xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
15 /// byte of the application memory, poison the shadow of the malloc-ed
16 /// or alloca-ed memory, load the shadow bits on every memory read,
17 /// propagate the shadow bits through some of the arithmetic
18 /// instruction (including MOV), store the shadow bits on every memory
19 /// write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 ///                           Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwritting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 ///                            Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91 ///
92 ///                      Instrumenting inline assembly.
93 ///
94 /// For inline assembly code LLVM has little idea about which memory locations
95 /// become initialized depending on the arguments. It can be possible to figure
96 /// out which arguments are meant to point to inputs and outputs, but the
97 /// actual semantics can be only visible at runtime. In the Linux kernel it's
98 /// also possible that the arguments only indicate the offset for a base taken
99 /// from a segment register, so it's dangerous to treat any asm() arguments as
100 /// pointers. We take a conservative approach generating calls to
101 ///   __msan_instrument_asm_store(ptr, size)
102 /// , which defer the memory unpoisoning to the runtime library.
103 /// The latter can perform more complex address checks to figure out whether
104 /// it's safe to touch the shadow memory.
105 /// Like with atomic operations, we call __msan_instrument_asm_store() before
106 /// the assembly call, so that changes to the shadow memory will be seen by
107 /// other threads together with main memory initialization.
108 ///
109 ///                  KernelMemorySanitizer (KMSAN) implementation.
110 ///
111 /// The major differences between KMSAN and MSan instrumentation are:
112 ///  - KMSAN always tracks the origins and implies msan-keep-going=true;
113 ///  - KMSAN allocates shadow and origin memory for each page separately, so
114 ///    there are no explicit accesses to shadow and origin in the
115 ///    instrumentation.
116 ///    Shadow and origin values for a particular X-byte memory location
117 ///    (X=1,2,4,8) are accessed through pointers obtained via the
118 ///      __msan_metadata_ptr_for_load_X(ptr)
119 ///      __msan_metadata_ptr_for_store_X(ptr)
120 ///    functions. The corresponding functions check that the X-byte accesses
121 ///    are possible and returns the pointers to shadow and origin memory.
122 ///    Arbitrary sized accesses are handled with:
123 ///      __msan_metadata_ptr_for_load_n(ptr, size)
124 ///      __msan_metadata_ptr_for_store_n(ptr, size);
125 ///  - TLS variables are stored in a single per-task struct. A call to a
126 ///    function __msan_get_context_state() returning a pointer to that struct
127 ///    is inserted into every instrumented function before the entry block;
128 ///  - __msan_warning() takes a 32-bit origin parameter;
129 ///  - local variables are poisoned with __msan_poison_alloca() upon function
130 ///    entry and unpoisoned with __msan_unpoison_alloca() before leaving the
131 ///    function;
132 ///  - the pass doesn't declare any global variables or add global constructors
133 ///    to the translation unit.
134 ///
135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm
136 /// calls, making sure we're on the safe side wrt. possible false positives.
137 ///
138 ///  KernelMemorySanitizer only supports X86_64 at the moment.
139 ///
140 //===----------------------------------------------------------------------===//
141 
142 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
143 #include "llvm/ADT/APInt.h"
144 #include "llvm/ADT/ArrayRef.h"
145 #include "llvm/ADT/DepthFirstIterator.h"
146 #include "llvm/ADT/SmallSet.h"
147 #include "llvm/ADT/SmallString.h"
148 #include "llvm/ADT/SmallVector.h"
149 #include "llvm/ADT/StringExtras.h"
150 #include "llvm/ADT/StringRef.h"
151 #include "llvm/ADT/Triple.h"
152 #include "llvm/Analysis/TargetLibraryInfo.h"
153 #include "llvm/IR/Argument.h"
154 #include "llvm/IR/Attributes.h"
155 #include "llvm/IR/BasicBlock.h"
156 #include "llvm/IR/CallSite.h"
157 #include "llvm/IR/CallingConv.h"
158 #include "llvm/IR/Constant.h"
159 #include "llvm/IR/Constants.h"
160 #include "llvm/IR/DataLayout.h"
161 #include "llvm/IR/DerivedTypes.h"
162 #include "llvm/IR/Function.h"
163 #include "llvm/IR/GlobalValue.h"
164 #include "llvm/IR/GlobalVariable.h"
165 #include "llvm/IR/IRBuilder.h"
166 #include "llvm/IR/InlineAsm.h"
167 #include "llvm/IR/InstVisitor.h"
168 #include "llvm/IR/InstrTypes.h"
169 #include "llvm/IR/Instruction.h"
170 #include "llvm/IR/Instructions.h"
171 #include "llvm/IR/IntrinsicInst.h"
172 #include "llvm/IR/Intrinsics.h"
173 #include "llvm/IR/LLVMContext.h"
174 #include "llvm/IR/MDBuilder.h"
175 #include "llvm/IR/Module.h"
176 #include "llvm/IR/Type.h"
177 #include "llvm/IR/Value.h"
178 #include "llvm/IR/ValueMap.h"
179 #include "llvm/Pass.h"
180 #include "llvm/Support/AtomicOrdering.h"
181 #include "llvm/Support/Casting.h"
182 #include "llvm/Support/CommandLine.h"
183 #include "llvm/Support/Compiler.h"
184 #include "llvm/Support/Debug.h"
185 #include "llvm/Support/ErrorHandling.h"
186 #include "llvm/Support/MathExtras.h"
187 #include "llvm/Support/raw_ostream.h"
188 #include "llvm/Transforms/Instrumentation.h"
189 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
190 #include "llvm/Transforms/Utils/Local.h"
191 #include "llvm/Transforms/Utils/ModuleUtils.h"
192 #include <algorithm>
193 #include <cassert>
194 #include <cstddef>
195 #include <cstdint>
196 #include <memory>
197 #include <string>
198 #include <tuple>
199 
200 using namespace llvm;
201 
202 #define DEBUG_TYPE "msan"
203 
204 static const unsigned kOriginSize = 4;
205 static const unsigned kMinOriginAlignment = 4;
206 static const unsigned kShadowTLSAlignment = 8;
207 
208 // These constants must be kept in sync with the ones in msan.h.
209 static const unsigned kParamTLSSize = 800;
210 static const unsigned kRetvalTLSSize = 800;
211 
212 // Accesses sizes are powers of two: 1, 2, 4, 8.
213 static const size_t kNumberOfAccessSizes = 4;
214 
215 /// Track origins of uninitialized values.
216 ///
217 /// Adds a section to MemorySanitizer report that points to the allocation
218 /// (stack or heap) the uninitialized bits came from originally.
219 static cl::opt<int> ClTrackOrigins("msan-track-origins",
220        cl::desc("Track origins (allocation sites) of poisoned memory"),
221        cl::Hidden, cl::init(0));
222 
223 static cl::opt<bool> ClKeepGoing("msan-keep-going",
224        cl::desc("keep going after reporting a UMR"),
225        cl::Hidden, cl::init(false));
226 
227 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
228        cl::desc("poison uninitialized stack variables"),
229        cl::Hidden, cl::init(true));
230 
231 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
232        cl::desc("poison uninitialized stack variables with a call"),
233        cl::Hidden, cl::init(false));
234 
235 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
236        cl::desc("poison uninitialized stack variables with the given pattern"),
237        cl::Hidden, cl::init(0xff));
238 
239 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
240        cl::desc("poison undef temps"),
241        cl::Hidden, cl::init(true));
242 
243 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
244        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
245        cl::Hidden, cl::init(true));
246 
247 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
248        cl::desc("exact handling of relational integer ICmp"),
249        cl::Hidden, cl::init(false));
250 
251 static cl::opt<bool> ClHandleLifetimeIntrinsics(
252     "msan-handle-lifetime-intrinsics",
253     cl::desc(
254         "when possible, poison scoped variables at the beginning of the scope "
255         "(slower, but more precise)"),
256     cl::Hidden, cl::init(true));
257 
258 // When compiling the Linux kernel, we sometimes see false positives related to
259 // MSan being unable to understand that inline assembly calls may initialize
260 // local variables.
261 // This flag makes the compiler conservatively unpoison every memory location
262 // passed into an assembly call. Note that this may cause false positives.
263 // Because it's impossible to figure out the array sizes, we can only unpoison
264 // the first sizeof(type) bytes for each type* pointer.
265 // The instrumentation is only enabled in KMSAN builds, and only if
266 // -msan-handle-asm-conservative is on. This is done because we may want to
267 // quickly disable assembly instrumentation when it breaks.
268 static cl::opt<bool> ClHandleAsmConservative(
269     "msan-handle-asm-conservative",
270     cl::desc("conservative handling of inline assembly"), cl::Hidden,
271     cl::init(true));
272 
273 // This flag controls whether we check the shadow of the address
274 // operand of load or store. Such bugs are very rare, since load from
275 // a garbage address typically results in SEGV, but still happen
276 // (e.g. only lower bits of address are garbage, or the access happens
277 // early at program startup where malloc-ed memory is more likely to
278 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
279 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
280        cl::desc("report accesses through a pointer which has poisoned shadow"),
281        cl::Hidden, cl::init(true));
282 
283 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
284        cl::desc("print out instructions with default strict semantics"),
285        cl::Hidden, cl::init(false));
286 
287 static cl::opt<int> ClInstrumentationWithCallThreshold(
288     "msan-instrumentation-with-call-threshold",
289     cl::desc(
290         "If the function being instrumented requires more than "
291         "this number of checks and origin stores, use callbacks instead of "
292         "inline checks (-1 means never use callbacks)."),
293     cl::Hidden, cl::init(3500));
294 
295 static cl::opt<bool>
296     ClEnableKmsan("msan-kernel",
297                   cl::desc("Enable KernelMemorySanitizer instrumentation"),
298                   cl::Hidden, cl::init(false));
299 
300 // This is an experiment to enable handling of cases where shadow is a non-zero
301 // compile-time constant. For some unexplainable reason they were silently
302 // ignored in the instrumentation.
303 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
304        cl::desc("Insert checks for constant shadow values"),
305        cl::Hidden, cl::init(false));
306 
307 // This is off by default because of a bug in gold:
308 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
309 static cl::opt<bool> ClWithComdat("msan-with-comdat",
310        cl::desc("Place MSan constructors in comdat sections"),
311        cl::Hidden, cl::init(false));
312 
313 // These options allow to specify custom memory map parameters
314 // See MemoryMapParams for details.
315 static cl::opt<uint64_t> ClAndMask("msan-and-mask",
316                                    cl::desc("Define custom MSan AndMask"),
317                                    cl::Hidden, cl::init(0));
318 
319 static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
320                                    cl::desc("Define custom MSan XorMask"),
321                                    cl::Hidden, cl::init(0));
322 
323 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
324                                       cl::desc("Define custom MSan ShadowBase"),
325                                       cl::Hidden, cl::init(0));
326 
327 static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
328                                       cl::desc("Define custom MSan OriginBase"),
329                                       cl::Hidden, cl::init(0));
330 
331 static const char *const kMsanModuleCtorName = "msan.module_ctor";
332 static const char *const kMsanInitName = "__msan_init";
333 
334 namespace {
335 
336 // Memory map parameters used in application-to-shadow address calculation.
337 // Offset = (Addr & ~AndMask) ^ XorMask
338 // Shadow = ShadowBase + Offset
339 // Origin = OriginBase + Offset
340 struct MemoryMapParams {
341   uint64_t AndMask;
342   uint64_t XorMask;
343   uint64_t ShadowBase;
344   uint64_t OriginBase;
345 };
346 
347 struct PlatformMemoryMapParams {
348   const MemoryMapParams *bits32;
349   const MemoryMapParams *bits64;
350 };
351 
352 } // end anonymous namespace
353 
354 // i386 Linux
355 static const MemoryMapParams Linux_I386_MemoryMapParams = {
356   0x000080000000,  // AndMask
357   0,               // XorMask (not used)
358   0,               // ShadowBase (not used)
359   0x000040000000,  // OriginBase
360 };
361 
362 // x86_64 Linux
363 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
364 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING
365   0x400000000000,  // AndMask
366   0,               // XorMask (not used)
367   0,               // ShadowBase (not used)
368   0x200000000000,  // OriginBase
369 #else
370   0,               // AndMask (not used)
371   0x500000000000,  // XorMask
372   0,               // ShadowBase (not used)
373   0x100000000000,  // OriginBase
374 #endif
375 };
376 
377 // mips64 Linux
378 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
379   0,               // AndMask (not used)
380   0x008000000000,  // XorMask
381   0,               // ShadowBase (not used)
382   0x002000000000,  // OriginBase
383 };
384 
385 // ppc64 Linux
386 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
387   0xE00000000000,  // AndMask
388   0x100000000000,  // XorMask
389   0x080000000000,  // ShadowBase
390   0x1C0000000000,  // OriginBase
391 };
392 
393 // aarch64 Linux
394 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
395   0,               // AndMask (not used)
396   0x06000000000,   // XorMask
397   0,               // ShadowBase (not used)
398   0x01000000000,   // OriginBase
399 };
400 
401 // i386 FreeBSD
402 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
403   0x000180000000,  // AndMask
404   0x000040000000,  // XorMask
405   0x000020000000,  // ShadowBase
406   0x000700000000,  // OriginBase
407 };
408 
409 // x86_64 FreeBSD
410 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
411   0xc00000000000,  // AndMask
412   0x200000000000,  // XorMask
413   0x100000000000,  // ShadowBase
414   0x380000000000,  // OriginBase
415 };
416 
417 // x86_64 NetBSD
418 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
419   0,               // AndMask
420   0x500000000000,  // XorMask
421   0,               // ShadowBase
422   0x100000000000,  // OriginBase
423 };
424 
425 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
426   &Linux_I386_MemoryMapParams,
427   &Linux_X86_64_MemoryMapParams,
428 };
429 
430 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
431   nullptr,
432   &Linux_MIPS64_MemoryMapParams,
433 };
434 
435 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
436   nullptr,
437   &Linux_PowerPC64_MemoryMapParams,
438 };
439 
440 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
441   nullptr,
442   &Linux_AArch64_MemoryMapParams,
443 };
444 
445 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
446   &FreeBSD_I386_MemoryMapParams,
447   &FreeBSD_X86_64_MemoryMapParams,
448 };
449 
450 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
451   nullptr,
452   &NetBSD_X86_64_MemoryMapParams,
453 };
454 
455 namespace {
456 
457 /// Instrument functions of a module to detect uninitialized reads.
458 ///
459 /// Instantiating MemorySanitizer inserts the msan runtime library API function
460 /// declarations into the module if they don't exist already. Instantiating
461 /// ensures the __msan_init function is in the list of global constructors for
462 /// the module.
463 class MemorySanitizer {
464 public:
465   MemorySanitizer(Module &M, MemorySanitizerOptions Options) {
466     this->CompileKernel =
467         ClEnableKmsan.getNumOccurrences() > 0 ? ClEnableKmsan : Options.Kernel;
468     if (ClTrackOrigins.getNumOccurrences() > 0)
469       this->TrackOrigins = ClTrackOrigins;
470     else
471       this->TrackOrigins = this->CompileKernel ? 2 : Options.TrackOrigins;
472     this->Recover = ClKeepGoing.getNumOccurrences() > 0
473                         ? ClKeepGoing
474                         : (this->CompileKernel | Options.Recover);
475     initializeModule(M);
476   }
477 
478   // MSan cannot be moved or copied because of MapParams.
479   MemorySanitizer(MemorySanitizer &&) = delete;
480   MemorySanitizer &operator=(MemorySanitizer &&) = delete;
481   MemorySanitizer(const MemorySanitizer &) = delete;
482   MemorySanitizer &operator=(const MemorySanitizer &) = delete;
483 
484   bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
485 
486 private:
487   friend struct MemorySanitizerVisitor;
488   friend struct VarArgAMD64Helper;
489   friend struct VarArgMIPS64Helper;
490   friend struct VarArgAArch64Helper;
491   friend struct VarArgPowerPC64Helper;
492 
493   void initializeModule(Module &M);
494   void initializeCallbacks(Module &M);
495   void createKernelApi(Module &M);
496   void createUserspaceApi(Module &M);
497 
498   /// True if we're compiling the Linux kernel.
499   bool CompileKernel;
500   /// Track origins (allocation points) of uninitialized values.
501   int TrackOrigins;
502   bool Recover;
503 
504   LLVMContext *C;
505   Type *IntptrTy;
506   Type *OriginTy;
507 
508   // XxxTLS variables represent the per-thread state in MSan and per-task state
509   // in KMSAN.
510   // For the userspace these point to thread-local globals. In the kernel land
511   // they point to the members of a per-task struct obtained via a call to
512   // __msan_get_context_state().
513 
514   /// Thread-local shadow storage for function parameters.
515   Value *ParamTLS;
516 
517   /// Thread-local origin storage for function parameters.
518   Value *ParamOriginTLS;
519 
520   /// Thread-local shadow storage for function return value.
521   Value *RetvalTLS;
522 
523   /// Thread-local origin storage for function return value.
524   Value *RetvalOriginTLS;
525 
526   /// Thread-local shadow storage for in-register va_arg function
527   /// parameters (x86_64-specific).
528   Value *VAArgTLS;
529 
530   /// Thread-local shadow storage for in-register va_arg function
531   /// parameters (x86_64-specific).
532   Value *VAArgOriginTLS;
533 
534   /// Thread-local shadow storage for va_arg overflow area
535   /// (x86_64-specific).
536   Value *VAArgOverflowSizeTLS;
537 
538   /// Thread-local space used to pass origin value to the UMR reporting
539   /// function.
540   Value *OriginTLS;
541 
542   /// Are the instrumentation callbacks set up?
543   bool CallbacksInitialized = false;
544 
545   /// The run-time callback to print a warning.
546   FunctionCallee WarningFn;
547 
548   // These arrays are indexed by log2(AccessSize).
549   FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
550   FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
551 
552   /// Run-time helper that generates a new origin value for a stack
553   /// allocation.
554   FunctionCallee MsanSetAllocaOrigin4Fn;
555 
556   /// Run-time helper that poisons stack on function entry.
557   FunctionCallee MsanPoisonStackFn;
558 
559   /// Run-time helper that records a store (or any event) of an
560   /// uninitialized value and returns an updated origin id encoding this info.
561   FunctionCallee MsanChainOriginFn;
562 
563   /// MSan runtime replacements for memmove, memcpy and memset.
564   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
565 
566   /// KMSAN callback for task-local function argument shadow.
567   StructType *MsanContextStateTy;
568   FunctionCallee MsanGetContextStateFn;
569 
570   /// Functions for poisoning/unpoisoning local variables
571   FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
572 
573   /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin
574   /// pointers.
575   FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
576   FunctionCallee MsanMetadataPtrForLoad_1_8[4];
577   FunctionCallee MsanMetadataPtrForStore_1_8[4];
578   FunctionCallee MsanInstrumentAsmStoreFn;
579 
580   /// Helper to choose between different MsanMetadataPtrXxx().
581   FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
582 
583   /// Memory map parameters used in application-to-shadow calculation.
584   const MemoryMapParams *MapParams;
585 
586   /// Custom memory map parameters used when -msan-shadow-base or
587   // -msan-origin-base is provided.
588   MemoryMapParams CustomMapParams;
589 
590   MDNode *ColdCallWeights;
591 
592   /// Branch weights for origin store.
593   MDNode *OriginStoreWeights;
594 
595   /// An empty volatile inline asm that prevents callback merge.
596   InlineAsm *EmptyAsm;
597 
598   Function *MsanCtorFunction;
599 };
600 
601 /// A legacy function pass for msan instrumentation.
602 ///
603 /// Instruments functions to detect unitialized reads.
604 struct MemorySanitizerLegacyPass : public FunctionPass {
605   // Pass identification, replacement for typeid.
606   static char ID;
607 
608   MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {})
609       : FunctionPass(ID), Options(Options) {}
610   StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; }
611 
612   void getAnalysisUsage(AnalysisUsage &AU) const override {
613     AU.addRequired<TargetLibraryInfoWrapperPass>();
614   }
615 
616   bool runOnFunction(Function &F) override {
617     return MSan->sanitizeFunction(
618         F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
619   }
620   bool doInitialization(Module &M) override;
621 
622   Optional<MemorySanitizer> MSan;
623   MemorySanitizerOptions Options;
624 };
625 
626 } // end anonymous namespace
627 
628 PreservedAnalyses MemorySanitizerPass::run(Function &F,
629                                            FunctionAnalysisManager &FAM) {
630   MemorySanitizer Msan(*F.getParent(), Options);
631   if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
632     return PreservedAnalyses::none();
633   return PreservedAnalyses::all();
634 }
635 
636 char MemorySanitizerLegacyPass::ID = 0;
637 
638 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan",
639                       "MemorySanitizer: detects uninitialized reads.", false,
640                       false)
641 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
642 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan",
643                     "MemorySanitizer: detects uninitialized reads.", false,
644                     false)
645 
646 FunctionPass *
647 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) {
648   return new MemorySanitizerLegacyPass(Options);
649 }
650 
651 /// Create a non-const global initialized with the given string.
652 ///
653 /// Creates a writable global for Str so that we can pass it to the
654 /// run-time lib. Runtime uses first 4 bytes of the string to store the
655 /// frame ID, so the string needs to be mutable.
656 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
657                                                             StringRef Str) {
658   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
659   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
660                             GlobalValue::PrivateLinkage, StrConst, "");
661 }
662 
663 /// Create KMSAN API callbacks.
664 void MemorySanitizer::createKernelApi(Module &M) {
665   IRBuilder<> IRB(*C);
666 
667   // These will be initialized in insertKmsanPrologue().
668   RetvalTLS = nullptr;
669   RetvalOriginTLS = nullptr;
670   ParamTLS = nullptr;
671   ParamOriginTLS = nullptr;
672   VAArgTLS = nullptr;
673   VAArgOriginTLS = nullptr;
674   VAArgOverflowSizeTLS = nullptr;
675   // OriginTLS is unused in the kernel.
676   OriginTLS = nullptr;
677 
678   // __msan_warning() in the kernel takes an origin.
679   WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(),
680                                     IRB.getInt32Ty());
681   // Requests the per-task context state (kmsan_context_state*) from the
682   // runtime library.
683   MsanContextStateTy = StructType::get(
684       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
685       ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
686       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
687       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
688       IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
689       OriginTy);
690   MsanGetContextStateFn = M.getOrInsertFunction(
691       "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
692 
693   Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
694                                 PointerType::get(IRB.getInt32Ty(), 0));
695 
696   for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
697     std::string name_load =
698         "__msan_metadata_ptr_for_load_" + std::to_string(size);
699     std::string name_store =
700         "__msan_metadata_ptr_for_store_" + std::to_string(size);
701     MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction(
702         name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
703     MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction(
704         name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
705   }
706 
707   MsanMetadataPtrForLoadN = M.getOrInsertFunction(
708       "__msan_metadata_ptr_for_load_n", RetTy,
709       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
710   MsanMetadataPtrForStoreN = M.getOrInsertFunction(
711       "__msan_metadata_ptr_for_store_n", RetTy,
712       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
713 
714   // Functions for poisoning and unpoisoning memory.
715   MsanPoisonAllocaFn =
716       M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
717                             IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
718   MsanUnpoisonAllocaFn = M.getOrInsertFunction(
719       "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
720 }
721 
722 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
723   return M.getOrInsertGlobal(Name, Ty, [&] {
724     return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
725                               nullptr, Name, nullptr,
726                               GlobalVariable::InitialExecTLSModel);
727   });
728 }
729 
730 /// Insert declarations for userspace-specific functions and globals.
731 void MemorySanitizer::createUserspaceApi(Module &M) {
732   IRBuilder<> IRB(*C);
733   // Create the callback.
734   // FIXME: this function should have "Cold" calling conv,
735   // which is not yet implemented.
736   StringRef WarningFnName = Recover ? "__msan_warning"
737                                     : "__msan_warning_noreturn";
738   WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy());
739 
740   // Create the global TLS variables.
741   RetvalTLS =
742       getOrInsertGlobal(M, "__msan_retval_tls",
743                         ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
744 
745   RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
746 
747   ParamTLS =
748       getOrInsertGlobal(M, "__msan_param_tls",
749                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
750 
751   ParamOriginTLS =
752       getOrInsertGlobal(M, "__msan_param_origin_tls",
753                         ArrayType::get(OriginTy, kParamTLSSize / 4));
754 
755   VAArgTLS =
756       getOrInsertGlobal(M, "__msan_va_arg_tls",
757                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
758 
759   VAArgOriginTLS =
760       getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
761                         ArrayType::get(OriginTy, kParamTLSSize / 4));
762 
763   VAArgOverflowSizeTLS =
764       getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
765   OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty());
766 
767   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
768        AccessSizeIndex++) {
769     unsigned AccessSize = 1 << AccessSizeIndex;
770     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
771     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
772         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
773         IRB.getInt32Ty());
774 
775     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
776     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
777         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
778         IRB.getInt8PtrTy(), IRB.getInt32Ty());
779   }
780 
781   MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
782     "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
783     IRB.getInt8PtrTy(), IntptrTy);
784   MsanPoisonStackFn =
785       M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
786                             IRB.getInt8PtrTy(), IntptrTy);
787 }
788 
789 /// Insert extern declaration of runtime-provided functions and globals.
790 void MemorySanitizer::initializeCallbacks(Module &M) {
791   // Only do this once.
792   if (CallbacksInitialized)
793     return;
794 
795   IRBuilder<> IRB(*C);
796   // Initialize callbacks that are common for kernel and userspace
797   // instrumentation.
798   MsanChainOriginFn = M.getOrInsertFunction(
799     "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty());
800   MemmoveFn = M.getOrInsertFunction(
801     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
802     IRB.getInt8PtrTy(), IntptrTy);
803   MemcpyFn = M.getOrInsertFunction(
804     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
805     IntptrTy);
806   MemsetFn = M.getOrInsertFunction(
807     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
808     IntptrTy);
809   // We insert an empty inline asm after __msan_report* to avoid callback merge.
810   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
811                             StringRef(""), StringRef(""),
812                             /*hasSideEffects=*/true);
813 
814   MsanInstrumentAsmStoreFn =
815       M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
816                             PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
817 
818   if (CompileKernel) {
819     createKernelApi(M);
820   } else {
821     createUserspaceApi(M);
822   }
823   CallbacksInitialized = true;
824 }
825 
826 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
827                                                              int size) {
828   FunctionCallee *Fns =
829       isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
830   switch (size) {
831   case 1:
832     return Fns[0];
833   case 2:
834     return Fns[1];
835   case 4:
836     return Fns[2];
837   case 8:
838     return Fns[3];
839   default:
840     return nullptr;
841   }
842 }
843 
844 /// Module-level initialization.
845 ///
846 /// inserts a call to __msan_init to the module's constructor list.
847 void MemorySanitizer::initializeModule(Module &M) {
848   auto &DL = M.getDataLayout();
849 
850   bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
851   bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
852   // Check the overrides first
853   if (ShadowPassed || OriginPassed) {
854     CustomMapParams.AndMask = ClAndMask;
855     CustomMapParams.XorMask = ClXorMask;
856     CustomMapParams.ShadowBase = ClShadowBase;
857     CustomMapParams.OriginBase = ClOriginBase;
858     MapParams = &CustomMapParams;
859   } else {
860     Triple TargetTriple(M.getTargetTriple());
861     switch (TargetTriple.getOS()) {
862       case Triple::FreeBSD:
863         switch (TargetTriple.getArch()) {
864           case Triple::x86_64:
865             MapParams = FreeBSD_X86_MemoryMapParams.bits64;
866             break;
867           case Triple::x86:
868             MapParams = FreeBSD_X86_MemoryMapParams.bits32;
869             break;
870           default:
871             report_fatal_error("unsupported architecture");
872         }
873         break;
874       case Triple::NetBSD:
875         switch (TargetTriple.getArch()) {
876           case Triple::x86_64:
877             MapParams = NetBSD_X86_MemoryMapParams.bits64;
878             break;
879           default:
880             report_fatal_error("unsupported architecture");
881         }
882         break;
883       case Triple::Linux:
884         switch (TargetTriple.getArch()) {
885           case Triple::x86_64:
886             MapParams = Linux_X86_MemoryMapParams.bits64;
887             break;
888           case Triple::x86:
889             MapParams = Linux_X86_MemoryMapParams.bits32;
890             break;
891           case Triple::mips64:
892           case Triple::mips64el:
893             MapParams = Linux_MIPS_MemoryMapParams.bits64;
894             break;
895           case Triple::ppc64:
896           case Triple::ppc64le:
897             MapParams = Linux_PowerPC_MemoryMapParams.bits64;
898             break;
899           case Triple::aarch64:
900           case Triple::aarch64_be:
901             MapParams = Linux_ARM_MemoryMapParams.bits64;
902             break;
903           default:
904             report_fatal_error("unsupported architecture");
905         }
906         break;
907       default:
908         report_fatal_error("unsupported operating system");
909     }
910   }
911 
912   C = &(M.getContext());
913   IRBuilder<> IRB(*C);
914   IntptrTy = IRB.getIntPtrTy(DL);
915   OriginTy = IRB.getInt32Ty();
916 
917   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
918   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
919 
920   if (!CompileKernel) {
921     std::tie(MsanCtorFunction, std::ignore) =
922         getOrCreateSanitizerCtorAndInitFunctions(
923             M, kMsanModuleCtorName, kMsanInitName,
924             /*InitArgTypes=*/{},
925             /*InitArgs=*/{},
926             // This callback is invoked when the functions are created the first
927             // time. Hook them into the global ctors list in that case:
928             [&](Function *Ctor, FunctionCallee) {
929               if (!ClWithComdat) {
930                 appendToGlobalCtors(M, Ctor, 0);
931                 return;
932               }
933               Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
934               Ctor->setComdat(MsanCtorComdat);
935               appendToGlobalCtors(M, Ctor, 0, Ctor);
936             });
937 
938     if (TrackOrigins)
939       M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
940         return new GlobalVariable(
941             M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
942             IRB.getInt32(TrackOrigins), "__msan_track_origins");
943       });
944 
945     if (Recover)
946       M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
947         return new GlobalVariable(M, IRB.getInt32Ty(), true,
948                                   GlobalValue::WeakODRLinkage,
949                                   IRB.getInt32(Recover), "__msan_keep_going");
950       });
951 }
952 }
953 
954 bool MemorySanitizerLegacyPass::doInitialization(Module &M) {
955   MSan.emplace(M, Options);
956   return true;
957 }
958 
959 namespace {
960 
961 /// A helper class that handles instrumentation of VarArg
962 /// functions on a particular platform.
963 ///
964 /// Implementations are expected to insert the instrumentation
965 /// necessary to propagate argument shadow through VarArg function
966 /// calls. Visit* methods are called during an InstVisitor pass over
967 /// the function, and should avoid creating new basic blocks. A new
968 /// instance of this class is created for each instrumented function.
969 struct VarArgHelper {
970   virtual ~VarArgHelper() = default;
971 
972   /// Visit a CallSite.
973   virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
974 
975   /// Visit a va_start call.
976   virtual void visitVAStartInst(VAStartInst &I) = 0;
977 
978   /// Visit a va_copy call.
979   virtual void visitVACopyInst(VACopyInst &I) = 0;
980 
981   /// Finalize function instrumentation.
982   ///
983   /// This method is called after visiting all interesting (see above)
984   /// instructions in a function.
985   virtual void finalizeInstrumentation() = 0;
986 };
987 
988 struct MemorySanitizerVisitor;
989 
990 } // end anonymous namespace
991 
992 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
993                                         MemorySanitizerVisitor &Visitor);
994 
995 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
996   if (TypeSize <= 8) return 0;
997   return Log2_32_Ceil((TypeSize + 7) / 8);
998 }
999 
1000 namespace {
1001 
1002 /// This class does all the work for a given function. Store and Load
1003 /// instructions store and load corresponding shadow and origin
1004 /// values. Most instructions propagate shadow from arguments to their
1005 /// return values. Certain instructions (most importantly, BranchInst)
1006 /// test their argument shadow and print reports (with a runtime call) if it's
1007 /// non-zero.
1008 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
1009   Function &F;
1010   MemorySanitizer &MS;
1011   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
1012   ValueMap<Value*, Value*> ShadowMap, OriginMap;
1013   std::unique_ptr<VarArgHelper> VAHelper;
1014   const TargetLibraryInfo *TLI;
1015   BasicBlock *ActualFnStart;
1016 
1017   // The following flags disable parts of MSan instrumentation based on
1018   // blacklist contents and command-line options.
1019   bool InsertChecks;
1020   bool PropagateShadow;
1021   bool PoisonStack;
1022   bool PoisonUndef;
1023   bool CheckReturnValue;
1024 
1025   struct ShadowOriginAndInsertPoint {
1026     Value *Shadow;
1027     Value *Origin;
1028     Instruction *OrigIns;
1029 
1030     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
1031       : Shadow(S), Origin(O), OrigIns(I) {}
1032   };
1033   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
1034   bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
1035   SmallSet<AllocaInst *, 16> AllocaSet;
1036   SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
1037   SmallVector<StoreInst *, 16> StoreList;
1038 
1039   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
1040                          const TargetLibraryInfo &TLI)
1041       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
1042     bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
1043     InsertChecks = SanitizeFunction;
1044     PropagateShadow = SanitizeFunction;
1045     PoisonStack = SanitizeFunction && ClPoisonStack;
1046     PoisonUndef = SanitizeFunction && ClPoisonUndef;
1047     // FIXME: Consider using SpecialCaseList to specify a list of functions that
1048     // must always return fully initialized values. For now, we hardcode "main".
1049     CheckReturnValue = SanitizeFunction && (F.getName() == "main");
1050 
1051     MS.initializeCallbacks(*F.getParent());
1052     if (MS.CompileKernel)
1053       ActualFnStart = insertKmsanPrologue(F);
1054     else
1055       ActualFnStart = &F.getEntryBlock();
1056 
1057     LLVM_DEBUG(if (!InsertChecks) dbgs()
1058                << "MemorySanitizer is not inserting checks into '"
1059                << F.getName() << "'\n");
1060   }
1061 
1062   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
1063     if (MS.TrackOrigins <= 1) return V;
1064     return IRB.CreateCall(MS.MsanChainOriginFn, V);
1065   }
1066 
1067   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
1068     const DataLayout &DL = F.getParent()->getDataLayout();
1069     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1070     if (IntptrSize == kOriginSize) return Origin;
1071     assert(IntptrSize == kOriginSize * 2);
1072     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
1073     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
1074   }
1075 
1076   /// Fill memory range with the given origin value.
1077   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
1078                    unsigned Size, unsigned Alignment) {
1079     const DataLayout &DL = F.getParent()->getDataLayout();
1080     unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
1081     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1082     assert(IntptrAlignment >= kMinOriginAlignment);
1083     assert(IntptrSize >= kOriginSize);
1084 
1085     unsigned Ofs = 0;
1086     unsigned CurrentAlignment = Alignment;
1087     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
1088       Value *IntptrOrigin = originToIntptr(IRB, Origin);
1089       Value *IntptrOriginPtr =
1090           IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
1091       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
1092         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
1093                        : IntptrOriginPtr;
1094         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
1095         Ofs += IntptrSize / kOriginSize;
1096         CurrentAlignment = IntptrAlignment;
1097       }
1098     }
1099 
1100     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
1101       Value *GEP =
1102           i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
1103       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
1104       CurrentAlignment = kMinOriginAlignment;
1105     }
1106   }
1107 
1108   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
1109                    Value *OriginPtr, unsigned Alignment, bool AsCall) {
1110     const DataLayout &DL = F.getParent()->getDataLayout();
1111     unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1112     unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
1113     if (Shadow->getType()->isAggregateType()) {
1114       paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1115                   OriginAlignment);
1116     } else {
1117       Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
1118       Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
1119       if (ConstantShadow) {
1120         if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
1121           paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1122                       OriginAlignment);
1123         return;
1124       }
1125 
1126       unsigned TypeSizeInBits =
1127           DL.getTypeSizeInBits(ConvertedShadow->getType());
1128       unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1129       if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1130         FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
1131         Value *ConvertedShadow2 = IRB.CreateZExt(
1132             ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1133         IRB.CreateCall(Fn, {ConvertedShadow2,
1134                             IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
1135                             Origin});
1136       } else {
1137         Value *Cmp = IRB.CreateICmpNE(
1138             ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
1139         Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1140             Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
1141         IRBuilder<> IRBNew(CheckTerm);
1142         paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
1143                     OriginAlignment);
1144       }
1145     }
1146   }
1147 
1148   void materializeStores(bool InstrumentWithCalls) {
1149     for (StoreInst *SI : StoreList) {
1150       IRBuilder<> IRB(SI);
1151       Value *Val = SI->getValueOperand();
1152       Value *Addr = SI->getPointerOperand();
1153       Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
1154       Value *ShadowPtr, *OriginPtr;
1155       Type *ShadowTy = Shadow->getType();
1156       unsigned Alignment = SI->getAlignment();
1157       unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1158       std::tie(ShadowPtr, OriginPtr) =
1159           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
1160 
1161       StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
1162       LLVM_DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
1163       (void)NewSI;
1164 
1165       if (SI->isAtomic())
1166         SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
1167 
1168       if (MS.TrackOrigins && !SI->isAtomic())
1169         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
1170                     OriginAlignment, InstrumentWithCalls);
1171     }
1172   }
1173 
1174   /// Helper function to insert a warning at IRB's current insert point.
1175   void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
1176     if (!Origin)
1177       Origin = (Value *)IRB.getInt32(0);
1178     if (MS.CompileKernel) {
1179       IRB.CreateCall(MS.WarningFn, Origin);
1180     } else {
1181       if (MS.TrackOrigins) {
1182         IRB.CreateStore(Origin, MS.OriginTLS);
1183       }
1184       IRB.CreateCall(MS.WarningFn, {});
1185     }
1186     IRB.CreateCall(MS.EmptyAsm, {});
1187     // FIXME: Insert UnreachableInst if !MS.Recover?
1188     // This may invalidate some of the following checks and needs to be done
1189     // at the very end.
1190   }
1191 
1192   void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
1193                            bool AsCall) {
1194     IRBuilder<> IRB(OrigIns);
1195     LLVM_DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
1196     Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
1197     LLVM_DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
1198 
1199     Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
1200     if (ConstantShadow) {
1201       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
1202         insertWarningFn(IRB, Origin);
1203       }
1204       return;
1205     }
1206 
1207     const DataLayout &DL = OrigIns->getModule()->getDataLayout();
1208 
1209     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1210     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1211     if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1212       FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
1213       Value *ConvertedShadow2 =
1214           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1215       IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
1216                                                 ? Origin
1217                                                 : (Value *)IRB.getInt32(0)});
1218     } else {
1219       Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
1220                                     getCleanShadow(ConvertedShadow), "_mscmp");
1221       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1222           Cmp, OrigIns,
1223           /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
1224 
1225       IRB.SetInsertPoint(CheckTerm);
1226       insertWarningFn(IRB, Origin);
1227       LLVM_DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
1228     }
1229   }
1230 
1231   void materializeChecks(bool InstrumentWithCalls) {
1232     for (const auto &ShadowData : InstrumentationList) {
1233       Instruction *OrigIns = ShadowData.OrigIns;
1234       Value *Shadow = ShadowData.Shadow;
1235       Value *Origin = ShadowData.Origin;
1236       materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
1237     }
1238     LLVM_DEBUG(dbgs() << "DONE:\n" << F);
1239   }
1240 
1241   BasicBlock *insertKmsanPrologue(Function &F) {
1242     BasicBlock *ret =
1243         SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI());
1244     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
1245     Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
1246     Constant *Zero = IRB.getInt32(0);
1247     MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1248                                 {Zero, IRB.getInt32(0)}, "param_shadow");
1249     MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1250                                  {Zero, IRB.getInt32(1)}, "retval_shadow");
1251     MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1252                                 {Zero, IRB.getInt32(2)}, "va_arg_shadow");
1253     MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1254                                       {Zero, IRB.getInt32(3)}, "va_arg_origin");
1255     MS.VAArgOverflowSizeTLS =
1256         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1257                       {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
1258     MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1259                                       {Zero, IRB.getInt32(5)}, "param_origin");
1260     MS.RetvalOriginTLS =
1261         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1262                       {Zero, IRB.getInt32(6)}, "retval_origin");
1263     return ret;
1264   }
1265 
1266   /// Add MemorySanitizer instrumentation to a function.
1267   bool runOnFunction() {
1268     // In the presence of unreachable blocks, we may see Phi nodes with
1269     // incoming nodes from such blocks. Since InstVisitor skips unreachable
1270     // blocks, such nodes will not have any shadow value associated with them.
1271     // It's easier to remove unreachable blocks than deal with missing shadow.
1272     removeUnreachableBlocks(F);
1273 
1274     // Iterate all BBs in depth-first order and create shadow instructions
1275     // for all instructions (where applicable).
1276     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1277     for (BasicBlock *BB : depth_first(ActualFnStart))
1278       visit(*BB);
1279 
1280     // Finalize PHI nodes.
1281     for (PHINode *PN : ShadowPHINodes) {
1282       PHINode *PNS = cast<PHINode>(getShadow(PN));
1283       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
1284       size_t NumValues = PN->getNumIncomingValues();
1285       for (size_t v = 0; v < NumValues; v++) {
1286         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1287         if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1288       }
1289     }
1290 
1291     VAHelper->finalizeInstrumentation();
1292 
1293     // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
1294     // instrumenting only allocas.
1295     if (InstrumentLifetimeStart) {
1296       for (auto Item : LifetimeStartList) {
1297         instrumentAlloca(*Item.second, Item.first);
1298         AllocaSet.erase(Item.second);
1299       }
1300     }
1301     // Poison the allocas for which we didn't instrument the corresponding
1302     // lifetime intrinsics.
1303     for (AllocaInst *AI : AllocaSet)
1304       instrumentAlloca(*AI);
1305 
1306     bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
1307                                InstrumentationList.size() + StoreList.size() >
1308                                    (unsigned)ClInstrumentationWithCallThreshold;
1309 
1310     // Insert shadow value checks.
1311     materializeChecks(InstrumentWithCalls);
1312 
1313     // Delayed instrumentation of StoreInst.
1314     // This may not add new address checks.
1315     materializeStores(InstrumentWithCalls);
1316 
1317     return true;
1318   }
1319 
1320   /// Compute the shadow type that corresponds to a given Value.
1321   Type *getShadowTy(Value *V) {
1322     return getShadowTy(V->getType());
1323   }
1324 
1325   /// Compute the shadow type that corresponds to a given Type.
1326   Type *getShadowTy(Type *OrigTy) {
1327     if (!OrigTy->isSized()) {
1328       return nullptr;
1329     }
1330     // For integer type, shadow is the same as the original type.
1331     // This may return weird-sized types like i1.
1332     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1333       return IT;
1334     const DataLayout &DL = F.getParent()->getDataLayout();
1335     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1336       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1337       return VectorType::get(IntegerType::get(*MS.C, EltSize),
1338                              VT->getNumElements());
1339     }
1340     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1341       return ArrayType::get(getShadowTy(AT->getElementType()),
1342                             AT->getNumElements());
1343     }
1344     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1345       SmallVector<Type*, 4> Elements;
1346       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1347         Elements.push_back(getShadowTy(ST->getElementType(i)));
1348       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1349       LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
1350       return Res;
1351     }
1352     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1353     return IntegerType::get(*MS.C, TypeSize);
1354   }
1355 
1356   /// Flatten a vector type.
1357   Type *getShadowTyNoVec(Type *ty) {
1358     if (VectorType *vt = dyn_cast<VectorType>(ty))
1359       return IntegerType::get(*MS.C, vt->getBitWidth());
1360     return ty;
1361   }
1362 
1363   /// Convert a shadow value to it's flattened variant.
1364   Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
1365     Type *Ty = V->getType();
1366     Type *NoVecTy = getShadowTyNoVec(Ty);
1367     if (Ty == NoVecTy) return V;
1368     return IRB.CreateBitCast(V, NoVecTy);
1369   }
1370 
1371   /// Compute the integer shadow offset that corresponds to a given
1372   /// application address.
1373   ///
1374   /// Offset = (Addr & ~AndMask) ^ XorMask
1375   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1376     Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
1377 
1378     uint64_t AndMask = MS.MapParams->AndMask;
1379     if (AndMask)
1380       OffsetLong =
1381           IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
1382 
1383     uint64_t XorMask = MS.MapParams->XorMask;
1384     if (XorMask)
1385       OffsetLong =
1386           IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
1387     return OffsetLong;
1388   }
1389 
1390   /// Compute the shadow and origin addresses corresponding to a given
1391   /// application address.
1392   ///
1393   /// Shadow = ShadowBase + Offset
1394   /// Origin = (OriginBase + Offset) & ~3ULL
1395   std::pair<Value *, Value *> getShadowOriginPtrUserspace(Value *Addr,
1396                                                           IRBuilder<> &IRB,
1397                                                           Type *ShadowTy,
1398                                                           unsigned Alignment) {
1399     Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1400     Value *ShadowLong = ShadowOffset;
1401     uint64_t ShadowBase = MS.MapParams->ShadowBase;
1402     if (ShadowBase != 0) {
1403       ShadowLong =
1404         IRB.CreateAdd(ShadowLong,
1405                       ConstantInt::get(MS.IntptrTy, ShadowBase));
1406     }
1407     Value *ShadowPtr =
1408         IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1409     Value *OriginPtr = nullptr;
1410     if (MS.TrackOrigins) {
1411       Value *OriginLong = ShadowOffset;
1412       uint64_t OriginBase = MS.MapParams->OriginBase;
1413       if (OriginBase != 0)
1414         OriginLong = IRB.CreateAdd(OriginLong,
1415                                    ConstantInt::get(MS.IntptrTy, OriginBase));
1416       if (Alignment < kMinOriginAlignment) {
1417         uint64_t Mask = kMinOriginAlignment - 1;
1418         OriginLong =
1419             IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask));
1420       }
1421       OriginPtr =
1422           IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0));
1423     }
1424     return std::make_pair(ShadowPtr, OriginPtr);
1425   }
1426 
1427   std::pair<Value *, Value *>
1428   getShadowOriginPtrKernel(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
1429                            unsigned Alignment, bool isStore) {
1430     Value *ShadowOriginPtrs;
1431     const DataLayout &DL = F.getParent()->getDataLayout();
1432     int Size = DL.getTypeStoreSize(ShadowTy);
1433 
1434     FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
1435     Value *AddrCast =
1436         IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
1437     if (Getter) {
1438       ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast);
1439     } else {
1440       Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
1441       ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN
1442                                                 : MS.MsanMetadataPtrForLoadN,
1443                                         {AddrCast, SizeVal});
1444     }
1445     Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
1446     ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
1447     Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
1448 
1449     return std::make_pair(ShadowPtr, OriginPtr);
1450   }
1451 
1452   std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1453                                                  Type *ShadowTy,
1454                                                  unsigned Alignment,
1455                                                  bool isStore) {
1456     std::pair<Value *, Value *> ret;
1457     if (MS.CompileKernel)
1458       ret = getShadowOriginPtrKernel(Addr, IRB, ShadowTy, Alignment, isStore);
1459     else
1460       ret = getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
1461     return ret;
1462   }
1463 
1464   /// Compute the shadow address for a given function argument.
1465   ///
1466   /// Shadow = ParamTLS+ArgOffset.
1467   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
1468                                  int ArgOffset) {
1469     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1470     if (ArgOffset)
1471       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1472     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1473                               "_msarg");
1474   }
1475 
1476   /// Compute the origin address for a given function argument.
1477   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
1478                                  int ArgOffset) {
1479     if (!MS.TrackOrigins)
1480       return nullptr;
1481     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1482     if (ArgOffset)
1483       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1484     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1485                               "_msarg_o");
1486   }
1487 
1488   /// Compute the shadow address for a retval.
1489   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1490     return IRB.CreatePointerCast(MS.RetvalTLS,
1491                                  PointerType::get(getShadowTy(A), 0),
1492                                  "_msret");
1493   }
1494 
1495   /// Compute the origin address for a retval.
1496   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1497     // We keep a single origin for the entire retval. Might be too optimistic.
1498     return MS.RetvalOriginTLS;
1499   }
1500 
1501   /// Set SV to be the shadow value for V.
1502   void setShadow(Value *V, Value *SV) {
1503     assert(!ShadowMap.count(V) && "Values may only have one shadow");
1504     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1505   }
1506 
1507   /// Set Origin to be the origin value for V.
1508   void setOrigin(Value *V, Value *Origin) {
1509     if (!MS.TrackOrigins) return;
1510     assert(!OriginMap.count(V) && "Values may only have one origin");
1511     LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
1512     OriginMap[V] = Origin;
1513   }
1514 
1515   Constant *getCleanShadow(Type *OrigTy) {
1516     Type *ShadowTy = getShadowTy(OrigTy);
1517     if (!ShadowTy)
1518       return nullptr;
1519     return Constant::getNullValue(ShadowTy);
1520   }
1521 
1522   /// Create a clean shadow value for a given value.
1523   ///
1524   /// Clean shadow (all zeroes) means all bits of the value are defined
1525   /// (initialized).
1526   Constant *getCleanShadow(Value *V) {
1527     return getCleanShadow(V->getType());
1528   }
1529 
1530   /// Create a dirty shadow of a given shadow type.
1531   Constant *getPoisonedShadow(Type *ShadowTy) {
1532     assert(ShadowTy);
1533     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1534       return Constant::getAllOnesValue(ShadowTy);
1535     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1536       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1537                                       getPoisonedShadow(AT->getElementType()));
1538       return ConstantArray::get(AT, Vals);
1539     }
1540     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1541       SmallVector<Constant *, 4> Vals;
1542       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1543         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1544       return ConstantStruct::get(ST, Vals);
1545     }
1546     llvm_unreachable("Unexpected shadow type");
1547   }
1548 
1549   /// Create a dirty shadow for a given value.
1550   Constant *getPoisonedShadow(Value *V) {
1551     Type *ShadowTy = getShadowTy(V);
1552     if (!ShadowTy)
1553       return nullptr;
1554     return getPoisonedShadow(ShadowTy);
1555   }
1556 
1557   /// Create a clean (zero) origin.
1558   Value *getCleanOrigin() {
1559     return Constant::getNullValue(MS.OriginTy);
1560   }
1561 
1562   /// Get the shadow value for a given Value.
1563   ///
1564   /// This function either returns the value set earlier with setShadow,
1565   /// or extracts if from ParamTLS (for function arguments).
1566   Value *getShadow(Value *V) {
1567     if (!PropagateShadow) return getCleanShadow(V);
1568     if (Instruction *I = dyn_cast<Instruction>(V)) {
1569       if (I->getMetadata("nosanitize"))
1570         return getCleanShadow(V);
1571       // For instructions the shadow is already stored in the map.
1572       Value *Shadow = ShadowMap[V];
1573       if (!Shadow) {
1574         LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1575         (void)I;
1576         assert(Shadow && "No shadow for a value");
1577       }
1578       return Shadow;
1579     }
1580     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1581       Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
1582       LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1583       (void)U;
1584       return AllOnes;
1585     }
1586     if (Argument *A = dyn_cast<Argument>(V)) {
1587       // For arguments we compute the shadow on demand and store it in the map.
1588       Value **ShadowPtr = &ShadowMap[V];
1589       if (*ShadowPtr)
1590         return *ShadowPtr;
1591       Function *F = A->getParent();
1592       IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI());
1593       unsigned ArgOffset = 0;
1594       const DataLayout &DL = F->getParent()->getDataLayout();
1595       for (auto &FArg : F->args()) {
1596         if (!FArg.getType()->isSized()) {
1597           LLVM_DEBUG(dbgs() << "Arg is not sized\n");
1598           continue;
1599         }
1600         unsigned Size =
1601             FArg.hasByValAttr()
1602                 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
1603                 : DL.getTypeAllocSize(FArg.getType());
1604         if (A == &FArg) {
1605           bool Overflow = ArgOffset + Size > kParamTLSSize;
1606           Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1607           if (FArg.hasByValAttr()) {
1608             // ByVal pointer itself has clean shadow. We copy the actual
1609             // argument shadow to the underlying memory.
1610             // Figure out maximal valid memcpy alignment.
1611             unsigned ArgAlign = FArg.getParamAlignment();
1612             if (ArgAlign == 0) {
1613               Type *EltType = A->getType()->getPointerElementType();
1614               ArgAlign = DL.getABITypeAlignment(EltType);
1615             }
1616             Value *CpShadowPtr =
1617                 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
1618                                    /*isStore*/ true)
1619                     .first;
1620             // TODO(glider): need to copy origins.
1621             if (Overflow) {
1622               // ParamTLS overflow.
1623               EntryIRB.CreateMemSet(
1624                   CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
1625                   Size, ArgAlign);
1626             } else {
1627               unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1628               Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
1629                                                  CopyAlign, Size);
1630               LLVM_DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
1631               (void)Cpy;
1632             }
1633             *ShadowPtr = getCleanShadow(V);
1634           } else {
1635             if (Overflow) {
1636               // ParamTLS overflow.
1637               *ShadowPtr = getCleanShadow(V);
1638             } else {
1639               *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
1640                                                       kShadowTLSAlignment);
1641             }
1642           }
1643           LLVM_DEBUG(dbgs()
1644                      << "  ARG:    " << FArg << " ==> " << **ShadowPtr << "\n");
1645           if (MS.TrackOrigins && !Overflow) {
1646             Value *OriginPtr =
1647                 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1648             setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
1649           } else {
1650             setOrigin(A, getCleanOrigin());
1651           }
1652         }
1653         ArgOffset += alignTo(Size, kShadowTLSAlignment);
1654       }
1655       assert(*ShadowPtr && "Could not find shadow for an argument");
1656       return *ShadowPtr;
1657     }
1658     // For everything else the shadow is zero.
1659     return getCleanShadow(V);
1660   }
1661 
1662   /// Get the shadow for i-th argument of the instruction I.
1663   Value *getShadow(Instruction *I, int i) {
1664     return getShadow(I->getOperand(i));
1665   }
1666 
1667   /// Get the origin for a value.
1668   Value *getOrigin(Value *V) {
1669     if (!MS.TrackOrigins) return nullptr;
1670     if (!PropagateShadow) return getCleanOrigin();
1671     if (isa<Constant>(V)) return getCleanOrigin();
1672     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1673            "Unexpected value type in getOrigin()");
1674     if (Instruction *I = dyn_cast<Instruction>(V)) {
1675       if (I->getMetadata("nosanitize"))
1676         return getCleanOrigin();
1677     }
1678     Value *Origin = OriginMap[V];
1679     assert(Origin && "Missing origin");
1680     return Origin;
1681   }
1682 
1683   /// Get the origin for i-th argument of the instruction I.
1684   Value *getOrigin(Instruction *I, int i) {
1685     return getOrigin(I->getOperand(i));
1686   }
1687 
1688   /// Remember the place where a shadow check should be inserted.
1689   ///
1690   /// This location will be later instrumented with a check that will print a
1691   /// UMR warning in runtime if the shadow value is not 0.
1692   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1693     assert(Shadow);
1694     if (!InsertChecks) return;
1695 #ifndef NDEBUG
1696     Type *ShadowTy = Shadow->getType();
1697     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1698            "Can only insert checks for integer and vector shadow types");
1699 #endif
1700     InstrumentationList.push_back(
1701         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1702   }
1703 
1704   /// Remember the place where a shadow check should be inserted.
1705   ///
1706   /// This location will be later instrumented with a check that will print a
1707   /// UMR warning in runtime if the value is not fully defined.
1708   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1709     assert(Val);
1710     Value *Shadow, *Origin;
1711     if (ClCheckConstantShadow) {
1712       Shadow = getShadow(Val);
1713       if (!Shadow) return;
1714       Origin = getOrigin(Val);
1715     } else {
1716       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1717       if (!Shadow) return;
1718       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1719     }
1720     insertShadowCheck(Shadow, Origin, OrigIns);
1721   }
1722 
1723   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1724     switch (a) {
1725       case AtomicOrdering::NotAtomic:
1726         return AtomicOrdering::NotAtomic;
1727       case AtomicOrdering::Unordered:
1728       case AtomicOrdering::Monotonic:
1729       case AtomicOrdering::Release:
1730         return AtomicOrdering::Release;
1731       case AtomicOrdering::Acquire:
1732       case AtomicOrdering::AcquireRelease:
1733         return AtomicOrdering::AcquireRelease;
1734       case AtomicOrdering::SequentiallyConsistent:
1735         return AtomicOrdering::SequentiallyConsistent;
1736     }
1737     llvm_unreachable("Unknown ordering");
1738   }
1739 
1740   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1741     switch (a) {
1742       case AtomicOrdering::NotAtomic:
1743         return AtomicOrdering::NotAtomic;
1744       case AtomicOrdering::Unordered:
1745       case AtomicOrdering::Monotonic:
1746       case AtomicOrdering::Acquire:
1747         return AtomicOrdering::Acquire;
1748       case AtomicOrdering::Release:
1749       case AtomicOrdering::AcquireRelease:
1750         return AtomicOrdering::AcquireRelease;
1751       case AtomicOrdering::SequentiallyConsistent:
1752         return AtomicOrdering::SequentiallyConsistent;
1753     }
1754     llvm_unreachable("Unknown ordering");
1755   }
1756 
1757   // ------------------- Visitors.
1758   using InstVisitor<MemorySanitizerVisitor>::visit;
1759   void visit(Instruction &I) {
1760     if (!I.getMetadata("nosanitize"))
1761       InstVisitor<MemorySanitizerVisitor>::visit(I);
1762   }
1763 
1764   /// Instrument LoadInst
1765   ///
1766   /// Loads the corresponding shadow and (optionally) origin.
1767   /// Optionally, checks that the load address is fully defined.
1768   void visitLoadInst(LoadInst &I) {
1769     assert(I.getType()->isSized() && "Load type must have size");
1770     assert(!I.getMetadata("nosanitize"));
1771     IRBuilder<> IRB(I.getNextNode());
1772     Type *ShadowTy = getShadowTy(&I);
1773     Value *Addr = I.getPointerOperand();
1774     Value *ShadowPtr, *OriginPtr;
1775     unsigned Alignment = I.getAlignment();
1776     if (PropagateShadow) {
1777       std::tie(ShadowPtr, OriginPtr) =
1778           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
1779       setShadow(&I,
1780                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
1781     } else {
1782       setShadow(&I, getCleanShadow(&I));
1783     }
1784 
1785     if (ClCheckAccessAddress)
1786       insertShadowCheck(I.getPointerOperand(), &I);
1787 
1788     if (I.isAtomic())
1789       I.setOrdering(addAcquireOrdering(I.getOrdering()));
1790 
1791     if (MS.TrackOrigins) {
1792       if (PropagateShadow) {
1793         unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1794         setOrigin(
1795             &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
1796       } else {
1797         setOrigin(&I, getCleanOrigin());
1798       }
1799     }
1800   }
1801 
1802   /// Instrument StoreInst
1803   ///
1804   /// Stores the corresponding shadow and (optionally) origin.
1805   /// Optionally, checks that the store address is fully defined.
1806   void visitStoreInst(StoreInst &I) {
1807     StoreList.push_back(&I);
1808     if (ClCheckAccessAddress)
1809       insertShadowCheck(I.getPointerOperand(), &I);
1810   }
1811 
1812   void handleCASOrRMW(Instruction &I) {
1813     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1814 
1815     IRBuilder<> IRB(&I);
1816     Value *Addr = I.getOperand(0);
1817     Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(),
1818                                           /*Alignment*/ 1, /*isStore*/ true)
1819                            .first;
1820 
1821     if (ClCheckAccessAddress)
1822       insertShadowCheck(Addr, &I);
1823 
1824     // Only test the conditional argument of cmpxchg instruction.
1825     // The other argument can potentially be uninitialized, but we can not
1826     // detect this situation reliably without possible false positives.
1827     if (isa<AtomicCmpXchgInst>(I))
1828       insertShadowCheck(I.getOperand(1), &I);
1829 
1830     IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1831 
1832     setShadow(&I, getCleanShadow(&I));
1833     setOrigin(&I, getCleanOrigin());
1834   }
1835 
1836   void visitAtomicRMWInst(AtomicRMWInst &I) {
1837     handleCASOrRMW(I);
1838     I.setOrdering(addReleaseOrdering(I.getOrdering()));
1839   }
1840 
1841   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1842     handleCASOrRMW(I);
1843     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1844   }
1845 
1846   // Vector manipulation.
1847   void visitExtractElementInst(ExtractElementInst &I) {
1848     insertShadowCheck(I.getOperand(1), &I);
1849     IRBuilder<> IRB(&I);
1850     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1851               "_msprop"));
1852     setOrigin(&I, getOrigin(&I, 0));
1853   }
1854 
1855   void visitInsertElementInst(InsertElementInst &I) {
1856     insertShadowCheck(I.getOperand(2), &I);
1857     IRBuilder<> IRB(&I);
1858     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1859               I.getOperand(2), "_msprop"));
1860     setOriginForNaryOp(I);
1861   }
1862 
1863   void visitShuffleVectorInst(ShuffleVectorInst &I) {
1864     insertShadowCheck(I.getOperand(2), &I);
1865     IRBuilder<> IRB(&I);
1866     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1867               I.getOperand(2), "_msprop"));
1868     setOriginForNaryOp(I);
1869   }
1870 
1871   // Casts.
1872   void visitSExtInst(SExtInst &I) {
1873     IRBuilder<> IRB(&I);
1874     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1875     setOrigin(&I, getOrigin(&I, 0));
1876   }
1877 
1878   void visitZExtInst(ZExtInst &I) {
1879     IRBuilder<> IRB(&I);
1880     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1881     setOrigin(&I, getOrigin(&I, 0));
1882   }
1883 
1884   void visitTruncInst(TruncInst &I) {
1885     IRBuilder<> IRB(&I);
1886     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1887     setOrigin(&I, getOrigin(&I, 0));
1888   }
1889 
1890   void visitBitCastInst(BitCastInst &I) {
1891     // Special case: if this is the bitcast (there is exactly 1 allowed) between
1892     // a musttail call and a ret, don't instrument. New instructions are not
1893     // allowed after a musttail call.
1894     if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
1895       if (CI->isMustTailCall())
1896         return;
1897     IRBuilder<> IRB(&I);
1898     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1899     setOrigin(&I, getOrigin(&I, 0));
1900   }
1901 
1902   void visitPtrToIntInst(PtrToIntInst &I) {
1903     IRBuilder<> IRB(&I);
1904     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1905              "_msprop_ptrtoint"));
1906     setOrigin(&I, getOrigin(&I, 0));
1907   }
1908 
1909   void visitIntToPtrInst(IntToPtrInst &I) {
1910     IRBuilder<> IRB(&I);
1911     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1912              "_msprop_inttoptr"));
1913     setOrigin(&I, getOrigin(&I, 0));
1914   }
1915 
1916   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1917   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1918   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1919   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1920   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1921   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1922 
1923   /// Propagate shadow for bitwise AND.
1924   ///
1925   /// This code is exact, i.e. if, for example, a bit in the left argument
1926   /// is defined and 0, then neither the value not definedness of the
1927   /// corresponding bit in B don't affect the resulting shadow.
1928   void visitAnd(BinaryOperator &I) {
1929     IRBuilder<> IRB(&I);
1930     //  "And" of 0 and a poisoned value results in unpoisoned value.
1931     //  1&1 => 1;     0&1 => 0;     p&1 => p;
1932     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
1933     //  1&p => p;     0&p => 0;     p&p => p;
1934     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1935     Value *S1 = getShadow(&I, 0);
1936     Value *S2 = getShadow(&I, 1);
1937     Value *V1 = I.getOperand(0);
1938     Value *V2 = I.getOperand(1);
1939     if (V1->getType() != S1->getType()) {
1940       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1941       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1942     }
1943     Value *S1S2 = IRB.CreateAnd(S1, S2);
1944     Value *V1S2 = IRB.CreateAnd(V1, S2);
1945     Value *S1V2 = IRB.CreateAnd(S1, V2);
1946     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
1947     setOriginForNaryOp(I);
1948   }
1949 
1950   void visitOr(BinaryOperator &I) {
1951     IRBuilder<> IRB(&I);
1952     //  "Or" of 1 and a poisoned value results in unpoisoned value.
1953     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
1954     //  1|0 => 1;     0|0 => 0;     p|0 => p;
1955     //  1|p => 1;     0|p => p;     p|p => p;
1956     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1957     Value *S1 = getShadow(&I, 0);
1958     Value *S2 = getShadow(&I, 1);
1959     Value *V1 = IRB.CreateNot(I.getOperand(0));
1960     Value *V2 = IRB.CreateNot(I.getOperand(1));
1961     if (V1->getType() != S1->getType()) {
1962       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1963       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1964     }
1965     Value *S1S2 = IRB.CreateAnd(S1, S2);
1966     Value *V1S2 = IRB.CreateAnd(V1, S2);
1967     Value *S1V2 = IRB.CreateAnd(S1, V2);
1968     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
1969     setOriginForNaryOp(I);
1970   }
1971 
1972   /// Default propagation of shadow and/or origin.
1973   ///
1974   /// This class implements the general case of shadow propagation, used in all
1975   /// cases where we don't know and/or don't care about what the operation
1976   /// actually does. It converts all input shadow values to a common type
1977   /// (extending or truncating as necessary), and bitwise OR's them.
1978   ///
1979   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1980   /// fully initialized), and less prone to false positives.
1981   ///
1982   /// This class also implements the general case of origin propagation. For a
1983   /// Nary operation, result origin is set to the origin of an argument that is
1984   /// not entirely initialized. If there is more than one such arguments, the
1985   /// rightmost of them is picked. It does not matter which one is picked if all
1986   /// arguments are initialized.
1987   template <bool CombineShadow>
1988   class Combiner {
1989     Value *Shadow = nullptr;
1990     Value *Origin = nullptr;
1991     IRBuilder<> &IRB;
1992     MemorySanitizerVisitor *MSV;
1993 
1994   public:
1995     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
1996         : IRB(IRB), MSV(MSV) {}
1997 
1998     /// Add a pair of shadow and origin values to the mix.
1999     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
2000       if (CombineShadow) {
2001         assert(OpShadow);
2002         if (!Shadow)
2003           Shadow = OpShadow;
2004         else {
2005           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
2006           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
2007         }
2008       }
2009 
2010       if (MSV->MS.TrackOrigins) {
2011         assert(OpOrigin);
2012         if (!Origin) {
2013           Origin = OpOrigin;
2014         } else {
2015           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
2016           // No point in adding something that might result in 0 origin value.
2017           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
2018             Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
2019             Value *Cond =
2020                 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
2021             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2022           }
2023         }
2024       }
2025       return *this;
2026     }
2027 
2028     /// Add an application value to the mix.
2029     Combiner &Add(Value *V) {
2030       Value *OpShadow = MSV->getShadow(V);
2031       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
2032       return Add(OpShadow, OpOrigin);
2033     }
2034 
2035     /// Set the current combined values as the given instruction's shadow
2036     /// and origin.
2037     void Done(Instruction *I) {
2038       if (CombineShadow) {
2039         assert(Shadow);
2040         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
2041         MSV->setShadow(I, Shadow);
2042       }
2043       if (MSV->MS.TrackOrigins) {
2044         assert(Origin);
2045         MSV->setOrigin(I, Origin);
2046       }
2047     }
2048   };
2049 
2050   using ShadowAndOriginCombiner = Combiner<true>;
2051   using OriginCombiner = Combiner<false>;
2052 
2053   /// Propagate origin for arbitrary operation.
2054   void setOriginForNaryOp(Instruction &I) {
2055     if (!MS.TrackOrigins) return;
2056     IRBuilder<> IRB(&I);
2057     OriginCombiner OC(this, IRB);
2058     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
2059       OC.Add(OI->get());
2060     OC.Done(&I);
2061   }
2062 
2063   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
2064     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
2065            "Vector of pointers is not a valid shadow type");
2066     return Ty->isVectorTy() ?
2067       Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
2068       Ty->getPrimitiveSizeInBits();
2069   }
2070 
2071   /// Cast between two shadow types, extending or truncating as
2072   /// necessary.
2073   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
2074                           bool Signed = false) {
2075     Type *srcTy = V->getType();
2076     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
2077     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
2078     if (srcSizeInBits > 1 && dstSizeInBits == 1)
2079       return IRB.CreateICmpNE(V, getCleanShadow(V));
2080 
2081     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
2082       return IRB.CreateIntCast(V, dstTy, Signed);
2083     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
2084         dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
2085       return IRB.CreateIntCast(V, dstTy, Signed);
2086     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
2087     Value *V2 =
2088       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
2089     return IRB.CreateBitCast(V2, dstTy);
2090     // TODO: handle struct types.
2091   }
2092 
2093   /// Cast an application value to the type of its own shadow.
2094   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
2095     Type *ShadowTy = getShadowTy(V);
2096     if (V->getType() == ShadowTy)
2097       return V;
2098     if (V->getType()->isPtrOrPtrVectorTy())
2099       return IRB.CreatePtrToInt(V, ShadowTy);
2100     else
2101       return IRB.CreateBitCast(V, ShadowTy);
2102   }
2103 
2104   /// Propagate shadow for arbitrary operation.
2105   void handleShadowOr(Instruction &I) {
2106     IRBuilder<> IRB(&I);
2107     ShadowAndOriginCombiner SC(this, IRB);
2108     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
2109       SC.Add(OI->get());
2110     SC.Done(&I);
2111   }
2112 
2113   void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
2114 
2115   // Handle multiplication by constant.
2116   //
2117   // Handle a special case of multiplication by constant that may have one or
2118   // more zeros in the lower bits. This makes corresponding number of lower bits
2119   // of the result zero as well. We model it by shifting the other operand
2120   // shadow left by the required number of bits. Effectively, we transform
2121   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
2122   // We use multiplication by 2**N instead of shift to cover the case of
2123   // multiplication by 0, which may occur in some elements of a vector operand.
2124   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
2125                            Value *OtherArg) {
2126     Constant *ShadowMul;
2127     Type *Ty = ConstArg->getType();
2128     if (Ty->isVectorTy()) {
2129       unsigned NumElements = Ty->getVectorNumElements();
2130       Type *EltTy = Ty->getSequentialElementType();
2131       SmallVector<Constant *, 16> Elements;
2132       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
2133         if (ConstantInt *Elt =
2134                 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
2135           const APInt &V = Elt->getValue();
2136           APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2137           Elements.push_back(ConstantInt::get(EltTy, V2));
2138         } else {
2139           Elements.push_back(ConstantInt::get(EltTy, 1));
2140         }
2141       }
2142       ShadowMul = ConstantVector::get(Elements);
2143     } else {
2144       if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
2145         const APInt &V = Elt->getValue();
2146         APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2147         ShadowMul = ConstantInt::get(Ty, V2);
2148       } else {
2149         ShadowMul = ConstantInt::get(Ty, 1);
2150       }
2151     }
2152 
2153     IRBuilder<> IRB(&I);
2154     setShadow(&I,
2155               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
2156     setOrigin(&I, getOrigin(OtherArg));
2157   }
2158 
2159   void visitMul(BinaryOperator &I) {
2160     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
2161     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
2162     if (constOp0 && !constOp1)
2163       handleMulByConstant(I, constOp0, I.getOperand(1));
2164     else if (constOp1 && !constOp0)
2165       handleMulByConstant(I, constOp1, I.getOperand(0));
2166     else
2167       handleShadowOr(I);
2168   }
2169 
2170   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
2171   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
2172   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
2173   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
2174   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
2175   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
2176 
2177   void handleIntegerDiv(Instruction &I) {
2178     IRBuilder<> IRB(&I);
2179     // Strict on the second argument.
2180     insertShadowCheck(I.getOperand(1), &I);
2181     setShadow(&I, getShadow(&I, 0));
2182     setOrigin(&I, getOrigin(&I, 0));
2183   }
2184 
2185   void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2186   void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2187   void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
2188   void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
2189 
2190   // Floating point division is side-effect free. We can not require that the
2191   // divisor is fully initialized and must propagate shadow. See PR37523.
2192   void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
2193   void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
2194 
2195   /// Instrument == and != comparisons.
2196   ///
2197   /// Sometimes the comparison result is known even if some of the bits of the
2198   /// arguments are not.
2199   void handleEqualityComparison(ICmpInst &I) {
2200     IRBuilder<> IRB(&I);
2201     Value *A = I.getOperand(0);
2202     Value *B = I.getOperand(1);
2203     Value *Sa = getShadow(A);
2204     Value *Sb = getShadow(B);
2205 
2206     // Get rid of pointers and vectors of pointers.
2207     // For ints (and vectors of ints), types of A and Sa match,
2208     // and this is a no-op.
2209     A = IRB.CreatePointerCast(A, Sa->getType());
2210     B = IRB.CreatePointerCast(B, Sb->getType());
2211 
2212     // A == B  <==>  (C = A^B) == 0
2213     // A != B  <==>  (C = A^B) != 0
2214     // Sc = Sa | Sb
2215     Value *C = IRB.CreateXor(A, B);
2216     Value *Sc = IRB.CreateOr(Sa, Sb);
2217     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
2218     // Result is defined if one of the following is true
2219     // * there is a defined 1 bit in C
2220     // * C is fully defined
2221     // Si = !(C & ~Sc) && Sc
2222     Value *Zero = Constant::getNullValue(Sc->getType());
2223     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
2224     Value *Si =
2225       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
2226                     IRB.CreateICmpEQ(
2227                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
2228     Si->setName("_msprop_icmp");
2229     setShadow(&I, Si);
2230     setOriginForNaryOp(I);
2231   }
2232 
2233   /// Build the lowest possible value of V, taking into account V's
2234   ///        uninitialized bits.
2235   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2236                                 bool isSigned) {
2237     if (isSigned) {
2238       // Split shadow into sign bit and other bits.
2239       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2240       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2241       // Maximise the undefined shadow bit, minimize other undefined bits.
2242       return
2243         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
2244     } else {
2245       // Minimize undefined bits.
2246       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
2247     }
2248   }
2249 
2250   /// Build the highest possible value of V, taking into account V's
2251   ///        uninitialized bits.
2252   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2253                                 bool isSigned) {
2254     if (isSigned) {
2255       // Split shadow into sign bit and other bits.
2256       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2257       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2258       // Minimise the undefined shadow bit, maximise other undefined bits.
2259       return
2260         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
2261     } else {
2262       // Maximize undefined bits.
2263       return IRB.CreateOr(A, Sa);
2264     }
2265   }
2266 
2267   /// Instrument relational comparisons.
2268   ///
2269   /// This function does exact shadow propagation for all relational
2270   /// comparisons of integers, pointers and vectors of those.
2271   /// FIXME: output seems suboptimal when one of the operands is a constant
2272   void handleRelationalComparisonExact(ICmpInst &I) {
2273     IRBuilder<> IRB(&I);
2274     Value *A = I.getOperand(0);
2275     Value *B = I.getOperand(1);
2276     Value *Sa = getShadow(A);
2277     Value *Sb = getShadow(B);
2278 
2279     // Get rid of pointers and vectors of pointers.
2280     // For ints (and vectors of ints), types of A and Sa match,
2281     // and this is a no-op.
2282     A = IRB.CreatePointerCast(A, Sa->getType());
2283     B = IRB.CreatePointerCast(B, Sb->getType());
2284 
2285     // Let [a0, a1] be the interval of possible values of A, taking into account
2286     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
2287     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
2288     bool IsSigned = I.isSigned();
2289     Value *S1 = IRB.CreateICmp(I.getPredicate(),
2290                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
2291                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
2292     Value *S2 = IRB.CreateICmp(I.getPredicate(),
2293                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
2294                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
2295     Value *Si = IRB.CreateXor(S1, S2);
2296     setShadow(&I, Si);
2297     setOriginForNaryOp(I);
2298   }
2299 
2300   /// Instrument signed relational comparisons.
2301   ///
2302   /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
2303   /// bit of the shadow. Everything else is delegated to handleShadowOr().
2304   void handleSignedRelationalComparison(ICmpInst &I) {
2305     Constant *constOp;
2306     Value *op = nullptr;
2307     CmpInst::Predicate pre;
2308     if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
2309       op = I.getOperand(0);
2310       pre = I.getPredicate();
2311     } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
2312       op = I.getOperand(1);
2313       pre = I.getSwappedPredicate();
2314     } else {
2315       handleShadowOr(I);
2316       return;
2317     }
2318 
2319     if ((constOp->isNullValue() &&
2320          (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
2321         (constOp->isAllOnesValue() &&
2322          (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
2323       IRBuilder<> IRB(&I);
2324       Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
2325                                         "_msprop_icmp_s");
2326       setShadow(&I, Shadow);
2327       setOrigin(&I, getOrigin(op));
2328     } else {
2329       handleShadowOr(I);
2330     }
2331   }
2332 
2333   void visitICmpInst(ICmpInst &I) {
2334     if (!ClHandleICmp) {
2335       handleShadowOr(I);
2336       return;
2337     }
2338     if (I.isEquality()) {
2339       handleEqualityComparison(I);
2340       return;
2341     }
2342 
2343     assert(I.isRelational());
2344     if (ClHandleICmpExact) {
2345       handleRelationalComparisonExact(I);
2346       return;
2347     }
2348     if (I.isSigned()) {
2349       handleSignedRelationalComparison(I);
2350       return;
2351     }
2352 
2353     assert(I.isUnsigned());
2354     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2355       handleRelationalComparisonExact(I);
2356       return;
2357     }
2358 
2359     handleShadowOr(I);
2360   }
2361 
2362   void visitFCmpInst(FCmpInst &I) {
2363     handleShadowOr(I);
2364   }
2365 
2366   void handleShift(BinaryOperator &I) {
2367     IRBuilder<> IRB(&I);
2368     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2369     // Otherwise perform the same shift on S1.
2370     Value *S1 = getShadow(&I, 0);
2371     Value *S2 = getShadow(&I, 1);
2372     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
2373                                    S2->getType());
2374     Value *V2 = I.getOperand(1);
2375     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2376     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2377     setOriginForNaryOp(I);
2378   }
2379 
2380   void visitShl(BinaryOperator &I) { handleShift(I); }
2381   void visitAShr(BinaryOperator &I) { handleShift(I); }
2382   void visitLShr(BinaryOperator &I) { handleShift(I); }
2383 
2384   /// Instrument llvm.memmove
2385   ///
2386   /// At this point we don't know if llvm.memmove will be inlined or not.
2387   /// If we don't instrument it and it gets inlined,
2388   /// our interceptor will not kick in and we will lose the memmove.
2389   /// If we instrument the call here, but it does not get inlined,
2390   /// we will memove the shadow twice: which is bad in case
2391   /// of overlapping regions. So, we simply lower the intrinsic to a call.
2392   ///
2393   /// Similar situation exists for memcpy and memset.
2394   void visitMemMoveInst(MemMoveInst &I) {
2395     IRBuilder<> IRB(&I);
2396     IRB.CreateCall(
2397         MS.MemmoveFn,
2398         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2399          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2400          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2401     I.eraseFromParent();
2402   }
2403 
2404   // Similar to memmove: avoid copying shadow twice.
2405   // This is somewhat unfortunate as it may slowdown small constant memcpys.
2406   // FIXME: consider doing manual inline for small constant sizes and proper
2407   // alignment.
2408   void visitMemCpyInst(MemCpyInst &I) {
2409     IRBuilder<> IRB(&I);
2410     IRB.CreateCall(
2411         MS.MemcpyFn,
2412         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2413          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2414          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2415     I.eraseFromParent();
2416   }
2417 
2418   // Same as memcpy.
2419   void visitMemSetInst(MemSetInst &I) {
2420     IRBuilder<> IRB(&I);
2421     IRB.CreateCall(
2422         MS.MemsetFn,
2423         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2424          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2425          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2426     I.eraseFromParent();
2427   }
2428 
2429   void visitVAStartInst(VAStartInst &I) {
2430     VAHelper->visitVAStartInst(I);
2431   }
2432 
2433   void visitVACopyInst(VACopyInst &I) {
2434     VAHelper->visitVACopyInst(I);
2435   }
2436 
2437   /// Handle vector store-like intrinsics.
2438   ///
2439   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2440   /// has 1 pointer argument and 1 vector argument, returns void.
2441   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2442     IRBuilder<> IRB(&I);
2443     Value* Addr = I.getArgOperand(0);
2444     Value *Shadow = getShadow(&I, 1);
2445     Value *ShadowPtr, *OriginPtr;
2446 
2447     // We don't know the pointer alignment (could be unaligned SSE store!).
2448     // Have to assume to worst case.
2449     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2450         Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true);
2451     IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
2452 
2453     if (ClCheckAccessAddress)
2454       insertShadowCheck(Addr, &I);
2455 
2456     // FIXME: factor out common code from materializeStores
2457     if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2458     return true;
2459   }
2460 
2461   /// Handle vector load-like intrinsics.
2462   ///
2463   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2464   /// has 1 pointer argument, returns a vector.
2465   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2466     IRBuilder<> IRB(&I);
2467     Value *Addr = I.getArgOperand(0);
2468 
2469     Type *ShadowTy = getShadowTy(&I);
2470     Value *ShadowPtr, *OriginPtr;
2471     if (PropagateShadow) {
2472       // We don't know the pointer alignment (could be unaligned SSE load!).
2473       // Have to assume to worst case.
2474       unsigned Alignment = 1;
2475       std::tie(ShadowPtr, OriginPtr) =
2476           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2477       setShadow(&I,
2478                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2479     } else {
2480       setShadow(&I, getCleanShadow(&I));
2481     }
2482 
2483     if (ClCheckAccessAddress)
2484       insertShadowCheck(Addr, &I);
2485 
2486     if (MS.TrackOrigins) {
2487       if (PropagateShadow)
2488         setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
2489       else
2490         setOrigin(&I, getCleanOrigin());
2491     }
2492     return true;
2493   }
2494 
2495   /// Handle (SIMD arithmetic)-like intrinsics.
2496   ///
2497   /// Instrument intrinsics with any number of arguments of the same type,
2498   /// equal to the return type. The type should be simple (no aggregates or
2499   /// pointers; vectors are fine).
2500   /// Caller guarantees that this intrinsic does not access memory.
2501   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2502     Type *RetTy = I.getType();
2503     if (!(RetTy->isIntOrIntVectorTy() ||
2504           RetTy->isFPOrFPVectorTy() ||
2505           RetTy->isX86_MMXTy()))
2506       return false;
2507 
2508     unsigned NumArgOperands = I.getNumArgOperands();
2509 
2510     for (unsigned i = 0; i < NumArgOperands; ++i) {
2511       Type *Ty = I.getArgOperand(i)->getType();
2512       if (Ty != RetTy)
2513         return false;
2514     }
2515 
2516     IRBuilder<> IRB(&I);
2517     ShadowAndOriginCombiner SC(this, IRB);
2518     for (unsigned i = 0; i < NumArgOperands; ++i)
2519       SC.Add(I.getArgOperand(i));
2520     SC.Done(&I);
2521 
2522     return true;
2523   }
2524 
2525   /// Heuristically instrument unknown intrinsics.
2526   ///
2527   /// The main purpose of this code is to do something reasonable with all
2528   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2529   /// We recognize several classes of intrinsics by their argument types and
2530   /// ModRefBehaviour and apply special intrumentation when we are reasonably
2531   /// sure that we know what the intrinsic does.
2532   ///
2533   /// We special-case intrinsics where this approach fails. See llvm.bswap
2534   /// handling as an example of that.
2535   bool handleUnknownIntrinsic(IntrinsicInst &I) {
2536     unsigned NumArgOperands = I.getNumArgOperands();
2537     if (NumArgOperands == 0)
2538       return false;
2539 
2540     if (NumArgOperands == 2 &&
2541         I.getArgOperand(0)->getType()->isPointerTy() &&
2542         I.getArgOperand(1)->getType()->isVectorTy() &&
2543         I.getType()->isVoidTy() &&
2544         !I.onlyReadsMemory()) {
2545       // This looks like a vector store.
2546       return handleVectorStoreIntrinsic(I);
2547     }
2548 
2549     if (NumArgOperands == 1 &&
2550         I.getArgOperand(0)->getType()->isPointerTy() &&
2551         I.getType()->isVectorTy() &&
2552         I.onlyReadsMemory()) {
2553       // This looks like a vector load.
2554       return handleVectorLoadIntrinsic(I);
2555     }
2556 
2557     if (I.doesNotAccessMemory())
2558       if (maybeHandleSimpleNomemIntrinsic(I))
2559         return true;
2560 
2561     // FIXME: detect and handle SSE maskstore/maskload
2562     return false;
2563   }
2564 
2565   void handleLifetimeStart(IntrinsicInst &I) {
2566     if (!PoisonStack)
2567       return;
2568     DenseMap<Value *, AllocaInst *> AllocaForValue;
2569     AllocaInst *AI =
2570         llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue);
2571     if (!AI)
2572       InstrumentLifetimeStart = false;
2573     LifetimeStartList.push_back(std::make_pair(&I, AI));
2574   }
2575 
2576   void handleBswap(IntrinsicInst &I) {
2577     IRBuilder<> IRB(&I);
2578     Value *Op = I.getArgOperand(0);
2579     Type *OpType = Op->getType();
2580     Function *BswapFunc = Intrinsic::getDeclaration(
2581       F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
2582     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
2583     setOrigin(&I, getOrigin(Op));
2584   }
2585 
2586   // Instrument vector convert instrinsic.
2587   //
2588   // This function instruments intrinsics like cvtsi2ss:
2589   // %Out = int_xxx_cvtyyy(%ConvertOp)
2590   // or
2591   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2592   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2593   // number \p Out elements, and (if has 2 arguments) copies the rest of the
2594   // elements from \p CopyOp.
2595   // In most cases conversion involves floating-point value which may trigger a
2596   // hardware exception when not fully initialized. For this reason we require
2597   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2598   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2599   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2600   // return a fully initialized value.
2601   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
2602     IRBuilder<> IRB(&I);
2603     Value *CopyOp, *ConvertOp;
2604 
2605     switch (I.getNumArgOperands()) {
2606     case 3:
2607       assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
2608       LLVM_FALLTHROUGH;
2609     case 2:
2610       CopyOp = I.getArgOperand(0);
2611       ConvertOp = I.getArgOperand(1);
2612       break;
2613     case 1:
2614       ConvertOp = I.getArgOperand(0);
2615       CopyOp = nullptr;
2616       break;
2617     default:
2618       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
2619     }
2620 
2621     // The first *NumUsedElements* elements of ConvertOp are converted to the
2622     // same number of output elements. The rest of the output is copied from
2623     // CopyOp, or (if not available) filled with zeroes.
2624     // Combine shadow for elements of ConvertOp that are used in this operation,
2625     // and insert a check.
2626     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2627     // int->any conversion.
2628     Value *ConvertShadow = getShadow(ConvertOp);
2629     Value *AggShadow = nullptr;
2630     if (ConvertOp->getType()->isVectorTy()) {
2631       AggShadow = IRB.CreateExtractElement(
2632           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2633       for (int i = 1; i < NumUsedElements; ++i) {
2634         Value *MoreShadow = IRB.CreateExtractElement(
2635             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2636         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2637       }
2638     } else {
2639       AggShadow = ConvertShadow;
2640     }
2641     assert(AggShadow->getType()->isIntegerTy());
2642     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2643 
2644     // Build result shadow by zero-filling parts of CopyOp shadow that come from
2645     // ConvertOp.
2646     if (CopyOp) {
2647       assert(CopyOp->getType() == I.getType());
2648       assert(CopyOp->getType()->isVectorTy());
2649       Value *ResultShadow = getShadow(CopyOp);
2650       Type *EltTy = ResultShadow->getType()->getVectorElementType();
2651       for (int i = 0; i < NumUsedElements; ++i) {
2652         ResultShadow = IRB.CreateInsertElement(
2653             ResultShadow, ConstantInt::getNullValue(EltTy),
2654             ConstantInt::get(IRB.getInt32Ty(), i));
2655       }
2656       setShadow(&I, ResultShadow);
2657       setOrigin(&I, getOrigin(CopyOp));
2658     } else {
2659       setShadow(&I, getCleanShadow(&I));
2660       setOrigin(&I, getCleanOrigin());
2661     }
2662   }
2663 
2664   // Given a scalar or vector, extract lower 64 bits (or less), and return all
2665   // zeroes if it is zero, and all ones otherwise.
2666   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2667     if (S->getType()->isVectorTy())
2668       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2669     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2670     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2671     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2672   }
2673 
2674   // Given a vector, extract its first element, and return all
2675   // zeroes if it is zero, and all ones otherwise.
2676   Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2677     Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
2678     Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
2679     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2680   }
2681 
2682   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2683     Type *T = S->getType();
2684     assert(T->isVectorTy());
2685     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2686     return IRB.CreateSExt(S2, T);
2687   }
2688 
2689   // Instrument vector shift instrinsic.
2690   //
2691   // This function instruments intrinsics like int_x86_avx2_psll_w.
2692   // Intrinsic shifts %In by %ShiftSize bits.
2693   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2694   // size, and the rest is ignored. Behavior is defined even if shift size is
2695   // greater than register (or field) width.
2696   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2697     assert(I.getNumArgOperands() == 2);
2698     IRBuilder<> IRB(&I);
2699     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2700     // Otherwise perform the same shift on S1.
2701     Value *S1 = getShadow(&I, 0);
2702     Value *S2 = getShadow(&I, 1);
2703     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2704                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2705     Value *V1 = I.getOperand(0);
2706     Value *V2 = I.getOperand(1);
2707     Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(),
2708                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
2709     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2710     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2711     setOriginForNaryOp(I);
2712   }
2713 
2714   // Get an X86_MMX-sized vector type.
2715   Type *getMMXVectorTy(unsigned EltSizeInBits) {
2716     const unsigned X86_MMXSizeInBits = 64;
2717     assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
2718            "Illegal MMX vector element size");
2719     return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2720                            X86_MMXSizeInBits / EltSizeInBits);
2721   }
2722 
2723   // Returns a signed counterpart for an (un)signed-saturate-and-pack
2724   // intrinsic.
2725   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2726     switch (id) {
2727       case Intrinsic::x86_sse2_packsswb_128:
2728       case Intrinsic::x86_sse2_packuswb_128:
2729         return Intrinsic::x86_sse2_packsswb_128;
2730 
2731       case Intrinsic::x86_sse2_packssdw_128:
2732       case Intrinsic::x86_sse41_packusdw:
2733         return Intrinsic::x86_sse2_packssdw_128;
2734 
2735       case Intrinsic::x86_avx2_packsswb:
2736       case Intrinsic::x86_avx2_packuswb:
2737         return Intrinsic::x86_avx2_packsswb;
2738 
2739       case Intrinsic::x86_avx2_packssdw:
2740       case Intrinsic::x86_avx2_packusdw:
2741         return Intrinsic::x86_avx2_packssdw;
2742 
2743       case Intrinsic::x86_mmx_packsswb:
2744       case Intrinsic::x86_mmx_packuswb:
2745         return Intrinsic::x86_mmx_packsswb;
2746 
2747       case Intrinsic::x86_mmx_packssdw:
2748         return Intrinsic::x86_mmx_packssdw;
2749       default:
2750         llvm_unreachable("unexpected intrinsic id");
2751     }
2752   }
2753 
2754   // Instrument vector pack instrinsic.
2755   //
2756   // This function instruments intrinsics like x86_mmx_packsswb, that
2757   // packs elements of 2 input vectors into half as many bits with saturation.
2758   // Shadow is propagated with the signed variant of the same intrinsic applied
2759   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2760   // EltSizeInBits is used only for x86mmx arguments.
2761   void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2762     assert(I.getNumArgOperands() == 2);
2763     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2764     IRBuilder<> IRB(&I);
2765     Value *S1 = getShadow(&I, 0);
2766     Value *S2 = getShadow(&I, 1);
2767     assert(isX86_MMX || S1->getType()->isVectorTy());
2768 
2769     // SExt and ICmpNE below must apply to individual elements of input vectors.
2770     // In case of x86mmx arguments, cast them to appropriate vector types and
2771     // back.
2772     Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2773     if (isX86_MMX) {
2774       S1 = IRB.CreateBitCast(S1, T);
2775       S2 = IRB.CreateBitCast(S2, T);
2776     }
2777     Value *S1_ext = IRB.CreateSExt(
2778         IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
2779     Value *S2_ext = IRB.CreateSExt(
2780         IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
2781     if (isX86_MMX) {
2782       Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2783       S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2784       S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2785     }
2786 
2787     Function *ShadowFn = Intrinsic::getDeclaration(
2788         F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2789 
2790     Value *S =
2791         IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
2792     if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2793     setShadow(&I, S);
2794     setOriginForNaryOp(I);
2795   }
2796 
2797   // Instrument sum-of-absolute-differencies intrinsic.
2798   void handleVectorSadIntrinsic(IntrinsicInst &I) {
2799     const unsigned SignificantBitsPerResultElement = 16;
2800     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2801     Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2802     unsigned ZeroBitsPerResultElement =
2803         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2804 
2805     IRBuilder<> IRB(&I);
2806     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2807     S = IRB.CreateBitCast(S, ResTy);
2808     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2809                        ResTy);
2810     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2811     S = IRB.CreateBitCast(S, getShadowTy(&I));
2812     setShadow(&I, S);
2813     setOriginForNaryOp(I);
2814   }
2815 
2816   // Instrument multiply-add intrinsic.
2817   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2818                                   unsigned EltSizeInBits = 0) {
2819     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2820     Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2821     IRBuilder<> IRB(&I);
2822     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2823     S = IRB.CreateBitCast(S, ResTy);
2824     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2825                        ResTy);
2826     S = IRB.CreateBitCast(S, getShadowTy(&I));
2827     setShadow(&I, S);
2828     setOriginForNaryOp(I);
2829   }
2830 
2831   // Instrument compare-packed intrinsic.
2832   // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
2833   // all-ones shadow.
2834   void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
2835     IRBuilder<> IRB(&I);
2836     Type *ResTy = getShadowTy(&I);
2837     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2838     Value *S = IRB.CreateSExt(
2839         IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
2840     setShadow(&I, S);
2841     setOriginForNaryOp(I);
2842   }
2843 
2844   // Instrument compare-scalar intrinsic.
2845   // This handles both cmp* intrinsics which return the result in the first
2846   // element of a vector, and comi* which return the result as i32.
2847   void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
2848     IRBuilder<> IRB(&I);
2849     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2850     Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
2851     setShadow(&I, S);
2852     setOriginForNaryOp(I);
2853   }
2854 
2855   void handleStmxcsr(IntrinsicInst &I) {
2856     IRBuilder<> IRB(&I);
2857     Value* Addr = I.getArgOperand(0);
2858     Type *Ty = IRB.getInt32Ty();
2859     Value *ShadowPtr =
2860         getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true)
2861             .first;
2862 
2863     IRB.CreateStore(getCleanShadow(Ty),
2864                     IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
2865 
2866     if (ClCheckAccessAddress)
2867       insertShadowCheck(Addr, &I);
2868   }
2869 
2870   void handleLdmxcsr(IntrinsicInst &I) {
2871     if (!InsertChecks) return;
2872 
2873     IRBuilder<> IRB(&I);
2874     Value *Addr = I.getArgOperand(0);
2875     Type *Ty = IRB.getInt32Ty();
2876     unsigned Alignment = 1;
2877     Value *ShadowPtr, *OriginPtr;
2878     std::tie(ShadowPtr, OriginPtr) =
2879         getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
2880 
2881     if (ClCheckAccessAddress)
2882       insertShadowCheck(Addr, &I);
2883 
2884     Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
2885     Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
2886                                     : getCleanOrigin();
2887     insertShadowCheck(Shadow, Origin, &I);
2888   }
2889 
2890   void handleMaskedStore(IntrinsicInst &I) {
2891     IRBuilder<> IRB(&I);
2892     Value *V = I.getArgOperand(0);
2893     Value *Addr = I.getArgOperand(1);
2894     unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
2895     Value *Mask = I.getArgOperand(3);
2896     Value *Shadow = getShadow(V);
2897 
2898     Value *ShadowPtr;
2899     Value *OriginPtr;
2900     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2901         Addr, IRB, Shadow->getType(), Align, /*isStore*/ true);
2902 
2903     if (ClCheckAccessAddress) {
2904       insertShadowCheck(Addr, &I);
2905       // Uninitialized mask is kind of like uninitialized address, but not as
2906       // scary.
2907       insertShadowCheck(Mask, &I);
2908     }
2909 
2910     IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask);
2911 
2912     if (MS.TrackOrigins) {
2913       auto &DL = F.getParent()->getDataLayout();
2914       paintOrigin(IRB, getOrigin(V), OriginPtr,
2915                   DL.getTypeStoreSize(Shadow->getType()),
2916                   std::max(Align, kMinOriginAlignment));
2917     }
2918   }
2919 
2920   bool handleMaskedLoad(IntrinsicInst &I) {
2921     IRBuilder<> IRB(&I);
2922     Value *Addr = I.getArgOperand(0);
2923     unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
2924     Value *Mask = I.getArgOperand(2);
2925     Value *PassThru = I.getArgOperand(3);
2926 
2927     Type *ShadowTy = getShadowTy(&I);
2928     Value *ShadowPtr, *OriginPtr;
2929     if (PropagateShadow) {
2930       std::tie(ShadowPtr, OriginPtr) =
2931           getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false);
2932       setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask,
2933                                          getShadow(PassThru), "_msmaskedld"));
2934     } else {
2935       setShadow(&I, getCleanShadow(&I));
2936     }
2937 
2938     if (ClCheckAccessAddress) {
2939       insertShadowCheck(Addr, &I);
2940       insertShadowCheck(Mask, &I);
2941     }
2942 
2943     if (MS.TrackOrigins) {
2944       if (PropagateShadow) {
2945         // Choose between PassThru's and the loaded value's origins.
2946         Value *MaskedPassThruShadow = IRB.CreateAnd(
2947             getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
2948 
2949         Value *Acc = IRB.CreateExtractElement(
2950             MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2951         for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N;
2952              ++i) {
2953           Value *More = IRB.CreateExtractElement(
2954               MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2955           Acc = IRB.CreateOr(Acc, More);
2956         }
2957 
2958         Value *Origin = IRB.CreateSelect(
2959             IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())),
2960             getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr));
2961 
2962         setOrigin(&I, Origin);
2963       } else {
2964         setOrigin(&I, getCleanOrigin());
2965       }
2966     }
2967     return true;
2968   }
2969 
2970   // Instrument BMI / BMI2 intrinsics.
2971   // All of these intrinsics are Z = I(X, Y)
2972   // where the types of all operands and the result match, and are either i32 or i64.
2973   // The following instrumentation happens to work for all of them:
2974   //   Sz = I(Sx, Y) | (sext (Sy != 0))
2975   void handleBmiIntrinsic(IntrinsicInst &I) {
2976     IRBuilder<> IRB(&I);
2977     Type *ShadowTy = getShadowTy(&I);
2978 
2979     // If any bit of the mask operand is poisoned, then the whole thing is.
2980     Value *SMask = getShadow(&I, 1);
2981     SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
2982                            ShadowTy);
2983     // Apply the same intrinsic to the shadow of the first operand.
2984     Value *S = IRB.CreateCall(I.getCalledFunction(),
2985                               {getShadow(&I, 0), I.getOperand(1)});
2986     S = IRB.CreateOr(SMask, S);
2987     setShadow(&I, S);
2988     setOriginForNaryOp(I);
2989   }
2990 
2991   void visitIntrinsicInst(IntrinsicInst &I) {
2992     switch (I.getIntrinsicID()) {
2993     case Intrinsic::lifetime_start:
2994       handleLifetimeStart(I);
2995       break;
2996     case Intrinsic::bswap:
2997       handleBswap(I);
2998       break;
2999     case Intrinsic::masked_store:
3000       handleMaskedStore(I);
3001       break;
3002     case Intrinsic::masked_load:
3003       handleMaskedLoad(I);
3004       break;
3005     case Intrinsic::x86_sse_stmxcsr:
3006       handleStmxcsr(I);
3007       break;
3008     case Intrinsic::x86_sse_ldmxcsr:
3009       handleLdmxcsr(I);
3010       break;
3011     case Intrinsic::x86_avx512_vcvtsd2usi64:
3012     case Intrinsic::x86_avx512_vcvtsd2usi32:
3013     case Intrinsic::x86_avx512_vcvtss2usi64:
3014     case Intrinsic::x86_avx512_vcvtss2usi32:
3015     case Intrinsic::x86_avx512_cvttss2usi64:
3016     case Intrinsic::x86_avx512_cvttss2usi:
3017     case Intrinsic::x86_avx512_cvttsd2usi64:
3018     case Intrinsic::x86_avx512_cvttsd2usi:
3019     case Intrinsic::x86_avx512_cvtusi2ss:
3020     case Intrinsic::x86_avx512_cvtusi642sd:
3021     case Intrinsic::x86_avx512_cvtusi642ss:
3022     case Intrinsic::x86_sse2_cvtsd2si64:
3023     case Intrinsic::x86_sse2_cvtsd2si:
3024     case Intrinsic::x86_sse2_cvtsd2ss:
3025     case Intrinsic::x86_sse2_cvttsd2si64:
3026     case Intrinsic::x86_sse2_cvttsd2si:
3027     case Intrinsic::x86_sse_cvtss2si64:
3028     case Intrinsic::x86_sse_cvtss2si:
3029     case Intrinsic::x86_sse_cvttss2si64:
3030     case Intrinsic::x86_sse_cvttss2si:
3031       handleVectorConvertIntrinsic(I, 1);
3032       break;
3033     case Intrinsic::x86_sse_cvtps2pi:
3034     case Intrinsic::x86_sse_cvttps2pi:
3035       handleVectorConvertIntrinsic(I, 2);
3036       break;
3037 
3038     case Intrinsic::x86_avx512_psll_w_512:
3039     case Intrinsic::x86_avx512_psll_d_512:
3040     case Intrinsic::x86_avx512_psll_q_512:
3041     case Intrinsic::x86_avx512_pslli_w_512:
3042     case Intrinsic::x86_avx512_pslli_d_512:
3043     case Intrinsic::x86_avx512_pslli_q_512:
3044     case Intrinsic::x86_avx512_psrl_w_512:
3045     case Intrinsic::x86_avx512_psrl_d_512:
3046     case Intrinsic::x86_avx512_psrl_q_512:
3047     case Intrinsic::x86_avx512_psra_w_512:
3048     case Intrinsic::x86_avx512_psra_d_512:
3049     case Intrinsic::x86_avx512_psra_q_512:
3050     case Intrinsic::x86_avx512_psrli_w_512:
3051     case Intrinsic::x86_avx512_psrli_d_512:
3052     case Intrinsic::x86_avx512_psrli_q_512:
3053     case Intrinsic::x86_avx512_psrai_w_512:
3054     case Intrinsic::x86_avx512_psrai_d_512:
3055     case Intrinsic::x86_avx512_psrai_q_512:
3056     case Intrinsic::x86_avx512_psra_q_256:
3057     case Intrinsic::x86_avx512_psra_q_128:
3058     case Intrinsic::x86_avx512_psrai_q_256:
3059     case Intrinsic::x86_avx512_psrai_q_128:
3060     case Intrinsic::x86_avx2_psll_w:
3061     case Intrinsic::x86_avx2_psll_d:
3062     case Intrinsic::x86_avx2_psll_q:
3063     case Intrinsic::x86_avx2_pslli_w:
3064     case Intrinsic::x86_avx2_pslli_d:
3065     case Intrinsic::x86_avx2_pslli_q:
3066     case Intrinsic::x86_avx2_psrl_w:
3067     case Intrinsic::x86_avx2_psrl_d:
3068     case Intrinsic::x86_avx2_psrl_q:
3069     case Intrinsic::x86_avx2_psra_w:
3070     case Intrinsic::x86_avx2_psra_d:
3071     case Intrinsic::x86_avx2_psrli_w:
3072     case Intrinsic::x86_avx2_psrli_d:
3073     case Intrinsic::x86_avx2_psrli_q:
3074     case Intrinsic::x86_avx2_psrai_w:
3075     case Intrinsic::x86_avx2_psrai_d:
3076     case Intrinsic::x86_sse2_psll_w:
3077     case Intrinsic::x86_sse2_psll_d:
3078     case Intrinsic::x86_sse2_psll_q:
3079     case Intrinsic::x86_sse2_pslli_w:
3080     case Intrinsic::x86_sse2_pslli_d:
3081     case Intrinsic::x86_sse2_pslli_q:
3082     case Intrinsic::x86_sse2_psrl_w:
3083     case Intrinsic::x86_sse2_psrl_d:
3084     case Intrinsic::x86_sse2_psrl_q:
3085     case Intrinsic::x86_sse2_psra_w:
3086     case Intrinsic::x86_sse2_psra_d:
3087     case Intrinsic::x86_sse2_psrli_w:
3088     case Intrinsic::x86_sse2_psrli_d:
3089     case Intrinsic::x86_sse2_psrli_q:
3090     case Intrinsic::x86_sse2_psrai_w:
3091     case Intrinsic::x86_sse2_psrai_d:
3092     case Intrinsic::x86_mmx_psll_w:
3093     case Intrinsic::x86_mmx_psll_d:
3094     case Intrinsic::x86_mmx_psll_q:
3095     case Intrinsic::x86_mmx_pslli_w:
3096     case Intrinsic::x86_mmx_pslli_d:
3097     case Intrinsic::x86_mmx_pslli_q:
3098     case Intrinsic::x86_mmx_psrl_w:
3099     case Intrinsic::x86_mmx_psrl_d:
3100     case Intrinsic::x86_mmx_psrl_q:
3101     case Intrinsic::x86_mmx_psra_w:
3102     case Intrinsic::x86_mmx_psra_d:
3103     case Intrinsic::x86_mmx_psrli_w:
3104     case Intrinsic::x86_mmx_psrli_d:
3105     case Intrinsic::x86_mmx_psrli_q:
3106     case Intrinsic::x86_mmx_psrai_w:
3107     case Intrinsic::x86_mmx_psrai_d:
3108       handleVectorShiftIntrinsic(I, /* Variable */ false);
3109       break;
3110     case Intrinsic::x86_avx2_psllv_d:
3111     case Intrinsic::x86_avx2_psllv_d_256:
3112     case Intrinsic::x86_avx512_psllv_d_512:
3113     case Intrinsic::x86_avx2_psllv_q:
3114     case Intrinsic::x86_avx2_psllv_q_256:
3115     case Intrinsic::x86_avx512_psllv_q_512:
3116     case Intrinsic::x86_avx2_psrlv_d:
3117     case Intrinsic::x86_avx2_psrlv_d_256:
3118     case Intrinsic::x86_avx512_psrlv_d_512:
3119     case Intrinsic::x86_avx2_psrlv_q:
3120     case Intrinsic::x86_avx2_psrlv_q_256:
3121     case Intrinsic::x86_avx512_psrlv_q_512:
3122     case Intrinsic::x86_avx2_psrav_d:
3123     case Intrinsic::x86_avx2_psrav_d_256:
3124     case Intrinsic::x86_avx512_psrav_d_512:
3125     case Intrinsic::x86_avx512_psrav_q_128:
3126     case Intrinsic::x86_avx512_psrav_q_256:
3127     case Intrinsic::x86_avx512_psrav_q_512:
3128       handleVectorShiftIntrinsic(I, /* Variable */ true);
3129       break;
3130 
3131     case Intrinsic::x86_sse2_packsswb_128:
3132     case Intrinsic::x86_sse2_packssdw_128:
3133     case Intrinsic::x86_sse2_packuswb_128:
3134     case Intrinsic::x86_sse41_packusdw:
3135     case Intrinsic::x86_avx2_packsswb:
3136     case Intrinsic::x86_avx2_packssdw:
3137     case Intrinsic::x86_avx2_packuswb:
3138     case Intrinsic::x86_avx2_packusdw:
3139       handleVectorPackIntrinsic(I);
3140       break;
3141 
3142     case Intrinsic::x86_mmx_packsswb:
3143     case Intrinsic::x86_mmx_packuswb:
3144       handleVectorPackIntrinsic(I, 16);
3145       break;
3146 
3147     case Intrinsic::x86_mmx_packssdw:
3148       handleVectorPackIntrinsic(I, 32);
3149       break;
3150 
3151     case Intrinsic::x86_mmx_psad_bw:
3152     case Intrinsic::x86_sse2_psad_bw:
3153     case Intrinsic::x86_avx2_psad_bw:
3154       handleVectorSadIntrinsic(I);
3155       break;
3156 
3157     case Intrinsic::x86_sse2_pmadd_wd:
3158     case Intrinsic::x86_avx2_pmadd_wd:
3159     case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
3160     case Intrinsic::x86_avx2_pmadd_ub_sw:
3161       handleVectorPmaddIntrinsic(I);
3162       break;
3163 
3164     case Intrinsic::x86_ssse3_pmadd_ub_sw:
3165       handleVectorPmaddIntrinsic(I, 8);
3166       break;
3167 
3168     case Intrinsic::x86_mmx_pmadd_wd:
3169       handleVectorPmaddIntrinsic(I, 16);
3170       break;
3171 
3172     case Intrinsic::x86_sse_cmp_ss:
3173     case Intrinsic::x86_sse2_cmp_sd:
3174     case Intrinsic::x86_sse_comieq_ss:
3175     case Intrinsic::x86_sse_comilt_ss:
3176     case Intrinsic::x86_sse_comile_ss:
3177     case Intrinsic::x86_sse_comigt_ss:
3178     case Intrinsic::x86_sse_comige_ss:
3179     case Intrinsic::x86_sse_comineq_ss:
3180     case Intrinsic::x86_sse_ucomieq_ss:
3181     case Intrinsic::x86_sse_ucomilt_ss:
3182     case Intrinsic::x86_sse_ucomile_ss:
3183     case Intrinsic::x86_sse_ucomigt_ss:
3184     case Intrinsic::x86_sse_ucomige_ss:
3185     case Intrinsic::x86_sse_ucomineq_ss:
3186     case Intrinsic::x86_sse2_comieq_sd:
3187     case Intrinsic::x86_sse2_comilt_sd:
3188     case Intrinsic::x86_sse2_comile_sd:
3189     case Intrinsic::x86_sse2_comigt_sd:
3190     case Intrinsic::x86_sse2_comige_sd:
3191     case Intrinsic::x86_sse2_comineq_sd:
3192     case Intrinsic::x86_sse2_ucomieq_sd:
3193     case Intrinsic::x86_sse2_ucomilt_sd:
3194     case Intrinsic::x86_sse2_ucomile_sd:
3195     case Intrinsic::x86_sse2_ucomigt_sd:
3196     case Intrinsic::x86_sse2_ucomige_sd:
3197     case Intrinsic::x86_sse2_ucomineq_sd:
3198       handleVectorCompareScalarIntrinsic(I);
3199       break;
3200 
3201     case Intrinsic::x86_sse_cmp_ps:
3202     case Intrinsic::x86_sse2_cmp_pd:
3203       // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
3204       // generates reasonably looking IR that fails in the backend with "Do not
3205       // know how to split the result of this operator!".
3206       handleVectorComparePackedIntrinsic(I);
3207       break;
3208 
3209     case Intrinsic::x86_bmi_bextr_32:
3210     case Intrinsic::x86_bmi_bextr_64:
3211     case Intrinsic::x86_bmi_bzhi_32:
3212     case Intrinsic::x86_bmi_bzhi_64:
3213     case Intrinsic::x86_bmi_pdep_32:
3214     case Intrinsic::x86_bmi_pdep_64:
3215     case Intrinsic::x86_bmi_pext_32:
3216     case Intrinsic::x86_bmi_pext_64:
3217       handleBmiIntrinsic(I);
3218       break;
3219 
3220     case Intrinsic::is_constant:
3221       // The result of llvm.is.constant() is always defined.
3222       setShadow(&I, getCleanShadow(&I));
3223       setOrigin(&I, getCleanOrigin());
3224       break;
3225 
3226     default:
3227       if (!handleUnknownIntrinsic(I))
3228         visitInstruction(I);
3229       break;
3230     }
3231   }
3232 
3233   void visitCallSite(CallSite CS) {
3234     Instruction &I = *CS.getInstruction();
3235     assert(!I.getMetadata("nosanitize"));
3236     assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) &&
3237            "Unknown type of CallSite");
3238     if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) {
3239       // For inline asm (either a call to asm function, or callbr instruction),
3240       // do the usual thing: check argument shadow and mark all outputs as
3241       // clean. Note that any side effects of the inline asm that are not
3242       // immediately visible in its constraints are not handled.
3243       if (ClHandleAsmConservative && MS.CompileKernel)
3244         visitAsmInstruction(I);
3245       else
3246         visitInstruction(I);
3247       return;
3248     }
3249     if (CS.isCall()) {
3250       CallInst *Call = cast<CallInst>(&I);
3251       assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
3252 
3253       // We are going to insert code that relies on the fact that the callee
3254       // will become a non-readonly function after it is instrumented by us. To
3255       // prevent this code from being optimized out, mark that function
3256       // non-readonly in advance.
3257       if (Function *Func = Call->getCalledFunction()) {
3258         // Clear out readonly/readnone attributes.
3259         AttrBuilder B;
3260         B.addAttribute(Attribute::ReadOnly)
3261           .addAttribute(Attribute::ReadNone);
3262         Func->removeAttributes(AttributeList::FunctionIndex, B);
3263       }
3264 
3265       maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
3266     }
3267     IRBuilder<> IRB(&I);
3268 
3269     unsigned ArgOffset = 0;
3270     LLVM_DEBUG(dbgs() << "  CallSite: " << I << "\n");
3271     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3272          ArgIt != End; ++ArgIt) {
3273       Value *A = *ArgIt;
3274       unsigned i = ArgIt - CS.arg_begin();
3275       if (!A->getType()->isSized()) {
3276         LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
3277         continue;
3278       }
3279       unsigned Size = 0;
3280       Value *Store = nullptr;
3281       // Compute the Shadow for arg even if it is ByVal, because
3282       // in that case getShadow() will copy the actual arg shadow to
3283       // __msan_param_tls.
3284       Value *ArgShadow = getShadow(A);
3285       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
3286       LLVM_DEBUG(dbgs() << "  Arg#" << i << ": " << *A
3287                         << " Shadow: " << *ArgShadow << "\n");
3288       bool ArgIsInitialized = false;
3289       const DataLayout &DL = F.getParent()->getDataLayout();
3290       if (CS.paramHasAttr(i, Attribute::ByVal)) {
3291         assert(A->getType()->isPointerTy() &&
3292                "ByVal argument is not a pointer!");
3293         Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
3294         if (ArgOffset + Size > kParamTLSSize) break;
3295         unsigned ParamAlignment = CS.getParamAlignment(i);
3296         unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
3297         Value *AShadowPtr =
3298             getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
3299                                /*isStore*/ false)
3300                 .first;
3301 
3302         Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
3303                                  Alignment, Size);
3304         // TODO(glider): need to copy origins.
3305       } else {
3306         Size = DL.getTypeAllocSize(A->getType());
3307         if (ArgOffset + Size > kParamTLSSize) break;
3308         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
3309                                        kShadowTLSAlignment);
3310         Constant *Cst = dyn_cast<Constant>(ArgShadow);
3311         if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
3312       }
3313       if (MS.TrackOrigins && !ArgIsInitialized)
3314         IRB.CreateStore(getOrigin(A),
3315                         getOriginPtrForArgument(A, IRB, ArgOffset));
3316       (void)Store;
3317       assert(Size != 0 && Store != nullptr);
3318       LLVM_DEBUG(dbgs() << "  Param:" << *Store << "\n");
3319       ArgOffset += alignTo(Size, 8);
3320     }
3321     LLVM_DEBUG(dbgs() << "  done with call args\n");
3322 
3323     FunctionType *FT = CS.getFunctionType();
3324     if (FT->isVarArg()) {
3325       VAHelper->visitCallSite(CS, IRB);
3326     }
3327 
3328     // Now, get the shadow for the RetVal.
3329     if (!I.getType()->isSized()) return;
3330     // Don't emit the epilogue for musttail call returns.
3331     if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return;
3332     IRBuilder<> IRBBefore(&I);
3333     // Until we have full dynamic coverage, make sure the retval shadow is 0.
3334     Value *Base = getShadowPtrForRetval(&I, IRBBefore);
3335     IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
3336     BasicBlock::iterator NextInsn;
3337     if (CS.isCall()) {
3338       NextInsn = ++I.getIterator();
3339       assert(NextInsn != I.getParent()->end());
3340     } else {
3341       BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
3342       if (!NormalDest->getSinglePredecessor()) {
3343         // FIXME: this case is tricky, so we are just conservative here.
3344         // Perhaps we need to split the edge between this BB and NormalDest,
3345         // but a naive attempt to use SplitEdge leads to a crash.
3346         setShadow(&I, getCleanShadow(&I));
3347         setOrigin(&I, getCleanOrigin());
3348         return;
3349       }
3350       // FIXME: NextInsn is likely in a basic block that has not been visited yet.
3351       // Anything inserted there will be instrumented by MSan later!
3352       NextInsn = NormalDest->getFirstInsertionPt();
3353       assert(NextInsn != NormalDest->end() &&
3354              "Could not find insertion point for retval shadow load");
3355     }
3356     IRBuilder<> IRBAfter(&*NextInsn);
3357     Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
3358         getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter),
3359         kShadowTLSAlignment, "_msret");
3360     setShadow(&I, RetvalShadow);
3361     if (MS.TrackOrigins)
3362       setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy,
3363                                         getOriginPtrForRetval(IRBAfter)));
3364   }
3365 
3366   bool isAMustTailRetVal(Value *RetVal) {
3367     if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
3368       RetVal = I->getOperand(0);
3369     }
3370     if (auto *I = dyn_cast<CallInst>(RetVal)) {
3371       return I->isMustTailCall();
3372     }
3373     return false;
3374   }
3375 
3376   void visitReturnInst(ReturnInst &I) {
3377     IRBuilder<> IRB(&I);
3378     Value *RetVal = I.getReturnValue();
3379     if (!RetVal) return;
3380     // Don't emit the epilogue for musttail call returns.
3381     if (isAMustTailRetVal(RetVal)) return;
3382     Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
3383     if (CheckReturnValue) {
3384       insertShadowCheck(RetVal, &I);
3385       Value *Shadow = getCleanShadow(RetVal);
3386       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
3387     } else {
3388       Value *Shadow = getShadow(RetVal);
3389       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
3390       if (MS.TrackOrigins)
3391         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
3392     }
3393   }
3394 
3395   void visitPHINode(PHINode &I) {
3396     IRBuilder<> IRB(&I);
3397     if (!PropagateShadow) {
3398       setShadow(&I, getCleanShadow(&I));
3399       setOrigin(&I, getCleanOrigin());
3400       return;
3401     }
3402 
3403     ShadowPHINodes.push_back(&I);
3404     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
3405                                 "_msphi_s"));
3406     if (MS.TrackOrigins)
3407       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
3408                                   "_msphi_o"));
3409   }
3410 
3411   Value *getLocalVarDescription(AllocaInst &I) {
3412     SmallString<2048> StackDescriptionStorage;
3413     raw_svector_ostream StackDescription(StackDescriptionStorage);
3414     // We create a string with a description of the stack allocation and
3415     // pass it into __msan_set_alloca_origin.
3416     // It will be printed by the run-time if stack-originated UMR is found.
3417     // The first 4 bytes of the string are set to '----' and will be replaced
3418     // by __msan_va_arg_overflow_size_tls at the first call.
3419     StackDescription << "----" << I.getName() << "@" << F.getName();
3420     return createPrivateNonConstGlobalForString(*F.getParent(),
3421                                                 StackDescription.str());
3422   }
3423 
3424   void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3425     if (PoisonStack && ClPoisonStackWithCall) {
3426       IRB.CreateCall(MS.MsanPoisonStackFn,
3427                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3428     } else {
3429       Value *ShadowBase, *OriginBase;
3430       std::tie(ShadowBase, OriginBase) =
3431           getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(), 1, /*isStore*/ true);
3432 
3433       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
3434       IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment());
3435     }
3436 
3437     if (PoisonStack && MS.TrackOrigins) {
3438       Value *Descr = getLocalVarDescription(I);
3439       IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
3440                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3441                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
3442                       IRB.CreatePointerCast(&F, MS.IntptrTy)});
3443     }
3444   }
3445 
3446   void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3447     Value *Descr = getLocalVarDescription(I);
3448     if (PoisonStack) {
3449       IRB.CreateCall(MS.MsanPoisonAllocaFn,
3450                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3451                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
3452     } else {
3453       IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
3454                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3455     }
3456   }
3457 
3458   void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
3459     if (!InsPoint)
3460       InsPoint = &I;
3461     IRBuilder<> IRB(InsPoint->getNextNode());
3462     const DataLayout &DL = F.getParent()->getDataLayout();
3463     uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
3464     Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
3465     if (I.isArrayAllocation())
3466       Len = IRB.CreateMul(Len, I.getArraySize());
3467 
3468     if (MS.CompileKernel)
3469       poisonAllocaKmsan(I, IRB, Len);
3470     else
3471       poisonAllocaUserspace(I, IRB, Len);
3472   }
3473 
3474   void visitAllocaInst(AllocaInst &I) {
3475     setShadow(&I, getCleanShadow(&I));
3476     setOrigin(&I, getCleanOrigin());
3477     // We'll get to this alloca later unless it's poisoned at the corresponding
3478     // llvm.lifetime.start.
3479     AllocaSet.insert(&I);
3480   }
3481 
3482   void visitSelectInst(SelectInst& I) {
3483     IRBuilder<> IRB(&I);
3484     // a = select b, c, d
3485     Value *B = I.getCondition();
3486     Value *C = I.getTrueValue();
3487     Value *D = I.getFalseValue();
3488     Value *Sb = getShadow(B);
3489     Value *Sc = getShadow(C);
3490     Value *Sd = getShadow(D);
3491 
3492     // Result shadow if condition shadow is 0.
3493     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
3494     Value *Sa1;
3495     if (I.getType()->isAggregateType()) {
3496       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
3497       // an extra "select". This results in much more compact IR.
3498       // Sa = select Sb, poisoned, (select b, Sc, Sd)
3499       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
3500     } else {
3501       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
3502       // If Sb (condition is poisoned), look for bits in c and d that are equal
3503       // and both unpoisoned.
3504       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
3505 
3506       // Cast arguments to shadow-compatible type.
3507       C = CreateAppToShadowCast(IRB, C);
3508       D = CreateAppToShadowCast(IRB, D);
3509 
3510       // Result shadow if condition shadow is 1.
3511       Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
3512     }
3513     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
3514     setShadow(&I, Sa);
3515     if (MS.TrackOrigins) {
3516       // Origins are always i32, so any vector conditions must be flattened.
3517       // FIXME: consider tracking vector origins for app vectors?
3518       if (B->getType()->isVectorTy()) {
3519         Type *FlatTy = getShadowTyNoVec(B->getType());
3520         B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
3521                                 ConstantInt::getNullValue(FlatTy));
3522         Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
3523                                       ConstantInt::getNullValue(FlatTy));
3524       }
3525       // a = select b, c, d
3526       // Oa = Sb ? Ob : (b ? Oc : Od)
3527       setOrigin(
3528           &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
3529                                IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
3530                                                 getOrigin(I.getFalseValue()))));
3531     }
3532   }
3533 
3534   void visitLandingPadInst(LandingPadInst &I) {
3535     // Do nothing.
3536     // See https://github.com/google/sanitizers/issues/504
3537     setShadow(&I, getCleanShadow(&I));
3538     setOrigin(&I, getCleanOrigin());
3539   }
3540 
3541   void visitCatchSwitchInst(CatchSwitchInst &I) {
3542     setShadow(&I, getCleanShadow(&I));
3543     setOrigin(&I, getCleanOrigin());
3544   }
3545 
3546   void visitFuncletPadInst(FuncletPadInst &I) {
3547     setShadow(&I, getCleanShadow(&I));
3548     setOrigin(&I, getCleanOrigin());
3549   }
3550 
3551   void visitGetElementPtrInst(GetElementPtrInst &I) {
3552     handleShadowOr(I);
3553   }
3554 
3555   void visitExtractValueInst(ExtractValueInst &I) {
3556     IRBuilder<> IRB(&I);
3557     Value *Agg = I.getAggregateOperand();
3558     LLVM_DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
3559     Value *AggShadow = getShadow(Agg);
3560     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
3561     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
3562     LLVM_DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
3563     setShadow(&I, ResShadow);
3564     setOriginForNaryOp(I);
3565   }
3566 
3567   void visitInsertValueInst(InsertValueInst &I) {
3568     IRBuilder<> IRB(&I);
3569     LLVM_DEBUG(dbgs() << "InsertValue:  " << I << "\n");
3570     Value *AggShadow = getShadow(I.getAggregateOperand());
3571     Value *InsShadow = getShadow(I.getInsertedValueOperand());
3572     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
3573     LLVM_DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
3574     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
3575     LLVM_DEBUG(dbgs() << "   Res:        " << *Res << "\n");
3576     setShadow(&I, Res);
3577     setOriginForNaryOp(I);
3578   }
3579 
3580   void dumpInst(Instruction &I) {
3581     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
3582       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
3583     } else {
3584       errs() << "ZZZ " << I.getOpcodeName() << "\n";
3585     }
3586     errs() << "QQQ " << I << "\n";
3587   }
3588 
3589   void visitResumeInst(ResumeInst &I) {
3590     LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
3591     // Nothing to do here.
3592   }
3593 
3594   void visitCleanupReturnInst(CleanupReturnInst &CRI) {
3595     LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
3596     // Nothing to do here.
3597   }
3598 
3599   void visitCatchReturnInst(CatchReturnInst &CRI) {
3600     LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
3601     // Nothing to do here.
3602   }
3603 
3604   void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB,
3605                              const DataLayout &DL, bool isOutput) {
3606     // For each assembly argument, we check its value for being initialized.
3607     // If the argument is a pointer, we assume it points to a single element
3608     // of the corresponding type (or to a 8-byte word, if the type is unsized).
3609     // Each such pointer is instrumented with a call to the runtime library.
3610     Type *OpType = Operand->getType();
3611     // Check the operand value itself.
3612     insertShadowCheck(Operand, &I);
3613     if (!OpType->isPointerTy() || !isOutput) {
3614       assert(!isOutput);
3615       return;
3616     }
3617     Type *ElType = OpType->getPointerElementType();
3618     if (!ElType->isSized())
3619       return;
3620     int Size = DL.getTypeStoreSize(ElType);
3621     Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
3622     Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
3623     IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
3624   }
3625 
3626   /// Get the number of output arguments returned by pointers.
3627   int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
3628     int NumRetOutputs = 0;
3629     int NumOutputs = 0;
3630     Type *RetTy = dyn_cast<Value>(CB)->getType();
3631     if (!RetTy->isVoidTy()) {
3632       // Register outputs are returned via the CallInst return value.
3633       StructType *ST = dyn_cast_or_null<StructType>(RetTy);
3634       if (ST)
3635         NumRetOutputs = ST->getNumElements();
3636       else
3637         NumRetOutputs = 1;
3638     }
3639     InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
3640     for (size_t i = 0, n = Constraints.size(); i < n; i++) {
3641       InlineAsm::ConstraintInfo Info = Constraints[i];
3642       switch (Info.Type) {
3643       case InlineAsm::isOutput:
3644         NumOutputs++;
3645         break;
3646       default:
3647         break;
3648       }
3649     }
3650     return NumOutputs - NumRetOutputs;
3651   }
3652 
3653   void visitAsmInstruction(Instruction &I) {
3654     // Conservative inline assembly handling: check for poisoned shadow of
3655     // asm() arguments, then unpoison the result and all the memory locations
3656     // pointed to by those arguments.
3657     // An inline asm() statement in C++ contains lists of input and output
3658     // arguments used by the assembly code. These are mapped to operands of the
3659     // CallInst as follows:
3660     //  - nR register outputs ("=r) are returned by value in a single structure
3661     //  (SSA value of the CallInst);
3662     //  - nO other outputs ("=m" and others) are returned by pointer as first
3663     // nO operands of the CallInst;
3664     //  - nI inputs ("r", "m" and others) are passed to CallInst as the
3665     // remaining nI operands.
3666     // The total number of asm() arguments in the source is nR+nO+nI, and the
3667     // corresponding CallInst has nO+nI+1 operands (the last operand is the
3668     // function to be called).
3669     const DataLayout &DL = F.getParent()->getDataLayout();
3670     CallBase *CB = dyn_cast<CallBase>(&I);
3671     IRBuilder<> IRB(&I);
3672     InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue());
3673     int OutputArgs = getNumOutputArgs(IA, CB);
3674     // The last operand of a CallInst is the function itself.
3675     int NumOperands = CB->getNumOperands() - 1;
3676 
3677     // Check input arguments. Doing so before unpoisoning output arguments, so
3678     // that we won't overwrite uninit values before checking them.
3679     for (int i = OutputArgs; i < NumOperands; i++) {
3680       Value *Operand = CB->getOperand(i);
3681       instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false);
3682     }
3683     // Unpoison output arguments. This must happen before the actual InlineAsm
3684     // call, so that the shadow for memory published in the asm() statement
3685     // remains valid.
3686     for (int i = 0; i < OutputArgs; i++) {
3687       Value *Operand = CB->getOperand(i);
3688       instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true);
3689     }
3690 
3691     setShadow(&I, getCleanShadow(&I));
3692     setOrigin(&I, getCleanOrigin());
3693   }
3694 
3695   void visitInstruction(Instruction &I) {
3696     // Everything else: stop propagating and check for poisoned shadow.
3697     if (ClDumpStrictInstructions)
3698       dumpInst(I);
3699     LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
3700     for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
3701       Value *Operand = I.getOperand(i);
3702       if (Operand->getType()->isSized())
3703         insertShadowCheck(Operand, &I);
3704     }
3705     setShadow(&I, getCleanShadow(&I));
3706     setOrigin(&I, getCleanOrigin());
3707   }
3708 };
3709 
3710 /// AMD64-specific implementation of VarArgHelper.
3711 struct VarArgAMD64Helper : public VarArgHelper {
3712   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
3713   // See a comment in visitCallSite for more details.
3714   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
3715   static const unsigned AMD64FpEndOffsetSSE = 176;
3716   // If SSE is disabled, fp_offset in va_list is zero.
3717   static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
3718 
3719   unsigned AMD64FpEndOffset;
3720   Function &F;
3721   MemorySanitizer &MS;
3722   MemorySanitizerVisitor &MSV;
3723   Value *VAArgTLSCopy = nullptr;
3724   Value *VAArgTLSOriginCopy = nullptr;
3725   Value *VAArgOverflowSize = nullptr;
3726 
3727   SmallVector<CallInst*, 16> VAStartInstrumentationList;
3728 
3729   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
3730 
3731   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
3732                     MemorySanitizerVisitor &MSV)
3733       : F(F), MS(MS), MSV(MSV) {
3734     AMD64FpEndOffset = AMD64FpEndOffsetSSE;
3735     for (const auto &Attr : F.getAttributes().getFnAttributes()) {
3736       if (Attr.isStringAttribute() &&
3737           (Attr.getKindAsString() == "target-features")) {
3738         if (Attr.getValueAsString().contains("-sse"))
3739           AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
3740         break;
3741       }
3742     }
3743   }
3744 
3745   ArgKind classifyArgument(Value* arg) {
3746     // A very rough approximation of X86_64 argument classification rules.
3747     Type *T = arg->getType();
3748     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
3749       return AK_FloatingPoint;
3750     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
3751       return AK_GeneralPurpose;
3752     if (T->isPointerTy())
3753       return AK_GeneralPurpose;
3754     return AK_Memory;
3755   }
3756 
3757   // For VarArg functions, store the argument shadow in an ABI-specific format
3758   // that corresponds to va_list layout.
3759   // We do this because Clang lowers va_arg in the frontend, and this pass
3760   // only sees the low level code that deals with va_list internals.
3761   // A much easier alternative (provided that Clang emits va_arg instructions)
3762   // would have been to associate each live instance of va_list with a copy of
3763   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
3764   // order.
3765   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3766     unsigned GpOffset = 0;
3767     unsigned FpOffset = AMD64GpEndOffset;
3768     unsigned OverflowOffset = AMD64FpEndOffset;
3769     const DataLayout &DL = F.getParent()->getDataLayout();
3770     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3771          ArgIt != End; ++ArgIt) {
3772       Value *A = *ArgIt;
3773       unsigned ArgNo = CS.getArgumentNo(ArgIt);
3774       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
3775       bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
3776       if (IsByVal) {
3777         // ByVal arguments always go to the overflow area.
3778         // Fixed arguments passed through the overflow area will be stepped
3779         // over by va_start, so don't count them towards the offset.
3780         if (IsFixed)
3781           continue;
3782         assert(A->getType()->isPointerTy());
3783         Type *RealTy = A->getType()->getPointerElementType();
3784         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
3785         Value *ShadowBase = getShadowPtrForVAArgument(
3786             RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
3787         Value *OriginBase = nullptr;
3788         if (MS.TrackOrigins)
3789           OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
3790         OverflowOffset += alignTo(ArgSize, 8);
3791         if (!ShadowBase)
3792           continue;
3793         Value *ShadowPtr, *OriginPtr;
3794         std::tie(ShadowPtr, OriginPtr) =
3795             MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
3796                                    /*isStore*/ false);
3797 
3798         IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
3799                          kShadowTLSAlignment, ArgSize);
3800         if (MS.TrackOrigins)
3801           IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
3802                            kShadowTLSAlignment, ArgSize);
3803       } else {
3804         ArgKind AK = classifyArgument(A);
3805         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
3806           AK = AK_Memory;
3807         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
3808           AK = AK_Memory;
3809         Value *ShadowBase, *OriginBase = nullptr;
3810         switch (AK) {
3811           case AK_GeneralPurpose:
3812             ShadowBase =
3813                 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
3814             if (MS.TrackOrigins)
3815               OriginBase =
3816                   getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
3817             GpOffset += 8;
3818             break;
3819           case AK_FloatingPoint:
3820             ShadowBase =
3821                 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
3822             if (MS.TrackOrigins)
3823               OriginBase =
3824                   getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
3825             FpOffset += 16;
3826             break;
3827           case AK_Memory:
3828             if (IsFixed)
3829               continue;
3830             uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3831             ShadowBase =
3832                 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
3833             if (MS.TrackOrigins)
3834               OriginBase =
3835                   getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
3836             OverflowOffset += alignTo(ArgSize, 8);
3837         }
3838         // Take fixed arguments into account for GpOffset and FpOffset,
3839         // but don't actually store shadows for them.
3840         // TODO(glider): don't call get*PtrForVAArgument() for them.
3841         if (IsFixed)
3842           continue;
3843         if (!ShadowBase)
3844           continue;
3845         Value *Shadow = MSV.getShadow(A);
3846         IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
3847         if (MS.TrackOrigins) {
3848           Value *Origin = MSV.getOrigin(A);
3849           unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
3850           MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
3851                           std::max(kShadowTLSAlignment, kMinOriginAlignment));
3852         }
3853       }
3854     }
3855     Constant *OverflowSize =
3856       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
3857     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
3858   }
3859 
3860   /// Compute the shadow address for a given va_arg.
3861   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3862                                    unsigned ArgOffset, unsigned ArgSize) {
3863     // Make sure we don't overflow __msan_va_arg_tls.
3864     if (ArgOffset + ArgSize > kParamTLSSize)
3865       return nullptr;
3866     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3867     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3868     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3869                               "_msarg_va_s");
3870   }
3871 
3872   /// Compute the origin address for a given va_arg.
3873   Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
3874     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
3875     // getOriginPtrForVAArgument() is always called after
3876     // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
3877     // overflow.
3878     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3879     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
3880                               "_msarg_va_o");
3881   }
3882 
3883   void unpoisonVAListTagForInst(IntrinsicInst &I) {
3884     IRBuilder<> IRB(&I);
3885     Value *VAListTag = I.getArgOperand(0);
3886     Value *ShadowPtr, *OriginPtr;
3887     unsigned Alignment = 8;
3888     std::tie(ShadowPtr, OriginPtr) =
3889         MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
3890                                /*isStore*/ true);
3891 
3892     // Unpoison the whole __va_list_tag.
3893     // FIXME: magic ABI constants.
3894     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3895                      /* size */ 24, Alignment, false);
3896     // We shouldn't need to zero out the origins, as they're only checked for
3897     // nonzero shadow.
3898   }
3899 
3900   void visitVAStartInst(VAStartInst &I) override {
3901     if (F.getCallingConv() == CallingConv::Win64)
3902       return;
3903     VAStartInstrumentationList.push_back(&I);
3904     unpoisonVAListTagForInst(I);
3905   }
3906 
3907   void visitVACopyInst(VACopyInst &I) override {
3908     if (F.getCallingConv() == CallingConv::Win64) return;
3909     unpoisonVAListTagForInst(I);
3910   }
3911 
3912   void finalizeInstrumentation() override {
3913     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
3914            "finalizeInstrumentation called twice");
3915     if (!VAStartInstrumentationList.empty()) {
3916       // If there is a va_start in this function, make a backup copy of
3917       // va_arg_tls somewhere in the function entry block.
3918       IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
3919       VAArgOverflowSize =
3920           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
3921       Value *CopySize =
3922         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
3923                       VAArgOverflowSize);
3924       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3925       IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
3926       if (MS.TrackOrigins) {
3927         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3928         IRB.CreateMemCpy(VAArgTLSOriginCopy, 8, MS.VAArgOriginTLS, 8, CopySize);
3929       }
3930     }
3931 
3932     // Instrument va_start.
3933     // Copy va_list shadow from the backup copy of the TLS contents.
3934     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3935       CallInst *OrigInst = VAStartInstrumentationList[i];
3936       IRBuilder<> IRB(OrigInst->getNextNode());
3937       Value *VAListTag = OrigInst->getArgOperand(0);
3938 
3939       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
3940       Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
3941           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3942                         ConstantInt::get(MS.IntptrTy, 16)),
3943           PointerType::get(RegSaveAreaPtrTy, 0));
3944       Value *RegSaveAreaPtr =
3945           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
3946       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
3947       unsigned Alignment = 16;
3948       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
3949           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
3950                                  Alignment, /*isStore*/ true);
3951       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
3952                        AMD64FpEndOffset);
3953       if (MS.TrackOrigins)
3954         IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
3955                          Alignment, AMD64FpEndOffset);
3956       Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
3957       Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
3958           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3959                         ConstantInt::get(MS.IntptrTy, 8)),
3960           PointerType::get(OverflowArgAreaPtrTy, 0));
3961       Value *OverflowArgAreaPtr =
3962           IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
3963       Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
3964       std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
3965           MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
3966                                  Alignment, /*isStore*/ true);
3967       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
3968                                              AMD64FpEndOffset);
3969       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
3970                        VAArgOverflowSize);
3971       if (MS.TrackOrigins) {
3972         SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
3973                                         AMD64FpEndOffset);
3974         IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
3975                          VAArgOverflowSize);
3976       }
3977     }
3978   }
3979 };
3980 
3981 /// MIPS64-specific implementation of VarArgHelper.
3982 struct VarArgMIPS64Helper : public VarArgHelper {
3983   Function &F;
3984   MemorySanitizer &MS;
3985   MemorySanitizerVisitor &MSV;
3986   Value *VAArgTLSCopy = nullptr;
3987   Value *VAArgSize = nullptr;
3988 
3989   SmallVector<CallInst*, 16> VAStartInstrumentationList;
3990 
3991   VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
3992                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
3993 
3994   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3995     unsigned VAArgOffset = 0;
3996     const DataLayout &DL = F.getParent()->getDataLayout();
3997     for (CallSite::arg_iterator ArgIt = CS.arg_begin() +
3998          CS.getFunctionType()->getNumParams(), End = CS.arg_end();
3999          ArgIt != End; ++ArgIt) {
4000       Triple TargetTriple(F.getParent()->getTargetTriple());
4001       Value *A = *ArgIt;
4002       Value *Base;
4003       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4004       if (TargetTriple.getArch() == Triple::mips64) {
4005         // Adjusting the shadow for argument with size < 8 to match the placement
4006         // of bits in big endian system
4007         if (ArgSize < 8)
4008           VAArgOffset += (8 - ArgSize);
4009       }
4010       Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
4011       VAArgOffset += ArgSize;
4012       VAArgOffset = alignTo(VAArgOffset, 8);
4013       if (!Base)
4014         continue;
4015       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4016     }
4017 
4018     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
4019     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4020     // a new class member i.e. it is the total size of all VarArgs.
4021     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4022   }
4023 
4024   /// Compute the shadow address for a given va_arg.
4025   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4026                                    unsigned ArgOffset, unsigned ArgSize) {
4027     // Make sure we don't overflow __msan_va_arg_tls.
4028     if (ArgOffset + ArgSize > kParamTLSSize)
4029       return nullptr;
4030     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4031     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4032     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4033                               "_msarg");
4034   }
4035 
4036   void visitVAStartInst(VAStartInst &I) override {
4037     IRBuilder<> IRB(&I);
4038     VAStartInstrumentationList.push_back(&I);
4039     Value *VAListTag = I.getArgOperand(0);
4040     Value *ShadowPtr, *OriginPtr;
4041     unsigned Alignment = 8;
4042     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4043         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4044     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4045                      /* size */ 8, Alignment, false);
4046   }
4047 
4048   void visitVACopyInst(VACopyInst &I) override {
4049     IRBuilder<> IRB(&I);
4050     VAStartInstrumentationList.push_back(&I);
4051     Value *VAListTag = I.getArgOperand(0);
4052     Value *ShadowPtr, *OriginPtr;
4053     unsigned Alignment = 8;
4054     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4055         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4056     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4057                      /* size */ 8, Alignment, false);
4058   }
4059 
4060   void finalizeInstrumentation() override {
4061     assert(!VAArgSize && !VAArgTLSCopy &&
4062            "finalizeInstrumentation called twice");
4063     IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
4064     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4065     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4066                                     VAArgSize);
4067 
4068     if (!VAStartInstrumentationList.empty()) {
4069       // If there is a va_start in this function, make a backup copy of
4070       // va_arg_tls somewhere in the function entry block.
4071       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4072       IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
4073     }
4074 
4075     // Instrument va_start.
4076     // Copy va_list shadow from the backup copy of the TLS contents.
4077     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4078       CallInst *OrigInst = VAStartInstrumentationList[i];
4079       IRBuilder<> IRB(OrigInst->getNextNode());
4080       Value *VAListTag = OrigInst->getArgOperand(0);
4081       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4082       Value *RegSaveAreaPtrPtr =
4083           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4084                              PointerType::get(RegSaveAreaPtrTy, 0));
4085       Value *RegSaveAreaPtr =
4086           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4087       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4088       unsigned Alignment = 8;
4089       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4090           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4091                                  Alignment, /*isStore*/ true);
4092       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4093                        CopySize);
4094     }
4095   }
4096 };
4097 
4098 /// AArch64-specific implementation of VarArgHelper.
4099 struct VarArgAArch64Helper : public VarArgHelper {
4100   static const unsigned kAArch64GrArgSize = 64;
4101   static const unsigned kAArch64VrArgSize = 128;
4102 
4103   static const unsigned AArch64GrBegOffset = 0;
4104   static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
4105   // Make VR space aligned to 16 bytes.
4106   static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
4107   static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
4108                                              + kAArch64VrArgSize;
4109   static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
4110 
4111   Function &F;
4112   MemorySanitizer &MS;
4113   MemorySanitizerVisitor &MSV;
4114   Value *VAArgTLSCopy = nullptr;
4115   Value *VAArgOverflowSize = nullptr;
4116 
4117   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4118 
4119   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4120 
4121   VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
4122                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4123 
4124   ArgKind classifyArgument(Value* arg) {
4125     Type *T = arg->getType();
4126     if (T->isFPOrFPVectorTy())
4127       return AK_FloatingPoint;
4128     if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4129         || (T->isPointerTy()))
4130       return AK_GeneralPurpose;
4131     return AK_Memory;
4132   }
4133 
4134   // The instrumentation stores the argument shadow in a non ABI-specific
4135   // format because it does not know which argument is named (since Clang,
4136   // like x86_64 case, lowers the va_args in the frontend and this pass only
4137   // sees the low level code that deals with va_list internals).
4138   // The first seven GR registers are saved in the first 56 bytes of the
4139   // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
4140   // the remaining arguments.
4141   // Using constant offset within the va_arg TLS array allows fast copy
4142   // in the finalize instrumentation.
4143   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
4144     unsigned GrOffset = AArch64GrBegOffset;
4145     unsigned VrOffset = AArch64VrBegOffset;
4146     unsigned OverflowOffset = AArch64VAEndOffset;
4147 
4148     const DataLayout &DL = F.getParent()->getDataLayout();
4149     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
4150          ArgIt != End; ++ArgIt) {
4151       Value *A = *ArgIt;
4152       unsigned ArgNo = CS.getArgumentNo(ArgIt);
4153       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
4154       ArgKind AK = classifyArgument(A);
4155       if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
4156         AK = AK_Memory;
4157       if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
4158         AK = AK_Memory;
4159       Value *Base;
4160       switch (AK) {
4161         case AK_GeneralPurpose:
4162           Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
4163           GrOffset += 8;
4164           break;
4165         case AK_FloatingPoint:
4166           Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
4167           VrOffset += 16;
4168           break;
4169         case AK_Memory:
4170           // Don't count fixed arguments in the overflow area - va_start will
4171           // skip right over them.
4172           if (IsFixed)
4173             continue;
4174           uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4175           Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
4176                                            alignTo(ArgSize, 8));
4177           OverflowOffset += alignTo(ArgSize, 8);
4178           break;
4179       }
4180       // Count Gp/Vr fixed arguments to their respective offsets, but don't
4181       // bother to actually store a shadow.
4182       if (IsFixed)
4183         continue;
4184       if (!Base)
4185         continue;
4186       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4187     }
4188     Constant *OverflowSize =
4189       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
4190     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4191   }
4192 
4193   /// Compute the shadow address for a given va_arg.
4194   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4195                                    unsigned ArgOffset, unsigned ArgSize) {
4196     // Make sure we don't overflow __msan_va_arg_tls.
4197     if (ArgOffset + ArgSize > kParamTLSSize)
4198       return nullptr;
4199     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4200     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4201     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4202                               "_msarg");
4203   }
4204 
4205   void visitVAStartInst(VAStartInst &I) override {
4206     IRBuilder<> IRB(&I);
4207     VAStartInstrumentationList.push_back(&I);
4208     Value *VAListTag = I.getArgOperand(0);
4209     Value *ShadowPtr, *OriginPtr;
4210     unsigned Alignment = 8;
4211     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4212         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4213     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4214                      /* size */ 32, Alignment, false);
4215   }
4216 
4217   void visitVACopyInst(VACopyInst &I) override {
4218     IRBuilder<> IRB(&I);
4219     VAStartInstrumentationList.push_back(&I);
4220     Value *VAListTag = I.getArgOperand(0);
4221     Value *ShadowPtr, *OriginPtr;
4222     unsigned Alignment = 8;
4223     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4224         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4225     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4226                      /* size */ 32, Alignment, false);
4227   }
4228 
4229   // Retrieve a va_list field of 'void*' size.
4230   Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4231     Value *SaveAreaPtrPtr =
4232       IRB.CreateIntToPtr(
4233         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4234                       ConstantInt::get(MS.IntptrTy, offset)),
4235         Type::getInt64PtrTy(*MS.C));
4236     return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
4237   }
4238 
4239   // Retrieve a va_list field of 'int' size.
4240   Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4241     Value *SaveAreaPtr =
4242       IRB.CreateIntToPtr(
4243         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4244                       ConstantInt::get(MS.IntptrTy, offset)),
4245         Type::getInt32PtrTy(*MS.C));
4246     Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
4247     return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
4248   }
4249 
4250   void finalizeInstrumentation() override {
4251     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
4252            "finalizeInstrumentation called twice");
4253     if (!VAStartInstrumentationList.empty()) {
4254       // If there is a va_start in this function, make a backup copy of
4255       // va_arg_tls somewhere in the function entry block.
4256       IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
4257       VAArgOverflowSize =
4258           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4259       Value *CopySize =
4260         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
4261                       VAArgOverflowSize);
4262       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4263       IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
4264     }
4265 
4266     Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
4267     Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
4268 
4269     // Instrument va_start, copy va_list shadow from the backup copy of
4270     // the TLS contents.
4271     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4272       CallInst *OrigInst = VAStartInstrumentationList[i];
4273       IRBuilder<> IRB(OrigInst->getNextNode());
4274 
4275       Value *VAListTag = OrigInst->getArgOperand(0);
4276 
4277       // The variadic ABI for AArch64 creates two areas to save the incoming
4278       // argument registers (one for 64-bit general register xn-x7 and another
4279       // for 128-bit FP/SIMD vn-v7).
4280       // We need then to propagate the shadow arguments on both regions
4281       // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
4282       // The remaning arguments are saved on shadow for 'va::stack'.
4283       // One caveat is it requires only to propagate the non-named arguments,
4284       // however on the call site instrumentation 'all' the arguments are
4285       // saved. So to copy the shadow values from the va_arg TLS array
4286       // we need to adjust the offset for both GR and VR fields based on
4287       // the __{gr,vr}_offs value (since they are stores based on incoming
4288       // named arguments).
4289 
4290       // Read the stack pointer from the va_list.
4291       Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
4292 
4293       // Read both the __gr_top and __gr_off and add them up.
4294       Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
4295       Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
4296 
4297       Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
4298 
4299       // Read both the __vr_top and __vr_off and add them up.
4300       Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
4301       Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
4302 
4303       Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
4304 
4305       // It does not know how many named arguments is being used and, on the
4306       // callsite all the arguments were saved.  Since __gr_off is defined as
4307       // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
4308       // argument by ignoring the bytes of shadow from named arguments.
4309       Value *GrRegSaveAreaShadowPtrOff =
4310         IRB.CreateAdd(GrArgSize, GrOffSaveArea);
4311 
4312       Value *GrRegSaveAreaShadowPtr =
4313           MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4314                                  /*Alignment*/ 8, /*isStore*/ true)
4315               .first;
4316 
4317       Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4318                                               GrRegSaveAreaShadowPtrOff);
4319       Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
4320 
4321       IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize);
4322 
4323       // Again, but for FP/SIMD values.
4324       Value *VrRegSaveAreaShadowPtrOff =
4325           IRB.CreateAdd(VrArgSize, VrOffSaveArea);
4326 
4327       Value *VrRegSaveAreaShadowPtr =
4328           MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4329                                  /*Alignment*/ 8, /*isStore*/ true)
4330               .first;
4331 
4332       Value *VrSrcPtr = IRB.CreateInBoundsGEP(
4333         IRB.getInt8Ty(),
4334         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4335                               IRB.getInt32(AArch64VrBegOffset)),
4336         VrRegSaveAreaShadowPtrOff);
4337       Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
4338 
4339       IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize);
4340 
4341       // And finally for remaining arguments.
4342       Value *StackSaveAreaShadowPtr =
4343           MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
4344                                  /*Alignment*/ 16, /*isStore*/ true)
4345               .first;
4346 
4347       Value *StackSrcPtr =
4348         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4349                               IRB.getInt32(AArch64VAEndOffset));
4350 
4351       IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16,
4352                        VAArgOverflowSize);
4353     }
4354   }
4355 };
4356 
4357 /// PowerPC64-specific implementation of VarArgHelper.
4358 struct VarArgPowerPC64Helper : public VarArgHelper {
4359   Function &F;
4360   MemorySanitizer &MS;
4361   MemorySanitizerVisitor &MSV;
4362   Value *VAArgTLSCopy = nullptr;
4363   Value *VAArgSize = nullptr;
4364 
4365   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4366 
4367   VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
4368                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4369 
4370   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
4371     // For PowerPC, we need to deal with alignment of stack arguments -
4372     // they are mostly aligned to 8 bytes, but vectors and i128 arrays
4373     // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
4374     // and QPX vectors are aligned to 32 bytes.  For that reason, we
4375     // compute current offset from stack pointer (which is always properly
4376     // aligned), and offset for the first vararg, then subtract them.
4377     unsigned VAArgBase;
4378     Triple TargetTriple(F.getParent()->getTargetTriple());
4379     // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
4380     // and 32 bytes for ABIv2.  This is usually determined by target
4381     // endianness, but in theory could be overriden by function attribute.
4382     // For simplicity, we ignore it here (it'd only matter for QPX vectors).
4383     if (TargetTriple.getArch() == Triple::ppc64)
4384       VAArgBase = 48;
4385     else
4386       VAArgBase = 32;
4387     unsigned VAArgOffset = VAArgBase;
4388     const DataLayout &DL = F.getParent()->getDataLayout();
4389     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
4390          ArgIt != End; ++ArgIt) {
4391       Value *A = *ArgIt;
4392       unsigned ArgNo = CS.getArgumentNo(ArgIt);
4393       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
4394       bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
4395       if (IsByVal) {
4396         assert(A->getType()->isPointerTy());
4397         Type *RealTy = A->getType()->getPointerElementType();
4398         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4399         uint64_t ArgAlign = CS.getParamAlignment(ArgNo);
4400         if (ArgAlign < 8)
4401           ArgAlign = 8;
4402         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4403         if (!IsFixed) {
4404           Value *Base = getShadowPtrForVAArgument(
4405               RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
4406           if (Base) {
4407             Value *AShadowPtr, *AOriginPtr;
4408             std::tie(AShadowPtr, AOriginPtr) =
4409                 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
4410                                        kShadowTLSAlignment, /*isStore*/ false);
4411 
4412             IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
4413                              kShadowTLSAlignment, ArgSize);
4414           }
4415         }
4416         VAArgOffset += alignTo(ArgSize, 8);
4417       } else {
4418         Value *Base;
4419         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4420         uint64_t ArgAlign = 8;
4421         if (A->getType()->isArrayTy()) {
4422           // Arrays are aligned to element size, except for long double
4423           // arrays, which are aligned to 8 bytes.
4424           Type *ElementTy = A->getType()->getArrayElementType();
4425           if (!ElementTy->isPPC_FP128Ty())
4426             ArgAlign = DL.getTypeAllocSize(ElementTy);
4427         } else if (A->getType()->isVectorTy()) {
4428           // Vectors are naturally aligned.
4429           ArgAlign = DL.getTypeAllocSize(A->getType());
4430         }
4431         if (ArgAlign < 8)
4432           ArgAlign = 8;
4433         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4434         if (DL.isBigEndian()) {
4435           // Adjusting the shadow for argument with size < 8 to match the placement
4436           // of bits in big endian system
4437           if (ArgSize < 8)
4438             VAArgOffset += (8 - ArgSize);
4439         }
4440         if (!IsFixed) {
4441           Base = getShadowPtrForVAArgument(A->getType(), IRB,
4442                                            VAArgOffset - VAArgBase, ArgSize);
4443           if (Base)
4444             IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4445         }
4446         VAArgOffset += ArgSize;
4447         VAArgOffset = alignTo(VAArgOffset, 8);
4448       }
4449       if (IsFixed)
4450         VAArgBase = VAArgOffset;
4451     }
4452 
4453     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
4454                                                 VAArgOffset - VAArgBase);
4455     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4456     // a new class member i.e. it is the total size of all VarArgs.
4457     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4458   }
4459 
4460   /// Compute the shadow address for a given va_arg.
4461   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4462                                    unsigned ArgOffset, unsigned ArgSize) {
4463     // Make sure we don't overflow __msan_va_arg_tls.
4464     if (ArgOffset + ArgSize > kParamTLSSize)
4465       return nullptr;
4466     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4467     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4468     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4469                               "_msarg");
4470   }
4471 
4472   void visitVAStartInst(VAStartInst &I) override {
4473     IRBuilder<> IRB(&I);
4474     VAStartInstrumentationList.push_back(&I);
4475     Value *VAListTag = I.getArgOperand(0);
4476     Value *ShadowPtr, *OriginPtr;
4477     unsigned Alignment = 8;
4478     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4479         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4480     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4481                      /* size */ 8, Alignment, false);
4482   }
4483 
4484   void visitVACopyInst(VACopyInst &I) override {
4485     IRBuilder<> IRB(&I);
4486     Value *VAListTag = I.getArgOperand(0);
4487     Value *ShadowPtr, *OriginPtr;
4488     unsigned Alignment = 8;
4489     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4490         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4491     // Unpoison the whole __va_list_tag.
4492     // FIXME: magic ABI constants.
4493     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4494                      /* size */ 8, Alignment, false);
4495   }
4496 
4497   void finalizeInstrumentation() override {
4498     assert(!VAArgSize && !VAArgTLSCopy &&
4499            "finalizeInstrumentation called twice");
4500     IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
4501     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4502     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4503                                     VAArgSize);
4504 
4505     if (!VAStartInstrumentationList.empty()) {
4506       // If there is a va_start in this function, make a backup copy of
4507       // va_arg_tls somewhere in the function entry block.
4508       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4509       IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
4510     }
4511 
4512     // Instrument va_start.
4513     // Copy va_list shadow from the backup copy of the TLS contents.
4514     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4515       CallInst *OrigInst = VAStartInstrumentationList[i];
4516       IRBuilder<> IRB(OrigInst->getNextNode());
4517       Value *VAListTag = OrigInst->getArgOperand(0);
4518       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4519       Value *RegSaveAreaPtrPtr =
4520           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4521                              PointerType::get(RegSaveAreaPtrTy, 0));
4522       Value *RegSaveAreaPtr =
4523           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4524       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4525       unsigned Alignment = 8;
4526       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4527           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4528                                  Alignment, /*isStore*/ true);
4529       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4530                        CopySize);
4531     }
4532   }
4533 };
4534 
4535 /// A no-op implementation of VarArgHelper.
4536 struct VarArgNoOpHelper : public VarArgHelper {
4537   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
4538                    MemorySanitizerVisitor &MSV) {}
4539 
4540   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
4541 
4542   void visitVAStartInst(VAStartInst &I) override {}
4543 
4544   void visitVACopyInst(VACopyInst &I) override {}
4545 
4546   void finalizeInstrumentation() override {}
4547 };
4548 
4549 } // end anonymous namespace
4550 
4551 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
4552                                         MemorySanitizerVisitor &Visitor) {
4553   // VarArg handling is only implemented on AMD64. False positives are possible
4554   // on other platforms.
4555   Triple TargetTriple(Func.getParent()->getTargetTriple());
4556   if (TargetTriple.getArch() == Triple::x86_64)
4557     return new VarArgAMD64Helper(Func, Msan, Visitor);
4558   else if (TargetTriple.isMIPS64())
4559     return new VarArgMIPS64Helper(Func, Msan, Visitor);
4560   else if (TargetTriple.getArch() == Triple::aarch64)
4561     return new VarArgAArch64Helper(Func, Msan, Visitor);
4562   else if (TargetTriple.getArch() == Triple::ppc64 ||
4563            TargetTriple.getArch() == Triple::ppc64le)
4564     return new VarArgPowerPC64Helper(Func, Msan, Visitor);
4565   else
4566     return new VarArgNoOpHelper(Func, Msan, Visitor);
4567 }
4568 
4569 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
4570   if (!CompileKernel && (&F == MsanCtorFunction))
4571     return false;
4572   MemorySanitizerVisitor Visitor(F, *this, TLI);
4573 
4574   // Clear out readonly/readnone attributes.
4575   AttrBuilder B;
4576   B.addAttribute(Attribute::ReadOnly)
4577     .addAttribute(Attribute::ReadNone);
4578   F.removeAttributes(AttributeList::FunctionIndex, B);
4579 
4580   return Visitor.runOnFunction();
4581 }
4582