case AtomicOrdering::NotAtomic: 2035 return AtomicOrdering::NotAtomic; 2036 case AtomicOrdering::Unordered: 2037 case AtomicOrdering::Monotonic: 2038 case AtomicOrdering::Release: 2039 return AtomicOrdering::Release; 2040 case AtomicOrdering::Acquire: 2041 case AtomicOrdering::AcquireRelease: 2042 return AtomicOrdering::AcquireRelease; 2043 case AtomicOrdering::SequentiallyConsistent: 2044 return AtomicOrdering::SequentiallyConsistent; 2045 } 2046 llvm_unreachable("Unknown ordering"); 2047 } 2048 2049 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 2050 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 2051 uint32_t OrderingTable[NumOrderings] = {}; 2052 2053 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 2054 OrderingTable[(int)AtomicOrderingCABI::release] = 2055 (int)AtomicOrderingCABI::release; 2056 OrderingTable[(int)AtomicOrderingCABI::consume] = 2057 OrderingTable[(int)AtomicOrderingCABI::acquire] = 2058 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 2059 (int)AtomicOrderingCABI::acq_rel; 2060 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 2061 (int)AtomicOrderingCABI::seq_cst; 2062 2063 return ConstantDataVector::get(IRB.getContext(), 2064 ArrayRef(OrderingTable, NumOrderings)); 2065 } 2066 2067 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 2068 switch (a) { 2069 case AtomicOrdering::NotAtomic: 2070 return AtomicOrdering::NotAtomic; 2071 case AtomicOrdering::Unordered: 2072 case AtomicOrdering::Monotonic: 2073 case AtomicOrdering::Acquire: 2074 return AtomicOrdering::Acquire; 2075 case AtomicOrdering::Release: 2076 case AtomicOrdering::AcquireRelease: 2077 return AtomicOrdering::AcquireRelease; 2078 case AtomicOrdering::SequentiallyConsistent: 2079 return AtomicOrdering::SequentiallyConsistent; 2080 } 2081 llvm_unreachable("Unknown ordering"); 2082 } 2083 2084 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 2085 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 2086 uint32_t OrderingTable[NumOrderings] = {}; 2087 2088 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 2089 OrderingTable[(int)AtomicOrderingCABI::acquire] = 2090 OrderingTable[(int)AtomicOrderingCABI::consume] = 2091 (int)AtomicOrderingCABI::acquire; 2092 OrderingTable[(int)AtomicOrderingCABI::release] = 2093 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 2094 (int)AtomicOrderingCABI::acq_rel; 2095 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 2096 (int)AtomicOrderingCABI::seq_cst; 2097 2098 return ConstantDataVector::get(IRB.getContext(), 2099 ArrayRef(OrderingTable, NumOrderings)); 2100 } 2101 2102 // ------------------- Visitors. 2103 using InstVisitor<MemorySanitizerVisitor>::visit; 2104 void visit(Instruction &I) { 2105 if (I.getMetadata(LLVMContext::MD_nosanitize)) 2106 return; 2107 // Don't want to visit if we're in the prologue 2108 if (isInPrologue(I)) 2109 return; 2110 InstVisitor<MemorySanitizerVisitor>::visit(I); 2111 } 2112 2113 /// Instrument LoadInst 2114 /// 2115 /// Loads the corresponding shadow and (optionally) origin. 2116 /// Optionally, checks that the load address is fully defined. 2117 void visitLoadInst(LoadInst &I) { 2118 assert(I.getType()->isSized() && "Load type must have size"); 2119 assert(!I.getMetadata(LLVMContext::MD_nosanitize)); 2120 NextNodeIRBuilder IRB(&I); 2121 Type *ShadowTy = getShadowTy(&I); 2122 Value *Addr = I.getPointerOperand(); 2123 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2124 const Align Alignment = I.getAlign(); 2125 if (PropagateShadow) { 2126 std::tie(ShadowPtr, OriginPtr) = 2127 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2128 setShadow(&I, 2129 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2130 } else { 2131 setShadow(&I, getCleanShadow(&I)); 2132 } 2133 2134 if (ClCheckAccessAddress) 2135 insertShadowCheck(I.getPointerOperand(), &I); 2136 2137 if (I.isAtomic()) 2138 I.setOrdering(addAcquireOrdering(I.getOrdering())); 2139 2140 if (MS.TrackOrigins) { 2141 if (PropagateShadow) { 2142 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 2143 setOrigin( 2144 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 2145 } else { 2146 setOrigin(&I, getCleanOrigin()); 2147 } 2148 } 2149 } 2150 2151 /// Instrument StoreInst 2152 /// 2153 /// Stores the corresponding shadow and (optionally) origin. 2154 /// Optionally, checks that the store address is fully defined. 2155 void visitStoreInst(StoreInst &I) { 2156 StoreList.push_back(&I); 2157 if (ClCheckAccessAddress) 2158 insertShadowCheck(I.getPointerOperand(), &I); 2159 } 2160 2161 void handleCASOrRMW(Instruction &I) { 2162 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2163 2164 IRBuilder<> IRB(&I); 2165 Value *Addr = I.getOperand(0); 2166 Value *Val = I.getOperand(1); 2167 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, getShadowTy(Val), Align(1), 2168 /*isStore*/ true) 2169 .first; 2170 2171 if (ClCheckAccessAddress) 2172 insertShadowCheck(Addr, &I); 2173 2174 // Only test the conditional argument of cmpxchg instruction. 2175 // The other argument can potentially be uninitialized, but we can not 2176 // detect this situation reliably without possible false positives. 2177 if (isa<AtomicCmpXchgInst>(I)) 2178 insertShadowCheck(Val, &I); 2179 2180 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 2181 2182 setShadow(&I, getCleanShadow(&I)); 2183 setOrigin(&I, getCleanOrigin()); 2184 } 2185 2186 void visitAtomicRMWInst(AtomicRMWInst &I) { 2187 handleCASOrRMW(I); 2188 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2189 } 2190 2191 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2192 handleCASOrRMW(I); 2193 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2194 } 2195 2196 // Vector manipulation. 2197 void visitExtractElementInst(ExtractElementInst &I) { 2198 insertShadowCheck(I.getOperand(1), &I); 2199 IRBuilder<> IRB(&I); 2200 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 2201 "_msprop")); 2202 setOrigin(&I, getOrigin(&I, 0)); 2203 } 2204 2205 void visitInsertElementInst(InsertElementInst &I) { 2206 insertShadowCheck(I.getOperand(2), &I); 2207 IRBuilder<> IRB(&I); 2208 auto *Shadow0 = getShadow(&I, 0); 2209 auto *Shadow1 = getShadow(&I, 1); 2210 setShadow(&I, IRB.CreateInsertElement(Shadow0, Shadow1, I.getOperand(2), 2211 "_msprop")); 2212 setOriginForNaryOp(I); 2213 } 2214 2215 void visitShuffleVectorInst(ShuffleVectorInst &I) { 2216 IRBuilder<> IRB(&I); 2217 auto *Shadow0 = getShadow(&I, 0); 2218 auto *Shadow1 = getShadow(&I, 1); 2219 setShadow(&I, IRB.CreateShuffleVector(Shadow0, Shadow1, I.getShuffleMask(), 2220 "_msprop")); 2221 setOriginForNaryOp(I); 2222 } 2223 2224 // Casts. 2225 void visitSExtInst(SExtInst &I) { 2226 IRBuilder<> IRB(&I); 2227 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2228 setOrigin(&I, getOrigin(&I, 0)); 2229 } 2230 2231 void visitZExtInst(ZExtInst &I) { 2232 IRBuilder<> IRB(&I); 2233 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2234 setOrigin(&I, getOrigin(&I, 0)); 2235 } 2236 2237 void visitTruncInst(TruncInst &I) { 2238 IRBuilder<> IRB(&I); 2239 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2240 setOrigin(&I, getOrigin(&I, 0)); 2241 } 2242 2243 void visitBitCastInst(BitCastInst &I) { 2244 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2245 // a musttail call and a ret, don't instrument. New instructions are not 2246 // allowed after a musttail call. 2247 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2248 if (CI->isMustTailCall()) 2249 return; 2250 IRBuilder<> IRB(&I); 2251 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2252 setOrigin(&I, getOrigin(&I, 0)); 2253 } 2254 2255 void visitPtrToIntInst(PtrToIntInst &I) { 2256 IRBuilder<> IRB(&I); 2257 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2258 "_msprop_ptrtoint")); 2259 setOrigin(&I, getOrigin(&I, 0)); 2260 } 2261 2262 void visitIntToPtrInst(IntToPtrInst &I) { 2263 IRBuilder<> IRB(&I); 2264 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2265 "_msprop_inttoptr")); 2266 setOrigin(&I, getOrigin(&I, 0)); 2267 } 2268 2269 void visitFPToSIInst(CastInst &I) { handleShadowOr(I); } 2270 void visitFPToUIInst(CastInst &I) { handleShadowOr(I); } 2271 void visitSIToFPInst(CastInst &I) { handleShadowOr(I); } 2272 void visitUIToFPInst(CastInst &I) { handleShadowOr(I); } 2273 void visitFPExtInst(CastInst &I) { handleShadowOr(I); } 2274 void visitFPTruncInst(CastInst &I) { handleShadowOr(I); } 2275 2276 /// Propagate shadow for bitwise AND. 2277 /// 2278 /// This code is exact, i.e. if, for example, a bit in the left argument 2279 /// is defined and 0, then neither the value not definedness of the 2280 /// corresponding bit in B don't affect the resulting shadow. 2281 void visitAnd(BinaryOperator &I) { 2282 IRBuilder<> IRB(&I); 2283 // "And" of 0 and a poisoned value results in unpoisoned value. 2284 // 1&1 => 1; 0&1 => 0; p&1 => p; 2285 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2286 // 1&p => p; 0&p => 0; p&p => p; 2287 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2288 Value *S1 = getShadow(&I, 0); 2289 Value *S2 = getShadow(&I, 1); 2290 Value *V1 = I.getOperand(0); 2291 Value *V2 = I.getOperand(1); 2292 if (V1->getType() != S1->getType()) { 2293 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2294 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2295 } 2296 Value *S1S2 = IRB.CreateAnd(S1, S2); 2297 Value *V1S2 = IRB.CreateAnd(V1, S2); 2298 Value *S1V2 = IRB.CreateAnd(S1, V2); 2299 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2300 setOriginForNaryOp(I); 2301 } 2302 2303 void visitOr(BinaryOperator &I) { 2304 IRBuilder<> IRB(&I); 2305 // "Or" of 1 and a poisoned value results in unpoisoned value. 2306 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2307 // 1|0 => 1; 0|0 => 0; p|0 => p; 2308 // 1|p => 1; 0|p => p; p|p => p; 2309 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2310 Value *S1 = getShadow(&I, 0); 2311 Value *S2 = getShadow(&I, 1); 2312 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2313 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2314 if (V1->getType() != S1->getType()) { 2315 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2316 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2317 } 2318 Value *S1S2 = IRB.CreateAnd(S1, S2); 2319 Value *V1S2 = IRB.CreateAnd(V1, S2); 2320 Value *S1V2 = IRB.CreateAnd(S1, V2); 2321 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2322 setOriginForNaryOp(I); 2323 } 2324 2325 /// Default propagation of shadow and/or origin. 2326 /// 2327 /// This class implements the general case of shadow propagation, used in all 2328 /// cases where we don't know and/or don't care about what the operation 2329 /// actually does. It converts all input shadow values to a common type 2330 /// (extending or truncating as necessary), and bitwise OR's them. 2331 /// 2332 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2333 /// fully initialized), and less prone to false positives. 2334 /// 2335 /// This class also implements the general case of origin propagation. For a 2336 /// Nary operation, result origin is set to the origin of an argument that is 2337 /// not entirely initialized. If there is more than one such arguments, the 2338 /// rightmost of them is picked. It does not matter which one is picked if all 2339 /// arguments are initialized. 2340 template <bool CombineShadow> class Combiner { 2341 Value *Shadow = nullptr; 2342 Value *Origin = nullptr; 2343 IRBuilder<> &IRB; 2344 MemorySanitizerVisitor *MSV; 2345 2346 public: 2347 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2348 : IRB(IRB), MSV(MSV) {} 2349 2350 /// Add a pair of shadow and origin values to the mix. 2351 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2352 if (CombineShadow) { 2353 assert(OpShadow); 2354 if (!Shadow) 2355 Shadow = OpShadow; 2356 else { 2357 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2358 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2359 } 2360 } 2361 2362 if (MSV->MS.TrackOrigins) { 2363 assert(OpOrigin); 2364 if (!Origin) { 2365 Origin = OpOrigin; 2366 } else { 2367 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2368 // No point in adding something that might result in 0 origin value. 2369 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2370 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); 2371 Value *Cond = 2372 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2373 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2374 } 2375 } 2376 } 2377 return *this; 2378 } 2379 2380 /// Add an application value to the mix. 2381 Combiner &Add(Value *V) { 2382 Value *OpShadow = MSV->getShadow(V); 2383 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2384 return Add(OpShadow, OpOrigin); 2385 } 2386 2387 /// Set the current combined values as the given instruction's shadow 2388 /// and origin. 2389 void Done(Instruction *I) { 2390 if (CombineShadow) { 2391 assert(Shadow); 2392 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2393 MSV->setShadow(I, Shadow); 2394 } 2395 if (MSV->MS.TrackOrigins) { 2396 assert(Origin); 2397 MSV->setOrigin(I, Origin); 2398 } 2399 } 2400 }; 2401 2402 using ShadowAndOriginCombiner = Combiner<true>; 2403 using OriginCombiner = Combiner<false>; 2404 2405 /// Propagate origin for arbitrary operation. 2406 void setOriginForNaryOp(Instruction &I) { 2407 if (!MS.TrackOrigins) 2408 return; 2409 IRBuilder<> IRB(&I); 2410 OriginCombiner OC(this, IRB); 2411 for (Use &Op : I.operands()) 2412 OC.Add(Op.get()); 2413 OC.Done(&I); 2414 } 2415 2416 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2417 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2418 "Vector of pointers is not a valid shadow type"); 2419 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2420 Ty->getScalarSizeInBits() 2421 : Ty->getPrimitiveSizeInBits(); 2422 } 2423 2424 /// Cast between two shadow types, extending or truncating as 2425 /// necessary. 2426 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2427 bool Signed = false) { 2428 Type *srcTy = V->getType(); 2429 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2430 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2431 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2432 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2433 2434 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2435 return IRB.CreateIntCast(V, dstTy, Signed); 2436 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2437 cast<FixedVectorType>(dstTy)->getNumElements() == 2438 cast<FixedVectorType>(srcTy)->getNumElements()) 2439 return IRB.CreateIntCast(V, dstTy, Signed); 2440 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2441 Value *V2 = 2442 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2443 return IRB.CreateBitCast(V2, dstTy); 2444 // TODO: handle struct types. 2445 } 2446 2447 /// Cast an application value to the type of its own shadow. 2448 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2449 Type *ShadowTy = getShadowTy(V); 2450 if (V->getType() == ShadowTy) 2451 return V; 2452 if (V->getType()->isPtrOrPtrVectorTy()) 2453 return IRB.CreatePtrToInt(V, ShadowTy); 2454 else 2455 return IRB.CreateBitCast(V, ShadowTy); 2456 } 2457 2458 /// Propagate shadow for arbitrary operation. 2459 void handleShadowOr(Instruction &I) { 2460 IRBuilder<> IRB(&I); 2461 ShadowAndOriginCombiner SC(this, IRB); 2462 for (Use &Op : I.operands()) 2463 SC.Add(Op.get()); 2464 SC.Done(&I); 2465 } 2466 2467 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2468 2469 // Handle multiplication by constant. 2470 // 2471 // Handle a special case of multiplication by constant that may have one or 2472 // more zeros in the lower bits. This makes corresponding number of lower bits 2473 // of the result zero as well. We model it by shifting the other operand 2474 // shadow left by the required number of bits. Effectively, we transform 2475 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2476 // We use multiplication by 2**N instead of shift to cover the case of 2477 // multiplication by 0, which may occur in some elements of a vector operand. 2478 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2479 Value *OtherArg) { 2480 Constant *ShadowMul; 2481 Type *Ty = ConstArg->getType(); 2482 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2483 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2484 Type *EltTy = VTy->getElementType(); 2485 SmallVector<Constant *, 16> Elements; 2486 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2487 if (ConstantInt *Elt = 2488 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2489 const APInt &V = Elt->getValue(); 2490 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2491 Elements.push_back(ConstantInt::get(EltTy, V2)); 2492 } else { 2493 Elements.push_back(ConstantInt::get(EltTy, 1)); 2494 } 2495 } 2496 ShadowMul = ConstantVector::get(Elements); 2497 } else { 2498 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2499 const APInt &V = Elt->getValue(); 2500 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2501 ShadowMul = ConstantInt::get(Ty, V2); 2502 } else { 2503 ShadowMul = ConstantInt::get(Ty, 1); 2504 } 2505 } 2506 2507 IRBuilder<> IRB(&I); 2508 setShadow(&I, 2509 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2510 setOrigin(&I, getOrigin(OtherArg)); 2511 } 2512 2513 void visitMul(BinaryOperator &I) { 2514 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2515 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2516 if (constOp0 && !constOp1) 2517 handleMulByConstant(I, constOp0, I.getOperand(1)); 2518 else if (constOp1 && !constOp0) 2519 handleMulByConstant(I, constOp1, I.getOperand(0)); 2520 else 2521 handleShadowOr(I); 2522 } 2523 2524 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2525 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2526 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2527 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2528 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2529 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2530 2531 void handleIntegerDiv(Instruction &I) { 2532 IRBuilder<> IRB(&I); 2533 // Strict on the second argument. 2534 insertShadowCheck(I.getOperand(1), &I); 2535 setShadow(&I, getShadow(&I, 0)); 2536 setOrigin(&I, getOrigin(&I, 0)); 2537 } 2538 2539 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2540 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2541 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2542 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2543 2544 // Floating point division is side-effect free. We can not require that the 2545 // divisor is fully initialized and must propagate shadow. See PR37523. 2546 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2547 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2548 2549 /// Instrument == and != comparisons. 2550 /// 2551 /// Sometimes the comparison result is known even if some of the bits of the 2552 /// arguments are not. 2553 void handleEqualityComparison(ICmpInst &I) { 2554 IRBuilder<> IRB(&I); 2555 Value *A = I.getOperand(0); 2556 Value *B = I.getOperand(1); 2557 Value *Sa = getShadow(A); 2558 Value *Sb = getShadow(B); 2559 2560 // Get rid of pointers and vectors of pointers. 2561 // For ints (and vectors of ints), types of A and Sa match, 2562 // and this is a no-op. 2563 A = IRB.CreatePointerCast(A, Sa->getType()); 2564 B = IRB.CreatePointerCast(B, Sb->getType()); 2565 2566 // A == B <==> (C = A^B) == 0 2567 // A != B <==> (C = A^B) != 0 2568 // Sc = Sa | Sb 2569 Value *C = IRB.CreateXor(A, B); 2570 Value *Sc = IRB.CreateOr(Sa, Sb); 2571 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2572 // Result is defined if one of the following is true 2573 // * there is a defined 1 bit in C 2574 // * C is fully defined 2575 // Si = !(C & ~Sc) && Sc 2576 Value *Zero = Constant::getNullValue(Sc->getType()); 2577 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2578 Value *LHS = IRB.CreateICmpNE(Sc, Zero); 2579 Value *RHS = 2580 IRB.CreateICmpEQ(IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero); 2581 Value *Si = IRB.CreateAnd(LHS, RHS); 2582 Si->setName("_msprop_icmp"); 2583 setShadow(&I, Si); 2584 setOriginForNaryOp(I); 2585 } 2586 2587 /// Build the lowest possible value of V, taking into account V's 2588 /// uninitialized bits. 2589 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2590 bool isSigned) { 2591 if (isSigned) { 2592 // Split shadow into sign bit and other bits. 2593 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2594 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2595 // Maximise the undefined shadow bit, minimize other undefined bits. 2596 return IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), 2597 SaSignBit); 2598 } else { 2599 // Minimize undefined bits. 2600 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2601 } 2602 } 2603 2604 /// Build the highest possible value of V, taking into account V's 2605 /// uninitialized bits. 2606 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2607 bool isSigned) { 2608 if (isSigned) { 2609 // Split shadow into sign bit and other bits. 2610 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2611 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2612 // Minimise the undefined shadow bit, maximise other undefined bits. 2613 return IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), 2614 SaOtherBits); 2615 } else { 2616 // Maximize undefined bits. 2617 return IRB.CreateOr(A, Sa); 2618 } 2619 } 2620 2621 /// Instrument relational comparisons. 2622 /// 2623 /// This function does exact shadow propagation for all relational 2624 /// comparisons of integers, pointers and vectors of those. 2625 /// FIXME: output seems suboptimal when one of the operands is a constant 2626 void handleRelationalComparisonExact(ICmpInst &I) { 2627 IRBuilder<> IRB(&I); 2628 Value *A = I.getOperand(0); 2629 Value *B = I.getOperand(1); 2630 Value *Sa = getShadow(A); 2631 Value *Sb = getShadow(B); 2632 2633 // Get rid of pointers and vectors of pointers. 2634 // For ints (and vectors of ints), types of A and Sa match, 2635 // and this is a no-op. 2636 A = IRB.CreatePointerCast(A, Sa->getType()); 2637 B = IRB.CreatePointerCast(B, Sb->getType()); 2638 2639 // Let [a0, a1] be the interval of possible values of A, taking into account 2640 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2641 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2642 bool IsSigned = I.isSigned(); 2643 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2644 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2645 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2646 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2647 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2648 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2649 Value *Si = IRB.CreateXor(S1, S2); 2650 setShadow(&I, Si); 2651 setOriginForNaryOp(I); 2652 } 2653 2654 /// Instrument signed relational comparisons. 2655 /// 2656 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2657 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2658 void handleSignedRelationalComparison(ICmpInst &I) { 2659 Constant *constOp; 2660 Value *op = nullptr; 2661 CmpInst::Predicate pre; 2662 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2663 op = I.getOperand(0); 2664 pre = I.getPredicate(); 2665 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2666 op = I.getOperand(1); 2667 pre = I.getSwappedPredicate(); 2668 } else { 2669 handleShadowOr(I); 2670 return; 2671 } 2672 2673 if ((constOp->isNullValue() && 2674 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2675 (constOp->isAllOnesValue() && 2676 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2677 IRBuilder<> IRB(&I); 2678 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2679 "_msprop_icmp_s"); 2680 setShadow(&I, Shadow); 2681 setOrigin(&I, getOrigin(op)); 2682 } else { 2683 handleShadowOr(I); 2684 } 2685 } 2686 2687 void visitICmpInst(ICmpInst &I) { 2688 if (!ClHandleICmp) { 2689 handleShadowOr(I); 2690 return; 2691 } 2692 if (I.isEquality()) { 2693 handleEqualityComparison(I); 2694 return; 2695 } 2696 2697 assert(I.isRelational()); 2698 if (ClHandleICmpExact) { 2699 handleRelationalComparisonExact(I); 2700 return; 2701 } 2702 if (I.isSigned()) { 2703 handleSignedRelationalComparison(I); 2704 return; 2705 } 2706 2707 assert(I.isUnsigned()); 2708 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2709 handleRelationalComparisonExact(I); 2710 return; 2711 } 2712 2713 handleShadowOr(I); 2714 } 2715 2716 void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); } 2717 2718 void handleShift(BinaryOperator &I) { 2719 IRBuilder<> IRB(&I); 2720 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2721 // Otherwise perform the same shift on S1. 2722 Value *S1 = getShadow(&I, 0); 2723 Value *S2 = getShadow(&I, 1); 2724 Value *S2Conv = 2725 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2726 Value *V2 = I.getOperand(1); 2727 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2728 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2729 setOriginForNaryOp(I); 2730 } 2731 2732 void visitShl(BinaryOperator &I) { handleShift(I); } 2733 void visitAShr(BinaryOperator &I) { handleShift(I); } 2734 void visitLShr(BinaryOperator &I) { handleShift(I); } 2735 2736 void handleFunnelShift(IntrinsicInst &I) { 2737 IRBuilder<> IRB(&I); 2738 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2739 // Otherwise perform the same shift on S0 and S1. 2740 Value *S0 = getShadow(&I, 0); 2741 Value *S1 = getShadow(&I, 1); 2742 Value *S2 = getShadow(&I, 2); 2743 Value *S2Conv = 2744 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2745 Value *V2 = I.getOperand(2); 2746 Function *Intrin = Intrinsic::getDeclaration( 2747 I.getModule(), I.getIntrinsicID(), S2Conv->getType()); 2748 Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2}); 2749 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2750 setOriginForNaryOp(I); 2751 } 2752 2753 /// Instrument llvm.memmove 2754 /// 2755 /// At this point we don't know if llvm.memmove will be inlined or not. 2756 /// If we don't instrument it and it gets inlined, 2757 /// our interceptor will not kick in and we will lose the memmove. 2758 /// If we instrument the call here, but it does not get inlined, 2759 /// we will memove the shadow twice: which is bad in case 2760 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2761 /// 2762 /// Similar situation exists for memcpy and memset. 2763 void visitMemMoveInst(MemMoveInst &I) { 2764 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2765 IRBuilder<> IRB(&I); 2766 IRB.CreateCall( 2767 MS.MemmoveFn, 2768 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2769 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2770 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2771 I.eraseFromParent(); 2772 } 2773 2774 /// Instrument memcpy 2775 /// 2776 /// Similar to memmove: avoid copying shadow twice. This is somewhat 2777 /// unfortunate as it may slowdown small constant memcpys. 2778 /// FIXME: consider doing manual inline for small constant sizes and proper 2779 /// alignment. 2780 /// 2781 /// Note: This also handles memcpy.inline, which promises no calls to external 2782 /// functions as an optimization. However, with instrumentation enabled this 2783 /// is difficult to promise; additionally, we know that the MSan runtime 2784 /// exists and provides __msan_memcpy(). Therefore, we assume that with 2785 /// instrumentation it's safe to turn memcpy.inline into a call to 2786 /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy() 2787 /// itself, instrumentation should be disabled with the no_sanitize attribute. 2788 void visitMemCpyInst(MemCpyInst &I) { 2789 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2790 IRBuilder<> IRB(&I); 2791 IRB.CreateCall( 2792 MS.MemcpyFn, 2793 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2794 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2795 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2796 I.eraseFromParent(); 2797 } 2798 2799 // Same as memcpy. 2800 void visitMemSetInst(MemSetInst &I) { 2801 IRBuilder<> IRB(&I); 2802 IRB.CreateCall( 2803 MS.MemsetFn, 2804 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2805 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2806 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2807 I.eraseFromParent(); 2808 } 2809 2810 void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); } 2811 2812 void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); } 2813 2814 /// Handle vector store-like intrinsics. 2815 /// 2816 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2817 /// has 1 pointer argument and 1 vector argument, returns void. 2818 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2819 IRBuilder<> IRB(&I); 2820 Value *Addr = I.getArgOperand(0); 2821 Value *Shadow = getShadow(&I, 1); 2822 Value *ShadowPtr, *OriginPtr; 2823 2824 // We don't know the pointer alignment (could be unaligned SSE store!). 2825 // Have to assume to worst case. 2826 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2827 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2828 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2829 2830 if (ClCheckAccessAddress) 2831 insertShadowCheck(Addr, &I); 2832 2833 // FIXME: factor out common code from materializeStores 2834 if (MS.TrackOrigins) 2835 IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2836 return true; 2837 } 2838 2839 /// Handle vector load-like intrinsics. 2840 /// 2841 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2842 /// has 1 pointer argument, returns a vector. 2843 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2844 IRBuilder<> IRB(&I); 2845 Value *Addr = I.getArgOperand(0); 2846 2847 Type *ShadowTy = getShadowTy(&I); 2848 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2849 if (PropagateShadow) { 2850 // We don't know the pointer alignment (could be unaligned SSE load!). 2851 // Have to assume to worst case. 2852 const Align Alignment = Align(1); 2853 std::tie(ShadowPtr, OriginPtr) = 2854 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2855 setShadow(&I, 2856 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2857 } else { 2858 setShadow(&I, getCleanShadow(&I)); 2859 } 2860 2861 if (ClCheckAccessAddress) 2862 insertShadowCheck(Addr, &I); 2863 2864 if (MS.TrackOrigins) { 2865 if (PropagateShadow) 2866 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2867 else 2868 setOrigin(&I, getCleanOrigin()); 2869 } 2870 return true; 2871 } 2872 2873 /// Handle (SIMD arithmetic)-like intrinsics. 2874 /// 2875 /// Instrument intrinsics with any number of arguments of the same type, 2876 /// equal to the return type. The type should be simple (no aggregates or 2877 /// pointers; vectors are fine). 2878 /// Caller guarantees that this intrinsic does not access memory. 2879 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2880 Type *RetTy = I.getType(); 2881 if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy() || 2882 RetTy->isX86_MMXTy())) 2883 return false; 2884 2885 unsigned NumArgOperands = I.arg_size(); 2886 for (unsigned i = 0; i < NumArgOperands; ++i) { 2887 Type *Ty = I.getArgOperand(i)->getType(); 2888 if (Ty != RetTy) 2889 return false; 2890 } 2891 2892 IRBuilder<> IRB(&I); 2893 ShadowAndOriginCombiner SC(this, IRB); 2894 for (unsigned i = 0; i < NumArgOperands; ++i) 2895 SC.Add(I.getArgOperand(i)); 2896 SC.Done(&I); 2897 2898 return true; 2899 } 2900 2901 /// Heuristically instrument unknown intrinsics. 2902 /// 2903 /// The main purpose of this code is to do something reasonable with all 2904 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2905 /// We recognize several classes of intrinsics by their argument types and 2906 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2907 /// sure that we know what the intrinsic does. 2908 /// 2909 /// We special-case intrinsics where this approach fails. See llvm.bswap 2910 /// handling as an example of that. 2911 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2912 unsigned NumArgOperands = I.arg_size(); 2913 if (NumArgOperands == 0) 2914 return false; 2915 2916 if (NumArgOperands == 2 && I.getArgOperand(0)->getType()->isPointerTy() && 2917 I.getArgOperand(1)->getType()->isVectorTy() && 2918 I.getType()->isVoidTy() && !I.onlyReadsMemory()) { 2919 // This looks like a vector store. 2920 return handleVectorStoreIntrinsic(I); 2921 } 2922 2923 if (NumArgOperands == 1 && I.getArgOperand(0)->getType()->isPointerTy() && 2924 I.getType()->isVectorTy() && I.onlyReadsMemory()) { 2925 // This looks like a vector load. 2926 return handleVectorLoadIntrinsic(I); 2927 } 2928 2929 if (I.doesNotAccessMemory()) 2930 if (maybeHandleSimpleNomemIntrinsic(I)) 2931 return true; 2932 2933 // FIXME: detect and handle SSE maskstore/maskload 2934 return false; 2935 } 2936 2937 void handleInvariantGroup(IntrinsicInst &I) { 2938 setShadow(&I, getShadow(&I, 0)); 2939 setOrigin(&I, getOrigin(&I, 0)); 2940 } 2941 2942 void handleLifetimeStart(IntrinsicInst &I) { 2943 if (!PoisonStack) 2944 return; 2945 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 2946 if (!AI) 2947 InstrumentLifetimeStart = false; 2948 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2949 } 2950 2951 void handleBswap(IntrinsicInst &I) { 2952 IRBuilder<> IRB(&I); 2953 Value *Op = I.getArgOperand(0); 2954 Type *OpType = Op->getType(); 2955 Function *BswapFunc = Intrinsic::getDeclaration( 2956 F.getParent(), Intrinsic::bswap, ArrayRef(&OpType, 1)); 2957 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2958 setOrigin(&I, getOrigin(Op)); 2959 } 2960 2961 void handleCountZeroes(IntrinsicInst &I) { 2962 IRBuilder<> IRB(&I); 2963 Value *Src = I.getArgOperand(0); 2964 2965 // Set the Output shadow based on input Shadow 2966 Value *BoolShadow = IRB.CreateIsNotNull(getShadow(Src), "_mscz_bs"); 2967 2968 // If zero poison is requested, mix in with the shadow 2969 Constant *IsZeroPoison = cast<Constant>(I.getOperand(1)); 2970 if (!IsZeroPoison->isZeroValue()) { 2971 Value *BoolZeroPoison = IRB.CreateIsNull(Src, "_mscz_bzp"); 2972 BoolShadow = IRB.CreateOr(BoolShadow, BoolZeroPoison, "_mscz_bs"); 2973 } 2974 2975 Value *OutputShadow = 2976 IRB.CreateSExt(BoolShadow, getShadowTy(Src), "_mscz_os"); 2977 2978 setShadow(&I, OutputShadow); 2979 setOriginForNaryOp(I); 2980 } 2981 2982 // Instrument vector convert intrinsic. 2983 // 2984 // This function instruments intrinsics like cvtsi2ss: 2985 // %Out = int_xxx_cvtyyy(%ConvertOp) 2986 // or 2987 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2988 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2989 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2990 // elements from \p CopyOp. 2991 // In most cases conversion involves floating-point value which may trigger a 2992 // hardware exception when not fully initialized. For this reason we require 2993 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2994 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2995 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2996 // return a fully initialized value. 2997 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 2998 bool HasRoundingMode = false) { 2999 IRBuilder<> IRB(&I); 3000 Value *CopyOp, *ConvertOp; 3001 3002 assert((!HasRoundingMode || 3003 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && 3004 "Invalid rounding mode"); 3005 3006 switch (I.arg_size() - HasRoundingMode) { 3007 case 2: 3008 CopyOp = I.getArgOperand(0); 3009 ConvertOp = I.getArgOperand(1); 3010 break; 3011 case 1: 3012 ConvertOp = I.getArgOperand(0); 3013 CopyOp = nullptr; 3014 break; 3015 default: 3016 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 3017 } 3018 3019 // The first *NumUsedElements* elements of ConvertOp are converted to the 3020 // same number of output elements. The rest of the output is copied from 3021 // CopyOp, or (if not available) filled with zeroes. 3022 // Combine shadow for elements of ConvertOp that are used in this operation, 3023 // and insert a check. 3024 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 3025 // int->any conversion. 3026 Value *ConvertShadow = getShadow(ConvertOp); 3027 Value *AggShadow = nullptr; 3028 if (ConvertOp->getType()->isVectorTy()) { 3029 AggShadow = IRB.CreateExtractElement( 3030 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3031 for (int i = 1; i < NumUsedElements; ++i) { 3032 Value *MoreShadow = IRB.CreateExtractElement( 3033 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3034 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 3035 } 3036 } else { 3037 AggShadow = ConvertShadow; 3038 } 3039 assert(AggShadow->getType()->isIntegerTy()); 3040 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 3041 3042 // Build result shadow by zero-filling parts of CopyOp shadow that come from 3043 // ConvertOp. 3044 if (CopyOp) { 3045 assert(CopyOp->getType() == I.getType()); 3046 assert(CopyOp->getType()->isVectorTy()); 3047 Value *ResultShadow = getShadow(CopyOp); 3048 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 3049 for (int i = 0; i < NumUsedElements; ++i) { 3050 ResultShadow = IRB.CreateInsertElement( 3051 ResultShadow, ConstantInt::getNullValue(EltTy), 3052 ConstantInt::get(IRB.getInt32Ty(), i)); 3053 } 3054 setShadow(&I, ResultShadow); 3055 setOrigin(&I, getOrigin(CopyOp)); 3056 } else { 3057 setShadow(&I, getCleanShadow(&I)); 3058 setOrigin(&I, getCleanOrigin()); 3059 } 3060 } 3061 3062 // Given a scalar or vector, extract lower 64 bits (or less), and return all 3063 // zeroes if it is zero, and all ones otherwise. 3064 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 3065 if (S->getType()->isVectorTy()) 3066 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 3067 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 3068 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 3069 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 3070 } 3071 3072 // Given a vector, extract its first element, and return all 3073 // zeroes if it is zero, and all ones otherwise. 3074 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 3075 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 3076 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 3077 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 3078 } 3079 3080 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 3081 Type *T = S->getType(); 3082 assert(T->isVectorTy()); 3083 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 3084 return IRB.CreateSExt(S2, T); 3085 } 3086 3087 // Instrument vector shift intrinsic. 3088 // 3089 // This function instruments intrinsics like int_x86_avx2_psll_w. 3090 // Intrinsic shifts %In by %ShiftSize bits. 3091 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 3092 // size, and the rest is ignored. Behavior is defined even if shift size is 3093 // greater than register (or field) width. 3094 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 3095 assert(I.arg_size() == 2); 3096 IRBuilder<> IRB(&I); 3097 // If any of the S2 bits are poisoned, the whole thing is poisoned. 3098 // Otherwise perform the same shift on S1. 3099 Value *S1 = getShadow(&I, 0); 3100 Value *S2 = getShadow(&I, 1); 3101 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 3102 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 3103 Value *V1 = I.getOperand(0); 3104 Value *V2 = I.getOperand(1); 3105 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 3106 {IRB.CreateBitCast(S1, V1->getType()), V2}); 3107 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 3108 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 3109 setOriginForNaryOp(I); 3110 } 3111 3112 // Get an X86_MMX-sized vector type. 3113 Type *getMMXVectorTy(unsigned EltSizeInBits) { 3114 const unsigned X86_MMXSizeInBits = 64; 3115 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 3116 "Illegal MMX vector element size"); 3117 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 3118 X86_MMXSizeInBits / EltSizeInBits); 3119 } 3120 3121 // Returns a signed counterpart for an (un)signed-saturate-and-pack 3122 // intrinsic. 3123 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 3124 switch (id) { 3125 case Intrinsic::x86_sse2_packsswb_128: 3126 case Intrinsic::x86_sse2_packuswb_128: 3127 return Intrinsic::x86_sse2_packsswb_128; 3128 3129 case Intrinsic::x86_sse2_packssdw_128: 3130 case Intrinsic::x86_sse41_packusdw: 3131 return Intrinsic::x86_sse2_packssdw_128; 3132 3133 case Intrinsic::x86_avx2_packsswb: 3134 case Intrinsic::x86_avx2_packuswb: 3135 return Intrinsic::x86_avx2_packsswb; 3136 3137 case Intrinsic::x86_avx2_packssdw: 3138 case Intrinsic::x86_avx2_packusdw: 3139 return Intrinsic::x86_avx2_packssdw; 3140 3141 case Intrinsic::x86_mmx_packsswb: 3142 case Intrinsic::x86_mmx_packuswb: 3143 return Intrinsic::x86_mmx_packsswb; 3144 3145 case Intrinsic::x86_mmx_packssdw: 3146 return Intrinsic::x86_mmx_packssdw; 3147 default: 3148 llvm_unreachable("unexpected intrinsic id"); 3149 } 3150 } 3151 3152 // Instrument vector pack intrinsic. 3153 // 3154 // This function instruments intrinsics like x86_mmx_packsswb, that 3155 // packs elements of 2 input vectors into half as many bits with saturation. 3156 // Shadow is propagated with the signed variant of the same intrinsic applied 3157 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 3158 // EltSizeInBits is used only for x86mmx arguments. 3159 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 3160 assert(I.arg_size() == 2); 3161 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 3162 IRBuilder<> IRB(&I); 3163 Value *S1 = getShadow(&I, 0); 3164 Value *S2 = getShadow(&I, 1); 3165 assert(isX86_MMX || S1->getType()->isVectorTy()); 3166 3167 // SExt and ICmpNE below must apply to individual elements of input vectors. 3168 // In case of x86mmx arguments, cast them to appropriate vector types and 3169 // back. 3170 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 3171 if (isX86_MMX) { 3172 S1 = IRB.CreateBitCast(S1, T); 3173 S2 = IRB.CreateBitCast(S2, T); 3174 } 3175 Value *S1_ext = 3176 IRB.CreateSExt(IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 3177 Value *S2_ext = 3178 IRB.CreateSExt(IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 3179 if (isX86_MMX) { 3180 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 3181 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 3182 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 3183 } 3184 3185 Function *ShadowFn = Intrinsic::getDeclaration( 3186 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 3187 3188 Value *S = 3189 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 3190 if (isX86_MMX) 3191 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3192 setShadow(&I, S); 3193 setOriginForNaryOp(I); 3194 } 3195 3196 // Instrument sum-of-absolute-differences intrinsic. 3197 void handleVectorSadIntrinsic(IntrinsicInst &I) { 3198 const unsigned SignificantBitsPerResultElement = 16; 3199 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 3200 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 3201 unsigned ZeroBitsPerResultElement = 3202 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 3203 3204 IRBuilder<> IRB(&I); 3205 auto *Shadow0 = getShadow(&I, 0); 3206 auto *Shadow1 = getShadow(&I, 1); 3207 Value *S = IRB.CreateOr(Shadow0, Shadow1); 3208 S = IRB.CreateBitCast(S, ResTy); 3209 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3210 ResTy); 3211 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 3212 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3213 setShadow(&I, S); 3214 setOriginForNaryOp(I); 3215 } 3216 3217 // Instrument multiply-add intrinsic. 3218 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 3219 unsigned EltSizeInBits = 0) { 3220 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 3221 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 3222 IRBuilder<> IRB(&I); 3223 auto *Shadow0 = getShadow(&I, 0); 3224 auto *Shadow1 = getShadow(&I, 1); 3225 Value *S = IRB.CreateOr(Shadow0, Shadow1); 3226 S = IRB.CreateBitCast(S, ResTy); 3227 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 3228 ResTy); 3229 S = IRB.CreateBitCast(S, getShadowTy(&I)); 3230 setShadow(&I, S); 3231 setOriginForNaryOp(I); 3232 } 3233 3234 // Instrument compare-packed intrinsic. 3235 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 3236 // all-ones shadow. 3237 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 3238 IRBuilder<> IRB(&I); 3239 Type *ResTy = getShadowTy(&I); 3240 auto *Shadow0 = getShadow(&I, 0); 3241 auto *Shadow1 = getShadow(&I, 1); 3242 Value *S0 = IRB.CreateOr(Shadow0, Shadow1); 3243 Value *S = IRB.CreateSExt( 3244 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 3245 setShadow(&I, S); 3246 setOriginForNaryOp(I); 3247 } 3248 3249 // Instrument compare-scalar intrinsic. 3250 // This handles both cmp* intrinsics which return the result in the first 3251 // element of a vector, and comi* which return the result as i32. 3252 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 3253 IRBuilder<> IRB(&I); 3254 auto *Shadow0 = getShadow(&I, 0); 3255 auto *Shadow1 = getShadow(&I, 1); 3256 Value *S0 = IRB.CreateOr(Shadow0, Shadow1); 3257 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 3258 setShadow(&I, S); 3259 setOriginForNaryOp(I); 3260 } 3261 3262 // Instrument generic vector reduction intrinsics 3263 // by ORing together all their fields. 3264 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 3265 IRBuilder<> IRB(&I); 3266 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 3267 setShadow(&I, S); 3268 setOrigin(&I, getOrigin(&I, 0)); 3269 } 3270 3271 // Instrument vector.reduce.or intrinsic. 3272 // Valid (non-poisoned) set bits in the operand pull low the 3273 // corresponding shadow bits. 3274 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3275 IRBuilder<> IRB(&I); 3276 Value *OperandShadow = getShadow(&I, 0); 3277 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3278 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3279 // Bit N is clean if any field's bit N is 1 and unpoison 3280 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3281 // Otherwise, it is clean if every field's bit N is unpoison 3282 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3283 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3284 3285 setShadow(&I, S); 3286 setOrigin(&I, getOrigin(&I, 0)); 3287 } 3288 3289 // Instrument vector.reduce.and intrinsic. 3290 // Valid (non-poisoned) unset bits in the operand pull down the 3291 // corresponding shadow bits. 3292 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3293 IRBuilder<> IRB(&I); 3294 Value *OperandShadow = getShadow(&I, 0); 3295 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3296 // Bit N is clean if any field's bit N is 0 and unpoison 3297 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3298 // Otherwise, it is clean if every field's bit N is unpoison 3299 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3300 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3301 3302 setShadow(&I, S); 3303 setOrigin(&I, getOrigin(&I, 0)); 3304 } 3305 3306 void handleStmxcsr(IntrinsicInst &I) { 3307 IRBuilder<> IRB(&I); 3308 Value *Addr = I.getArgOperand(0); 3309 Type *Ty = IRB.getInt32Ty(); 3310 Value *ShadowPtr = 3311 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3312 3313 IRB.CreateStore(getCleanShadow(Ty), 3314 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 3315 3316 if (ClCheckAccessAddress) 3317 insertShadowCheck(Addr, &I); 3318 } 3319 3320 void handleLdmxcsr(IntrinsicInst &I) { 3321 if (!InsertChecks) 3322 return; 3323 3324 IRBuilder<> IRB(&I); 3325 Value *Addr = I.getArgOperand(0); 3326 Type *Ty = IRB.getInt32Ty(); 3327 const Align Alignment = Align(1); 3328 Value *ShadowPtr, *OriginPtr; 3329 std::tie(ShadowPtr, OriginPtr) = 3330 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3331 3332 if (ClCheckAccessAddress) 3333 insertShadowCheck(Addr, &I); 3334 3335 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3336 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3337 : getCleanOrigin(); 3338 insertShadowCheck(Shadow, Origin, &I); 3339 } 3340 3341 void handleMaskedExpandLoad(IntrinsicInst &I) { 3342 IRBuilder<> IRB(&I); 3343 Value *Ptr = I.getArgOperand(0); 3344 Value *Mask = I.getArgOperand(1); 3345 Value *PassThru = I.getArgOperand(2); 3346 3347 if (ClCheckAccessAddress) { 3348 insertShadowCheck(Ptr, &I); 3349 insertShadowCheck(Mask, &I); 3350 } 3351 3352 if (!PropagateShadow) { 3353 setShadow(&I, getCleanShadow(&I)); 3354 setOrigin(&I, getCleanOrigin()); 3355 return; 3356 } 3357 3358 Type *ShadowTy = getShadowTy(&I); 3359 Type *ElementShadowTy = cast<FixedVectorType>(ShadowTy)->getElementType(); 3360 auto [ShadowPtr, OriginPtr] = 3361 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, {}, /*isStore*/ false); 3362 3363 Value *Shadow = IRB.CreateMaskedExpandLoad( 3364 ShadowTy, ShadowPtr, Mask, getShadow(PassThru), "_msmaskedexpload"); 3365 3366 setShadow(&I, Shadow); 3367 3368 // TODO: Store origins. 3369 setOrigin(&I, getCleanOrigin()); 3370 } 3371 3372 void handleMaskedCompressStore(IntrinsicInst &I) { 3373 IRBuilder<> IRB(&I); 3374 Value *Values = I.getArgOperand(0); 3375 Value *Ptr = I.getArgOperand(1); 3376 Value *Mask = I.getArgOperand(2); 3377 3378 if (ClCheckAccessAddress) { 3379 insertShadowCheck(Ptr, &I); 3380 insertShadowCheck(Mask, &I); 3381 } 3382 3383 Value *Shadow = getShadow(Values); 3384 Type *ElementShadowTy = 3385 getShadowTy(cast<FixedVectorType>(Values->getType())->getElementType()); 3386 auto [ShadowPtr, OriginPtrs] = 3387 getShadowOriginPtr(Ptr, IRB, ElementShadowTy, {}, /*isStore*/ true); 3388 3389 IRB.CreateMaskedCompressStore(Shadow, ShadowPtr, Mask); 3390 3391 // TODO: Store origins. 3392 } 3393 3394 void handleMaskedGather(IntrinsicInst &I) { 3395 IRBuilder<> IRB(&I); 3396 Value *Ptrs = I.getArgOperand(0); 3397 const Align Alignment( 3398 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3399 Value *Mask = I.getArgOperand(2); 3400 Value *PassThru = I.getArgOperand(3); 3401 3402 Type *PtrsShadowTy = getShadowTy(Ptrs); 3403 if (ClCheckAccessAddress) { 3404 insertShadowCheck(Mask, &I); 3405 Value *MaskedPtrShadow = IRB.CreateSelect( 3406 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)), 3407 "_msmaskedptrs"); 3408 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I); 3409 } 3410 3411 if (!PropagateShadow) { 3412 setShadow(&I, getCleanShadow(&I)); 3413 setOrigin(&I, getCleanOrigin()); 3414 return; 3415 } 3416 3417 Type *ShadowTy = getShadowTy(&I); 3418 Type *ElementShadowTy = cast<FixedVectorType>(ShadowTy)->getElementType(); 3419 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( 3420 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ false); 3421 3422 Value *Shadow = 3423 IRB.CreateMaskedGather(ShadowTy, ShadowPtrs, Alignment, Mask, 3424 getShadow(PassThru), "_msmaskedgather"); 3425 3426 setShadow(&I, Shadow); 3427 3428 // TODO: Store origins. 3429 setOrigin(&I, getCleanOrigin()); 3430 } 3431 3432 void handleMaskedScatter(IntrinsicInst &I) { 3433 IRBuilder<> IRB(&I); 3434 Value *Values = I.getArgOperand(0); 3435 Value *Ptrs = I.getArgOperand(1); 3436 const Align Alignment( 3437 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3438 Value *Mask = I.getArgOperand(3); 3439 3440 Type *PtrsShadowTy = getShadowTy(Ptrs); 3441 if (ClCheckAccessAddress) { 3442 insertShadowCheck(Mask, &I); 3443 Value *MaskedPtrShadow = IRB.CreateSelect( 3444 Mask, getShadow(Ptrs), Constant::getNullValue((PtrsShadowTy)), 3445 "_msmaskedptrs"); 3446 insertShadowCheck(MaskedPtrShadow, getOrigin(Ptrs), &I); 3447 } 3448 3449 Value *Shadow = getShadow(Values); 3450 Type *ElementShadowTy = 3451 getShadowTy(cast<FixedVectorType>(Values->getType())->getElementType()); 3452 auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( 3453 Ptrs, IRB, ElementShadowTy, Alignment, /*isStore*/ true); 3454 3455 IRB.CreateMaskedScatter(Shadow, ShadowPtrs, Alignment, Mask); 3456 3457 // TODO: Store origin. 3458 } 3459 3460 void handleMaskedStore(IntrinsicInst &I) { 3461 IRBuilder<> IRB(&I); 3462 Value *V = I.getArgOperand(0); 3463 Value *Ptr = I.getArgOperand(1); 3464 const Align Alignment( 3465 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3466 Value *Mask = I.getArgOperand(3); 3467 Value *Shadow = getShadow(V); 3468 3469 if (ClCheckAccessAddress) { 3470 insertShadowCheck(Ptr, &I); 3471 insertShadowCheck(Mask, &I); 3472 } 3473 3474 Value *ShadowPtr; 3475 Value *OriginPtr; 3476 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3477 Ptr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3478 3479 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3480 3481 if (!MS.TrackOrigins) 3482 return; 3483 3484 auto &DL = F.getParent()->getDataLayout(); 3485 paintOrigin(IRB, getOrigin(V), OriginPtr, 3486 DL.getTypeStoreSize(Shadow->getType()), 3487 std::max(Alignment, kMinOriginAlignment)); 3488 } 3489 3490 void handleMaskedLoad(IntrinsicInst &I) { 3491 IRBuilder<> IRB(&I); 3492 Value *Ptr = I.getArgOperand(0); 3493 const Align Alignment( 3494 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3495 Value *Mask = I.getArgOperand(2); 3496 Value *PassThru = I.getArgOperand(3); 3497 3498 if (ClCheckAccessAddress) { 3499 insertShadowCheck(Ptr, &I); 3500 insertShadowCheck(Mask, &I); 3501 } 3502 3503 if (!PropagateShadow) { 3504 setShadow(&I, getCleanShadow(&I)); 3505 setOrigin(&I, getCleanOrigin()); 3506 return; 3507 } 3508 3509 Type *ShadowTy = getShadowTy(&I); 3510 Value *ShadowPtr, *OriginPtr; 3511 std::tie(ShadowPtr, OriginPtr) = 3512 getShadowOriginPtr(Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3513 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3514 getShadow(PassThru), "_msmaskedld")); 3515 3516 if (!MS.TrackOrigins) 3517 return; 3518 3519 // Choose between PassThru's and the loaded value's origins. 3520 Value *MaskedPassThruShadow = IRB.CreateAnd( 3521 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3522 3523 Value *ConvertedShadow = convertShadowToScalar(MaskedPassThruShadow, IRB); 3524 Value *NotNull = convertToBool(ConvertedShadow, IRB, "_mscmp"); 3525 3526 Value *PtrOrigin = IRB.CreateLoad(MS.OriginTy, OriginPtr); 3527 Value *Origin = IRB.CreateSelect(NotNull, getOrigin(PassThru), PtrOrigin); 3528 3529 setOrigin(&I, Origin); 3530 } 3531 3532 // Instrument BMI / BMI2 intrinsics. 3533 // All of these intrinsics are Z = I(X, Y) 3534 // where the types of all operands and the result match, and are either i32 or 3535 // i64. The following instrumentation happens to work for all of them: 3536 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3537 void handleBmiIntrinsic(IntrinsicInst &I) { 3538 IRBuilder<> IRB(&I); 3539 Type *ShadowTy = getShadowTy(&I); 3540 3541 // If any bit of the mask operand is poisoned, then the whole thing is. 3542 Value *SMask = getShadow(&I, 1); 3543 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3544 ShadowTy); 3545 // Apply the same intrinsic to the shadow of the first operand. 3546 Value *S = IRB.CreateCall(I.getCalledFunction(), 3547 {getShadow(&I, 0), I.getOperand(1)}); 3548 S = IRB.CreateOr(SMask, S); 3549 setShadow(&I, S); 3550 setOriginForNaryOp(I); 3551 } 3552 3553 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3554 SmallVector<int, 8> Mask; 3555 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3556 Mask.append(2, X); 3557 } 3558 return Mask; 3559 } 3560 3561 // Instrument pclmul intrinsics. 3562 // These intrinsics operate either on odd or on even elements of the input 3563 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3564 // Replace the unused elements with copies of the used ones, ex: 3565 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3566 // or 3567 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3568 // and then apply the usual shadow combining logic. 3569 void handlePclmulIntrinsic(IntrinsicInst &I) { 3570 IRBuilder<> IRB(&I); 3571 unsigned Width = 3572 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3573 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3574 "pclmul 3rd operand must be a constant"); 3575 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3576 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3577 getPclmulMask(Width, Imm & 0x01)); 3578 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3579 getPclmulMask(Width, Imm & 0x10)); 3580 ShadowAndOriginCombiner SOC(this, IRB); 3581 SOC.Add(Shuf0, getOrigin(&I, 0)); 3582 SOC.Add(Shuf1, getOrigin(&I, 1)); 3583 SOC.Done(&I); 3584 } 3585 3586 // Instrument _mm_*_sd|ss intrinsics 3587 void handleUnarySdSsIntrinsic(IntrinsicInst &I) { 3588 IRBuilder<> IRB(&I); 3589 unsigned Width = 3590 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3591 Value *First = getShadow(&I, 0); 3592 Value *Second = getShadow(&I, 1); 3593 // First element of second operand, remaining elements of first operand 3594 SmallVector<int, 16> Mask; 3595 Mask.push_back(Width); 3596 for (unsigned i = 1; i < Width; i++) 3597 Mask.push_back(i); 3598 Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask); 3599 3600 setShadow(&I, Shadow); 3601 setOriginForNaryOp(I); 3602 } 3603 3604 void handleVtestIntrinsic(IntrinsicInst &I) { 3605 IRBuilder<> IRB(&I); 3606 Value *Shadow0 = getShadow(&I, 0); 3607 Value *Shadow1 = getShadow(&I, 1); 3608 Value *Or = IRB.CreateOr(Shadow0, Shadow1); 3609 Value *NZ = IRB.CreateICmpNE(Or, Constant::getNullValue(Or->getType())); 3610 Value *Scalar = convertShadowToScalar(NZ, IRB); 3611 Value *Shadow = IRB.CreateZExt(Scalar, getShadowTy(&I)); 3612 3613 setShadow(&I, Shadow); 3614 setOriginForNaryOp(I); 3615 } 3616 3617 void handleBinarySdSsIntrinsic(IntrinsicInst &I) { 3618 IRBuilder<> IRB(&I); 3619 unsigned Width = 3620 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3621 Value *First = getShadow(&I, 0); 3622 Value *Second = getShadow(&I, 1); 3623 Value *OrShadow = IRB.CreateOr(First, Second); 3624 // First element of both OR'd together, remaining elements of first operand 3625 SmallVector<int, 16> Mask; 3626 Mask.push_back(Width); 3627 for (unsigned i = 1; i < Width; i++) 3628 Mask.push_back(i); 3629 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask); 3630 3631 setShadow(&I, Shadow); 3632 setOriginForNaryOp(I); 3633 } 3634 3635 // Instrument abs intrinsic. 3636 // handleUnknownIntrinsic can't handle it because of the last 3637 // is_int_min_poison argument which does not match the result type. 3638 void handleAbsIntrinsic(IntrinsicInst &I) { 3639 assert(I.getType()->isIntOrIntVectorTy()); 3640 assert(I.getArgOperand(0)->getType() == I.getType()); 3641 3642 // FIXME: Handle is_int_min_poison. 3643 IRBuilder<> IRB(&I); 3644 setShadow(&I, getShadow(&I, 0)); 3645 setOrigin(&I, getOrigin(&I, 0)); 3646 } 3647 3648 void visitIntrinsicInst(IntrinsicInst &I) { 3649 switch (I.getIntrinsicID()) { 3650 case Intrinsic::abs: 3651 handleAbsIntrinsic(I); 3652 break; 3653 case Intrinsic::lifetime_start: 3654 handleLifetimeStart(I); 3655 break; 3656 case Intrinsic::launder_invariant_group: 3657 case Intrinsic::strip_invariant_group: 3658 handleInvariantGroup(I); 3659 break; 3660 case Intrinsic::bswap: 3661 handleBswap(I); 3662 break; 3663 case Intrinsic::ctlz: 3664 case Intrinsic::cttz: 3665 handleCountZeroes(I); 3666 break; 3667 case Intrinsic::masked_compressstore: 3668 handleMaskedCompressStore(I); 3669 break; 3670 case Intrinsic::masked_expandload: 3671 handleMaskedExpandLoad(I); 3672 break; 3673 case Intrinsic::masked_gather: 3674 handleMaskedGather(I); 3675 break; 3676 case Intrinsic::masked_scatter: 3677 handleMaskedScatter(I); 3678 break; 3679 case Intrinsic::masked_store: 3680 handleMaskedStore(I); 3681 break; 3682 case Intrinsic::masked_load: 3683 handleMaskedLoad(I); 3684 break; 3685 case Intrinsic::vector_reduce_and: 3686 handleVectorReduceAndIntrinsic(I); 3687 break; 3688 case Intrinsic::vector_reduce_or: 3689 handleVectorReduceOrIntrinsic(I); 3690 break; 3691 case Intrinsic::vector_reduce_add: 3692 case Intrinsic::vector_reduce_xor: 3693 case Intrinsic::vector_reduce_mul: 3694 handleVectorReduceIntrinsic(I); 3695 break; 3696 case Intrinsic::x86_sse_stmxcsr: 3697 handleStmxcsr(I); 3698 break; 3699 case Intrinsic::x86_sse_ldmxcsr: 3700 handleLdmxcsr(I); 3701 break; 3702 case Intrinsic::x86_avx512_vcvtsd2usi64: 3703 case Intrinsic::x86_avx512_vcvtsd2usi32: 3704 case Intrinsic::x86_avx512_vcvtss2usi64: 3705 case Intrinsic::x86_avx512_vcvtss2usi32: 3706 case Intrinsic::x86_avx512_cvttss2usi64: 3707 case Intrinsic::x86_avx512_cvttss2usi: 3708 case Intrinsic::x86_avx512_cvttsd2usi64: 3709 case Intrinsic::x86_avx512_cvttsd2usi: 3710 case Intrinsic::x86_avx512_cvtusi2ss: 3711 case Intrinsic::x86_avx512_cvtusi642sd: 3712 case Intrinsic::x86_avx512_cvtusi642ss: 3713 handleVectorConvertIntrinsic(I, 1, true); 3714 break; 3715 case Intrinsic::x86_sse2_cvtsd2si64: 3716 case Intrinsic::x86_sse2_cvtsd2si: 3717 case Intrinsic::x86_sse2_cvtsd2ss: 3718 case Intrinsic::x86_sse2_cvttsd2si64: 3719 case Intrinsic::x86_sse2_cvttsd2si: 3720 case Intrinsic::x86_sse_cvtss2si64: 3721 case Intrinsic::x86_sse_cvtss2si: 3722 case Intrinsic::x86_sse_cvttss2si64: 3723 case Intrinsic::x86_sse_cvttss2si: 3724 handleVectorConvertIntrinsic(I, 1); 3725 break; 3726 case Intrinsic::x86_sse_cvtps2pi: 3727 case Intrinsic::x86_sse_cvttps2pi: 3728 handleVectorConvertIntrinsic(I, 2); 3729 break; 3730 3731 case Intrinsic::x86_avx512_psll_w_512: 3732 case Intrinsic::x86_avx512_psll_d_512: 3733 case Intrinsic::x86_avx512_psll_q_512: 3734 case Intrinsic::x86_avx512_pslli_w_512: 3735 case Intrinsic::x86_avx512_pslli_d_512: 3736 case Intrinsic::x86_avx512_pslli_q_512: 3737 case Intrinsic::x86_avx512_psrl_w_512: 3738 case Intrinsic::x86_avx512_psrl_d_512: 3739 case Intrinsic::x86_avx512_psrl_q_512: 3740 case Intrinsic::x86_avx512_psra_w_512: 3741 case Intrinsic::x86_avx512_psra_d_512: 3742 case Intrinsic::x86_avx512_psra_q_512: 3743 case Intrinsic::x86_avx512_psrli_w_512: 3744 case Intrinsic::x86_avx512_psrli_d_512: 3745 case Intrinsic::x86_avx512_psrli_q_512: 3746 case Intrinsic::x86_avx512_psrai_w_512: 3747 case Intrinsic::x86_avx512_psrai_d_512: 3748 case Intrinsic::x86_avx512_psrai_q_512: 3749 case Intrinsic::x86_avx512_psra_q_256: 3750 case Intrinsic::x86_avx512_psra_q_128: 3751 case Intrinsic::x86_avx512_psrai_q_256: 3752 case Intrinsic::x86_avx512_psrai_q_128: 3753 case Intrinsic::x86_avx2_psll_w: 3754 case Intrinsic::x86_avx2_psll_d: 3755 case Intrinsic::x86_avx2_psll_q: 3756 case Intrinsic::x86_avx2_pslli_w: 3757 case Intrinsic::x86_avx2_pslli_d: 3758 case Intrinsic::x86_avx2_pslli_q: 3759 case Intrinsic::x86_avx2_psrl_w: 3760 case Intrinsic::x86_avx2_psrl_d: 3761 case Intrinsic::x86_avx2_psrl_q: 3762 case Intrinsic::x86_avx2_psra_w: 3763 case Intrinsic::x86_avx2_psra_d: 3764 case Intrinsic::x86_avx2_psrli_w: 3765 case Intrinsic::x86_avx2_psrli_d: 3766 case Intrinsic::x86_avx2_psrli_q: 3767 case Intrinsic::x86_avx2_psrai_w: 3768 case Intrinsic::x86_avx2_psrai_d: 3769 case Intrinsic::x86_sse2_psll_w: 3770 case Intrinsic::x86_sse2_psll_d: 3771 case Intrinsic::x86_sse2_psll_q: 3772 case Intrinsic::x86_sse2_pslli_w: 3773 case Intrinsic::x86_sse2_pslli_d: 3774 case Intrinsic::x86_sse2_pslli_q: 3775 case Intrinsic::x86_sse2_psrl_w: 3776 case Intrinsic::x86_sse2_psrl_d: 3777 case Intrinsic::x86_sse2_psrl_q: 3778 case Intrinsic::x86_sse2_psra_w: 3779 case Intrinsic::x86_sse2_psra_d: 3780 case Intrinsic::x86_sse2_psrli_w: 3781 case Intrinsic::x86_sse2_psrli_d: 3782 case Intrinsic::x86_sse2_psrli_q: 3783 case Intrinsic::x86_sse2_psrai_w: 3784 case Intrinsic::x86_sse2_psrai_d: 3785 case Intrinsic::x86_mmx_psll_w: 3786 case Intrinsic::x86_mmx_psll_d: 3787 case Intrinsic::x86_mmx_psll_q: 3788 case Intrinsic::x86_mmx_pslli_w: 3789 case Intrinsic::x86_mmx_pslli_d: 3790 case Intrinsic::x86_mmx_pslli_q: 3791 case Intrinsic::x86_mmx_psrl_w: 3792 case Intrinsic::x86_mmx_psrl_d: 3793 case Intrinsic::x86_mmx_psrl_q: 3794 case Intrinsic::x86_mmx_psra_w: 3795 case Intrinsic::x86_mmx_psra_d: 3796 case Intrinsic::x86_mmx_psrli_w: 3797 case Intrinsic::x86_mmx_psrli_d: 3798 case Intrinsic::x86_mmx_psrli_q: 3799 case Intrinsic::x86_mmx_psrai_w: 3800 case Intrinsic::x86_mmx_psrai_d: 3801 handleVectorShiftIntrinsic(I, /* Variable */ false); 3802 break; 3803 case Intrinsic::x86_avx2_psllv_d: 3804 case Intrinsic::x86_avx2_psllv_d_256: 3805 case Intrinsic::x86_avx512_psllv_d_512: 3806 case Intrinsic::x86_avx2_psllv_q: 3807 case Intrinsic::x86_avx2_psllv_q_256: 3808 case Intrinsic::x86_avx512_psllv_q_512: 3809 case Intrinsic::x86_avx2_psrlv_d: 3810 case Intrinsic::x86_avx2_psrlv_d_256: 3811 case Intrinsic::x86_avx512_psrlv_d_512: 3812 case Intrinsic::x86_avx2_psrlv_q: 3813 case Intrinsic::x86_avx2_psrlv_q_256: 3814 case Intrinsic::x86_avx512_psrlv_q_512: 3815 case Intrinsic::x86_avx2_psrav_d: 3816 case Intrinsic::x86_avx2_psrav_d_256: 3817 case Intrinsic::x86_avx512_psrav_d_512: 3818 case Intrinsic::x86_avx512_psrav_q_128: 3819 case Intrinsic::x86_avx512_psrav_q_256: 3820 case Intrinsic::x86_avx512_psrav_q_512: 3821 handleVectorShiftIntrinsic(I, /* Variable */ true); 3822 break; 3823 3824 case Intrinsic::x86_sse2_packsswb_128: 3825 case Intrinsic::x86_sse2_packssdw_128: 3826 case Intrinsic::x86_sse2_packuswb_128: 3827 case Intrinsic::x86_sse41_packusdw: 3828 case Intrinsic::x86_avx2_packsswb: 3829 case Intrinsic::x86_avx2_packssdw: 3830 case Intrinsic::x86_avx2_packuswb: 3831 case Intrinsic::x86_avx2_packusdw: 3832 handleVectorPackIntrinsic(I); 3833 break; 3834 3835 case Intrinsic::x86_mmx_packsswb: 3836 case Intrinsic::x86_mmx_packuswb: 3837 handleVectorPackIntrinsic(I, 16); 3838 break; 3839 3840 case Intrinsic::x86_mmx_packssdw: 3841 handleVectorPackIntrinsic(I, 32); 3842 break; 3843 3844 case Intrinsic::x86_mmx_psad_bw: 3845 case Intrinsic::x86_sse2_psad_bw: 3846 case Intrinsic::x86_avx2_psad_bw: 3847 handleVectorSadIntrinsic(I); 3848 break; 3849 3850 case Intrinsic::x86_sse2_pmadd_wd: 3851 case Intrinsic::x86_avx2_pmadd_wd: 3852 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3853 case Intrinsic::x86_avx2_pmadd_ub_sw: 3854 handleVectorPmaddIntrinsic(I); 3855 break; 3856 3857 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3858 handleVectorPmaddIntrinsic(I, 8); 3859 break; 3860 3861 case Intrinsic::x86_mmx_pmadd_wd: 3862 handleVectorPmaddIntrinsic(I, 16); 3863 break; 3864 3865 case Intrinsic::x86_sse_cmp_ss: 3866 case Intrinsic::x86_sse2_cmp_sd: 3867 case Intrinsic::x86_sse_comieq_ss: 3868 case Intrinsic::x86_sse_comilt_ss: 3869 case Intrinsic::x86_sse_comile_ss: 3870 case Intrinsic::x86_sse_comigt_ss: 3871 case Intrinsic::x86_sse_comige_ss: 3872 case Intrinsic::x86_sse_comineq_ss: 3873 case Intrinsic::x86_sse_ucomieq_ss: 3874 case Intrinsic::x86_sse_ucomilt_ss: 3875 case Intrinsic::x86_sse_ucomile_ss: 3876 case Intrinsic::x86_sse_ucomigt_ss: 3877 case Intrinsic::x86_sse_ucomige_ss: 3878 case Intrinsic::x86_sse_ucomineq_ss: 3879 case Intrinsic::x86_sse2_comieq_sd: 3880 case Intrinsic::x86_sse2_comilt_sd: 3881 case Intrinsic::x86_sse2_comile_sd: 3882 case Intrinsic::x86_sse2_comigt_sd: 3883 case Intrinsic::x86_sse2_comige_sd: 3884 case Intrinsic::x86_sse2_comineq_sd: 3885 case Intrinsic::x86_sse2_ucomieq_sd: 3886 case Intrinsic::x86_sse2_ucomilt_sd: 3887 case Intrinsic::x86_sse2_ucomile_sd: 3888 case Intrinsic::x86_sse2_ucomigt_sd: 3889 case Intrinsic::x86_sse2_ucomige_sd: 3890 case Intrinsic::x86_sse2_ucomineq_sd: 3891 handleVectorCompareScalarIntrinsic(I); 3892 break; 3893 3894 case Intrinsic::x86_avx_cmp_pd_256: 3895 case Intrinsic::x86_avx_cmp_ps_256: 3896 case Intrinsic::x86_sse2_cmp_pd: 3897 case Intrinsic::x86_sse_cmp_ps: 3898 handleVectorComparePackedIntrinsic(I); 3899 break; 3900 3901 case Intrinsic::x86_bmi_bextr_32: 3902 case Intrinsic::x86_bmi_bextr_64: 3903 case Intrinsic::x86_bmi_bzhi_32: 3904 case Intrinsic::x86_bmi_bzhi_64: 3905 case Intrinsic::x86_bmi_pdep_32: 3906 case Intrinsic::x86_bmi_pdep_64: 3907 case Intrinsic::x86_bmi_pext_32: 3908 case Intrinsic::x86_bmi_pext_64: 3909 handleBmiIntrinsic(I); 3910 break; 3911 3912 case Intrinsic::x86_pclmulqdq: 3913 case Intrinsic::x86_pclmulqdq_256: 3914 case Intrinsic::x86_pclmulqdq_512: 3915 handlePclmulIntrinsic(I); 3916 break; 3917 3918 case Intrinsic::x86_sse41_round_sd: 3919 case Intrinsic::x86_sse41_round_ss: 3920 handleUnarySdSsIntrinsic(I); 3921 break; 3922 case Intrinsic::x86_sse2_max_sd: 3923 case Intrinsic::x86_sse_max_ss: 3924 case Intrinsic::x86_sse2_min_sd: 3925 case Intrinsic::x86_sse_min_ss: 3926 handleBinarySdSsIntrinsic(I); 3927 break; 3928 3929 case Intrinsic::x86_avx_vtestc_pd: 3930 case Intrinsic::x86_avx_vtestc_pd_256: 3931 case Intrinsic::x86_avx_vtestc_ps: 3932 case Intrinsic::x86_avx_vtestc_ps_256: 3933 case Intrinsic::x86_avx_vtestnzc_pd: 3934 case Intrinsic::x86_avx_vtestnzc_pd_256: 3935 case Intrinsic::x86_avx_vtestnzc_ps: 3936 case Intrinsic::x86_avx_vtestnzc_ps_256: 3937 case Intrinsic::x86_avx_vtestz_pd: 3938 case Intrinsic::x86_avx_vtestz_pd_256: 3939 case Intrinsic::x86_avx_vtestz_ps: 3940 case Intrinsic::x86_avx_vtestz_ps_256: 3941 case Intrinsic::x86_avx_ptestc_256: 3942 case Intrinsic::x86_avx_ptestnzc_256: 3943 case Intrinsic::x86_avx_ptestz_256: 3944 case Intrinsic::x86_sse41_ptestc: 3945 case Intrinsic::x86_sse41_ptestnzc: 3946 case Intrinsic::x86_sse41_ptestz: 3947 handleVtestIntrinsic(I); 3948 break; 3949 3950 case Intrinsic::fshl: 3951 case Intrinsic::fshr: 3952 handleFunnelShift(I); 3953 break; 3954 3955 case Intrinsic::is_constant: 3956 // The result of llvm.is.constant() is always defined. 3957 setShadow(&I, getCleanShadow(&I)); 3958 setOrigin(&I, getCleanOrigin()); 3959 break; 3960 3961 default: 3962 if (!handleUnknownIntrinsic(I)) 3963 visitInstruction(I); 3964 break; 3965 } 3966 } 3967 3968 void visitLibAtomicLoad(CallBase &CB) { 3969 // Since we use getNextNode here, we can't have CB terminate the BB. 3970 assert(isa<CallInst>(CB)); 3971 3972 IRBuilder<> IRB(&CB); 3973 Value *Size = CB.getArgOperand(0); 3974 Value *SrcPtr = CB.getArgOperand(1); 3975 Value *DstPtr = CB.getArgOperand(2); 3976 Value *Ordering = CB.getArgOperand(3); 3977 // Convert the call to have at least Acquire ordering to make sure 3978 // the shadow operations aren't reordered before it. 3979 Value *NewOrdering = 3980 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3981 CB.setArgOperand(3, NewOrdering); 3982 3983 NextNodeIRBuilder NextIRB(&CB); 3984 Value *SrcShadowPtr, *SrcOriginPtr; 3985 std::tie(SrcShadowPtr, SrcOriginPtr) = 3986 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3987 /*isStore*/ false); 3988 Value *DstShadowPtr = 3989 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3990 /*isStore*/ true) 3991 .first; 3992 3993 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 3994 if (MS.TrackOrigins) { 3995 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 3996 kMinOriginAlignment); 3997 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 3998 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 3999 } 4000 } 4001 4002 void visitLibAtomicStore(CallBase &CB) { 4003 IRBuilder<> IRB(&CB); 4004 Value *Size = CB.getArgOperand(0); 4005 Value *DstPtr = CB.getArgOperand(2); 4006 Value *Ordering = CB.getArgOperand(3); 4007 // Convert the call to have at least Release ordering to make sure 4008 // the shadow operations aren't reordered after it. 4009 Value *NewOrdering = 4010 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 4011 CB.setArgOperand(3, NewOrdering); 4012 4013 Value *DstShadowPtr = 4014 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 4015 /*isStore*/ true) 4016 .first; 4017 4018 // Atomic store always paints clean shadow/origin. See file header. 4019 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 4020 Align(1)); 4021 } 4022 4023 void visitCallBase(CallBase &CB) { 4024 assert(!CB.getMetadata(LLVMContext::MD_nosanitize)); 4025 if (CB.isInlineAsm()) { 4026 // For inline asm (either a call to asm function, or callbr instruction), 4027 // do the usual thing: check argument shadow and mark all outputs as 4028 // clean. Note that any side effects of the inline asm that are not 4029 // immediately visible in its constraints are not handled. 4030 if (ClHandleAsmConservative && MS.CompileKernel) 4031 visitAsmInstruction(CB); 4032 else 4033 visitInstruction(CB); 4034 return; 4035 } 4036 LibFunc LF; 4037 if (TLI->getLibFunc(CB, LF)) { 4038 // libatomic.a functions need to have special handling because there isn't 4039 // a good way to intercept them or compile the library with 4040 // instrumentation. 4041 switch (LF) { 4042 case LibFunc_atomic_load: 4043 if (!isa<CallInst>(CB)) { 4044 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 4045 "Ignoring!\n"; 4046 break; 4047 } 4048 visitLibAtomicLoad(CB); 4049 return; 4050 case LibFunc_atomic_store: 4051 visitLibAtomicStore(CB); 4052 return; 4053 default: 4054 break; 4055 } 4056 } 4057 4058 if (auto *Call = dyn_cast<CallInst>(&CB)) { 4059 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 4060 4061 // We are going to insert code that relies on the fact that the callee 4062 // will become a non-readonly function after it is instrumented by us. To 4063 // prevent this code from being optimized out, mark that function 4064 // non-readonly in advance. 4065 // TODO: We can likely do better than dropping memory() completely here. 4066 AttributeMask B; 4067 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable); 4068 4069 Call->removeFnAttrs(B); 4070 if (Function *Func = Call->getCalledFunction()) { 4071 Func->removeFnAttrs(B); 4072 } 4073 4074 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 4075 } 4076 IRBuilder<> IRB(&CB); 4077 bool MayCheckCall = MS.EagerChecks; 4078 if (Function *Func = CB.getCalledFunction()) { 4079 // __sanitizer_unaligned_{load,store} functions may be called by users 4080 // and always expects shadows in the TLS. So don't check them. 4081 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 4082 } 4083 4084 unsigned ArgOffset = 0; 4085 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 4086 for (const auto &[i, A] : llvm::enumerate(CB.args())) { 4087 if (!A->getType()->isSized()) { 4088 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 4089 continue; 4090 } 4091 unsigned Size = 0; 4092 const DataLayout &DL = F.getParent()->getDataLayout(); 4093 4094 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 4095 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 4096 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 4097 4098 if (EagerCheck) { 4099 insertShadowCheck(A, &CB); 4100 Size = DL.getTypeAllocSize(A->getType()); 4101 } else { 4102 Value *Store = nullptr; 4103 // Compute the Shadow for arg even if it is ByVal, because 4104 // in that case getShadow() will copy the actual arg shadow to 4105 // __msan_param_tls. 4106 Value *ArgShadow = getShadow(A); 4107 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 4108 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 4109 << " Shadow: " << *ArgShadow << "\n"); 4110 if (ByVal) { 4111 // ByVal requires some special handling as it's too big for a single 4112 // load 4113 assert(A->getType()->isPointerTy() && 4114 "ByVal argument is not a pointer!"); 4115 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 4116 if (ArgOffset + Size > kParamTLSSize) 4117 break; 4118 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 4119 MaybeAlign Alignment = std::nullopt; 4120 if (ParamAlignment) 4121 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 4122 Value *AShadowPtr, *AOriginPtr; 4123 std::tie(AShadowPtr, AOriginPtr) = 4124 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 4125 /*isStore*/ false); 4126 if (!PropagateShadow) { 4127 Store = IRB.CreateMemSet(ArgShadowBase, 4128 Constant::getNullValue(IRB.getInt8Ty()), 4129 Size, Alignment); 4130 } else { 4131 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 4132 Alignment, Size); 4133 if (MS.TrackOrigins) { 4134 Value *ArgOriginBase = getOriginPtrForArgument(A, IRB, ArgOffset); 4135 // FIXME: OriginSize should be: 4136 // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) 4137 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 4138 IRB.CreateMemCpy( 4139 ArgOriginBase, 4140 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 4141 AOriginPtr, 4142 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize); 4143 } 4144 } 4145 } else { 4146 // Any other parameters mean we need bit-grained tracking of uninit 4147 // data 4148 Size = DL.getTypeAllocSize(A->getType()); 4149 if (ArgOffset + Size > kParamTLSSize) 4150 break; 4151 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 4152 kShadowTLSAlignment); 4153 Constant *Cst = dyn_cast<Constant>(ArgShadow); 4154 if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { 4155 IRB.CreateStore(getOrigin(A), 4156 getOriginPtrForArgument(A, IRB, ArgOffset)); 4157 } 4158 } 4159 (void)Store; 4160 assert(Store != nullptr); 4161 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 4162 } 4163 assert(Size != 0); 4164 ArgOffset += alignTo(Size, kShadowTLSAlignment); 4165 } 4166 LLVM_DEBUG(dbgs() << " done with call args\n"); 4167 4168 FunctionType *FT = CB.getFunctionType(); 4169 if (FT->isVarArg()) { 4170 VAHelper->visitCallBase(CB, IRB); 4171 } 4172 4173 // Now, get the shadow for the RetVal. 4174 if (!CB.getType()->isSized()) 4175 return; 4176 // Don't emit the epilogue for musttail call returns. 4177 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 4178 return; 4179 4180 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 4181 setShadow(&CB, getCleanShadow(&CB)); 4182 setOrigin(&CB, getCleanOrigin()); 4183 return; 4184 } 4185 4186 IRBuilder<> IRBBefore(&CB); 4187 // Until we have full dynamic coverage, make sure the retval shadow is 0. 4188 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 4189 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 4190 kShadowTLSAlignment); 4191 BasicBlock::iterator NextInsn; 4192 if (isa<CallInst>(CB)) { 4193 NextInsn = ++CB.getIterator(); 4194 assert(NextInsn != CB.getParent()->end()); 4195 } else { 4196 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 4197 if (!NormalDest->getSinglePredecessor()) { 4198 // FIXME: this case is tricky, so we are just conservative here. 4199 // Perhaps we need to split the edge between this BB and NormalDest, 4200 // but a naive attempt to use SplitEdge leads to a crash. 4201 setShadow(&CB, getCleanShadow(&CB)); 4202 setOrigin(&CB, getCleanOrigin()); 4203 return; 4204 } 4205 // FIXME: NextInsn is likely in a basic block that has not been visited 4206 // yet. Anything inserted there will be instrumented by MSan later! 4207 NextInsn = NormalDest->getFirstInsertionPt(); 4208 assert(NextInsn != NormalDest->end() && 4209 "Could not find insertion point for retval shadow load"); 4210 } 4211 IRBuilder<> IRBAfter(&*NextInsn); 4212 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 4213 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 4214 kShadowTLSAlignment, "_msret"); 4215 setShadow(&CB, RetvalShadow); 4216 if (MS.TrackOrigins) 4217 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 4218 getOriginPtrForRetval(IRBAfter))); 4219 } 4220 4221 bool isAMustTailRetVal(Value *RetVal) { 4222 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 4223 RetVal = I->getOperand(0); 4224 } 4225 if (auto *I = dyn_cast<CallInst>(RetVal)) { 4226 return I->isMustTailCall(); 4227 } 4228 return false; 4229 } 4230 4231 void visitReturnInst(ReturnInst &I) { 4232 IRBuilder<> IRB(&I); 4233 Value *RetVal = I.getReturnValue(); 4234 if (!RetVal) 4235 return; 4236 // Don't emit the epilogue for musttail call returns. 4237 if (isAMustTailRetVal(RetVal)) 4238 return; 4239 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 4240 bool HasNoUndef = F.hasRetAttribute(Attribute::NoUndef); 4241 bool StoreShadow = !(MS.EagerChecks && HasNoUndef); 4242 // FIXME: Consider using SpecialCaseList to specify a list of functions that 4243 // must always return fully initialized values. For now, we hardcode "main". 4244 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main"); 4245 4246 Value *Shadow = getShadow(RetVal); 4247 bool StoreOrigin = true; 4248 if (EagerCheck) { 4249 insertShadowCheck(RetVal, &I); 4250 Shadow = getCleanShadow(RetVal); 4251 StoreOrigin = false; 4252 } 4253 4254 // The caller may still expect information passed over TLS if we pass our 4255 // check 4256 if (StoreShadow) { 4257 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 4258 if (MS.TrackOrigins && StoreOrigin) 4259 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 4260 } 4261 } 4262 4263 void visitPHINode(PHINode &I) { 4264 IRBuilder<> IRB(&I); 4265 if (!PropagateShadow) { 4266 setShadow(&I, getCleanShadow(&I)); 4267 setOrigin(&I, getCleanOrigin()); 4268 return; 4269 } 4270 4271 ShadowPHINodes.push_back(&I); 4272 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 4273 "_msphi_s")); 4274 if (MS.TrackOrigins) 4275 setOrigin( 4276 &I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), "_msphi_o")); 4277 } 4278 4279 Value *getLocalVarIdptr(AllocaInst &I) { 4280 ConstantInt *IntConst = 4281 ConstantInt::get(Type::getInt32Ty((*F.getParent()).getContext()), 0); 4282 return new GlobalVariable(*F.getParent(), IntConst->getType(), 4283 /*isConstant=*/false, GlobalValue::PrivateLinkage, 4284 IntConst); 4285 } 4286 4287 Value *getLocalVarDescription(AllocaInst &I) { 4288 return createPrivateConstGlobalForString(*F.getParent(), I.getName()); 4289 } 4290 4291 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 4292 if (PoisonStack && ClPoisonStackWithCall) { 4293 IRB.CreateCall(MS.MsanPoisonStackFn, 4294 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 4295 } else { 4296 Value *ShadowBase, *OriginBase; 4297 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 4298 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 4299 4300 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 4301 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign()); 4302 } 4303 4304 if (PoisonStack && MS.TrackOrigins) { 4305 Value *Idptr = getLocalVarIdptr(I); 4306 if (ClPrintStackNames) { 4307 Value *Descr = getLocalVarDescription(I); 4308 IRB.CreateCall(MS.MsanSetAllocaOriginWithDescriptionFn, 4309 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 4310 IRB.CreatePointerCast(Idptr, IRB.getInt8PtrTy()), 4311 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 4312 } else { 4313 IRB.CreateCall(MS.MsanSetAllocaOriginNoDescriptionFn, 4314 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 4315 IRB.CreatePointerCast(Idptr, IRB.getInt8PtrTy())}); 4316 } 4317 } 4318 } 4319 4320 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 4321 Value *Descr = getLocalVarDescription(I); 4322 if (PoisonStack) { 4323 IRB.CreateCall(MS.MsanPoisonAllocaFn, 4324 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 4325 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 4326 } else { 4327 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 4328 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 4329 } 4330 } 4331 4332 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 4333 if (!InsPoint) 4334 InsPoint = &I; 4335 NextNodeIRBuilder IRB(InsPoint); 4336 const DataLayout &DL = F.getParent()->getDataLayout(); 4337 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 4338 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 4339 if (I.isArrayAllocation()) 4340 Len = IRB.CreateMul(Len, 4341 IRB.CreateZExtOrTrunc(I.getArraySize(), MS.IntptrTy)); 4342 4343 if (MS.CompileKernel) 4344 poisonAllocaKmsan(I, IRB, Len); 4345 else 4346 poisonAllocaUserspace(I, IRB, Len); 4347 } 4348 4349 void visitAllocaInst(AllocaInst &I) { 4350 setShadow(&I, getCleanShadow(&I)); 4351 setOrigin(&I, getCleanOrigin()); 4352 // We'll get to this alloca later unless it's poisoned at the corresponding 4353 // llvm.lifetime.start. 4354 AllocaSet.insert(&I); 4355 } 4356 4357 void visitSelectInst(SelectInst &I) { 4358 IRBuilder<> IRB(&I); 4359 // a = select b, c, d 4360 Value *B = I.getCondition(); 4361 Value *C = I.getTrueValue(); 4362 Value *D = I.getFalseValue(); 4363 Value *Sb = getShadow(B); 4364 Value *Sc = getShadow(C); 4365 Value *Sd = getShadow(D); 4366 4367 // Result shadow if condition shadow is 0. 4368 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 4369 Value *Sa1; 4370 if (I.getType()->isAggregateType()) { 4371 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 4372 // an extra "select". This results in much more compact IR. 4373 // Sa = select Sb, poisoned, (select b, Sc, Sd) 4374 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 4375 } else { 4376 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 4377 // If Sb (condition is poisoned), look for bits in c and d that are equal 4378 // and both unpoisoned. 4379 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 4380 4381 // Cast arguments to shadow-compatible type. 4382 C = CreateAppToShadowCast(IRB, C); 4383 D = CreateAppToShadowCast(IRB, D); 4384 4385 // Result shadow if condition shadow is 1. 4386 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 4387 } 4388 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 4389 setShadow(&I, Sa); 4390 if (MS.TrackOrigins) { 4391 // Origins are always i32, so any vector conditions must be flattened. 4392 // FIXME: consider tracking vector origins for app vectors? 4393 if (B->getType()->isVectorTy()) { 4394 Type *FlatTy = getShadowTyNoVec(B->getType()); 4395 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 4396 ConstantInt::getNullValue(FlatTy)); 4397 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 4398 ConstantInt::getNullValue(FlatTy)); 4399 } 4400 // a = select b, c, d 4401 // Oa = Sb ? Ob : (b ? Oc : Od) 4402 setOrigin( 4403 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 4404 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 4405 getOrigin(I.getFalseValue())))); 4406 } 4407 } 4408 4409 void visitLandingPadInst(LandingPadInst &I) { 4410 // Do nothing. 4411 // See https://github.com/google/sanitizers/issues/504 4412 setShadow(&I, getCleanShadow(&I)); 4413 setOrigin(&I, getCleanOrigin()); 4414 } 4415 4416 void visitCatchSwitchInst(CatchSwitchInst &I) { 4417 setShadow(&I, getCleanShadow(&I)); 4418 setOrigin(&I, getCleanOrigin()); 4419 } 4420 4421 void visitFuncletPadInst(FuncletPadInst &I) { 4422 setShadow(&I, getCleanShadow(&I)); 4423 setOrigin(&I, getCleanOrigin()); 4424 } 4425 4426 void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); } 4427 4428 void visitExtractValueInst(ExtractValueInst &I) { 4429 IRBuilder<> IRB(&I); 4430 Value *Agg = I.getAggregateOperand(); 4431 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 4432 Value *AggShadow = getShadow(Agg); 4433 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4434 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 4435 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 4436 setShadow(&I, ResShadow); 4437 setOriginForNaryOp(I); 4438 } 4439 4440 void visitInsertValueInst(InsertValueInst &I) { 4441 IRBuilder<> IRB(&I); 4442 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 4443 Value *AggShadow = getShadow(I.getAggregateOperand()); 4444 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 4445 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4446 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 4447 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 4448 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 4449 setShadow(&I, Res); 4450 setOriginForNaryOp(I); 4451 } 4452 4453 void dumpInst(Instruction &I) { 4454 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 4455 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 4456 } else { 4457 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 4458 } 4459 errs() << "QQQ " << I << "\n"; 4460 } 4461 4462 void visitResumeInst(ResumeInst &I) { 4463 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4464 // Nothing to do here. 4465 } 4466 4467 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4468 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4469 // Nothing to do here. 4470 } 4471 4472 void visitCatchReturnInst(CatchReturnInst &CRI) { 4473 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4474 // Nothing to do here. 4475 } 4476 4477 void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I, 4478 IRBuilder<> &IRB, const DataLayout &DL, 4479 bool isOutput) { 4480 // For each assembly argument, we check its value for being initialized. 4481 // If the argument is a pointer, we assume it points to a single element 4482 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4483 // Each such pointer is instrumented with a call to the runtime library. 4484 Type *OpType = Operand->getType(); 4485 // Check the operand value itself. 4486 insertShadowCheck(Operand, &I); 4487 if (!OpType->isPointerTy() || !isOutput) { 4488 assert(!isOutput); 4489 return; 4490 } 4491 if (!ElemTy->isSized()) 4492 return; 4493 int Size = DL.getTypeStoreSize(ElemTy); 4494 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 4495 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 4496 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 4497 } 4498 4499 /// Get the number of output arguments returned by pointers. 4500 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4501 int NumRetOutputs = 0; 4502 int NumOutputs = 0; 4503 Type *RetTy = cast<Value>(CB)->getType(); 4504 if (!RetTy->isVoidTy()) { 4505 // Register outputs are returned via the CallInst return value. 4506 auto *ST = dyn_cast<StructType>(RetTy); 4507 if (ST) 4508 NumRetOutputs = ST->getNumElements(); 4509 else 4510 NumRetOutputs = 1; 4511 } 4512 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4513 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 4514 switch (Info.Type) { 4515 case InlineAsm::isOutput: 4516 NumOutputs++; 4517 break; 4518 default: 4519 break; 4520 } 4521 } 4522 return NumOutputs - NumRetOutputs; 4523 } 4524 4525 void visitAsmInstruction(Instruction &I) { 4526 // Conservative inline assembly handling: check for poisoned shadow of 4527 // asm() arguments, then unpoison the result and all the memory locations 4528 // pointed to by those arguments. 4529 // An inline asm() statement in C++ contains lists of input and output 4530 // arguments used by the assembly code. These are mapped to operands of the 4531 // CallInst as follows: 4532 // - nR register outputs ("=r) are returned by value in a single structure 4533 // (SSA value of the CallInst); 4534 // - nO other outputs ("=m" and others) are returned by pointer as first 4535 // nO operands of the CallInst; 4536 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4537 // remaining nI operands. 4538 // The total number of asm() arguments in the source is nR+nO+nI, and the 4539 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4540 // function to be called). 4541 const DataLayout &DL = F.getParent()->getDataLayout(); 4542 CallBase *CB = cast<CallBase>(&I); 4543 IRBuilder<> IRB(&I); 4544 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4545 int OutputArgs = getNumOutputArgs(IA, CB); 4546 // The last operand of a CallInst is the function itself. 4547 int NumOperands = CB->getNumOperands() - 1; 4548 4549 // Check input arguments. Doing so before unpoisoning output arguments, so 4550 // that we won't overwrite uninit values before checking them. 4551 for (int i = OutputArgs; i < NumOperands; i++) { 4552 Value *Operand = CB->getOperand(i); 4553 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 4554 /*isOutput*/ false); 4555 } 4556 // Unpoison output arguments. This must happen before the actual InlineAsm 4557 // call, so that the shadow for memory published in the asm() statement 4558 // remains valid. 4559 for (int i = 0; i < OutputArgs; i++) { 4560 Value *Operand = CB->getOperand(i); 4561 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 4562 /*isOutput*/ true); 4563 } 4564 4565 setShadow(&I, getCleanShadow(&I)); 4566 setOrigin(&I, getCleanOrigin()); 4567 } 4568 4569 void visitFreezeInst(FreezeInst &I) { 4570 // Freeze always returns a fully defined value. 4571 setShadow(&I, getCleanShadow(&I)); 4572 setOrigin(&I, getCleanOrigin()); 4573 } 4574 4575 void visitInstruction(Instruction &I) { 4576 // Everything else: stop propagating and check for poisoned shadow. 4577 if (ClDumpStrictInstructions) 4578 dumpInst(I); 4579 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4580 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4581 Value *Operand = I.getOperand(i); 4582 if (Operand->getType()->isSized()) 4583 insertShadowCheck(Operand, &I); 4584 } 4585 setShadow(&I, getCleanShadow(&I)); 4586 setOrigin(&I, getCleanOrigin()); 4587 } 4588 }; 4589 4590 /// AMD64-specific implementation of VarArgHelper. 4591 struct VarArgAMD64Helper : public VarArgHelper { 4592 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4593 // See a comment in visitCallBase for more details. 4594 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4595 static const unsigned AMD64FpEndOffsetSSE = 176; 4596 // If SSE is disabled, fp_offset in va_list is zero. 4597 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4598 4599 unsigned AMD64FpEndOffset; 4600 Function &F; 4601 MemorySanitizer &MS; 4602 MemorySanitizerVisitor &MSV; 4603 Value *VAArgTLSCopy = nullptr; 4604 Value *VAArgTLSOriginCopy = nullptr; 4605 Value *VAArgOverflowSize = nullptr; 4606 4607 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4608 4609 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4610 4611 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4612 MemorySanitizerVisitor &MSV) 4613 : F(F), MS(MS), MSV(MSV) { 4614 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4615 for (const auto &Attr : F.getAttributes().getFnAttrs()) { 4616 if (Attr.isStringAttribute() && 4617 (Attr.getKindAsString() == "target-features")) { 4618 if (Attr.getValueAsString().contains("-sse")) 4619 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4620 break; 4621 } 4622 } 4623 } 4624 4625 ArgKind classifyArgument(Value *arg) { 4626 // A very rough approximation of X86_64 argument classification rules. 4627 Type *T = arg->getType(); 4628 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4629 return AK_FloatingPoint; 4630 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4631 return AK_GeneralPurpose; 4632 if (T->isPointerTy()) 4633 return AK_GeneralPurpose; 4634 return AK_Memory; 4635 } 4636 4637 // For VarArg functions, store the argument shadow in an ABI-specific format 4638 // that corresponds to va_list layout. 4639 // We do this because Clang lowers va_arg in the frontend, and this pass 4640 // only sees the low level code that deals with va_list internals. 4641 // A much easier alternative (provided that Clang emits va_arg instructions) 4642 // would have been to associate each live instance of va_list with a copy of 4643 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4644 // order. 4645 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4646 unsigned GpOffset = 0; 4647 unsigned FpOffset = AMD64GpEndOffset; 4648 unsigned OverflowOffset = AMD64FpEndOffset; 4649 const DataLayout &DL = F.getParent()->getDataLayout(); 4650 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 4651 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4652 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4653 if (IsByVal) { 4654 // ByVal arguments always go to the overflow area. 4655 // Fixed arguments passed through the overflow area will be stepped 4656 // over by va_start, so don't count them towards the offset. 4657 if (IsFixed) 4658 continue; 4659 assert(A->getType()->isPointerTy()); 4660 Type *RealTy = CB.getParamByValType(ArgNo); 4661 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4662 Value *ShadowBase = getShadowPtrForVAArgument( 4663 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4664 Value *OriginBase = nullptr; 4665 if (MS.TrackOrigins) 4666 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4667 OverflowOffset += alignTo(ArgSize, 8); 4668 if (!ShadowBase) 4669 continue; 4670 Value *ShadowPtr, *OriginPtr; 4671 std::tie(ShadowPtr, OriginPtr) = 4672 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4673 /*isStore*/ false); 4674 4675 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4676 kShadowTLSAlignment, ArgSize); 4677 if (MS.TrackOrigins) 4678 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4679 kShadowTLSAlignment, ArgSize); 4680 } else { 4681 ArgKind AK = classifyArgument(A); 4682 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4683 AK = AK_Memory; 4684 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4685 AK = AK_Memory; 4686 Value *ShadowBase, *OriginBase = nullptr; 4687 switch (AK) { 4688 case AK_GeneralPurpose: 4689 ShadowBase = 4690 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4691 if (MS.TrackOrigins) 4692 OriginBase = getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4693 GpOffset += 8; 4694 break; 4695 case AK_FloatingPoint: 4696 ShadowBase = 4697 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4698 if (MS.TrackOrigins) 4699 OriginBase = getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4700 FpOffset += 16; 4701 break; 4702 case AK_Memory: 4703 if (IsFixed) 4704 continue; 4705 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4706 ShadowBase = 4707 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4708 if (MS.TrackOrigins) 4709 OriginBase = 4710 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4711 OverflowOffset += alignTo(ArgSize, 8); 4712 } 4713 // Take fixed arguments into account for GpOffset and FpOffset, 4714 // but don't actually store shadows for them. 4715 // TODO(glider): don't call get*PtrForVAArgument() for them. 4716 if (IsFixed) 4717 continue; 4718 if (!ShadowBase) 4719 continue; 4720 Value *Shadow = MSV.getShadow(A); 4721 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4722 if (MS.TrackOrigins) { 4723 Value *Origin = MSV.getOrigin(A); 4724 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4725 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4726 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4727 } 4728 } 4729 } 4730 Constant *OverflowSize = 4731 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4732 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4733 } 4734 4735 /// Compute the shadow address for a given va_arg. 4736 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4737 unsigned ArgOffset, unsigned ArgSize) { 4738 // Make sure we don't overflow __msan_va_arg_tls. 4739 if (ArgOffset + ArgSize > kParamTLSSize) 4740 return nullptr; 4741 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4742 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4743 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4744 "_msarg_va_s"); 4745 } 4746 4747 /// Compute the origin address for a given va_arg. 4748 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4749 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4750 // getOriginPtrForVAArgument() is always called after 4751 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4752 // overflow. 4753 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4754 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4755 "_msarg_va_o"); 4756 } 4757 4758 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4759 IRBuilder<> IRB(&I); 4760 Value *VAListTag = I.getArgOperand(0); 4761 Value *ShadowPtr, *OriginPtr; 4762 const Align Alignment = Align(8); 4763 std::tie(ShadowPtr, OriginPtr) = 4764 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4765 /*isStore*/ true); 4766 4767 // Unpoison the whole __va_list_tag. 4768 // FIXME: magic ABI constants. 4769 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4770 /* size */ 24, Alignment, false); 4771 // We shouldn't need to zero out the origins, as they're only checked for 4772 // nonzero shadow. 4773 } 4774 4775 void visitVAStartInst(VAStartInst &I) override { 4776 if (F.getCallingConv() == CallingConv::Win64) 4777 return; 4778 VAStartInstrumentationList.push_back(&I); 4779 unpoisonVAListTagForInst(I); 4780 } 4781 4782 void visitVACopyInst(VACopyInst &I) override { 4783 if (F.getCallingConv() == CallingConv::Win64) 4784 return; 4785 unpoisonVAListTagForInst(I); 4786 } 4787 4788 void finalizeInstrumentation() override { 4789 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4790 "finalizeInstrumentation called twice"); 4791 if (!VAStartInstrumentationList.empty()) { 4792 // If there is a va_start in this function, make a backup copy of 4793 // va_arg_tls somewhere in the function entry block. 4794 IRBuilder<> IRB(MSV.FnPrologueEnd); 4795 VAArgOverflowSize = 4796 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4797 Value *CopySize = IRB.CreateAdd( 4798 ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), VAArgOverflowSize); 4799 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4800 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4801 if (MS.TrackOrigins) { 4802 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4803 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4804 Align(8), CopySize); 4805 } 4806 } 4807 4808 // Instrument va_start. 4809 // Copy va_list shadow from the backup copy of the TLS contents. 4810 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4811 CallInst *OrigInst = VAStartInstrumentationList[i]; 4812 NextNodeIRBuilder IRB(OrigInst); 4813 Value *VAListTag = OrigInst->getArgOperand(0); 4814 4815 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4816 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4817 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4818 ConstantInt::get(MS.IntptrTy, 16)), 4819 PointerType::get(RegSaveAreaPtrTy, 0)); 4820 Value *RegSaveAreaPtr = 4821 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4822 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4823 const Align Alignment = Align(16); 4824 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4825 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4826 Alignment, /*isStore*/ true); 4827 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4828 AMD64FpEndOffset); 4829 if (MS.TrackOrigins) 4830 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4831 Alignment, AMD64FpEndOffset); 4832 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4833 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4834 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4835 ConstantInt::get(MS.IntptrTy, 8)), 4836 PointerType::get(OverflowArgAreaPtrTy, 0)); 4837 Value *OverflowArgAreaPtr = 4838 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4839 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4840 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4841 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4842 Alignment, /*isStore*/ true); 4843 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4844 AMD64FpEndOffset); 4845 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4846 VAArgOverflowSize); 4847 if (MS.TrackOrigins) { 4848 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4849 AMD64FpEndOffset); 4850 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4851 VAArgOverflowSize); 4852 } 4853 } 4854 } 4855 }; 4856 4857 /// MIPS64-specific implementation of VarArgHelper. 4858 struct VarArgMIPS64Helper : public VarArgHelper { 4859 Function &F; 4860 MemorySanitizer &MS; 4861 MemorySanitizerVisitor &MSV; 4862 Value *VAArgTLSCopy = nullptr; 4863 Value *VAArgSize = nullptr; 4864 4865 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4866 4867 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4868 MemorySanitizerVisitor &MSV) 4869 : F(F), MS(MS), MSV(MSV) {} 4870 4871 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4872 unsigned VAArgOffset = 0; 4873 const DataLayout &DL = F.getParent()->getDataLayout(); 4874 for (Value *A : 4875 llvm::drop_begin(CB.args(), CB.getFunctionType()->getNumParams())) { 4876 Triple TargetTriple(F.getParent()->getTargetTriple()); 4877 Value *Base; 4878 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4879 if (TargetTriple.getArch() == Triple::mips64) { 4880 // Adjusting the shadow for argument with size < 8 to match the 4881 // placement of bits in big endian system 4882 if (ArgSize < 8) 4883 VAArgOffset += (8 - ArgSize); 4884 } 4885 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4886 VAArgOffset += ArgSize; 4887 VAArgOffset = alignTo(VAArgOffset, 8); 4888 if (!Base) 4889 continue; 4890 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4891 } 4892 4893 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4894 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4895 // a new class member i.e. it is the total size of all VarArgs. 4896 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4897 } 4898 4899 /// Compute the shadow address for a given va_arg. 4900 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4901 unsigned ArgOffset, unsigned ArgSize) { 4902 // Make sure we don't overflow __msan_va_arg_tls. 4903 if (ArgOffset + ArgSize > kParamTLSSize) 4904 return nullptr; 4905 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4906 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4907 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4908 "_msarg"); 4909 } 4910 4911 void visitVAStartInst(VAStartInst &I) override { 4912 IRBuilder<> IRB(&I); 4913 VAStartInstrumentationList.push_back(&I); 4914 Value *VAListTag = I.getArgOperand(0); 4915 Value *ShadowPtr, *OriginPtr; 4916 const Align Alignment = Align(8); 4917 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4918 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4919 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4920 /* size */ 8, Alignment, false); 4921 } 4922 4923 void visitVACopyInst(VACopyInst &I) override { 4924 IRBuilder<> IRB(&I); 4925 VAStartInstrumentationList.push_back(&I); 4926 Value *VAListTag = I.getArgOperand(0); 4927 Value *ShadowPtr, *OriginPtr; 4928 const Align Alignment = Align(8); 4929 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4930 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4931 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4932 /* size */ 8, Alignment, false); 4933 } 4934 4935 void finalizeInstrumentation() override { 4936 assert(!VAArgSize && !VAArgTLSCopy && 4937 "finalizeInstrumentation called twice"); 4938 IRBuilder<> IRB(MSV.FnPrologueEnd); 4939 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4940 Value *CopySize = 4941 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), VAArgSize); 4942 4943 if (!VAStartInstrumentationList.empty()) { 4944 // If there is a va_start in this function, make a backup copy of 4945 // va_arg_tls somewhere in the function entry block. 4946 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4947 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4948 } 4949 4950 // Instrument va_start. 4951 // Copy va_list shadow from the backup copy of the TLS contents. 4952 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4953 CallInst *OrigInst = VAStartInstrumentationList[i]; 4954 NextNodeIRBuilder IRB(OrigInst); 4955 Value *VAListTag = OrigInst->getArgOperand(0); 4956 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4957 Value *RegSaveAreaPtrPtr = 4958 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4959 PointerType::get(RegSaveAreaPtrTy, 0)); 4960 Value *RegSaveAreaPtr = 4961 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4962 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4963 const Align Alignment = Align(8); 4964 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4965 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4966 Alignment, /*isStore*/ true); 4967 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4968 CopySize); 4969 } 4970 } 4971 }; 4972 4973 /// AArch64-specific implementation of VarArgHelper. 4974 struct VarArgAArch64Helper : public VarArgHelper { 4975 static const unsigned kAArch64GrArgSize = 64; 4976 static const unsigned kAArch64VrArgSize = 128; 4977 4978 static const unsigned AArch64GrBegOffset = 0; 4979 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4980 // Make VR space aligned to 16 bytes. 4981 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4982 static const unsigned AArch64VrEndOffset = 4983 AArch64VrBegOffset + kAArch64VrArgSize; 4984 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4985 4986 Function &F; 4987 MemorySanitizer &MS; 4988 MemorySanitizerVisitor &MSV; 4989 Value *VAArgTLSCopy = nullptr; 4990 Value *VAArgOverflowSize = nullptr; 4991 4992 SmallVector<CallInst *, 16> VAStartInstrumentationList; 4993 4994 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4995 4996 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4997 MemorySanitizerVisitor &MSV) 4998 : F(F), MS(MS), MSV(MSV) {} 4999 5000 ArgKind classifyArgument(Value *arg) { 5001 Type *T = arg->getType(); 5002 if (T->isFPOrFPVectorTy()) 5003 return AK_FloatingPoint; 5004 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) || 5005 (T->isPointerTy())) 5006 return AK_GeneralPurpose; 5007 return AK_Memory; 5008 } 5009 5010 // The instrumentation stores the argument shadow in a non ABI-specific 5011 // format because it does not know which argument is named (since Clang, 5012 // like x86_64 case, lowers the va_args in the frontend and this pass only 5013 // sees the low level code that deals with va_list internals). 5014 // The first seven GR registers are saved in the first 56 bytes of the 5015 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 5016 // the remaining arguments. 5017 // Using constant offset within the va_arg TLS array allows fast copy 5018 // in the finalize instrumentation. 5019 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5020 unsigned GrOffset = AArch64GrBegOffset; 5021 unsigned VrOffset = AArch64VrBegOffset; 5022 unsigned OverflowOffset = AArch64VAEndOffset; 5023 5024 const DataLayout &DL = F.getParent()->getDataLayout(); 5025 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5026 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5027 ArgKind AK = classifyArgument(A); 5028 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 5029 AK = AK_Memory; 5030 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 5031 AK = AK_Memory; 5032 Value *Base; 5033 switch (AK) { 5034 case AK_GeneralPurpose: 5035 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 5036 GrOffset += 8; 5037 break; 5038 case AK_FloatingPoint: 5039 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 5040 VrOffset += 16; 5041 break; 5042 case AK_Memory: 5043 // Don't count fixed arguments in the overflow area - va_start will 5044 // skip right over them. 5045 if (IsFixed) 5046 continue; 5047 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5048 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 5049 alignTo(ArgSize, 8)); 5050 OverflowOffset += alignTo(ArgSize, 8); 5051 break; 5052 } 5053 // Count Gp/Vr fixed arguments to their respective offsets, but don't 5054 // bother to actually store a shadow. 5055 if (IsFixed) 5056 continue; 5057 if (!Base) 5058 continue; 5059 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5060 } 5061 Constant *OverflowSize = 5062 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 5063 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5064 } 5065 5066 /// Compute the shadow address for a given va_arg. 5067 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 5068 unsigned ArgOffset, unsigned ArgSize) { 5069 // Make sure we don't overflow __msan_va_arg_tls. 5070 if (ArgOffset + ArgSize > kParamTLSSize) 5071 return nullptr; 5072 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5073 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5074 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 5075 "_msarg"); 5076 } 5077 5078 void visitVAStartInst(VAStartInst &I) override { 5079 IRBuilder<> IRB(&I); 5080 VAStartInstrumentationList.push_back(&I); 5081 Value *VAListTag = I.getArgOperand(0); 5082 Value *ShadowPtr, *OriginPtr; 5083 const Align Alignment = Align(8); 5084 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 5085 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5086 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5087 /* size */ 32, Alignment, false); 5088 } 5089 5090 void visitVACopyInst(VACopyInst &I) override { 5091 IRBuilder<> IRB(&I); 5092 VAStartInstrumentationList.push_back(&I); 5093 Value *VAListTag = I.getArgOperand(0); 5094 Value *ShadowPtr, *OriginPtr; 5095 const Align Alignment = Align(8); 5096 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 5097 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5098 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5099 /* size */ 32, Alignment, false); 5100 } 5101 5102 // Retrieve a va_list field of 'void*' size. 5103 Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 5104 Value *SaveAreaPtrPtr = IRB.CreateIntToPtr( 5105 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5106 ConstantInt::get(MS.IntptrTy, offset)), 5107 Type::getInt64PtrTy(*MS.C)); 5108 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 5109 } 5110 5111 // Retrieve a va_list field of 'int' size. 5112 Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 5113 Value *SaveAreaPtr = IRB.CreateIntToPtr( 5114 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5115 ConstantInt::get(MS.IntptrTy, offset)), 5116 Type::getInt32PtrTy(*MS.C)); 5117 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 5118 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 5119 } 5120 5121 void finalizeInstrumentation() override { 5122 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5123 "finalizeInstrumentation called twice"); 5124 if (!VAStartInstrumentationList.empty()) { 5125 // If there is a va_start in this function, make a backup copy of 5126 // va_arg_tls somewhere in the function entry block. 5127 IRBuilder<> IRB(MSV.FnPrologueEnd); 5128 VAArgOverflowSize = 5129 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5130 Value *CopySize = IRB.CreateAdd( 5131 ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), VAArgOverflowSize); 5132 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5133 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5134 } 5135 5136 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 5137 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 5138 5139 // Instrument va_start, copy va_list shadow from the backup copy of 5140 // the TLS contents. 5141 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 5142 CallInst *OrigInst = VAStartInstrumentationList[i]; 5143 NextNodeIRBuilder IRB(OrigInst); 5144 5145 Value *VAListTag = OrigInst->getArgOperand(0); 5146 5147 // The variadic ABI for AArch64 creates two areas to save the incoming 5148 // argument registers (one for 64-bit general register xn-x7 and another 5149 // for 128-bit FP/SIMD vn-v7). 5150 // We need then to propagate the shadow arguments on both regions 5151 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 5152 // The remaining arguments are saved on shadow for 'va::stack'. 5153 // One caveat is it requires only to propagate the non-named arguments, 5154 // however on the call site instrumentation 'all' the arguments are 5155 // saved. So to copy the shadow values from the va_arg TLS array 5156 // we need to adjust the offset for both GR and VR fields based on 5157 // the __{gr,vr}_offs value (since they are stores based on incoming 5158 // named arguments). 5159 5160 // Read the stack pointer from the va_list. 5161 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 5162 5163 // Read both the __gr_top and __gr_off and add them up. 5164 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 5165 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 5166 5167 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 5168 5169 // Read both the __vr_top and __vr_off and add them up. 5170 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 5171 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 5172 5173 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 5174 5175 // It does not know how many named arguments is being used and, on the 5176 // callsite all the arguments were saved. Since __gr_off is defined as 5177 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 5178 // argument by ignoring the bytes of shadow from named arguments. 5179 Value *GrRegSaveAreaShadowPtrOff = 5180 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 5181 5182 Value *GrRegSaveAreaShadowPtr = 5183 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5184 Align(8), /*isStore*/ true) 5185 .first; 5186 5187 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 5188 GrRegSaveAreaShadowPtrOff); 5189 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 5190 5191 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 5192 GrCopySize); 5193 5194 // Again, but for FP/SIMD values. 5195 Value *VrRegSaveAreaShadowPtrOff = 5196 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 5197 5198 Value *VrRegSaveAreaShadowPtr = 5199 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5200 Align(8), /*isStore*/ true) 5201 .first; 5202 5203 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 5204 IRB.getInt8Ty(), 5205 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 5206 IRB.getInt32(AArch64VrBegOffset)), 5207 VrRegSaveAreaShadowPtrOff); 5208 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 5209 5210 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 5211 VrCopySize); 5212 5213 // And finally for remaining arguments. 5214 Value *StackSaveAreaShadowPtr = 5215 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 5216 Align(16), /*isStore*/ true) 5217 .first; 5218 5219 Value *StackSrcPtr = IRB.CreateInBoundsGEP( 5220 IRB.getInt8Ty(), VAArgTLSCopy, IRB.getInt32(AArch64VAEndOffset)); 5221 5222 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 5223 Align(16), VAArgOverflowSize); 5224 } 5225 } 5226 }; 5227 5228 /// PowerPC64-specific implementation of VarArgHelper. 5229 struct VarArgPowerPC64Helper : public VarArgHelper { 5230 Function &F; 5231 MemorySanitizer &MS; 5232 MemorySanitizerVisitor &MSV; 5233 Value *VAArgTLSCopy = nullptr; 5234 Value *VAArgSize = nullptr; 5235 5236 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5237 5238 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 5239 MemorySanitizerVisitor &MSV) 5240 : F(F), MS(MS), MSV(MSV) {} 5241 5242 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5243 // For PowerPC, we need to deal with alignment of stack arguments - 5244 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 5245 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 5246 // For that reason, we compute current offset from stack pointer (which is 5247 // always properly aligned), and offset for the first vararg, then subtract 5248 // them. 5249 unsigned VAArgBase; 5250 Triple TargetTriple(F.getParent()->getTargetTriple()); 5251 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 5252 // and 32 bytes for ABIv2. This is usually determined by target 5253 // endianness, but in theory could be overridden by function attribute. 5254 if (TargetTriple.getArch() == Triple::ppc64) 5255 VAArgBase = 48; 5256 else 5257 VAArgBase = 32; 5258 unsigned VAArgOffset = VAArgBase; 5259 const DataLayout &DL = F.getParent()->getDataLayout(); 5260 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5261 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5262 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 5263 if (IsByVal) { 5264 assert(A->getType()->isPointerTy()); 5265 Type *RealTy = CB.getParamByValType(ArgNo); 5266 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 5267 Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(8)); 5268 if (ArgAlign < 8) 5269 ArgAlign = Align(8); 5270 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 5271 if (!IsFixed) { 5272 Value *Base = getShadowPtrForVAArgument( 5273 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 5274 if (Base) { 5275 Value *AShadowPtr, *AOriginPtr; 5276 std::tie(AShadowPtr, AOriginPtr) = 5277 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 5278 kShadowTLSAlignment, /*isStore*/ false); 5279 5280 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 5281 kShadowTLSAlignment, ArgSize); 5282 } 5283 } 5284 VAArgOffset += alignTo(ArgSize, Align(8)); 5285 } else { 5286 Value *Base; 5287 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 5288 Align ArgAlign = Align(8); 5289 if (A->getType()->isArrayTy()) { 5290 // Arrays are aligned to element size, except for long double 5291 // arrays, which are aligned to 8 bytes. 5292 Type *ElementTy = A->getType()->getArrayElementType(); 5293 if (!ElementTy->isPPC_FP128Ty()) 5294 ArgAlign = Align(DL.getTypeAllocSize(ElementTy)); 5295 } else if (A->getType()->isVectorTy()) { 5296 // Vectors are naturally aligned. 5297 ArgAlign = Align(ArgSize); 5298 } 5299 if (ArgAlign < 8) 5300 ArgAlign = Align(8); 5301 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 5302 if (DL.isBigEndian()) { 5303 // Adjusting the shadow for argument with size < 8 to match the 5304 // placement of bits in big endian system 5305 if (ArgSize < 8) 5306 VAArgOffset += (8 - ArgSize); 5307 } 5308 if (!IsFixed) { 5309 Base = getShadowPtrForVAArgument(A->getType(), IRB, 5310 VAArgOffset - VAArgBase, ArgSize); 5311 if (Base) 5312 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 5313 } 5314 VAArgOffset += ArgSize; 5315 VAArgOffset = alignTo(VAArgOffset, Align(8)); 5316 } 5317 if (IsFixed) 5318 VAArgBase = VAArgOffset; 5319 } 5320 5321 Constant *TotalVAArgSize = 5322 ConstantInt::get(IRB.getInt64Ty(), VAArgOffset - VAArgBase); 5323 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 5324 // a new class member i.e. it is the total size of all VarArgs. 5325 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 5326 } 5327 5328 /// Compute the shadow address for a given va_arg. 5329 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 5330 unsigned ArgOffset, unsigned ArgSize) { 5331 // Make sure we don't overflow __msan_va_arg_tls. 5332 if (ArgOffset + ArgSize > kParamTLSSize) 5333 return nullptr; 5334 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5335 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5336 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 5337 "_msarg"); 5338 } 5339 5340 void visitVAStartInst(VAStartInst &I) override { 5341 IRBuilder<> IRB(&I); 5342 VAStartInstrumentationList.push_back(&I); 5343 Value *VAListTag = I.getArgOperand(0); 5344 Value *ShadowPtr, *OriginPtr; 5345 const Align Alignment = Align(8); 5346 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 5347 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5348 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5349 /* size */ 8, Alignment, false); 5350 } 5351 5352 void visitVACopyInst(VACopyInst &I) override { 5353 IRBuilder<> IRB(&I); 5354 Value *VAListTag = I.getArgOperand(0); 5355 Value *ShadowPtr, *OriginPtr; 5356 const Align Alignment = Align(8); 5357 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 5358 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 5359 // Unpoison the whole __va_list_tag. 5360 // FIXME: magic ABI constants. 5361 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5362 /* size */ 8, Alignment, false); 5363 } 5364 5365 void finalizeInstrumentation() override { 5366 assert(!VAArgSize && !VAArgTLSCopy && 5367 "finalizeInstrumentation called twice"); 5368 IRBuilder<> IRB(MSV.FnPrologueEnd); 5369 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5370 Value *CopySize = 5371 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), VAArgSize); 5372 5373 if (!VAStartInstrumentationList.empty()) { 5374 // If there is a va_start in this function, make a backup copy of 5375 // va_arg_tls somewhere in the function entry block. 5376 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5377 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5378 } 5379 5380 // Instrument va_start. 5381 // Copy va_list shadow from the backup copy of the TLS contents. 5382 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 5383 CallInst *OrigInst = VAStartInstrumentationList[i]; 5384 NextNodeIRBuilder IRB(OrigInst); 5385 Value *VAListTag = OrigInst->getArgOperand(0); 5386 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5387 Value *RegSaveAreaPtrPtr = 5388 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5389 PointerType::get(RegSaveAreaPtrTy, 0)); 5390 Value *RegSaveAreaPtr = 5391 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5392 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5393 const Align Alignment = Align(8); 5394 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5395 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 5396 Alignment, /*isStore*/ true); 5397 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5398 CopySize); 5399 } 5400 } 5401 }; 5402 5403 /// SystemZ-specific implementation of VarArgHelper. 5404 struct VarArgSystemZHelper : public VarArgHelper { 5405 static const unsigned SystemZGpOffset = 16; 5406 static const unsigned SystemZGpEndOffset = 56; 5407 static const unsigned SystemZFpOffset = 128; 5408 static const unsigned SystemZFpEndOffset = 160; 5409 static const unsigned SystemZMaxVrArgs = 8; 5410 static const unsigned SystemZRegSaveAreaSize = 160; 5411 static const unsigned SystemZOverflowOffset = 160; 5412 static const unsigned SystemZVAListTagSize = 32; 5413 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 5414 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 5415 5416 Function &F; 5417 MemorySanitizer &MS; 5418 MemorySanitizerVisitor &MSV; 5419 Value *VAArgTLSCopy = nullptr; 5420 Value *VAArgTLSOriginCopy = nullptr; 5421 Value *VAArgOverflowSize = nullptr; 5422 5423 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5424 5425 enum class ArgKind { 5426 GeneralPurpose, 5427 FloatingPoint, 5428 Vector, 5429 Memory, 5430 Indirect, 5431 }; 5432 5433 enum class ShadowExtension { None, Zero, Sign }; 5434 5435 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5436 MemorySanitizerVisitor &MSV) 5437 : F(F), MS(MS), MSV(MSV) {} 5438 5439 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 5440 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5441 // only a few possibilities of what it can be. In particular, enums, single 5442 // element structs and large types have already been taken care of. 5443 5444 // Some i128 and fp128 arguments are converted to pointers only in the 5445 // back end. 5446 if (T->isIntegerTy(128) || T->isFP128Ty()) 5447 return ArgKind::Indirect; 5448 if (T->isFloatingPointTy()) 5449 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5450 if (T->isIntegerTy() || T->isPointerTy()) 5451 return ArgKind::GeneralPurpose; 5452 if (T->isVectorTy()) 5453 return ArgKind::Vector; 5454 return ArgKind::Memory; 5455 } 5456 5457 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5458 // ABI says: "One of the simple integer types no more than 64 bits wide. 5459 // ... If such an argument is shorter than 64 bits, replace it by a full 5460 // 64-bit integer representing the same number, using sign or zero 5461 // extension". Shadow for an integer argument has the same type as the 5462 // argument itself, so it can be sign or zero extended as well. 5463 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5464 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5465 if (ZExt) { 5466 assert(!SExt); 5467 return ShadowExtension::Zero; 5468 } 5469 if (SExt) { 5470 assert(!ZExt); 5471 return ShadowExtension::Sign; 5472 } 5473 return ShadowExtension::None; 5474 } 5475 5476 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5477 bool IsSoftFloatABI = CB.getCalledFunction() 5478 ->getFnAttribute("use-soft-float") 5479 .getValueAsBool(); 5480 unsigned GpOffset = SystemZGpOffset; 5481 unsigned FpOffset = SystemZFpOffset; 5482 unsigned VrIndex = 0; 5483 unsigned OverflowOffset = SystemZOverflowOffset; 5484 const DataLayout &DL = F.getParent()->getDataLayout(); 5485 for (const auto &[ArgNo, A] : llvm::enumerate(CB.args())) { 5486 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5487 // SystemZABIInfo does not produce ByVal parameters. 5488 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5489 Type *T = A->getType(); 5490 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 5491 if (AK == ArgKind::Indirect) { 5492 T = PointerType::get(T, 0); 5493 AK = ArgKind::GeneralPurpose; 5494 } 5495 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5496 AK = ArgKind::Memory; 5497 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5498 AK = ArgKind::Memory; 5499 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5500 AK = ArgKind::Memory; 5501 Value *ShadowBase = nullptr; 5502 Value *OriginBase = nullptr; 5503 ShadowExtension SE = ShadowExtension::None; 5504 switch (AK) { 5505 case ArgKind::GeneralPurpose: { 5506 // Always keep track of GpOffset, but store shadow only for varargs. 5507 uint64_t ArgSize = 8; 5508 if (GpOffset + ArgSize <= kParamTLSSize) { 5509 if (!IsFixed) { 5510 SE = getShadowExtension(CB, ArgNo); 5511 uint64_t GapSize = 0; 5512 if (SE == ShadowExtension::None) { 5513 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5514 assert(ArgAllocSize <= ArgSize); 5515 GapSize = ArgSize - ArgAllocSize; 5516 } 5517 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5518 if (MS.TrackOrigins) 5519 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5520 } 5521 GpOffset += ArgSize; 5522 } else { 5523 GpOffset = kParamTLSSize; 5524 } 5525 break; 5526 } 5527 case ArgKind::FloatingPoint: { 5528 // Always keep track of FpOffset, but store shadow only for varargs. 5529 uint64_t ArgSize = 8; 5530 if (FpOffset + ArgSize <= kParamTLSSize) { 5531 if (!IsFixed) { 5532 // PoP says: "A short floating-point datum requires only the 5533 // left-most 32 bit positions of a floating-point register". 5534 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5535 // don't extend shadow and don't mind the gap. 5536 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5537 if (MS.TrackOrigins) 5538 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5539 } 5540 FpOffset += ArgSize; 5541 } else { 5542 FpOffset = kParamTLSSize; 5543 } 5544 break; 5545 } 5546 case ArgKind::Vector: { 5547 // Keep track of VrIndex. No need to store shadow, since vector varargs 5548 // go through AK_Memory. 5549 assert(IsFixed); 5550 VrIndex++; 5551 break; 5552 } 5553 case ArgKind::Memory: { 5554 // Keep track of OverflowOffset and store shadow only for varargs. 5555 // Ignore fixed args, since we need to copy only the vararg portion of 5556 // the overflow area shadow. 5557 if (!IsFixed) { 5558 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5559 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5560 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5561 SE = getShadowExtension(CB, ArgNo); 5562 uint64_t GapSize = 5563 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5564 ShadowBase = 5565 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5566 if (MS.TrackOrigins) 5567 OriginBase = 5568 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5569 OverflowOffset += ArgSize; 5570 } else { 5571 OverflowOffset = kParamTLSSize; 5572 } 5573 } 5574 break; 5575 } 5576 case ArgKind::Indirect: 5577 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5578 } 5579 if (ShadowBase == nullptr) 5580 continue; 5581 Value *Shadow = MSV.getShadow(A); 5582 if (SE != ShadowExtension::None) 5583 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5584 /*Signed*/ SE == ShadowExtension::Sign); 5585 ShadowBase = IRB.CreateIntToPtr( 5586 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5587 IRB.CreateStore(Shadow, ShadowBase); 5588 if (MS.TrackOrigins) { 5589 Value *Origin = MSV.getOrigin(A); 5590 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5591 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5592 kMinOriginAlignment); 5593 } 5594 } 5595 Constant *OverflowSize = ConstantInt::get( 5596 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5597 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5598 } 5599 5600 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5601 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5602 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5603 } 5604 5605 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5606 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5607 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5608 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5609 "_msarg_va_o"); 5610 } 5611 5612 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5613 IRBuilder<> IRB(&I); 5614 Value *VAListTag = I.getArgOperand(0); 5615 Value *ShadowPtr, *OriginPtr; 5616 const Align Alignment = Align(8); 5617 std::tie(ShadowPtr, OriginPtr) = 5618 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5619 /*isStore*/ true); 5620 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5621 SystemZVAListTagSize, Alignment, false); 5622 } 5623 5624 void visitVAStartInst(VAStartInst &I) override { 5625 VAStartInstrumentationList.push_back(&I); 5626 unpoisonVAListTagForInst(I); 5627 } 5628 5629 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5630 5631 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5632 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5633 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5634 IRB.CreateAdd( 5635 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5636 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5637 PointerType::get(RegSaveAreaPtrTy, 0)); 5638 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5639 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5640 const Align Alignment = Align(8); 5641 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5642 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5643 /*isStore*/ true); 5644 // TODO(iii): copy only fragments filled by visitCallBase() 5645 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5646 SystemZRegSaveAreaSize); 5647 if (MS.TrackOrigins) 5648 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5649 Alignment, SystemZRegSaveAreaSize); 5650 } 5651 5652 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5653 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5654 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5655 IRB.CreateAdd( 5656 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5657 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5658 PointerType::get(OverflowArgAreaPtrTy, 0)); 5659 Value *OverflowArgAreaPtr = 5660 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5661 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5662 const Align Alignment = Align(8); 5663 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5664 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5665 Alignment, /*isStore*/ true); 5666 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5667 SystemZOverflowOffset); 5668 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5669 VAArgOverflowSize); 5670 if (MS.TrackOrigins) { 5671 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5672 SystemZOverflowOffset); 5673 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5674 VAArgOverflowSize); 5675 } 5676 } 5677 5678 void finalizeInstrumentation() override { 5679 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5680 "finalizeInstrumentation called twice"); 5681 if (!VAStartInstrumentationList.empty()) { 5682 // If there is a va_start in this function, make a backup copy of 5683 // va_arg_tls somewhere in the function entry block. 5684 IRBuilder<> IRB(MSV.FnPrologueEnd); 5685 VAArgOverflowSize = 5686 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5687 Value *CopySize = 5688 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5689 VAArgOverflowSize); 5690 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5691 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5692 if (MS.TrackOrigins) { 5693 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5694 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5695 Align(8), CopySize); 5696 } 5697 } 5698 5699 // Instrument va_start. 5700 // Copy va_list shadow from the backup copy of the TLS contents. 5701 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5702 VaStartNo < VaStartNum; VaStartNo++) { 5703 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5704 NextNodeIRBuilder IRB(OrigInst); 5705 Value *VAListTag = OrigInst->getArgOperand(0); 5706 copyRegSaveArea(IRB, VAListTag); 5707 copyOverflowArea(IRB, VAListTag); 5708 } 5709 } 5710 }; 5711 5712 /// A no-op implementation of VarArgHelper. 5713 struct VarArgNoOpHelper : public VarArgHelper { 5714 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5715 MemorySanitizerVisitor &MSV) {} 5716 5717 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5718 5719 void visitVAStartInst(VAStartInst &I) override {} 5720 5721 void visitVACopyInst(VACopyInst &I) override {} 5722 5723 void finalizeInstrumentation() override {} 5724 }; 5725 5726 } // end anonymous namespace 5727 5728 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5729 MemorySanitizerVisitor &Visitor) { 5730 // VarArg handling is only implemented on AMD64. False positives are possible 5731 // on other platforms. 5732 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5733 if (TargetTriple.getArch() == Triple::x86_64) 5734 return new VarArgAMD64Helper(Func, Msan, Visitor); 5735 else if (TargetTriple.isMIPS64()) 5736 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5737 else if (TargetTriple.getArch() == Triple::aarch64) 5738 return new VarArgAArch64Helper(Func, Msan, Visitor); 5739 else if (TargetTriple.getArch() == Triple::ppc64 || 5740 TargetTriple.getArch() == Triple::ppc64le) 5741 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5742 else if (TargetTriple.getArch() == Triple::systemz) 5743 return new VarArgSystemZHelper(Func, Msan, Visitor); 5744 else 5745 return new VarArgNoOpHelper(Func, Msan, Visitor); 5746 } 5747 5748 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5749 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5750 return false; 5751 5752 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 5753 return false; 5754 5755 MemorySanitizerVisitor Visitor(F, *this, TLI); 5756 5757 // Clear out memory attributes. 5758 AttributeMask B; 5759 B.addAttribute(Attribute::Memory).addAttribute(Attribute::Speculatable); 5760 F.removeFnAttrs(B); 5761 5762 return Visitor.runOnFunction(); 5763 } 5764