xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
15 /// byte of the application memory, poison the shadow of the malloc-ed
16 /// or alloca-ed memory, load the shadow bits on every memory read,
17 /// propagate the shadow bits through some of the arithmetic
18 /// instruction (including MOV), store the shadow bits on every memory
19 /// write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 ///                           Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwriting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 ///                            Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91 ///
92 ///                      Instrumenting inline assembly.
93 ///
94 /// For inline assembly code LLVM has little idea about which memory locations
95 /// become initialized depending on the arguments. It can be possible to figure
96 /// out which arguments are meant to point to inputs and outputs, but the
97 /// actual semantics can be only visible at runtime. In the Linux kernel it's
98 /// also possible that the arguments only indicate the offset for a base taken
99 /// from a segment register, so it's dangerous to treat any asm() arguments as
100 /// pointers. We take a conservative approach generating calls to
101 ///   __msan_instrument_asm_store(ptr, size)
102 /// , which defer the memory unpoisoning to the runtime library.
103 /// The latter can perform more complex address checks to figure out whether
104 /// it's safe to touch the shadow memory.
105 /// Like with atomic operations, we call __msan_instrument_asm_store() before
106 /// the assembly call, so that changes to the shadow memory will be seen by
107 /// other threads together with main memory initialization.
108 ///
109 ///                  KernelMemorySanitizer (KMSAN) implementation.
110 ///
111 /// The major differences between KMSAN and MSan instrumentation are:
112 ///  - KMSAN always tracks the origins and implies msan-keep-going=true;
113 ///  - KMSAN allocates shadow and origin memory for each page separately, so
114 ///    there are no explicit accesses to shadow and origin in the
115 ///    instrumentation.
116 ///    Shadow and origin values for a particular X-byte memory location
117 ///    (X=1,2,4,8) are accessed through pointers obtained via the
118 ///      __msan_metadata_ptr_for_load_X(ptr)
119 ///      __msan_metadata_ptr_for_store_X(ptr)
120 ///    functions. The corresponding functions check that the X-byte accesses
121 ///    are possible and returns the pointers to shadow and origin memory.
122 ///    Arbitrary sized accesses are handled with:
123 ///      __msan_metadata_ptr_for_load_n(ptr, size)
124 ///      __msan_metadata_ptr_for_store_n(ptr, size);
125 ///  - TLS variables are stored in a single per-task struct. A call to a
126 ///    function __msan_get_context_state() returning a pointer to that struct
127 ///    is inserted into every instrumented function before the entry block;
128 ///  - __msan_warning() takes a 32-bit origin parameter;
129 ///  - local variables are poisoned with __msan_poison_alloca() upon function
130 ///    entry and unpoisoned with __msan_unpoison_alloca() before leaving the
131 ///    function;
132 ///  - the pass doesn't declare any global variables or add global constructors
133 ///    to the translation unit.
134 ///
135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm
136 /// calls, making sure we're on the safe side wrt. possible false positives.
137 ///
138 ///  KernelMemorySanitizer only supports X86_64 at the moment.
139 ///
140 //
141 // FIXME: This sanitizer does not yet handle scalable vectors
142 //
143 //===----------------------------------------------------------------------===//
144 
145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
146 #include "llvm/ADT/APInt.h"
147 #include "llvm/ADT/ArrayRef.h"
148 #include "llvm/ADT/DepthFirstIterator.h"
149 #include "llvm/ADT/SmallSet.h"
150 #include "llvm/ADT/SmallString.h"
151 #include "llvm/ADT/SmallVector.h"
152 #include "llvm/ADT/StringExtras.h"
153 #include "llvm/ADT/StringRef.h"
154 #include "llvm/ADT/Triple.h"
155 #include "llvm/Analysis/TargetLibraryInfo.h"
156 #include "llvm/Analysis/ValueTracking.h"
157 #include "llvm/IR/Argument.h"
158 #include "llvm/IR/Attributes.h"
159 #include "llvm/IR/BasicBlock.h"
160 #include "llvm/IR/CallingConv.h"
161 #include "llvm/IR/Constant.h"
162 #include "llvm/IR/Constants.h"
163 #include "llvm/IR/DataLayout.h"
164 #include "llvm/IR/DerivedTypes.h"
165 #include "llvm/IR/Function.h"
166 #include "llvm/IR/GlobalValue.h"
167 #include "llvm/IR/GlobalVariable.h"
168 #include "llvm/IR/IRBuilder.h"
169 #include "llvm/IR/InlineAsm.h"
170 #include "llvm/IR/InstVisitor.h"
171 #include "llvm/IR/InstrTypes.h"
172 #include "llvm/IR/Instruction.h"
173 #include "llvm/IR/Instructions.h"
174 #include "llvm/IR/IntrinsicInst.h"
175 #include "llvm/IR/Intrinsics.h"
176 #include "llvm/IR/IntrinsicsX86.h"
177 #include "llvm/IR/LLVMContext.h"
178 #include "llvm/IR/MDBuilder.h"
179 #include "llvm/IR/Module.h"
180 #include "llvm/IR/Type.h"
181 #include "llvm/IR/Value.h"
182 #include "llvm/IR/ValueMap.h"
183 #include "llvm/InitializePasses.h"
184 #include "llvm/Pass.h"
185 #include "llvm/Support/AtomicOrdering.h"
186 #include "llvm/Support/Casting.h"
187 #include "llvm/Support/CommandLine.h"
188 #include "llvm/Support/Compiler.h"
189 #include "llvm/Support/Debug.h"
190 #include "llvm/Support/ErrorHandling.h"
191 #include "llvm/Support/MathExtras.h"
192 #include "llvm/Support/raw_ostream.h"
193 #include "llvm/Transforms/Instrumentation.h"
194 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
195 #include "llvm/Transforms/Utils/Local.h"
196 #include "llvm/Transforms/Utils/ModuleUtils.h"
197 #include <algorithm>
198 #include <cassert>
199 #include <cstddef>
200 #include <cstdint>
201 #include <memory>
202 #include <string>
203 #include <tuple>
204 
205 using namespace llvm;
206 
207 #define DEBUG_TYPE "msan"
208 
209 static const unsigned kOriginSize = 4;
210 static const Align kMinOriginAlignment = Align(4);
211 static const Align kShadowTLSAlignment = Align(8);
212 
213 // These constants must be kept in sync with the ones in msan.h.
214 static const unsigned kParamTLSSize = 800;
215 static const unsigned kRetvalTLSSize = 800;
216 
217 // Accesses sizes are powers of two: 1, 2, 4, 8.
218 static const size_t kNumberOfAccessSizes = 4;
219 
220 /// Track origins of uninitialized values.
221 ///
222 /// Adds a section to MemorySanitizer report that points to the allocation
223 /// (stack or heap) the uninitialized bits came from originally.
224 static cl::opt<int> ClTrackOrigins("msan-track-origins",
225        cl::desc("Track origins (allocation sites) of poisoned memory"),
226        cl::Hidden, cl::init(0));
227 
228 static cl::opt<bool> ClKeepGoing("msan-keep-going",
229        cl::desc("keep going after reporting a UMR"),
230        cl::Hidden, cl::init(false));
231 
232 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
233        cl::desc("poison uninitialized stack variables"),
234        cl::Hidden, cl::init(true));
235 
236 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
237        cl::desc("poison uninitialized stack variables with a call"),
238        cl::Hidden, cl::init(false));
239 
240 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
241        cl::desc("poison uninitialized stack variables with the given pattern"),
242        cl::Hidden, cl::init(0xff));
243 
244 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
245        cl::desc("poison undef temps"),
246        cl::Hidden, cl::init(true));
247 
248 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
249        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
250        cl::Hidden, cl::init(true));
251 
252 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
253        cl::desc("exact handling of relational integer ICmp"),
254        cl::Hidden, cl::init(false));
255 
256 static cl::opt<bool> ClHandleLifetimeIntrinsics(
257     "msan-handle-lifetime-intrinsics",
258     cl::desc(
259         "when possible, poison scoped variables at the beginning of the scope "
260         "(slower, but more precise)"),
261     cl::Hidden, cl::init(true));
262 
263 // When compiling the Linux kernel, we sometimes see false positives related to
264 // MSan being unable to understand that inline assembly calls may initialize
265 // local variables.
266 // This flag makes the compiler conservatively unpoison every memory location
267 // passed into an assembly call. Note that this may cause false positives.
268 // Because it's impossible to figure out the array sizes, we can only unpoison
269 // the first sizeof(type) bytes for each type* pointer.
270 // The instrumentation is only enabled in KMSAN builds, and only if
271 // -msan-handle-asm-conservative is on. This is done because we may want to
272 // quickly disable assembly instrumentation when it breaks.
273 static cl::opt<bool> ClHandleAsmConservative(
274     "msan-handle-asm-conservative",
275     cl::desc("conservative handling of inline assembly"), cl::Hidden,
276     cl::init(true));
277 
278 // This flag controls whether we check the shadow of the address
279 // operand of load or store. Such bugs are very rare, since load from
280 // a garbage address typically results in SEGV, but still happen
281 // (e.g. only lower bits of address are garbage, or the access happens
282 // early at program startup where malloc-ed memory is more likely to
283 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
284 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
285        cl::desc("report accesses through a pointer which has poisoned shadow"),
286        cl::Hidden, cl::init(true));
287 
288 static cl::opt<bool> ClEagerChecks(
289     "msan-eager-checks",
290     cl::desc("check arguments and return values at function call boundaries"),
291     cl::Hidden, cl::init(false));
292 
293 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
294        cl::desc("print out instructions with default strict semantics"),
295        cl::Hidden, cl::init(false));
296 
297 static cl::opt<int> ClInstrumentationWithCallThreshold(
298     "msan-instrumentation-with-call-threshold",
299     cl::desc(
300         "If the function being instrumented requires more than "
301         "this number of checks and origin stores, use callbacks instead of "
302         "inline checks (-1 means never use callbacks)."),
303     cl::Hidden, cl::init(3500));
304 
305 static cl::opt<bool>
306     ClEnableKmsan("msan-kernel",
307                   cl::desc("Enable KernelMemorySanitizer instrumentation"),
308                   cl::Hidden, cl::init(false));
309 
310 // This is an experiment to enable handling of cases where shadow is a non-zero
311 // compile-time constant. For some unexplainable reason they were silently
312 // ignored in the instrumentation.
313 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
314        cl::desc("Insert checks for constant shadow values"),
315        cl::Hidden, cl::init(false));
316 
317 // This is off by default because of a bug in gold:
318 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
319 static cl::opt<bool> ClWithComdat("msan-with-comdat",
320        cl::desc("Place MSan constructors in comdat sections"),
321        cl::Hidden, cl::init(false));
322 
323 // These options allow to specify custom memory map parameters
324 // See MemoryMapParams for details.
325 static cl::opt<uint64_t> ClAndMask("msan-and-mask",
326                                    cl::desc("Define custom MSan AndMask"),
327                                    cl::Hidden, cl::init(0));
328 
329 static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
330                                    cl::desc("Define custom MSan XorMask"),
331                                    cl::Hidden, cl::init(0));
332 
333 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
334                                       cl::desc("Define custom MSan ShadowBase"),
335                                       cl::Hidden, cl::init(0));
336 
337 static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
338                                       cl::desc("Define custom MSan OriginBase"),
339                                       cl::Hidden, cl::init(0));
340 
341 const char kMsanModuleCtorName[] = "msan.module_ctor";
342 const char kMsanInitName[] = "__msan_init";
343 
344 namespace {
345 
346 // Memory map parameters used in application-to-shadow address calculation.
347 // Offset = (Addr & ~AndMask) ^ XorMask
348 // Shadow = ShadowBase + Offset
349 // Origin = OriginBase + Offset
350 struct MemoryMapParams {
351   uint64_t AndMask;
352   uint64_t XorMask;
353   uint64_t ShadowBase;
354   uint64_t OriginBase;
355 };
356 
357 struct PlatformMemoryMapParams {
358   const MemoryMapParams *bits32;
359   const MemoryMapParams *bits64;
360 };
361 
362 } // end anonymous namespace
363 
364 // i386 Linux
365 static const MemoryMapParams Linux_I386_MemoryMapParams = {
366   0x000080000000,  // AndMask
367   0,               // XorMask (not used)
368   0,               // ShadowBase (not used)
369   0x000040000000,  // OriginBase
370 };
371 
372 // x86_64 Linux
373 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
374 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING
375   0x400000000000,  // AndMask
376   0,               // XorMask (not used)
377   0,               // ShadowBase (not used)
378   0x200000000000,  // OriginBase
379 #else
380   0,               // AndMask (not used)
381   0x500000000000,  // XorMask
382   0,               // ShadowBase (not used)
383   0x100000000000,  // OriginBase
384 #endif
385 };
386 
387 // mips64 Linux
388 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
389   0,               // AndMask (not used)
390   0x008000000000,  // XorMask
391   0,               // ShadowBase (not used)
392   0x002000000000,  // OriginBase
393 };
394 
395 // ppc64 Linux
396 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
397   0xE00000000000,  // AndMask
398   0x100000000000,  // XorMask
399   0x080000000000,  // ShadowBase
400   0x1C0000000000,  // OriginBase
401 };
402 
403 // s390x Linux
404 static const MemoryMapParams Linux_S390X_MemoryMapParams = {
405     0xC00000000000, // AndMask
406     0,              // XorMask (not used)
407     0x080000000000, // ShadowBase
408     0x1C0000000000, // OriginBase
409 };
410 
411 // aarch64 Linux
412 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
413   0,               // AndMask (not used)
414   0x06000000000,   // XorMask
415   0,               // ShadowBase (not used)
416   0x01000000000,   // OriginBase
417 };
418 
419 // i386 FreeBSD
420 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
421   0x000180000000,  // AndMask
422   0x000040000000,  // XorMask
423   0x000020000000,  // ShadowBase
424   0x000700000000,  // OriginBase
425 };
426 
427 // x86_64 FreeBSD
428 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
429   0xc00000000000,  // AndMask
430   0x200000000000,  // XorMask
431   0x100000000000,  // ShadowBase
432   0x380000000000,  // OriginBase
433 };
434 
435 // x86_64 NetBSD
436 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
437   0,               // AndMask
438   0x500000000000,  // XorMask
439   0,               // ShadowBase
440   0x100000000000,  // OriginBase
441 };
442 
443 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
444   &Linux_I386_MemoryMapParams,
445   &Linux_X86_64_MemoryMapParams,
446 };
447 
448 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
449   nullptr,
450   &Linux_MIPS64_MemoryMapParams,
451 };
452 
453 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
454   nullptr,
455   &Linux_PowerPC64_MemoryMapParams,
456 };
457 
458 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = {
459     nullptr,
460     &Linux_S390X_MemoryMapParams,
461 };
462 
463 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
464   nullptr,
465   &Linux_AArch64_MemoryMapParams,
466 };
467 
468 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
469   &FreeBSD_I386_MemoryMapParams,
470   &FreeBSD_X86_64_MemoryMapParams,
471 };
472 
473 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
474   nullptr,
475   &NetBSD_X86_64_MemoryMapParams,
476 };
477 
478 namespace {
479 
480 /// Instrument functions of a module to detect uninitialized reads.
481 ///
482 /// Instantiating MemorySanitizer inserts the msan runtime library API function
483 /// declarations into the module if they don't exist already. Instantiating
484 /// ensures the __msan_init function is in the list of global constructors for
485 /// the module.
486 class MemorySanitizer {
487 public:
488   MemorySanitizer(Module &M, MemorySanitizerOptions Options)
489       : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins),
490         Recover(Options.Recover) {
491     initializeModule(M);
492   }
493 
494   // MSan cannot be moved or copied because of MapParams.
495   MemorySanitizer(MemorySanitizer &&) = delete;
496   MemorySanitizer &operator=(MemorySanitizer &&) = delete;
497   MemorySanitizer(const MemorySanitizer &) = delete;
498   MemorySanitizer &operator=(const MemorySanitizer &) = delete;
499 
500   bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
501 
502 private:
503   friend struct MemorySanitizerVisitor;
504   friend struct VarArgAMD64Helper;
505   friend struct VarArgMIPS64Helper;
506   friend struct VarArgAArch64Helper;
507   friend struct VarArgPowerPC64Helper;
508   friend struct VarArgSystemZHelper;
509 
510   void initializeModule(Module &M);
511   void initializeCallbacks(Module &M);
512   void createKernelApi(Module &M);
513   void createUserspaceApi(Module &M);
514 
515   /// True if we're compiling the Linux kernel.
516   bool CompileKernel;
517   /// Track origins (allocation points) of uninitialized values.
518   int TrackOrigins;
519   bool Recover;
520 
521   LLVMContext *C;
522   Type *IntptrTy;
523   Type *OriginTy;
524 
525   // XxxTLS variables represent the per-thread state in MSan and per-task state
526   // in KMSAN.
527   // For the userspace these point to thread-local globals. In the kernel land
528   // they point to the members of a per-task struct obtained via a call to
529   // __msan_get_context_state().
530 
531   /// Thread-local shadow storage for function parameters.
532   Value *ParamTLS;
533 
534   /// Thread-local origin storage for function parameters.
535   Value *ParamOriginTLS;
536 
537   /// Thread-local shadow storage for function return value.
538   Value *RetvalTLS;
539 
540   /// Thread-local origin storage for function return value.
541   Value *RetvalOriginTLS;
542 
543   /// Thread-local shadow storage for in-register va_arg function
544   /// parameters (x86_64-specific).
545   Value *VAArgTLS;
546 
547   /// Thread-local shadow storage for in-register va_arg function
548   /// parameters (x86_64-specific).
549   Value *VAArgOriginTLS;
550 
551   /// Thread-local shadow storage for va_arg overflow area
552   /// (x86_64-specific).
553   Value *VAArgOverflowSizeTLS;
554 
555   /// Are the instrumentation callbacks set up?
556   bool CallbacksInitialized = false;
557 
558   /// The run-time callback to print a warning.
559   FunctionCallee WarningFn;
560 
561   // These arrays are indexed by log2(AccessSize).
562   FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
563   FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
564 
565   /// Run-time helper that generates a new origin value for a stack
566   /// allocation.
567   FunctionCallee MsanSetAllocaOrigin4Fn;
568 
569   /// Run-time helper that poisons stack on function entry.
570   FunctionCallee MsanPoisonStackFn;
571 
572   /// Run-time helper that records a store (or any event) of an
573   /// uninitialized value and returns an updated origin id encoding this info.
574   FunctionCallee MsanChainOriginFn;
575 
576   /// Run-time helper that paints an origin over a region.
577   FunctionCallee MsanSetOriginFn;
578 
579   /// MSan runtime replacements for memmove, memcpy and memset.
580   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
581 
582   /// KMSAN callback for task-local function argument shadow.
583   StructType *MsanContextStateTy;
584   FunctionCallee MsanGetContextStateFn;
585 
586   /// Functions for poisoning/unpoisoning local variables
587   FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
588 
589   /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin
590   /// pointers.
591   FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
592   FunctionCallee MsanMetadataPtrForLoad_1_8[4];
593   FunctionCallee MsanMetadataPtrForStore_1_8[4];
594   FunctionCallee MsanInstrumentAsmStoreFn;
595 
596   /// Helper to choose between different MsanMetadataPtrXxx().
597   FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
598 
599   /// Memory map parameters used in application-to-shadow calculation.
600   const MemoryMapParams *MapParams;
601 
602   /// Custom memory map parameters used when -msan-shadow-base or
603   // -msan-origin-base is provided.
604   MemoryMapParams CustomMapParams;
605 
606   MDNode *ColdCallWeights;
607 
608   /// Branch weights for origin store.
609   MDNode *OriginStoreWeights;
610 };
611 
612 void insertModuleCtor(Module &M) {
613   getOrCreateSanitizerCtorAndInitFunctions(
614       M, kMsanModuleCtorName, kMsanInitName,
615       /*InitArgTypes=*/{},
616       /*InitArgs=*/{},
617       // This callback is invoked when the functions are created the first
618       // time. Hook them into the global ctors list in that case:
619       [&](Function *Ctor, FunctionCallee) {
620         if (!ClWithComdat) {
621           appendToGlobalCtors(M, Ctor, 0);
622           return;
623         }
624         Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
625         Ctor->setComdat(MsanCtorComdat);
626         appendToGlobalCtors(M, Ctor, 0, Ctor);
627       });
628 }
629 
630 /// A legacy function pass for msan instrumentation.
631 ///
632 /// Instruments functions to detect uninitialized reads.
633 struct MemorySanitizerLegacyPass : public FunctionPass {
634   // Pass identification, replacement for typeid.
635   static char ID;
636 
637   MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {})
638       : FunctionPass(ID), Options(Options) {
639     initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
640   }
641   StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; }
642 
643   void getAnalysisUsage(AnalysisUsage &AU) const override {
644     AU.addRequired<TargetLibraryInfoWrapperPass>();
645   }
646 
647   bool runOnFunction(Function &F) override {
648     return MSan->sanitizeFunction(
649         F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
650   }
651   bool doInitialization(Module &M) override;
652 
653   Optional<MemorySanitizer> MSan;
654   MemorySanitizerOptions Options;
655 };
656 
657 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) {
658   return (Opt.getNumOccurrences() > 0) ? Opt : Default;
659 }
660 
661 } // end anonymous namespace
662 
663 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K)
664     : Kernel(getOptOrDefault(ClEnableKmsan, K)),
665       TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)),
666       Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {}
667 
668 PreservedAnalyses MemorySanitizerPass::run(Function &F,
669                                            FunctionAnalysisManager &FAM) {
670   MemorySanitizer Msan(*F.getParent(), Options);
671   if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
672     return PreservedAnalyses::none();
673   return PreservedAnalyses::all();
674 }
675 
676 PreservedAnalyses MemorySanitizerPass::run(Module &M,
677                                            ModuleAnalysisManager &AM) {
678   if (Options.Kernel)
679     return PreservedAnalyses::all();
680   insertModuleCtor(M);
681   return PreservedAnalyses::none();
682 }
683 
684 char MemorySanitizerLegacyPass::ID = 0;
685 
686 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan",
687                       "MemorySanitizer: detects uninitialized reads.", false,
688                       false)
689 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
690 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan",
691                     "MemorySanitizer: detects uninitialized reads.", false,
692                     false)
693 
694 FunctionPass *
695 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) {
696   return new MemorySanitizerLegacyPass(Options);
697 }
698 
699 /// Create a non-const global initialized with the given string.
700 ///
701 /// Creates a writable global for Str so that we can pass it to the
702 /// run-time lib. Runtime uses first 4 bytes of the string to store the
703 /// frame ID, so the string needs to be mutable.
704 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
705                                                             StringRef Str) {
706   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
707   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
708                             GlobalValue::PrivateLinkage, StrConst, "");
709 }
710 
711 /// Create KMSAN API callbacks.
712 void MemorySanitizer::createKernelApi(Module &M) {
713   IRBuilder<> IRB(*C);
714 
715   // These will be initialized in insertKmsanPrologue().
716   RetvalTLS = nullptr;
717   RetvalOriginTLS = nullptr;
718   ParamTLS = nullptr;
719   ParamOriginTLS = nullptr;
720   VAArgTLS = nullptr;
721   VAArgOriginTLS = nullptr;
722   VAArgOverflowSizeTLS = nullptr;
723 
724   WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(),
725                                     IRB.getInt32Ty());
726   // Requests the per-task context state (kmsan_context_state*) from the
727   // runtime library.
728   MsanContextStateTy = StructType::get(
729       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
730       ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
731       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
732       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
733       IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
734       OriginTy);
735   MsanGetContextStateFn = M.getOrInsertFunction(
736       "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
737 
738   Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
739                                 PointerType::get(IRB.getInt32Ty(), 0));
740 
741   for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
742     std::string name_load =
743         "__msan_metadata_ptr_for_load_" + std::to_string(size);
744     std::string name_store =
745         "__msan_metadata_ptr_for_store_" + std::to_string(size);
746     MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction(
747         name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
748     MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction(
749         name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
750   }
751 
752   MsanMetadataPtrForLoadN = M.getOrInsertFunction(
753       "__msan_metadata_ptr_for_load_n", RetTy,
754       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
755   MsanMetadataPtrForStoreN = M.getOrInsertFunction(
756       "__msan_metadata_ptr_for_store_n", RetTy,
757       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
758 
759   // Functions for poisoning and unpoisoning memory.
760   MsanPoisonAllocaFn =
761       M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
762                             IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
763   MsanUnpoisonAllocaFn = M.getOrInsertFunction(
764       "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
765 }
766 
767 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
768   return M.getOrInsertGlobal(Name, Ty, [&] {
769     return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
770                               nullptr, Name, nullptr,
771                               GlobalVariable::InitialExecTLSModel);
772   });
773 }
774 
775 /// Insert declarations for userspace-specific functions and globals.
776 void MemorySanitizer::createUserspaceApi(Module &M) {
777   IRBuilder<> IRB(*C);
778 
779   // Create the callback.
780   // FIXME: this function should have "Cold" calling conv,
781   // which is not yet implemented.
782   StringRef WarningFnName = Recover ? "__msan_warning_with_origin"
783                                     : "__msan_warning_with_origin_noreturn";
784   WarningFn =
785       M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty());
786 
787   // Create the global TLS variables.
788   RetvalTLS =
789       getOrInsertGlobal(M, "__msan_retval_tls",
790                         ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
791 
792   RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
793 
794   ParamTLS =
795       getOrInsertGlobal(M, "__msan_param_tls",
796                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
797 
798   ParamOriginTLS =
799       getOrInsertGlobal(M, "__msan_param_origin_tls",
800                         ArrayType::get(OriginTy, kParamTLSSize / 4));
801 
802   VAArgTLS =
803       getOrInsertGlobal(M, "__msan_va_arg_tls",
804                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
805 
806   VAArgOriginTLS =
807       getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
808                         ArrayType::get(OriginTy, kParamTLSSize / 4));
809 
810   VAArgOverflowSizeTLS =
811       getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
812 
813   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
814        AccessSizeIndex++) {
815     unsigned AccessSize = 1 << AccessSizeIndex;
816     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
817     SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs;
818     MaybeWarningFnAttrs.push_back(std::make_pair(
819         AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt)));
820     MaybeWarningFnAttrs.push_back(std::make_pair(
821         AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt)));
822     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
823         FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs),
824         IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty());
825 
826     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
827     SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs;
828     MaybeStoreOriginFnAttrs.push_back(std::make_pair(
829         AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt)));
830     MaybeStoreOriginFnAttrs.push_back(std::make_pair(
831         AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt)));
832     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
833         FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs),
834         IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(),
835         IRB.getInt32Ty());
836   }
837 
838   MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
839     "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
840     IRB.getInt8PtrTy(), IntptrTy);
841   MsanPoisonStackFn =
842       M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
843                             IRB.getInt8PtrTy(), IntptrTy);
844 }
845 
846 /// Insert extern declaration of runtime-provided functions and globals.
847 void MemorySanitizer::initializeCallbacks(Module &M) {
848   // Only do this once.
849   if (CallbacksInitialized)
850     return;
851 
852   IRBuilder<> IRB(*C);
853   // Initialize callbacks that are common for kernel and userspace
854   // instrumentation.
855   MsanChainOriginFn = M.getOrInsertFunction(
856     "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty());
857   MsanSetOriginFn =
858       M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(),
859                             IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty());
860   MemmoveFn = M.getOrInsertFunction(
861     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
862     IRB.getInt8PtrTy(), IntptrTy);
863   MemcpyFn = M.getOrInsertFunction(
864     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
865     IntptrTy);
866   MemsetFn = M.getOrInsertFunction(
867     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
868     IntptrTy);
869 
870   MsanInstrumentAsmStoreFn =
871       M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
872                             PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
873 
874   if (CompileKernel) {
875     createKernelApi(M);
876   } else {
877     createUserspaceApi(M);
878   }
879   CallbacksInitialized = true;
880 }
881 
882 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
883                                                              int size) {
884   FunctionCallee *Fns =
885       isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
886   switch (size) {
887   case 1:
888     return Fns[0];
889   case 2:
890     return Fns[1];
891   case 4:
892     return Fns[2];
893   case 8:
894     return Fns[3];
895   default:
896     return nullptr;
897   }
898 }
899 
900 /// Module-level initialization.
901 ///
902 /// inserts a call to __msan_init to the module's constructor list.
903 void MemorySanitizer::initializeModule(Module &M) {
904   auto &DL = M.getDataLayout();
905 
906   bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
907   bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
908   // Check the overrides first
909   if (ShadowPassed || OriginPassed) {
910     CustomMapParams.AndMask = ClAndMask;
911     CustomMapParams.XorMask = ClXorMask;
912     CustomMapParams.ShadowBase = ClShadowBase;
913     CustomMapParams.OriginBase = ClOriginBase;
914     MapParams = &CustomMapParams;
915   } else {
916     Triple TargetTriple(M.getTargetTriple());
917     switch (TargetTriple.getOS()) {
918       case Triple::FreeBSD:
919         switch (TargetTriple.getArch()) {
920           case Triple::x86_64:
921             MapParams = FreeBSD_X86_MemoryMapParams.bits64;
922             break;
923           case Triple::x86:
924             MapParams = FreeBSD_X86_MemoryMapParams.bits32;
925             break;
926           default:
927             report_fatal_error("unsupported architecture");
928         }
929         break;
930       case Triple::NetBSD:
931         switch (TargetTriple.getArch()) {
932           case Triple::x86_64:
933             MapParams = NetBSD_X86_MemoryMapParams.bits64;
934             break;
935           default:
936             report_fatal_error("unsupported architecture");
937         }
938         break;
939       case Triple::Linux:
940         switch (TargetTriple.getArch()) {
941           case Triple::x86_64:
942             MapParams = Linux_X86_MemoryMapParams.bits64;
943             break;
944           case Triple::x86:
945             MapParams = Linux_X86_MemoryMapParams.bits32;
946             break;
947           case Triple::mips64:
948           case Triple::mips64el:
949             MapParams = Linux_MIPS_MemoryMapParams.bits64;
950             break;
951           case Triple::ppc64:
952           case Triple::ppc64le:
953             MapParams = Linux_PowerPC_MemoryMapParams.bits64;
954             break;
955           case Triple::systemz:
956             MapParams = Linux_S390_MemoryMapParams.bits64;
957             break;
958           case Triple::aarch64:
959           case Triple::aarch64_be:
960             MapParams = Linux_ARM_MemoryMapParams.bits64;
961             break;
962           default:
963             report_fatal_error("unsupported architecture");
964         }
965         break;
966       default:
967         report_fatal_error("unsupported operating system");
968     }
969   }
970 
971   C = &(M.getContext());
972   IRBuilder<> IRB(*C);
973   IntptrTy = IRB.getIntPtrTy(DL);
974   OriginTy = IRB.getInt32Ty();
975 
976   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
977   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
978 
979   if (!CompileKernel) {
980     if (TrackOrigins)
981       M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
982         return new GlobalVariable(
983             M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
984             IRB.getInt32(TrackOrigins), "__msan_track_origins");
985       });
986 
987     if (Recover)
988       M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
989         return new GlobalVariable(M, IRB.getInt32Ty(), true,
990                                   GlobalValue::WeakODRLinkage,
991                                   IRB.getInt32(Recover), "__msan_keep_going");
992       });
993 }
994 }
995 
996 bool MemorySanitizerLegacyPass::doInitialization(Module &M) {
997   if (!Options.Kernel)
998     insertModuleCtor(M);
999   MSan.emplace(M, Options);
1000   return true;
1001 }
1002 
1003 namespace {
1004 
1005 /// A helper class that handles instrumentation of VarArg
1006 /// functions on a particular platform.
1007 ///
1008 /// Implementations are expected to insert the instrumentation
1009 /// necessary to propagate argument shadow through VarArg function
1010 /// calls. Visit* methods are called during an InstVisitor pass over
1011 /// the function, and should avoid creating new basic blocks. A new
1012 /// instance of this class is created for each instrumented function.
1013 struct VarArgHelper {
1014   virtual ~VarArgHelper() = default;
1015 
1016   /// Visit a CallBase.
1017   virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0;
1018 
1019   /// Visit a va_start call.
1020   virtual void visitVAStartInst(VAStartInst &I) = 0;
1021 
1022   /// Visit a va_copy call.
1023   virtual void visitVACopyInst(VACopyInst &I) = 0;
1024 
1025   /// Finalize function instrumentation.
1026   ///
1027   /// This method is called after visiting all interesting (see above)
1028   /// instructions in a function.
1029   virtual void finalizeInstrumentation() = 0;
1030 };
1031 
1032 struct MemorySanitizerVisitor;
1033 
1034 } // end anonymous namespace
1035 
1036 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1037                                         MemorySanitizerVisitor &Visitor);
1038 
1039 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
1040   if (TypeSize <= 8) return 0;
1041   return Log2_32_Ceil((TypeSize + 7) / 8);
1042 }
1043 
1044 namespace {
1045 
1046 /// This class does all the work for a given function. Store and Load
1047 /// instructions store and load corresponding shadow and origin
1048 /// values. Most instructions propagate shadow from arguments to their
1049 /// return values. Certain instructions (most importantly, BranchInst)
1050 /// test their argument shadow and print reports (with a runtime call) if it's
1051 /// non-zero.
1052 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
1053   Function &F;
1054   MemorySanitizer &MS;
1055   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
1056   ValueMap<Value*, Value*> ShadowMap, OriginMap;
1057   std::unique_ptr<VarArgHelper> VAHelper;
1058   const TargetLibraryInfo *TLI;
1059   Instruction *FnPrologueEnd;
1060 
1061   // The following flags disable parts of MSan instrumentation based on
1062   // exclusion list contents and command-line options.
1063   bool InsertChecks;
1064   bool PropagateShadow;
1065   bool PoisonStack;
1066   bool PoisonUndef;
1067 
1068   struct ShadowOriginAndInsertPoint {
1069     Value *Shadow;
1070     Value *Origin;
1071     Instruction *OrigIns;
1072 
1073     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
1074       : Shadow(S), Origin(O), OrigIns(I) {}
1075   };
1076   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
1077   bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
1078   SmallSet<AllocaInst *, 16> AllocaSet;
1079   SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
1080   SmallVector<StoreInst *, 16> StoreList;
1081 
1082   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
1083                          const TargetLibraryInfo &TLI)
1084       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
1085     bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
1086     InsertChecks = SanitizeFunction;
1087     PropagateShadow = SanitizeFunction;
1088     PoisonStack = SanitizeFunction && ClPoisonStack;
1089     PoisonUndef = SanitizeFunction && ClPoisonUndef;
1090 
1091     // In the presence of unreachable blocks, we may see Phi nodes with
1092     // incoming nodes from such blocks. Since InstVisitor skips unreachable
1093     // blocks, such nodes will not have any shadow value associated with them.
1094     // It's easier to remove unreachable blocks than deal with missing shadow.
1095     removeUnreachableBlocks(F);
1096 
1097     MS.initializeCallbacks(*F.getParent());
1098     FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI())
1099                         .CreateIntrinsic(Intrinsic::donothing, {}, {});
1100 
1101     if (MS.CompileKernel) {
1102       IRBuilder<> IRB(FnPrologueEnd);
1103       insertKmsanPrologue(IRB);
1104     }
1105 
1106     LLVM_DEBUG(if (!InsertChecks) dbgs()
1107                << "MemorySanitizer is not inserting checks into '"
1108                << F.getName() << "'\n");
1109   }
1110 
1111   bool isInPrologue(Instruction &I) {
1112     return I.getParent() == FnPrologueEnd->getParent() &&
1113            (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd));
1114   }
1115 
1116   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
1117     if (MS.TrackOrigins <= 1) return V;
1118     return IRB.CreateCall(MS.MsanChainOriginFn, V);
1119   }
1120 
1121   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
1122     const DataLayout &DL = F.getParent()->getDataLayout();
1123     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1124     if (IntptrSize == kOriginSize) return Origin;
1125     assert(IntptrSize == kOriginSize * 2);
1126     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
1127     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
1128   }
1129 
1130   /// Fill memory range with the given origin value.
1131   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
1132                    unsigned Size, Align Alignment) {
1133     const DataLayout &DL = F.getParent()->getDataLayout();
1134     const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy);
1135     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1136     assert(IntptrAlignment >= kMinOriginAlignment);
1137     assert(IntptrSize >= kOriginSize);
1138 
1139     unsigned Ofs = 0;
1140     Align CurrentAlignment = Alignment;
1141     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
1142       Value *IntptrOrigin = originToIntptr(IRB, Origin);
1143       Value *IntptrOriginPtr =
1144           IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
1145       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
1146         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
1147                        : IntptrOriginPtr;
1148         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
1149         Ofs += IntptrSize / kOriginSize;
1150         CurrentAlignment = IntptrAlignment;
1151       }
1152     }
1153 
1154     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
1155       Value *GEP =
1156           i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
1157       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
1158       CurrentAlignment = kMinOriginAlignment;
1159     }
1160   }
1161 
1162   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
1163                    Value *OriginPtr, Align Alignment, bool AsCall) {
1164     const DataLayout &DL = F.getParent()->getDataLayout();
1165     const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1166     unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
1167     Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB);
1168     if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1169       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
1170         paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1171                     OriginAlignment);
1172       return;
1173     }
1174 
1175     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1176     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1177     if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1178       FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
1179       Value *ConvertedShadow2 =
1180           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1181       CallBase *CB = IRB.CreateCall(
1182           Fn, {ConvertedShadow2,
1183                IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin});
1184       CB->addParamAttr(0, Attribute::ZExt);
1185       CB->addParamAttr(2, Attribute::ZExt);
1186     } else {
1187       Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1188       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1189           Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
1190       IRBuilder<> IRBNew(CheckTerm);
1191       paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
1192                   OriginAlignment);
1193     }
1194   }
1195 
1196   void materializeStores(bool InstrumentWithCalls) {
1197     for (StoreInst *SI : StoreList) {
1198       IRBuilder<> IRB(SI);
1199       Value *Val = SI->getValueOperand();
1200       Value *Addr = SI->getPointerOperand();
1201       Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
1202       Value *ShadowPtr, *OriginPtr;
1203       Type *ShadowTy = Shadow->getType();
1204       const Align Alignment = assumeAligned(SI->getAlignment());
1205       const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1206       std::tie(ShadowPtr, OriginPtr) =
1207           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
1208 
1209       StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
1210       LLVM_DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
1211       (void)NewSI;
1212 
1213       if (SI->isAtomic())
1214         SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
1215 
1216       if (MS.TrackOrigins && !SI->isAtomic())
1217         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
1218                     OriginAlignment, InstrumentWithCalls);
1219     }
1220   }
1221 
1222   /// Helper function to insert a warning at IRB's current insert point.
1223   void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
1224     if (!Origin)
1225       Origin = (Value *)IRB.getInt32(0);
1226     assert(Origin->getType()->isIntegerTy());
1227     IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge();
1228     // FIXME: Insert UnreachableInst if !MS.Recover?
1229     // This may invalidate some of the following checks and needs to be done
1230     // at the very end.
1231   }
1232 
1233   void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
1234                            bool AsCall) {
1235     IRBuilder<> IRB(OrigIns);
1236     LLVM_DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
1237     Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB);
1238     LLVM_DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
1239 
1240     if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1241       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
1242         insertWarningFn(IRB, Origin);
1243       }
1244       return;
1245     }
1246 
1247     const DataLayout &DL = OrigIns->getModule()->getDataLayout();
1248 
1249     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1250     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1251     if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1252       FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
1253       Value *ConvertedShadow2 =
1254           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1255       CallBase *CB = IRB.CreateCall(
1256           Fn, {ConvertedShadow2,
1257                MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)});
1258       CB->addParamAttr(0, Attribute::ZExt);
1259       CB->addParamAttr(1, Attribute::ZExt);
1260     } else {
1261       Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1262       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1263           Cmp, OrigIns,
1264           /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
1265 
1266       IRB.SetInsertPoint(CheckTerm);
1267       insertWarningFn(IRB, Origin);
1268       LLVM_DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
1269     }
1270   }
1271 
1272   void materializeChecks(bool InstrumentWithCalls) {
1273     for (const auto &ShadowData : InstrumentationList) {
1274       Instruction *OrigIns = ShadowData.OrigIns;
1275       Value *Shadow = ShadowData.Shadow;
1276       Value *Origin = ShadowData.Origin;
1277       materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
1278     }
1279     LLVM_DEBUG(dbgs() << "DONE:\n" << F);
1280   }
1281 
1282   // Returns the last instruction in the new prologue
1283   void insertKmsanPrologue(IRBuilder<> &IRB) {
1284     Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
1285     Constant *Zero = IRB.getInt32(0);
1286     MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1287                                 {Zero, IRB.getInt32(0)}, "param_shadow");
1288     MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1289                                  {Zero, IRB.getInt32(1)}, "retval_shadow");
1290     MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1291                                 {Zero, IRB.getInt32(2)}, "va_arg_shadow");
1292     MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1293                                       {Zero, IRB.getInt32(3)}, "va_arg_origin");
1294     MS.VAArgOverflowSizeTLS =
1295         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1296                       {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
1297     MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1298                                       {Zero, IRB.getInt32(5)}, "param_origin");
1299     MS.RetvalOriginTLS =
1300         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1301                       {Zero, IRB.getInt32(6)}, "retval_origin");
1302   }
1303 
1304   /// Add MemorySanitizer instrumentation to a function.
1305   bool runOnFunction() {
1306     // Iterate all BBs in depth-first order and create shadow instructions
1307     // for all instructions (where applicable).
1308     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1309     for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent()))
1310       visit(*BB);
1311 
1312     // Finalize PHI nodes.
1313     for (PHINode *PN : ShadowPHINodes) {
1314       PHINode *PNS = cast<PHINode>(getShadow(PN));
1315       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
1316       size_t NumValues = PN->getNumIncomingValues();
1317       for (size_t v = 0; v < NumValues; v++) {
1318         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1319         if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1320       }
1321     }
1322 
1323     VAHelper->finalizeInstrumentation();
1324 
1325     // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
1326     // instrumenting only allocas.
1327     if (InstrumentLifetimeStart) {
1328       for (auto Item : LifetimeStartList) {
1329         instrumentAlloca(*Item.second, Item.first);
1330         AllocaSet.erase(Item.second);
1331       }
1332     }
1333     // Poison the allocas for which we didn't instrument the corresponding
1334     // lifetime intrinsics.
1335     for (AllocaInst *AI : AllocaSet)
1336       instrumentAlloca(*AI);
1337 
1338     bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
1339                                InstrumentationList.size() + StoreList.size() >
1340                                    (unsigned)ClInstrumentationWithCallThreshold;
1341 
1342     // Insert shadow value checks.
1343     materializeChecks(InstrumentWithCalls);
1344 
1345     // Delayed instrumentation of StoreInst.
1346     // This may not add new address checks.
1347     materializeStores(InstrumentWithCalls);
1348 
1349     return true;
1350   }
1351 
1352   /// Compute the shadow type that corresponds to a given Value.
1353   Type *getShadowTy(Value *V) {
1354     return getShadowTy(V->getType());
1355   }
1356 
1357   /// Compute the shadow type that corresponds to a given Type.
1358   Type *getShadowTy(Type *OrigTy) {
1359     if (!OrigTy->isSized()) {
1360       return nullptr;
1361     }
1362     // For integer type, shadow is the same as the original type.
1363     // This may return weird-sized types like i1.
1364     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1365       return IT;
1366     const DataLayout &DL = F.getParent()->getDataLayout();
1367     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1368       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1369       return FixedVectorType::get(IntegerType::get(*MS.C, EltSize),
1370                                   cast<FixedVectorType>(VT)->getNumElements());
1371     }
1372     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1373       return ArrayType::get(getShadowTy(AT->getElementType()),
1374                             AT->getNumElements());
1375     }
1376     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1377       SmallVector<Type*, 4> Elements;
1378       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1379         Elements.push_back(getShadowTy(ST->getElementType(i)));
1380       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1381       LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
1382       return Res;
1383     }
1384     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1385     return IntegerType::get(*MS.C, TypeSize);
1386   }
1387 
1388   /// Flatten a vector type.
1389   Type *getShadowTyNoVec(Type *ty) {
1390     if (VectorType *vt = dyn_cast<VectorType>(ty))
1391       return IntegerType::get(*MS.C,
1392                               vt->getPrimitiveSizeInBits().getFixedSize());
1393     return ty;
1394   }
1395 
1396   /// Extract combined shadow of struct elements as a bool
1397   Value *collapseStructShadow(StructType *Struct, Value *Shadow,
1398                               IRBuilder<> &IRB) {
1399     Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0);
1400     Value *Aggregator = FalseVal;
1401 
1402     for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) {
1403       // Combine by ORing together each element's bool shadow
1404       Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1405       Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1406       Value *ShadowBool = convertToBool(ShadowInner, IRB);
1407 
1408       if (Aggregator != FalseVal)
1409         Aggregator = IRB.CreateOr(Aggregator, ShadowBool);
1410       else
1411         Aggregator = ShadowBool;
1412     }
1413 
1414     return Aggregator;
1415   }
1416 
1417   // Extract combined shadow of array elements
1418   Value *collapseArrayShadow(ArrayType *Array, Value *Shadow,
1419                              IRBuilder<> &IRB) {
1420     if (!Array->getNumElements())
1421       return IRB.getIntN(/* width */ 1, /* value */ 0);
1422 
1423     Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
1424     Value *Aggregator = convertShadowToScalar(FirstItem, IRB);
1425 
1426     for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) {
1427       Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1428       Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1429       Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1430     }
1431     return Aggregator;
1432   }
1433 
1434   /// Convert a shadow value to it's flattened variant. The resulting
1435   /// shadow may not necessarily have the same bit width as the input
1436   /// value, but it will always be comparable to zero.
1437   Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) {
1438     if (StructType *Struct = dyn_cast<StructType>(V->getType()))
1439       return collapseStructShadow(Struct, V, IRB);
1440     if (ArrayType *Array = dyn_cast<ArrayType>(V->getType()))
1441       return collapseArrayShadow(Array, V, IRB);
1442     Type *Ty = V->getType();
1443     Type *NoVecTy = getShadowTyNoVec(Ty);
1444     if (Ty == NoVecTy) return V;
1445     return IRB.CreateBitCast(V, NoVecTy);
1446   }
1447 
1448   // Convert a scalar value to an i1 by comparing with 0
1449   Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") {
1450     Type *VTy = V->getType();
1451     assert(VTy->isIntegerTy());
1452     if (VTy->getIntegerBitWidth() == 1)
1453       // Just converting a bool to a bool, so do nothing.
1454       return V;
1455     return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name);
1456   }
1457 
1458   /// Compute the integer shadow offset that corresponds to a given
1459   /// application address.
1460   ///
1461   /// Offset = (Addr & ~AndMask) ^ XorMask
1462   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1463     Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
1464 
1465     uint64_t AndMask = MS.MapParams->AndMask;
1466     if (AndMask)
1467       OffsetLong =
1468           IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
1469 
1470     uint64_t XorMask = MS.MapParams->XorMask;
1471     if (XorMask)
1472       OffsetLong =
1473           IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
1474     return OffsetLong;
1475   }
1476 
1477   /// Compute the shadow and origin addresses corresponding to a given
1478   /// application address.
1479   ///
1480   /// Shadow = ShadowBase + Offset
1481   /// Origin = (OriginBase + Offset) & ~3ULL
1482   std::pair<Value *, Value *>
1483   getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
1484                               MaybeAlign Alignment) {
1485     Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1486     Value *ShadowLong = ShadowOffset;
1487     uint64_t ShadowBase = MS.MapParams->ShadowBase;
1488     if (ShadowBase != 0) {
1489       ShadowLong =
1490         IRB.CreateAdd(ShadowLong,
1491                       ConstantInt::get(MS.IntptrTy, ShadowBase));
1492     }
1493     Value *ShadowPtr =
1494         IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1495     Value *OriginPtr = nullptr;
1496     if (MS.TrackOrigins) {
1497       Value *OriginLong = ShadowOffset;
1498       uint64_t OriginBase = MS.MapParams->OriginBase;
1499       if (OriginBase != 0)
1500         OriginLong = IRB.CreateAdd(OriginLong,
1501                                    ConstantInt::get(MS.IntptrTy, OriginBase));
1502       if (!Alignment || *Alignment < kMinOriginAlignment) {
1503         uint64_t Mask = kMinOriginAlignment.value() - 1;
1504         OriginLong =
1505             IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask));
1506       }
1507       OriginPtr =
1508           IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0));
1509     }
1510     return std::make_pair(ShadowPtr, OriginPtr);
1511   }
1512 
1513   std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr,
1514                                                        IRBuilder<> &IRB,
1515                                                        Type *ShadowTy,
1516                                                        bool isStore) {
1517     Value *ShadowOriginPtrs;
1518     const DataLayout &DL = F.getParent()->getDataLayout();
1519     int Size = DL.getTypeStoreSize(ShadowTy);
1520 
1521     FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
1522     Value *AddrCast =
1523         IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
1524     if (Getter) {
1525       ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast);
1526     } else {
1527       Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
1528       ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN
1529                                                 : MS.MsanMetadataPtrForLoadN,
1530                                         {AddrCast, SizeVal});
1531     }
1532     Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
1533     ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
1534     Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
1535 
1536     return std::make_pair(ShadowPtr, OriginPtr);
1537   }
1538 
1539   std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1540                                                  Type *ShadowTy,
1541                                                  MaybeAlign Alignment,
1542                                                  bool isStore) {
1543     if (MS.CompileKernel)
1544       return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore);
1545     return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
1546   }
1547 
1548   /// Compute the shadow address for a given function argument.
1549   ///
1550   /// Shadow = ParamTLS+ArgOffset.
1551   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
1552                                  int ArgOffset) {
1553     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1554     if (ArgOffset)
1555       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1556     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1557                               "_msarg");
1558   }
1559 
1560   /// Compute the origin address for a given function argument.
1561   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
1562                                  int ArgOffset) {
1563     if (!MS.TrackOrigins)
1564       return nullptr;
1565     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1566     if (ArgOffset)
1567       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1568     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1569                               "_msarg_o");
1570   }
1571 
1572   /// Compute the shadow address for a retval.
1573   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1574     return IRB.CreatePointerCast(MS.RetvalTLS,
1575                                  PointerType::get(getShadowTy(A), 0),
1576                                  "_msret");
1577   }
1578 
1579   /// Compute the origin address for a retval.
1580   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1581     // We keep a single origin for the entire retval. Might be too optimistic.
1582     return MS.RetvalOriginTLS;
1583   }
1584 
1585   /// Set SV to be the shadow value for V.
1586   void setShadow(Value *V, Value *SV) {
1587     assert(!ShadowMap.count(V) && "Values may only have one shadow");
1588     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1589   }
1590 
1591   /// Set Origin to be the origin value for V.
1592   void setOrigin(Value *V, Value *Origin) {
1593     if (!MS.TrackOrigins) return;
1594     assert(!OriginMap.count(V) && "Values may only have one origin");
1595     LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
1596     OriginMap[V] = Origin;
1597   }
1598 
1599   Constant *getCleanShadow(Type *OrigTy) {
1600     Type *ShadowTy = getShadowTy(OrigTy);
1601     if (!ShadowTy)
1602       return nullptr;
1603     return Constant::getNullValue(ShadowTy);
1604   }
1605 
1606   /// Create a clean shadow value for a given value.
1607   ///
1608   /// Clean shadow (all zeroes) means all bits of the value are defined
1609   /// (initialized).
1610   Constant *getCleanShadow(Value *V) {
1611     return getCleanShadow(V->getType());
1612   }
1613 
1614   /// Create a dirty shadow of a given shadow type.
1615   Constant *getPoisonedShadow(Type *ShadowTy) {
1616     assert(ShadowTy);
1617     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1618       return Constant::getAllOnesValue(ShadowTy);
1619     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1620       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1621                                       getPoisonedShadow(AT->getElementType()));
1622       return ConstantArray::get(AT, Vals);
1623     }
1624     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1625       SmallVector<Constant *, 4> Vals;
1626       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1627         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1628       return ConstantStruct::get(ST, Vals);
1629     }
1630     llvm_unreachable("Unexpected shadow type");
1631   }
1632 
1633   /// Create a dirty shadow for a given value.
1634   Constant *getPoisonedShadow(Value *V) {
1635     Type *ShadowTy = getShadowTy(V);
1636     if (!ShadowTy)
1637       return nullptr;
1638     return getPoisonedShadow(ShadowTy);
1639   }
1640 
1641   /// Create a clean (zero) origin.
1642   Value *getCleanOrigin() {
1643     return Constant::getNullValue(MS.OriginTy);
1644   }
1645 
1646   /// Get the shadow value for a given Value.
1647   ///
1648   /// This function either returns the value set earlier with setShadow,
1649   /// or extracts if from ParamTLS (for function arguments).
1650   Value *getShadow(Value *V) {
1651     if (!PropagateShadow) return getCleanShadow(V);
1652     if (Instruction *I = dyn_cast<Instruction>(V)) {
1653       if (I->getMetadata("nosanitize"))
1654         return getCleanShadow(V);
1655       // For instructions the shadow is already stored in the map.
1656       Value *Shadow = ShadowMap[V];
1657       if (!Shadow) {
1658         LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1659         (void)I;
1660         assert(Shadow && "No shadow for a value");
1661       }
1662       return Shadow;
1663     }
1664     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1665       Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
1666       LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1667       (void)U;
1668       return AllOnes;
1669     }
1670     if (Argument *A = dyn_cast<Argument>(V)) {
1671       // For arguments we compute the shadow on demand and store it in the map.
1672       Value **ShadowPtr = &ShadowMap[V];
1673       if (*ShadowPtr)
1674         return *ShadowPtr;
1675       Function *F = A->getParent();
1676       IRBuilder<> EntryIRB(FnPrologueEnd);
1677       unsigned ArgOffset = 0;
1678       const DataLayout &DL = F->getParent()->getDataLayout();
1679       for (auto &FArg : F->args()) {
1680         if (!FArg.getType()->isSized()) {
1681           LLVM_DEBUG(dbgs() << "Arg is not sized\n");
1682           continue;
1683         }
1684 
1685         bool FArgByVal = FArg.hasByValAttr();
1686         bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef);
1687         bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef;
1688         unsigned Size =
1689             FArg.hasByValAttr()
1690                 ? DL.getTypeAllocSize(FArg.getParamByValType())
1691                 : DL.getTypeAllocSize(FArg.getType());
1692 
1693         if (A == &FArg) {
1694           bool Overflow = ArgOffset + Size > kParamTLSSize;
1695           if (FArgEagerCheck) {
1696             *ShadowPtr = getCleanShadow(V);
1697             setOrigin(A, getCleanOrigin());
1698             continue;
1699           } else if (FArgByVal) {
1700             Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1701             // ByVal pointer itself has clean shadow. We copy the actual
1702             // argument shadow to the underlying memory.
1703             // Figure out maximal valid memcpy alignment.
1704             const Align ArgAlign = DL.getValueOrABITypeAlignment(
1705                 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType());
1706             Value *CpShadowPtr =
1707                 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
1708                                    /*isStore*/ true)
1709                     .first;
1710             // TODO(glider): need to copy origins.
1711             if (Overflow) {
1712               // ParamTLS overflow.
1713               EntryIRB.CreateMemSet(
1714                   CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
1715                   Size, ArgAlign);
1716             } else {
1717               const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1718               Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
1719                                                  CopyAlign, Size);
1720               LLVM_DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
1721               (void)Cpy;
1722             }
1723             *ShadowPtr = getCleanShadow(V);
1724           } else {
1725             // Shadow over TLS
1726             Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1727             if (Overflow) {
1728               // ParamTLS overflow.
1729               *ShadowPtr = getCleanShadow(V);
1730             } else {
1731               *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
1732                                                       kShadowTLSAlignment);
1733             }
1734           }
1735           LLVM_DEBUG(dbgs()
1736                      << "  ARG:    " << FArg << " ==> " << **ShadowPtr << "\n");
1737           if (MS.TrackOrigins && !Overflow) {
1738             Value *OriginPtr =
1739                 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1740             setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
1741           } else {
1742             setOrigin(A, getCleanOrigin());
1743           }
1744 
1745           break;
1746         }
1747 
1748         if (!FArgEagerCheck)
1749           ArgOffset += alignTo(Size, kShadowTLSAlignment);
1750       }
1751       assert(*ShadowPtr && "Could not find shadow for an argument");
1752       return *ShadowPtr;
1753     }
1754     // For everything else the shadow is zero.
1755     return getCleanShadow(V);
1756   }
1757 
1758   /// Get the shadow for i-th argument of the instruction I.
1759   Value *getShadow(Instruction *I, int i) {
1760     return getShadow(I->getOperand(i));
1761   }
1762 
1763   /// Get the origin for a value.
1764   Value *getOrigin(Value *V) {
1765     if (!MS.TrackOrigins) return nullptr;
1766     if (!PropagateShadow) return getCleanOrigin();
1767     if (isa<Constant>(V)) return getCleanOrigin();
1768     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1769            "Unexpected value type in getOrigin()");
1770     if (Instruction *I = dyn_cast<Instruction>(V)) {
1771       if (I->getMetadata("nosanitize"))
1772         return getCleanOrigin();
1773     }
1774     Value *Origin = OriginMap[V];
1775     assert(Origin && "Missing origin");
1776     return Origin;
1777   }
1778 
1779   /// Get the origin for i-th argument of the instruction I.
1780   Value *getOrigin(Instruction *I, int i) {
1781     return getOrigin(I->getOperand(i));
1782   }
1783 
1784   /// Remember the place where a shadow check should be inserted.
1785   ///
1786   /// This location will be later instrumented with a check that will print a
1787   /// UMR warning in runtime if the shadow value is not 0.
1788   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1789     assert(Shadow);
1790     if (!InsertChecks) return;
1791 #ifndef NDEBUG
1792     Type *ShadowTy = Shadow->getType();
1793     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) ||
1794             isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) &&
1795            "Can only insert checks for integer, vector, and aggregate shadow "
1796            "types");
1797 #endif
1798     InstrumentationList.push_back(
1799         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1800   }
1801 
1802   /// Remember the place where a shadow check should be inserted.
1803   ///
1804   /// This location will be later instrumented with a check that will print a
1805   /// UMR warning in runtime if the value is not fully defined.
1806   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1807     assert(Val);
1808     Value *Shadow, *Origin;
1809     if (ClCheckConstantShadow) {
1810       Shadow = getShadow(Val);
1811       if (!Shadow) return;
1812       Origin = getOrigin(Val);
1813     } else {
1814       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1815       if (!Shadow) return;
1816       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1817     }
1818     insertShadowCheck(Shadow, Origin, OrigIns);
1819   }
1820 
1821   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1822     switch (a) {
1823       case AtomicOrdering::NotAtomic:
1824         return AtomicOrdering::NotAtomic;
1825       case AtomicOrdering::Unordered:
1826       case AtomicOrdering::Monotonic:
1827       case AtomicOrdering::Release:
1828         return AtomicOrdering::Release;
1829       case AtomicOrdering::Acquire:
1830       case AtomicOrdering::AcquireRelease:
1831         return AtomicOrdering::AcquireRelease;
1832       case AtomicOrdering::SequentiallyConsistent:
1833         return AtomicOrdering::SequentiallyConsistent;
1834     }
1835     llvm_unreachable("Unknown ordering");
1836   }
1837 
1838   Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
1839     constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
1840     uint32_t OrderingTable[NumOrderings] = {};
1841 
1842     OrderingTable[(int)AtomicOrderingCABI::relaxed] =
1843         OrderingTable[(int)AtomicOrderingCABI::release] =
1844             (int)AtomicOrderingCABI::release;
1845     OrderingTable[(int)AtomicOrderingCABI::consume] =
1846         OrderingTable[(int)AtomicOrderingCABI::acquire] =
1847             OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
1848                 (int)AtomicOrderingCABI::acq_rel;
1849     OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
1850         (int)AtomicOrderingCABI::seq_cst;
1851 
1852     return ConstantDataVector::get(IRB.getContext(),
1853                                    makeArrayRef(OrderingTable, NumOrderings));
1854   }
1855 
1856   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1857     switch (a) {
1858       case AtomicOrdering::NotAtomic:
1859         return AtomicOrdering::NotAtomic;
1860       case AtomicOrdering::Unordered:
1861       case AtomicOrdering::Monotonic:
1862       case AtomicOrdering::Acquire:
1863         return AtomicOrdering::Acquire;
1864       case AtomicOrdering::Release:
1865       case AtomicOrdering::AcquireRelease:
1866         return AtomicOrdering::AcquireRelease;
1867       case AtomicOrdering::SequentiallyConsistent:
1868         return AtomicOrdering::SequentiallyConsistent;
1869     }
1870     llvm_unreachable("Unknown ordering");
1871   }
1872 
1873   Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
1874     constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
1875     uint32_t OrderingTable[NumOrderings] = {};
1876 
1877     OrderingTable[(int)AtomicOrderingCABI::relaxed] =
1878         OrderingTable[(int)AtomicOrderingCABI::acquire] =
1879             OrderingTable[(int)AtomicOrderingCABI::consume] =
1880                 (int)AtomicOrderingCABI::acquire;
1881     OrderingTable[(int)AtomicOrderingCABI::release] =
1882         OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
1883             (int)AtomicOrderingCABI::acq_rel;
1884     OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
1885         (int)AtomicOrderingCABI::seq_cst;
1886 
1887     return ConstantDataVector::get(IRB.getContext(),
1888                                    makeArrayRef(OrderingTable, NumOrderings));
1889   }
1890 
1891   // ------------------- Visitors.
1892   using InstVisitor<MemorySanitizerVisitor>::visit;
1893   void visit(Instruction &I) {
1894     if (I.getMetadata("nosanitize"))
1895       return;
1896     // Don't want to visit if we're in the prologue
1897     if (isInPrologue(I))
1898       return;
1899     InstVisitor<MemorySanitizerVisitor>::visit(I);
1900   }
1901 
1902   /// Instrument LoadInst
1903   ///
1904   /// Loads the corresponding shadow and (optionally) origin.
1905   /// Optionally, checks that the load address is fully defined.
1906   void visitLoadInst(LoadInst &I) {
1907     assert(I.getType()->isSized() && "Load type must have size");
1908     assert(!I.getMetadata("nosanitize"));
1909     IRBuilder<> IRB(I.getNextNode());
1910     Type *ShadowTy = getShadowTy(&I);
1911     Value *Addr = I.getPointerOperand();
1912     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
1913     const Align Alignment = assumeAligned(I.getAlignment());
1914     if (PropagateShadow) {
1915       std::tie(ShadowPtr, OriginPtr) =
1916           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
1917       setShadow(&I,
1918                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
1919     } else {
1920       setShadow(&I, getCleanShadow(&I));
1921     }
1922 
1923     if (ClCheckAccessAddress)
1924       insertShadowCheck(I.getPointerOperand(), &I);
1925 
1926     if (I.isAtomic())
1927       I.setOrdering(addAcquireOrdering(I.getOrdering()));
1928 
1929     if (MS.TrackOrigins) {
1930       if (PropagateShadow) {
1931         const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1932         setOrigin(
1933             &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
1934       } else {
1935         setOrigin(&I, getCleanOrigin());
1936       }
1937     }
1938   }
1939 
1940   /// Instrument StoreInst
1941   ///
1942   /// Stores the corresponding shadow and (optionally) origin.
1943   /// Optionally, checks that the store address is fully defined.
1944   void visitStoreInst(StoreInst &I) {
1945     StoreList.push_back(&I);
1946     if (ClCheckAccessAddress)
1947       insertShadowCheck(I.getPointerOperand(), &I);
1948   }
1949 
1950   void handleCASOrRMW(Instruction &I) {
1951     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1952 
1953     IRBuilder<> IRB(&I);
1954     Value *Addr = I.getOperand(0);
1955     Value *Val = I.getOperand(1);
1956     Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, Val->getType(), Align(1),
1957                                           /*isStore*/ true)
1958                            .first;
1959 
1960     if (ClCheckAccessAddress)
1961       insertShadowCheck(Addr, &I);
1962 
1963     // Only test the conditional argument of cmpxchg instruction.
1964     // The other argument can potentially be uninitialized, but we can not
1965     // detect this situation reliably without possible false positives.
1966     if (isa<AtomicCmpXchgInst>(I))
1967       insertShadowCheck(Val, &I);
1968 
1969     IRB.CreateStore(getCleanShadow(Val), ShadowPtr);
1970 
1971     setShadow(&I, getCleanShadow(&I));
1972     setOrigin(&I, getCleanOrigin());
1973   }
1974 
1975   void visitAtomicRMWInst(AtomicRMWInst &I) {
1976     handleCASOrRMW(I);
1977     I.setOrdering(addReleaseOrdering(I.getOrdering()));
1978   }
1979 
1980   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1981     handleCASOrRMW(I);
1982     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1983   }
1984 
1985   // Vector manipulation.
1986   void visitExtractElementInst(ExtractElementInst &I) {
1987     insertShadowCheck(I.getOperand(1), &I);
1988     IRBuilder<> IRB(&I);
1989     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1990               "_msprop"));
1991     setOrigin(&I, getOrigin(&I, 0));
1992   }
1993 
1994   void visitInsertElementInst(InsertElementInst &I) {
1995     insertShadowCheck(I.getOperand(2), &I);
1996     IRBuilder<> IRB(&I);
1997     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1998               I.getOperand(2), "_msprop"));
1999     setOriginForNaryOp(I);
2000   }
2001 
2002   void visitShuffleVectorInst(ShuffleVectorInst &I) {
2003     IRBuilder<> IRB(&I);
2004     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
2005                                           I.getShuffleMask(), "_msprop"));
2006     setOriginForNaryOp(I);
2007   }
2008 
2009   // Casts.
2010   void visitSExtInst(SExtInst &I) {
2011     IRBuilder<> IRB(&I);
2012     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
2013     setOrigin(&I, getOrigin(&I, 0));
2014   }
2015 
2016   void visitZExtInst(ZExtInst &I) {
2017     IRBuilder<> IRB(&I);
2018     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
2019     setOrigin(&I, getOrigin(&I, 0));
2020   }
2021 
2022   void visitTruncInst(TruncInst &I) {
2023     IRBuilder<> IRB(&I);
2024     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
2025     setOrigin(&I, getOrigin(&I, 0));
2026   }
2027 
2028   void visitBitCastInst(BitCastInst &I) {
2029     // Special case: if this is the bitcast (there is exactly 1 allowed) between
2030     // a musttail call and a ret, don't instrument. New instructions are not
2031     // allowed after a musttail call.
2032     if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
2033       if (CI->isMustTailCall())
2034         return;
2035     IRBuilder<> IRB(&I);
2036     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
2037     setOrigin(&I, getOrigin(&I, 0));
2038   }
2039 
2040   void visitPtrToIntInst(PtrToIntInst &I) {
2041     IRBuilder<> IRB(&I);
2042     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2043              "_msprop_ptrtoint"));
2044     setOrigin(&I, getOrigin(&I, 0));
2045   }
2046 
2047   void visitIntToPtrInst(IntToPtrInst &I) {
2048     IRBuilder<> IRB(&I);
2049     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2050              "_msprop_inttoptr"));
2051     setOrigin(&I, getOrigin(&I, 0));
2052   }
2053 
2054   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
2055   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
2056   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
2057   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
2058   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
2059   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
2060 
2061   /// Propagate shadow for bitwise AND.
2062   ///
2063   /// This code is exact, i.e. if, for example, a bit in the left argument
2064   /// is defined and 0, then neither the value not definedness of the
2065   /// corresponding bit in B don't affect the resulting shadow.
2066   void visitAnd(BinaryOperator &I) {
2067     IRBuilder<> IRB(&I);
2068     //  "And" of 0 and a poisoned value results in unpoisoned value.
2069     //  1&1 => 1;     0&1 => 0;     p&1 => p;
2070     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
2071     //  1&p => p;     0&p => 0;     p&p => p;
2072     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
2073     Value *S1 = getShadow(&I, 0);
2074     Value *S2 = getShadow(&I, 1);
2075     Value *V1 = I.getOperand(0);
2076     Value *V2 = I.getOperand(1);
2077     if (V1->getType() != S1->getType()) {
2078       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2079       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2080     }
2081     Value *S1S2 = IRB.CreateAnd(S1, S2);
2082     Value *V1S2 = IRB.CreateAnd(V1, S2);
2083     Value *S1V2 = IRB.CreateAnd(S1, V2);
2084     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2085     setOriginForNaryOp(I);
2086   }
2087 
2088   void visitOr(BinaryOperator &I) {
2089     IRBuilder<> IRB(&I);
2090     //  "Or" of 1 and a poisoned value results in unpoisoned value.
2091     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
2092     //  1|0 => 1;     0|0 => 0;     p|0 => p;
2093     //  1|p => 1;     0|p => p;     p|p => p;
2094     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
2095     Value *S1 = getShadow(&I, 0);
2096     Value *S2 = getShadow(&I, 1);
2097     Value *V1 = IRB.CreateNot(I.getOperand(0));
2098     Value *V2 = IRB.CreateNot(I.getOperand(1));
2099     if (V1->getType() != S1->getType()) {
2100       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2101       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2102     }
2103     Value *S1S2 = IRB.CreateAnd(S1, S2);
2104     Value *V1S2 = IRB.CreateAnd(V1, S2);
2105     Value *S1V2 = IRB.CreateAnd(S1, V2);
2106     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2107     setOriginForNaryOp(I);
2108   }
2109 
2110   /// Default propagation of shadow and/or origin.
2111   ///
2112   /// This class implements the general case of shadow propagation, used in all
2113   /// cases where we don't know and/or don't care about what the operation
2114   /// actually does. It converts all input shadow values to a common type
2115   /// (extending or truncating as necessary), and bitwise OR's them.
2116   ///
2117   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
2118   /// fully initialized), and less prone to false positives.
2119   ///
2120   /// This class also implements the general case of origin propagation. For a
2121   /// Nary operation, result origin is set to the origin of an argument that is
2122   /// not entirely initialized. If there is more than one such arguments, the
2123   /// rightmost of them is picked. It does not matter which one is picked if all
2124   /// arguments are initialized.
2125   template <bool CombineShadow>
2126   class Combiner {
2127     Value *Shadow = nullptr;
2128     Value *Origin = nullptr;
2129     IRBuilder<> &IRB;
2130     MemorySanitizerVisitor *MSV;
2131 
2132   public:
2133     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
2134         : IRB(IRB), MSV(MSV) {}
2135 
2136     /// Add a pair of shadow and origin values to the mix.
2137     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
2138       if (CombineShadow) {
2139         assert(OpShadow);
2140         if (!Shadow)
2141           Shadow = OpShadow;
2142         else {
2143           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
2144           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
2145         }
2146       }
2147 
2148       if (MSV->MS.TrackOrigins) {
2149         assert(OpOrigin);
2150         if (!Origin) {
2151           Origin = OpOrigin;
2152         } else {
2153           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
2154           // No point in adding something that might result in 0 origin value.
2155           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
2156             Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB);
2157             Value *Cond =
2158                 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
2159             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2160           }
2161         }
2162       }
2163       return *this;
2164     }
2165 
2166     /// Add an application value to the mix.
2167     Combiner &Add(Value *V) {
2168       Value *OpShadow = MSV->getShadow(V);
2169       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
2170       return Add(OpShadow, OpOrigin);
2171     }
2172 
2173     /// Set the current combined values as the given instruction's shadow
2174     /// and origin.
2175     void Done(Instruction *I) {
2176       if (CombineShadow) {
2177         assert(Shadow);
2178         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
2179         MSV->setShadow(I, Shadow);
2180       }
2181       if (MSV->MS.TrackOrigins) {
2182         assert(Origin);
2183         MSV->setOrigin(I, Origin);
2184       }
2185     }
2186   };
2187 
2188   using ShadowAndOriginCombiner = Combiner<true>;
2189   using OriginCombiner = Combiner<false>;
2190 
2191   /// Propagate origin for arbitrary operation.
2192   void setOriginForNaryOp(Instruction &I) {
2193     if (!MS.TrackOrigins) return;
2194     IRBuilder<> IRB(&I);
2195     OriginCombiner OC(this, IRB);
2196     for (Use &Op : I.operands())
2197       OC.Add(Op.get());
2198     OC.Done(&I);
2199   }
2200 
2201   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
2202     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
2203            "Vector of pointers is not a valid shadow type");
2204     return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() *
2205                                   Ty->getScalarSizeInBits()
2206                             : Ty->getPrimitiveSizeInBits();
2207   }
2208 
2209   /// Cast between two shadow types, extending or truncating as
2210   /// necessary.
2211   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
2212                           bool Signed = false) {
2213     Type *srcTy = V->getType();
2214     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
2215     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
2216     if (srcSizeInBits > 1 && dstSizeInBits == 1)
2217       return IRB.CreateICmpNE(V, getCleanShadow(V));
2218 
2219     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
2220       return IRB.CreateIntCast(V, dstTy, Signed);
2221     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
2222         cast<FixedVectorType>(dstTy)->getNumElements() ==
2223             cast<FixedVectorType>(srcTy)->getNumElements())
2224       return IRB.CreateIntCast(V, dstTy, Signed);
2225     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
2226     Value *V2 =
2227       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
2228     return IRB.CreateBitCast(V2, dstTy);
2229     // TODO: handle struct types.
2230   }
2231 
2232   /// Cast an application value to the type of its own shadow.
2233   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
2234     Type *ShadowTy = getShadowTy(V);
2235     if (V->getType() == ShadowTy)
2236       return V;
2237     if (V->getType()->isPtrOrPtrVectorTy())
2238       return IRB.CreatePtrToInt(V, ShadowTy);
2239     else
2240       return IRB.CreateBitCast(V, ShadowTy);
2241   }
2242 
2243   /// Propagate shadow for arbitrary operation.
2244   void handleShadowOr(Instruction &I) {
2245     IRBuilder<> IRB(&I);
2246     ShadowAndOriginCombiner SC(this, IRB);
2247     for (Use &Op : I.operands())
2248       SC.Add(Op.get());
2249     SC.Done(&I);
2250   }
2251 
2252   void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
2253 
2254   // Handle multiplication by constant.
2255   //
2256   // Handle a special case of multiplication by constant that may have one or
2257   // more zeros in the lower bits. This makes corresponding number of lower bits
2258   // of the result zero as well. We model it by shifting the other operand
2259   // shadow left by the required number of bits. Effectively, we transform
2260   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
2261   // We use multiplication by 2**N instead of shift to cover the case of
2262   // multiplication by 0, which may occur in some elements of a vector operand.
2263   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
2264                            Value *OtherArg) {
2265     Constant *ShadowMul;
2266     Type *Ty = ConstArg->getType();
2267     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2268       unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements();
2269       Type *EltTy = VTy->getElementType();
2270       SmallVector<Constant *, 16> Elements;
2271       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
2272         if (ConstantInt *Elt =
2273                 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
2274           const APInt &V = Elt->getValue();
2275           APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2276           Elements.push_back(ConstantInt::get(EltTy, V2));
2277         } else {
2278           Elements.push_back(ConstantInt::get(EltTy, 1));
2279         }
2280       }
2281       ShadowMul = ConstantVector::get(Elements);
2282     } else {
2283       if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
2284         const APInt &V = Elt->getValue();
2285         APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2286         ShadowMul = ConstantInt::get(Ty, V2);
2287       } else {
2288         ShadowMul = ConstantInt::get(Ty, 1);
2289       }
2290     }
2291 
2292     IRBuilder<> IRB(&I);
2293     setShadow(&I,
2294               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
2295     setOrigin(&I, getOrigin(OtherArg));
2296   }
2297 
2298   void visitMul(BinaryOperator &I) {
2299     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
2300     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
2301     if (constOp0 && !constOp1)
2302       handleMulByConstant(I, constOp0, I.getOperand(1));
2303     else if (constOp1 && !constOp0)
2304       handleMulByConstant(I, constOp1, I.getOperand(0));
2305     else
2306       handleShadowOr(I);
2307   }
2308 
2309   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
2310   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
2311   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
2312   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
2313   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
2314   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
2315 
2316   void handleIntegerDiv(Instruction &I) {
2317     IRBuilder<> IRB(&I);
2318     // Strict on the second argument.
2319     insertShadowCheck(I.getOperand(1), &I);
2320     setShadow(&I, getShadow(&I, 0));
2321     setOrigin(&I, getOrigin(&I, 0));
2322   }
2323 
2324   void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2325   void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2326   void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
2327   void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
2328 
2329   // Floating point division is side-effect free. We can not require that the
2330   // divisor is fully initialized and must propagate shadow. See PR37523.
2331   void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
2332   void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
2333 
2334   /// Instrument == and != comparisons.
2335   ///
2336   /// Sometimes the comparison result is known even if some of the bits of the
2337   /// arguments are not.
2338   void handleEqualityComparison(ICmpInst &I) {
2339     IRBuilder<> IRB(&I);
2340     Value *A = I.getOperand(0);
2341     Value *B = I.getOperand(1);
2342     Value *Sa = getShadow(A);
2343     Value *Sb = getShadow(B);
2344 
2345     // Get rid of pointers and vectors of pointers.
2346     // For ints (and vectors of ints), types of A and Sa match,
2347     // and this is a no-op.
2348     A = IRB.CreatePointerCast(A, Sa->getType());
2349     B = IRB.CreatePointerCast(B, Sb->getType());
2350 
2351     // A == B  <==>  (C = A^B) == 0
2352     // A != B  <==>  (C = A^B) != 0
2353     // Sc = Sa | Sb
2354     Value *C = IRB.CreateXor(A, B);
2355     Value *Sc = IRB.CreateOr(Sa, Sb);
2356     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
2357     // Result is defined if one of the following is true
2358     // * there is a defined 1 bit in C
2359     // * C is fully defined
2360     // Si = !(C & ~Sc) && Sc
2361     Value *Zero = Constant::getNullValue(Sc->getType());
2362     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
2363     Value *Si =
2364       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
2365                     IRB.CreateICmpEQ(
2366                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
2367     Si->setName("_msprop_icmp");
2368     setShadow(&I, Si);
2369     setOriginForNaryOp(I);
2370   }
2371 
2372   /// Build the lowest possible value of V, taking into account V's
2373   ///        uninitialized bits.
2374   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2375                                 bool isSigned) {
2376     if (isSigned) {
2377       // Split shadow into sign bit and other bits.
2378       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2379       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2380       // Maximise the undefined shadow bit, minimize other undefined bits.
2381       return
2382         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
2383     } else {
2384       // Minimize undefined bits.
2385       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
2386     }
2387   }
2388 
2389   /// Build the highest possible value of V, taking into account V's
2390   ///        uninitialized bits.
2391   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2392                                 bool isSigned) {
2393     if (isSigned) {
2394       // Split shadow into sign bit and other bits.
2395       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2396       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2397       // Minimise the undefined shadow bit, maximise other undefined bits.
2398       return
2399         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
2400     } else {
2401       // Maximize undefined bits.
2402       return IRB.CreateOr(A, Sa);
2403     }
2404   }
2405 
2406   /// Instrument relational comparisons.
2407   ///
2408   /// This function does exact shadow propagation for all relational
2409   /// comparisons of integers, pointers and vectors of those.
2410   /// FIXME: output seems suboptimal when one of the operands is a constant
2411   void handleRelationalComparisonExact(ICmpInst &I) {
2412     IRBuilder<> IRB(&I);
2413     Value *A = I.getOperand(0);
2414     Value *B = I.getOperand(1);
2415     Value *Sa = getShadow(A);
2416     Value *Sb = getShadow(B);
2417 
2418     // Get rid of pointers and vectors of pointers.
2419     // For ints (and vectors of ints), types of A and Sa match,
2420     // and this is a no-op.
2421     A = IRB.CreatePointerCast(A, Sa->getType());
2422     B = IRB.CreatePointerCast(B, Sb->getType());
2423 
2424     // Let [a0, a1] be the interval of possible values of A, taking into account
2425     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
2426     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
2427     bool IsSigned = I.isSigned();
2428     Value *S1 = IRB.CreateICmp(I.getPredicate(),
2429                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
2430                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
2431     Value *S2 = IRB.CreateICmp(I.getPredicate(),
2432                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
2433                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
2434     Value *Si = IRB.CreateXor(S1, S2);
2435     setShadow(&I, Si);
2436     setOriginForNaryOp(I);
2437   }
2438 
2439   /// Instrument signed relational comparisons.
2440   ///
2441   /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
2442   /// bit of the shadow. Everything else is delegated to handleShadowOr().
2443   void handleSignedRelationalComparison(ICmpInst &I) {
2444     Constant *constOp;
2445     Value *op = nullptr;
2446     CmpInst::Predicate pre;
2447     if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
2448       op = I.getOperand(0);
2449       pre = I.getPredicate();
2450     } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
2451       op = I.getOperand(1);
2452       pre = I.getSwappedPredicate();
2453     } else {
2454       handleShadowOr(I);
2455       return;
2456     }
2457 
2458     if ((constOp->isNullValue() &&
2459          (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
2460         (constOp->isAllOnesValue() &&
2461          (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
2462       IRBuilder<> IRB(&I);
2463       Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
2464                                         "_msprop_icmp_s");
2465       setShadow(&I, Shadow);
2466       setOrigin(&I, getOrigin(op));
2467     } else {
2468       handleShadowOr(I);
2469     }
2470   }
2471 
2472   void visitICmpInst(ICmpInst &I) {
2473     if (!ClHandleICmp) {
2474       handleShadowOr(I);
2475       return;
2476     }
2477     if (I.isEquality()) {
2478       handleEqualityComparison(I);
2479       return;
2480     }
2481 
2482     assert(I.isRelational());
2483     if (ClHandleICmpExact) {
2484       handleRelationalComparisonExact(I);
2485       return;
2486     }
2487     if (I.isSigned()) {
2488       handleSignedRelationalComparison(I);
2489       return;
2490     }
2491 
2492     assert(I.isUnsigned());
2493     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2494       handleRelationalComparisonExact(I);
2495       return;
2496     }
2497 
2498     handleShadowOr(I);
2499   }
2500 
2501   void visitFCmpInst(FCmpInst &I) {
2502     handleShadowOr(I);
2503   }
2504 
2505   void handleShift(BinaryOperator &I) {
2506     IRBuilder<> IRB(&I);
2507     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2508     // Otherwise perform the same shift on S1.
2509     Value *S1 = getShadow(&I, 0);
2510     Value *S2 = getShadow(&I, 1);
2511     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
2512                                    S2->getType());
2513     Value *V2 = I.getOperand(1);
2514     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2515     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2516     setOriginForNaryOp(I);
2517   }
2518 
2519   void visitShl(BinaryOperator &I) { handleShift(I); }
2520   void visitAShr(BinaryOperator &I) { handleShift(I); }
2521   void visitLShr(BinaryOperator &I) { handleShift(I); }
2522 
2523   void handleFunnelShift(IntrinsicInst &I) {
2524     IRBuilder<> IRB(&I);
2525     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2526     // Otherwise perform the same shift on S0 and S1.
2527     Value *S0 = getShadow(&I, 0);
2528     Value *S1 = getShadow(&I, 1);
2529     Value *S2 = getShadow(&I, 2);
2530     Value *S2Conv =
2531         IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType());
2532     Value *V2 = I.getOperand(2);
2533     Function *Intrin = Intrinsic::getDeclaration(
2534         I.getModule(), I.getIntrinsicID(), S2Conv->getType());
2535     Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2});
2536     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2537     setOriginForNaryOp(I);
2538   }
2539 
2540   /// Instrument llvm.memmove
2541   ///
2542   /// At this point we don't know if llvm.memmove will be inlined or not.
2543   /// If we don't instrument it and it gets inlined,
2544   /// our interceptor will not kick in and we will lose the memmove.
2545   /// If we instrument the call here, but it does not get inlined,
2546   /// we will memove the shadow twice: which is bad in case
2547   /// of overlapping regions. So, we simply lower the intrinsic to a call.
2548   ///
2549   /// Similar situation exists for memcpy and memset.
2550   void visitMemMoveInst(MemMoveInst &I) {
2551     IRBuilder<> IRB(&I);
2552     IRB.CreateCall(
2553         MS.MemmoveFn,
2554         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2555          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2556          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2557     I.eraseFromParent();
2558   }
2559 
2560   // Similar to memmove: avoid copying shadow twice.
2561   // This is somewhat unfortunate as it may slowdown small constant memcpys.
2562   // FIXME: consider doing manual inline for small constant sizes and proper
2563   // alignment.
2564   void visitMemCpyInst(MemCpyInst &I) {
2565     IRBuilder<> IRB(&I);
2566     IRB.CreateCall(
2567         MS.MemcpyFn,
2568         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2569          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2570          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2571     I.eraseFromParent();
2572   }
2573 
2574   // Same as memcpy.
2575   void visitMemSetInst(MemSetInst &I) {
2576     IRBuilder<> IRB(&I);
2577     IRB.CreateCall(
2578         MS.MemsetFn,
2579         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2580          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2581          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2582     I.eraseFromParent();
2583   }
2584 
2585   void visitVAStartInst(VAStartInst &I) {
2586     VAHelper->visitVAStartInst(I);
2587   }
2588 
2589   void visitVACopyInst(VACopyInst &I) {
2590     VAHelper->visitVACopyInst(I);
2591   }
2592 
2593   /// Handle vector store-like intrinsics.
2594   ///
2595   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2596   /// has 1 pointer argument and 1 vector argument, returns void.
2597   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2598     IRBuilder<> IRB(&I);
2599     Value* Addr = I.getArgOperand(0);
2600     Value *Shadow = getShadow(&I, 1);
2601     Value *ShadowPtr, *OriginPtr;
2602 
2603     // We don't know the pointer alignment (could be unaligned SSE store!).
2604     // Have to assume to worst case.
2605     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2606         Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true);
2607     IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1));
2608 
2609     if (ClCheckAccessAddress)
2610       insertShadowCheck(Addr, &I);
2611 
2612     // FIXME: factor out common code from materializeStores
2613     if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2614     return true;
2615   }
2616 
2617   /// Handle vector load-like intrinsics.
2618   ///
2619   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2620   /// has 1 pointer argument, returns a vector.
2621   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2622     IRBuilder<> IRB(&I);
2623     Value *Addr = I.getArgOperand(0);
2624 
2625     Type *ShadowTy = getShadowTy(&I);
2626     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2627     if (PropagateShadow) {
2628       // We don't know the pointer alignment (could be unaligned SSE load!).
2629       // Have to assume to worst case.
2630       const Align Alignment = Align(1);
2631       std::tie(ShadowPtr, OriginPtr) =
2632           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2633       setShadow(&I,
2634                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2635     } else {
2636       setShadow(&I, getCleanShadow(&I));
2637     }
2638 
2639     if (ClCheckAccessAddress)
2640       insertShadowCheck(Addr, &I);
2641 
2642     if (MS.TrackOrigins) {
2643       if (PropagateShadow)
2644         setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
2645       else
2646         setOrigin(&I, getCleanOrigin());
2647     }
2648     return true;
2649   }
2650 
2651   /// Handle (SIMD arithmetic)-like intrinsics.
2652   ///
2653   /// Instrument intrinsics with any number of arguments of the same type,
2654   /// equal to the return type. The type should be simple (no aggregates or
2655   /// pointers; vectors are fine).
2656   /// Caller guarantees that this intrinsic does not access memory.
2657   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2658     Type *RetTy = I.getType();
2659     if (!(RetTy->isIntOrIntVectorTy() ||
2660           RetTy->isFPOrFPVectorTy() ||
2661           RetTy->isX86_MMXTy()))
2662       return false;
2663 
2664     unsigned NumArgOperands = I.getNumArgOperands();
2665     for (unsigned i = 0; i < NumArgOperands; ++i) {
2666       Type *Ty = I.getArgOperand(i)->getType();
2667       if (Ty != RetTy)
2668         return false;
2669     }
2670 
2671     IRBuilder<> IRB(&I);
2672     ShadowAndOriginCombiner SC(this, IRB);
2673     for (unsigned i = 0; i < NumArgOperands; ++i)
2674       SC.Add(I.getArgOperand(i));
2675     SC.Done(&I);
2676 
2677     return true;
2678   }
2679 
2680   /// Heuristically instrument unknown intrinsics.
2681   ///
2682   /// The main purpose of this code is to do something reasonable with all
2683   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2684   /// We recognize several classes of intrinsics by their argument types and
2685   /// ModRefBehaviour and apply special instrumentation when we are reasonably
2686   /// sure that we know what the intrinsic does.
2687   ///
2688   /// We special-case intrinsics where this approach fails. See llvm.bswap
2689   /// handling as an example of that.
2690   bool handleUnknownIntrinsic(IntrinsicInst &I) {
2691     unsigned NumArgOperands = I.getNumArgOperands();
2692     if (NumArgOperands == 0)
2693       return false;
2694 
2695     if (NumArgOperands == 2 &&
2696         I.getArgOperand(0)->getType()->isPointerTy() &&
2697         I.getArgOperand(1)->getType()->isVectorTy() &&
2698         I.getType()->isVoidTy() &&
2699         !I.onlyReadsMemory()) {
2700       // This looks like a vector store.
2701       return handleVectorStoreIntrinsic(I);
2702     }
2703 
2704     if (NumArgOperands == 1 &&
2705         I.getArgOperand(0)->getType()->isPointerTy() &&
2706         I.getType()->isVectorTy() &&
2707         I.onlyReadsMemory()) {
2708       // This looks like a vector load.
2709       return handleVectorLoadIntrinsic(I);
2710     }
2711 
2712     if (I.doesNotAccessMemory())
2713       if (maybeHandleSimpleNomemIntrinsic(I))
2714         return true;
2715 
2716     // FIXME: detect and handle SSE maskstore/maskload
2717     return false;
2718   }
2719 
2720   void handleInvariantGroup(IntrinsicInst &I) {
2721     setShadow(&I, getShadow(&I, 0));
2722     setOrigin(&I, getOrigin(&I, 0));
2723   }
2724 
2725   void handleLifetimeStart(IntrinsicInst &I) {
2726     if (!PoisonStack)
2727       return;
2728     AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1));
2729     if (!AI)
2730       InstrumentLifetimeStart = false;
2731     LifetimeStartList.push_back(std::make_pair(&I, AI));
2732   }
2733 
2734   void handleBswap(IntrinsicInst &I) {
2735     IRBuilder<> IRB(&I);
2736     Value *Op = I.getArgOperand(0);
2737     Type *OpType = Op->getType();
2738     Function *BswapFunc = Intrinsic::getDeclaration(
2739       F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
2740     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
2741     setOrigin(&I, getOrigin(Op));
2742   }
2743 
2744   // Instrument vector convert intrinsic.
2745   //
2746   // This function instruments intrinsics like cvtsi2ss:
2747   // %Out = int_xxx_cvtyyy(%ConvertOp)
2748   // or
2749   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2750   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2751   // number \p Out elements, and (if has 2 arguments) copies the rest of the
2752   // elements from \p CopyOp.
2753   // In most cases conversion involves floating-point value which may trigger a
2754   // hardware exception when not fully initialized. For this reason we require
2755   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2756   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2757   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2758   // return a fully initialized value.
2759   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements,
2760                                     bool HasRoundingMode = false) {
2761     IRBuilder<> IRB(&I);
2762     Value *CopyOp, *ConvertOp;
2763 
2764     assert((!HasRoundingMode ||
2765             isa<ConstantInt>(I.getArgOperand(I.getNumArgOperands() - 1))) &&
2766            "Invalid rounding mode");
2767 
2768     switch (I.getNumArgOperands() - HasRoundingMode) {
2769     case 2:
2770       CopyOp = I.getArgOperand(0);
2771       ConvertOp = I.getArgOperand(1);
2772       break;
2773     case 1:
2774       ConvertOp = I.getArgOperand(0);
2775       CopyOp = nullptr;
2776       break;
2777     default:
2778       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
2779     }
2780 
2781     // The first *NumUsedElements* elements of ConvertOp are converted to the
2782     // same number of output elements. The rest of the output is copied from
2783     // CopyOp, or (if not available) filled with zeroes.
2784     // Combine shadow for elements of ConvertOp that are used in this operation,
2785     // and insert a check.
2786     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2787     // int->any conversion.
2788     Value *ConvertShadow = getShadow(ConvertOp);
2789     Value *AggShadow = nullptr;
2790     if (ConvertOp->getType()->isVectorTy()) {
2791       AggShadow = IRB.CreateExtractElement(
2792           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2793       for (int i = 1; i < NumUsedElements; ++i) {
2794         Value *MoreShadow = IRB.CreateExtractElement(
2795             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2796         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2797       }
2798     } else {
2799       AggShadow = ConvertShadow;
2800     }
2801     assert(AggShadow->getType()->isIntegerTy());
2802     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2803 
2804     // Build result shadow by zero-filling parts of CopyOp shadow that come from
2805     // ConvertOp.
2806     if (CopyOp) {
2807       assert(CopyOp->getType() == I.getType());
2808       assert(CopyOp->getType()->isVectorTy());
2809       Value *ResultShadow = getShadow(CopyOp);
2810       Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType();
2811       for (int i = 0; i < NumUsedElements; ++i) {
2812         ResultShadow = IRB.CreateInsertElement(
2813             ResultShadow, ConstantInt::getNullValue(EltTy),
2814             ConstantInt::get(IRB.getInt32Ty(), i));
2815       }
2816       setShadow(&I, ResultShadow);
2817       setOrigin(&I, getOrigin(CopyOp));
2818     } else {
2819       setShadow(&I, getCleanShadow(&I));
2820       setOrigin(&I, getCleanOrigin());
2821     }
2822   }
2823 
2824   // Given a scalar or vector, extract lower 64 bits (or less), and return all
2825   // zeroes if it is zero, and all ones otherwise.
2826   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2827     if (S->getType()->isVectorTy())
2828       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2829     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2830     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2831     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2832   }
2833 
2834   // Given a vector, extract its first element, and return all
2835   // zeroes if it is zero, and all ones otherwise.
2836   Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2837     Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
2838     Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
2839     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2840   }
2841 
2842   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2843     Type *T = S->getType();
2844     assert(T->isVectorTy());
2845     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2846     return IRB.CreateSExt(S2, T);
2847   }
2848 
2849   // Instrument vector shift intrinsic.
2850   //
2851   // This function instruments intrinsics like int_x86_avx2_psll_w.
2852   // Intrinsic shifts %In by %ShiftSize bits.
2853   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2854   // size, and the rest is ignored. Behavior is defined even if shift size is
2855   // greater than register (or field) width.
2856   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2857     assert(I.getNumArgOperands() == 2);
2858     IRBuilder<> IRB(&I);
2859     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2860     // Otherwise perform the same shift on S1.
2861     Value *S1 = getShadow(&I, 0);
2862     Value *S2 = getShadow(&I, 1);
2863     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2864                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2865     Value *V1 = I.getOperand(0);
2866     Value *V2 = I.getOperand(1);
2867     Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
2868                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
2869     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2870     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2871     setOriginForNaryOp(I);
2872   }
2873 
2874   // Get an X86_MMX-sized vector type.
2875   Type *getMMXVectorTy(unsigned EltSizeInBits) {
2876     const unsigned X86_MMXSizeInBits = 64;
2877     assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
2878            "Illegal MMX vector element size");
2879     return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2880                                 X86_MMXSizeInBits / EltSizeInBits);
2881   }
2882 
2883   // Returns a signed counterpart for an (un)signed-saturate-and-pack
2884   // intrinsic.
2885   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2886     switch (id) {
2887       case Intrinsic::x86_sse2_packsswb_128:
2888       case Intrinsic::x86_sse2_packuswb_128:
2889         return Intrinsic::x86_sse2_packsswb_128;
2890 
2891       case Intrinsic::x86_sse2_packssdw_128:
2892       case Intrinsic::x86_sse41_packusdw:
2893         return Intrinsic::x86_sse2_packssdw_128;
2894 
2895       case Intrinsic::x86_avx2_packsswb:
2896       case Intrinsic::x86_avx2_packuswb:
2897         return Intrinsic::x86_avx2_packsswb;
2898 
2899       case Intrinsic::x86_avx2_packssdw:
2900       case Intrinsic::x86_avx2_packusdw:
2901         return Intrinsic::x86_avx2_packssdw;
2902 
2903       case Intrinsic::x86_mmx_packsswb:
2904       case Intrinsic::x86_mmx_packuswb:
2905         return Intrinsic::x86_mmx_packsswb;
2906 
2907       case Intrinsic::x86_mmx_packssdw:
2908         return Intrinsic::x86_mmx_packssdw;
2909       default:
2910         llvm_unreachable("unexpected intrinsic id");
2911     }
2912   }
2913 
2914   // Instrument vector pack intrinsic.
2915   //
2916   // This function instruments intrinsics like x86_mmx_packsswb, that
2917   // packs elements of 2 input vectors into half as many bits with saturation.
2918   // Shadow is propagated with the signed variant of the same intrinsic applied
2919   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2920   // EltSizeInBits is used only for x86mmx arguments.
2921   void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2922     assert(I.getNumArgOperands() == 2);
2923     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2924     IRBuilder<> IRB(&I);
2925     Value *S1 = getShadow(&I, 0);
2926     Value *S2 = getShadow(&I, 1);
2927     assert(isX86_MMX || S1->getType()->isVectorTy());
2928 
2929     // SExt and ICmpNE below must apply to individual elements of input vectors.
2930     // In case of x86mmx arguments, cast them to appropriate vector types and
2931     // back.
2932     Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2933     if (isX86_MMX) {
2934       S1 = IRB.CreateBitCast(S1, T);
2935       S2 = IRB.CreateBitCast(S2, T);
2936     }
2937     Value *S1_ext = IRB.CreateSExt(
2938         IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
2939     Value *S2_ext = IRB.CreateSExt(
2940         IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
2941     if (isX86_MMX) {
2942       Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2943       S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2944       S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2945     }
2946 
2947     Function *ShadowFn = Intrinsic::getDeclaration(
2948         F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2949 
2950     Value *S =
2951         IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
2952     if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2953     setShadow(&I, S);
2954     setOriginForNaryOp(I);
2955   }
2956 
2957   // Instrument sum-of-absolute-differences intrinsic.
2958   void handleVectorSadIntrinsic(IntrinsicInst &I) {
2959     const unsigned SignificantBitsPerResultElement = 16;
2960     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2961     Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2962     unsigned ZeroBitsPerResultElement =
2963         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2964 
2965     IRBuilder<> IRB(&I);
2966     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2967     S = IRB.CreateBitCast(S, ResTy);
2968     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2969                        ResTy);
2970     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2971     S = IRB.CreateBitCast(S, getShadowTy(&I));
2972     setShadow(&I, S);
2973     setOriginForNaryOp(I);
2974   }
2975 
2976   // Instrument multiply-add intrinsic.
2977   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2978                                   unsigned EltSizeInBits = 0) {
2979     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2980     Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2981     IRBuilder<> IRB(&I);
2982     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2983     S = IRB.CreateBitCast(S, ResTy);
2984     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2985                        ResTy);
2986     S = IRB.CreateBitCast(S, getShadowTy(&I));
2987     setShadow(&I, S);
2988     setOriginForNaryOp(I);
2989   }
2990 
2991   // Instrument compare-packed intrinsic.
2992   // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
2993   // all-ones shadow.
2994   void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
2995     IRBuilder<> IRB(&I);
2996     Type *ResTy = getShadowTy(&I);
2997     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2998     Value *S = IRB.CreateSExt(
2999         IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
3000     setShadow(&I, S);
3001     setOriginForNaryOp(I);
3002   }
3003 
3004   // Instrument compare-scalar intrinsic.
3005   // This handles both cmp* intrinsics which return the result in the first
3006   // element of a vector, and comi* which return the result as i32.
3007   void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
3008     IRBuilder<> IRB(&I);
3009     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
3010     Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
3011     setShadow(&I, S);
3012     setOriginForNaryOp(I);
3013   }
3014 
3015   // Instrument generic vector reduction intrinsics
3016   // by ORing together all their fields.
3017   void handleVectorReduceIntrinsic(IntrinsicInst &I) {
3018     IRBuilder<> IRB(&I);
3019     Value *S = IRB.CreateOrReduce(getShadow(&I, 0));
3020     setShadow(&I, S);
3021     setOrigin(&I, getOrigin(&I, 0));
3022   }
3023 
3024   // Instrument vector.reduce.or intrinsic.
3025   // Valid (non-poisoned) set bits in the operand pull low the
3026   // corresponding shadow bits.
3027   void handleVectorReduceOrIntrinsic(IntrinsicInst &I) {
3028     IRBuilder<> IRB(&I);
3029     Value *OperandShadow = getShadow(&I, 0);
3030     Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0));
3031     Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow);
3032     // Bit N is clean if any field's bit N is 1 and unpoison
3033     Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison);
3034     // Otherwise, it is clean if every field's bit N is unpoison
3035     Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3036     Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3037 
3038     setShadow(&I, S);
3039     setOrigin(&I, getOrigin(&I, 0));
3040   }
3041 
3042   // Instrument vector.reduce.and intrinsic.
3043   // Valid (non-poisoned) unset bits in the operand pull down the
3044   // corresponding shadow bits.
3045   void handleVectorReduceAndIntrinsic(IntrinsicInst &I) {
3046     IRBuilder<> IRB(&I);
3047     Value *OperandShadow = getShadow(&I, 0);
3048     Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow);
3049     // Bit N is clean if any field's bit N is 0 and unpoison
3050     Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison);
3051     // Otherwise, it is clean if every field's bit N is unpoison
3052     Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3053     Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3054 
3055     setShadow(&I, S);
3056     setOrigin(&I, getOrigin(&I, 0));
3057   }
3058 
3059   void handleStmxcsr(IntrinsicInst &I) {
3060     IRBuilder<> IRB(&I);
3061     Value* Addr = I.getArgOperand(0);
3062     Type *Ty = IRB.getInt32Ty();
3063     Value *ShadowPtr =
3064         getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first;
3065 
3066     IRB.CreateStore(getCleanShadow(Ty),
3067                     IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
3068 
3069     if (ClCheckAccessAddress)
3070       insertShadowCheck(Addr, &I);
3071   }
3072 
3073   void handleLdmxcsr(IntrinsicInst &I) {
3074     if (!InsertChecks) return;
3075 
3076     IRBuilder<> IRB(&I);
3077     Value *Addr = I.getArgOperand(0);
3078     Type *Ty = IRB.getInt32Ty();
3079     const Align Alignment = Align(1);
3080     Value *ShadowPtr, *OriginPtr;
3081     std::tie(ShadowPtr, OriginPtr) =
3082         getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
3083 
3084     if (ClCheckAccessAddress)
3085       insertShadowCheck(Addr, &I);
3086 
3087     Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
3088     Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
3089                                     : getCleanOrigin();
3090     insertShadowCheck(Shadow, Origin, &I);
3091   }
3092 
3093   void handleMaskedStore(IntrinsicInst &I) {
3094     IRBuilder<> IRB(&I);
3095     Value *V = I.getArgOperand(0);
3096     Value *Addr = I.getArgOperand(1);
3097     const Align Alignment(
3098         cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
3099     Value *Mask = I.getArgOperand(3);
3100     Value *Shadow = getShadow(V);
3101 
3102     Value *ShadowPtr;
3103     Value *OriginPtr;
3104     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
3105         Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true);
3106 
3107     if (ClCheckAccessAddress) {
3108       insertShadowCheck(Addr, &I);
3109       // Uninitialized mask is kind of like uninitialized address, but not as
3110       // scary.
3111       insertShadowCheck(Mask, &I);
3112     }
3113 
3114     IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask);
3115 
3116     if (MS.TrackOrigins) {
3117       auto &DL = F.getParent()->getDataLayout();
3118       paintOrigin(IRB, getOrigin(V), OriginPtr,
3119                   DL.getTypeStoreSize(Shadow->getType()),
3120                   std::max(Alignment, kMinOriginAlignment));
3121     }
3122   }
3123 
3124   bool handleMaskedLoad(IntrinsicInst &I) {
3125     IRBuilder<> IRB(&I);
3126     Value *Addr = I.getArgOperand(0);
3127     const Align Alignment(
3128         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3129     Value *Mask = I.getArgOperand(2);
3130     Value *PassThru = I.getArgOperand(3);
3131 
3132     Type *ShadowTy = getShadowTy(&I);
3133     Value *ShadowPtr, *OriginPtr;
3134     if (PropagateShadow) {
3135       std::tie(ShadowPtr, OriginPtr) =
3136           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
3137       setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask,
3138                                          getShadow(PassThru), "_msmaskedld"));
3139     } else {
3140       setShadow(&I, getCleanShadow(&I));
3141     }
3142 
3143     if (ClCheckAccessAddress) {
3144       insertShadowCheck(Addr, &I);
3145       insertShadowCheck(Mask, &I);
3146     }
3147 
3148     if (MS.TrackOrigins) {
3149       if (PropagateShadow) {
3150         // Choose between PassThru's and the loaded value's origins.
3151         Value *MaskedPassThruShadow = IRB.CreateAnd(
3152             getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
3153 
3154         Value *Acc = IRB.CreateExtractElement(
3155             MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
3156         for (int i = 1, N = cast<FixedVectorType>(PassThru->getType())
3157                                 ->getNumElements();
3158              i < N; ++i) {
3159           Value *More = IRB.CreateExtractElement(
3160               MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i));
3161           Acc = IRB.CreateOr(Acc, More);
3162         }
3163 
3164         Value *Origin = IRB.CreateSelect(
3165             IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())),
3166             getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr));
3167 
3168         setOrigin(&I, Origin);
3169       } else {
3170         setOrigin(&I, getCleanOrigin());
3171       }
3172     }
3173     return true;
3174   }
3175 
3176   // Instrument BMI / BMI2 intrinsics.
3177   // All of these intrinsics are Z = I(X, Y)
3178   // where the types of all operands and the result match, and are either i32 or i64.
3179   // The following instrumentation happens to work for all of them:
3180   //   Sz = I(Sx, Y) | (sext (Sy != 0))
3181   void handleBmiIntrinsic(IntrinsicInst &I) {
3182     IRBuilder<> IRB(&I);
3183     Type *ShadowTy = getShadowTy(&I);
3184 
3185     // If any bit of the mask operand is poisoned, then the whole thing is.
3186     Value *SMask = getShadow(&I, 1);
3187     SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
3188                            ShadowTy);
3189     // Apply the same intrinsic to the shadow of the first operand.
3190     Value *S = IRB.CreateCall(I.getCalledFunction(),
3191                               {getShadow(&I, 0), I.getOperand(1)});
3192     S = IRB.CreateOr(SMask, S);
3193     setShadow(&I, S);
3194     setOriginForNaryOp(I);
3195   }
3196 
3197   SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) {
3198     SmallVector<int, 8> Mask;
3199     for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) {
3200       Mask.append(2, X);
3201     }
3202     return Mask;
3203   }
3204 
3205   // Instrument pclmul intrinsics.
3206   // These intrinsics operate either on odd or on even elements of the input
3207   // vectors, depending on the constant in the 3rd argument, ignoring the rest.
3208   // Replace the unused elements with copies of the used ones, ex:
3209   //   (0, 1, 2, 3) -> (0, 0, 2, 2) (even case)
3210   // or
3211   //   (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case)
3212   // and then apply the usual shadow combining logic.
3213   void handlePclmulIntrinsic(IntrinsicInst &I) {
3214     IRBuilder<> IRB(&I);
3215     unsigned Width =
3216         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3217     assert(isa<ConstantInt>(I.getArgOperand(2)) &&
3218            "pclmul 3rd operand must be a constant");
3219     unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3220     Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0),
3221                                            getPclmulMask(Width, Imm & 0x01));
3222     Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1),
3223                                            getPclmulMask(Width, Imm & 0x10));
3224     ShadowAndOriginCombiner SOC(this, IRB);
3225     SOC.Add(Shuf0, getOrigin(&I, 0));
3226     SOC.Add(Shuf1, getOrigin(&I, 1));
3227     SOC.Done(&I);
3228   }
3229 
3230   // Instrument _mm_*_sd intrinsics
3231   void handleUnarySdIntrinsic(IntrinsicInst &I) {
3232     IRBuilder<> IRB(&I);
3233     Value *First = getShadow(&I, 0);
3234     Value *Second = getShadow(&I, 1);
3235     // High word of first operand, low word of second
3236     Value *Shadow =
3237         IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1}));
3238 
3239     setShadow(&I, Shadow);
3240     setOriginForNaryOp(I);
3241   }
3242 
3243   void handleBinarySdIntrinsic(IntrinsicInst &I) {
3244     IRBuilder<> IRB(&I);
3245     Value *First = getShadow(&I, 0);
3246     Value *Second = getShadow(&I, 1);
3247     Value *OrShadow = IRB.CreateOr(First, Second);
3248     // High word of first operand, low word of both OR'd together
3249     Value *Shadow = IRB.CreateShuffleVector(First, OrShadow,
3250                                             llvm::makeArrayRef<int>({2, 1}));
3251 
3252     setShadow(&I, Shadow);
3253     setOriginForNaryOp(I);
3254   }
3255 
3256   // Instrument abs intrinsic.
3257   // handleUnknownIntrinsic can't handle it because of the last
3258   // is_int_min_poison argument which does not match the result type.
3259   void handleAbsIntrinsic(IntrinsicInst &I) {
3260     assert(I.getType()->isIntOrIntVectorTy());
3261     assert(I.getArgOperand(0)->getType() == I.getType());
3262 
3263     // FIXME: Handle is_int_min_poison.
3264     IRBuilder<> IRB(&I);
3265     setShadow(&I, getShadow(&I, 0));
3266     setOrigin(&I, getOrigin(&I, 0));
3267   }
3268 
3269   void visitIntrinsicInst(IntrinsicInst &I) {
3270     switch (I.getIntrinsicID()) {
3271     case Intrinsic::abs:
3272       handleAbsIntrinsic(I);
3273       break;
3274     case Intrinsic::lifetime_start:
3275       handleLifetimeStart(I);
3276       break;
3277     case Intrinsic::launder_invariant_group:
3278     case Intrinsic::strip_invariant_group:
3279       handleInvariantGroup(I);
3280       break;
3281     case Intrinsic::bswap:
3282       handleBswap(I);
3283       break;
3284     case Intrinsic::masked_store:
3285       handleMaskedStore(I);
3286       break;
3287     case Intrinsic::masked_load:
3288       handleMaskedLoad(I);
3289       break;
3290     case Intrinsic::vector_reduce_and:
3291       handleVectorReduceAndIntrinsic(I);
3292       break;
3293     case Intrinsic::vector_reduce_or:
3294       handleVectorReduceOrIntrinsic(I);
3295       break;
3296     case Intrinsic::vector_reduce_add:
3297     case Intrinsic::vector_reduce_xor:
3298     case Intrinsic::vector_reduce_mul:
3299       handleVectorReduceIntrinsic(I);
3300       break;
3301     case Intrinsic::x86_sse_stmxcsr:
3302       handleStmxcsr(I);
3303       break;
3304     case Intrinsic::x86_sse_ldmxcsr:
3305       handleLdmxcsr(I);
3306       break;
3307     case Intrinsic::x86_avx512_vcvtsd2usi64:
3308     case Intrinsic::x86_avx512_vcvtsd2usi32:
3309     case Intrinsic::x86_avx512_vcvtss2usi64:
3310     case Intrinsic::x86_avx512_vcvtss2usi32:
3311     case Intrinsic::x86_avx512_cvttss2usi64:
3312     case Intrinsic::x86_avx512_cvttss2usi:
3313     case Intrinsic::x86_avx512_cvttsd2usi64:
3314     case Intrinsic::x86_avx512_cvttsd2usi:
3315     case Intrinsic::x86_avx512_cvtusi2ss:
3316     case Intrinsic::x86_avx512_cvtusi642sd:
3317     case Intrinsic::x86_avx512_cvtusi642ss:
3318       handleVectorConvertIntrinsic(I, 1, true);
3319       break;
3320     case Intrinsic::x86_sse2_cvtsd2si64:
3321     case Intrinsic::x86_sse2_cvtsd2si:
3322     case Intrinsic::x86_sse2_cvtsd2ss:
3323     case Intrinsic::x86_sse2_cvttsd2si64:
3324     case Intrinsic::x86_sse2_cvttsd2si:
3325     case Intrinsic::x86_sse_cvtss2si64:
3326     case Intrinsic::x86_sse_cvtss2si:
3327     case Intrinsic::x86_sse_cvttss2si64:
3328     case Intrinsic::x86_sse_cvttss2si:
3329       handleVectorConvertIntrinsic(I, 1);
3330       break;
3331     case Intrinsic::x86_sse_cvtps2pi:
3332     case Intrinsic::x86_sse_cvttps2pi:
3333       handleVectorConvertIntrinsic(I, 2);
3334       break;
3335 
3336     case Intrinsic::x86_avx512_psll_w_512:
3337     case Intrinsic::x86_avx512_psll_d_512:
3338     case Intrinsic::x86_avx512_psll_q_512:
3339     case Intrinsic::x86_avx512_pslli_w_512:
3340     case Intrinsic::x86_avx512_pslli_d_512:
3341     case Intrinsic::x86_avx512_pslli_q_512:
3342     case Intrinsic::x86_avx512_psrl_w_512:
3343     case Intrinsic::x86_avx512_psrl_d_512:
3344     case Intrinsic::x86_avx512_psrl_q_512:
3345     case Intrinsic::x86_avx512_psra_w_512:
3346     case Intrinsic::x86_avx512_psra_d_512:
3347     case Intrinsic::x86_avx512_psra_q_512:
3348     case Intrinsic::x86_avx512_psrli_w_512:
3349     case Intrinsic::x86_avx512_psrli_d_512:
3350     case Intrinsic::x86_avx512_psrli_q_512:
3351     case Intrinsic::x86_avx512_psrai_w_512:
3352     case Intrinsic::x86_avx512_psrai_d_512:
3353     case Intrinsic::x86_avx512_psrai_q_512:
3354     case Intrinsic::x86_avx512_psra_q_256:
3355     case Intrinsic::x86_avx512_psra_q_128:
3356     case Intrinsic::x86_avx512_psrai_q_256:
3357     case Intrinsic::x86_avx512_psrai_q_128:
3358     case Intrinsic::x86_avx2_psll_w:
3359     case Intrinsic::x86_avx2_psll_d:
3360     case Intrinsic::x86_avx2_psll_q:
3361     case Intrinsic::x86_avx2_pslli_w:
3362     case Intrinsic::x86_avx2_pslli_d:
3363     case Intrinsic::x86_avx2_pslli_q:
3364     case Intrinsic::x86_avx2_psrl_w:
3365     case Intrinsic::x86_avx2_psrl_d:
3366     case Intrinsic::x86_avx2_psrl_q:
3367     case Intrinsic::x86_avx2_psra_w:
3368     case Intrinsic::x86_avx2_psra_d:
3369     case Intrinsic::x86_avx2_psrli_w:
3370     case Intrinsic::x86_avx2_psrli_d:
3371     case Intrinsic::x86_avx2_psrli_q:
3372     case Intrinsic::x86_avx2_psrai_w:
3373     case Intrinsic::x86_avx2_psrai_d:
3374     case Intrinsic::x86_sse2_psll_w:
3375     case Intrinsic::x86_sse2_psll_d:
3376     case Intrinsic::x86_sse2_psll_q:
3377     case Intrinsic::x86_sse2_pslli_w:
3378     case Intrinsic::x86_sse2_pslli_d:
3379     case Intrinsic::x86_sse2_pslli_q:
3380     case Intrinsic::x86_sse2_psrl_w:
3381     case Intrinsic::x86_sse2_psrl_d:
3382     case Intrinsic::x86_sse2_psrl_q:
3383     case Intrinsic::x86_sse2_psra_w:
3384     case Intrinsic::x86_sse2_psra_d:
3385     case Intrinsic::x86_sse2_psrli_w:
3386     case Intrinsic::x86_sse2_psrli_d:
3387     case Intrinsic::x86_sse2_psrli_q:
3388     case Intrinsic::x86_sse2_psrai_w:
3389     case Intrinsic::x86_sse2_psrai_d:
3390     case Intrinsic::x86_mmx_psll_w:
3391     case Intrinsic::x86_mmx_psll_d:
3392     case Intrinsic::x86_mmx_psll_q:
3393     case Intrinsic::x86_mmx_pslli_w:
3394     case Intrinsic::x86_mmx_pslli_d:
3395     case Intrinsic::x86_mmx_pslli_q:
3396     case Intrinsic::x86_mmx_psrl_w:
3397     case Intrinsic::x86_mmx_psrl_d:
3398     case Intrinsic::x86_mmx_psrl_q:
3399     case Intrinsic::x86_mmx_psra_w:
3400     case Intrinsic::x86_mmx_psra_d:
3401     case Intrinsic::x86_mmx_psrli_w:
3402     case Intrinsic::x86_mmx_psrli_d:
3403     case Intrinsic::x86_mmx_psrli_q:
3404     case Intrinsic::x86_mmx_psrai_w:
3405     case Intrinsic::x86_mmx_psrai_d:
3406       handleVectorShiftIntrinsic(I, /* Variable */ false);
3407       break;
3408     case Intrinsic::x86_avx2_psllv_d:
3409     case Intrinsic::x86_avx2_psllv_d_256:
3410     case Intrinsic::x86_avx512_psllv_d_512:
3411     case Intrinsic::x86_avx2_psllv_q:
3412     case Intrinsic::x86_avx2_psllv_q_256:
3413     case Intrinsic::x86_avx512_psllv_q_512:
3414     case Intrinsic::x86_avx2_psrlv_d:
3415     case Intrinsic::x86_avx2_psrlv_d_256:
3416     case Intrinsic::x86_avx512_psrlv_d_512:
3417     case Intrinsic::x86_avx2_psrlv_q:
3418     case Intrinsic::x86_avx2_psrlv_q_256:
3419     case Intrinsic::x86_avx512_psrlv_q_512:
3420     case Intrinsic::x86_avx2_psrav_d:
3421     case Intrinsic::x86_avx2_psrav_d_256:
3422     case Intrinsic::x86_avx512_psrav_d_512:
3423     case Intrinsic::x86_avx512_psrav_q_128:
3424     case Intrinsic::x86_avx512_psrav_q_256:
3425     case Intrinsic::x86_avx512_psrav_q_512:
3426       handleVectorShiftIntrinsic(I, /* Variable */ true);
3427       break;
3428 
3429     case Intrinsic::x86_sse2_packsswb_128:
3430     case Intrinsic::x86_sse2_packssdw_128:
3431     case Intrinsic::x86_sse2_packuswb_128:
3432     case Intrinsic::x86_sse41_packusdw:
3433     case Intrinsic::x86_avx2_packsswb:
3434     case Intrinsic::x86_avx2_packssdw:
3435     case Intrinsic::x86_avx2_packuswb:
3436     case Intrinsic::x86_avx2_packusdw:
3437       handleVectorPackIntrinsic(I);
3438       break;
3439 
3440     case Intrinsic::x86_mmx_packsswb:
3441     case Intrinsic::x86_mmx_packuswb:
3442       handleVectorPackIntrinsic(I, 16);
3443       break;
3444 
3445     case Intrinsic::x86_mmx_packssdw:
3446       handleVectorPackIntrinsic(I, 32);
3447       break;
3448 
3449     case Intrinsic::x86_mmx_psad_bw:
3450     case Intrinsic::x86_sse2_psad_bw:
3451     case Intrinsic::x86_avx2_psad_bw:
3452       handleVectorSadIntrinsic(I);
3453       break;
3454 
3455     case Intrinsic::x86_sse2_pmadd_wd:
3456     case Intrinsic::x86_avx2_pmadd_wd:
3457     case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
3458     case Intrinsic::x86_avx2_pmadd_ub_sw:
3459       handleVectorPmaddIntrinsic(I);
3460       break;
3461 
3462     case Intrinsic::x86_ssse3_pmadd_ub_sw:
3463       handleVectorPmaddIntrinsic(I, 8);
3464       break;
3465 
3466     case Intrinsic::x86_mmx_pmadd_wd:
3467       handleVectorPmaddIntrinsic(I, 16);
3468       break;
3469 
3470     case Intrinsic::x86_sse_cmp_ss:
3471     case Intrinsic::x86_sse2_cmp_sd:
3472     case Intrinsic::x86_sse_comieq_ss:
3473     case Intrinsic::x86_sse_comilt_ss:
3474     case Intrinsic::x86_sse_comile_ss:
3475     case Intrinsic::x86_sse_comigt_ss:
3476     case Intrinsic::x86_sse_comige_ss:
3477     case Intrinsic::x86_sse_comineq_ss:
3478     case Intrinsic::x86_sse_ucomieq_ss:
3479     case Intrinsic::x86_sse_ucomilt_ss:
3480     case Intrinsic::x86_sse_ucomile_ss:
3481     case Intrinsic::x86_sse_ucomigt_ss:
3482     case Intrinsic::x86_sse_ucomige_ss:
3483     case Intrinsic::x86_sse_ucomineq_ss:
3484     case Intrinsic::x86_sse2_comieq_sd:
3485     case Intrinsic::x86_sse2_comilt_sd:
3486     case Intrinsic::x86_sse2_comile_sd:
3487     case Intrinsic::x86_sse2_comigt_sd:
3488     case Intrinsic::x86_sse2_comige_sd:
3489     case Intrinsic::x86_sse2_comineq_sd:
3490     case Intrinsic::x86_sse2_ucomieq_sd:
3491     case Intrinsic::x86_sse2_ucomilt_sd:
3492     case Intrinsic::x86_sse2_ucomile_sd:
3493     case Intrinsic::x86_sse2_ucomigt_sd:
3494     case Intrinsic::x86_sse2_ucomige_sd:
3495     case Intrinsic::x86_sse2_ucomineq_sd:
3496       handleVectorCompareScalarIntrinsic(I);
3497       break;
3498 
3499     case Intrinsic::x86_sse_cmp_ps:
3500     case Intrinsic::x86_sse2_cmp_pd:
3501       // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
3502       // generates reasonably looking IR that fails in the backend with "Do not
3503       // know how to split the result of this operator!".
3504       handleVectorComparePackedIntrinsic(I);
3505       break;
3506 
3507     case Intrinsic::x86_bmi_bextr_32:
3508     case Intrinsic::x86_bmi_bextr_64:
3509     case Intrinsic::x86_bmi_bzhi_32:
3510     case Intrinsic::x86_bmi_bzhi_64:
3511     case Intrinsic::x86_bmi_pdep_32:
3512     case Intrinsic::x86_bmi_pdep_64:
3513     case Intrinsic::x86_bmi_pext_32:
3514     case Intrinsic::x86_bmi_pext_64:
3515       handleBmiIntrinsic(I);
3516       break;
3517 
3518     case Intrinsic::x86_pclmulqdq:
3519     case Intrinsic::x86_pclmulqdq_256:
3520     case Intrinsic::x86_pclmulqdq_512:
3521       handlePclmulIntrinsic(I);
3522       break;
3523 
3524     case Intrinsic::x86_sse41_round_sd:
3525       handleUnarySdIntrinsic(I);
3526       break;
3527     case Intrinsic::x86_sse2_max_sd:
3528     case Intrinsic::x86_sse2_min_sd:
3529       handleBinarySdIntrinsic(I);
3530       break;
3531 
3532     case Intrinsic::fshl:
3533     case Intrinsic::fshr:
3534       handleFunnelShift(I);
3535       break;
3536 
3537     case Intrinsic::is_constant:
3538       // The result of llvm.is.constant() is always defined.
3539       setShadow(&I, getCleanShadow(&I));
3540       setOrigin(&I, getCleanOrigin());
3541       break;
3542 
3543     default:
3544       if (!handleUnknownIntrinsic(I))
3545         visitInstruction(I);
3546       break;
3547     }
3548   }
3549 
3550   void visitLibAtomicLoad(CallBase &CB) {
3551     // Since we use getNextNode here, we can't have CB terminate the BB.
3552     assert(isa<CallInst>(CB));
3553 
3554     IRBuilder<> IRB(&CB);
3555     Value *Size = CB.getArgOperand(0);
3556     Value *SrcPtr = CB.getArgOperand(1);
3557     Value *DstPtr = CB.getArgOperand(2);
3558     Value *Ordering = CB.getArgOperand(3);
3559     // Convert the call to have at least Acquire ordering to make sure
3560     // the shadow operations aren't reordered before it.
3561     Value *NewOrdering =
3562         IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
3563     CB.setArgOperand(3, NewOrdering);
3564 
3565     IRBuilder<> NextIRB(CB.getNextNode());
3566     NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3567 
3568     Value *SrcShadowPtr, *SrcOriginPtr;
3569     std::tie(SrcShadowPtr, SrcOriginPtr) =
3570         getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
3571                            /*isStore*/ false);
3572     Value *DstShadowPtr =
3573         getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
3574                            /*isStore*/ true)
3575             .first;
3576 
3577     NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size);
3578     if (MS.TrackOrigins) {
3579       Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr,
3580                                                    kMinOriginAlignment);
3581       Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB);
3582       NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin});
3583     }
3584   }
3585 
3586   void visitLibAtomicStore(CallBase &CB) {
3587     IRBuilder<> IRB(&CB);
3588     Value *Size = CB.getArgOperand(0);
3589     Value *DstPtr = CB.getArgOperand(2);
3590     Value *Ordering = CB.getArgOperand(3);
3591     // Convert the call to have at least Release ordering to make sure
3592     // the shadow operations aren't reordered after it.
3593     Value *NewOrdering =
3594         IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
3595     CB.setArgOperand(3, NewOrdering);
3596 
3597     Value *DstShadowPtr =
3598         getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1),
3599                            /*isStore*/ true)
3600             .first;
3601 
3602     // Atomic store always paints clean shadow/origin. See file header.
3603     IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size,
3604                      Align(1));
3605   }
3606 
3607   void visitCallBase(CallBase &CB) {
3608     assert(!CB.getMetadata("nosanitize"));
3609     if (CB.isInlineAsm()) {
3610       // For inline asm (either a call to asm function, or callbr instruction),
3611       // do the usual thing: check argument shadow and mark all outputs as
3612       // clean. Note that any side effects of the inline asm that are not
3613       // immediately visible in its constraints are not handled.
3614       if (ClHandleAsmConservative && MS.CompileKernel)
3615         visitAsmInstruction(CB);
3616       else
3617         visitInstruction(CB);
3618       return;
3619     }
3620     LibFunc LF;
3621     if (TLI->getLibFunc(CB, LF)) {
3622       // libatomic.a functions need to have special handling because there isn't
3623       // a good way to intercept them or compile the library with
3624       // instrumentation.
3625       switch (LF) {
3626       case LibFunc_atomic_load:
3627         if (!isa<CallInst>(CB)) {
3628           llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load."
3629                           "Ignoring!\n";
3630           break;
3631         }
3632         visitLibAtomicLoad(CB);
3633         return;
3634       case LibFunc_atomic_store:
3635         visitLibAtomicStore(CB);
3636         return;
3637       default:
3638         break;
3639       }
3640     }
3641 
3642     if (auto *Call = dyn_cast<CallInst>(&CB)) {
3643       assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere");
3644 
3645       // We are going to insert code that relies on the fact that the callee
3646       // will become a non-readonly function after it is instrumented by us. To
3647       // prevent this code from being optimized out, mark that function
3648       // non-readonly in advance.
3649       AttrBuilder B;
3650       B.addAttribute(Attribute::ReadOnly)
3651           .addAttribute(Attribute::ReadNone)
3652           .addAttribute(Attribute::WriteOnly)
3653           .addAttribute(Attribute::ArgMemOnly)
3654           .addAttribute(Attribute::Speculatable);
3655 
3656       Call->removeAttributes(AttributeList::FunctionIndex, B);
3657       if (Function *Func = Call->getCalledFunction()) {
3658         Func->removeAttributes(AttributeList::FunctionIndex, B);
3659       }
3660 
3661       maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
3662     }
3663     IRBuilder<> IRB(&CB);
3664     bool MayCheckCall = ClEagerChecks;
3665     if (Function *Func = CB.getCalledFunction()) {
3666       // __sanitizer_unaligned_{load,store} functions may be called by users
3667       // and always expects shadows in the TLS. So don't check them.
3668       MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_");
3669     }
3670 
3671     unsigned ArgOffset = 0;
3672     LLVM_DEBUG(dbgs() << "  CallSite: " << CB << "\n");
3673     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
3674          ++ArgIt) {
3675       Value *A = *ArgIt;
3676       unsigned i = ArgIt - CB.arg_begin();
3677       if (!A->getType()->isSized()) {
3678         LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n");
3679         continue;
3680       }
3681       unsigned Size = 0;
3682       Value *Store = nullptr;
3683       // Compute the Shadow for arg even if it is ByVal, because
3684       // in that case getShadow() will copy the actual arg shadow to
3685       // __msan_param_tls.
3686       Value *ArgShadow = getShadow(A);
3687       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
3688       LLVM_DEBUG(dbgs() << "  Arg#" << i << ": " << *A
3689                         << " Shadow: " << *ArgShadow << "\n");
3690       bool ArgIsInitialized = false;
3691       const DataLayout &DL = F.getParent()->getDataLayout();
3692 
3693       bool ByVal = CB.paramHasAttr(i, Attribute::ByVal);
3694       bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef);
3695       bool EagerCheck = MayCheckCall && !ByVal && NoUndef;
3696 
3697       if (EagerCheck) {
3698         insertShadowCheck(A, &CB);
3699         continue;
3700       }
3701       if (ByVal) {
3702         // ByVal requires some special handling as it's too big for a single
3703         // load
3704         assert(A->getType()->isPointerTy() &&
3705                "ByVal argument is not a pointer!");
3706         Size = DL.getTypeAllocSize(CB.getParamByValType(i));
3707         if (ArgOffset + Size > kParamTLSSize) break;
3708         const MaybeAlign ParamAlignment(CB.getParamAlign(i));
3709         MaybeAlign Alignment = llvm::None;
3710         if (ParamAlignment)
3711           Alignment = std::min(*ParamAlignment, kShadowTLSAlignment);
3712         Value *AShadowPtr =
3713             getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
3714                                /*isStore*/ false)
3715                 .first;
3716 
3717         Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
3718                                  Alignment, Size);
3719         // TODO(glider): need to copy origins.
3720       } else {
3721         // Any other parameters mean we need bit-grained tracking of uninit data
3722         Size = DL.getTypeAllocSize(A->getType());
3723         if (ArgOffset + Size > kParamTLSSize) break;
3724         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
3725                                        kShadowTLSAlignment);
3726         Constant *Cst = dyn_cast<Constant>(ArgShadow);
3727         if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
3728       }
3729       if (MS.TrackOrigins && !ArgIsInitialized)
3730         IRB.CreateStore(getOrigin(A),
3731                         getOriginPtrForArgument(A, IRB, ArgOffset));
3732       (void)Store;
3733       assert(Size != 0 && Store != nullptr);
3734       LLVM_DEBUG(dbgs() << "  Param:" << *Store << "\n");
3735       ArgOffset += alignTo(Size, kShadowTLSAlignment);
3736     }
3737     LLVM_DEBUG(dbgs() << "  done with call args\n");
3738 
3739     FunctionType *FT = CB.getFunctionType();
3740     if (FT->isVarArg()) {
3741       VAHelper->visitCallBase(CB, IRB);
3742     }
3743 
3744     // Now, get the shadow for the RetVal.
3745     if (!CB.getType()->isSized())
3746       return;
3747     // Don't emit the epilogue for musttail call returns.
3748     if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
3749       return;
3750 
3751     if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) {
3752       setShadow(&CB, getCleanShadow(&CB));
3753       setOrigin(&CB, getCleanOrigin());
3754       return;
3755     }
3756 
3757     IRBuilder<> IRBBefore(&CB);
3758     // Until we have full dynamic coverage, make sure the retval shadow is 0.
3759     Value *Base = getShadowPtrForRetval(&CB, IRBBefore);
3760     IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base,
3761                                  kShadowTLSAlignment);
3762     BasicBlock::iterator NextInsn;
3763     if (isa<CallInst>(CB)) {
3764       NextInsn = ++CB.getIterator();
3765       assert(NextInsn != CB.getParent()->end());
3766     } else {
3767       BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest();
3768       if (!NormalDest->getSinglePredecessor()) {
3769         // FIXME: this case is tricky, so we are just conservative here.
3770         // Perhaps we need to split the edge between this BB and NormalDest,
3771         // but a naive attempt to use SplitEdge leads to a crash.
3772         setShadow(&CB, getCleanShadow(&CB));
3773         setOrigin(&CB, getCleanOrigin());
3774         return;
3775       }
3776       // FIXME: NextInsn is likely in a basic block that has not been visited yet.
3777       // Anything inserted there will be instrumented by MSan later!
3778       NextInsn = NormalDest->getFirstInsertionPt();
3779       assert(NextInsn != NormalDest->end() &&
3780              "Could not find insertion point for retval shadow load");
3781     }
3782     IRBuilder<> IRBAfter(&*NextInsn);
3783     Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
3784         getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter),
3785         kShadowTLSAlignment, "_msret");
3786     setShadow(&CB, RetvalShadow);
3787     if (MS.TrackOrigins)
3788       setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy,
3789                                          getOriginPtrForRetval(IRBAfter)));
3790   }
3791 
3792   bool isAMustTailRetVal(Value *RetVal) {
3793     if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
3794       RetVal = I->getOperand(0);
3795     }
3796     if (auto *I = dyn_cast<CallInst>(RetVal)) {
3797       return I->isMustTailCall();
3798     }
3799     return false;
3800   }
3801 
3802   void visitReturnInst(ReturnInst &I) {
3803     IRBuilder<> IRB(&I);
3804     Value *RetVal = I.getReturnValue();
3805     if (!RetVal) return;
3806     // Don't emit the epilogue for musttail call returns.
3807     if (isAMustTailRetVal(RetVal)) return;
3808     Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
3809     bool HasNoUndef =
3810         F.hasAttribute(AttributeList::ReturnIndex, Attribute::NoUndef);
3811     bool StoreShadow = !(ClEagerChecks && HasNoUndef);
3812     // FIXME: Consider using SpecialCaseList to specify a list of functions that
3813     // must always return fully initialized values. For now, we hardcode "main".
3814     bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main");
3815 
3816     Value *Shadow = getShadow(RetVal);
3817     bool StoreOrigin = true;
3818     if (EagerCheck) {
3819       insertShadowCheck(RetVal, &I);
3820       Shadow = getCleanShadow(RetVal);
3821       StoreOrigin = false;
3822     }
3823 
3824     // The caller may still expect information passed over TLS if we pass our
3825     // check
3826     if (StoreShadow) {
3827       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
3828       if (MS.TrackOrigins && StoreOrigin)
3829         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
3830     }
3831   }
3832 
3833   void visitPHINode(PHINode &I) {
3834     IRBuilder<> IRB(&I);
3835     if (!PropagateShadow) {
3836       setShadow(&I, getCleanShadow(&I));
3837       setOrigin(&I, getCleanOrigin());
3838       return;
3839     }
3840 
3841     ShadowPHINodes.push_back(&I);
3842     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
3843                                 "_msphi_s"));
3844     if (MS.TrackOrigins)
3845       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
3846                                   "_msphi_o"));
3847   }
3848 
3849   Value *getLocalVarDescription(AllocaInst &I) {
3850     SmallString<2048> StackDescriptionStorage;
3851     raw_svector_ostream StackDescription(StackDescriptionStorage);
3852     // We create a string with a description of the stack allocation and
3853     // pass it into __msan_set_alloca_origin.
3854     // It will be printed by the run-time if stack-originated UMR is found.
3855     // The first 4 bytes of the string are set to '----' and will be replaced
3856     // by __msan_va_arg_overflow_size_tls at the first call.
3857     StackDescription << "----" << I.getName() << "@" << F.getName();
3858     return createPrivateNonConstGlobalForString(*F.getParent(),
3859                                                 StackDescription.str());
3860   }
3861 
3862   void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3863     if (PoisonStack && ClPoisonStackWithCall) {
3864       IRB.CreateCall(MS.MsanPoisonStackFn,
3865                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3866     } else {
3867       Value *ShadowBase, *OriginBase;
3868       std::tie(ShadowBase, OriginBase) = getShadowOriginPtr(
3869           &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true);
3870 
3871       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
3872       IRB.CreateMemSet(ShadowBase, PoisonValue, Len,
3873                        MaybeAlign(I.getAlignment()));
3874     }
3875 
3876     if (PoisonStack && MS.TrackOrigins) {
3877       Value *Descr = getLocalVarDescription(I);
3878       IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
3879                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3880                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
3881                       IRB.CreatePointerCast(&F, MS.IntptrTy)});
3882     }
3883   }
3884 
3885   void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3886     Value *Descr = getLocalVarDescription(I);
3887     if (PoisonStack) {
3888       IRB.CreateCall(MS.MsanPoisonAllocaFn,
3889                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3890                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
3891     } else {
3892       IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
3893                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3894     }
3895   }
3896 
3897   void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
3898     if (!InsPoint)
3899       InsPoint = &I;
3900     IRBuilder<> IRB(InsPoint->getNextNode());
3901     const DataLayout &DL = F.getParent()->getDataLayout();
3902     uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
3903     Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
3904     if (I.isArrayAllocation())
3905       Len = IRB.CreateMul(Len, I.getArraySize());
3906 
3907     if (MS.CompileKernel)
3908       poisonAllocaKmsan(I, IRB, Len);
3909     else
3910       poisonAllocaUserspace(I, IRB, Len);
3911   }
3912 
3913   void visitAllocaInst(AllocaInst &I) {
3914     setShadow(&I, getCleanShadow(&I));
3915     setOrigin(&I, getCleanOrigin());
3916     // We'll get to this alloca later unless it's poisoned at the corresponding
3917     // llvm.lifetime.start.
3918     AllocaSet.insert(&I);
3919   }
3920 
3921   void visitSelectInst(SelectInst& I) {
3922     IRBuilder<> IRB(&I);
3923     // a = select b, c, d
3924     Value *B = I.getCondition();
3925     Value *C = I.getTrueValue();
3926     Value *D = I.getFalseValue();
3927     Value *Sb = getShadow(B);
3928     Value *Sc = getShadow(C);
3929     Value *Sd = getShadow(D);
3930 
3931     // Result shadow if condition shadow is 0.
3932     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
3933     Value *Sa1;
3934     if (I.getType()->isAggregateType()) {
3935       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
3936       // an extra "select". This results in much more compact IR.
3937       // Sa = select Sb, poisoned, (select b, Sc, Sd)
3938       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
3939     } else {
3940       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
3941       // If Sb (condition is poisoned), look for bits in c and d that are equal
3942       // and both unpoisoned.
3943       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
3944 
3945       // Cast arguments to shadow-compatible type.
3946       C = CreateAppToShadowCast(IRB, C);
3947       D = CreateAppToShadowCast(IRB, D);
3948 
3949       // Result shadow if condition shadow is 1.
3950       Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
3951     }
3952     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
3953     setShadow(&I, Sa);
3954     if (MS.TrackOrigins) {
3955       // Origins are always i32, so any vector conditions must be flattened.
3956       // FIXME: consider tracking vector origins for app vectors?
3957       if (B->getType()->isVectorTy()) {
3958         Type *FlatTy = getShadowTyNoVec(B->getType());
3959         B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
3960                                 ConstantInt::getNullValue(FlatTy));
3961         Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
3962                                       ConstantInt::getNullValue(FlatTy));
3963       }
3964       // a = select b, c, d
3965       // Oa = Sb ? Ob : (b ? Oc : Od)
3966       setOrigin(
3967           &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
3968                                IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
3969                                                 getOrigin(I.getFalseValue()))));
3970     }
3971   }
3972 
3973   void visitLandingPadInst(LandingPadInst &I) {
3974     // Do nothing.
3975     // See https://github.com/google/sanitizers/issues/504
3976     setShadow(&I, getCleanShadow(&I));
3977     setOrigin(&I, getCleanOrigin());
3978   }
3979 
3980   void visitCatchSwitchInst(CatchSwitchInst &I) {
3981     setShadow(&I, getCleanShadow(&I));
3982     setOrigin(&I, getCleanOrigin());
3983   }
3984 
3985   void visitFuncletPadInst(FuncletPadInst &I) {
3986     setShadow(&I, getCleanShadow(&I));
3987     setOrigin(&I, getCleanOrigin());
3988   }
3989 
3990   void visitGetElementPtrInst(GetElementPtrInst &I) {
3991     handleShadowOr(I);
3992   }
3993 
3994   void visitExtractValueInst(ExtractValueInst &I) {
3995     IRBuilder<> IRB(&I);
3996     Value *Agg = I.getAggregateOperand();
3997     LLVM_DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
3998     Value *AggShadow = getShadow(Agg);
3999     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
4000     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
4001     LLVM_DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
4002     setShadow(&I, ResShadow);
4003     setOriginForNaryOp(I);
4004   }
4005 
4006   void visitInsertValueInst(InsertValueInst &I) {
4007     IRBuilder<> IRB(&I);
4008     LLVM_DEBUG(dbgs() << "InsertValue:  " << I << "\n");
4009     Value *AggShadow = getShadow(I.getAggregateOperand());
4010     Value *InsShadow = getShadow(I.getInsertedValueOperand());
4011     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
4012     LLVM_DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
4013     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
4014     LLVM_DEBUG(dbgs() << "   Res:        " << *Res << "\n");
4015     setShadow(&I, Res);
4016     setOriginForNaryOp(I);
4017   }
4018 
4019   void dumpInst(Instruction &I) {
4020     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
4021       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
4022     } else {
4023       errs() << "ZZZ " << I.getOpcodeName() << "\n";
4024     }
4025     errs() << "QQQ " << I << "\n";
4026   }
4027 
4028   void visitResumeInst(ResumeInst &I) {
4029     LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
4030     // Nothing to do here.
4031   }
4032 
4033   void visitCleanupReturnInst(CleanupReturnInst &CRI) {
4034     LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
4035     // Nothing to do here.
4036   }
4037 
4038   void visitCatchReturnInst(CatchReturnInst &CRI) {
4039     LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
4040     // Nothing to do here.
4041   }
4042 
4043   void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB,
4044                              const DataLayout &DL, bool isOutput) {
4045     // For each assembly argument, we check its value for being initialized.
4046     // If the argument is a pointer, we assume it points to a single element
4047     // of the corresponding type (or to a 8-byte word, if the type is unsized).
4048     // Each such pointer is instrumented with a call to the runtime library.
4049     Type *OpType = Operand->getType();
4050     // Check the operand value itself.
4051     insertShadowCheck(Operand, &I);
4052     if (!OpType->isPointerTy() || !isOutput) {
4053       assert(!isOutput);
4054       return;
4055     }
4056     Type *ElType = OpType->getPointerElementType();
4057     if (!ElType->isSized())
4058       return;
4059     int Size = DL.getTypeStoreSize(ElType);
4060     Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
4061     Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
4062     IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
4063   }
4064 
4065   /// Get the number of output arguments returned by pointers.
4066   int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
4067     int NumRetOutputs = 0;
4068     int NumOutputs = 0;
4069     Type *RetTy = cast<Value>(CB)->getType();
4070     if (!RetTy->isVoidTy()) {
4071       // Register outputs are returned via the CallInst return value.
4072       auto *ST = dyn_cast<StructType>(RetTy);
4073       if (ST)
4074         NumRetOutputs = ST->getNumElements();
4075       else
4076         NumRetOutputs = 1;
4077     }
4078     InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
4079     for (const InlineAsm::ConstraintInfo &Info : Constraints) {
4080       switch (Info.Type) {
4081       case InlineAsm::isOutput:
4082         NumOutputs++;
4083         break;
4084       default:
4085         break;
4086       }
4087     }
4088     return NumOutputs - NumRetOutputs;
4089   }
4090 
4091   void visitAsmInstruction(Instruction &I) {
4092     // Conservative inline assembly handling: check for poisoned shadow of
4093     // asm() arguments, then unpoison the result and all the memory locations
4094     // pointed to by those arguments.
4095     // An inline asm() statement in C++ contains lists of input and output
4096     // arguments used by the assembly code. These are mapped to operands of the
4097     // CallInst as follows:
4098     //  - nR register outputs ("=r) are returned by value in a single structure
4099     //  (SSA value of the CallInst);
4100     //  - nO other outputs ("=m" and others) are returned by pointer as first
4101     // nO operands of the CallInst;
4102     //  - nI inputs ("r", "m" and others) are passed to CallInst as the
4103     // remaining nI operands.
4104     // The total number of asm() arguments in the source is nR+nO+nI, and the
4105     // corresponding CallInst has nO+nI+1 operands (the last operand is the
4106     // function to be called).
4107     const DataLayout &DL = F.getParent()->getDataLayout();
4108     CallBase *CB = cast<CallBase>(&I);
4109     IRBuilder<> IRB(&I);
4110     InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4111     int OutputArgs = getNumOutputArgs(IA, CB);
4112     // The last operand of a CallInst is the function itself.
4113     int NumOperands = CB->getNumOperands() - 1;
4114 
4115     // Check input arguments. Doing so before unpoisoning output arguments, so
4116     // that we won't overwrite uninit values before checking them.
4117     for (int i = OutputArgs; i < NumOperands; i++) {
4118       Value *Operand = CB->getOperand(i);
4119       instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false);
4120     }
4121     // Unpoison output arguments. This must happen before the actual InlineAsm
4122     // call, so that the shadow for memory published in the asm() statement
4123     // remains valid.
4124     for (int i = 0; i < OutputArgs; i++) {
4125       Value *Operand = CB->getOperand(i);
4126       instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true);
4127     }
4128 
4129     setShadow(&I, getCleanShadow(&I));
4130     setOrigin(&I, getCleanOrigin());
4131   }
4132 
4133   void visitFreezeInst(FreezeInst &I) {
4134     // Freeze always returns a fully defined value.
4135     setShadow(&I, getCleanShadow(&I));
4136     setOrigin(&I, getCleanOrigin());
4137   }
4138 
4139   void visitInstruction(Instruction &I) {
4140     // Everything else: stop propagating and check for poisoned shadow.
4141     if (ClDumpStrictInstructions)
4142       dumpInst(I);
4143     LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
4144     for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
4145       Value *Operand = I.getOperand(i);
4146       if (Operand->getType()->isSized())
4147         insertShadowCheck(Operand, &I);
4148     }
4149     setShadow(&I, getCleanShadow(&I));
4150     setOrigin(&I, getCleanOrigin());
4151   }
4152 };
4153 
4154 /// AMD64-specific implementation of VarArgHelper.
4155 struct VarArgAMD64Helper : public VarArgHelper {
4156   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
4157   // See a comment in visitCallBase for more details.
4158   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
4159   static const unsigned AMD64FpEndOffsetSSE = 176;
4160   // If SSE is disabled, fp_offset in va_list is zero.
4161   static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
4162 
4163   unsigned AMD64FpEndOffset;
4164   Function &F;
4165   MemorySanitizer &MS;
4166   MemorySanitizerVisitor &MSV;
4167   Value *VAArgTLSCopy = nullptr;
4168   Value *VAArgTLSOriginCopy = nullptr;
4169   Value *VAArgOverflowSize = nullptr;
4170 
4171   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4172 
4173   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4174 
4175   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
4176                     MemorySanitizerVisitor &MSV)
4177       : F(F), MS(MS), MSV(MSV) {
4178     AMD64FpEndOffset = AMD64FpEndOffsetSSE;
4179     for (const auto &Attr : F.getAttributes().getFnAttributes()) {
4180       if (Attr.isStringAttribute() &&
4181           (Attr.getKindAsString() == "target-features")) {
4182         if (Attr.getValueAsString().contains("-sse"))
4183           AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
4184         break;
4185       }
4186     }
4187   }
4188 
4189   ArgKind classifyArgument(Value* arg) {
4190     // A very rough approximation of X86_64 argument classification rules.
4191     Type *T = arg->getType();
4192     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
4193       return AK_FloatingPoint;
4194     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4195       return AK_GeneralPurpose;
4196     if (T->isPointerTy())
4197       return AK_GeneralPurpose;
4198     return AK_Memory;
4199   }
4200 
4201   // For VarArg functions, store the argument shadow in an ABI-specific format
4202   // that corresponds to va_list layout.
4203   // We do this because Clang lowers va_arg in the frontend, and this pass
4204   // only sees the low level code that deals with va_list internals.
4205   // A much easier alternative (provided that Clang emits va_arg instructions)
4206   // would have been to associate each live instance of va_list with a copy of
4207   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
4208   // order.
4209   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4210     unsigned GpOffset = 0;
4211     unsigned FpOffset = AMD64GpEndOffset;
4212     unsigned OverflowOffset = AMD64FpEndOffset;
4213     const DataLayout &DL = F.getParent()->getDataLayout();
4214     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
4215          ++ArgIt) {
4216       Value *A = *ArgIt;
4217       unsigned ArgNo = CB.getArgOperandNo(ArgIt);
4218       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4219       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
4220       if (IsByVal) {
4221         // ByVal arguments always go to the overflow area.
4222         // Fixed arguments passed through the overflow area will be stepped
4223         // over by va_start, so don't count them towards the offset.
4224         if (IsFixed)
4225           continue;
4226         assert(A->getType()->isPointerTy());
4227         Type *RealTy = CB.getParamByValType(ArgNo);
4228         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4229         Value *ShadowBase = getShadowPtrForVAArgument(
4230             RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
4231         Value *OriginBase = nullptr;
4232         if (MS.TrackOrigins)
4233           OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
4234         OverflowOffset += alignTo(ArgSize, 8);
4235         if (!ShadowBase)
4236           continue;
4237         Value *ShadowPtr, *OriginPtr;
4238         std::tie(ShadowPtr, OriginPtr) =
4239             MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
4240                                    /*isStore*/ false);
4241 
4242         IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
4243                          kShadowTLSAlignment, ArgSize);
4244         if (MS.TrackOrigins)
4245           IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
4246                            kShadowTLSAlignment, ArgSize);
4247       } else {
4248         ArgKind AK = classifyArgument(A);
4249         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
4250           AK = AK_Memory;
4251         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
4252           AK = AK_Memory;
4253         Value *ShadowBase, *OriginBase = nullptr;
4254         switch (AK) {
4255           case AK_GeneralPurpose:
4256             ShadowBase =
4257                 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
4258             if (MS.TrackOrigins)
4259               OriginBase =
4260                   getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
4261             GpOffset += 8;
4262             break;
4263           case AK_FloatingPoint:
4264             ShadowBase =
4265                 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
4266             if (MS.TrackOrigins)
4267               OriginBase =
4268                   getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
4269             FpOffset += 16;
4270             break;
4271           case AK_Memory:
4272             if (IsFixed)
4273               continue;
4274             uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4275             ShadowBase =
4276                 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
4277             if (MS.TrackOrigins)
4278               OriginBase =
4279                   getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
4280             OverflowOffset += alignTo(ArgSize, 8);
4281         }
4282         // Take fixed arguments into account for GpOffset and FpOffset,
4283         // but don't actually store shadows for them.
4284         // TODO(glider): don't call get*PtrForVAArgument() for them.
4285         if (IsFixed)
4286           continue;
4287         if (!ShadowBase)
4288           continue;
4289         Value *Shadow = MSV.getShadow(A);
4290         IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
4291         if (MS.TrackOrigins) {
4292           Value *Origin = MSV.getOrigin(A);
4293           unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
4294           MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
4295                           std::max(kShadowTLSAlignment, kMinOriginAlignment));
4296         }
4297       }
4298     }
4299     Constant *OverflowSize =
4300       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
4301     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4302   }
4303 
4304   /// Compute the shadow address for a given va_arg.
4305   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4306                                    unsigned ArgOffset, unsigned ArgSize) {
4307     // Make sure we don't overflow __msan_va_arg_tls.
4308     if (ArgOffset + ArgSize > kParamTLSSize)
4309       return nullptr;
4310     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4311     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4312     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4313                               "_msarg_va_s");
4314   }
4315 
4316   /// Compute the origin address for a given va_arg.
4317   Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
4318     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
4319     // getOriginPtrForVAArgument() is always called after
4320     // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
4321     // overflow.
4322     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4323     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
4324                               "_msarg_va_o");
4325   }
4326 
4327   void unpoisonVAListTagForInst(IntrinsicInst &I) {
4328     IRBuilder<> IRB(&I);
4329     Value *VAListTag = I.getArgOperand(0);
4330     Value *ShadowPtr, *OriginPtr;
4331     const Align Alignment = Align(8);
4332     std::tie(ShadowPtr, OriginPtr) =
4333         MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
4334                                /*isStore*/ true);
4335 
4336     // Unpoison the whole __va_list_tag.
4337     // FIXME: magic ABI constants.
4338     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4339                      /* size */ 24, Alignment, false);
4340     // We shouldn't need to zero out the origins, as they're only checked for
4341     // nonzero shadow.
4342   }
4343 
4344   void visitVAStartInst(VAStartInst &I) override {
4345     if (F.getCallingConv() == CallingConv::Win64)
4346       return;
4347     VAStartInstrumentationList.push_back(&I);
4348     unpoisonVAListTagForInst(I);
4349   }
4350 
4351   void visitVACopyInst(VACopyInst &I) override {
4352     if (F.getCallingConv() == CallingConv::Win64) return;
4353     unpoisonVAListTagForInst(I);
4354   }
4355 
4356   void finalizeInstrumentation() override {
4357     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
4358            "finalizeInstrumentation called twice");
4359     if (!VAStartInstrumentationList.empty()) {
4360       // If there is a va_start in this function, make a backup copy of
4361       // va_arg_tls somewhere in the function entry block.
4362       IRBuilder<> IRB(MSV.FnPrologueEnd);
4363       VAArgOverflowSize =
4364           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4365       Value *CopySize =
4366         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
4367                       VAArgOverflowSize);
4368       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4369       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4370       if (MS.TrackOrigins) {
4371         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4372         IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS,
4373                          Align(8), CopySize);
4374       }
4375     }
4376 
4377     // Instrument va_start.
4378     // Copy va_list shadow from the backup copy of the TLS contents.
4379     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4380       CallInst *OrigInst = VAStartInstrumentationList[i];
4381       IRBuilder<> IRB(OrigInst->getNextNode());
4382       Value *VAListTag = OrigInst->getArgOperand(0);
4383 
4384       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4385       Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
4386           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4387                         ConstantInt::get(MS.IntptrTy, 16)),
4388           PointerType::get(RegSaveAreaPtrTy, 0));
4389       Value *RegSaveAreaPtr =
4390           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4391       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4392       const Align Alignment = Align(16);
4393       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4394           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4395                                  Alignment, /*isStore*/ true);
4396       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4397                        AMD64FpEndOffset);
4398       if (MS.TrackOrigins)
4399         IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
4400                          Alignment, AMD64FpEndOffset);
4401       Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4402       Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
4403           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4404                         ConstantInt::get(MS.IntptrTy, 8)),
4405           PointerType::get(OverflowArgAreaPtrTy, 0));
4406       Value *OverflowArgAreaPtr =
4407           IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
4408       Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
4409       std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
4410           MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
4411                                  Alignment, /*isStore*/ true);
4412       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
4413                                              AMD64FpEndOffset);
4414       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
4415                        VAArgOverflowSize);
4416       if (MS.TrackOrigins) {
4417         SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
4418                                         AMD64FpEndOffset);
4419         IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
4420                          VAArgOverflowSize);
4421       }
4422     }
4423   }
4424 };
4425 
4426 /// MIPS64-specific implementation of VarArgHelper.
4427 struct VarArgMIPS64Helper : public VarArgHelper {
4428   Function &F;
4429   MemorySanitizer &MS;
4430   MemorySanitizerVisitor &MSV;
4431   Value *VAArgTLSCopy = nullptr;
4432   Value *VAArgSize = nullptr;
4433 
4434   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4435 
4436   VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
4437                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4438 
4439   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4440     unsigned VAArgOffset = 0;
4441     const DataLayout &DL = F.getParent()->getDataLayout();
4442     for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(),
4443               End = CB.arg_end();
4444          ArgIt != End; ++ArgIt) {
4445       Triple TargetTriple(F.getParent()->getTargetTriple());
4446       Value *A = *ArgIt;
4447       Value *Base;
4448       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4449       if (TargetTriple.getArch() == Triple::mips64) {
4450         // Adjusting the shadow for argument with size < 8 to match the placement
4451         // of bits in big endian system
4452         if (ArgSize < 8)
4453           VAArgOffset += (8 - ArgSize);
4454       }
4455       Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
4456       VAArgOffset += ArgSize;
4457       VAArgOffset = alignTo(VAArgOffset, 8);
4458       if (!Base)
4459         continue;
4460       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4461     }
4462 
4463     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
4464     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4465     // a new class member i.e. it is the total size of all VarArgs.
4466     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4467   }
4468 
4469   /// Compute the shadow address for a given va_arg.
4470   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4471                                    unsigned ArgOffset, unsigned ArgSize) {
4472     // Make sure we don't overflow __msan_va_arg_tls.
4473     if (ArgOffset + ArgSize > kParamTLSSize)
4474       return nullptr;
4475     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4476     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4477     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4478                               "_msarg");
4479   }
4480 
4481   void visitVAStartInst(VAStartInst &I) override {
4482     IRBuilder<> IRB(&I);
4483     VAStartInstrumentationList.push_back(&I);
4484     Value *VAListTag = I.getArgOperand(0);
4485     Value *ShadowPtr, *OriginPtr;
4486     const Align Alignment = Align(8);
4487     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4488         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4489     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4490                      /* size */ 8, Alignment, false);
4491   }
4492 
4493   void visitVACopyInst(VACopyInst &I) override {
4494     IRBuilder<> IRB(&I);
4495     VAStartInstrumentationList.push_back(&I);
4496     Value *VAListTag = I.getArgOperand(0);
4497     Value *ShadowPtr, *OriginPtr;
4498     const Align Alignment = Align(8);
4499     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4500         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4501     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4502                      /* size */ 8, Alignment, false);
4503   }
4504 
4505   void finalizeInstrumentation() override {
4506     assert(!VAArgSize && !VAArgTLSCopy &&
4507            "finalizeInstrumentation called twice");
4508     IRBuilder<> IRB(MSV.FnPrologueEnd);
4509     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4510     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4511                                     VAArgSize);
4512 
4513     if (!VAStartInstrumentationList.empty()) {
4514       // If there is a va_start in this function, make a backup copy of
4515       // va_arg_tls somewhere in the function entry block.
4516       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4517       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4518     }
4519 
4520     // Instrument va_start.
4521     // Copy va_list shadow from the backup copy of the TLS contents.
4522     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4523       CallInst *OrigInst = VAStartInstrumentationList[i];
4524       IRBuilder<> IRB(OrigInst->getNextNode());
4525       Value *VAListTag = OrigInst->getArgOperand(0);
4526       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4527       Value *RegSaveAreaPtrPtr =
4528           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4529                              PointerType::get(RegSaveAreaPtrTy, 0));
4530       Value *RegSaveAreaPtr =
4531           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4532       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4533       const Align Alignment = Align(8);
4534       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4535           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4536                                  Alignment, /*isStore*/ true);
4537       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4538                        CopySize);
4539     }
4540   }
4541 };
4542 
4543 /// AArch64-specific implementation of VarArgHelper.
4544 struct VarArgAArch64Helper : public VarArgHelper {
4545   static const unsigned kAArch64GrArgSize = 64;
4546   static const unsigned kAArch64VrArgSize = 128;
4547 
4548   static const unsigned AArch64GrBegOffset = 0;
4549   static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
4550   // Make VR space aligned to 16 bytes.
4551   static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
4552   static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
4553                                              + kAArch64VrArgSize;
4554   static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
4555 
4556   Function &F;
4557   MemorySanitizer &MS;
4558   MemorySanitizerVisitor &MSV;
4559   Value *VAArgTLSCopy = nullptr;
4560   Value *VAArgOverflowSize = nullptr;
4561 
4562   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4563 
4564   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4565 
4566   VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
4567                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4568 
4569   ArgKind classifyArgument(Value* arg) {
4570     Type *T = arg->getType();
4571     if (T->isFPOrFPVectorTy())
4572       return AK_FloatingPoint;
4573     if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4574         || (T->isPointerTy()))
4575       return AK_GeneralPurpose;
4576     return AK_Memory;
4577   }
4578 
4579   // The instrumentation stores the argument shadow in a non ABI-specific
4580   // format because it does not know which argument is named (since Clang,
4581   // like x86_64 case, lowers the va_args in the frontend and this pass only
4582   // sees the low level code that deals with va_list internals).
4583   // The first seven GR registers are saved in the first 56 bytes of the
4584   // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
4585   // the remaining arguments.
4586   // Using constant offset within the va_arg TLS array allows fast copy
4587   // in the finalize instrumentation.
4588   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4589     unsigned GrOffset = AArch64GrBegOffset;
4590     unsigned VrOffset = AArch64VrBegOffset;
4591     unsigned OverflowOffset = AArch64VAEndOffset;
4592 
4593     const DataLayout &DL = F.getParent()->getDataLayout();
4594     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
4595          ++ArgIt) {
4596       Value *A = *ArgIt;
4597       unsigned ArgNo = CB.getArgOperandNo(ArgIt);
4598       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4599       ArgKind AK = classifyArgument(A);
4600       if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
4601         AK = AK_Memory;
4602       if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
4603         AK = AK_Memory;
4604       Value *Base;
4605       switch (AK) {
4606         case AK_GeneralPurpose:
4607           Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
4608           GrOffset += 8;
4609           break;
4610         case AK_FloatingPoint:
4611           Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
4612           VrOffset += 16;
4613           break;
4614         case AK_Memory:
4615           // Don't count fixed arguments in the overflow area - va_start will
4616           // skip right over them.
4617           if (IsFixed)
4618             continue;
4619           uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4620           Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
4621                                            alignTo(ArgSize, 8));
4622           OverflowOffset += alignTo(ArgSize, 8);
4623           break;
4624       }
4625       // Count Gp/Vr fixed arguments to their respective offsets, but don't
4626       // bother to actually store a shadow.
4627       if (IsFixed)
4628         continue;
4629       if (!Base)
4630         continue;
4631       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4632     }
4633     Constant *OverflowSize =
4634       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
4635     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4636   }
4637 
4638   /// Compute the shadow address for a given va_arg.
4639   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4640                                    unsigned ArgOffset, unsigned ArgSize) {
4641     // Make sure we don't overflow __msan_va_arg_tls.
4642     if (ArgOffset + ArgSize > kParamTLSSize)
4643       return nullptr;
4644     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4645     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4646     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4647                               "_msarg");
4648   }
4649 
4650   void visitVAStartInst(VAStartInst &I) override {
4651     IRBuilder<> IRB(&I);
4652     VAStartInstrumentationList.push_back(&I);
4653     Value *VAListTag = I.getArgOperand(0);
4654     Value *ShadowPtr, *OriginPtr;
4655     const Align Alignment = Align(8);
4656     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4657         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4658     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4659                      /* size */ 32, Alignment, false);
4660   }
4661 
4662   void visitVACopyInst(VACopyInst &I) override {
4663     IRBuilder<> IRB(&I);
4664     VAStartInstrumentationList.push_back(&I);
4665     Value *VAListTag = I.getArgOperand(0);
4666     Value *ShadowPtr, *OriginPtr;
4667     const Align Alignment = Align(8);
4668     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4669         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4670     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4671                      /* size */ 32, Alignment, false);
4672   }
4673 
4674   // Retrieve a va_list field of 'void*' size.
4675   Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4676     Value *SaveAreaPtrPtr =
4677       IRB.CreateIntToPtr(
4678         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4679                       ConstantInt::get(MS.IntptrTy, offset)),
4680         Type::getInt64PtrTy(*MS.C));
4681     return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
4682   }
4683 
4684   // Retrieve a va_list field of 'int' size.
4685   Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4686     Value *SaveAreaPtr =
4687       IRB.CreateIntToPtr(
4688         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4689                       ConstantInt::get(MS.IntptrTy, offset)),
4690         Type::getInt32PtrTy(*MS.C));
4691     Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
4692     return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
4693   }
4694 
4695   void finalizeInstrumentation() override {
4696     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
4697            "finalizeInstrumentation called twice");
4698     if (!VAStartInstrumentationList.empty()) {
4699       // If there is a va_start in this function, make a backup copy of
4700       // va_arg_tls somewhere in the function entry block.
4701       IRBuilder<> IRB(MSV.FnPrologueEnd);
4702       VAArgOverflowSize =
4703           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4704       Value *CopySize =
4705         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
4706                       VAArgOverflowSize);
4707       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4708       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4709     }
4710 
4711     Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
4712     Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
4713 
4714     // Instrument va_start, copy va_list shadow from the backup copy of
4715     // the TLS contents.
4716     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4717       CallInst *OrigInst = VAStartInstrumentationList[i];
4718       IRBuilder<> IRB(OrigInst->getNextNode());
4719 
4720       Value *VAListTag = OrigInst->getArgOperand(0);
4721 
4722       // The variadic ABI for AArch64 creates two areas to save the incoming
4723       // argument registers (one for 64-bit general register xn-x7 and another
4724       // for 128-bit FP/SIMD vn-v7).
4725       // We need then to propagate the shadow arguments on both regions
4726       // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
4727       // The remaining arguments are saved on shadow for 'va::stack'.
4728       // One caveat is it requires only to propagate the non-named arguments,
4729       // however on the call site instrumentation 'all' the arguments are
4730       // saved. So to copy the shadow values from the va_arg TLS array
4731       // we need to adjust the offset for both GR and VR fields based on
4732       // the __{gr,vr}_offs value (since they are stores based on incoming
4733       // named arguments).
4734 
4735       // Read the stack pointer from the va_list.
4736       Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
4737 
4738       // Read both the __gr_top and __gr_off and add them up.
4739       Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
4740       Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
4741 
4742       Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
4743 
4744       // Read both the __vr_top and __vr_off and add them up.
4745       Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
4746       Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
4747 
4748       Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
4749 
4750       // It does not know how many named arguments is being used and, on the
4751       // callsite all the arguments were saved.  Since __gr_off is defined as
4752       // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
4753       // argument by ignoring the bytes of shadow from named arguments.
4754       Value *GrRegSaveAreaShadowPtrOff =
4755         IRB.CreateAdd(GrArgSize, GrOffSaveArea);
4756 
4757       Value *GrRegSaveAreaShadowPtr =
4758           MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4759                                  Align(8), /*isStore*/ true)
4760               .first;
4761 
4762       Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4763                                               GrRegSaveAreaShadowPtrOff);
4764       Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
4765 
4766       IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8),
4767                        GrCopySize);
4768 
4769       // Again, but for FP/SIMD values.
4770       Value *VrRegSaveAreaShadowPtrOff =
4771           IRB.CreateAdd(VrArgSize, VrOffSaveArea);
4772 
4773       Value *VrRegSaveAreaShadowPtr =
4774           MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4775                                  Align(8), /*isStore*/ true)
4776               .first;
4777 
4778       Value *VrSrcPtr = IRB.CreateInBoundsGEP(
4779         IRB.getInt8Ty(),
4780         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4781                               IRB.getInt32(AArch64VrBegOffset)),
4782         VrRegSaveAreaShadowPtrOff);
4783       Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
4784 
4785       IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8),
4786                        VrCopySize);
4787 
4788       // And finally for remaining arguments.
4789       Value *StackSaveAreaShadowPtr =
4790           MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
4791                                  Align(16), /*isStore*/ true)
4792               .first;
4793 
4794       Value *StackSrcPtr =
4795         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4796                               IRB.getInt32(AArch64VAEndOffset));
4797 
4798       IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr,
4799                        Align(16), VAArgOverflowSize);
4800     }
4801   }
4802 };
4803 
4804 /// PowerPC64-specific implementation of VarArgHelper.
4805 struct VarArgPowerPC64Helper : public VarArgHelper {
4806   Function &F;
4807   MemorySanitizer &MS;
4808   MemorySanitizerVisitor &MSV;
4809   Value *VAArgTLSCopy = nullptr;
4810   Value *VAArgSize = nullptr;
4811 
4812   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4813 
4814   VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
4815                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4816 
4817   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4818     // For PowerPC, we need to deal with alignment of stack arguments -
4819     // they are mostly aligned to 8 bytes, but vectors and i128 arrays
4820     // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
4821     // For that reason, we compute current offset from stack pointer (which is
4822     // always properly aligned), and offset for the first vararg, then subtract
4823     // them.
4824     unsigned VAArgBase;
4825     Triple TargetTriple(F.getParent()->getTargetTriple());
4826     // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
4827     // and 32 bytes for ABIv2.  This is usually determined by target
4828     // endianness, but in theory could be overridden by function attribute.
4829     if (TargetTriple.getArch() == Triple::ppc64)
4830       VAArgBase = 48;
4831     else
4832       VAArgBase = 32;
4833     unsigned VAArgOffset = VAArgBase;
4834     const DataLayout &DL = F.getParent()->getDataLayout();
4835     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
4836          ++ArgIt) {
4837       Value *A = *ArgIt;
4838       unsigned ArgNo = CB.getArgOperandNo(ArgIt);
4839       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4840       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
4841       if (IsByVal) {
4842         assert(A->getType()->isPointerTy());
4843         Type *RealTy = CB.getParamByValType(ArgNo);
4844         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4845         MaybeAlign ArgAlign = CB.getParamAlign(ArgNo);
4846         if (!ArgAlign || *ArgAlign < Align(8))
4847           ArgAlign = Align(8);
4848         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4849         if (!IsFixed) {
4850           Value *Base = getShadowPtrForVAArgument(
4851               RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
4852           if (Base) {
4853             Value *AShadowPtr, *AOriginPtr;
4854             std::tie(AShadowPtr, AOriginPtr) =
4855                 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
4856                                        kShadowTLSAlignment, /*isStore*/ false);
4857 
4858             IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
4859                              kShadowTLSAlignment, ArgSize);
4860           }
4861         }
4862         VAArgOffset += alignTo(ArgSize, 8);
4863       } else {
4864         Value *Base;
4865         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4866         uint64_t ArgAlign = 8;
4867         if (A->getType()->isArrayTy()) {
4868           // Arrays are aligned to element size, except for long double
4869           // arrays, which are aligned to 8 bytes.
4870           Type *ElementTy = A->getType()->getArrayElementType();
4871           if (!ElementTy->isPPC_FP128Ty())
4872             ArgAlign = DL.getTypeAllocSize(ElementTy);
4873         } else if (A->getType()->isVectorTy()) {
4874           // Vectors are naturally aligned.
4875           ArgAlign = DL.getTypeAllocSize(A->getType());
4876         }
4877         if (ArgAlign < 8)
4878           ArgAlign = 8;
4879         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4880         if (DL.isBigEndian()) {
4881           // Adjusting the shadow for argument with size < 8 to match the placement
4882           // of bits in big endian system
4883           if (ArgSize < 8)
4884             VAArgOffset += (8 - ArgSize);
4885         }
4886         if (!IsFixed) {
4887           Base = getShadowPtrForVAArgument(A->getType(), IRB,
4888                                            VAArgOffset - VAArgBase, ArgSize);
4889           if (Base)
4890             IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4891         }
4892         VAArgOffset += ArgSize;
4893         VAArgOffset = alignTo(VAArgOffset, 8);
4894       }
4895       if (IsFixed)
4896         VAArgBase = VAArgOffset;
4897     }
4898 
4899     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
4900                                                 VAArgOffset - VAArgBase);
4901     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4902     // a new class member i.e. it is the total size of all VarArgs.
4903     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4904   }
4905 
4906   /// Compute the shadow address for a given va_arg.
4907   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4908                                    unsigned ArgOffset, unsigned ArgSize) {
4909     // Make sure we don't overflow __msan_va_arg_tls.
4910     if (ArgOffset + ArgSize > kParamTLSSize)
4911       return nullptr;
4912     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4913     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4914     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4915                               "_msarg");
4916   }
4917 
4918   void visitVAStartInst(VAStartInst &I) override {
4919     IRBuilder<> IRB(&I);
4920     VAStartInstrumentationList.push_back(&I);
4921     Value *VAListTag = I.getArgOperand(0);
4922     Value *ShadowPtr, *OriginPtr;
4923     const Align Alignment = Align(8);
4924     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4925         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4926     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4927                      /* size */ 8, Alignment, false);
4928   }
4929 
4930   void visitVACopyInst(VACopyInst &I) override {
4931     IRBuilder<> IRB(&I);
4932     Value *VAListTag = I.getArgOperand(0);
4933     Value *ShadowPtr, *OriginPtr;
4934     const Align Alignment = Align(8);
4935     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4936         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4937     // Unpoison the whole __va_list_tag.
4938     // FIXME: magic ABI constants.
4939     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4940                      /* size */ 8, Alignment, false);
4941   }
4942 
4943   void finalizeInstrumentation() override {
4944     assert(!VAArgSize && !VAArgTLSCopy &&
4945            "finalizeInstrumentation called twice");
4946     IRBuilder<> IRB(MSV.FnPrologueEnd);
4947     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4948     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4949                                     VAArgSize);
4950 
4951     if (!VAStartInstrumentationList.empty()) {
4952       // If there is a va_start in this function, make a backup copy of
4953       // va_arg_tls somewhere in the function entry block.
4954       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4955       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4956     }
4957 
4958     // Instrument va_start.
4959     // Copy va_list shadow from the backup copy of the TLS contents.
4960     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4961       CallInst *OrigInst = VAStartInstrumentationList[i];
4962       IRBuilder<> IRB(OrigInst->getNextNode());
4963       Value *VAListTag = OrigInst->getArgOperand(0);
4964       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4965       Value *RegSaveAreaPtrPtr =
4966           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4967                              PointerType::get(RegSaveAreaPtrTy, 0));
4968       Value *RegSaveAreaPtr =
4969           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4970       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4971       const Align Alignment = Align(8);
4972       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4973           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4974                                  Alignment, /*isStore*/ true);
4975       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4976                        CopySize);
4977     }
4978   }
4979 };
4980 
4981 /// SystemZ-specific implementation of VarArgHelper.
4982 struct VarArgSystemZHelper : public VarArgHelper {
4983   static const unsigned SystemZGpOffset = 16;
4984   static const unsigned SystemZGpEndOffset = 56;
4985   static const unsigned SystemZFpOffset = 128;
4986   static const unsigned SystemZFpEndOffset = 160;
4987   static const unsigned SystemZMaxVrArgs = 8;
4988   static const unsigned SystemZRegSaveAreaSize = 160;
4989   static const unsigned SystemZOverflowOffset = 160;
4990   static const unsigned SystemZVAListTagSize = 32;
4991   static const unsigned SystemZOverflowArgAreaPtrOffset = 16;
4992   static const unsigned SystemZRegSaveAreaPtrOffset = 24;
4993 
4994   Function &F;
4995   MemorySanitizer &MS;
4996   MemorySanitizerVisitor &MSV;
4997   Value *VAArgTLSCopy = nullptr;
4998   Value *VAArgTLSOriginCopy = nullptr;
4999   Value *VAArgOverflowSize = nullptr;
5000 
5001   SmallVector<CallInst *, 16> VAStartInstrumentationList;
5002 
5003   enum class ArgKind {
5004     GeneralPurpose,
5005     FloatingPoint,
5006     Vector,
5007     Memory,
5008     Indirect,
5009   };
5010 
5011   enum class ShadowExtension { None, Zero, Sign };
5012 
5013   VarArgSystemZHelper(Function &F, MemorySanitizer &MS,
5014                       MemorySanitizerVisitor &MSV)
5015       : F(F), MS(MS), MSV(MSV) {}
5016 
5017   ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) {
5018     // T is a SystemZABIInfo::classifyArgumentType() output, and there are
5019     // only a few possibilities of what it can be. In particular, enums, single
5020     // element structs and large types have already been taken care of.
5021 
5022     // Some i128 and fp128 arguments are converted to pointers only in the
5023     // back end.
5024     if (T->isIntegerTy(128) || T->isFP128Ty())
5025       return ArgKind::Indirect;
5026     if (T->isFloatingPointTy())
5027       return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint;
5028     if (T->isIntegerTy() || T->isPointerTy())
5029       return ArgKind::GeneralPurpose;
5030     if (T->isVectorTy())
5031       return ArgKind::Vector;
5032     return ArgKind::Memory;
5033   }
5034 
5035   ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) {
5036     // ABI says: "One of the simple integer types no more than 64 bits wide.
5037     // ... If such an argument is shorter than 64 bits, replace it by a full
5038     // 64-bit integer representing the same number, using sign or zero
5039     // extension". Shadow for an integer argument has the same type as the
5040     // argument itself, so it can be sign or zero extended as well.
5041     bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt);
5042     bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt);
5043     if (ZExt) {
5044       assert(!SExt);
5045       return ShadowExtension::Zero;
5046     }
5047     if (SExt) {
5048       assert(!ZExt);
5049       return ShadowExtension::Sign;
5050     }
5051     return ShadowExtension::None;
5052   }
5053 
5054   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5055     bool IsSoftFloatABI = CB.getCalledFunction()
5056                               ->getFnAttribute("use-soft-float")
5057                               .getValueAsBool();
5058     unsigned GpOffset = SystemZGpOffset;
5059     unsigned FpOffset = SystemZFpOffset;
5060     unsigned VrIndex = 0;
5061     unsigned OverflowOffset = SystemZOverflowOffset;
5062     const DataLayout &DL = F.getParent()->getDataLayout();
5063     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
5064          ++ArgIt) {
5065       Value *A = *ArgIt;
5066       unsigned ArgNo = CB.getArgOperandNo(ArgIt);
5067       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5068       // SystemZABIInfo does not produce ByVal parameters.
5069       assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal));
5070       Type *T = A->getType();
5071       ArgKind AK = classifyArgument(T, IsSoftFloatABI);
5072       if (AK == ArgKind::Indirect) {
5073         T = PointerType::get(T, 0);
5074         AK = ArgKind::GeneralPurpose;
5075       }
5076       if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset)
5077         AK = ArgKind::Memory;
5078       if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset)
5079         AK = ArgKind::Memory;
5080       if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed))
5081         AK = ArgKind::Memory;
5082       Value *ShadowBase = nullptr;
5083       Value *OriginBase = nullptr;
5084       ShadowExtension SE = ShadowExtension::None;
5085       switch (AK) {
5086       case ArgKind::GeneralPurpose: {
5087         // Always keep track of GpOffset, but store shadow only for varargs.
5088         uint64_t ArgSize = 8;
5089         if (GpOffset + ArgSize <= kParamTLSSize) {
5090           if (!IsFixed) {
5091             SE = getShadowExtension(CB, ArgNo);
5092             uint64_t GapSize = 0;
5093             if (SE == ShadowExtension::None) {
5094               uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5095               assert(ArgAllocSize <= ArgSize);
5096               GapSize = ArgSize - ArgAllocSize;
5097             }
5098             ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize);
5099             if (MS.TrackOrigins)
5100               OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize);
5101           }
5102           GpOffset += ArgSize;
5103         } else {
5104           GpOffset = kParamTLSSize;
5105         }
5106         break;
5107       }
5108       case ArgKind::FloatingPoint: {
5109         // Always keep track of FpOffset, but store shadow only for varargs.
5110         uint64_t ArgSize = 8;
5111         if (FpOffset + ArgSize <= kParamTLSSize) {
5112           if (!IsFixed) {
5113             // PoP says: "A short floating-point datum requires only the
5114             // left-most 32 bit positions of a floating-point register".
5115             // Therefore, in contrast to AK_GeneralPurpose and AK_Memory,
5116             // don't extend shadow and don't mind the gap.
5117             ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset);
5118             if (MS.TrackOrigins)
5119               OriginBase = getOriginPtrForVAArgument(IRB, FpOffset);
5120           }
5121           FpOffset += ArgSize;
5122         } else {
5123           FpOffset = kParamTLSSize;
5124         }
5125         break;
5126       }
5127       case ArgKind::Vector: {
5128         // Keep track of VrIndex. No need to store shadow, since vector varargs
5129         // go through AK_Memory.
5130         assert(IsFixed);
5131         VrIndex++;
5132         break;
5133       }
5134       case ArgKind::Memory: {
5135         // Keep track of OverflowOffset and store shadow only for varargs.
5136         // Ignore fixed args, since we need to copy only the vararg portion of
5137         // the overflow area shadow.
5138         if (!IsFixed) {
5139           uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5140           uint64_t ArgSize = alignTo(ArgAllocSize, 8);
5141           if (OverflowOffset + ArgSize <= kParamTLSSize) {
5142             SE = getShadowExtension(CB, ArgNo);
5143             uint64_t GapSize =
5144                 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0;
5145             ShadowBase =
5146                 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize);
5147             if (MS.TrackOrigins)
5148               OriginBase =
5149                   getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize);
5150             OverflowOffset += ArgSize;
5151           } else {
5152             OverflowOffset = kParamTLSSize;
5153           }
5154         }
5155         break;
5156       }
5157       case ArgKind::Indirect:
5158         llvm_unreachable("Indirect must be converted to GeneralPurpose");
5159       }
5160       if (ShadowBase == nullptr)
5161         continue;
5162       Value *Shadow = MSV.getShadow(A);
5163       if (SE != ShadowExtension::None)
5164         Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(),
5165                                       /*Signed*/ SE == ShadowExtension::Sign);
5166       ShadowBase = IRB.CreateIntToPtr(
5167           ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s");
5168       IRB.CreateStore(Shadow, ShadowBase);
5169       if (MS.TrackOrigins) {
5170         Value *Origin = MSV.getOrigin(A);
5171         unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
5172         MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
5173                         kMinOriginAlignment);
5174       }
5175     }
5176     Constant *OverflowSize = ConstantInt::get(
5177         IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset);
5178     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
5179   }
5180 
5181   Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) {
5182     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5183     return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5184   }
5185 
5186   Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) {
5187     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
5188     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5189     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
5190                               "_msarg_va_o");
5191   }
5192 
5193   void unpoisonVAListTagForInst(IntrinsicInst &I) {
5194     IRBuilder<> IRB(&I);
5195     Value *VAListTag = I.getArgOperand(0);
5196     Value *ShadowPtr, *OriginPtr;
5197     const Align Alignment = Align(8);
5198     std::tie(ShadowPtr, OriginPtr) =
5199         MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
5200                                /*isStore*/ true);
5201     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5202                      SystemZVAListTagSize, Alignment, false);
5203   }
5204 
5205   void visitVAStartInst(VAStartInst &I) override {
5206     VAStartInstrumentationList.push_back(&I);
5207     unpoisonVAListTagForInst(I);
5208   }
5209 
5210   void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); }
5211 
5212   void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) {
5213     Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5214     Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
5215         IRB.CreateAdd(
5216             IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5217             ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)),
5218         PointerType::get(RegSaveAreaPtrTy, 0));
5219     Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
5220     Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5221     const Align Alignment = Align(8);
5222     std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5223         MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment,
5224                                /*isStore*/ true);
5225     // TODO(iii): copy only fragments filled by visitCallBase()
5226     IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5227                      SystemZRegSaveAreaSize);
5228     if (MS.TrackOrigins)
5229       IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
5230                        Alignment, SystemZRegSaveAreaSize);
5231   }
5232 
5233   void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) {
5234     Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5235     Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
5236         IRB.CreateAdd(
5237             IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5238             ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)),
5239         PointerType::get(OverflowArgAreaPtrTy, 0));
5240     Value *OverflowArgAreaPtr =
5241         IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
5242     Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
5243     const Align Alignment = Align(8);
5244     std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
5245         MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
5246                                Alignment, /*isStore*/ true);
5247     Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
5248                                            SystemZOverflowOffset);
5249     IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
5250                      VAArgOverflowSize);
5251     if (MS.TrackOrigins) {
5252       SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
5253                                       SystemZOverflowOffset);
5254       IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
5255                        VAArgOverflowSize);
5256     }
5257   }
5258 
5259   void finalizeInstrumentation() override {
5260     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
5261            "finalizeInstrumentation called twice");
5262     if (!VAStartInstrumentationList.empty()) {
5263       // If there is a va_start in this function, make a backup copy of
5264       // va_arg_tls somewhere in the function entry block.
5265       IRBuilder<> IRB(MSV.FnPrologueEnd);
5266       VAArgOverflowSize =
5267           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5268       Value *CopySize =
5269           IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset),
5270                         VAArgOverflowSize);
5271       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5272       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
5273       if (MS.TrackOrigins) {
5274         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5275         IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS,
5276                          Align(8), CopySize);
5277       }
5278     }
5279 
5280     // Instrument va_start.
5281     // Copy va_list shadow from the backup copy of the TLS contents.
5282     for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size();
5283          VaStartNo < VaStartNum; VaStartNo++) {
5284       CallInst *OrigInst = VAStartInstrumentationList[VaStartNo];
5285       IRBuilder<> IRB(OrigInst->getNextNode());
5286       Value *VAListTag = OrigInst->getArgOperand(0);
5287       copyRegSaveArea(IRB, VAListTag);
5288       copyOverflowArea(IRB, VAListTag);
5289     }
5290   }
5291 };
5292 
5293 /// A no-op implementation of VarArgHelper.
5294 struct VarArgNoOpHelper : public VarArgHelper {
5295   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
5296                    MemorySanitizerVisitor &MSV) {}
5297 
5298   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {}
5299 
5300   void visitVAStartInst(VAStartInst &I) override {}
5301 
5302   void visitVACopyInst(VACopyInst &I) override {}
5303 
5304   void finalizeInstrumentation() override {}
5305 };
5306 
5307 } // end anonymous namespace
5308 
5309 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
5310                                         MemorySanitizerVisitor &Visitor) {
5311   // VarArg handling is only implemented on AMD64. False positives are possible
5312   // on other platforms.
5313   Triple TargetTriple(Func.getParent()->getTargetTriple());
5314   if (TargetTriple.getArch() == Triple::x86_64)
5315     return new VarArgAMD64Helper(Func, Msan, Visitor);
5316   else if (TargetTriple.isMIPS64())
5317     return new VarArgMIPS64Helper(Func, Msan, Visitor);
5318   else if (TargetTriple.getArch() == Triple::aarch64)
5319     return new VarArgAArch64Helper(Func, Msan, Visitor);
5320   else if (TargetTriple.getArch() == Triple::ppc64 ||
5321            TargetTriple.getArch() == Triple::ppc64le)
5322     return new VarArgPowerPC64Helper(Func, Msan, Visitor);
5323   else if (TargetTriple.getArch() == Triple::systemz)
5324     return new VarArgSystemZHelper(Func, Msan, Visitor);
5325   else
5326     return new VarArgNoOpHelper(Func, Msan, Visitor);
5327 }
5328 
5329 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
5330   if (!CompileKernel && F.getName() == kMsanModuleCtorName)
5331     return false;
5332 
5333   MemorySanitizerVisitor Visitor(F, *this, TLI);
5334 
5335   // Clear out readonly/readnone attributes.
5336   AttrBuilder B;
5337   B.addAttribute(Attribute::ReadOnly)
5338       .addAttribute(Attribute::ReadNone)
5339       .addAttribute(Attribute::WriteOnly)
5340       .addAttribute(Attribute::ArgMemOnly)
5341       .addAttribute(Attribute::Speculatable);
5342   F.removeAttributes(AttributeList::FunctionIndex, B);
5343 
5344   return Visitor.runOnFunction();
5345 }
5346