1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DepthFirstIterator.h" 149 #include "llvm/ADT/SmallSet.h" 150 #include "llvm/ADT/SmallString.h" 151 #include "llvm/ADT/SmallVector.h" 152 #include "llvm/ADT/StringExtras.h" 153 #include "llvm/ADT/StringRef.h" 154 #include "llvm/ADT/Triple.h" 155 #include "llvm/Analysis/TargetLibraryInfo.h" 156 #include "llvm/Analysis/ValueTracking.h" 157 #include "llvm/IR/Argument.h" 158 #include "llvm/IR/Attributes.h" 159 #include "llvm/IR/BasicBlock.h" 160 #include "llvm/IR/CallingConv.h" 161 #include "llvm/IR/Constant.h" 162 #include "llvm/IR/Constants.h" 163 #include "llvm/IR/DataLayout.h" 164 #include "llvm/IR/DerivedTypes.h" 165 #include "llvm/IR/Function.h" 166 #include "llvm/IR/GlobalValue.h" 167 #include "llvm/IR/GlobalVariable.h" 168 #include "llvm/IR/IRBuilder.h" 169 #include "llvm/IR/InlineAsm.h" 170 #include "llvm/IR/InstVisitor.h" 171 #include "llvm/IR/InstrTypes.h" 172 #include "llvm/IR/Instruction.h" 173 #include "llvm/IR/Instructions.h" 174 #include "llvm/IR/IntrinsicInst.h" 175 #include "llvm/IR/Intrinsics.h" 176 #include "llvm/IR/IntrinsicsX86.h" 177 #include "llvm/IR/LLVMContext.h" 178 #include "llvm/IR/MDBuilder.h" 179 #include "llvm/IR/Module.h" 180 #include "llvm/IR/Type.h" 181 #include "llvm/IR/Value.h" 182 #include "llvm/IR/ValueMap.h" 183 #include "llvm/InitializePasses.h" 184 #include "llvm/Pass.h" 185 #include "llvm/Support/AtomicOrdering.h" 186 #include "llvm/Support/Casting.h" 187 #include "llvm/Support/CommandLine.h" 188 #include "llvm/Support/Compiler.h" 189 #include "llvm/Support/Debug.h" 190 #include "llvm/Support/ErrorHandling.h" 191 #include "llvm/Support/MathExtras.h" 192 #include "llvm/Support/raw_ostream.h" 193 #include "llvm/Transforms/Instrumentation.h" 194 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 195 #include "llvm/Transforms/Utils/Local.h" 196 #include "llvm/Transforms/Utils/ModuleUtils.h" 197 #include <algorithm> 198 #include <cassert> 199 #include <cstddef> 200 #include <cstdint> 201 #include <memory> 202 #include <string> 203 #include <tuple> 204 205 using namespace llvm; 206 207 #define DEBUG_TYPE "msan" 208 209 static const unsigned kOriginSize = 4; 210 static const Align kMinOriginAlignment = Align(4); 211 static const Align kShadowTLSAlignment = Align(8); 212 213 // These constants must be kept in sync with the ones in msan.h. 214 static const unsigned kParamTLSSize = 800; 215 static const unsigned kRetvalTLSSize = 800; 216 217 // Accesses sizes are powers of two: 1, 2, 4, 8. 218 static const size_t kNumberOfAccessSizes = 4; 219 220 /// Track origins of uninitialized values. 221 /// 222 /// Adds a section to MemorySanitizer report that points to the allocation 223 /// (stack or heap) the uninitialized bits came from originally. 224 static cl::opt<int> ClTrackOrigins("msan-track-origins", 225 cl::desc("Track origins (allocation sites) of poisoned memory"), 226 cl::Hidden, cl::init(0)); 227 228 static cl::opt<bool> ClKeepGoing("msan-keep-going", 229 cl::desc("keep going after reporting a UMR"), 230 cl::Hidden, cl::init(false)); 231 232 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 233 cl::desc("poison uninitialized stack variables"), 234 cl::Hidden, cl::init(true)); 235 236 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 237 cl::desc("poison uninitialized stack variables with a call"), 238 cl::Hidden, cl::init(false)); 239 240 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 241 cl::desc("poison uninitialized stack variables with the given pattern"), 242 cl::Hidden, cl::init(0xff)); 243 244 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 245 cl::desc("poison undef temps"), 246 cl::Hidden, cl::init(true)); 247 248 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 249 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 250 cl::Hidden, cl::init(true)); 251 252 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 253 cl::desc("exact handling of relational integer ICmp"), 254 cl::Hidden, cl::init(false)); 255 256 static cl::opt<bool> ClHandleLifetimeIntrinsics( 257 "msan-handle-lifetime-intrinsics", 258 cl::desc( 259 "when possible, poison scoped variables at the beginning of the scope " 260 "(slower, but more precise)"), 261 cl::Hidden, cl::init(true)); 262 263 // When compiling the Linux kernel, we sometimes see false positives related to 264 // MSan being unable to understand that inline assembly calls may initialize 265 // local variables. 266 // This flag makes the compiler conservatively unpoison every memory location 267 // passed into an assembly call. Note that this may cause false positives. 268 // Because it's impossible to figure out the array sizes, we can only unpoison 269 // the first sizeof(type) bytes for each type* pointer. 270 // The instrumentation is only enabled in KMSAN builds, and only if 271 // -msan-handle-asm-conservative is on. This is done because we may want to 272 // quickly disable assembly instrumentation when it breaks. 273 static cl::opt<bool> ClHandleAsmConservative( 274 "msan-handle-asm-conservative", 275 cl::desc("conservative handling of inline assembly"), cl::Hidden, 276 cl::init(true)); 277 278 // This flag controls whether we check the shadow of the address 279 // operand of load or store. Such bugs are very rare, since load from 280 // a garbage address typically results in SEGV, but still happen 281 // (e.g. only lower bits of address are garbage, or the access happens 282 // early at program startup where malloc-ed memory is more likely to 283 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 284 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 285 cl::desc("report accesses through a pointer which has poisoned shadow"), 286 cl::Hidden, cl::init(true)); 287 288 static cl::opt<bool> ClEagerChecks( 289 "msan-eager-checks", 290 cl::desc("check arguments and return values at function call boundaries"), 291 cl::Hidden, cl::init(false)); 292 293 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 294 cl::desc("print out instructions with default strict semantics"), 295 cl::Hidden, cl::init(false)); 296 297 static cl::opt<int> ClInstrumentationWithCallThreshold( 298 "msan-instrumentation-with-call-threshold", 299 cl::desc( 300 "If the function being instrumented requires more than " 301 "this number of checks and origin stores, use callbacks instead of " 302 "inline checks (-1 means never use callbacks)."), 303 cl::Hidden, cl::init(3500)); 304 305 static cl::opt<bool> 306 ClEnableKmsan("msan-kernel", 307 cl::desc("Enable KernelMemorySanitizer instrumentation"), 308 cl::Hidden, cl::init(false)); 309 310 // This is an experiment to enable handling of cases where shadow is a non-zero 311 // compile-time constant. For some unexplainable reason they were silently 312 // ignored in the instrumentation. 313 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 314 cl::desc("Insert checks for constant shadow values"), 315 cl::Hidden, cl::init(false)); 316 317 // This is off by default because of a bug in gold: 318 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 319 static cl::opt<bool> ClWithComdat("msan-with-comdat", 320 cl::desc("Place MSan constructors in comdat sections"), 321 cl::Hidden, cl::init(false)); 322 323 // These options allow to specify custom memory map parameters 324 // See MemoryMapParams for details. 325 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 326 cl::desc("Define custom MSan AndMask"), 327 cl::Hidden, cl::init(0)); 328 329 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 330 cl::desc("Define custom MSan XorMask"), 331 cl::Hidden, cl::init(0)); 332 333 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 334 cl::desc("Define custom MSan ShadowBase"), 335 cl::Hidden, cl::init(0)); 336 337 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 338 cl::desc("Define custom MSan OriginBase"), 339 cl::Hidden, cl::init(0)); 340 341 const char kMsanModuleCtorName[] = "msan.module_ctor"; 342 const char kMsanInitName[] = "__msan_init"; 343 344 namespace { 345 346 // Memory map parameters used in application-to-shadow address calculation. 347 // Offset = (Addr & ~AndMask) ^ XorMask 348 // Shadow = ShadowBase + Offset 349 // Origin = OriginBase + Offset 350 struct MemoryMapParams { 351 uint64_t AndMask; 352 uint64_t XorMask; 353 uint64_t ShadowBase; 354 uint64_t OriginBase; 355 }; 356 357 struct PlatformMemoryMapParams { 358 const MemoryMapParams *bits32; 359 const MemoryMapParams *bits64; 360 }; 361 362 } // end anonymous namespace 363 364 // i386 Linux 365 static const MemoryMapParams Linux_I386_MemoryMapParams = { 366 0x000080000000, // AndMask 367 0, // XorMask (not used) 368 0, // ShadowBase (not used) 369 0x000040000000, // OriginBase 370 }; 371 372 // x86_64 Linux 373 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 374 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 375 0x400000000000, // AndMask 376 0, // XorMask (not used) 377 0, // ShadowBase (not used) 378 0x200000000000, // OriginBase 379 #else 380 0, // AndMask (not used) 381 0x500000000000, // XorMask 382 0, // ShadowBase (not used) 383 0x100000000000, // OriginBase 384 #endif 385 }; 386 387 // mips64 Linux 388 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 389 0, // AndMask (not used) 390 0x008000000000, // XorMask 391 0, // ShadowBase (not used) 392 0x002000000000, // OriginBase 393 }; 394 395 // ppc64 Linux 396 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 397 0xE00000000000, // AndMask 398 0x100000000000, // XorMask 399 0x080000000000, // ShadowBase 400 0x1C0000000000, // OriginBase 401 }; 402 403 // s390x Linux 404 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 405 0xC00000000000, // AndMask 406 0, // XorMask (not used) 407 0x080000000000, // ShadowBase 408 0x1C0000000000, // OriginBase 409 }; 410 411 // aarch64 Linux 412 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 413 0, // AndMask (not used) 414 0x06000000000, // XorMask 415 0, // ShadowBase (not used) 416 0x01000000000, // OriginBase 417 }; 418 419 // i386 FreeBSD 420 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 421 0x000180000000, // AndMask 422 0x000040000000, // XorMask 423 0x000020000000, // ShadowBase 424 0x000700000000, // OriginBase 425 }; 426 427 // x86_64 FreeBSD 428 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 429 0xc00000000000, // AndMask 430 0x200000000000, // XorMask 431 0x100000000000, // ShadowBase 432 0x380000000000, // OriginBase 433 }; 434 435 // x86_64 NetBSD 436 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 437 0, // AndMask 438 0x500000000000, // XorMask 439 0, // ShadowBase 440 0x100000000000, // OriginBase 441 }; 442 443 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 444 &Linux_I386_MemoryMapParams, 445 &Linux_X86_64_MemoryMapParams, 446 }; 447 448 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 449 nullptr, 450 &Linux_MIPS64_MemoryMapParams, 451 }; 452 453 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 454 nullptr, 455 &Linux_PowerPC64_MemoryMapParams, 456 }; 457 458 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 459 nullptr, 460 &Linux_S390X_MemoryMapParams, 461 }; 462 463 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 464 nullptr, 465 &Linux_AArch64_MemoryMapParams, 466 }; 467 468 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 469 &FreeBSD_I386_MemoryMapParams, 470 &FreeBSD_X86_64_MemoryMapParams, 471 }; 472 473 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 474 nullptr, 475 &NetBSD_X86_64_MemoryMapParams, 476 }; 477 478 namespace { 479 480 /// Instrument functions of a module to detect uninitialized reads. 481 /// 482 /// Instantiating MemorySanitizer inserts the msan runtime library API function 483 /// declarations into the module if they don't exist already. Instantiating 484 /// ensures the __msan_init function is in the list of global constructors for 485 /// the module. 486 class MemorySanitizer { 487 public: 488 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 489 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 490 Recover(Options.Recover) { 491 initializeModule(M); 492 } 493 494 // MSan cannot be moved or copied because of MapParams. 495 MemorySanitizer(MemorySanitizer &&) = delete; 496 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 497 MemorySanitizer(const MemorySanitizer &) = delete; 498 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 499 500 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 501 502 private: 503 friend struct MemorySanitizerVisitor; 504 friend struct VarArgAMD64Helper; 505 friend struct VarArgMIPS64Helper; 506 friend struct VarArgAArch64Helper; 507 friend struct VarArgPowerPC64Helper; 508 friend struct VarArgSystemZHelper; 509 510 void initializeModule(Module &M); 511 void initializeCallbacks(Module &M); 512 void createKernelApi(Module &M); 513 void createUserspaceApi(Module &M); 514 515 /// True if we're compiling the Linux kernel. 516 bool CompileKernel; 517 /// Track origins (allocation points) of uninitialized values. 518 int TrackOrigins; 519 bool Recover; 520 521 LLVMContext *C; 522 Type *IntptrTy; 523 Type *OriginTy; 524 525 // XxxTLS variables represent the per-thread state in MSan and per-task state 526 // in KMSAN. 527 // For the userspace these point to thread-local globals. In the kernel land 528 // they point to the members of a per-task struct obtained via a call to 529 // __msan_get_context_state(). 530 531 /// Thread-local shadow storage for function parameters. 532 Value *ParamTLS; 533 534 /// Thread-local origin storage for function parameters. 535 Value *ParamOriginTLS; 536 537 /// Thread-local shadow storage for function return value. 538 Value *RetvalTLS; 539 540 /// Thread-local origin storage for function return value. 541 Value *RetvalOriginTLS; 542 543 /// Thread-local shadow storage for in-register va_arg function 544 /// parameters (x86_64-specific). 545 Value *VAArgTLS; 546 547 /// Thread-local shadow storage for in-register va_arg function 548 /// parameters (x86_64-specific). 549 Value *VAArgOriginTLS; 550 551 /// Thread-local shadow storage for va_arg overflow area 552 /// (x86_64-specific). 553 Value *VAArgOverflowSizeTLS; 554 555 /// Are the instrumentation callbacks set up? 556 bool CallbacksInitialized = false; 557 558 /// The run-time callback to print a warning. 559 FunctionCallee WarningFn; 560 561 // These arrays are indexed by log2(AccessSize). 562 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 563 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 564 565 /// Run-time helper that generates a new origin value for a stack 566 /// allocation. 567 FunctionCallee MsanSetAllocaOrigin4Fn; 568 569 /// Run-time helper that poisons stack on function entry. 570 FunctionCallee MsanPoisonStackFn; 571 572 /// Run-time helper that records a store (or any event) of an 573 /// uninitialized value and returns an updated origin id encoding this info. 574 FunctionCallee MsanChainOriginFn; 575 576 /// Run-time helper that paints an origin over a region. 577 FunctionCallee MsanSetOriginFn; 578 579 /// MSan runtime replacements for memmove, memcpy and memset. 580 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 581 582 /// KMSAN callback for task-local function argument shadow. 583 StructType *MsanContextStateTy; 584 FunctionCallee MsanGetContextStateFn; 585 586 /// Functions for poisoning/unpoisoning local variables 587 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 588 589 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 590 /// pointers. 591 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 592 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 593 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 594 FunctionCallee MsanInstrumentAsmStoreFn; 595 596 /// Helper to choose between different MsanMetadataPtrXxx(). 597 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 598 599 /// Memory map parameters used in application-to-shadow calculation. 600 const MemoryMapParams *MapParams; 601 602 /// Custom memory map parameters used when -msan-shadow-base or 603 // -msan-origin-base is provided. 604 MemoryMapParams CustomMapParams; 605 606 MDNode *ColdCallWeights; 607 608 /// Branch weights for origin store. 609 MDNode *OriginStoreWeights; 610 }; 611 612 void insertModuleCtor(Module &M) { 613 getOrCreateSanitizerCtorAndInitFunctions( 614 M, kMsanModuleCtorName, kMsanInitName, 615 /*InitArgTypes=*/{}, 616 /*InitArgs=*/{}, 617 // This callback is invoked when the functions are created the first 618 // time. Hook them into the global ctors list in that case: 619 [&](Function *Ctor, FunctionCallee) { 620 if (!ClWithComdat) { 621 appendToGlobalCtors(M, Ctor, 0); 622 return; 623 } 624 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 625 Ctor->setComdat(MsanCtorComdat); 626 appendToGlobalCtors(M, Ctor, 0, Ctor); 627 }); 628 } 629 630 /// A legacy function pass for msan instrumentation. 631 /// 632 /// Instruments functions to detect uninitialized reads. 633 struct MemorySanitizerLegacyPass : public FunctionPass { 634 // Pass identification, replacement for typeid. 635 static char ID; 636 637 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) 638 : FunctionPass(ID), Options(Options) { 639 initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 640 } 641 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 642 643 void getAnalysisUsage(AnalysisUsage &AU) const override { 644 AU.addRequired<TargetLibraryInfoWrapperPass>(); 645 } 646 647 bool runOnFunction(Function &F) override { 648 return MSan->sanitizeFunction( 649 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 650 } 651 bool doInitialization(Module &M) override; 652 653 Optional<MemorySanitizer> MSan; 654 MemorySanitizerOptions Options; 655 }; 656 657 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 658 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 659 } 660 661 } // end anonymous namespace 662 663 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) 664 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 665 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 666 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} 667 668 PreservedAnalyses MemorySanitizerPass::run(Function &F, 669 FunctionAnalysisManager &FAM) { 670 MemorySanitizer Msan(*F.getParent(), Options); 671 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 672 return PreservedAnalyses::none(); 673 return PreservedAnalyses::all(); 674 } 675 676 PreservedAnalyses MemorySanitizerPass::run(Module &M, 677 ModuleAnalysisManager &AM) { 678 if (Options.Kernel) 679 return PreservedAnalyses::all(); 680 insertModuleCtor(M); 681 return PreservedAnalyses::none(); 682 } 683 684 char MemorySanitizerLegacyPass::ID = 0; 685 686 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 687 "MemorySanitizer: detects uninitialized reads.", false, 688 false) 689 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 690 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 691 "MemorySanitizer: detects uninitialized reads.", false, 692 false) 693 694 FunctionPass * 695 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { 696 return new MemorySanitizerLegacyPass(Options); 697 } 698 699 /// Create a non-const global initialized with the given string. 700 /// 701 /// Creates a writable global for Str so that we can pass it to the 702 /// run-time lib. Runtime uses first 4 bytes of the string to store the 703 /// frame ID, so the string needs to be mutable. 704 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 705 StringRef Str) { 706 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 707 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 708 GlobalValue::PrivateLinkage, StrConst, ""); 709 } 710 711 /// Create KMSAN API callbacks. 712 void MemorySanitizer::createKernelApi(Module &M) { 713 IRBuilder<> IRB(*C); 714 715 // These will be initialized in insertKmsanPrologue(). 716 RetvalTLS = nullptr; 717 RetvalOriginTLS = nullptr; 718 ParamTLS = nullptr; 719 ParamOriginTLS = nullptr; 720 VAArgTLS = nullptr; 721 VAArgOriginTLS = nullptr; 722 VAArgOverflowSizeTLS = nullptr; 723 724 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 725 IRB.getInt32Ty()); 726 // Requests the per-task context state (kmsan_context_state*) from the 727 // runtime library. 728 MsanContextStateTy = StructType::get( 729 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 730 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 731 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 732 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 733 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 734 OriginTy); 735 MsanGetContextStateFn = M.getOrInsertFunction( 736 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 737 738 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 739 PointerType::get(IRB.getInt32Ty(), 0)); 740 741 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 742 std::string name_load = 743 "__msan_metadata_ptr_for_load_" + std::to_string(size); 744 std::string name_store = 745 "__msan_metadata_ptr_for_store_" + std::to_string(size); 746 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 747 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 748 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 749 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 750 } 751 752 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 753 "__msan_metadata_ptr_for_load_n", RetTy, 754 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 755 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 756 "__msan_metadata_ptr_for_store_n", RetTy, 757 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 758 759 // Functions for poisoning and unpoisoning memory. 760 MsanPoisonAllocaFn = 761 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 762 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 763 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 764 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 765 } 766 767 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 768 return M.getOrInsertGlobal(Name, Ty, [&] { 769 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 770 nullptr, Name, nullptr, 771 GlobalVariable::InitialExecTLSModel); 772 }); 773 } 774 775 /// Insert declarations for userspace-specific functions and globals. 776 void MemorySanitizer::createUserspaceApi(Module &M) { 777 IRBuilder<> IRB(*C); 778 779 // Create the callback. 780 // FIXME: this function should have "Cold" calling conv, 781 // which is not yet implemented. 782 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 783 : "__msan_warning_with_origin_noreturn"; 784 WarningFn = 785 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 786 787 // Create the global TLS variables. 788 RetvalTLS = 789 getOrInsertGlobal(M, "__msan_retval_tls", 790 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 791 792 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 793 794 ParamTLS = 795 getOrInsertGlobal(M, "__msan_param_tls", 796 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 797 798 ParamOriginTLS = 799 getOrInsertGlobal(M, "__msan_param_origin_tls", 800 ArrayType::get(OriginTy, kParamTLSSize / 4)); 801 802 VAArgTLS = 803 getOrInsertGlobal(M, "__msan_va_arg_tls", 804 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 805 806 VAArgOriginTLS = 807 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 808 ArrayType::get(OriginTy, kParamTLSSize / 4)); 809 810 VAArgOverflowSizeTLS = 811 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 812 813 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 814 AccessSizeIndex++) { 815 unsigned AccessSize = 1 << AccessSizeIndex; 816 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 817 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 818 MaybeWarningFnAttrs.push_back(std::make_pair( 819 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 820 MaybeWarningFnAttrs.push_back(std::make_pair( 821 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 822 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 823 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 824 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 825 826 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 827 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 828 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 829 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 830 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 831 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 832 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 833 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 834 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 835 IRB.getInt32Ty()); 836 } 837 838 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 839 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 840 IRB.getInt8PtrTy(), IntptrTy); 841 MsanPoisonStackFn = 842 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 843 IRB.getInt8PtrTy(), IntptrTy); 844 } 845 846 /// Insert extern declaration of runtime-provided functions and globals. 847 void MemorySanitizer::initializeCallbacks(Module &M) { 848 // Only do this once. 849 if (CallbacksInitialized) 850 return; 851 852 IRBuilder<> IRB(*C); 853 // Initialize callbacks that are common for kernel and userspace 854 // instrumentation. 855 MsanChainOriginFn = M.getOrInsertFunction( 856 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 857 MsanSetOriginFn = 858 M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(), 859 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); 860 MemmoveFn = M.getOrInsertFunction( 861 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 862 IRB.getInt8PtrTy(), IntptrTy); 863 MemcpyFn = M.getOrInsertFunction( 864 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 865 IntptrTy); 866 MemsetFn = M.getOrInsertFunction( 867 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 868 IntptrTy); 869 870 MsanInstrumentAsmStoreFn = 871 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 872 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 873 874 if (CompileKernel) { 875 createKernelApi(M); 876 } else { 877 createUserspaceApi(M); 878 } 879 CallbacksInitialized = true; 880 } 881 882 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 883 int size) { 884 FunctionCallee *Fns = 885 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 886 switch (size) { 887 case 1: 888 return Fns[0]; 889 case 2: 890 return Fns[1]; 891 case 4: 892 return Fns[2]; 893 case 8: 894 return Fns[3]; 895 default: 896 return nullptr; 897 } 898 } 899 900 /// Module-level initialization. 901 /// 902 /// inserts a call to __msan_init to the module's constructor list. 903 void MemorySanitizer::initializeModule(Module &M) { 904 auto &DL = M.getDataLayout(); 905 906 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 907 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 908 // Check the overrides first 909 if (ShadowPassed || OriginPassed) { 910 CustomMapParams.AndMask = ClAndMask; 911 CustomMapParams.XorMask = ClXorMask; 912 CustomMapParams.ShadowBase = ClShadowBase; 913 CustomMapParams.OriginBase = ClOriginBase; 914 MapParams = &CustomMapParams; 915 } else { 916 Triple TargetTriple(M.getTargetTriple()); 917 switch (TargetTriple.getOS()) { 918 case Triple::FreeBSD: 919 switch (TargetTriple.getArch()) { 920 case Triple::x86_64: 921 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 922 break; 923 case Triple::x86: 924 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 925 break; 926 default: 927 report_fatal_error("unsupported architecture"); 928 } 929 break; 930 case Triple::NetBSD: 931 switch (TargetTriple.getArch()) { 932 case Triple::x86_64: 933 MapParams = NetBSD_X86_MemoryMapParams.bits64; 934 break; 935 default: 936 report_fatal_error("unsupported architecture"); 937 } 938 break; 939 case Triple::Linux: 940 switch (TargetTriple.getArch()) { 941 case Triple::x86_64: 942 MapParams = Linux_X86_MemoryMapParams.bits64; 943 break; 944 case Triple::x86: 945 MapParams = Linux_X86_MemoryMapParams.bits32; 946 break; 947 case Triple::mips64: 948 case Triple::mips64el: 949 MapParams = Linux_MIPS_MemoryMapParams.bits64; 950 break; 951 case Triple::ppc64: 952 case Triple::ppc64le: 953 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 954 break; 955 case Triple::systemz: 956 MapParams = Linux_S390_MemoryMapParams.bits64; 957 break; 958 case Triple::aarch64: 959 case Triple::aarch64_be: 960 MapParams = Linux_ARM_MemoryMapParams.bits64; 961 break; 962 default: 963 report_fatal_error("unsupported architecture"); 964 } 965 break; 966 default: 967 report_fatal_error("unsupported operating system"); 968 } 969 } 970 971 C = &(M.getContext()); 972 IRBuilder<> IRB(*C); 973 IntptrTy = IRB.getIntPtrTy(DL); 974 OriginTy = IRB.getInt32Ty(); 975 976 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 977 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 978 979 if (!CompileKernel) { 980 if (TrackOrigins) 981 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 982 return new GlobalVariable( 983 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 984 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 985 }); 986 987 if (Recover) 988 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 989 return new GlobalVariable(M, IRB.getInt32Ty(), true, 990 GlobalValue::WeakODRLinkage, 991 IRB.getInt32(Recover), "__msan_keep_going"); 992 }); 993 } 994 } 995 996 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 997 if (!Options.Kernel) 998 insertModuleCtor(M); 999 MSan.emplace(M, Options); 1000 return true; 1001 } 1002 1003 namespace { 1004 1005 /// A helper class that handles instrumentation of VarArg 1006 /// functions on a particular platform. 1007 /// 1008 /// Implementations are expected to insert the instrumentation 1009 /// necessary to propagate argument shadow through VarArg function 1010 /// calls. Visit* methods are called during an InstVisitor pass over 1011 /// the function, and should avoid creating new basic blocks. A new 1012 /// instance of this class is created for each instrumented function. 1013 struct VarArgHelper { 1014 virtual ~VarArgHelper() = default; 1015 1016 /// Visit a CallBase. 1017 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 1018 1019 /// Visit a va_start call. 1020 virtual void visitVAStartInst(VAStartInst &I) = 0; 1021 1022 /// Visit a va_copy call. 1023 virtual void visitVACopyInst(VACopyInst &I) = 0; 1024 1025 /// Finalize function instrumentation. 1026 /// 1027 /// This method is called after visiting all interesting (see above) 1028 /// instructions in a function. 1029 virtual void finalizeInstrumentation() = 0; 1030 }; 1031 1032 struct MemorySanitizerVisitor; 1033 1034 } // end anonymous namespace 1035 1036 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1037 MemorySanitizerVisitor &Visitor); 1038 1039 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1040 if (TypeSize <= 8) return 0; 1041 return Log2_32_Ceil((TypeSize + 7) / 8); 1042 } 1043 1044 namespace { 1045 1046 /// This class does all the work for a given function. Store and Load 1047 /// instructions store and load corresponding shadow and origin 1048 /// values. Most instructions propagate shadow from arguments to their 1049 /// return values. Certain instructions (most importantly, BranchInst) 1050 /// test their argument shadow and print reports (with a runtime call) if it's 1051 /// non-zero. 1052 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1053 Function &F; 1054 MemorySanitizer &MS; 1055 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1056 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1057 std::unique_ptr<VarArgHelper> VAHelper; 1058 const TargetLibraryInfo *TLI; 1059 Instruction *FnPrologueEnd; 1060 1061 // The following flags disable parts of MSan instrumentation based on 1062 // exclusion list contents and command-line options. 1063 bool InsertChecks; 1064 bool PropagateShadow; 1065 bool PoisonStack; 1066 bool PoisonUndef; 1067 1068 struct ShadowOriginAndInsertPoint { 1069 Value *Shadow; 1070 Value *Origin; 1071 Instruction *OrigIns; 1072 1073 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1074 : Shadow(S), Origin(O), OrigIns(I) {} 1075 }; 1076 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1077 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1078 SmallSet<AllocaInst *, 16> AllocaSet; 1079 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1080 SmallVector<StoreInst *, 16> StoreList; 1081 1082 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1083 const TargetLibraryInfo &TLI) 1084 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1085 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1086 InsertChecks = SanitizeFunction; 1087 PropagateShadow = SanitizeFunction; 1088 PoisonStack = SanitizeFunction && ClPoisonStack; 1089 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1090 1091 // In the presence of unreachable blocks, we may see Phi nodes with 1092 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1093 // blocks, such nodes will not have any shadow value associated with them. 1094 // It's easier to remove unreachable blocks than deal with missing shadow. 1095 removeUnreachableBlocks(F); 1096 1097 MS.initializeCallbacks(*F.getParent()); 1098 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1099 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1100 1101 if (MS.CompileKernel) { 1102 IRBuilder<> IRB(FnPrologueEnd); 1103 insertKmsanPrologue(IRB); 1104 } 1105 1106 LLVM_DEBUG(if (!InsertChecks) dbgs() 1107 << "MemorySanitizer is not inserting checks into '" 1108 << F.getName() << "'\n"); 1109 } 1110 1111 bool isInPrologue(Instruction &I) { 1112 return I.getParent() == FnPrologueEnd->getParent() && 1113 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1114 } 1115 1116 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1117 if (MS.TrackOrigins <= 1) return V; 1118 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1119 } 1120 1121 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1122 const DataLayout &DL = F.getParent()->getDataLayout(); 1123 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1124 if (IntptrSize == kOriginSize) return Origin; 1125 assert(IntptrSize == kOriginSize * 2); 1126 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1127 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1128 } 1129 1130 /// Fill memory range with the given origin value. 1131 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1132 unsigned Size, Align Alignment) { 1133 const DataLayout &DL = F.getParent()->getDataLayout(); 1134 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1135 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1136 assert(IntptrAlignment >= kMinOriginAlignment); 1137 assert(IntptrSize >= kOriginSize); 1138 1139 unsigned Ofs = 0; 1140 Align CurrentAlignment = Alignment; 1141 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1142 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1143 Value *IntptrOriginPtr = 1144 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1145 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1146 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1147 : IntptrOriginPtr; 1148 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1149 Ofs += IntptrSize / kOriginSize; 1150 CurrentAlignment = IntptrAlignment; 1151 } 1152 } 1153 1154 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1155 Value *GEP = 1156 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1157 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1158 CurrentAlignment = kMinOriginAlignment; 1159 } 1160 } 1161 1162 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1163 Value *OriginPtr, Align Alignment, bool AsCall) { 1164 const DataLayout &DL = F.getParent()->getDataLayout(); 1165 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1166 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1167 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1168 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1169 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1170 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1171 OriginAlignment); 1172 return; 1173 } 1174 1175 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1176 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1177 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1178 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1179 Value *ConvertedShadow2 = 1180 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1181 CallBase *CB = IRB.CreateCall( 1182 Fn, {ConvertedShadow2, 1183 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1184 CB->addParamAttr(0, Attribute::ZExt); 1185 CB->addParamAttr(2, Attribute::ZExt); 1186 } else { 1187 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1188 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1189 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1190 IRBuilder<> IRBNew(CheckTerm); 1191 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1192 OriginAlignment); 1193 } 1194 } 1195 1196 void materializeStores(bool InstrumentWithCalls) { 1197 for (StoreInst *SI : StoreList) { 1198 IRBuilder<> IRB(SI); 1199 Value *Val = SI->getValueOperand(); 1200 Value *Addr = SI->getPointerOperand(); 1201 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1202 Value *ShadowPtr, *OriginPtr; 1203 Type *ShadowTy = Shadow->getType(); 1204 const Align Alignment = assumeAligned(SI->getAlignment()); 1205 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1206 std::tie(ShadowPtr, OriginPtr) = 1207 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1208 1209 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1210 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1211 (void)NewSI; 1212 1213 if (SI->isAtomic()) 1214 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1215 1216 if (MS.TrackOrigins && !SI->isAtomic()) 1217 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1218 OriginAlignment, InstrumentWithCalls); 1219 } 1220 } 1221 1222 /// Helper function to insert a warning at IRB's current insert point. 1223 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1224 if (!Origin) 1225 Origin = (Value *)IRB.getInt32(0); 1226 assert(Origin->getType()->isIntegerTy()); 1227 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1228 // FIXME: Insert UnreachableInst if !MS.Recover? 1229 // This may invalidate some of the following checks and needs to be done 1230 // at the very end. 1231 } 1232 1233 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1234 bool AsCall) { 1235 IRBuilder<> IRB(OrigIns); 1236 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1237 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1238 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1239 1240 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1241 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1242 insertWarningFn(IRB, Origin); 1243 } 1244 return; 1245 } 1246 1247 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1248 1249 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1250 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1251 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1252 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1253 Value *ConvertedShadow2 = 1254 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1255 CallBase *CB = IRB.CreateCall( 1256 Fn, {ConvertedShadow2, 1257 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1258 CB->addParamAttr(0, Attribute::ZExt); 1259 CB->addParamAttr(1, Attribute::ZExt); 1260 } else { 1261 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1262 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1263 Cmp, OrigIns, 1264 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1265 1266 IRB.SetInsertPoint(CheckTerm); 1267 insertWarningFn(IRB, Origin); 1268 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1269 } 1270 } 1271 1272 void materializeChecks(bool InstrumentWithCalls) { 1273 for (const auto &ShadowData : InstrumentationList) { 1274 Instruction *OrigIns = ShadowData.OrigIns; 1275 Value *Shadow = ShadowData.Shadow; 1276 Value *Origin = ShadowData.Origin; 1277 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1278 } 1279 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1280 } 1281 1282 // Returns the last instruction in the new prologue 1283 void insertKmsanPrologue(IRBuilder<> &IRB) { 1284 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1285 Constant *Zero = IRB.getInt32(0); 1286 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1287 {Zero, IRB.getInt32(0)}, "param_shadow"); 1288 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1289 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1290 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1291 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1292 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1293 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1294 MS.VAArgOverflowSizeTLS = 1295 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1296 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1297 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1298 {Zero, IRB.getInt32(5)}, "param_origin"); 1299 MS.RetvalOriginTLS = 1300 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1301 {Zero, IRB.getInt32(6)}, "retval_origin"); 1302 } 1303 1304 /// Add MemorySanitizer instrumentation to a function. 1305 bool runOnFunction() { 1306 // Iterate all BBs in depth-first order and create shadow instructions 1307 // for all instructions (where applicable). 1308 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1309 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1310 visit(*BB); 1311 1312 // Finalize PHI nodes. 1313 for (PHINode *PN : ShadowPHINodes) { 1314 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1315 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1316 size_t NumValues = PN->getNumIncomingValues(); 1317 for (size_t v = 0; v < NumValues; v++) { 1318 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1319 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1320 } 1321 } 1322 1323 VAHelper->finalizeInstrumentation(); 1324 1325 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1326 // instrumenting only allocas. 1327 if (InstrumentLifetimeStart) { 1328 for (auto Item : LifetimeStartList) { 1329 instrumentAlloca(*Item.second, Item.first); 1330 AllocaSet.erase(Item.second); 1331 } 1332 } 1333 // Poison the allocas for which we didn't instrument the corresponding 1334 // lifetime intrinsics. 1335 for (AllocaInst *AI : AllocaSet) 1336 instrumentAlloca(*AI); 1337 1338 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1339 InstrumentationList.size() + StoreList.size() > 1340 (unsigned)ClInstrumentationWithCallThreshold; 1341 1342 // Insert shadow value checks. 1343 materializeChecks(InstrumentWithCalls); 1344 1345 // Delayed instrumentation of StoreInst. 1346 // This may not add new address checks. 1347 materializeStores(InstrumentWithCalls); 1348 1349 return true; 1350 } 1351 1352 /// Compute the shadow type that corresponds to a given Value. 1353 Type *getShadowTy(Value *V) { 1354 return getShadowTy(V->getType()); 1355 } 1356 1357 /// Compute the shadow type that corresponds to a given Type. 1358 Type *getShadowTy(Type *OrigTy) { 1359 if (!OrigTy->isSized()) { 1360 return nullptr; 1361 } 1362 // For integer type, shadow is the same as the original type. 1363 // This may return weird-sized types like i1. 1364 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1365 return IT; 1366 const DataLayout &DL = F.getParent()->getDataLayout(); 1367 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1368 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1369 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1370 cast<FixedVectorType>(VT)->getNumElements()); 1371 } 1372 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1373 return ArrayType::get(getShadowTy(AT->getElementType()), 1374 AT->getNumElements()); 1375 } 1376 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1377 SmallVector<Type*, 4> Elements; 1378 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1379 Elements.push_back(getShadowTy(ST->getElementType(i))); 1380 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1381 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1382 return Res; 1383 } 1384 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1385 return IntegerType::get(*MS.C, TypeSize); 1386 } 1387 1388 /// Flatten a vector type. 1389 Type *getShadowTyNoVec(Type *ty) { 1390 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1391 return IntegerType::get(*MS.C, 1392 vt->getPrimitiveSizeInBits().getFixedSize()); 1393 return ty; 1394 } 1395 1396 /// Extract combined shadow of struct elements as a bool 1397 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1398 IRBuilder<> &IRB) { 1399 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1400 Value *Aggregator = FalseVal; 1401 1402 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1403 // Combine by ORing together each element's bool shadow 1404 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1405 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1406 Value *ShadowBool = convertToBool(ShadowInner, IRB); 1407 1408 if (Aggregator != FalseVal) 1409 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1410 else 1411 Aggregator = ShadowBool; 1412 } 1413 1414 return Aggregator; 1415 } 1416 1417 // Extract combined shadow of array elements 1418 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1419 IRBuilder<> &IRB) { 1420 if (!Array->getNumElements()) 1421 return IRB.getIntN(/* width */ 1, /* value */ 0); 1422 1423 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1424 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1425 1426 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1427 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1428 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1429 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1430 } 1431 return Aggregator; 1432 } 1433 1434 /// Convert a shadow value to it's flattened variant. The resulting 1435 /// shadow may not necessarily have the same bit width as the input 1436 /// value, but it will always be comparable to zero. 1437 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1438 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1439 return collapseStructShadow(Struct, V, IRB); 1440 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1441 return collapseArrayShadow(Array, V, IRB); 1442 Type *Ty = V->getType(); 1443 Type *NoVecTy = getShadowTyNoVec(Ty); 1444 if (Ty == NoVecTy) return V; 1445 return IRB.CreateBitCast(V, NoVecTy); 1446 } 1447 1448 // Convert a scalar value to an i1 by comparing with 0 1449 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1450 Type *VTy = V->getType(); 1451 assert(VTy->isIntegerTy()); 1452 if (VTy->getIntegerBitWidth() == 1) 1453 // Just converting a bool to a bool, so do nothing. 1454 return V; 1455 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1456 } 1457 1458 /// Compute the integer shadow offset that corresponds to a given 1459 /// application address. 1460 /// 1461 /// Offset = (Addr & ~AndMask) ^ XorMask 1462 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1463 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1464 1465 uint64_t AndMask = MS.MapParams->AndMask; 1466 if (AndMask) 1467 OffsetLong = 1468 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1469 1470 uint64_t XorMask = MS.MapParams->XorMask; 1471 if (XorMask) 1472 OffsetLong = 1473 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1474 return OffsetLong; 1475 } 1476 1477 /// Compute the shadow and origin addresses corresponding to a given 1478 /// application address. 1479 /// 1480 /// Shadow = ShadowBase + Offset 1481 /// Origin = (OriginBase + Offset) & ~3ULL 1482 std::pair<Value *, Value *> 1483 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1484 MaybeAlign Alignment) { 1485 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1486 Value *ShadowLong = ShadowOffset; 1487 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1488 if (ShadowBase != 0) { 1489 ShadowLong = 1490 IRB.CreateAdd(ShadowLong, 1491 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1492 } 1493 Value *ShadowPtr = 1494 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1495 Value *OriginPtr = nullptr; 1496 if (MS.TrackOrigins) { 1497 Value *OriginLong = ShadowOffset; 1498 uint64_t OriginBase = MS.MapParams->OriginBase; 1499 if (OriginBase != 0) 1500 OriginLong = IRB.CreateAdd(OriginLong, 1501 ConstantInt::get(MS.IntptrTy, OriginBase)); 1502 if (!Alignment || *Alignment < kMinOriginAlignment) { 1503 uint64_t Mask = kMinOriginAlignment.value() - 1; 1504 OriginLong = 1505 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1506 } 1507 OriginPtr = 1508 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1509 } 1510 return std::make_pair(ShadowPtr, OriginPtr); 1511 } 1512 1513 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1514 IRBuilder<> &IRB, 1515 Type *ShadowTy, 1516 bool isStore) { 1517 Value *ShadowOriginPtrs; 1518 const DataLayout &DL = F.getParent()->getDataLayout(); 1519 int Size = DL.getTypeStoreSize(ShadowTy); 1520 1521 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1522 Value *AddrCast = 1523 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1524 if (Getter) { 1525 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1526 } else { 1527 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1528 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1529 : MS.MsanMetadataPtrForLoadN, 1530 {AddrCast, SizeVal}); 1531 } 1532 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1533 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1534 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1535 1536 return std::make_pair(ShadowPtr, OriginPtr); 1537 } 1538 1539 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1540 Type *ShadowTy, 1541 MaybeAlign Alignment, 1542 bool isStore) { 1543 if (MS.CompileKernel) 1544 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1545 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1546 } 1547 1548 /// Compute the shadow address for a given function argument. 1549 /// 1550 /// Shadow = ParamTLS+ArgOffset. 1551 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1552 int ArgOffset) { 1553 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1554 if (ArgOffset) 1555 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1556 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1557 "_msarg"); 1558 } 1559 1560 /// Compute the origin address for a given function argument. 1561 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1562 int ArgOffset) { 1563 if (!MS.TrackOrigins) 1564 return nullptr; 1565 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1566 if (ArgOffset) 1567 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1568 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1569 "_msarg_o"); 1570 } 1571 1572 /// Compute the shadow address for a retval. 1573 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1574 return IRB.CreatePointerCast(MS.RetvalTLS, 1575 PointerType::get(getShadowTy(A), 0), 1576 "_msret"); 1577 } 1578 1579 /// Compute the origin address for a retval. 1580 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1581 // We keep a single origin for the entire retval. Might be too optimistic. 1582 return MS.RetvalOriginTLS; 1583 } 1584 1585 /// Set SV to be the shadow value for V. 1586 void setShadow(Value *V, Value *SV) { 1587 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1588 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1589 } 1590 1591 /// Set Origin to be the origin value for V. 1592 void setOrigin(Value *V, Value *Origin) { 1593 if (!MS.TrackOrigins) return; 1594 assert(!OriginMap.count(V) && "Values may only have one origin"); 1595 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1596 OriginMap[V] = Origin; 1597 } 1598 1599 Constant *getCleanShadow(Type *OrigTy) { 1600 Type *ShadowTy = getShadowTy(OrigTy); 1601 if (!ShadowTy) 1602 return nullptr; 1603 return Constant::getNullValue(ShadowTy); 1604 } 1605 1606 /// Create a clean shadow value for a given value. 1607 /// 1608 /// Clean shadow (all zeroes) means all bits of the value are defined 1609 /// (initialized). 1610 Constant *getCleanShadow(Value *V) { 1611 return getCleanShadow(V->getType()); 1612 } 1613 1614 /// Create a dirty shadow of a given shadow type. 1615 Constant *getPoisonedShadow(Type *ShadowTy) { 1616 assert(ShadowTy); 1617 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1618 return Constant::getAllOnesValue(ShadowTy); 1619 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1620 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1621 getPoisonedShadow(AT->getElementType())); 1622 return ConstantArray::get(AT, Vals); 1623 } 1624 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1625 SmallVector<Constant *, 4> Vals; 1626 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1627 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1628 return ConstantStruct::get(ST, Vals); 1629 } 1630 llvm_unreachable("Unexpected shadow type"); 1631 } 1632 1633 /// Create a dirty shadow for a given value. 1634 Constant *getPoisonedShadow(Value *V) { 1635 Type *ShadowTy = getShadowTy(V); 1636 if (!ShadowTy) 1637 return nullptr; 1638 return getPoisonedShadow(ShadowTy); 1639 } 1640 1641 /// Create a clean (zero) origin. 1642 Value *getCleanOrigin() { 1643 return Constant::getNullValue(MS.OriginTy); 1644 } 1645 1646 /// Get the shadow value for a given Value. 1647 /// 1648 /// This function either returns the value set earlier with setShadow, 1649 /// or extracts if from ParamTLS (for function arguments). 1650 Value *getShadow(Value *V) { 1651 if (!PropagateShadow) return getCleanShadow(V); 1652 if (Instruction *I = dyn_cast<Instruction>(V)) { 1653 if (I->getMetadata("nosanitize")) 1654 return getCleanShadow(V); 1655 // For instructions the shadow is already stored in the map. 1656 Value *Shadow = ShadowMap[V]; 1657 if (!Shadow) { 1658 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1659 (void)I; 1660 assert(Shadow && "No shadow for a value"); 1661 } 1662 return Shadow; 1663 } 1664 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1665 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1666 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1667 (void)U; 1668 return AllOnes; 1669 } 1670 if (Argument *A = dyn_cast<Argument>(V)) { 1671 // For arguments we compute the shadow on demand and store it in the map. 1672 Value **ShadowPtr = &ShadowMap[V]; 1673 if (*ShadowPtr) 1674 return *ShadowPtr; 1675 Function *F = A->getParent(); 1676 IRBuilder<> EntryIRB(FnPrologueEnd); 1677 unsigned ArgOffset = 0; 1678 const DataLayout &DL = F->getParent()->getDataLayout(); 1679 for (auto &FArg : F->args()) { 1680 if (!FArg.getType()->isSized()) { 1681 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1682 continue; 1683 } 1684 1685 bool FArgByVal = FArg.hasByValAttr(); 1686 bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef); 1687 bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef; 1688 unsigned Size = 1689 FArg.hasByValAttr() 1690 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1691 : DL.getTypeAllocSize(FArg.getType()); 1692 1693 if (A == &FArg) { 1694 bool Overflow = ArgOffset + Size > kParamTLSSize; 1695 if (FArgEagerCheck) { 1696 *ShadowPtr = getCleanShadow(V); 1697 setOrigin(A, getCleanOrigin()); 1698 continue; 1699 } else if (FArgByVal) { 1700 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1701 // ByVal pointer itself has clean shadow. We copy the actual 1702 // argument shadow to the underlying memory. 1703 // Figure out maximal valid memcpy alignment. 1704 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1705 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1706 Value *CpShadowPtr = 1707 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1708 /*isStore*/ true) 1709 .first; 1710 // TODO(glider): need to copy origins. 1711 if (Overflow) { 1712 // ParamTLS overflow. 1713 EntryIRB.CreateMemSet( 1714 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1715 Size, ArgAlign); 1716 } else { 1717 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1718 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1719 CopyAlign, Size); 1720 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1721 (void)Cpy; 1722 } 1723 *ShadowPtr = getCleanShadow(V); 1724 } else { 1725 // Shadow over TLS 1726 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1727 if (Overflow) { 1728 // ParamTLS overflow. 1729 *ShadowPtr = getCleanShadow(V); 1730 } else { 1731 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1732 kShadowTLSAlignment); 1733 } 1734 } 1735 LLVM_DEBUG(dbgs() 1736 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1737 if (MS.TrackOrigins && !Overflow) { 1738 Value *OriginPtr = 1739 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1740 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1741 } else { 1742 setOrigin(A, getCleanOrigin()); 1743 } 1744 1745 break; 1746 } 1747 1748 if (!FArgEagerCheck) 1749 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1750 } 1751 assert(*ShadowPtr && "Could not find shadow for an argument"); 1752 return *ShadowPtr; 1753 } 1754 // For everything else the shadow is zero. 1755 return getCleanShadow(V); 1756 } 1757 1758 /// Get the shadow for i-th argument of the instruction I. 1759 Value *getShadow(Instruction *I, int i) { 1760 return getShadow(I->getOperand(i)); 1761 } 1762 1763 /// Get the origin for a value. 1764 Value *getOrigin(Value *V) { 1765 if (!MS.TrackOrigins) return nullptr; 1766 if (!PropagateShadow) return getCleanOrigin(); 1767 if (isa<Constant>(V)) return getCleanOrigin(); 1768 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1769 "Unexpected value type in getOrigin()"); 1770 if (Instruction *I = dyn_cast<Instruction>(V)) { 1771 if (I->getMetadata("nosanitize")) 1772 return getCleanOrigin(); 1773 } 1774 Value *Origin = OriginMap[V]; 1775 assert(Origin && "Missing origin"); 1776 return Origin; 1777 } 1778 1779 /// Get the origin for i-th argument of the instruction I. 1780 Value *getOrigin(Instruction *I, int i) { 1781 return getOrigin(I->getOperand(i)); 1782 } 1783 1784 /// Remember the place where a shadow check should be inserted. 1785 /// 1786 /// This location will be later instrumented with a check that will print a 1787 /// UMR warning in runtime if the shadow value is not 0. 1788 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1789 assert(Shadow); 1790 if (!InsertChecks) return; 1791 #ifndef NDEBUG 1792 Type *ShadowTy = Shadow->getType(); 1793 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 1794 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 1795 "Can only insert checks for integer, vector, and aggregate shadow " 1796 "types"); 1797 #endif 1798 InstrumentationList.push_back( 1799 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1800 } 1801 1802 /// Remember the place where a shadow check should be inserted. 1803 /// 1804 /// This location will be later instrumented with a check that will print a 1805 /// UMR warning in runtime if the value is not fully defined. 1806 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1807 assert(Val); 1808 Value *Shadow, *Origin; 1809 if (ClCheckConstantShadow) { 1810 Shadow = getShadow(Val); 1811 if (!Shadow) return; 1812 Origin = getOrigin(Val); 1813 } else { 1814 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1815 if (!Shadow) return; 1816 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1817 } 1818 insertShadowCheck(Shadow, Origin, OrigIns); 1819 } 1820 1821 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1822 switch (a) { 1823 case AtomicOrdering::NotAtomic: 1824 return AtomicOrdering::NotAtomic; 1825 case AtomicOrdering::Unordered: 1826 case AtomicOrdering::Monotonic: 1827 case AtomicOrdering::Release: 1828 return AtomicOrdering::Release; 1829 case AtomicOrdering::Acquire: 1830 case AtomicOrdering::AcquireRelease: 1831 return AtomicOrdering::AcquireRelease; 1832 case AtomicOrdering::SequentiallyConsistent: 1833 return AtomicOrdering::SequentiallyConsistent; 1834 } 1835 llvm_unreachable("Unknown ordering"); 1836 } 1837 1838 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 1839 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1840 uint32_t OrderingTable[NumOrderings] = {}; 1841 1842 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1843 OrderingTable[(int)AtomicOrderingCABI::release] = 1844 (int)AtomicOrderingCABI::release; 1845 OrderingTable[(int)AtomicOrderingCABI::consume] = 1846 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1847 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1848 (int)AtomicOrderingCABI::acq_rel; 1849 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1850 (int)AtomicOrderingCABI::seq_cst; 1851 1852 return ConstantDataVector::get(IRB.getContext(), 1853 makeArrayRef(OrderingTable, NumOrderings)); 1854 } 1855 1856 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1857 switch (a) { 1858 case AtomicOrdering::NotAtomic: 1859 return AtomicOrdering::NotAtomic; 1860 case AtomicOrdering::Unordered: 1861 case AtomicOrdering::Monotonic: 1862 case AtomicOrdering::Acquire: 1863 return AtomicOrdering::Acquire; 1864 case AtomicOrdering::Release: 1865 case AtomicOrdering::AcquireRelease: 1866 return AtomicOrdering::AcquireRelease; 1867 case AtomicOrdering::SequentiallyConsistent: 1868 return AtomicOrdering::SequentiallyConsistent; 1869 } 1870 llvm_unreachable("Unknown ordering"); 1871 } 1872 1873 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 1874 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1875 uint32_t OrderingTable[NumOrderings] = {}; 1876 1877 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1878 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1879 OrderingTable[(int)AtomicOrderingCABI::consume] = 1880 (int)AtomicOrderingCABI::acquire; 1881 OrderingTable[(int)AtomicOrderingCABI::release] = 1882 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1883 (int)AtomicOrderingCABI::acq_rel; 1884 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1885 (int)AtomicOrderingCABI::seq_cst; 1886 1887 return ConstantDataVector::get(IRB.getContext(), 1888 makeArrayRef(OrderingTable, NumOrderings)); 1889 } 1890 1891 // ------------------- Visitors. 1892 using InstVisitor<MemorySanitizerVisitor>::visit; 1893 void visit(Instruction &I) { 1894 if (I.getMetadata("nosanitize")) 1895 return; 1896 // Don't want to visit if we're in the prologue 1897 if (isInPrologue(I)) 1898 return; 1899 InstVisitor<MemorySanitizerVisitor>::visit(I); 1900 } 1901 1902 /// Instrument LoadInst 1903 /// 1904 /// Loads the corresponding shadow and (optionally) origin. 1905 /// Optionally, checks that the load address is fully defined. 1906 void visitLoadInst(LoadInst &I) { 1907 assert(I.getType()->isSized() && "Load type must have size"); 1908 assert(!I.getMetadata("nosanitize")); 1909 IRBuilder<> IRB(I.getNextNode()); 1910 Type *ShadowTy = getShadowTy(&I); 1911 Value *Addr = I.getPointerOperand(); 1912 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1913 const Align Alignment = assumeAligned(I.getAlignment()); 1914 if (PropagateShadow) { 1915 std::tie(ShadowPtr, OriginPtr) = 1916 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1917 setShadow(&I, 1918 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1919 } else { 1920 setShadow(&I, getCleanShadow(&I)); 1921 } 1922 1923 if (ClCheckAccessAddress) 1924 insertShadowCheck(I.getPointerOperand(), &I); 1925 1926 if (I.isAtomic()) 1927 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1928 1929 if (MS.TrackOrigins) { 1930 if (PropagateShadow) { 1931 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1932 setOrigin( 1933 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1934 } else { 1935 setOrigin(&I, getCleanOrigin()); 1936 } 1937 } 1938 } 1939 1940 /// Instrument StoreInst 1941 /// 1942 /// Stores the corresponding shadow and (optionally) origin. 1943 /// Optionally, checks that the store address is fully defined. 1944 void visitStoreInst(StoreInst &I) { 1945 StoreList.push_back(&I); 1946 if (ClCheckAccessAddress) 1947 insertShadowCheck(I.getPointerOperand(), &I); 1948 } 1949 1950 void handleCASOrRMW(Instruction &I) { 1951 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1952 1953 IRBuilder<> IRB(&I); 1954 Value *Addr = I.getOperand(0); 1955 Value *Val = I.getOperand(1); 1956 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, Val->getType(), Align(1), 1957 /*isStore*/ true) 1958 .first; 1959 1960 if (ClCheckAccessAddress) 1961 insertShadowCheck(Addr, &I); 1962 1963 // Only test the conditional argument of cmpxchg instruction. 1964 // The other argument can potentially be uninitialized, but we can not 1965 // detect this situation reliably without possible false positives. 1966 if (isa<AtomicCmpXchgInst>(I)) 1967 insertShadowCheck(Val, &I); 1968 1969 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 1970 1971 setShadow(&I, getCleanShadow(&I)); 1972 setOrigin(&I, getCleanOrigin()); 1973 } 1974 1975 void visitAtomicRMWInst(AtomicRMWInst &I) { 1976 handleCASOrRMW(I); 1977 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1978 } 1979 1980 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1981 handleCASOrRMW(I); 1982 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1983 } 1984 1985 // Vector manipulation. 1986 void visitExtractElementInst(ExtractElementInst &I) { 1987 insertShadowCheck(I.getOperand(1), &I); 1988 IRBuilder<> IRB(&I); 1989 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1990 "_msprop")); 1991 setOrigin(&I, getOrigin(&I, 0)); 1992 } 1993 1994 void visitInsertElementInst(InsertElementInst &I) { 1995 insertShadowCheck(I.getOperand(2), &I); 1996 IRBuilder<> IRB(&I); 1997 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1998 I.getOperand(2), "_msprop")); 1999 setOriginForNaryOp(I); 2000 } 2001 2002 void visitShuffleVectorInst(ShuffleVectorInst &I) { 2003 IRBuilder<> IRB(&I); 2004 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 2005 I.getShuffleMask(), "_msprop")); 2006 setOriginForNaryOp(I); 2007 } 2008 2009 // Casts. 2010 void visitSExtInst(SExtInst &I) { 2011 IRBuilder<> IRB(&I); 2012 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 2013 setOrigin(&I, getOrigin(&I, 0)); 2014 } 2015 2016 void visitZExtInst(ZExtInst &I) { 2017 IRBuilder<> IRB(&I); 2018 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 2019 setOrigin(&I, getOrigin(&I, 0)); 2020 } 2021 2022 void visitTruncInst(TruncInst &I) { 2023 IRBuilder<> IRB(&I); 2024 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 2025 setOrigin(&I, getOrigin(&I, 0)); 2026 } 2027 2028 void visitBitCastInst(BitCastInst &I) { 2029 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2030 // a musttail call and a ret, don't instrument. New instructions are not 2031 // allowed after a musttail call. 2032 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2033 if (CI->isMustTailCall()) 2034 return; 2035 IRBuilder<> IRB(&I); 2036 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2037 setOrigin(&I, getOrigin(&I, 0)); 2038 } 2039 2040 void visitPtrToIntInst(PtrToIntInst &I) { 2041 IRBuilder<> IRB(&I); 2042 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2043 "_msprop_ptrtoint")); 2044 setOrigin(&I, getOrigin(&I, 0)); 2045 } 2046 2047 void visitIntToPtrInst(IntToPtrInst &I) { 2048 IRBuilder<> IRB(&I); 2049 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2050 "_msprop_inttoptr")); 2051 setOrigin(&I, getOrigin(&I, 0)); 2052 } 2053 2054 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 2055 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 2056 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 2057 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 2058 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 2059 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 2060 2061 /// Propagate shadow for bitwise AND. 2062 /// 2063 /// This code is exact, i.e. if, for example, a bit in the left argument 2064 /// is defined and 0, then neither the value not definedness of the 2065 /// corresponding bit in B don't affect the resulting shadow. 2066 void visitAnd(BinaryOperator &I) { 2067 IRBuilder<> IRB(&I); 2068 // "And" of 0 and a poisoned value results in unpoisoned value. 2069 // 1&1 => 1; 0&1 => 0; p&1 => p; 2070 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2071 // 1&p => p; 0&p => 0; p&p => p; 2072 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2073 Value *S1 = getShadow(&I, 0); 2074 Value *S2 = getShadow(&I, 1); 2075 Value *V1 = I.getOperand(0); 2076 Value *V2 = I.getOperand(1); 2077 if (V1->getType() != S1->getType()) { 2078 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2079 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2080 } 2081 Value *S1S2 = IRB.CreateAnd(S1, S2); 2082 Value *V1S2 = IRB.CreateAnd(V1, S2); 2083 Value *S1V2 = IRB.CreateAnd(S1, V2); 2084 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2085 setOriginForNaryOp(I); 2086 } 2087 2088 void visitOr(BinaryOperator &I) { 2089 IRBuilder<> IRB(&I); 2090 // "Or" of 1 and a poisoned value results in unpoisoned value. 2091 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2092 // 1|0 => 1; 0|0 => 0; p|0 => p; 2093 // 1|p => 1; 0|p => p; p|p => p; 2094 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2095 Value *S1 = getShadow(&I, 0); 2096 Value *S2 = getShadow(&I, 1); 2097 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2098 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2099 if (V1->getType() != S1->getType()) { 2100 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2101 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2102 } 2103 Value *S1S2 = IRB.CreateAnd(S1, S2); 2104 Value *V1S2 = IRB.CreateAnd(V1, S2); 2105 Value *S1V2 = IRB.CreateAnd(S1, V2); 2106 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2107 setOriginForNaryOp(I); 2108 } 2109 2110 /// Default propagation of shadow and/or origin. 2111 /// 2112 /// This class implements the general case of shadow propagation, used in all 2113 /// cases where we don't know and/or don't care about what the operation 2114 /// actually does. It converts all input shadow values to a common type 2115 /// (extending or truncating as necessary), and bitwise OR's them. 2116 /// 2117 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2118 /// fully initialized), and less prone to false positives. 2119 /// 2120 /// This class also implements the general case of origin propagation. For a 2121 /// Nary operation, result origin is set to the origin of an argument that is 2122 /// not entirely initialized. If there is more than one such arguments, the 2123 /// rightmost of them is picked. It does not matter which one is picked if all 2124 /// arguments are initialized. 2125 template <bool CombineShadow> 2126 class Combiner { 2127 Value *Shadow = nullptr; 2128 Value *Origin = nullptr; 2129 IRBuilder<> &IRB; 2130 MemorySanitizerVisitor *MSV; 2131 2132 public: 2133 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2134 : IRB(IRB), MSV(MSV) {} 2135 2136 /// Add a pair of shadow and origin values to the mix. 2137 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2138 if (CombineShadow) { 2139 assert(OpShadow); 2140 if (!Shadow) 2141 Shadow = OpShadow; 2142 else { 2143 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2144 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2145 } 2146 } 2147 2148 if (MSV->MS.TrackOrigins) { 2149 assert(OpOrigin); 2150 if (!Origin) { 2151 Origin = OpOrigin; 2152 } else { 2153 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2154 // No point in adding something that might result in 0 origin value. 2155 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2156 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); 2157 Value *Cond = 2158 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2159 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2160 } 2161 } 2162 } 2163 return *this; 2164 } 2165 2166 /// Add an application value to the mix. 2167 Combiner &Add(Value *V) { 2168 Value *OpShadow = MSV->getShadow(V); 2169 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2170 return Add(OpShadow, OpOrigin); 2171 } 2172 2173 /// Set the current combined values as the given instruction's shadow 2174 /// and origin. 2175 void Done(Instruction *I) { 2176 if (CombineShadow) { 2177 assert(Shadow); 2178 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2179 MSV->setShadow(I, Shadow); 2180 } 2181 if (MSV->MS.TrackOrigins) { 2182 assert(Origin); 2183 MSV->setOrigin(I, Origin); 2184 } 2185 } 2186 }; 2187 2188 using ShadowAndOriginCombiner = Combiner<true>; 2189 using OriginCombiner = Combiner<false>; 2190 2191 /// Propagate origin for arbitrary operation. 2192 void setOriginForNaryOp(Instruction &I) { 2193 if (!MS.TrackOrigins) return; 2194 IRBuilder<> IRB(&I); 2195 OriginCombiner OC(this, IRB); 2196 for (Use &Op : I.operands()) 2197 OC.Add(Op.get()); 2198 OC.Done(&I); 2199 } 2200 2201 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2202 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2203 "Vector of pointers is not a valid shadow type"); 2204 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2205 Ty->getScalarSizeInBits() 2206 : Ty->getPrimitiveSizeInBits(); 2207 } 2208 2209 /// Cast between two shadow types, extending or truncating as 2210 /// necessary. 2211 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2212 bool Signed = false) { 2213 Type *srcTy = V->getType(); 2214 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2215 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2216 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2217 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2218 2219 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2220 return IRB.CreateIntCast(V, dstTy, Signed); 2221 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2222 cast<FixedVectorType>(dstTy)->getNumElements() == 2223 cast<FixedVectorType>(srcTy)->getNumElements()) 2224 return IRB.CreateIntCast(V, dstTy, Signed); 2225 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2226 Value *V2 = 2227 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2228 return IRB.CreateBitCast(V2, dstTy); 2229 // TODO: handle struct types. 2230 } 2231 2232 /// Cast an application value to the type of its own shadow. 2233 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2234 Type *ShadowTy = getShadowTy(V); 2235 if (V->getType() == ShadowTy) 2236 return V; 2237 if (V->getType()->isPtrOrPtrVectorTy()) 2238 return IRB.CreatePtrToInt(V, ShadowTy); 2239 else 2240 return IRB.CreateBitCast(V, ShadowTy); 2241 } 2242 2243 /// Propagate shadow for arbitrary operation. 2244 void handleShadowOr(Instruction &I) { 2245 IRBuilder<> IRB(&I); 2246 ShadowAndOriginCombiner SC(this, IRB); 2247 for (Use &Op : I.operands()) 2248 SC.Add(Op.get()); 2249 SC.Done(&I); 2250 } 2251 2252 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2253 2254 // Handle multiplication by constant. 2255 // 2256 // Handle a special case of multiplication by constant that may have one or 2257 // more zeros in the lower bits. This makes corresponding number of lower bits 2258 // of the result zero as well. We model it by shifting the other operand 2259 // shadow left by the required number of bits. Effectively, we transform 2260 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2261 // We use multiplication by 2**N instead of shift to cover the case of 2262 // multiplication by 0, which may occur in some elements of a vector operand. 2263 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2264 Value *OtherArg) { 2265 Constant *ShadowMul; 2266 Type *Ty = ConstArg->getType(); 2267 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2268 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2269 Type *EltTy = VTy->getElementType(); 2270 SmallVector<Constant *, 16> Elements; 2271 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2272 if (ConstantInt *Elt = 2273 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2274 const APInt &V = Elt->getValue(); 2275 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2276 Elements.push_back(ConstantInt::get(EltTy, V2)); 2277 } else { 2278 Elements.push_back(ConstantInt::get(EltTy, 1)); 2279 } 2280 } 2281 ShadowMul = ConstantVector::get(Elements); 2282 } else { 2283 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2284 const APInt &V = Elt->getValue(); 2285 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2286 ShadowMul = ConstantInt::get(Ty, V2); 2287 } else { 2288 ShadowMul = ConstantInt::get(Ty, 1); 2289 } 2290 } 2291 2292 IRBuilder<> IRB(&I); 2293 setShadow(&I, 2294 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2295 setOrigin(&I, getOrigin(OtherArg)); 2296 } 2297 2298 void visitMul(BinaryOperator &I) { 2299 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2300 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2301 if (constOp0 && !constOp1) 2302 handleMulByConstant(I, constOp0, I.getOperand(1)); 2303 else if (constOp1 && !constOp0) 2304 handleMulByConstant(I, constOp1, I.getOperand(0)); 2305 else 2306 handleShadowOr(I); 2307 } 2308 2309 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2310 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2311 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2312 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2313 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2314 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2315 2316 void handleIntegerDiv(Instruction &I) { 2317 IRBuilder<> IRB(&I); 2318 // Strict on the second argument. 2319 insertShadowCheck(I.getOperand(1), &I); 2320 setShadow(&I, getShadow(&I, 0)); 2321 setOrigin(&I, getOrigin(&I, 0)); 2322 } 2323 2324 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2325 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2326 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2327 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2328 2329 // Floating point division is side-effect free. We can not require that the 2330 // divisor is fully initialized and must propagate shadow. See PR37523. 2331 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2332 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2333 2334 /// Instrument == and != comparisons. 2335 /// 2336 /// Sometimes the comparison result is known even if some of the bits of the 2337 /// arguments are not. 2338 void handleEqualityComparison(ICmpInst &I) { 2339 IRBuilder<> IRB(&I); 2340 Value *A = I.getOperand(0); 2341 Value *B = I.getOperand(1); 2342 Value *Sa = getShadow(A); 2343 Value *Sb = getShadow(B); 2344 2345 // Get rid of pointers and vectors of pointers. 2346 // For ints (and vectors of ints), types of A and Sa match, 2347 // and this is a no-op. 2348 A = IRB.CreatePointerCast(A, Sa->getType()); 2349 B = IRB.CreatePointerCast(B, Sb->getType()); 2350 2351 // A == B <==> (C = A^B) == 0 2352 // A != B <==> (C = A^B) != 0 2353 // Sc = Sa | Sb 2354 Value *C = IRB.CreateXor(A, B); 2355 Value *Sc = IRB.CreateOr(Sa, Sb); 2356 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2357 // Result is defined if one of the following is true 2358 // * there is a defined 1 bit in C 2359 // * C is fully defined 2360 // Si = !(C & ~Sc) && Sc 2361 Value *Zero = Constant::getNullValue(Sc->getType()); 2362 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2363 Value *Si = 2364 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2365 IRB.CreateICmpEQ( 2366 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2367 Si->setName("_msprop_icmp"); 2368 setShadow(&I, Si); 2369 setOriginForNaryOp(I); 2370 } 2371 2372 /// Build the lowest possible value of V, taking into account V's 2373 /// uninitialized bits. 2374 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2375 bool isSigned) { 2376 if (isSigned) { 2377 // Split shadow into sign bit and other bits. 2378 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2379 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2380 // Maximise the undefined shadow bit, minimize other undefined bits. 2381 return 2382 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2383 } else { 2384 // Minimize undefined bits. 2385 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2386 } 2387 } 2388 2389 /// Build the highest possible value of V, taking into account V's 2390 /// uninitialized bits. 2391 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2392 bool isSigned) { 2393 if (isSigned) { 2394 // Split shadow into sign bit and other bits. 2395 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2396 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2397 // Minimise the undefined shadow bit, maximise other undefined bits. 2398 return 2399 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2400 } else { 2401 // Maximize undefined bits. 2402 return IRB.CreateOr(A, Sa); 2403 } 2404 } 2405 2406 /// Instrument relational comparisons. 2407 /// 2408 /// This function does exact shadow propagation for all relational 2409 /// comparisons of integers, pointers and vectors of those. 2410 /// FIXME: output seems suboptimal when one of the operands is a constant 2411 void handleRelationalComparisonExact(ICmpInst &I) { 2412 IRBuilder<> IRB(&I); 2413 Value *A = I.getOperand(0); 2414 Value *B = I.getOperand(1); 2415 Value *Sa = getShadow(A); 2416 Value *Sb = getShadow(B); 2417 2418 // Get rid of pointers and vectors of pointers. 2419 // For ints (and vectors of ints), types of A and Sa match, 2420 // and this is a no-op. 2421 A = IRB.CreatePointerCast(A, Sa->getType()); 2422 B = IRB.CreatePointerCast(B, Sb->getType()); 2423 2424 // Let [a0, a1] be the interval of possible values of A, taking into account 2425 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2426 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2427 bool IsSigned = I.isSigned(); 2428 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2429 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2430 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2431 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2432 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2433 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2434 Value *Si = IRB.CreateXor(S1, S2); 2435 setShadow(&I, Si); 2436 setOriginForNaryOp(I); 2437 } 2438 2439 /// Instrument signed relational comparisons. 2440 /// 2441 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2442 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2443 void handleSignedRelationalComparison(ICmpInst &I) { 2444 Constant *constOp; 2445 Value *op = nullptr; 2446 CmpInst::Predicate pre; 2447 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2448 op = I.getOperand(0); 2449 pre = I.getPredicate(); 2450 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2451 op = I.getOperand(1); 2452 pre = I.getSwappedPredicate(); 2453 } else { 2454 handleShadowOr(I); 2455 return; 2456 } 2457 2458 if ((constOp->isNullValue() && 2459 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2460 (constOp->isAllOnesValue() && 2461 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2462 IRBuilder<> IRB(&I); 2463 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2464 "_msprop_icmp_s"); 2465 setShadow(&I, Shadow); 2466 setOrigin(&I, getOrigin(op)); 2467 } else { 2468 handleShadowOr(I); 2469 } 2470 } 2471 2472 void visitICmpInst(ICmpInst &I) { 2473 if (!ClHandleICmp) { 2474 handleShadowOr(I); 2475 return; 2476 } 2477 if (I.isEquality()) { 2478 handleEqualityComparison(I); 2479 return; 2480 } 2481 2482 assert(I.isRelational()); 2483 if (ClHandleICmpExact) { 2484 handleRelationalComparisonExact(I); 2485 return; 2486 } 2487 if (I.isSigned()) { 2488 handleSignedRelationalComparison(I); 2489 return; 2490 } 2491 2492 assert(I.isUnsigned()); 2493 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2494 handleRelationalComparisonExact(I); 2495 return; 2496 } 2497 2498 handleShadowOr(I); 2499 } 2500 2501 void visitFCmpInst(FCmpInst &I) { 2502 handleShadowOr(I); 2503 } 2504 2505 void handleShift(BinaryOperator &I) { 2506 IRBuilder<> IRB(&I); 2507 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2508 // Otherwise perform the same shift on S1. 2509 Value *S1 = getShadow(&I, 0); 2510 Value *S2 = getShadow(&I, 1); 2511 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2512 S2->getType()); 2513 Value *V2 = I.getOperand(1); 2514 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2515 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2516 setOriginForNaryOp(I); 2517 } 2518 2519 void visitShl(BinaryOperator &I) { handleShift(I); } 2520 void visitAShr(BinaryOperator &I) { handleShift(I); } 2521 void visitLShr(BinaryOperator &I) { handleShift(I); } 2522 2523 void handleFunnelShift(IntrinsicInst &I) { 2524 IRBuilder<> IRB(&I); 2525 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2526 // Otherwise perform the same shift on S0 and S1. 2527 Value *S0 = getShadow(&I, 0); 2528 Value *S1 = getShadow(&I, 1); 2529 Value *S2 = getShadow(&I, 2); 2530 Value *S2Conv = 2531 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2532 Value *V2 = I.getOperand(2); 2533 Function *Intrin = Intrinsic::getDeclaration( 2534 I.getModule(), I.getIntrinsicID(), S2Conv->getType()); 2535 Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2}); 2536 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2537 setOriginForNaryOp(I); 2538 } 2539 2540 /// Instrument llvm.memmove 2541 /// 2542 /// At this point we don't know if llvm.memmove will be inlined or not. 2543 /// If we don't instrument it and it gets inlined, 2544 /// our interceptor will not kick in and we will lose the memmove. 2545 /// If we instrument the call here, but it does not get inlined, 2546 /// we will memove the shadow twice: which is bad in case 2547 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2548 /// 2549 /// Similar situation exists for memcpy and memset. 2550 void visitMemMoveInst(MemMoveInst &I) { 2551 IRBuilder<> IRB(&I); 2552 IRB.CreateCall( 2553 MS.MemmoveFn, 2554 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2555 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2556 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2557 I.eraseFromParent(); 2558 } 2559 2560 // Similar to memmove: avoid copying shadow twice. 2561 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2562 // FIXME: consider doing manual inline for small constant sizes and proper 2563 // alignment. 2564 void visitMemCpyInst(MemCpyInst &I) { 2565 IRBuilder<> IRB(&I); 2566 IRB.CreateCall( 2567 MS.MemcpyFn, 2568 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2569 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2570 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2571 I.eraseFromParent(); 2572 } 2573 2574 // Same as memcpy. 2575 void visitMemSetInst(MemSetInst &I) { 2576 IRBuilder<> IRB(&I); 2577 IRB.CreateCall( 2578 MS.MemsetFn, 2579 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2580 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2581 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2582 I.eraseFromParent(); 2583 } 2584 2585 void visitVAStartInst(VAStartInst &I) { 2586 VAHelper->visitVAStartInst(I); 2587 } 2588 2589 void visitVACopyInst(VACopyInst &I) { 2590 VAHelper->visitVACopyInst(I); 2591 } 2592 2593 /// Handle vector store-like intrinsics. 2594 /// 2595 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2596 /// has 1 pointer argument and 1 vector argument, returns void. 2597 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2598 IRBuilder<> IRB(&I); 2599 Value* Addr = I.getArgOperand(0); 2600 Value *Shadow = getShadow(&I, 1); 2601 Value *ShadowPtr, *OriginPtr; 2602 2603 // We don't know the pointer alignment (could be unaligned SSE store!). 2604 // Have to assume to worst case. 2605 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2606 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2607 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2608 2609 if (ClCheckAccessAddress) 2610 insertShadowCheck(Addr, &I); 2611 2612 // FIXME: factor out common code from materializeStores 2613 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2614 return true; 2615 } 2616 2617 /// Handle vector load-like intrinsics. 2618 /// 2619 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2620 /// has 1 pointer argument, returns a vector. 2621 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2622 IRBuilder<> IRB(&I); 2623 Value *Addr = I.getArgOperand(0); 2624 2625 Type *ShadowTy = getShadowTy(&I); 2626 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2627 if (PropagateShadow) { 2628 // We don't know the pointer alignment (could be unaligned SSE load!). 2629 // Have to assume to worst case. 2630 const Align Alignment = Align(1); 2631 std::tie(ShadowPtr, OriginPtr) = 2632 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2633 setShadow(&I, 2634 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2635 } else { 2636 setShadow(&I, getCleanShadow(&I)); 2637 } 2638 2639 if (ClCheckAccessAddress) 2640 insertShadowCheck(Addr, &I); 2641 2642 if (MS.TrackOrigins) { 2643 if (PropagateShadow) 2644 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2645 else 2646 setOrigin(&I, getCleanOrigin()); 2647 } 2648 return true; 2649 } 2650 2651 /// Handle (SIMD arithmetic)-like intrinsics. 2652 /// 2653 /// Instrument intrinsics with any number of arguments of the same type, 2654 /// equal to the return type. The type should be simple (no aggregates or 2655 /// pointers; vectors are fine). 2656 /// Caller guarantees that this intrinsic does not access memory. 2657 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2658 Type *RetTy = I.getType(); 2659 if (!(RetTy->isIntOrIntVectorTy() || 2660 RetTy->isFPOrFPVectorTy() || 2661 RetTy->isX86_MMXTy())) 2662 return false; 2663 2664 unsigned NumArgOperands = I.getNumArgOperands(); 2665 for (unsigned i = 0; i < NumArgOperands; ++i) { 2666 Type *Ty = I.getArgOperand(i)->getType(); 2667 if (Ty != RetTy) 2668 return false; 2669 } 2670 2671 IRBuilder<> IRB(&I); 2672 ShadowAndOriginCombiner SC(this, IRB); 2673 for (unsigned i = 0; i < NumArgOperands; ++i) 2674 SC.Add(I.getArgOperand(i)); 2675 SC.Done(&I); 2676 2677 return true; 2678 } 2679 2680 /// Heuristically instrument unknown intrinsics. 2681 /// 2682 /// The main purpose of this code is to do something reasonable with all 2683 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2684 /// We recognize several classes of intrinsics by their argument types and 2685 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2686 /// sure that we know what the intrinsic does. 2687 /// 2688 /// We special-case intrinsics where this approach fails. See llvm.bswap 2689 /// handling as an example of that. 2690 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2691 unsigned NumArgOperands = I.getNumArgOperands(); 2692 if (NumArgOperands == 0) 2693 return false; 2694 2695 if (NumArgOperands == 2 && 2696 I.getArgOperand(0)->getType()->isPointerTy() && 2697 I.getArgOperand(1)->getType()->isVectorTy() && 2698 I.getType()->isVoidTy() && 2699 !I.onlyReadsMemory()) { 2700 // This looks like a vector store. 2701 return handleVectorStoreIntrinsic(I); 2702 } 2703 2704 if (NumArgOperands == 1 && 2705 I.getArgOperand(0)->getType()->isPointerTy() && 2706 I.getType()->isVectorTy() && 2707 I.onlyReadsMemory()) { 2708 // This looks like a vector load. 2709 return handleVectorLoadIntrinsic(I); 2710 } 2711 2712 if (I.doesNotAccessMemory()) 2713 if (maybeHandleSimpleNomemIntrinsic(I)) 2714 return true; 2715 2716 // FIXME: detect and handle SSE maskstore/maskload 2717 return false; 2718 } 2719 2720 void handleInvariantGroup(IntrinsicInst &I) { 2721 setShadow(&I, getShadow(&I, 0)); 2722 setOrigin(&I, getOrigin(&I, 0)); 2723 } 2724 2725 void handleLifetimeStart(IntrinsicInst &I) { 2726 if (!PoisonStack) 2727 return; 2728 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 2729 if (!AI) 2730 InstrumentLifetimeStart = false; 2731 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2732 } 2733 2734 void handleBswap(IntrinsicInst &I) { 2735 IRBuilder<> IRB(&I); 2736 Value *Op = I.getArgOperand(0); 2737 Type *OpType = Op->getType(); 2738 Function *BswapFunc = Intrinsic::getDeclaration( 2739 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2740 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2741 setOrigin(&I, getOrigin(Op)); 2742 } 2743 2744 // Instrument vector convert intrinsic. 2745 // 2746 // This function instruments intrinsics like cvtsi2ss: 2747 // %Out = int_xxx_cvtyyy(%ConvertOp) 2748 // or 2749 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2750 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2751 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2752 // elements from \p CopyOp. 2753 // In most cases conversion involves floating-point value which may trigger a 2754 // hardware exception when not fully initialized. For this reason we require 2755 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2756 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2757 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2758 // return a fully initialized value. 2759 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 2760 bool HasRoundingMode = false) { 2761 IRBuilder<> IRB(&I); 2762 Value *CopyOp, *ConvertOp; 2763 2764 assert((!HasRoundingMode || 2765 isa<ConstantInt>(I.getArgOperand(I.getNumArgOperands() - 1))) && 2766 "Invalid rounding mode"); 2767 2768 switch (I.getNumArgOperands() - HasRoundingMode) { 2769 case 2: 2770 CopyOp = I.getArgOperand(0); 2771 ConvertOp = I.getArgOperand(1); 2772 break; 2773 case 1: 2774 ConvertOp = I.getArgOperand(0); 2775 CopyOp = nullptr; 2776 break; 2777 default: 2778 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2779 } 2780 2781 // The first *NumUsedElements* elements of ConvertOp are converted to the 2782 // same number of output elements. The rest of the output is copied from 2783 // CopyOp, or (if not available) filled with zeroes. 2784 // Combine shadow for elements of ConvertOp that are used in this operation, 2785 // and insert a check. 2786 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2787 // int->any conversion. 2788 Value *ConvertShadow = getShadow(ConvertOp); 2789 Value *AggShadow = nullptr; 2790 if (ConvertOp->getType()->isVectorTy()) { 2791 AggShadow = IRB.CreateExtractElement( 2792 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2793 for (int i = 1; i < NumUsedElements; ++i) { 2794 Value *MoreShadow = IRB.CreateExtractElement( 2795 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2796 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2797 } 2798 } else { 2799 AggShadow = ConvertShadow; 2800 } 2801 assert(AggShadow->getType()->isIntegerTy()); 2802 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2803 2804 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2805 // ConvertOp. 2806 if (CopyOp) { 2807 assert(CopyOp->getType() == I.getType()); 2808 assert(CopyOp->getType()->isVectorTy()); 2809 Value *ResultShadow = getShadow(CopyOp); 2810 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2811 for (int i = 0; i < NumUsedElements; ++i) { 2812 ResultShadow = IRB.CreateInsertElement( 2813 ResultShadow, ConstantInt::getNullValue(EltTy), 2814 ConstantInt::get(IRB.getInt32Ty(), i)); 2815 } 2816 setShadow(&I, ResultShadow); 2817 setOrigin(&I, getOrigin(CopyOp)); 2818 } else { 2819 setShadow(&I, getCleanShadow(&I)); 2820 setOrigin(&I, getCleanOrigin()); 2821 } 2822 } 2823 2824 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2825 // zeroes if it is zero, and all ones otherwise. 2826 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2827 if (S->getType()->isVectorTy()) 2828 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2829 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2830 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2831 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2832 } 2833 2834 // Given a vector, extract its first element, and return all 2835 // zeroes if it is zero, and all ones otherwise. 2836 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2837 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2838 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2839 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2840 } 2841 2842 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2843 Type *T = S->getType(); 2844 assert(T->isVectorTy()); 2845 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2846 return IRB.CreateSExt(S2, T); 2847 } 2848 2849 // Instrument vector shift intrinsic. 2850 // 2851 // This function instruments intrinsics like int_x86_avx2_psll_w. 2852 // Intrinsic shifts %In by %ShiftSize bits. 2853 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2854 // size, and the rest is ignored. Behavior is defined even if shift size is 2855 // greater than register (or field) width. 2856 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2857 assert(I.getNumArgOperands() == 2); 2858 IRBuilder<> IRB(&I); 2859 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2860 // Otherwise perform the same shift on S1. 2861 Value *S1 = getShadow(&I, 0); 2862 Value *S2 = getShadow(&I, 1); 2863 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2864 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2865 Value *V1 = I.getOperand(0); 2866 Value *V2 = I.getOperand(1); 2867 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2868 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2869 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2870 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2871 setOriginForNaryOp(I); 2872 } 2873 2874 // Get an X86_MMX-sized vector type. 2875 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2876 const unsigned X86_MMXSizeInBits = 64; 2877 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2878 "Illegal MMX vector element size"); 2879 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2880 X86_MMXSizeInBits / EltSizeInBits); 2881 } 2882 2883 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2884 // intrinsic. 2885 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2886 switch (id) { 2887 case Intrinsic::x86_sse2_packsswb_128: 2888 case Intrinsic::x86_sse2_packuswb_128: 2889 return Intrinsic::x86_sse2_packsswb_128; 2890 2891 case Intrinsic::x86_sse2_packssdw_128: 2892 case Intrinsic::x86_sse41_packusdw: 2893 return Intrinsic::x86_sse2_packssdw_128; 2894 2895 case Intrinsic::x86_avx2_packsswb: 2896 case Intrinsic::x86_avx2_packuswb: 2897 return Intrinsic::x86_avx2_packsswb; 2898 2899 case Intrinsic::x86_avx2_packssdw: 2900 case Intrinsic::x86_avx2_packusdw: 2901 return Intrinsic::x86_avx2_packssdw; 2902 2903 case Intrinsic::x86_mmx_packsswb: 2904 case Intrinsic::x86_mmx_packuswb: 2905 return Intrinsic::x86_mmx_packsswb; 2906 2907 case Intrinsic::x86_mmx_packssdw: 2908 return Intrinsic::x86_mmx_packssdw; 2909 default: 2910 llvm_unreachable("unexpected intrinsic id"); 2911 } 2912 } 2913 2914 // Instrument vector pack intrinsic. 2915 // 2916 // This function instruments intrinsics like x86_mmx_packsswb, that 2917 // packs elements of 2 input vectors into half as many bits with saturation. 2918 // Shadow is propagated with the signed variant of the same intrinsic applied 2919 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2920 // EltSizeInBits is used only for x86mmx arguments. 2921 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2922 assert(I.getNumArgOperands() == 2); 2923 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2924 IRBuilder<> IRB(&I); 2925 Value *S1 = getShadow(&I, 0); 2926 Value *S2 = getShadow(&I, 1); 2927 assert(isX86_MMX || S1->getType()->isVectorTy()); 2928 2929 // SExt and ICmpNE below must apply to individual elements of input vectors. 2930 // In case of x86mmx arguments, cast them to appropriate vector types and 2931 // back. 2932 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2933 if (isX86_MMX) { 2934 S1 = IRB.CreateBitCast(S1, T); 2935 S2 = IRB.CreateBitCast(S2, T); 2936 } 2937 Value *S1_ext = IRB.CreateSExt( 2938 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2939 Value *S2_ext = IRB.CreateSExt( 2940 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2941 if (isX86_MMX) { 2942 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2943 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2944 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2945 } 2946 2947 Function *ShadowFn = Intrinsic::getDeclaration( 2948 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2949 2950 Value *S = 2951 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2952 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2953 setShadow(&I, S); 2954 setOriginForNaryOp(I); 2955 } 2956 2957 // Instrument sum-of-absolute-differences intrinsic. 2958 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2959 const unsigned SignificantBitsPerResultElement = 16; 2960 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2961 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2962 unsigned ZeroBitsPerResultElement = 2963 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2964 2965 IRBuilder<> IRB(&I); 2966 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2967 S = IRB.CreateBitCast(S, ResTy); 2968 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2969 ResTy); 2970 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2971 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2972 setShadow(&I, S); 2973 setOriginForNaryOp(I); 2974 } 2975 2976 // Instrument multiply-add intrinsic. 2977 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2978 unsigned EltSizeInBits = 0) { 2979 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2980 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2981 IRBuilder<> IRB(&I); 2982 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2983 S = IRB.CreateBitCast(S, ResTy); 2984 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2985 ResTy); 2986 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2987 setShadow(&I, S); 2988 setOriginForNaryOp(I); 2989 } 2990 2991 // Instrument compare-packed intrinsic. 2992 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2993 // all-ones shadow. 2994 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2995 IRBuilder<> IRB(&I); 2996 Type *ResTy = getShadowTy(&I); 2997 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2998 Value *S = IRB.CreateSExt( 2999 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 3000 setShadow(&I, S); 3001 setOriginForNaryOp(I); 3002 } 3003 3004 // Instrument compare-scalar intrinsic. 3005 // This handles both cmp* intrinsics which return the result in the first 3006 // element of a vector, and comi* which return the result as i32. 3007 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 3008 IRBuilder<> IRB(&I); 3009 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 3010 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 3011 setShadow(&I, S); 3012 setOriginForNaryOp(I); 3013 } 3014 3015 // Instrument generic vector reduction intrinsics 3016 // by ORing together all their fields. 3017 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 3018 IRBuilder<> IRB(&I); 3019 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 3020 setShadow(&I, S); 3021 setOrigin(&I, getOrigin(&I, 0)); 3022 } 3023 3024 // Instrument vector.reduce.or intrinsic. 3025 // Valid (non-poisoned) set bits in the operand pull low the 3026 // corresponding shadow bits. 3027 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3028 IRBuilder<> IRB(&I); 3029 Value *OperandShadow = getShadow(&I, 0); 3030 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3031 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3032 // Bit N is clean if any field's bit N is 1 and unpoison 3033 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3034 // Otherwise, it is clean if every field's bit N is unpoison 3035 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3036 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3037 3038 setShadow(&I, S); 3039 setOrigin(&I, getOrigin(&I, 0)); 3040 } 3041 3042 // Instrument vector.reduce.and intrinsic. 3043 // Valid (non-poisoned) unset bits in the operand pull down the 3044 // corresponding shadow bits. 3045 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3046 IRBuilder<> IRB(&I); 3047 Value *OperandShadow = getShadow(&I, 0); 3048 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3049 // Bit N is clean if any field's bit N is 0 and unpoison 3050 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3051 // Otherwise, it is clean if every field's bit N is unpoison 3052 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3053 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3054 3055 setShadow(&I, S); 3056 setOrigin(&I, getOrigin(&I, 0)); 3057 } 3058 3059 void handleStmxcsr(IntrinsicInst &I) { 3060 IRBuilder<> IRB(&I); 3061 Value* Addr = I.getArgOperand(0); 3062 Type *Ty = IRB.getInt32Ty(); 3063 Value *ShadowPtr = 3064 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3065 3066 IRB.CreateStore(getCleanShadow(Ty), 3067 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 3068 3069 if (ClCheckAccessAddress) 3070 insertShadowCheck(Addr, &I); 3071 } 3072 3073 void handleLdmxcsr(IntrinsicInst &I) { 3074 if (!InsertChecks) return; 3075 3076 IRBuilder<> IRB(&I); 3077 Value *Addr = I.getArgOperand(0); 3078 Type *Ty = IRB.getInt32Ty(); 3079 const Align Alignment = Align(1); 3080 Value *ShadowPtr, *OriginPtr; 3081 std::tie(ShadowPtr, OriginPtr) = 3082 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3083 3084 if (ClCheckAccessAddress) 3085 insertShadowCheck(Addr, &I); 3086 3087 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3088 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3089 : getCleanOrigin(); 3090 insertShadowCheck(Shadow, Origin, &I); 3091 } 3092 3093 void handleMaskedStore(IntrinsicInst &I) { 3094 IRBuilder<> IRB(&I); 3095 Value *V = I.getArgOperand(0); 3096 Value *Addr = I.getArgOperand(1); 3097 const Align Alignment( 3098 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3099 Value *Mask = I.getArgOperand(3); 3100 Value *Shadow = getShadow(V); 3101 3102 Value *ShadowPtr; 3103 Value *OriginPtr; 3104 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3105 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3106 3107 if (ClCheckAccessAddress) { 3108 insertShadowCheck(Addr, &I); 3109 // Uninitialized mask is kind of like uninitialized address, but not as 3110 // scary. 3111 insertShadowCheck(Mask, &I); 3112 } 3113 3114 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3115 3116 if (MS.TrackOrigins) { 3117 auto &DL = F.getParent()->getDataLayout(); 3118 paintOrigin(IRB, getOrigin(V), OriginPtr, 3119 DL.getTypeStoreSize(Shadow->getType()), 3120 std::max(Alignment, kMinOriginAlignment)); 3121 } 3122 } 3123 3124 bool handleMaskedLoad(IntrinsicInst &I) { 3125 IRBuilder<> IRB(&I); 3126 Value *Addr = I.getArgOperand(0); 3127 const Align Alignment( 3128 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3129 Value *Mask = I.getArgOperand(2); 3130 Value *PassThru = I.getArgOperand(3); 3131 3132 Type *ShadowTy = getShadowTy(&I); 3133 Value *ShadowPtr, *OriginPtr; 3134 if (PropagateShadow) { 3135 std::tie(ShadowPtr, OriginPtr) = 3136 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3137 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3138 getShadow(PassThru), "_msmaskedld")); 3139 } else { 3140 setShadow(&I, getCleanShadow(&I)); 3141 } 3142 3143 if (ClCheckAccessAddress) { 3144 insertShadowCheck(Addr, &I); 3145 insertShadowCheck(Mask, &I); 3146 } 3147 3148 if (MS.TrackOrigins) { 3149 if (PropagateShadow) { 3150 // Choose between PassThru's and the loaded value's origins. 3151 Value *MaskedPassThruShadow = IRB.CreateAnd( 3152 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3153 3154 Value *Acc = IRB.CreateExtractElement( 3155 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3156 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) 3157 ->getNumElements(); 3158 i < N; ++i) { 3159 Value *More = IRB.CreateExtractElement( 3160 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3161 Acc = IRB.CreateOr(Acc, More); 3162 } 3163 3164 Value *Origin = IRB.CreateSelect( 3165 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3166 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3167 3168 setOrigin(&I, Origin); 3169 } else { 3170 setOrigin(&I, getCleanOrigin()); 3171 } 3172 } 3173 return true; 3174 } 3175 3176 // Instrument BMI / BMI2 intrinsics. 3177 // All of these intrinsics are Z = I(X, Y) 3178 // where the types of all operands and the result match, and are either i32 or i64. 3179 // The following instrumentation happens to work for all of them: 3180 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3181 void handleBmiIntrinsic(IntrinsicInst &I) { 3182 IRBuilder<> IRB(&I); 3183 Type *ShadowTy = getShadowTy(&I); 3184 3185 // If any bit of the mask operand is poisoned, then the whole thing is. 3186 Value *SMask = getShadow(&I, 1); 3187 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3188 ShadowTy); 3189 // Apply the same intrinsic to the shadow of the first operand. 3190 Value *S = IRB.CreateCall(I.getCalledFunction(), 3191 {getShadow(&I, 0), I.getOperand(1)}); 3192 S = IRB.CreateOr(SMask, S); 3193 setShadow(&I, S); 3194 setOriginForNaryOp(I); 3195 } 3196 3197 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3198 SmallVector<int, 8> Mask; 3199 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3200 Mask.append(2, X); 3201 } 3202 return Mask; 3203 } 3204 3205 // Instrument pclmul intrinsics. 3206 // These intrinsics operate either on odd or on even elements of the input 3207 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3208 // Replace the unused elements with copies of the used ones, ex: 3209 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3210 // or 3211 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3212 // and then apply the usual shadow combining logic. 3213 void handlePclmulIntrinsic(IntrinsicInst &I) { 3214 IRBuilder<> IRB(&I); 3215 unsigned Width = 3216 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3217 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3218 "pclmul 3rd operand must be a constant"); 3219 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3220 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3221 getPclmulMask(Width, Imm & 0x01)); 3222 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3223 getPclmulMask(Width, Imm & 0x10)); 3224 ShadowAndOriginCombiner SOC(this, IRB); 3225 SOC.Add(Shuf0, getOrigin(&I, 0)); 3226 SOC.Add(Shuf1, getOrigin(&I, 1)); 3227 SOC.Done(&I); 3228 } 3229 3230 // Instrument _mm_*_sd intrinsics 3231 void handleUnarySdIntrinsic(IntrinsicInst &I) { 3232 IRBuilder<> IRB(&I); 3233 Value *First = getShadow(&I, 0); 3234 Value *Second = getShadow(&I, 1); 3235 // High word of first operand, low word of second 3236 Value *Shadow = 3237 IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); 3238 3239 setShadow(&I, Shadow); 3240 setOriginForNaryOp(I); 3241 } 3242 3243 void handleBinarySdIntrinsic(IntrinsicInst &I) { 3244 IRBuilder<> IRB(&I); 3245 Value *First = getShadow(&I, 0); 3246 Value *Second = getShadow(&I, 1); 3247 Value *OrShadow = IRB.CreateOr(First, Second); 3248 // High word of first operand, low word of both OR'd together 3249 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, 3250 llvm::makeArrayRef<int>({2, 1})); 3251 3252 setShadow(&I, Shadow); 3253 setOriginForNaryOp(I); 3254 } 3255 3256 // Instrument abs intrinsic. 3257 // handleUnknownIntrinsic can't handle it because of the last 3258 // is_int_min_poison argument which does not match the result type. 3259 void handleAbsIntrinsic(IntrinsicInst &I) { 3260 assert(I.getType()->isIntOrIntVectorTy()); 3261 assert(I.getArgOperand(0)->getType() == I.getType()); 3262 3263 // FIXME: Handle is_int_min_poison. 3264 IRBuilder<> IRB(&I); 3265 setShadow(&I, getShadow(&I, 0)); 3266 setOrigin(&I, getOrigin(&I, 0)); 3267 } 3268 3269 void visitIntrinsicInst(IntrinsicInst &I) { 3270 switch (I.getIntrinsicID()) { 3271 case Intrinsic::abs: 3272 handleAbsIntrinsic(I); 3273 break; 3274 case Intrinsic::lifetime_start: 3275 handleLifetimeStart(I); 3276 break; 3277 case Intrinsic::launder_invariant_group: 3278 case Intrinsic::strip_invariant_group: 3279 handleInvariantGroup(I); 3280 break; 3281 case Intrinsic::bswap: 3282 handleBswap(I); 3283 break; 3284 case Intrinsic::masked_store: 3285 handleMaskedStore(I); 3286 break; 3287 case Intrinsic::masked_load: 3288 handleMaskedLoad(I); 3289 break; 3290 case Intrinsic::vector_reduce_and: 3291 handleVectorReduceAndIntrinsic(I); 3292 break; 3293 case Intrinsic::vector_reduce_or: 3294 handleVectorReduceOrIntrinsic(I); 3295 break; 3296 case Intrinsic::vector_reduce_add: 3297 case Intrinsic::vector_reduce_xor: 3298 case Intrinsic::vector_reduce_mul: 3299 handleVectorReduceIntrinsic(I); 3300 break; 3301 case Intrinsic::x86_sse_stmxcsr: 3302 handleStmxcsr(I); 3303 break; 3304 case Intrinsic::x86_sse_ldmxcsr: 3305 handleLdmxcsr(I); 3306 break; 3307 case Intrinsic::x86_avx512_vcvtsd2usi64: 3308 case Intrinsic::x86_avx512_vcvtsd2usi32: 3309 case Intrinsic::x86_avx512_vcvtss2usi64: 3310 case Intrinsic::x86_avx512_vcvtss2usi32: 3311 case Intrinsic::x86_avx512_cvttss2usi64: 3312 case Intrinsic::x86_avx512_cvttss2usi: 3313 case Intrinsic::x86_avx512_cvttsd2usi64: 3314 case Intrinsic::x86_avx512_cvttsd2usi: 3315 case Intrinsic::x86_avx512_cvtusi2ss: 3316 case Intrinsic::x86_avx512_cvtusi642sd: 3317 case Intrinsic::x86_avx512_cvtusi642ss: 3318 handleVectorConvertIntrinsic(I, 1, true); 3319 break; 3320 case Intrinsic::x86_sse2_cvtsd2si64: 3321 case Intrinsic::x86_sse2_cvtsd2si: 3322 case Intrinsic::x86_sse2_cvtsd2ss: 3323 case Intrinsic::x86_sse2_cvttsd2si64: 3324 case Intrinsic::x86_sse2_cvttsd2si: 3325 case Intrinsic::x86_sse_cvtss2si64: 3326 case Intrinsic::x86_sse_cvtss2si: 3327 case Intrinsic::x86_sse_cvttss2si64: 3328 case Intrinsic::x86_sse_cvttss2si: 3329 handleVectorConvertIntrinsic(I, 1); 3330 break; 3331 case Intrinsic::x86_sse_cvtps2pi: 3332 case Intrinsic::x86_sse_cvttps2pi: 3333 handleVectorConvertIntrinsic(I, 2); 3334 break; 3335 3336 case Intrinsic::x86_avx512_psll_w_512: 3337 case Intrinsic::x86_avx512_psll_d_512: 3338 case Intrinsic::x86_avx512_psll_q_512: 3339 case Intrinsic::x86_avx512_pslli_w_512: 3340 case Intrinsic::x86_avx512_pslli_d_512: 3341 case Intrinsic::x86_avx512_pslli_q_512: 3342 case Intrinsic::x86_avx512_psrl_w_512: 3343 case Intrinsic::x86_avx512_psrl_d_512: 3344 case Intrinsic::x86_avx512_psrl_q_512: 3345 case Intrinsic::x86_avx512_psra_w_512: 3346 case Intrinsic::x86_avx512_psra_d_512: 3347 case Intrinsic::x86_avx512_psra_q_512: 3348 case Intrinsic::x86_avx512_psrli_w_512: 3349 case Intrinsic::x86_avx512_psrli_d_512: 3350 case Intrinsic::x86_avx512_psrli_q_512: 3351 case Intrinsic::x86_avx512_psrai_w_512: 3352 case Intrinsic::x86_avx512_psrai_d_512: 3353 case Intrinsic::x86_avx512_psrai_q_512: 3354 case Intrinsic::x86_avx512_psra_q_256: 3355 case Intrinsic::x86_avx512_psra_q_128: 3356 case Intrinsic::x86_avx512_psrai_q_256: 3357 case Intrinsic::x86_avx512_psrai_q_128: 3358 case Intrinsic::x86_avx2_psll_w: 3359 case Intrinsic::x86_avx2_psll_d: 3360 case Intrinsic::x86_avx2_psll_q: 3361 case Intrinsic::x86_avx2_pslli_w: 3362 case Intrinsic::x86_avx2_pslli_d: 3363 case Intrinsic::x86_avx2_pslli_q: 3364 case Intrinsic::x86_avx2_psrl_w: 3365 case Intrinsic::x86_avx2_psrl_d: 3366 case Intrinsic::x86_avx2_psrl_q: 3367 case Intrinsic::x86_avx2_psra_w: 3368 case Intrinsic::x86_avx2_psra_d: 3369 case Intrinsic::x86_avx2_psrli_w: 3370 case Intrinsic::x86_avx2_psrli_d: 3371 case Intrinsic::x86_avx2_psrli_q: 3372 case Intrinsic::x86_avx2_psrai_w: 3373 case Intrinsic::x86_avx2_psrai_d: 3374 case Intrinsic::x86_sse2_psll_w: 3375 case Intrinsic::x86_sse2_psll_d: 3376 case Intrinsic::x86_sse2_psll_q: 3377 case Intrinsic::x86_sse2_pslli_w: 3378 case Intrinsic::x86_sse2_pslli_d: 3379 case Intrinsic::x86_sse2_pslli_q: 3380 case Intrinsic::x86_sse2_psrl_w: 3381 case Intrinsic::x86_sse2_psrl_d: 3382 case Intrinsic::x86_sse2_psrl_q: 3383 case Intrinsic::x86_sse2_psra_w: 3384 case Intrinsic::x86_sse2_psra_d: 3385 case Intrinsic::x86_sse2_psrli_w: 3386 case Intrinsic::x86_sse2_psrli_d: 3387 case Intrinsic::x86_sse2_psrli_q: 3388 case Intrinsic::x86_sse2_psrai_w: 3389 case Intrinsic::x86_sse2_psrai_d: 3390 case Intrinsic::x86_mmx_psll_w: 3391 case Intrinsic::x86_mmx_psll_d: 3392 case Intrinsic::x86_mmx_psll_q: 3393 case Intrinsic::x86_mmx_pslli_w: 3394 case Intrinsic::x86_mmx_pslli_d: 3395 case Intrinsic::x86_mmx_pslli_q: 3396 case Intrinsic::x86_mmx_psrl_w: 3397 case Intrinsic::x86_mmx_psrl_d: 3398 case Intrinsic::x86_mmx_psrl_q: 3399 case Intrinsic::x86_mmx_psra_w: 3400 case Intrinsic::x86_mmx_psra_d: 3401 case Intrinsic::x86_mmx_psrli_w: 3402 case Intrinsic::x86_mmx_psrli_d: 3403 case Intrinsic::x86_mmx_psrli_q: 3404 case Intrinsic::x86_mmx_psrai_w: 3405 case Intrinsic::x86_mmx_psrai_d: 3406 handleVectorShiftIntrinsic(I, /* Variable */ false); 3407 break; 3408 case Intrinsic::x86_avx2_psllv_d: 3409 case Intrinsic::x86_avx2_psllv_d_256: 3410 case Intrinsic::x86_avx512_psllv_d_512: 3411 case Intrinsic::x86_avx2_psllv_q: 3412 case Intrinsic::x86_avx2_psllv_q_256: 3413 case Intrinsic::x86_avx512_psllv_q_512: 3414 case Intrinsic::x86_avx2_psrlv_d: 3415 case Intrinsic::x86_avx2_psrlv_d_256: 3416 case Intrinsic::x86_avx512_psrlv_d_512: 3417 case Intrinsic::x86_avx2_psrlv_q: 3418 case Intrinsic::x86_avx2_psrlv_q_256: 3419 case Intrinsic::x86_avx512_psrlv_q_512: 3420 case Intrinsic::x86_avx2_psrav_d: 3421 case Intrinsic::x86_avx2_psrav_d_256: 3422 case Intrinsic::x86_avx512_psrav_d_512: 3423 case Intrinsic::x86_avx512_psrav_q_128: 3424 case Intrinsic::x86_avx512_psrav_q_256: 3425 case Intrinsic::x86_avx512_psrav_q_512: 3426 handleVectorShiftIntrinsic(I, /* Variable */ true); 3427 break; 3428 3429 case Intrinsic::x86_sse2_packsswb_128: 3430 case Intrinsic::x86_sse2_packssdw_128: 3431 case Intrinsic::x86_sse2_packuswb_128: 3432 case Intrinsic::x86_sse41_packusdw: 3433 case Intrinsic::x86_avx2_packsswb: 3434 case Intrinsic::x86_avx2_packssdw: 3435 case Intrinsic::x86_avx2_packuswb: 3436 case Intrinsic::x86_avx2_packusdw: 3437 handleVectorPackIntrinsic(I); 3438 break; 3439 3440 case Intrinsic::x86_mmx_packsswb: 3441 case Intrinsic::x86_mmx_packuswb: 3442 handleVectorPackIntrinsic(I, 16); 3443 break; 3444 3445 case Intrinsic::x86_mmx_packssdw: 3446 handleVectorPackIntrinsic(I, 32); 3447 break; 3448 3449 case Intrinsic::x86_mmx_psad_bw: 3450 case Intrinsic::x86_sse2_psad_bw: 3451 case Intrinsic::x86_avx2_psad_bw: 3452 handleVectorSadIntrinsic(I); 3453 break; 3454 3455 case Intrinsic::x86_sse2_pmadd_wd: 3456 case Intrinsic::x86_avx2_pmadd_wd: 3457 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3458 case Intrinsic::x86_avx2_pmadd_ub_sw: 3459 handleVectorPmaddIntrinsic(I); 3460 break; 3461 3462 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3463 handleVectorPmaddIntrinsic(I, 8); 3464 break; 3465 3466 case Intrinsic::x86_mmx_pmadd_wd: 3467 handleVectorPmaddIntrinsic(I, 16); 3468 break; 3469 3470 case Intrinsic::x86_sse_cmp_ss: 3471 case Intrinsic::x86_sse2_cmp_sd: 3472 case Intrinsic::x86_sse_comieq_ss: 3473 case Intrinsic::x86_sse_comilt_ss: 3474 case Intrinsic::x86_sse_comile_ss: 3475 case Intrinsic::x86_sse_comigt_ss: 3476 case Intrinsic::x86_sse_comige_ss: 3477 case Intrinsic::x86_sse_comineq_ss: 3478 case Intrinsic::x86_sse_ucomieq_ss: 3479 case Intrinsic::x86_sse_ucomilt_ss: 3480 case Intrinsic::x86_sse_ucomile_ss: 3481 case Intrinsic::x86_sse_ucomigt_ss: 3482 case Intrinsic::x86_sse_ucomige_ss: 3483 case Intrinsic::x86_sse_ucomineq_ss: 3484 case Intrinsic::x86_sse2_comieq_sd: 3485 case Intrinsic::x86_sse2_comilt_sd: 3486 case Intrinsic::x86_sse2_comile_sd: 3487 case Intrinsic::x86_sse2_comigt_sd: 3488 case Intrinsic::x86_sse2_comige_sd: 3489 case Intrinsic::x86_sse2_comineq_sd: 3490 case Intrinsic::x86_sse2_ucomieq_sd: 3491 case Intrinsic::x86_sse2_ucomilt_sd: 3492 case Intrinsic::x86_sse2_ucomile_sd: 3493 case Intrinsic::x86_sse2_ucomigt_sd: 3494 case Intrinsic::x86_sse2_ucomige_sd: 3495 case Intrinsic::x86_sse2_ucomineq_sd: 3496 handleVectorCompareScalarIntrinsic(I); 3497 break; 3498 3499 case Intrinsic::x86_sse_cmp_ps: 3500 case Intrinsic::x86_sse2_cmp_pd: 3501 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3502 // generates reasonably looking IR that fails in the backend with "Do not 3503 // know how to split the result of this operator!". 3504 handleVectorComparePackedIntrinsic(I); 3505 break; 3506 3507 case Intrinsic::x86_bmi_bextr_32: 3508 case Intrinsic::x86_bmi_bextr_64: 3509 case Intrinsic::x86_bmi_bzhi_32: 3510 case Intrinsic::x86_bmi_bzhi_64: 3511 case Intrinsic::x86_bmi_pdep_32: 3512 case Intrinsic::x86_bmi_pdep_64: 3513 case Intrinsic::x86_bmi_pext_32: 3514 case Intrinsic::x86_bmi_pext_64: 3515 handleBmiIntrinsic(I); 3516 break; 3517 3518 case Intrinsic::x86_pclmulqdq: 3519 case Intrinsic::x86_pclmulqdq_256: 3520 case Intrinsic::x86_pclmulqdq_512: 3521 handlePclmulIntrinsic(I); 3522 break; 3523 3524 case Intrinsic::x86_sse41_round_sd: 3525 handleUnarySdIntrinsic(I); 3526 break; 3527 case Intrinsic::x86_sse2_max_sd: 3528 case Intrinsic::x86_sse2_min_sd: 3529 handleBinarySdIntrinsic(I); 3530 break; 3531 3532 case Intrinsic::fshl: 3533 case Intrinsic::fshr: 3534 handleFunnelShift(I); 3535 break; 3536 3537 case Intrinsic::is_constant: 3538 // The result of llvm.is.constant() is always defined. 3539 setShadow(&I, getCleanShadow(&I)); 3540 setOrigin(&I, getCleanOrigin()); 3541 break; 3542 3543 default: 3544 if (!handleUnknownIntrinsic(I)) 3545 visitInstruction(I); 3546 break; 3547 } 3548 } 3549 3550 void visitLibAtomicLoad(CallBase &CB) { 3551 // Since we use getNextNode here, we can't have CB terminate the BB. 3552 assert(isa<CallInst>(CB)); 3553 3554 IRBuilder<> IRB(&CB); 3555 Value *Size = CB.getArgOperand(0); 3556 Value *SrcPtr = CB.getArgOperand(1); 3557 Value *DstPtr = CB.getArgOperand(2); 3558 Value *Ordering = CB.getArgOperand(3); 3559 // Convert the call to have at least Acquire ordering to make sure 3560 // the shadow operations aren't reordered before it. 3561 Value *NewOrdering = 3562 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3563 CB.setArgOperand(3, NewOrdering); 3564 3565 IRBuilder<> NextIRB(CB.getNextNode()); 3566 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3567 3568 Value *SrcShadowPtr, *SrcOriginPtr; 3569 std::tie(SrcShadowPtr, SrcOriginPtr) = 3570 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3571 /*isStore*/ false); 3572 Value *DstShadowPtr = 3573 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3574 /*isStore*/ true) 3575 .first; 3576 3577 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 3578 if (MS.TrackOrigins) { 3579 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 3580 kMinOriginAlignment); 3581 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 3582 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 3583 } 3584 } 3585 3586 void visitLibAtomicStore(CallBase &CB) { 3587 IRBuilder<> IRB(&CB); 3588 Value *Size = CB.getArgOperand(0); 3589 Value *DstPtr = CB.getArgOperand(2); 3590 Value *Ordering = CB.getArgOperand(3); 3591 // Convert the call to have at least Release ordering to make sure 3592 // the shadow operations aren't reordered after it. 3593 Value *NewOrdering = 3594 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3595 CB.setArgOperand(3, NewOrdering); 3596 3597 Value *DstShadowPtr = 3598 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 3599 /*isStore*/ true) 3600 .first; 3601 3602 // Atomic store always paints clean shadow/origin. See file header. 3603 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 3604 Align(1)); 3605 } 3606 3607 void visitCallBase(CallBase &CB) { 3608 assert(!CB.getMetadata("nosanitize")); 3609 if (CB.isInlineAsm()) { 3610 // For inline asm (either a call to asm function, or callbr instruction), 3611 // do the usual thing: check argument shadow and mark all outputs as 3612 // clean. Note that any side effects of the inline asm that are not 3613 // immediately visible in its constraints are not handled. 3614 if (ClHandleAsmConservative && MS.CompileKernel) 3615 visitAsmInstruction(CB); 3616 else 3617 visitInstruction(CB); 3618 return; 3619 } 3620 LibFunc LF; 3621 if (TLI->getLibFunc(CB, LF)) { 3622 // libatomic.a functions need to have special handling because there isn't 3623 // a good way to intercept them or compile the library with 3624 // instrumentation. 3625 switch (LF) { 3626 case LibFunc_atomic_load: 3627 if (!isa<CallInst>(CB)) { 3628 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 3629 "Ignoring!\n"; 3630 break; 3631 } 3632 visitLibAtomicLoad(CB); 3633 return; 3634 case LibFunc_atomic_store: 3635 visitLibAtomicStore(CB); 3636 return; 3637 default: 3638 break; 3639 } 3640 } 3641 3642 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3643 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3644 3645 // We are going to insert code that relies on the fact that the callee 3646 // will become a non-readonly function after it is instrumented by us. To 3647 // prevent this code from being optimized out, mark that function 3648 // non-readonly in advance. 3649 AttrBuilder B; 3650 B.addAttribute(Attribute::ReadOnly) 3651 .addAttribute(Attribute::ReadNone) 3652 .addAttribute(Attribute::WriteOnly) 3653 .addAttribute(Attribute::ArgMemOnly) 3654 .addAttribute(Attribute::Speculatable); 3655 3656 Call->removeAttributes(AttributeList::FunctionIndex, B); 3657 if (Function *Func = Call->getCalledFunction()) { 3658 Func->removeAttributes(AttributeList::FunctionIndex, B); 3659 } 3660 3661 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3662 } 3663 IRBuilder<> IRB(&CB); 3664 bool MayCheckCall = ClEagerChecks; 3665 if (Function *Func = CB.getCalledFunction()) { 3666 // __sanitizer_unaligned_{load,store} functions may be called by users 3667 // and always expects shadows in the TLS. So don't check them. 3668 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 3669 } 3670 3671 unsigned ArgOffset = 0; 3672 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3673 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3674 ++ArgIt) { 3675 Value *A = *ArgIt; 3676 unsigned i = ArgIt - CB.arg_begin(); 3677 if (!A->getType()->isSized()) { 3678 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3679 continue; 3680 } 3681 unsigned Size = 0; 3682 Value *Store = nullptr; 3683 // Compute the Shadow for arg even if it is ByVal, because 3684 // in that case getShadow() will copy the actual arg shadow to 3685 // __msan_param_tls. 3686 Value *ArgShadow = getShadow(A); 3687 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3688 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3689 << " Shadow: " << *ArgShadow << "\n"); 3690 bool ArgIsInitialized = false; 3691 const DataLayout &DL = F.getParent()->getDataLayout(); 3692 3693 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 3694 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 3695 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 3696 3697 if (EagerCheck) { 3698 insertShadowCheck(A, &CB); 3699 continue; 3700 } 3701 if (ByVal) { 3702 // ByVal requires some special handling as it's too big for a single 3703 // load 3704 assert(A->getType()->isPointerTy() && 3705 "ByVal argument is not a pointer!"); 3706 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3707 if (ArgOffset + Size > kParamTLSSize) break; 3708 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3709 MaybeAlign Alignment = llvm::None; 3710 if (ParamAlignment) 3711 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3712 Value *AShadowPtr = 3713 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3714 /*isStore*/ false) 3715 .first; 3716 3717 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3718 Alignment, Size); 3719 // TODO(glider): need to copy origins. 3720 } else { 3721 // Any other parameters mean we need bit-grained tracking of uninit data 3722 Size = DL.getTypeAllocSize(A->getType()); 3723 if (ArgOffset + Size > kParamTLSSize) break; 3724 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3725 kShadowTLSAlignment); 3726 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3727 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3728 } 3729 if (MS.TrackOrigins && !ArgIsInitialized) 3730 IRB.CreateStore(getOrigin(A), 3731 getOriginPtrForArgument(A, IRB, ArgOffset)); 3732 (void)Store; 3733 assert(Size != 0 && Store != nullptr); 3734 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3735 ArgOffset += alignTo(Size, kShadowTLSAlignment); 3736 } 3737 LLVM_DEBUG(dbgs() << " done with call args\n"); 3738 3739 FunctionType *FT = CB.getFunctionType(); 3740 if (FT->isVarArg()) { 3741 VAHelper->visitCallBase(CB, IRB); 3742 } 3743 3744 // Now, get the shadow for the RetVal. 3745 if (!CB.getType()->isSized()) 3746 return; 3747 // Don't emit the epilogue for musttail call returns. 3748 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3749 return; 3750 3751 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 3752 setShadow(&CB, getCleanShadow(&CB)); 3753 setOrigin(&CB, getCleanOrigin()); 3754 return; 3755 } 3756 3757 IRBuilder<> IRBBefore(&CB); 3758 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3759 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3760 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3761 kShadowTLSAlignment); 3762 BasicBlock::iterator NextInsn; 3763 if (isa<CallInst>(CB)) { 3764 NextInsn = ++CB.getIterator(); 3765 assert(NextInsn != CB.getParent()->end()); 3766 } else { 3767 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3768 if (!NormalDest->getSinglePredecessor()) { 3769 // FIXME: this case is tricky, so we are just conservative here. 3770 // Perhaps we need to split the edge between this BB and NormalDest, 3771 // but a naive attempt to use SplitEdge leads to a crash. 3772 setShadow(&CB, getCleanShadow(&CB)); 3773 setOrigin(&CB, getCleanOrigin()); 3774 return; 3775 } 3776 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3777 // Anything inserted there will be instrumented by MSan later! 3778 NextInsn = NormalDest->getFirstInsertionPt(); 3779 assert(NextInsn != NormalDest->end() && 3780 "Could not find insertion point for retval shadow load"); 3781 } 3782 IRBuilder<> IRBAfter(&*NextInsn); 3783 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3784 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3785 kShadowTLSAlignment, "_msret"); 3786 setShadow(&CB, RetvalShadow); 3787 if (MS.TrackOrigins) 3788 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3789 getOriginPtrForRetval(IRBAfter))); 3790 } 3791 3792 bool isAMustTailRetVal(Value *RetVal) { 3793 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3794 RetVal = I->getOperand(0); 3795 } 3796 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3797 return I->isMustTailCall(); 3798 } 3799 return false; 3800 } 3801 3802 void visitReturnInst(ReturnInst &I) { 3803 IRBuilder<> IRB(&I); 3804 Value *RetVal = I.getReturnValue(); 3805 if (!RetVal) return; 3806 // Don't emit the epilogue for musttail call returns. 3807 if (isAMustTailRetVal(RetVal)) return; 3808 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3809 bool HasNoUndef = 3810 F.hasAttribute(AttributeList::ReturnIndex, Attribute::NoUndef); 3811 bool StoreShadow = !(ClEagerChecks && HasNoUndef); 3812 // FIXME: Consider using SpecialCaseList to specify a list of functions that 3813 // must always return fully initialized values. For now, we hardcode "main". 3814 bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main"); 3815 3816 Value *Shadow = getShadow(RetVal); 3817 bool StoreOrigin = true; 3818 if (EagerCheck) { 3819 insertShadowCheck(RetVal, &I); 3820 Shadow = getCleanShadow(RetVal); 3821 StoreOrigin = false; 3822 } 3823 3824 // The caller may still expect information passed over TLS if we pass our 3825 // check 3826 if (StoreShadow) { 3827 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3828 if (MS.TrackOrigins && StoreOrigin) 3829 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3830 } 3831 } 3832 3833 void visitPHINode(PHINode &I) { 3834 IRBuilder<> IRB(&I); 3835 if (!PropagateShadow) { 3836 setShadow(&I, getCleanShadow(&I)); 3837 setOrigin(&I, getCleanOrigin()); 3838 return; 3839 } 3840 3841 ShadowPHINodes.push_back(&I); 3842 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3843 "_msphi_s")); 3844 if (MS.TrackOrigins) 3845 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3846 "_msphi_o")); 3847 } 3848 3849 Value *getLocalVarDescription(AllocaInst &I) { 3850 SmallString<2048> StackDescriptionStorage; 3851 raw_svector_ostream StackDescription(StackDescriptionStorage); 3852 // We create a string with a description of the stack allocation and 3853 // pass it into __msan_set_alloca_origin. 3854 // It will be printed by the run-time if stack-originated UMR is found. 3855 // The first 4 bytes of the string are set to '----' and will be replaced 3856 // by __msan_va_arg_overflow_size_tls at the first call. 3857 StackDescription << "----" << I.getName() << "@" << F.getName(); 3858 return createPrivateNonConstGlobalForString(*F.getParent(), 3859 StackDescription.str()); 3860 } 3861 3862 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3863 if (PoisonStack && ClPoisonStackWithCall) { 3864 IRB.CreateCall(MS.MsanPoisonStackFn, 3865 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3866 } else { 3867 Value *ShadowBase, *OriginBase; 3868 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3869 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3870 3871 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3872 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, 3873 MaybeAlign(I.getAlignment())); 3874 } 3875 3876 if (PoisonStack && MS.TrackOrigins) { 3877 Value *Descr = getLocalVarDescription(I); 3878 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3879 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3880 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3881 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3882 } 3883 } 3884 3885 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3886 Value *Descr = getLocalVarDescription(I); 3887 if (PoisonStack) { 3888 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3889 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3890 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3891 } else { 3892 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3893 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3894 } 3895 } 3896 3897 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3898 if (!InsPoint) 3899 InsPoint = &I; 3900 IRBuilder<> IRB(InsPoint->getNextNode()); 3901 const DataLayout &DL = F.getParent()->getDataLayout(); 3902 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3903 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3904 if (I.isArrayAllocation()) 3905 Len = IRB.CreateMul(Len, I.getArraySize()); 3906 3907 if (MS.CompileKernel) 3908 poisonAllocaKmsan(I, IRB, Len); 3909 else 3910 poisonAllocaUserspace(I, IRB, Len); 3911 } 3912 3913 void visitAllocaInst(AllocaInst &I) { 3914 setShadow(&I, getCleanShadow(&I)); 3915 setOrigin(&I, getCleanOrigin()); 3916 // We'll get to this alloca later unless it's poisoned at the corresponding 3917 // llvm.lifetime.start. 3918 AllocaSet.insert(&I); 3919 } 3920 3921 void visitSelectInst(SelectInst& I) { 3922 IRBuilder<> IRB(&I); 3923 // a = select b, c, d 3924 Value *B = I.getCondition(); 3925 Value *C = I.getTrueValue(); 3926 Value *D = I.getFalseValue(); 3927 Value *Sb = getShadow(B); 3928 Value *Sc = getShadow(C); 3929 Value *Sd = getShadow(D); 3930 3931 // Result shadow if condition shadow is 0. 3932 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3933 Value *Sa1; 3934 if (I.getType()->isAggregateType()) { 3935 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3936 // an extra "select". This results in much more compact IR. 3937 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3938 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3939 } else { 3940 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3941 // If Sb (condition is poisoned), look for bits in c and d that are equal 3942 // and both unpoisoned. 3943 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3944 3945 // Cast arguments to shadow-compatible type. 3946 C = CreateAppToShadowCast(IRB, C); 3947 D = CreateAppToShadowCast(IRB, D); 3948 3949 // Result shadow if condition shadow is 1. 3950 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3951 } 3952 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3953 setShadow(&I, Sa); 3954 if (MS.TrackOrigins) { 3955 // Origins are always i32, so any vector conditions must be flattened. 3956 // FIXME: consider tracking vector origins for app vectors? 3957 if (B->getType()->isVectorTy()) { 3958 Type *FlatTy = getShadowTyNoVec(B->getType()); 3959 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3960 ConstantInt::getNullValue(FlatTy)); 3961 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3962 ConstantInt::getNullValue(FlatTy)); 3963 } 3964 // a = select b, c, d 3965 // Oa = Sb ? Ob : (b ? Oc : Od) 3966 setOrigin( 3967 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3968 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3969 getOrigin(I.getFalseValue())))); 3970 } 3971 } 3972 3973 void visitLandingPadInst(LandingPadInst &I) { 3974 // Do nothing. 3975 // See https://github.com/google/sanitizers/issues/504 3976 setShadow(&I, getCleanShadow(&I)); 3977 setOrigin(&I, getCleanOrigin()); 3978 } 3979 3980 void visitCatchSwitchInst(CatchSwitchInst &I) { 3981 setShadow(&I, getCleanShadow(&I)); 3982 setOrigin(&I, getCleanOrigin()); 3983 } 3984 3985 void visitFuncletPadInst(FuncletPadInst &I) { 3986 setShadow(&I, getCleanShadow(&I)); 3987 setOrigin(&I, getCleanOrigin()); 3988 } 3989 3990 void visitGetElementPtrInst(GetElementPtrInst &I) { 3991 handleShadowOr(I); 3992 } 3993 3994 void visitExtractValueInst(ExtractValueInst &I) { 3995 IRBuilder<> IRB(&I); 3996 Value *Agg = I.getAggregateOperand(); 3997 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3998 Value *AggShadow = getShadow(Agg); 3999 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4000 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 4001 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 4002 setShadow(&I, ResShadow); 4003 setOriginForNaryOp(I); 4004 } 4005 4006 void visitInsertValueInst(InsertValueInst &I) { 4007 IRBuilder<> IRB(&I); 4008 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 4009 Value *AggShadow = getShadow(I.getAggregateOperand()); 4010 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 4011 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4012 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 4013 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 4014 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 4015 setShadow(&I, Res); 4016 setOriginForNaryOp(I); 4017 } 4018 4019 void dumpInst(Instruction &I) { 4020 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 4021 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 4022 } else { 4023 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 4024 } 4025 errs() << "QQQ " << I << "\n"; 4026 } 4027 4028 void visitResumeInst(ResumeInst &I) { 4029 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4030 // Nothing to do here. 4031 } 4032 4033 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4034 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4035 // Nothing to do here. 4036 } 4037 4038 void visitCatchReturnInst(CatchReturnInst &CRI) { 4039 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4040 // Nothing to do here. 4041 } 4042 4043 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 4044 const DataLayout &DL, bool isOutput) { 4045 // For each assembly argument, we check its value for being initialized. 4046 // If the argument is a pointer, we assume it points to a single element 4047 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4048 // Each such pointer is instrumented with a call to the runtime library. 4049 Type *OpType = Operand->getType(); 4050 // Check the operand value itself. 4051 insertShadowCheck(Operand, &I); 4052 if (!OpType->isPointerTy() || !isOutput) { 4053 assert(!isOutput); 4054 return; 4055 } 4056 Type *ElType = OpType->getPointerElementType(); 4057 if (!ElType->isSized()) 4058 return; 4059 int Size = DL.getTypeStoreSize(ElType); 4060 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 4061 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 4062 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 4063 } 4064 4065 /// Get the number of output arguments returned by pointers. 4066 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4067 int NumRetOutputs = 0; 4068 int NumOutputs = 0; 4069 Type *RetTy = cast<Value>(CB)->getType(); 4070 if (!RetTy->isVoidTy()) { 4071 // Register outputs are returned via the CallInst return value. 4072 auto *ST = dyn_cast<StructType>(RetTy); 4073 if (ST) 4074 NumRetOutputs = ST->getNumElements(); 4075 else 4076 NumRetOutputs = 1; 4077 } 4078 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4079 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 4080 switch (Info.Type) { 4081 case InlineAsm::isOutput: 4082 NumOutputs++; 4083 break; 4084 default: 4085 break; 4086 } 4087 } 4088 return NumOutputs - NumRetOutputs; 4089 } 4090 4091 void visitAsmInstruction(Instruction &I) { 4092 // Conservative inline assembly handling: check for poisoned shadow of 4093 // asm() arguments, then unpoison the result and all the memory locations 4094 // pointed to by those arguments. 4095 // An inline asm() statement in C++ contains lists of input and output 4096 // arguments used by the assembly code. These are mapped to operands of the 4097 // CallInst as follows: 4098 // - nR register outputs ("=r) are returned by value in a single structure 4099 // (SSA value of the CallInst); 4100 // - nO other outputs ("=m" and others) are returned by pointer as first 4101 // nO operands of the CallInst; 4102 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4103 // remaining nI operands. 4104 // The total number of asm() arguments in the source is nR+nO+nI, and the 4105 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4106 // function to be called). 4107 const DataLayout &DL = F.getParent()->getDataLayout(); 4108 CallBase *CB = cast<CallBase>(&I); 4109 IRBuilder<> IRB(&I); 4110 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4111 int OutputArgs = getNumOutputArgs(IA, CB); 4112 // The last operand of a CallInst is the function itself. 4113 int NumOperands = CB->getNumOperands() - 1; 4114 4115 // Check input arguments. Doing so before unpoisoning output arguments, so 4116 // that we won't overwrite uninit values before checking them. 4117 for (int i = OutputArgs; i < NumOperands; i++) { 4118 Value *Operand = CB->getOperand(i); 4119 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 4120 } 4121 // Unpoison output arguments. This must happen before the actual InlineAsm 4122 // call, so that the shadow for memory published in the asm() statement 4123 // remains valid. 4124 for (int i = 0; i < OutputArgs; i++) { 4125 Value *Operand = CB->getOperand(i); 4126 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 4127 } 4128 4129 setShadow(&I, getCleanShadow(&I)); 4130 setOrigin(&I, getCleanOrigin()); 4131 } 4132 4133 void visitFreezeInst(FreezeInst &I) { 4134 // Freeze always returns a fully defined value. 4135 setShadow(&I, getCleanShadow(&I)); 4136 setOrigin(&I, getCleanOrigin()); 4137 } 4138 4139 void visitInstruction(Instruction &I) { 4140 // Everything else: stop propagating and check for poisoned shadow. 4141 if (ClDumpStrictInstructions) 4142 dumpInst(I); 4143 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4144 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4145 Value *Operand = I.getOperand(i); 4146 if (Operand->getType()->isSized()) 4147 insertShadowCheck(Operand, &I); 4148 } 4149 setShadow(&I, getCleanShadow(&I)); 4150 setOrigin(&I, getCleanOrigin()); 4151 } 4152 }; 4153 4154 /// AMD64-specific implementation of VarArgHelper. 4155 struct VarArgAMD64Helper : public VarArgHelper { 4156 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4157 // See a comment in visitCallBase for more details. 4158 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4159 static const unsigned AMD64FpEndOffsetSSE = 176; 4160 // If SSE is disabled, fp_offset in va_list is zero. 4161 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4162 4163 unsigned AMD64FpEndOffset; 4164 Function &F; 4165 MemorySanitizer &MS; 4166 MemorySanitizerVisitor &MSV; 4167 Value *VAArgTLSCopy = nullptr; 4168 Value *VAArgTLSOriginCopy = nullptr; 4169 Value *VAArgOverflowSize = nullptr; 4170 4171 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4172 4173 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4174 4175 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4176 MemorySanitizerVisitor &MSV) 4177 : F(F), MS(MS), MSV(MSV) { 4178 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4179 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 4180 if (Attr.isStringAttribute() && 4181 (Attr.getKindAsString() == "target-features")) { 4182 if (Attr.getValueAsString().contains("-sse")) 4183 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4184 break; 4185 } 4186 } 4187 } 4188 4189 ArgKind classifyArgument(Value* arg) { 4190 // A very rough approximation of X86_64 argument classification rules. 4191 Type *T = arg->getType(); 4192 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4193 return AK_FloatingPoint; 4194 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4195 return AK_GeneralPurpose; 4196 if (T->isPointerTy()) 4197 return AK_GeneralPurpose; 4198 return AK_Memory; 4199 } 4200 4201 // For VarArg functions, store the argument shadow in an ABI-specific format 4202 // that corresponds to va_list layout. 4203 // We do this because Clang lowers va_arg in the frontend, and this pass 4204 // only sees the low level code that deals with va_list internals. 4205 // A much easier alternative (provided that Clang emits va_arg instructions) 4206 // would have been to associate each live instance of va_list with a copy of 4207 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4208 // order. 4209 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4210 unsigned GpOffset = 0; 4211 unsigned FpOffset = AMD64GpEndOffset; 4212 unsigned OverflowOffset = AMD64FpEndOffset; 4213 const DataLayout &DL = F.getParent()->getDataLayout(); 4214 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4215 ++ArgIt) { 4216 Value *A = *ArgIt; 4217 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4218 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4219 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4220 if (IsByVal) { 4221 // ByVal arguments always go to the overflow area. 4222 // Fixed arguments passed through the overflow area will be stepped 4223 // over by va_start, so don't count them towards the offset. 4224 if (IsFixed) 4225 continue; 4226 assert(A->getType()->isPointerTy()); 4227 Type *RealTy = CB.getParamByValType(ArgNo); 4228 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4229 Value *ShadowBase = getShadowPtrForVAArgument( 4230 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4231 Value *OriginBase = nullptr; 4232 if (MS.TrackOrigins) 4233 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4234 OverflowOffset += alignTo(ArgSize, 8); 4235 if (!ShadowBase) 4236 continue; 4237 Value *ShadowPtr, *OriginPtr; 4238 std::tie(ShadowPtr, OriginPtr) = 4239 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4240 /*isStore*/ false); 4241 4242 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4243 kShadowTLSAlignment, ArgSize); 4244 if (MS.TrackOrigins) 4245 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4246 kShadowTLSAlignment, ArgSize); 4247 } else { 4248 ArgKind AK = classifyArgument(A); 4249 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4250 AK = AK_Memory; 4251 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4252 AK = AK_Memory; 4253 Value *ShadowBase, *OriginBase = nullptr; 4254 switch (AK) { 4255 case AK_GeneralPurpose: 4256 ShadowBase = 4257 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4258 if (MS.TrackOrigins) 4259 OriginBase = 4260 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4261 GpOffset += 8; 4262 break; 4263 case AK_FloatingPoint: 4264 ShadowBase = 4265 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4266 if (MS.TrackOrigins) 4267 OriginBase = 4268 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4269 FpOffset += 16; 4270 break; 4271 case AK_Memory: 4272 if (IsFixed) 4273 continue; 4274 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4275 ShadowBase = 4276 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4277 if (MS.TrackOrigins) 4278 OriginBase = 4279 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4280 OverflowOffset += alignTo(ArgSize, 8); 4281 } 4282 // Take fixed arguments into account for GpOffset and FpOffset, 4283 // but don't actually store shadows for them. 4284 // TODO(glider): don't call get*PtrForVAArgument() for them. 4285 if (IsFixed) 4286 continue; 4287 if (!ShadowBase) 4288 continue; 4289 Value *Shadow = MSV.getShadow(A); 4290 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4291 if (MS.TrackOrigins) { 4292 Value *Origin = MSV.getOrigin(A); 4293 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4294 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4295 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4296 } 4297 } 4298 } 4299 Constant *OverflowSize = 4300 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4301 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4302 } 4303 4304 /// Compute the shadow address for a given va_arg. 4305 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4306 unsigned ArgOffset, unsigned ArgSize) { 4307 // Make sure we don't overflow __msan_va_arg_tls. 4308 if (ArgOffset + ArgSize > kParamTLSSize) 4309 return nullptr; 4310 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4311 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4312 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4313 "_msarg_va_s"); 4314 } 4315 4316 /// Compute the origin address for a given va_arg. 4317 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4318 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4319 // getOriginPtrForVAArgument() is always called after 4320 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4321 // overflow. 4322 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4323 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4324 "_msarg_va_o"); 4325 } 4326 4327 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4328 IRBuilder<> IRB(&I); 4329 Value *VAListTag = I.getArgOperand(0); 4330 Value *ShadowPtr, *OriginPtr; 4331 const Align Alignment = Align(8); 4332 std::tie(ShadowPtr, OriginPtr) = 4333 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4334 /*isStore*/ true); 4335 4336 // Unpoison the whole __va_list_tag. 4337 // FIXME: magic ABI constants. 4338 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4339 /* size */ 24, Alignment, false); 4340 // We shouldn't need to zero out the origins, as they're only checked for 4341 // nonzero shadow. 4342 } 4343 4344 void visitVAStartInst(VAStartInst &I) override { 4345 if (F.getCallingConv() == CallingConv::Win64) 4346 return; 4347 VAStartInstrumentationList.push_back(&I); 4348 unpoisonVAListTagForInst(I); 4349 } 4350 4351 void visitVACopyInst(VACopyInst &I) override { 4352 if (F.getCallingConv() == CallingConv::Win64) return; 4353 unpoisonVAListTagForInst(I); 4354 } 4355 4356 void finalizeInstrumentation() override { 4357 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4358 "finalizeInstrumentation called twice"); 4359 if (!VAStartInstrumentationList.empty()) { 4360 // If there is a va_start in this function, make a backup copy of 4361 // va_arg_tls somewhere in the function entry block. 4362 IRBuilder<> IRB(MSV.FnPrologueEnd); 4363 VAArgOverflowSize = 4364 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4365 Value *CopySize = 4366 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4367 VAArgOverflowSize); 4368 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4369 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4370 if (MS.TrackOrigins) { 4371 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4372 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4373 Align(8), CopySize); 4374 } 4375 } 4376 4377 // Instrument va_start. 4378 // Copy va_list shadow from the backup copy of the TLS contents. 4379 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4380 CallInst *OrigInst = VAStartInstrumentationList[i]; 4381 IRBuilder<> IRB(OrigInst->getNextNode()); 4382 Value *VAListTag = OrigInst->getArgOperand(0); 4383 4384 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4385 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4386 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4387 ConstantInt::get(MS.IntptrTy, 16)), 4388 PointerType::get(RegSaveAreaPtrTy, 0)); 4389 Value *RegSaveAreaPtr = 4390 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4391 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4392 const Align Alignment = Align(16); 4393 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4394 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4395 Alignment, /*isStore*/ true); 4396 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4397 AMD64FpEndOffset); 4398 if (MS.TrackOrigins) 4399 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4400 Alignment, AMD64FpEndOffset); 4401 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4402 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4403 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4404 ConstantInt::get(MS.IntptrTy, 8)), 4405 PointerType::get(OverflowArgAreaPtrTy, 0)); 4406 Value *OverflowArgAreaPtr = 4407 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4408 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4409 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4410 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4411 Alignment, /*isStore*/ true); 4412 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4413 AMD64FpEndOffset); 4414 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4415 VAArgOverflowSize); 4416 if (MS.TrackOrigins) { 4417 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4418 AMD64FpEndOffset); 4419 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4420 VAArgOverflowSize); 4421 } 4422 } 4423 } 4424 }; 4425 4426 /// MIPS64-specific implementation of VarArgHelper. 4427 struct VarArgMIPS64Helper : public VarArgHelper { 4428 Function &F; 4429 MemorySanitizer &MS; 4430 MemorySanitizerVisitor &MSV; 4431 Value *VAArgTLSCopy = nullptr; 4432 Value *VAArgSize = nullptr; 4433 4434 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4435 4436 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4437 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4438 4439 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4440 unsigned VAArgOffset = 0; 4441 const DataLayout &DL = F.getParent()->getDataLayout(); 4442 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4443 End = CB.arg_end(); 4444 ArgIt != End; ++ArgIt) { 4445 Triple TargetTriple(F.getParent()->getTargetTriple()); 4446 Value *A = *ArgIt; 4447 Value *Base; 4448 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4449 if (TargetTriple.getArch() == Triple::mips64) { 4450 // Adjusting the shadow for argument with size < 8 to match the placement 4451 // of bits in big endian system 4452 if (ArgSize < 8) 4453 VAArgOffset += (8 - ArgSize); 4454 } 4455 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4456 VAArgOffset += ArgSize; 4457 VAArgOffset = alignTo(VAArgOffset, 8); 4458 if (!Base) 4459 continue; 4460 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4461 } 4462 4463 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4464 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4465 // a new class member i.e. it is the total size of all VarArgs. 4466 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4467 } 4468 4469 /// Compute the shadow address for a given va_arg. 4470 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4471 unsigned ArgOffset, unsigned ArgSize) { 4472 // Make sure we don't overflow __msan_va_arg_tls. 4473 if (ArgOffset + ArgSize > kParamTLSSize) 4474 return nullptr; 4475 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4476 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4477 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4478 "_msarg"); 4479 } 4480 4481 void visitVAStartInst(VAStartInst &I) override { 4482 IRBuilder<> IRB(&I); 4483 VAStartInstrumentationList.push_back(&I); 4484 Value *VAListTag = I.getArgOperand(0); 4485 Value *ShadowPtr, *OriginPtr; 4486 const Align Alignment = Align(8); 4487 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4488 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4489 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4490 /* size */ 8, Alignment, false); 4491 } 4492 4493 void visitVACopyInst(VACopyInst &I) override { 4494 IRBuilder<> IRB(&I); 4495 VAStartInstrumentationList.push_back(&I); 4496 Value *VAListTag = I.getArgOperand(0); 4497 Value *ShadowPtr, *OriginPtr; 4498 const Align Alignment = Align(8); 4499 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4500 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4501 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4502 /* size */ 8, Alignment, false); 4503 } 4504 4505 void finalizeInstrumentation() override { 4506 assert(!VAArgSize && !VAArgTLSCopy && 4507 "finalizeInstrumentation called twice"); 4508 IRBuilder<> IRB(MSV.FnPrologueEnd); 4509 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4510 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4511 VAArgSize); 4512 4513 if (!VAStartInstrumentationList.empty()) { 4514 // If there is a va_start in this function, make a backup copy of 4515 // va_arg_tls somewhere in the function entry block. 4516 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4517 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4518 } 4519 4520 // Instrument va_start. 4521 // Copy va_list shadow from the backup copy of the TLS contents. 4522 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4523 CallInst *OrigInst = VAStartInstrumentationList[i]; 4524 IRBuilder<> IRB(OrigInst->getNextNode()); 4525 Value *VAListTag = OrigInst->getArgOperand(0); 4526 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4527 Value *RegSaveAreaPtrPtr = 4528 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4529 PointerType::get(RegSaveAreaPtrTy, 0)); 4530 Value *RegSaveAreaPtr = 4531 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4532 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4533 const Align Alignment = Align(8); 4534 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4535 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4536 Alignment, /*isStore*/ true); 4537 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4538 CopySize); 4539 } 4540 } 4541 }; 4542 4543 /// AArch64-specific implementation of VarArgHelper. 4544 struct VarArgAArch64Helper : public VarArgHelper { 4545 static const unsigned kAArch64GrArgSize = 64; 4546 static const unsigned kAArch64VrArgSize = 128; 4547 4548 static const unsigned AArch64GrBegOffset = 0; 4549 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4550 // Make VR space aligned to 16 bytes. 4551 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4552 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4553 + kAArch64VrArgSize; 4554 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4555 4556 Function &F; 4557 MemorySanitizer &MS; 4558 MemorySanitizerVisitor &MSV; 4559 Value *VAArgTLSCopy = nullptr; 4560 Value *VAArgOverflowSize = nullptr; 4561 4562 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4563 4564 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4565 4566 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4567 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4568 4569 ArgKind classifyArgument(Value* arg) { 4570 Type *T = arg->getType(); 4571 if (T->isFPOrFPVectorTy()) 4572 return AK_FloatingPoint; 4573 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4574 || (T->isPointerTy())) 4575 return AK_GeneralPurpose; 4576 return AK_Memory; 4577 } 4578 4579 // The instrumentation stores the argument shadow in a non ABI-specific 4580 // format because it does not know which argument is named (since Clang, 4581 // like x86_64 case, lowers the va_args in the frontend and this pass only 4582 // sees the low level code that deals with va_list internals). 4583 // The first seven GR registers are saved in the first 56 bytes of the 4584 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4585 // the remaining arguments. 4586 // Using constant offset within the va_arg TLS array allows fast copy 4587 // in the finalize instrumentation. 4588 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4589 unsigned GrOffset = AArch64GrBegOffset; 4590 unsigned VrOffset = AArch64VrBegOffset; 4591 unsigned OverflowOffset = AArch64VAEndOffset; 4592 4593 const DataLayout &DL = F.getParent()->getDataLayout(); 4594 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4595 ++ArgIt) { 4596 Value *A = *ArgIt; 4597 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4598 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4599 ArgKind AK = classifyArgument(A); 4600 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4601 AK = AK_Memory; 4602 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4603 AK = AK_Memory; 4604 Value *Base; 4605 switch (AK) { 4606 case AK_GeneralPurpose: 4607 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4608 GrOffset += 8; 4609 break; 4610 case AK_FloatingPoint: 4611 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4612 VrOffset += 16; 4613 break; 4614 case AK_Memory: 4615 // Don't count fixed arguments in the overflow area - va_start will 4616 // skip right over them. 4617 if (IsFixed) 4618 continue; 4619 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4620 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4621 alignTo(ArgSize, 8)); 4622 OverflowOffset += alignTo(ArgSize, 8); 4623 break; 4624 } 4625 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4626 // bother to actually store a shadow. 4627 if (IsFixed) 4628 continue; 4629 if (!Base) 4630 continue; 4631 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4632 } 4633 Constant *OverflowSize = 4634 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4635 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4636 } 4637 4638 /// Compute the shadow address for a given va_arg. 4639 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4640 unsigned ArgOffset, unsigned ArgSize) { 4641 // Make sure we don't overflow __msan_va_arg_tls. 4642 if (ArgOffset + ArgSize > kParamTLSSize) 4643 return nullptr; 4644 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4645 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4646 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4647 "_msarg"); 4648 } 4649 4650 void visitVAStartInst(VAStartInst &I) override { 4651 IRBuilder<> IRB(&I); 4652 VAStartInstrumentationList.push_back(&I); 4653 Value *VAListTag = I.getArgOperand(0); 4654 Value *ShadowPtr, *OriginPtr; 4655 const Align Alignment = Align(8); 4656 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4657 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4658 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4659 /* size */ 32, Alignment, false); 4660 } 4661 4662 void visitVACopyInst(VACopyInst &I) override { 4663 IRBuilder<> IRB(&I); 4664 VAStartInstrumentationList.push_back(&I); 4665 Value *VAListTag = I.getArgOperand(0); 4666 Value *ShadowPtr, *OriginPtr; 4667 const Align Alignment = Align(8); 4668 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4669 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4670 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4671 /* size */ 32, Alignment, false); 4672 } 4673 4674 // Retrieve a va_list field of 'void*' size. 4675 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4676 Value *SaveAreaPtrPtr = 4677 IRB.CreateIntToPtr( 4678 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4679 ConstantInt::get(MS.IntptrTy, offset)), 4680 Type::getInt64PtrTy(*MS.C)); 4681 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4682 } 4683 4684 // Retrieve a va_list field of 'int' size. 4685 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4686 Value *SaveAreaPtr = 4687 IRB.CreateIntToPtr( 4688 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4689 ConstantInt::get(MS.IntptrTy, offset)), 4690 Type::getInt32PtrTy(*MS.C)); 4691 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4692 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4693 } 4694 4695 void finalizeInstrumentation() override { 4696 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4697 "finalizeInstrumentation called twice"); 4698 if (!VAStartInstrumentationList.empty()) { 4699 // If there is a va_start in this function, make a backup copy of 4700 // va_arg_tls somewhere in the function entry block. 4701 IRBuilder<> IRB(MSV.FnPrologueEnd); 4702 VAArgOverflowSize = 4703 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4704 Value *CopySize = 4705 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4706 VAArgOverflowSize); 4707 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4708 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4709 } 4710 4711 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4712 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4713 4714 // Instrument va_start, copy va_list shadow from the backup copy of 4715 // the TLS contents. 4716 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4717 CallInst *OrigInst = VAStartInstrumentationList[i]; 4718 IRBuilder<> IRB(OrigInst->getNextNode()); 4719 4720 Value *VAListTag = OrigInst->getArgOperand(0); 4721 4722 // The variadic ABI for AArch64 creates two areas to save the incoming 4723 // argument registers (one for 64-bit general register xn-x7 and another 4724 // for 128-bit FP/SIMD vn-v7). 4725 // We need then to propagate the shadow arguments on both regions 4726 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4727 // The remaining arguments are saved on shadow for 'va::stack'. 4728 // One caveat is it requires only to propagate the non-named arguments, 4729 // however on the call site instrumentation 'all' the arguments are 4730 // saved. So to copy the shadow values from the va_arg TLS array 4731 // we need to adjust the offset for both GR and VR fields based on 4732 // the __{gr,vr}_offs value (since they are stores based on incoming 4733 // named arguments). 4734 4735 // Read the stack pointer from the va_list. 4736 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4737 4738 // Read both the __gr_top and __gr_off and add them up. 4739 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4740 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4741 4742 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4743 4744 // Read both the __vr_top and __vr_off and add them up. 4745 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4746 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4747 4748 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4749 4750 // It does not know how many named arguments is being used and, on the 4751 // callsite all the arguments were saved. Since __gr_off is defined as 4752 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4753 // argument by ignoring the bytes of shadow from named arguments. 4754 Value *GrRegSaveAreaShadowPtrOff = 4755 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4756 4757 Value *GrRegSaveAreaShadowPtr = 4758 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4759 Align(8), /*isStore*/ true) 4760 .first; 4761 4762 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4763 GrRegSaveAreaShadowPtrOff); 4764 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4765 4766 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4767 GrCopySize); 4768 4769 // Again, but for FP/SIMD values. 4770 Value *VrRegSaveAreaShadowPtrOff = 4771 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4772 4773 Value *VrRegSaveAreaShadowPtr = 4774 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4775 Align(8), /*isStore*/ true) 4776 .first; 4777 4778 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4779 IRB.getInt8Ty(), 4780 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4781 IRB.getInt32(AArch64VrBegOffset)), 4782 VrRegSaveAreaShadowPtrOff); 4783 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4784 4785 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4786 VrCopySize); 4787 4788 // And finally for remaining arguments. 4789 Value *StackSaveAreaShadowPtr = 4790 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4791 Align(16), /*isStore*/ true) 4792 .first; 4793 4794 Value *StackSrcPtr = 4795 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4796 IRB.getInt32(AArch64VAEndOffset)); 4797 4798 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4799 Align(16), VAArgOverflowSize); 4800 } 4801 } 4802 }; 4803 4804 /// PowerPC64-specific implementation of VarArgHelper. 4805 struct VarArgPowerPC64Helper : public VarArgHelper { 4806 Function &F; 4807 MemorySanitizer &MS; 4808 MemorySanitizerVisitor &MSV; 4809 Value *VAArgTLSCopy = nullptr; 4810 Value *VAArgSize = nullptr; 4811 4812 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4813 4814 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4815 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4816 4817 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4818 // For PowerPC, we need to deal with alignment of stack arguments - 4819 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4820 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4821 // For that reason, we compute current offset from stack pointer (which is 4822 // always properly aligned), and offset for the first vararg, then subtract 4823 // them. 4824 unsigned VAArgBase; 4825 Triple TargetTriple(F.getParent()->getTargetTriple()); 4826 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4827 // and 32 bytes for ABIv2. This is usually determined by target 4828 // endianness, but in theory could be overridden by function attribute. 4829 if (TargetTriple.getArch() == Triple::ppc64) 4830 VAArgBase = 48; 4831 else 4832 VAArgBase = 32; 4833 unsigned VAArgOffset = VAArgBase; 4834 const DataLayout &DL = F.getParent()->getDataLayout(); 4835 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4836 ++ArgIt) { 4837 Value *A = *ArgIt; 4838 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4839 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4840 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4841 if (IsByVal) { 4842 assert(A->getType()->isPointerTy()); 4843 Type *RealTy = CB.getParamByValType(ArgNo); 4844 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4845 MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); 4846 if (!ArgAlign || *ArgAlign < Align(8)) 4847 ArgAlign = Align(8); 4848 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4849 if (!IsFixed) { 4850 Value *Base = getShadowPtrForVAArgument( 4851 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4852 if (Base) { 4853 Value *AShadowPtr, *AOriginPtr; 4854 std::tie(AShadowPtr, AOriginPtr) = 4855 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4856 kShadowTLSAlignment, /*isStore*/ false); 4857 4858 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4859 kShadowTLSAlignment, ArgSize); 4860 } 4861 } 4862 VAArgOffset += alignTo(ArgSize, 8); 4863 } else { 4864 Value *Base; 4865 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4866 uint64_t ArgAlign = 8; 4867 if (A->getType()->isArrayTy()) { 4868 // Arrays are aligned to element size, except for long double 4869 // arrays, which are aligned to 8 bytes. 4870 Type *ElementTy = A->getType()->getArrayElementType(); 4871 if (!ElementTy->isPPC_FP128Ty()) 4872 ArgAlign = DL.getTypeAllocSize(ElementTy); 4873 } else if (A->getType()->isVectorTy()) { 4874 // Vectors are naturally aligned. 4875 ArgAlign = DL.getTypeAllocSize(A->getType()); 4876 } 4877 if (ArgAlign < 8) 4878 ArgAlign = 8; 4879 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4880 if (DL.isBigEndian()) { 4881 // Adjusting the shadow for argument with size < 8 to match the placement 4882 // of bits in big endian system 4883 if (ArgSize < 8) 4884 VAArgOffset += (8 - ArgSize); 4885 } 4886 if (!IsFixed) { 4887 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4888 VAArgOffset - VAArgBase, ArgSize); 4889 if (Base) 4890 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4891 } 4892 VAArgOffset += ArgSize; 4893 VAArgOffset = alignTo(VAArgOffset, 8); 4894 } 4895 if (IsFixed) 4896 VAArgBase = VAArgOffset; 4897 } 4898 4899 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4900 VAArgOffset - VAArgBase); 4901 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4902 // a new class member i.e. it is the total size of all VarArgs. 4903 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4904 } 4905 4906 /// Compute the shadow address for a given va_arg. 4907 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4908 unsigned ArgOffset, unsigned ArgSize) { 4909 // Make sure we don't overflow __msan_va_arg_tls. 4910 if (ArgOffset + ArgSize > kParamTLSSize) 4911 return nullptr; 4912 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4913 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4914 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4915 "_msarg"); 4916 } 4917 4918 void visitVAStartInst(VAStartInst &I) override { 4919 IRBuilder<> IRB(&I); 4920 VAStartInstrumentationList.push_back(&I); 4921 Value *VAListTag = I.getArgOperand(0); 4922 Value *ShadowPtr, *OriginPtr; 4923 const Align Alignment = Align(8); 4924 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4925 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4926 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4927 /* size */ 8, Alignment, false); 4928 } 4929 4930 void visitVACopyInst(VACopyInst &I) override { 4931 IRBuilder<> IRB(&I); 4932 Value *VAListTag = I.getArgOperand(0); 4933 Value *ShadowPtr, *OriginPtr; 4934 const Align Alignment = Align(8); 4935 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4936 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4937 // Unpoison the whole __va_list_tag. 4938 // FIXME: magic ABI constants. 4939 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4940 /* size */ 8, Alignment, false); 4941 } 4942 4943 void finalizeInstrumentation() override { 4944 assert(!VAArgSize && !VAArgTLSCopy && 4945 "finalizeInstrumentation called twice"); 4946 IRBuilder<> IRB(MSV.FnPrologueEnd); 4947 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4948 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4949 VAArgSize); 4950 4951 if (!VAStartInstrumentationList.empty()) { 4952 // If there is a va_start in this function, make a backup copy of 4953 // va_arg_tls somewhere in the function entry block. 4954 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4955 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4956 } 4957 4958 // Instrument va_start. 4959 // Copy va_list shadow from the backup copy of the TLS contents. 4960 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4961 CallInst *OrigInst = VAStartInstrumentationList[i]; 4962 IRBuilder<> IRB(OrigInst->getNextNode()); 4963 Value *VAListTag = OrigInst->getArgOperand(0); 4964 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4965 Value *RegSaveAreaPtrPtr = 4966 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4967 PointerType::get(RegSaveAreaPtrTy, 0)); 4968 Value *RegSaveAreaPtr = 4969 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4970 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4971 const Align Alignment = Align(8); 4972 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4973 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4974 Alignment, /*isStore*/ true); 4975 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4976 CopySize); 4977 } 4978 } 4979 }; 4980 4981 /// SystemZ-specific implementation of VarArgHelper. 4982 struct VarArgSystemZHelper : public VarArgHelper { 4983 static const unsigned SystemZGpOffset = 16; 4984 static const unsigned SystemZGpEndOffset = 56; 4985 static const unsigned SystemZFpOffset = 128; 4986 static const unsigned SystemZFpEndOffset = 160; 4987 static const unsigned SystemZMaxVrArgs = 8; 4988 static const unsigned SystemZRegSaveAreaSize = 160; 4989 static const unsigned SystemZOverflowOffset = 160; 4990 static const unsigned SystemZVAListTagSize = 32; 4991 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 4992 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 4993 4994 Function &F; 4995 MemorySanitizer &MS; 4996 MemorySanitizerVisitor &MSV; 4997 Value *VAArgTLSCopy = nullptr; 4998 Value *VAArgTLSOriginCopy = nullptr; 4999 Value *VAArgOverflowSize = nullptr; 5000 5001 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5002 5003 enum class ArgKind { 5004 GeneralPurpose, 5005 FloatingPoint, 5006 Vector, 5007 Memory, 5008 Indirect, 5009 }; 5010 5011 enum class ShadowExtension { None, Zero, Sign }; 5012 5013 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5014 MemorySanitizerVisitor &MSV) 5015 : F(F), MS(MS), MSV(MSV) {} 5016 5017 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 5018 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5019 // only a few possibilities of what it can be. In particular, enums, single 5020 // element structs and large types have already been taken care of. 5021 5022 // Some i128 and fp128 arguments are converted to pointers only in the 5023 // back end. 5024 if (T->isIntegerTy(128) || T->isFP128Ty()) 5025 return ArgKind::Indirect; 5026 if (T->isFloatingPointTy()) 5027 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5028 if (T->isIntegerTy() || T->isPointerTy()) 5029 return ArgKind::GeneralPurpose; 5030 if (T->isVectorTy()) 5031 return ArgKind::Vector; 5032 return ArgKind::Memory; 5033 } 5034 5035 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5036 // ABI says: "One of the simple integer types no more than 64 bits wide. 5037 // ... If such an argument is shorter than 64 bits, replace it by a full 5038 // 64-bit integer representing the same number, using sign or zero 5039 // extension". Shadow for an integer argument has the same type as the 5040 // argument itself, so it can be sign or zero extended as well. 5041 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5042 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5043 if (ZExt) { 5044 assert(!SExt); 5045 return ShadowExtension::Zero; 5046 } 5047 if (SExt) { 5048 assert(!ZExt); 5049 return ShadowExtension::Sign; 5050 } 5051 return ShadowExtension::None; 5052 } 5053 5054 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5055 bool IsSoftFloatABI = CB.getCalledFunction() 5056 ->getFnAttribute("use-soft-float") 5057 .getValueAsBool(); 5058 unsigned GpOffset = SystemZGpOffset; 5059 unsigned FpOffset = SystemZFpOffset; 5060 unsigned VrIndex = 0; 5061 unsigned OverflowOffset = SystemZOverflowOffset; 5062 const DataLayout &DL = F.getParent()->getDataLayout(); 5063 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 5064 ++ArgIt) { 5065 Value *A = *ArgIt; 5066 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 5067 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5068 // SystemZABIInfo does not produce ByVal parameters. 5069 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5070 Type *T = A->getType(); 5071 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 5072 if (AK == ArgKind::Indirect) { 5073 T = PointerType::get(T, 0); 5074 AK = ArgKind::GeneralPurpose; 5075 } 5076 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5077 AK = ArgKind::Memory; 5078 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5079 AK = ArgKind::Memory; 5080 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5081 AK = ArgKind::Memory; 5082 Value *ShadowBase = nullptr; 5083 Value *OriginBase = nullptr; 5084 ShadowExtension SE = ShadowExtension::None; 5085 switch (AK) { 5086 case ArgKind::GeneralPurpose: { 5087 // Always keep track of GpOffset, but store shadow only for varargs. 5088 uint64_t ArgSize = 8; 5089 if (GpOffset + ArgSize <= kParamTLSSize) { 5090 if (!IsFixed) { 5091 SE = getShadowExtension(CB, ArgNo); 5092 uint64_t GapSize = 0; 5093 if (SE == ShadowExtension::None) { 5094 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5095 assert(ArgAllocSize <= ArgSize); 5096 GapSize = ArgSize - ArgAllocSize; 5097 } 5098 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5099 if (MS.TrackOrigins) 5100 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5101 } 5102 GpOffset += ArgSize; 5103 } else { 5104 GpOffset = kParamTLSSize; 5105 } 5106 break; 5107 } 5108 case ArgKind::FloatingPoint: { 5109 // Always keep track of FpOffset, but store shadow only for varargs. 5110 uint64_t ArgSize = 8; 5111 if (FpOffset + ArgSize <= kParamTLSSize) { 5112 if (!IsFixed) { 5113 // PoP says: "A short floating-point datum requires only the 5114 // left-most 32 bit positions of a floating-point register". 5115 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5116 // don't extend shadow and don't mind the gap. 5117 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5118 if (MS.TrackOrigins) 5119 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5120 } 5121 FpOffset += ArgSize; 5122 } else { 5123 FpOffset = kParamTLSSize; 5124 } 5125 break; 5126 } 5127 case ArgKind::Vector: { 5128 // Keep track of VrIndex. No need to store shadow, since vector varargs 5129 // go through AK_Memory. 5130 assert(IsFixed); 5131 VrIndex++; 5132 break; 5133 } 5134 case ArgKind::Memory: { 5135 // Keep track of OverflowOffset and store shadow only for varargs. 5136 // Ignore fixed args, since we need to copy only the vararg portion of 5137 // the overflow area shadow. 5138 if (!IsFixed) { 5139 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5140 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5141 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5142 SE = getShadowExtension(CB, ArgNo); 5143 uint64_t GapSize = 5144 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5145 ShadowBase = 5146 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5147 if (MS.TrackOrigins) 5148 OriginBase = 5149 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5150 OverflowOffset += ArgSize; 5151 } else { 5152 OverflowOffset = kParamTLSSize; 5153 } 5154 } 5155 break; 5156 } 5157 case ArgKind::Indirect: 5158 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5159 } 5160 if (ShadowBase == nullptr) 5161 continue; 5162 Value *Shadow = MSV.getShadow(A); 5163 if (SE != ShadowExtension::None) 5164 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5165 /*Signed*/ SE == ShadowExtension::Sign); 5166 ShadowBase = IRB.CreateIntToPtr( 5167 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5168 IRB.CreateStore(Shadow, ShadowBase); 5169 if (MS.TrackOrigins) { 5170 Value *Origin = MSV.getOrigin(A); 5171 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5172 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5173 kMinOriginAlignment); 5174 } 5175 } 5176 Constant *OverflowSize = ConstantInt::get( 5177 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5178 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5179 } 5180 5181 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5182 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5183 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5184 } 5185 5186 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5187 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5188 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5189 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5190 "_msarg_va_o"); 5191 } 5192 5193 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5194 IRBuilder<> IRB(&I); 5195 Value *VAListTag = I.getArgOperand(0); 5196 Value *ShadowPtr, *OriginPtr; 5197 const Align Alignment = Align(8); 5198 std::tie(ShadowPtr, OriginPtr) = 5199 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5200 /*isStore*/ true); 5201 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5202 SystemZVAListTagSize, Alignment, false); 5203 } 5204 5205 void visitVAStartInst(VAStartInst &I) override { 5206 VAStartInstrumentationList.push_back(&I); 5207 unpoisonVAListTagForInst(I); 5208 } 5209 5210 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5211 5212 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5213 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5214 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5215 IRB.CreateAdd( 5216 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5217 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5218 PointerType::get(RegSaveAreaPtrTy, 0)); 5219 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5220 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5221 const Align Alignment = Align(8); 5222 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5223 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5224 /*isStore*/ true); 5225 // TODO(iii): copy only fragments filled by visitCallBase() 5226 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5227 SystemZRegSaveAreaSize); 5228 if (MS.TrackOrigins) 5229 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5230 Alignment, SystemZRegSaveAreaSize); 5231 } 5232 5233 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5234 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5235 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5236 IRB.CreateAdd( 5237 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5238 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5239 PointerType::get(OverflowArgAreaPtrTy, 0)); 5240 Value *OverflowArgAreaPtr = 5241 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5242 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5243 const Align Alignment = Align(8); 5244 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5245 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5246 Alignment, /*isStore*/ true); 5247 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5248 SystemZOverflowOffset); 5249 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5250 VAArgOverflowSize); 5251 if (MS.TrackOrigins) { 5252 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5253 SystemZOverflowOffset); 5254 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5255 VAArgOverflowSize); 5256 } 5257 } 5258 5259 void finalizeInstrumentation() override { 5260 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5261 "finalizeInstrumentation called twice"); 5262 if (!VAStartInstrumentationList.empty()) { 5263 // If there is a va_start in this function, make a backup copy of 5264 // va_arg_tls somewhere in the function entry block. 5265 IRBuilder<> IRB(MSV.FnPrologueEnd); 5266 VAArgOverflowSize = 5267 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5268 Value *CopySize = 5269 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5270 VAArgOverflowSize); 5271 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5272 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5273 if (MS.TrackOrigins) { 5274 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5275 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5276 Align(8), CopySize); 5277 } 5278 } 5279 5280 // Instrument va_start. 5281 // Copy va_list shadow from the backup copy of the TLS contents. 5282 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5283 VaStartNo < VaStartNum; VaStartNo++) { 5284 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5285 IRBuilder<> IRB(OrigInst->getNextNode()); 5286 Value *VAListTag = OrigInst->getArgOperand(0); 5287 copyRegSaveArea(IRB, VAListTag); 5288 copyOverflowArea(IRB, VAListTag); 5289 } 5290 } 5291 }; 5292 5293 /// A no-op implementation of VarArgHelper. 5294 struct VarArgNoOpHelper : public VarArgHelper { 5295 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5296 MemorySanitizerVisitor &MSV) {} 5297 5298 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5299 5300 void visitVAStartInst(VAStartInst &I) override {} 5301 5302 void visitVACopyInst(VACopyInst &I) override {} 5303 5304 void finalizeInstrumentation() override {} 5305 }; 5306 5307 } // end anonymous namespace 5308 5309 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5310 MemorySanitizerVisitor &Visitor) { 5311 // VarArg handling is only implemented on AMD64. False positives are possible 5312 // on other platforms. 5313 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5314 if (TargetTriple.getArch() == Triple::x86_64) 5315 return new VarArgAMD64Helper(Func, Msan, Visitor); 5316 else if (TargetTriple.isMIPS64()) 5317 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5318 else if (TargetTriple.getArch() == Triple::aarch64) 5319 return new VarArgAArch64Helper(Func, Msan, Visitor); 5320 else if (TargetTriple.getArch() == Triple::ppc64 || 5321 TargetTriple.getArch() == Triple::ppc64le) 5322 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5323 else if (TargetTriple.getArch() == Triple::systemz) 5324 return new VarArgSystemZHelper(Func, Msan, Visitor); 5325 else 5326 return new VarArgNoOpHelper(Func, Msan, Visitor); 5327 } 5328 5329 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5330 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5331 return false; 5332 5333 MemorySanitizerVisitor Visitor(F, *this, TLI); 5334 5335 // Clear out readonly/readnone attributes. 5336 AttrBuilder B; 5337 B.addAttribute(Attribute::ReadOnly) 5338 .addAttribute(Attribute::ReadNone) 5339 .addAttribute(Attribute::WriteOnly) 5340 .addAttribute(Attribute::ArgMemOnly) 5341 .addAttribute(Attribute::Speculatable); 5342 F.removeAttributes(AttributeList::FunctionIndex, B); 5343 5344 return Visitor.runOnFunction(); 5345 } 5346