xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp (revision 130d950cafcd29c6a32cf5357bf600dcd9c1d998)
1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
15 /// byte of the application memory, poison the shadow of the malloc-ed
16 /// or alloca-ed memory, load the shadow bits on every memory read,
17 /// propagate the shadow bits through some of the arithmetic
18 /// instruction (including MOV), store the shadow bits on every memory
19 /// write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 ///                           Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwritting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 ///                            Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91 ///
92 ///                      Instrumenting inline assembly.
93 ///
94 /// For inline assembly code LLVM has little idea about which memory locations
95 /// become initialized depending on the arguments. It can be possible to figure
96 /// out which arguments are meant to point to inputs and outputs, but the
97 /// actual semantics can be only visible at runtime. In the Linux kernel it's
98 /// also possible that the arguments only indicate the offset for a base taken
99 /// from a segment register, so it's dangerous to treat any asm() arguments as
100 /// pointers. We take a conservative approach generating calls to
101 ///   __msan_instrument_asm_store(ptr, size)
102 /// , which defer the memory unpoisoning to the runtime library.
103 /// The latter can perform more complex address checks to figure out whether
104 /// it's safe to touch the shadow memory.
105 /// Like with atomic operations, we call __msan_instrument_asm_store() before
106 /// the assembly call, so that changes to the shadow memory will be seen by
107 /// other threads together with main memory initialization.
108 ///
109 ///                  KernelMemorySanitizer (KMSAN) implementation.
110 ///
111 /// The major differences between KMSAN and MSan instrumentation are:
112 ///  - KMSAN always tracks the origins and implies msan-keep-going=true;
113 ///  - KMSAN allocates shadow and origin memory for each page separately, so
114 ///    there are no explicit accesses to shadow and origin in the
115 ///    instrumentation.
116 ///    Shadow and origin values for a particular X-byte memory location
117 ///    (X=1,2,4,8) are accessed through pointers obtained via the
118 ///      __msan_metadata_ptr_for_load_X(ptr)
119 ///      __msan_metadata_ptr_for_store_X(ptr)
120 ///    functions. The corresponding functions check that the X-byte accesses
121 ///    are possible and returns the pointers to shadow and origin memory.
122 ///    Arbitrary sized accesses are handled with:
123 ///      __msan_metadata_ptr_for_load_n(ptr, size)
124 ///      __msan_metadata_ptr_for_store_n(ptr, size);
125 ///  - TLS variables are stored in a single per-task struct. A call to a
126 ///    function __msan_get_context_state() returning a pointer to that struct
127 ///    is inserted into every instrumented function before the entry block;
128 ///  - __msan_warning() takes a 32-bit origin parameter;
129 ///  - local variables are poisoned with __msan_poison_alloca() upon function
130 ///    entry and unpoisoned with __msan_unpoison_alloca() before leaving the
131 ///    function;
132 ///  - the pass doesn't declare any global variables or add global constructors
133 ///    to the translation unit.
134 ///
135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm
136 /// calls, making sure we're on the safe side wrt. possible false positives.
137 ///
138 ///  KernelMemorySanitizer only supports X86_64 at the moment.
139 ///
140 //===----------------------------------------------------------------------===//
141 
142 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
143 #include "llvm/ADT/APInt.h"
144 #include "llvm/ADT/ArrayRef.h"
145 #include "llvm/ADT/DepthFirstIterator.h"
146 #include "llvm/ADT/SmallSet.h"
147 #include "llvm/ADT/SmallString.h"
148 #include "llvm/ADT/SmallVector.h"
149 #include "llvm/ADT/StringExtras.h"
150 #include "llvm/ADT/StringRef.h"
151 #include "llvm/ADT/Triple.h"
152 #include "llvm/Analysis/TargetLibraryInfo.h"
153 #include "llvm/IR/Argument.h"
154 #include "llvm/IR/Attributes.h"
155 #include "llvm/IR/BasicBlock.h"
156 #include "llvm/IR/CallSite.h"
157 #include "llvm/IR/CallingConv.h"
158 #include "llvm/IR/Constant.h"
159 #include "llvm/IR/Constants.h"
160 #include "llvm/IR/DataLayout.h"
161 #include "llvm/IR/DerivedTypes.h"
162 #include "llvm/IR/Function.h"
163 #include "llvm/IR/GlobalValue.h"
164 #include "llvm/IR/GlobalVariable.h"
165 #include "llvm/IR/IRBuilder.h"
166 #include "llvm/IR/InlineAsm.h"
167 #include "llvm/IR/InstVisitor.h"
168 #include "llvm/IR/InstrTypes.h"
169 #include "llvm/IR/Instruction.h"
170 #include "llvm/IR/Instructions.h"
171 #include "llvm/IR/IntrinsicInst.h"
172 #include "llvm/IR/Intrinsics.h"
173 #include "llvm/IR/IntrinsicsX86.h"
174 #include "llvm/IR/LLVMContext.h"
175 #include "llvm/IR/MDBuilder.h"
176 #include "llvm/IR/Module.h"
177 #include "llvm/IR/Type.h"
178 #include "llvm/IR/Value.h"
179 #include "llvm/IR/ValueMap.h"
180 #include "llvm/InitializePasses.h"
181 #include "llvm/Pass.h"
182 #include "llvm/Support/AtomicOrdering.h"
183 #include "llvm/Support/Casting.h"
184 #include "llvm/Support/CommandLine.h"
185 #include "llvm/Support/Compiler.h"
186 #include "llvm/Support/Debug.h"
187 #include "llvm/Support/ErrorHandling.h"
188 #include "llvm/Support/MathExtras.h"
189 #include "llvm/Support/raw_ostream.h"
190 #include "llvm/Transforms/Instrumentation.h"
191 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
192 #include "llvm/Transforms/Utils/Local.h"
193 #include "llvm/Transforms/Utils/ModuleUtils.h"
194 #include <algorithm>
195 #include <cassert>
196 #include <cstddef>
197 #include <cstdint>
198 #include <memory>
199 #include <string>
200 #include <tuple>
201 
202 using namespace llvm;
203 
204 #define DEBUG_TYPE "msan"
205 
206 static const unsigned kOriginSize = 4;
207 static const Align kMinOriginAlignment = Align(4);
208 static const Align kShadowTLSAlignment = Align(8);
209 
210 // These constants must be kept in sync with the ones in msan.h.
211 static const unsigned kParamTLSSize = 800;
212 static const unsigned kRetvalTLSSize = 800;
213 
214 // Accesses sizes are powers of two: 1, 2, 4, 8.
215 static const size_t kNumberOfAccessSizes = 4;
216 
217 /// Track origins of uninitialized values.
218 ///
219 /// Adds a section to MemorySanitizer report that points to the allocation
220 /// (stack or heap) the uninitialized bits came from originally.
221 static cl::opt<int> ClTrackOrigins("msan-track-origins",
222        cl::desc("Track origins (allocation sites) of poisoned memory"),
223        cl::Hidden, cl::init(0));
224 
225 static cl::opt<bool> ClKeepGoing("msan-keep-going",
226        cl::desc("keep going after reporting a UMR"),
227        cl::Hidden, cl::init(false));
228 
229 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
230        cl::desc("poison uninitialized stack variables"),
231        cl::Hidden, cl::init(true));
232 
233 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
234        cl::desc("poison uninitialized stack variables with a call"),
235        cl::Hidden, cl::init(false));
236 
237 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
238        cl::desc("poison uninitialized stack variables with the given pattern"),
239        cl::Hidden, cl::init(0xff));
240 
241 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
242        cl::desc("poison undef temps"),
243        cl::Hidden, cl::init(true));
244 
245 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
246        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
247        cl::Hidden, cl::init(true));
248 
249 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
250        cl::desc("exact handling of relational integer ICmp"),
251        cl::Hidden, cl::init(false));
252 
253 static cl::opt<bool> ClHandleLifetimeIntrinsics(
254     "msan-handle-lifetime-intrinsics",
255     cl::desc(
256         "when possible, poison scoped variables at the beginning of the scope "
257         "(slower, but more precise)"),
258     cl::Hidden, cl::init(true));
259 
260 // When compiling the Linux kernel, we sometimes see false positives related to
261 // MSan being unable to understand that inline assembly calls may initialize
262 // local variables.
263 // This flag makes the compiler conservatively unpoison every memory location
264 // passed into an assembly call. Note that this may cause false positives.
265 // Because it's impossible to figure out the array sizes, we can only unpoison
266 // the first sizeof(type) bytes for each type* pointer.
267 // The instrumentation is only enabled in KMSAN builds, and only if
268 // -msan-handle-asm-conservative is on. This is done because we may want to
269 // quickly disable assembly instrumentation when it breaks.
270 static cl::opt<bool> ClHandleAsmConservative(
271     "msan-handle-asm-conservative",
272     cl::desc("conservative handling of inline assembly"), cl::Hidden,
273     cl::init(true));
274 
275 // This flag controls whether we check the shadow of the address
276 // operand of load or store. Such bugs are very rare, since load from
277 // a garbage address typically results in SEGV, but still happen
278 // (e.g. only lower bits of address are garbage, or the access happens
279 // early at program startup where malloc-ed memory is more likely to
280 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
281 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
282        cl::desc("report accesses through a pointer which has poisoned shadow"),
283        cl::Hidden, cl::init(true));
284 
285 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
286        cl::desc("print out instructions with default strict semantics"),
287        cl::Hidden, cl::init(false));
288 
289 static cl::opt<int> ClInstrumentationWithCallThreshold(
290     "msan-instrumentation-with-call-threshold",
291     cl::desc(
292         "If the function being instrumented requires more than "
293         "this number of checks and origin stores, use callbacks instead of "
294         "inline checks (-1 means never use callbacks)."),
295     cl::Hidden, cl::init(3500));
296 
297 static cl::opt<bool>
298     ClEnableKmsan("msan-kernel",
299                   cl::desc("Enable KernelMemorySanitizer instrumentation"),
300                   cl::Hidden, cl::init(false));
301 
302 // This is an experiment to enable handling of cases where shadow is a non-zero
303 // compile-time constant. For some unexplainable reason they were silently
304 // ignored in the instrumentation.
305 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
306        cl::desc("Insert checks for constant shadow values"),
307        cl::Hidden, cl::init(false));
308 
309 // This is off by default because of a bug in gold:
310 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
311 static cl::opt<bool> ClWithComdat("msan-with-comdat",
312        cl::desc("Place MSan constructors in comdat sections"),
313        cl::Hidden, cl::init(false));
314 
315 // These options allow to specify custom memory map parameters
316 // See MemoryMapParams for details.
317 static cl::opt<uint64_t> ClAndMask("msan-and-mask",
318                                    cl::desc("Define custom MSan AndMask"),
319                                    cl::Hidden, cl::init(0));
320 
321 static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
322                                    cl::desc("Define custom MSan XorMask"),
323                                    cl::Hidden, cl::init(0));
324 
325 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
326                                       cl::desc("Define custom MSan ShadowBase"),
327                                       cl::Hidden, cl::init(0));
328 
329 static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
330                                       cl::desc("Define custom MSan OriginBase"),
331                                       cl::Hidden, cl::init(0));
332 
333 static const char *const kMsanModuleCtorName = "msan.module_ctor";
334 static const char *const kMsanInitName = "__msan_init";
335 
336 namespace {
337 
338 // Memory map parameters used in application-to-shadow address calculation.
339 // Offset = (Addr & ~AndMask) ^ XorMask
340 // Shadow = ShadowBase + Offset
341 // Origin = OriginBase + Offset
342 struct MemoryMapParams {
343   uint64_t AndMask;
344   uint64_t XorMask;
345   uint64_t ShadowBase;
346   uint64_t OriginBase;
347 };
348 
349 struct PlatformMemoryMapParams {
350   const MemoryMapParams *bits32;
351   const MemoryMapParams *bits64;
352 };
353 
354 } // end anonymous namespace
355 
356 // i386 Linux
357 static const MemoryMapParams Linux_I386_MemoryMapParams = {
358   0x000080000000,  // AndMask
359   0,               // XorMask (not used)
360   0,               // ShadowBase (not used)
361   0x000040000000,  // OriginBase
362 };
363 
364 // x86_64 Linux
365 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
366 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING
367   0x400000000000,  // AndMask
368   0,               // XorMask (not used)
369   0,               // ShadowBase (not used)
370   0x200000000000,  // OriginBase
371 #else
372   0,               // AndMask (not used)
373   0x500000000000,  // XorMask
374   0,               // ShadowBase (not used)
375   0x100000000000,  // OriginBase
376 #endif
377 };
378 
379 // mips64 Linux
380 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
381   0,               // AndMask (not used)
382   0x008000000000,  // XorMask
383   0,               // ShadowBase (not used)
384   0x002000000000,  // OriginBase
385 };
386 
387 // ppc64 Linux
388 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
389   0xE00000000000,  // AndMask
390   0x100000000000,  // XorMask
391   0x080000000000,  // ShadowBase
392   0x1C0000000000,  // OriginBase
393 };
394 
395 // aarch64 Linux
396 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
397   0,               // AndMask (not used)
398   0x06000000000,   // XorMask
399   0,               // ShadowBase (not used)
400   0x01000000000,   // OriginBase
401 };
402 
403 // i386 FreeBSD
404 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
405   0x000180000000,  // AndMask
406   0x000040000000,  // XorMask
407   0x000020000000,  // ShadowBase
408   0x000700000000,  // OriginBase
409 };
410 
411 // x86_64 FreeBSD
412 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
413   0xc00000000000,  // AndMask
414   0x200000000000,  // XorMask
415   0x100000000000,  // ShadowBase
416   0x380000000000,  // OriginBase
417 };
418 
419 // x86_64 NetBSD
420 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
421   0,               // AndMask
422   0x500000000000,  // XorMask
423   0,               // ShadowBase
424   0x100000000000,  // OriginBase
425 };
426 
427 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
428   &Linux_I386_MemoryMapParams,
429   &Linux_X86_64_MemoryMapParams,
430 };
431 
432 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
433   nullptr,
434   &Linux_MIPS64_MemoryMapParams,
435 };
436 
437 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
438   nullptr,
439   &Linux_PowerPC64_MemoryMapParams,
440 };
441 
442 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
443   nullptr,
444   &Linux_AArch64_MemoryMapParams,
445 };
446 
447 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
448   &FreeBSD_I386_MemoryMapParams,
449   &FreeBSD_X86_64_MemoryMapParams,
450 };
451 
452 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
453   nullptr,
454   &NetBSD_X86_64_MemoryMapParams,
455 };
456 
457 namespace {
458 
459 /// Instrument functions of a module to detect uninitialized reads.
460 ///
461 /// Instantiating MemorySanitizer inserts the msan runtime library API function
462 /// declarations into the module if they don't exist already. Instantiating
463 /// ensures the __msan_init function is in the list of global constructors for
464 /// the module.
465 class MemorySanitizer {
466 public:
467   MemorySanitizer(Module &M, MemorySanitizerOptions Options)
468       : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins),
469         Recover(Options.Recover) {
470     initializeModule(M);
471   }
472 
473   // MSan cannot be moved or copied because of MapParams.
474   MemorySanitizer(MemorySanitizer &&) = delete;
475   MemorySanitizer &operator=(MemorySanitizer &&) = delete;
476   MemorySanitizer(const MemorySanitizer &) = delete;
477   MemorySanitizer &operator=(const MemorySanitizer &) = delete;
478 
479   bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
480 
481 private:
482   friend struct MemorySanitizerVisitor;
483   friend struct VarArgAMD64Helper;
484   friend struct VarArgMIPS64Helper;
485   friend struct VarArgAArch64Helper;
486   friend struct VarArgPowerPC64Helper;
487 
488   void initializeModule(Module &M);
489   void initializeCallbacks(Module &M);
490   void createKernelApi(Module &M);
491   void createUserspaceApi(Module &M);
492 
493   /// True if we're compiling the Linux kernel.
494   bool CompileKernel;
495   /// Track origins (allocation points) of uninitialized values.
496   int TrackOrigins;
497   bool Recover;
498 
499   LLVMContext *C;
500   Type *IntptrTy;
501   Type *OriginTy;
502 
503   // XxxTLS variables represent the per-thread state in MSan and per-task state
504   // in KMSAN.
505   // For the userspace these point to thread-local globals. In the kernel land
506   // they point to the members of a per-task struct obtained via a call to
507   // __msan_get_context_state().
508 
509   /// Thread-local shadow storage for function parameters.
510   Value *ParamTLS;
511 
512   /// Thread-local origin storage for function parameters.
513   Value *ParamOriginTLS;
514 
515   /// Thread-local shadow storage for function return value.
516   Value *RetvalTLS;
517 
518   /// Thread-local origin storage for function return value.
519   Value *RetvalOriginTLS;
520 
521   /// Thread-local shadow storage for in-register va_arg function
522   /// parameters (x86_64-specific).
523   Value *VAArgTLS;
524 
525   /// Thread-local shadow storage for in-register va_arg function
526   /// parameters (x86_64-specific).
527   Value *VAArgOriginTLS;
528 
529   /// Thread-local shadow storage for va_arg overflow area
530   /// (x86_64-specific).
531   Value *VAArgOverflowSizeTLS;
532 
533   /// Thread-local space used to pass origin value to the UMR reporting
534   /// function.
535   Value *OriginTLS;
536 
537   /// Are the instrumentation callbacks set up?
538   bool CallbacksInitialized = false;
539 
540   /// The run-time callback to print a warning.
541   FunctionCallee WarningFn;
542 
543   // These arrays are indexed by log2(AccessSize).
544   FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
545   FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
546 
547   /// Run-time helper that generates a new origin value for a stack
548   /// allocation.
549   FunctionCallee MsanSetAllocaOrigin4Fn;
550 
551   /// Run-time helper that poisons stack on function entry.
552   FunctionCallee MsanPoisonStackFn;
553 
554   /// Run-time helper that records a store (or any event) of an
555   /// uninitialized value and returns an updated origin id encoding this info.
556   FunctionCallee MsanChainOriginFn;
557 
558   /// MSan runtime replacements for memmove, memcpy and memset.
559   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
560 
561   /// KMSAN callback for task-local function argument shadow.
562   StructType *MsanContextStateTy;
563   FunctionCallee MsanGetContextStateFn;
564 
565   /// Functions for poisoning/unpoisoning local variables
566   FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
567 
568   /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin
569   /// pointers.
570   FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
571   FunctionCallee MsanMetadataPtrForLoad_1_8[4];
572   FunctionCallee MsanMetadataPtrForStore_1_8[4];
573   FunctionCallee MsanInstrumentAsmStoreFn;
574 
575   /// Helper to choose between different MsanMetadataPtrXxx().
576   FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
577 
578   /// Memory map parameters used in application-to-shadow calculation.
579   const MemoryMapParams *MapParams;
580 
581   /// Custom memory map parameters used when -msan-shadow-base or
582   // -msan-origin-base is provided.
583   MemoryMapParams CustomMapParams;
584 
585   MDNode *ColdCallWeights;
586 
587   /// Branch weights for origin store.
588   MDNode *OriginStoreWeights;
589 
590   /// An empty volatile inline asm that prevents callback merge.
591   InlineAsm *EmptyAsm;
592 };
593 
594 void insertModuleCtor(Module &M) {
595   getOrCreateSanitizerCtorAndInitFunctions(
596       M, kMsanModuleCtorName, kMsanInitName,
597       /*InitArgTypes=*/{},
598       /*InitArgs=*/{},
599       // This callback is invoked when the functions are created the first
600       // time. Hook them into the global ctors list in that case:
601       [&](Function *Ctor, FunctionCallee) {
602         if (!ClWithComdat) {
603           appendToGlobalCtors(M, Ctor, 0);
604           return;
605         }
606         Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
607         Ctor->setComdat(MsanCtorComdat);
608         appendToGlobalCtors(M, Ctor, 0, Ctor);
609       });
610 }
611 
612 /// A legacy function pass for msan instrumentation.
613 ///
614 /// Instruments functions to detect unitialized reads.
615 struct MemorySanitizerLegacyPass : public FunctionPass {
616   // Pass identification, replacement for typeid.
617   static char ID;
618 
619   MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {})
620       : FunctionPass(ID), Options(Options) {}
621   StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; }
622 
623   void getAnalysisUsage(AnalysisUsage &AU) const override {
624     AU.addRequired<TargetLibraryInfoWrapperPass>();
625   }
626 
627   bool runOnFunction(Function &F) override {
628     return MSan->sanitizeFunction(
629         F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
630   }
631   bool doInitialization(Module &M) override;
632 
633   Optional<MemorySanitizer> MSan;
634   MemorySanitizerOptions Options;
635 };
636 
637 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) {
638   return (Opt.getNumOccurrences() > 0) ? Opt : Default;
639 }
640 
641 } // end anonymous namespace
642 
643 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K)
644     : Kernel(getOptOrDefault(ClEnableKmsan, K)),
645       TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)),
646       Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {}
647 
648 PreservedAnalyses MemorySanitizerPass::run(Function &F,
649                                            FunctionAnalysisManager &FAM) {
650   MemorySanitizer Msan(*F.getParent(), Options);
651   if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
652     return PreservedAnalyses::none();
653   return PreservedAnalyses::all();
654 }
655 
656 PreservedAnalyses MemorySanitizerPass::run(Module &M,
657                                            ModuleAnalysisManager &AM) {
658   if (Options.Kernel)
659     return PreservedAnalyses::all();
660   insertModuleCtor(M);
661   return PreservedAnalyses::none();
662 }
663 
664 char MemorySanitizerLegacyPass::ID = 0;
665 
666 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan",
667                       "MemorySanitizer: detects uninitialized reads.", false,
668                       false)
669 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
670 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan",
671                     "MemorySanitizer: detects uninitialized reads.", false,
672                     false)
673 
674 FunctionPass *
675 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) {
676   return new MemorySanitizerLegacyPass(Options);
677 }
678 
679 /// Create a non-const global initialized with the given string.
680 ///
681 /// Creates a writable global for Str so that we can pass it to the
682 /// run-time lib. Runtime uses first 4 bytes of the string to store the
683 /// frame ID, so the string needs to be mutable.
684 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
685                                                             StringRef Str) {
686   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
687   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
688                             GlobalValue::PrivateLinkage, StrConst, "");
689 }
690 
691 /// Create KMSAN API callbacks.
692 void MemorySanitizer::createKernelApi(Module &M) {
693   IRBuilder<> IRB(*C);
694 
695   // These will be initialized in insertKmsanPrologue().
696   RetvalTLS = nullptr;
697   RetvalOriginTLS = nullptr;
698   ParamTLS = nullptr;
699   ParamOriginTLS = nullptr;
700   VAArgTLS = nullptr;
701   VAArgOriginTLS = nullptr;
702   VAArgOverflowSizeTLS = nullptr;
703   // OriginTLS is unused in the kernel.
704   OriginTLS = nullptr;
705 
706   // __msan_warning() in the kernel takes an origin.
707   WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(),
708                                     IRB.getInt32Ty());
709   // Requests the per-task context state (kmsan_context_state*) from the
710   // runtime library.
711   MsanContextStateTy = StructType::get(
712       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
713       ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
714       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
715       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
716       IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
717       OriginTy);
718   MsanGetContextStateFn = M.getOrInsertFunction(
719       "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
720 
721   Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
722                                 PointerType::get(IRB.getInt32Ty(), 0));
723 
724   for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
725     std::string name_load =
726         "__msan_metadata_ptr_for_load_" + std::to_string(size);
727     std::string name_store =
728         "__msan_metadata_ptr_for_store_" + std::to_string(size);
729     MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction(
730         name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
731     MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction(
732         name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
733   }
734 
735   MsanMetadataPtrForLoadN = M.getOrInsertFunction(
736       "__msan_metadata_ptr_for_load_n", RetTy,
737       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
738   MsanMetadataPtrForStoreN = M.getOrInsertFunction(
739       "__msan_metadata_ptr_for_store_n", RetTy,
740       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
741 
742   // Functions for poisoning and unpoisoning memory.
743   MsanPoisonAllocaFn =
744       M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
745                             IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
746   MsanUnpoisonAllocaFn = M.getOrInsertFunction(
747       "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
748 }
749 
750 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
751   return M.getOrInsertGlobal(Name, Ty, [&] {
752     return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
753                               nullptr, Name, nullptr,
754                               GlobalVariable::InitialExecTLSModel);
755   });
756 }
757 
758 /// Insert declarations for userspace-specific functions and globals.
759 void MemorySanitizer::createUserspaceApi(Module &M) {
760   IRBuilder<> IRB(*C);
761   // Create the callback.
762   // FIXME: this function should have "Cold" calling conv,
763   // which is not yet implemented.
764   StringRef WarningFnName = Recover ? "__msan_warning"
765                                     : "__msan_warning_noreturn";
766   WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy());
767 
768   // Create the global TLS variables.
769   RetvalTLS =
770       getOrInsertGlobal(M, "__msan_retval_tls",
771                         ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
772 
773   RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
774 
775   ParamTLS =
776       getOrInsertGlobal(M, "__msan_param_tls",
777                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
778 
779   ParamOriginTLS =
780       getOrInsertGlobal(M, "__msan_param_origin_tls",
781                         ArrayType::get(OriginTy, kParamTLSSize / 4));
782 
783   VAArgTLS =
784       getOrInsertGlobal(M, "__msan_va_arg_tls",
785                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
786 
787   VAArgOriginTLS =
788       getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
789                         ArrayType::get(OriginTy, kParamTLSSize / 4));
790 
791   VAArgOverflowSizeTLS =
792       getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
793   OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty());
794 
795   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
796        AccessSizeIndex++) {
797     unsigned AccessSize = 1 << AccessSizeIndex;
798     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
799     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
800         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
801         IRB.getInt32Ty());
802 
803     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
804     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
805         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
806         IRB.getInt8PtrTy(), IRB.getInt32Ty());
807   }
808 
809   MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
810     "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
811     IRB.getInt8PtrTy(), IntptrTy);
812   MsanPoisonStackFn =
813       M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
814                             IRB.getInt8PtrTy(), IntptrTy);
815 }
816 
817 /// Insert extern declaration of runtime-provided functions and globals.
818 void MemorySanitizer::initializeCallbacks(Module &M) {
819   // Only do this once.
820   if (CallbacksInitialized)
821     return;
822 
823   IRBuilder<> IRB(*C);
824   // Initialize callbacks that are common for kernel and userspace
825   // instrumentation.
826   MsanChainOriginFn = M.getOrInsertFunction(
827     "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty());
828   MemmoveFn = M.getOrInsertFunction(
829     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
830     IRB.getInt8PtrTy(), IntptrTy);
831   MemcpyFn = M.getOrInsertFunction(
832     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
833     IntptrTy);
834   MemsetFn = M.getOrInsertFunction(
835     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
836     IntptrTy);
837   // We insert an empty inline asm after __msan_report* to avoid callback merge.
838   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
839                             StringRef(""), StringRef(""),
840                             /*hasSideEffects=*/true);
841 
842   MsanInstrumentAsmStoreFn =
843       M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
844                             PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
845 
846   if (CompileKernel) {
847     createKernelApi(M);
848   } else {
849     createUserspaceApi(M);
850   }
851   CallbacksInitialized = true;
852 }
853 
854 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
855                                                              int size) {
856   FunctionCallee *Fns =
857       isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
858   switch (size) {
859   case 1:
860     return Fns[0];
861   case 2:
862     return Fns[1];
863   case 4:
864     return Fns[2];
865   case 8:
866     return Fns[3];
867   default:
868     return nullptr;
869   }
870 }
871 
872 /// Module-level initialization.
873 ///
874 /// inserts a call to __msan_init to the module's constructor list.
875 void MemorySanitizer::initializeModule(Module &M) {
876   auto &DL = M.getDataLayout();
877 
878   bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
879   bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
880   // Check the overrides first
881   if (ShadowPassed || OriginPassed) {
882     CustomMapParams.AndMask = ClAndMask;
883     CustomMapParams.XorMask = ClXorMask;
884     CustomMapParams.ShadowBase = ClShadowBase;
885     CustomMapParams.OriginBase = ClOriginBase;
886     MapParams = &CustomMapParams;
887   } else {
888     Triple TargetTriple(M.getTargetTriple());
889     switch (TargetTriple.getOS()) {
890       case Triple::FreeBSD:
891         switch (TargetTriple.getArch()) {
892           case Triple::x86_64:
893             MapParams = FreeBSD_X86_MemoryMapParams.bits64;
894             break;
895           case Triple::x86:
896             MapParams = FreeBSD_X86_MemoryMapParams.bits32;
897             break;
898           default:
899             report_fatal_error("unsupported architecture");
900         }
901         break;
902       case Triple::NetBSD:
903         switch (TargetTriple.getArch()) {
904           case Triple::x86_64:
905             MapParams = NetBSD_X86_MemoryMapParams.bits64;
906             break;
907           default:
908             report_fatal_error("unsupported architecture");
909         }
910         break;
911       case Triple::Linux:
912         switch (TargetTriple.getArch()) {
913           case Triple::x86_64:
914             MapParams = Linux_X86_MemoryMapParams.bits64;
915             break;
916           case Triple::x86:
917             MapParams = Linux_X86_MemoryMapParams.bits32;
918             break;
919           case Triple::mips64:
920           case Triple::mips64el:
921             MapParams = Linux_MIPS_MemoryMapParams.bits64;
922             break;
923           case Triple::ppc64:
924           case Triple::ppc64le:
925             MapParams = Linux_PowerPC_MemoryMapParams.bits64;
926             break;
927           case Triple::aarch64:
928           case Triple::aarch64_be:
929             MapParams = Linux_ARM_MemoryMapParams.bits64;
930             break;
931           default:
932             report_fatal_error("unsupported architecture");
933         }
934         break;
935       default:
936         report_fatal_error("unsupported operating system");
937     }
938   }
939 
940   C = &(M.getContext());
941   IRBuilder<> IRB(*C);
942   IntptrTy = IRB.getIntPtrTy(DL);
943   OriginTy = IRB.getInt32Ty();
944 
945   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
946   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
947 
948   if (!CompileKernel) {
949     if (TrackOrigins)
950       M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
951         return new GlobalVariable(
952             M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
953             IRB.getInt32(TrackOrigins), "__msan_track_origins");
954       });
955 
956     if (Recover)
957       M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
958         return new GlobalVariable(M, IRB.getInt32Ty(), true,
959                                   GlobalValue::WeakODRLinkage,
960                                   IRB.getInt32(Recover), "__msan_keep_going");
961       });
962 }
963 }
964 
965 bool MemorySanitizerLegacyPass::doInitialization(Module &M) {
966   if (!Options.Kernel)
967     insertModuleCtor(M);
968   MSan.emplace(M, Options);
969   return true;
970 }
971 
972 namespace {
973 
974 /// A helper class that handles instrumentation of VarArg
975 /// functions on a particular platform.
976 ///
977 /// Implementations are expected to insert the instrumentation
978 /// necessary to propagate argument shadow through VarArg function
979 /// calls. Visit* methods are called during an InstVisitor pass over
980 /// the function, and should avoid creating new basic blocks. A new
981 /// instance of this class is created for each instrumented function.
982 struct VarArgHelper {
983   virtual ~VarArgHelper() = default;
984 
985   /// Visit a CallSite.
986   virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
987 
988   /// Visit a va_start call.
989   virtual void visitVAStartInst(VAStartInst &I) = 0;
990 
991   /// Visit a va_copy call.
992   virtual void visitVACopyInst(VACopyInst &I) = 0;
993 
994   /// Finalize function instrumentation.
995   ///
996   /// This method is called after visiting all interesting (see above)
997   /// instructions in a function.
998   virtual void finalizeInstrumentation() = 0;
999 };
1000 
1001 struct MemorySanitizerVisitor;
1002 
1003 } // end anonymous namespace
1004 
1005 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1006                                         MemorySanitizerVisitor &Visitor);
1007 
1008 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
1009   if (TypeSize <= 8) return 0;
1010   return Log2_32_Ceil((TypeSize + 7) / 8);
1011 }
1012 
1013 namespace {
1014 
1015 /// This class does all the work for a given function. Store and Load
1016 /// instructions store and load corresponding shadow and origin
1017 /// values. Most instructions propagate shadow from arguments to their
1018 /// return values. Certain instructions (most importantly, BranchInst)
1019 /// test their argument shadow and print reports (with a runtime call) if it's
1020 /// non-zero.
1021 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
1022   Function &F;
1023   MemorySanitizer &MS;
1024   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
1025   ValueMap<Value*, Value*> ShadowMap, OriginMap;
1026   std::unique_ptr<VarArgHelper> VAHelper;
1027   const TargetLibraryInfo *TLI;
1028   BasicBlock *ActualFnStart;
1029 
1030   // The following flags disable parts of MSan instrumentation based on
1031   // blacklist contents and command-line options.
1032   bool InsertChecks;
1033   bool PropagateShadow;
1034   bool PoisonStack;
1035   bool PoisonUndef;
1036   bool CheckReturnValue;
1037 
1038   struct ShadowOriginAndInsertPoint {
1039     Value *Shadow;
1040     Value *Origin;
1041     Instruction *OrigIns;
1042 
1043     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
1044       : Shadow(S), Origin(O), OrigIns(I) {}
1045   };
1046   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
1047   bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
1048   SmallSet<AllocaInst *, 16> AllocaSet;
1049   SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
1050   SmallVector<StoreInst *, 16> StoreList;
1051 
1052   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
1053                          const TargetLibraryInfo &TLI)
1054       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
1055     bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
1056     InsertChecks = SanitizeFunction;
1057     PropagateShadow = SanitizeFunction;
1058     PoisonStack = SanitizeFunction && ClPoisonStack;
1059     PoisonUndef = SanitizeFunction && ClPoisonUndef;
1060     // FIXME: Consider using SpecialCaseList to specify a list of functions that
1061     // must always return fully initialized values. For now, we hardcode "main".
1062     CheckReturnValue = SanitizeFunction && (F.getName() == "main");
1063 
1064     MS.initializeCallbacks(*F.getParent());
1065     if (MS.CompileKernel)
1066       ActualFnStart = insertKmsanPrologue(F);
1067     else
1068       ActualFnStart = &F.getEntryBlock();
1069 
1070     LLVM_DEBUG(if (!InsertChecks) dbgs()
1071                << "MemorySanitizer is not inserting checks into '"
1072                << F.getName() << "'\n");
1073   }
1074 
1075   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
1076     if (MS.TrackOrigins <= 1) return V;
1077     return IRB.CreateCall(MS.MsanChainOriginFn, V);
1078   }
1079 
1080   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
1081     const DataLayout &DL = F.getParent()->getDataLayout();
1082     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1083     if (IntptrSize == kOriginSize) return Origin;
1084     assert(IntptrSize == kOriginSize * 2);
1085     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
1086     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
1087   }
1088 
1089   /// Fill memory range with the given origin value.
1090   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
1091                    unsigned Size, Align Alignment) {
1092     const DataLayout &DL = F.getParent()->getDataLayout();
1093     const Align IntptrAlignment = Align(DL.getABITypeAlignment(MS.IntptrTy));
1094     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1095     assert(IntptrAlignment >= kMinOriginAlignment);
1096     assert(IntptrSize >= kOriginSize);
1097 
1098     unsigned Ofs = 0;
1099     Align CurrentAlignment = Alignment;
1100     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
1101       Value *IntptrOrigin = originToIntptr(IRB, Origin);
1102       Value *IntptrOriginPtr =
1103           IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
1104       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
1105         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
1106                        : IntptrOriginPtr;
1107         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment.value());
1108         Ofs += IntptrSize / kOriginSize;
1109         CurrentAlignment = IntptrAlignment;
1110       }
1111     }
1112 
1113     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
1114       Value *GEP =
1115           i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
1116       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment.value());
1117       CurrentAlignment = kMinOriginAlignment;
1118     }
1119   }
1120 
1121   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
1122                    Value *OriginPtr, Align Alignment, bool AsCall) {
1123     const DataLayout &DL = F.getParent()->getDataLayout();
1124     const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1125     unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
1126     if (Shadow->getType()->isAggregateType()) {
1127       paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1128                   OriginAlignment);
1129     } else {
1130       Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
1131       if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1132         if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
1133           paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1134                       OriginAlignment);
1135         return;
1136       }
1137 
1138       unsigned TypeSizeInBits =
1139           DL.getTypeSizeInBits(ConvertedShadow->getType());
1140       unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1141       if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1142         FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
1143         Value *ConvertedShadow2 = IRB.CreateZExt(
1144             ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1145         IRB.CreateCall(Fn, {ConvertedShadow2,
1146                             IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
1147                             Origin});
1148       } else {
1149         Value *Cmp = IRB.CreateICmpNE(
1150             ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
1151         Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1152             Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
1153         IRBuilder<> IRBNew(CheckTerm);
1154         paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
1155                     OriginAlignment);
1156       }
1157     }
1158   }
1159 
1160   void materializeStores(bool InstrumentWithCalls) {
1161     for (StoreInst *SI : StoreList) {
1162       IRBuilder<> IRB(SI);
1163       Value *Val = SI->getValueOperand();
1164       Value *Addr = SI->getPointerOperand();
1165       Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
1166       Value *ShadowPtr, *OriginPtr;
1167       Type *ShadowTy = Shadow->getType();
1168       const Align Alignment = assumeAligned(SI->getAlignment());
1169       const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1170       std::tie(ShadowPtr, OriginPtr) =
1171           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
1172 
1173       StoreInst *NewSI =
1174           IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment.value());
1175       LLVM_DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
1176       (void)NewSI;
1177 
1178       if (SI->isAtomic())
1179         SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
1180 
1181       if (MS.TrackOrigins && !SI->isAtomic())
1182         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
1183                     OriginAlignment, InstrumentWithCalls);
1184     }
1185   }
1186 
1187   /// Helper function to insert a warning at IRB's current insert point.
1188   void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
1189     if (!Origin)
1190       Origin = (Value *)IRB.getInt32(0);
1191     if (MS.CompileKernel) {
1192       IRB.CreateCall(MS.WarningFn, Origin);
1193     } else {
1194       if (MS.TrackOrigins) {
1195         IRB.CreateStore(Origin, MS.OriginTLS);
1196       }
1197       IRB.CreateCall(MS.WarningFn, {});
1198     }
1199     IRB.CreateCall(MS.EmptyAsm, {});
1200     // FIXME: Insert UnreachableInst if !MS.Recover?
1201     // This may invalidate some of the following checks and needs to be done
1202     // at the very end.
1203   }
1204 
1205   void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
1206                            bool AsCall) {
1207     IRBuilder<> IRB(OrigIns);
1208     LLVM_DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
1209     Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
1210     LLVM_DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
1211 
1212     if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1213       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
1214         insertWarningFn(IRB, Origin);
1215       }
1216       return;
1217     }
1218 
1219     const DataLayout &DL = OrigIns->getModule()->getDataLayout();
1220 
1221     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1222     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1223     if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1224       FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
1225       Value *ConvertedShadow2 =
1226           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1227       IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
1228                                                 ? Origin
1229                                                 : (Value *)IRB.getInt32(0)});
1230     } else {
1231       Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
1232                                     getCleanShadow(ConvertedShadow), "_mscmp");
1233       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1234           Cmp, OrigIns,
1235           /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
1236 
1237       IRB.SetInsertPoint(CheckTerm);
1238       insertWarningFn(IRB, Origin);
1239       LLVM_DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
1240     }
1241   }
1242 
1243   void materializeChecks(bool InstrumentWithCalls) {
1244     for (const auto &ShadowData : InstrumentationList) {
1245       Instruction *OrigIns = ShadowData.OrigIns;
1246       Value *Shadow = ShadowData.Shadow;
1247       Value *Origin = ShadowData.Origin;
1248       materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
1249     }
1250     LLVM_DEBUG(dbgs() << "DONE:\n" << F);
1251   }
1252 
1253   BasicBlock *insertKmsanPrologue(Function &F) {
1254     BasicBlock *ret =
1255         SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI());
1256     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
1257     Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
1258     Constant *Zero = IRB.getInt32(0);
1259     MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1260                                 {Zero, IRB.getInt32(0)}, "param_shadow");
1261     MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1262                                  {Zero, IRB.getInt32(1)}, "retval_shadow");
1263     MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1264                                 {Zero, IRB.getInt32(2)}, "va_arg_shadow");
1265     MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1266                                       {Zero, IRB.getInt32(3)}, "va_arg_origin");
1267     MS.VAArgOverflowSizeTLS =
1268         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1269                       {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
1270     MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1271                                       {Zero, IRB.getInt32(5)}, "param_origin");
1272     MS.RetvalOriginTLS =
1273         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1274                       {Zero, IRB.getInt32(6)}, "retval_origin");
1275     return ret;
1276   }
1277 
1278   /// Add MemorySanitizer instrumentation to a function.
1279   bool runOnFunction() {
1280     // In the presence of unreachable blocks, we may see Phi nodes with
1281     // incoming nodes from such blocks. Since InstVisitor skips unreachable
1282     // blocks, such nodes will not have any shadow value associated with them.
1283     // It's easier to remove unreachable blocks than deal with missing shadow.
1284     removeUnreachableBlocks(F);
1285 
1286     // Iterate all BBs in depth-first order and create shadow instructions
1287     // for all instructions (where applicable).
1288     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1289     for (BasicBlock *BB : depth_first(ActualFnStart))
1290       visit(*BB);
1291 
1292     // Finalize PHI nodes.
1293     for (PHINode *PN : ShadowPHINodes) {
1294       PHINode *PNS = cast<PHINode>(getShadow(PN));
1295       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
1296       size_t NumValues = PN->getNumIncomingValues();
1297       for (size_t v = 0; v < NumValues; v++) {
1298         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1299         if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1300       }
1301     }
1302 
1303     VAHelper->finalizeInstrumentation();
1304 
1305     // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
1306     // instrumenting only allocas.
1307     if (InstrumentLifetimeStart) {
1308       for (auto Item : LifetimeStartList) {
1309         instrumentAlloca(*Item.second, Item.first);
1310         AllocaSet.erase(Item.second);
1311       }
1312     }
1313     // Poison the allocas for which we didn't instrument the corresponding
1314     // lifetime intrinsics.
1315     for (AllocaInst *AI : AllocaSet)
1316       instrumentAlloca(*AI);
1317 
1318     bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
1319                                InstrumentationList.size() + StoreList.size() >
1320                                    (unsigned)ClInstrumentationWithCallThreshold;
1321 
1322     // Insert shadow value checks.
1323     materializeChecks(InstrumentWithCalls);
1324 
1325     // Delayed instrumentation of StoreInst.
1326     // This may not add new address checks.
1327     materializeStores(InstrumentWithCalls);
1328 
1329     return true;
1330   }
1331 
1332   /// Compute the shadow type that corresponds to a given Value.
1333   Type *getShadowTy(Value *V) {
1334     return getShadowTy(V->getType());
1335   }
1336 
1337   /// Compute the shadow type that corresponds to a given Type.
1338   Type *getShadowTy(Type *OrigTy) {
1339     if (!OrigTy->isSized()) {
1340       return nullptr;
1341     }
1342     // For integer type, shadow is the same as the original type.
1343     // This may return weird-sized types like i1.
1344     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1345       return IT;
1346     const DataLayout &DL = F.getParent()->getDataLayout();
1347     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1348       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1349       return VectorType::get(IntegerType::get(*MS.C, EltSize),
1350                              VT->getNumElements());
1351     }
1352     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1353       return ArrayType::get(getShadowTy(AT->getElementType()),
1354                             AT->getNumElements());
1355     }
1356     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1357       SmallVector<Type*, 4> Elements;
1358       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1359         Elements.push_back(getShadowTy(ST->getElementType(i)));
1360       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1361       LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
1362       return Res;
1363     }
1364     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1365     return IntegerType::get(*MS.C, TypeSize);
1366   }
1367 
1368   /// Flatten a vector type.
1369   Type *getShadowTyNoVec(Type *ty) {
1370     if (VectorType *vt = dyn_cast<VectorType>(ty))
1371       return IntegerType::get(*MS.C, vt->getBitWidth());
1372     return ty;
1373   }
1374 
1375   /// Convert a shadow value to it's flattened variant.
1376   Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
1377     Type *Ty = V->getType();
1378     Type *NoVecTy = getShadowTyNoVec(Ty);
1379     if (Ty == NoVecTy) return V;
1380     return IRB.CreateBitCast(V, NoVecTy);
1381   }
1382 
1383   /// Compute the integer shadow offset that corresponds to a given
1384   /// application address.
1385   ///
1386   /// Offset = (Addr & ~AndMask) ^ XorMask
1387   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1388     Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
1389 
1390     uint64_t AndMask = MS.MapParams->AndMask;
1391     if (AndMask)
1392       OffsetLong =
1393           IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
1394 
1395     uint64_t XorMask = MS.MapParams->XorMask;
1396     if (XorMask)
1397       OffsetLong =
1398           IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
1399     return OffsetLong;
1400   }
1401 
1402   /// Compute the shadow and origin addresses corresponding to a given
1403   /// application address.
1404   ///
1405   /// Shadow = ShadowBase + Offset
1406   /// Origin = (OriginBase + Offset) & ~3ULL
1407   std::pair<Value *, Value *>
1408   getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
1409                               MaybeAlign Alignment) {
1410     Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1411     Value *ShadowLong = ShadowOffset;
1412     uint64_t ShadowBase = MS.MapParams->ShadowBase;
1413     if (ShadowBase != 0) {
1414       ShadowLong =
1415         IRB.CreateAdd(ShadowLong,
1416                       ConstantInt::get(MS.IntptrTy, ShadowBase));
1417     }
1418     Value *ShadowPtr =
1419         IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1420     Value *OriginPtr = nullptr;
1421     if (MS.TrackOrigins) {
1422       Value *OriginLong = ShadowOffset;
1423       uint64_t OriginBase = MS.MapParams->OriginBase;
1424       if (OriginBase != 0)
1425         OriginLong = IRB.CreateAdd(OriginLong,
1426                                    ConstantInt::get(MS.IntptrTy, OriginBase));
1427       if (!Alignment || *Alignment < kMinOriginAlignment) {
1428         uint64_t Mask = kMinOriginAlignment.value() - 1;
1429         OriginLong =
1430             IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask));
1431       }
1432       OriginPtr =
1433           IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0));
1434     }
1435     return std::make_pair(ShadowPtr, OriginPtr);
1436   }
1437 
1438   std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr,
1439                                                        IRBuilder<> &IRB,
1440                                                        Type *ShadowTy,
1441                                                        bool isStore) {
1442     Value *ShadowOriginPtrs;
1443     const DataLayout &DL = F.getParent()->getDataLayout();
1444     int Size = DL.getTypeStoreSize(ShadowTy);
1445 
1446     FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
1447     Value *AddrCast =
1448         IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
1449     if (Getter) {
1450       ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast);
1451     } else {
1452       Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
1453       ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN
1454                                                 : MS.MsanMetadataPtrForLoadN,
1455                                         {AddrCast, SizeVal});
1456     }
1457     Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
1458     ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
1459     Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
1460 
1461     return std::make_pair(ShadowPtr, OriginPtr);
1462   }
1463 
1464   std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1465                                                  Type *ShadowTy,
1466                                                  MaybeAlign Alignment,
1467                                                  bool isStore) {
1468     if (MS.CompileKernel)
1469       return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore);
1470     return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
1471   }
1472 
1473   /// Compute the shadow address for a given function argument.
1474   ///
1475   /// Shadow = ParamTLS+ArgOffset.
1476   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
1477                                  int ArgOffset) {
1478     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1479     if (ArgOffset)
1480       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1481     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1482                               "_msarg");
1483   }
1484 
1485   /// Compute the origin address for a given function argument.
1486   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
1487                                  int ArgOffset) {
1488     if (!MS.TrackOrigins)
1489       return nullptr;
1490     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1491     if (ArgOffset)
1492       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1493     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1494                               "_msarg_o");
1495   }
1496 
1497   /// Compute the shadow address for a retval.
1498   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1499     return IRB.CreatePointerCast(MS.RetvalTLS,
1500                                  PointerType::get(getShadowTy(A), 0),
1501                                  "_msret");
1502   }
1503 
1504   /// Compute the origin address for a retval.
1505   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1506     // We keep a single origin for the entire retval. Might be too optimistic.
1507     return MS.RetvalOriginTLS;
1508   }
1509 
1510   /// Set SV to be the shadow value for V.
1511   void setShadow(Value *V, Value *SV) {
1512     assert(!ShadowMap.count(V) && "Values may only have one shadow");
1513     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1514   }
1515 
1516   /// Set Origin to be the origin value for V.
1517   void setOrigin(Value *V, Value *Origin) {
1518     if (!MS.TrackOrigins) return;
1519     assert(!OriginMap.count(V) && "Values may only have one origin");
1520     LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
1521     OriginMap[V] = Origin;
1522   }
1523 
1524   Constant *getCleanShadow(Type *OrigTy) {
1525     Type *ShadowTy = getShadowTy(OrigTy);
1526     if (!ShadowTy)
1527       return nullptr;
1528     return Constant::getNullValue(ShadowTy);
1529   }
1530 
1531   /// Create a clean shadow value for a given value.
1532   ///
1533   /// Clean shadow (all zeroes) means all bits of the value are defined
1534   /// (initialized).
1535   Constant *getCleanShadow(Value *V) {
1536     return getCleanShadow(V->getType());
1537   }
1538 
1539   /// Create a dirty shadow of a given shadow type.
1540   Constant *getPoisonedShadow(Type *ShadowTy) {
1541     assert(ShadowTy);
1542     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1543       return Constant::getAllOnesValue(ShadowTy);
1544     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1545       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1546                                       getPoisonedShadow(AT->getElementType()));
1547       return ConstantArray::get(AT, Vals);
1548     }
1549     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1550       SmallVector<Constant *, 4> Vals;
1551       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1552         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1553       return ConstantStruct::get(ST, Vals);
1554     }
1555     llvm_unreachable("Unexpected shadow type");
1556   }
1557 
1558   /// Create a dirty shadow for a given value.
1559   Constant *getPoisonedShadow(Value *V) {
1560     Type *ShadowTy = getShadowTy(V);
1561     if (!ShadowTy)
1562       return nullptr;
1563     return getPoisonedShadow(ShadowTy);
1564   }
1565 
1566   /// Create a clean (zero) origin.
1567   Value *getCleanOrigin() {
1568     return Constant::getNullValue(MS.OriginTy);
1569   }
1570 
1571   /// Get the shadow value for a given Value.
1572   ///
1573   /// This function either returns the value set earlier with setShadow,
1574   /// or extracts if from ParamTLS (for function arguments).
1575   Value *getShadow(Value *V) {
1576     if (!PropagateShadow) return getCleanShadow(V);
1577     if (Instruction *I = dyn_cast<Instruction>(V)) {
1578       if (I->getMetadata("nosanitize"))
1579         return getCleanShadow(V);
1580       // For instructions the shadow is already stored in the map.
1581       Value *Shadow = ShadowMap[V];
1582       if (!Shadow) {
1583         LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1584         (void)I;
1585         assert(Shadow && "No shadow for a value");
1586       }
1587       return Shadow;
1588     }
1589     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1590       Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
1591       LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1592       (void)U;
1593       return AllOnes;
1594     }
1595     if (Argument *A = dyn_cast<Argument>(V)) {
1596       // For arguments we compute the shadow on demand and store it in the map.
1597       Value **ShadowPtr = &ShadowMap[V];
1598       if (*ShadowPtr)
1599         return *ShadowPtr;
1600       Function *F = A->getParent();
1601       IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI());
1602       unsigned ArgOffset = 0;
1603       const DataLayout &DL = F->getParent()->getDataLayout();
1604       for (auto &FArg : F->args()) {
1605         if (!FArg.getType()->isSized()) {
1606           LLVM_DEBUG(dbgs() << "Arg is not sized\n");
1607           continue;
1608         }
1609         unsigned Size =
1610             FArg.hasByValAttr()
1611                 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
1612                 : DL.getTypeAllocSize(FArg.getType());
1613         if (A == &FArg) {
1614           bool Overflow = ArgOffset + Size > kParamTLSSize;
1615           Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1616           if (FArg.hasByValAttr()) {
1617             // ByVal pointer itself has clean shadow. We copy the actual
1618             // argument shadow to the underlying memory.
1619             // Figure out maximal valid memcpy alignment.
1620             const Align ArgAlign = DL.getValueOrABITypeAlignment(
1621                 MaybeAlign(FArg.getParamAlignment()),
1622                 A->getType()->getPointerElementType());
1623             Value *CpShadowPtr =
1624                 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
1625                                    /*isStore*/ true)
1626                     .first;
1627             // TODO(glider): need to copy origins.
1628             if (Overflow) {
1629               // ParamTLS overflow.
1630               EntryIRB.CreateMemSet(
1631                   CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
1632                   Size, ArgAlign);
1633             } else {
1634               const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1635               Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
1636                                                  CopyAlign, Size);
1637               LLVM_DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
1638               (void)Cpy;
1639             }
1640             *ShadowPtr = getCleanShadow(V);
1641           } else {
1642             if (Overflow) {
1643               // ParamTLS overflow.
1644               *ShadowPtr = getCleanShadow(V);
1645             } else {
1646               *ShadowPtr = EntryIRB.CreateAlignedLoad(
1647                   getShadowTy(&FArg), Base, kShadowTLSAlignment.value());
1648             }
1649           }
1650           LLVM_DEBUG(dbgs()
1651                      << "  ARG:    " << FArg << " ==> " << **ShadowPtr << "\n");
1652           if (MS.TrackOrigins && !Overflow) {
1653             Value *OriginPtr =
1654                 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1655             setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
1656           } else {
1657             setOrigin(A, getCleanOrigin());
1658           }
1659         }
1660         ArgOffset += alignTo(Size, kShadowTLSAlignment);
1661       }
1662       assert(*ShadowPtr && "Could not find shadow for an argument");
1663       return *ShadowPtr;
1664     }
1665     // For everything else the shadow is zero.
1666     return getCleanShadow(V);
1667   }
1668 
1669   /// Get the shadow for i-th argument of the instruction I.
1670   Value *getShadow(Instruction *I, int i) {
1671     return getShadow(I->getOperand(i));
1672   }
1673 
1674   /// Get the origin for a value.
1675   Value *getOrigin(Value *V) {
1676     if (!MS.TrackOrigins) return nullptr;
1677     if (!PropagateShadow) return getCleanOrigin();
1678     if (isa<Constant>(V)) return getCleanOrigin();
1679     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1680            "Unexpected value type in getOrigin()");
1681     if (Instruction *I = dyn_cast<Instruction>(V)) {
1682       if (I->getMetadata("nosanitize"))
1683         return getCleanOrigin();
1684     }
1685     Value *Origin = OriginMap[V];
1686     assert(Origin && "Missing origin");
1687     return Origin;
1688   }
1689 
1690   /// Get the origin for i-th argument of the instruction I.
1691   Value *getOrigin(Instruction *I, int i) {
1692     return getOrigin(I->getOperand(i));
1693   }
1694 
1695   /// Remember the place where a shadow check should be inserted.
1696   ///
1697   /// This location will be later instrumented with a check that will print a
1698   /// UMR warning in runtime if the shadow value is not 0.
1699   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1700     assert(Shadow);
1701     if (!InsertChecks) return;
1702 #ifndef NDEBUG
1703     Type *ShadowTy = Shadow->getType();
1704     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1705            "Can only insert checks for integer and vector shadow types");
1706 #endif
1707     InstrumentationList.push_back(
1708         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1709   }
1710 
1711   /// Remember the place where a shadow check should be inserted.
1712   ///
1713   /// This location will be later instrumented with a check that will print a
1714   /// UMR warning in runtime if the value is not fully defined.
1715   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1716     assert(Val);
1717     Value *Shadow, *Origin;
1718     if (ClCheckConstantShadow) {
1719       Shadow = getShadow(Val);
1720       if (!Shadow) return;
1721       Origin = getOrigin(Val);
1722     } else {
1723       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1724       if (!Shadow) return;
1725       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1726     }
1727     insertShadowCheck(Shadow, Origin, OrigIns);
1728   }
1729 
1730   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1731     switch (a) {
1732       case AtomicOrdering::NotAtomic:
1733         return AtomicOrdering::NotAtomic;
1734       case AtomicOrdering::Unordered:
1735       case AtomicOrdering::Monotonic:
1736       case AtomicOrdering::Release:
1737         return AtomicOrdering::Release;
1738       case AtomicOrdering::Acquire:
1739       case AtomicOrdering::AcquireRelease:
1740         return AtomicOrdering::AcquireRelease;
1741       case AtomicOrdering::SequentiallyConsistent:
1742         return AtomicOrdering::SequentiallyConsistent;
1743     }
1744     llvm_unreachable("Unknown ordering");
1745   }
1746 
1747   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1748     switch (a) {
1749       case AtomicOrdering::NotAtomic:
1750         return AtomicOrdering::NotAtomic;
1751       case AtomicOrdering::Unordered:
1752       case AtomicOrdering::Monotonic:
1753       case AtomicOrdering::Acquire:
1754         return AtomicOrdering::Acquire;
1755       case AtomicOrdering::Release:
1756       case AtomicOrdering::AcquireRelease:
1757         return AtomicOrdering::AcquireRelease;
1758       case AtomicOrdering::SequentiallyConsistent:
1759         return AtomicOrdering::SequentiallyConsistent;
1760     }
1761     llvm_unreachable("Unknown ordering");
1762   }
1763 
1764   // ------------------- Visitors.
1765   using InstVisitor<MemorySanitizerVisitor>::visit;
1766   void visit(Instruction &I) {
1767     if (!I.getMetadata("nosanitize"))
1768       InstVisitor<MemorySanitizerVisitor>::visit(I);
1769   }
1770 
1771   /// Instrument LoadInst
1772   ///
1773   /// Loads the corresponding shadow and (optionally) origin.
1774   /// Optionally, checks that the load address is fully defined.
1775   void visitLoadInst(LoadInst &I) {
1776     assert(I.getType()->isSized() && "Load type must have size");
1777     assert(!I.getMetadata("nosanitize"));
1778     IRBuilder<> IRB(I.getNextNode());
1779     Type *ShadowTy = getShadowTy(&I);
1780     Value *Addr = I.getPointerOperand();
1781     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
1782     const Align Alignment = assumeAligned(I.getAlignment());
1783     if (PropagateShadow) {
1784       std::tie(ShadowPtr, OriginPtr) =
1785           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
1786       setShadow(&I, IRB.CreateAlignedLoad(ShadowTy, ShadowPtr,
1787                                           Alignment.value(), "_msld"));
1788     } else {
1789       setShadow(&I, getCleanShadow(&I));
1790     }
1791 
1792     if (ClCheckAccessAddress)
1793       insertShadowCheck(I.getPointerOperand(), &I);
1794 
1795     if (I.isAtomic())
1796       I.setOrdering(addAcquireOrdering(I.getOrdering()));
1797 
1798     if (MS.TrackOrigins) {
1799       if (PropagateShadow) {
1800         const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1801         setOrigin(&I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr,
1802                                             OriginAlignment.value()));
1803       } else {
1804         setOrigin(&I, getCleanOrigin());
1805       }
1806     }
1807   }
1808 
1809   /// Instrument StoreInst
1810   ///
1811   /// Stores the corresponding shadow and (optionally) origin.
1812   /// Optionally, checks that the store address is fully defined.
1813   void visitStoreInst(StoreInst &I) {
1814     StoreList.push_back(&I);
1815     if (ClCheckAccessAddress)
1816       insertShadowCheck(I.getPointerOperand(), &I);
1817   }
1818 
1819   void handleCASOrRMW(Instruction &I) {
1820     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1821 
1822     IRBuilder<> IRB(&I);
1823     Value *Addr = I.getOperand(0);
1824     Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align::None(),
1825                                           /*isStore*/ true)
1826                            .first;
1827 
1828     if (ClCheckAccessAddress)
1829       insertShadowCheck(Addr, &I);
1830 
1831     // Only test the conditional argument of cmpxchg instruction.
1832     // The other argument can potentially be uninitialized, but we can not
1833     // detect this situation reliably without possible false positives.
1834     if (isa<AtomicCmpXchgInst>(I))
1835       insertShadowCheck(I.getOperand(1), &I);
1836 
1837     IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1838 
1839     setShadow(&I, getCleanShadow(&I));
1840     setOrigin(&I, getCleanOrigin());
1841   }
1842 
1843   void visitAtomicRMWInst(AtomicRMWInst &I) {
1844     handleCASOrRMW(I);
1845     I.setOrdering(addReleaseOrdering(I.getOrdering()));
1846   }
1847 
1848   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1849     handleCASOrRMW(I);
1850     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1851   }
1852 
1853   // Vector manipulation.
1854   void visitExtractElementInst(ExtractElementInst &I) {
1855     insertShadowCheck(I.getOperand(1), &I);
1856     IRBuilder<> IRB(&I);
1857     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1858               "_msprop"));
1859     setOrigin(&I, getOrigin(&I, 0));
1860   }
1861 
1862   void visitInsertElementInst(InsertElementInst &I) {
1863     insertShadowCheck(I.getOperand(2), &I);
1864     IRBuilder<> IRB(&I);
1865     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1866               I.getOperand(2), "_msprop"));
1867     setOriginForNaryOp(I);
1868   }
1869 
1870   void visitShuffleVectorInst(ShuffleVectorInst &I) {
1871     insertShadowCheck(I.getOperand(2), &I);
1872     IRBuilder<> IRB(&I);
1873     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1874               I.getOperand(2), "_msprop"));
1875     setOriginForNaryOp(I);
1876   }
1877 
1878   // Casts.
1879   void visitSExtInst(SExtInst &I) {
1880     IRBuilder<> IRB(&I);
1881     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1882     setOrigin(&I, getOrigin(&I, 0));
1883   }
1884 
1885   void visitZExtInst(ZExtInst &I) {
1886     IRBuilder<> IRB(&I);
1887     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1888     setOrigin(&I, getOrigin(&I, 0));
1889   }
1890 
1891   void visitTruncInst(TruncInst &I) {
1892     IRBuilder<> IRB(&I);
1893     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1894     setOrigin(&I, getOrigin(&I, 0));
1895   }
1896 
1897   void visitBitCastInst(BitCastInst &I) {
1898     // Special case: if this is the bitcast (there is exactly 1 allowed) between
1899     // a musttail call and a ret, don't instrument. New instructions are not
1900     // allowed after a musttail call.
1901     if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
1902       if (CI->isMustTailCall())
1903         return;
1904     IRBuilder<> IRB(&I);
1905     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1906     setOrigin(&I, getOrigin(&I, 0));
1907   }
1908 
1909   void visitPtrToIntInst(PtrToIntInst &I) {
1910     IRBuilder<> IRB(&I);
1911     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1912              "_msprop_ptrtoint"));
1913     setOrigin(&I, getOrigin(&I, 0));
1914   }
1915 
1916   void visitIntToPtrInst(IntToPtrInst &I) {
1917     IRBuilder<> IRB(&I);
1918     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1919              "_msprop_inttoptr"));
1920     setOrigin(&I, getOrigin(&I, 0));
1921   }
1922 
1923   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1924   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1925   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1926   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1927   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1928   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1929 
1930   /// Propagate shadow for bitwise AND.
1931   ///
1932   /// This code is exact, i.e. if, for example, a bit in the left argument
1933   /// is defined and 0, then neither the value not definedness of the
1934   /// corresponding bit in B don't affect the resulting shadow.
1935   void visitAnd(BinaryOperator &I) {
1936     IRBuilder<> IRB(&I);
1937     //  "And" of 0 and a poisoned value results in unpoisoned value.
1938     //  1&1 => 1;     0&1 => 0;     p&1 => p;
1939     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
1940     //  1&p => p;     0&p => 0;     p&p => p;
1941     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1942     Value *S1 = getShadow(&I, 0);
1943     Value *S2 = getShadow(&I, 1);
1944     Value *V1 = I.getOperand(0);
1945     Value *V2 = I.getOperand(1);
1946     if (V1->getType() != S1->getType()) {
1947       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1948       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1949     }
1950     Value *S1S2 = IRB.CreateAnd(S1, S2);
1951     Value *V1S2 = IRB.CreateAnd(V1, S2);
1952     Value *S1V2 = IRB.CreateAnd(S1, V2);
1953     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
1954     setOriginForNaryOp(I);
1955   }
1956 
1957   void visitOr(BinaryOperator &I) {
1958     IRBuilder<> IRB(&I);
1959     //  "Or" of 1 and a poisoned value results in unpoisoned value.
1960     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
1961     //  1|0 => 1;     0|0 => 0;     p|0 => p;
1962     //  1|p => 1;     0|p => p;     p|p => p;
1963     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1964     Value *S1 = getShadow(&I, 0);
1965     Value *S2 = getShadow(&I, 1);
1966     Value *V1 = IRB.CreateNot(I.getOperand(0));
1967     Value *V2 = IRB.CreateNot(I.getOperand(1));
1968     if (V1->getType() != S1->getType()) {
1969       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1970       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1971     }
1972     Value *S1S2 = IRB.CreateAnd(S1, S2);
1973     Value *V1S2 = IRB.CreateAnd(V1, S2);
1974     Value *S1V2 = IRB.CreateAnd(S1, V2);
1975     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
1976     setOriginForNaryOp(I);
1977   }
1978 
1979   /// Default propagation of shadow and/or origin.
1980   ///
1981   /// This class implements the general case of shadow propagation, used in all
1982   /// cases where we don't know and/or don't care about what the operation
1983   /// actually does. It converts all input shadow values to a common type
1984   /// (extending or truncating as necessary), and bitwise OR's them.
1985   ///
1986   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1987   /// fully initialized), and less prone to false positives.
1988   ///
1989   /// This class also implements the general case of origin propagation. For a
1990   /// Nary operation, result origin is set to the origin of an argument that is
1991   /// not entirely initialized. If there is more than one such arguments, the
1992   /// rightmost of them is picked. It does not matter which one is picked if all
1993   /// arguments are initialized.
1994   template <bool CombineShadow>
1995   class Combiner {
1996     Value *Shadow = nullptr;
1997     Value *Origin = nullptr;
1998     IRBuilder<> &IRB;
1999     MemorySanitizerVisitor *MSV;
2000 
2001   public:
2002     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
2003         : IRB(IRB), MSV(MSV) {}
2004 
2005     /// Add a pair of shadow and origin values to the mix.
2006     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
2007       if (CombineShadow) {
2008         assert(OpShadow);
2009         if (!Shadow)
2010           Shadow = OpShadow;
2011         else {
2012           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
2013           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
2014         }
2015       }
2016 
2017       if (MSV->MS.TrackOrigins) {
2018         assert(OpOrigin);
2019         if (!Origin) {
2020           Origin = OpOrigin;
2021         } else {
2022           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
2023           // No point in adding something that might result in 0 origin value.
2024           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
2025             Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
2026             Value *Cond =
2027                 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
2028             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2029           }
2030         }
2031       }
2032       return *this;
2033     }
2034 
2035     /// Add an application value to the mix.
2036     Combiner &Add(Value *V) {
2037       Value *OpShadow = MSV->getShadow(V);
2038       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
2039       return Add(OpShadow, OpOrigin);
2040     }
2041 
2042     /// Set the current combined values as the given instruction's shadow
2043     /// and origin.
2044     void Done(Instruction *I) {
2045       if (CombineShadow) {
2046         assert(Shadow);
2047         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
2048         MSV->setShadow(I, Shadow);
2049       }
2050       if (MSV->MS.TrackOrigins) {
2051         assert(Origin);
2052         MSV->setOrigin(I, Origin);
2053       }
2054     }
2055   };
2056 
2057   using ShadowAndOriginCombiner = Combiner<true>;
2058   using OriginCombiner = Combiner<false>;
2059 
2060   /// Propagate origin for arbitrary operation.
2061   void setOriginForNaryOp(Instruction &I) {
2062     if (!MS.TrackOrigins) return;
2063     IRBuilder<> IRB(&I);
2064     OriginCombiner OC(this, IRB);
2065     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
2066       OC.Add(OI->get());
2067     OC.Done(&I);
2068   }
2069 
2070   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
2071     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
2072            "Vector of pointers is not a valid shadow type");
2073     return Ty->isVectorTy() ?
2074       Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
2075       Ty->getPrimitiveSizeInBits();
2076   }
2077 
2078   /// Cast between two shadow types, extending or truncating as
2079   /// necessary.
2080   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
2081                           bool Signed = false) {
2082     Type *srcTy = V->getType();
2083     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
2084     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
2085     if (srcSizeInBits > 1 && dstSizeInBits == 1)
2086       return IRB.CreateICmpNE(V, getCleanShadow(V));
2087 
2088     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
2089       return IRB.CreateIntCast(V, dstTy, Signed);
2090     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
2091         dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
2092       return IRB.CreateIntCast(V, dstTy, Signed);
2093     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
2094     Value *V2 =
2095       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
2096     return IRB.CreateBitCast(V2, dstTy);
2097     // TODO: handle struct types.
2098   }
2099 
2100   /// Cast an application value to the type of its own shadow.
2101   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
2102     Type *ShadowTy = getShadowTy(V);
2103     if (V->getType() == ShadowTy)
2104       return V;
2105     if (V->getType()->isPtrOrPtrVectorTy())
2106       return IRB.CreatePtrToInt(V, ShadowTy);
2107     else
2108       return IRB.CreateBitCast(V, ShadowTy);
2109   }
2110 
2111   /// Propagate shadow for arbitrary operation.
2112   void handleShadowOr(Instruction &I) {
2113     IRBuilder<> IRB(&I);
2114     ShadowAndOriginCombiner SC(this, IRB);
2115     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
2116       SC.Add(OI->get());
2117     SC.Done(&I);
2118   }
2119 
2120   void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
2121 
2122   // Handle multiplication by constant.
2123   //
2124   // Handle a special case of multiplication by constant that may have one or
2125   // more zeros in the lower bits. This makes corresponding number of lower bits
2126   // of the result zero as well. We model it by shifting the other operand
2127   // shadow left by the required number of bits. Effectively, we transform
2128   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
2129   // We use multiplication by 2**N instead of shift to cover the case of
2130   // multiplication by 0, which may occur in some elements of a vector operand.
2131   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
2132                            Value *OtherArg) {
2133     Constant *ShadowMul;
2134     Type *Ty = ConstArg->getType();
2135     if (Ty->isVectorTy()) {
2136       unsigned NumElements = Ty->getVectorNumElements();
2137       Type *EltTy = Ty->getSequentialElementType();
2138       SmallVector<Constant *, 16> Elements;
2139       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
2140         if (ConstantInt *Elt =
2141                 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
2142           const APInt &V = Elt->getValue();
2143           APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2144           Elements.push_back(ConstantInt::get(EltTy, V2));
2145         } else {
2146           Elements.push_back(ConstantInt::get(EltTy, 1));
2147         }
2148       }
2149       ShadowMul = ConstantVector::get(Elements);
2150     } else {
2151       if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
2152         const APInt &V = Elt->getValue();
2153         APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2154         ShadowMul = ConstantInt::get(Ty, V2);
2155       } else {
2156         ShadowMul = ConstantInt::get(Ty, 1);
2157       }
2158     }
2159 
2160     IRBuilder<> IRB(&I);
2161     setShadow(&I,
2162               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
2163     setOrigin(&I, getOrigin(OtherArg));
2164   }
2165 
2166   void visitMul(BinaryOperator &I) {
2167     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
2168     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
2169     if (constOp0 && !constOp1)
2170       handleMulByConstant(I, constOp0, I.getOperand(1));
2171     else if (constOp1 && !constOp0)
2172       handleMulByConstant(I, constOp1, I.getOperand(0));
2173     else
2174       handleShadowOr(I);
2175   }
2176 
2177   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
2178   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
2179   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
2180   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
2181   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
2182   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
2183 
2184   void handleIntegerDiv(Instruction &I) {
2185     IRBuilder<> IRB(&I);
2186     // Strict on the second argument.
2187     insertShadowCheck(I.getOperand(1), &I);
2188     setShadow(&I, getShadow(&I, 0));
2189     setOrigin(&I, getOrigin(&I, 0));
2190   }
2191 
2192   void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2193   void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2194   void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
2195   void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
2196 
2197   // Floating point division is side-effect free. We can not require that the
2198   // divisor is fully initialized and must propagate shadow. See PR37523.
2199   void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
2200   void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
2201 
2202   /// Instrument == and != comparisons.
2203   ///
2204   /// Sometimes the comparison result is known even if some of the bits of the
2205   /// arguments are not.
2206   void handleEqualityComparison(ICmpInst &I) {
2207     IRBuilder<> IRB(&I);
2208     Value *A = I.getOperand(0);
2209     Value *B = I.getOperand(1);
2210     Value *Sa = getShadow(A);
2211     Value *Sb = getShadow(B);
2212 
2213     // Get rid of pointers and vectors of pointers.
2214     // For ints (and vectors of ints), types of A and Sa match,
2215     // and this is a no-op.
2216     A = IRB.CreatePointerCast(A, Sa->getType());
2217     B = IRB.CreatePointerCast(B, Sb->getType());
2218 
2219     // A == B  <==>  (C = A^B) == 0
2220     // A != B  <==>  (C = A^B) != 0
2221     // Sc = Sa | Sb
2222     Value *C = IRB.CreateXor(A, B);
2223     Value *Sc = IRB.CreateOr(Sa, Sb);
2224     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
2225     // Result is defined if one of the following is true
2226     // * there is a defined 1 bit in C
2227     // * C is fully defined
2228     // Si = !(C & ~Sc) && Sc
2229     Value *Zero = Constant::getNullValue(Sc->getType());
2230     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
2231     Value *Si =
2232       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
2233                     IRB.CreateICmpEQ(
2234                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
2235     Si->setName("_msprop_icmp");
2236     setShadow(&I, Si);
2237     setOriginForNaryOp(I);
2238   }
2239 
2240   /// Build the lowest possible value of V, taking into account V's
2241   ///        uninitialized bits.
2242   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2243                                 bool isSigned) {
2244     if (isSigned) {
2245       // Split shadow into sign bit and other bits.
2246       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2247       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2248       // Maximise the undefined shadow bit, minimize other undefined bits.
2249       return
2250         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
2251     } else {
2252       // Minimize undefined bits.
2253       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
2254     }
2255   }
2256 
2257   /// Build the highest possible value of V, taking into account V's
2258   ///        uninitialized bits.
2259   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2260                                 bool isSigned) {
2261     if (isSigned) {
2262       // Split shadow into sign bit and other bits.
2263       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2264       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2265       // Minimise the undefined shadow bit, maximise other undefined bits.
2266       return
2267         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
2268     } else {
2269       // Maximize undefined bits.
2270       return IRB.CreateOr(A, Sa);
2271     }
2272   }
2273 
2274   /// Instrument relational comparisons.
2275   ///
2276   /// This function does exact shadow propagation for all relational
2277   /// comparisons of integers, pointers and vectors of those.
2278   /// FIXME: output seems suboptimal when one of the operands is a constant
2279   void handleRelationalComparisonExact(ICmpInst &I) {
2280     IRBuilder<> IRB(&I);
2281     Value *A = I.getOperand(0);
2282     Value *B = I.getOperand(1);
2283     Value *Sa = getShadow(A);
2284     Value *Sb = getShadow(B);
2285 
2286     // Get rid of pointers and vectors of pointers.
2287     // For ints (and vectors of ints), types of A and Sa match,
2288     // and this is a no-op.
2289     A = IRB.CreatePointerCast(A, Sa->getType());
2290     B = IRB.CreatePointerCast(B, Sb->getType());
2291 
2292     // Let [a0, a1] be the interval of possible values of A, taking into account
2293     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
2294     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
2295     bool IsSigned = I.isSigned();
2296     Value *S1 = IRB.CreateICmp(I.getPredicate(),
2297                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
2298                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
2299     Value *S2 = IRB.CreateICmp(I.getPredicate(),
2300                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
2301                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
2302     Value *Si = IRB.CreateXor(S1, S2);
2303     setShadow(&I, Si);
2304     setOriginForNaryOp(I);
2305   }
2306 
2307   /// Instrument signed relational comparisons.
2308   ///
2309   /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
2310   /// bit of the shadow. Everything else is delegated to handleShadowOr().
2311   void handleSignedRelationalComparison(ICmpInst &I) {
2312     Constant *constOp;
2313     Value *op = nullptr;
2314     CmpInst::Predicate pre;
2315     if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
2316       op = I.getOperand(0);
2317       pre = I.getPredicate();
2318     } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
2319       op = I.getOperand(1);
2320       pre = I.getSwappedPredicate();
2321     } else {
2322       handleShadowOr(I);
2323       return;
2324     }
2325 
2326     if ((constOp->isNullValue() &&
2327          (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
2328         (constOp->isAllOnesValue() &&
2329          (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
2330       IRBuilder<> IRB(&I);
2331       Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
2332                                         "_msprop_icmp_s");
2333       setShadow(&I, Shadow);
2334       setOrigin(&I, getOrigin(op));
2335     } else {
2336       handleShadowOr(I);
2337     }
2338   }
2339 
2340   void visitICmpInst(ICmpInst &I) {
2341     if (!ClHandleICmp) {
2342       handleShadowOr(I);
2343       return;
2344     }
2345     if (I.isEquality()) {
2346       handleEqualityComparison(I);
2347       return;
2348     }
2349 
2350     assert(I.isRelational());
2351     if (ClHandleICmpExact) {
2352       handleRelationalComparisonExact(I);
2353       return;
2354     }
2355     if (I.isSigned()) {
2356       handleSignedRelationalComparison(I);
2357       return;
2358     }
2359 
2360     assert(I.isUnsigned());
2361     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2362       handleRelationalComparisonExact(I);
2363       return;
2364     }
2365 
2366     handleShadowOr(I);
2367   }
2368 
2369   void visitFCmpInst(FCmpInst &I) {
2370     handleShadowOr(I);
2371   }
2372 
2373   void handleShift(BinaryOperator &I) {
2374     IRBuilder<> IRB(&I);
2375     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2376     // Otherwise perform the same shift on S1.
2377     Value *S1 = getShadow(&I, 0);
2378     Value *S2 = getShadow(&I, 1);
2379     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
2380                                    S2->getType());
2381     Value *V2 = I.getOperand(1);
2382     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2383     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2384     setOriginForNaryOp(I);
2385   }
2386 
2387   void visitShl(BinaryOperator &I) { handleShift(I); }
2388   void visitAShr(BinaryOperator &I) { handleShift(I); }
2389   void visitLShr(BinaryOperator &I) { handleShift(I); }
2390 
2391   /// Instrument llvm.memmove
2392   ///
2393   /// At this point we don't know if llvm.memmove will be inlined or not.
2394   /// If we don't instrument it and it gets inlined,
2395   /// our interceptor will not kick in and we will lose the memmove.
2396   /// If we instrument the call here, but it does not get inlined,
2397   /// we will memove the shadow twice: which is bad in case
2398   /// of overlapping regions. So, we simply lower the intrinsic to a call.
2399   ///
2400   /// Similar situation exists for memcpy and memset.
2401   void visitMemMoveInst(MemMoveInst &I) {
2402     IRBuilder<> IRB(&I);
2403     IRB.CreateCall(
2404         MS.MemmoveFn,
2405         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2406          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2407          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2408     I.eraseFromParent();
2409   }
2410 
2411   // Similar to memmove: avoid copying shadow twice.
2412   // This is somewhat unfortunate as it may slowdown small constant memcpys.
2413   // FIXME: consider doing manual inline for small constant sizes and proper
2414   // alignment.
2415   void visitMemCpyInst(MemCpyInst &I) {
2416     IRBuilder<> IRB(&I);
2417     IRB.CreateCall(
2418         MS.MemcpyFn,
2419         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2420          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2421          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2422     I.eraseFromParent();
2423   }
2424 
2425   // Same as memcpy.
2426   void visitMemSetInst(MemSetInst &I) {
2427     IRBuilder<> IRB(&I);
2428     IRB.CreateCall(
2429         MS.MemsetFn,
2430         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2431          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2432          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2433     I.eraseFromParent();
2434   }
2435 
2436   void visitVAStartInst(VAStartInst &I) {
2437     VAHelper->visitVAStartInst(I);
2438   }
2439 
2440   void visitVACopyInst(VACopyInst &I) {
2441     VAHelper->visitVACopyInst(I);
2442   }
2443 
2444   /// Handle vector store-like intrinsics.
2445   ///
2446   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2447   /// has 1 pointer argument and 1 vector argument, returns void.
2448   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2449     IRBuilder<> IRB(&I);
2450     Value* Addr = I.getArgOperand(0);
2451     Value *Shadow = getShadow(&I, 1);
2452     Value *ShadowPtr, *OriginPtr;
2453 
2454     // We don't know the pointer alignment (could be unaligned SSE store!).
2455     // Have to assume to worst case.
2456     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2457         Addr, IRB, Shadow->getType(), Align::None(), /*isStore*/ true);
2458     IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
2459 
2460     if (ClCheckAccessAddress)
2461       insertShadowCheck(Addr, &I);
2462 
2463     // FIXME: factor out common code from materializeStores
2464     if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2465     return true;
2466   }
2467 
2468   /// Handle vector load-like intrinsics.
2469   ///
2470   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2471   /// has 1 pointer argument, returns a vector.
2472   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2473     IRBuilder<> IRB(&I);
2474     Value *Addr = I.getArgOperand(0);
2475 
2476     Type *ShadowTy = getShadowTy(&I);
2477     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2478     if (PropagateShadow) {
2479       // We don't know the pointer alignment (could be unaligned SSE load!).
2480       // Have to assume to worst case.
2481       const Align Alignment = Align::None();
2482       std::tie(ShadowPtr, OriginPtr) =
2483           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2484       setShadow(&I, IRB.CreateAlignedLoad(ShadowTy, ShadowPtr,
2485                                           Alignment.value(), "_msld"));
2486     } else {
2487       setShadow(&I, getCleanShadow(&I));
2488     }
2489 
2490     if (ClCheckAccessAddress)
2491       insertShadowCheck(Addr, &I);
2492 
2493     if (MS.TrackOrigins) {
2494       if (PropagateShadow)
2495         setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
2496       else
2497         setOrigin(&I, getCleanOrigin());
2498     }
2499     return true;
2500   }
2501 
2502   /// Handle (SIMD arithmetic)-like intrinsics.
2503   ///
2504   /// Instrument intrinsics with any number of arguments of the same type,
2505   /// equal to the return type. The type should be simple (no aggregates or
2506   /// pointers; vectors are fine).
2507   /// Caller guarantees that this intrinsic does not access memory.
2508   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2509     Type *RetTy = I.getType();
2510     if (!(RetTy->isIntOrIntVectorTy() ||
2511           RetTy->isFPOrFPVectorTy() ||
2512           RetTy->isX86_MMXTy()))
2513       return false;
2514 
2515     unsigned NumArgOperands = I.getNumArgOperands();
2516 
2517     for (unsigned i = 0; i < NumArgOperands; ++i) {
2518       Type *Ty = I.getArgOperand(i)->getType();
2519       if (Ty != RetTy)
2520         return false;
2521     }
2522 
2523     IRBuilder<> IRB(&I);
2524     ShadowAndOriginCombiner SC(this, IRB);
2525     for (unsigned i = 0; i < NumArgOperands; ++i)
2526       SC.Add(I.getArgOperand(i));
2527     SC.Done(&I);
2528 
2529     return true;
2530   }
2531 
2532   /// Heuristically instrument unknown intrinsics.
2533   ///
2534   /// The main purpose of this code is to do something reasonable with all
2535   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2536   /// We recognize several classes of intrinsics by their argument types and
2537   /// ModRefBehaviour and apply special intrumentation when we are reasonably
2538   /// sure that we know what the intrinsic does.
2539   ///
2540   /// We special-case intrinsics where this approach fails. See llvm.bswap
2541   /// handling as an example of that.
2542   bool handleUnknownIntrinsic(IntrinsicInst &I) {
2543     unsigned NumArgOperands = I.getNumArgOperands();
2544     if (NumArgOperands == 0)
2545       return false;
2546 
2547     if (NumArgOperands == 2 &&
2548         I.getArgOperand(0)->getType()->isPointerTy() &&
2549         I.getArgOperand(1)->getType()->isVectorTy() &&
2550         I.getType()->isVoidTy() &&
2551         !I.onlyReadsMemory()) {
2552       // This looks like a vector store.
2553       return handleVectorStoreIntrinsic(I);
2554     }
2555 
2556     if (NumArgOperands == 1 &&
2557         I.getArgOperand(0)->getType()->isPointerTy() &&
2558         I.getType()->isVectorTy() &&
2559         I.onlyReadsMemory()) {
2560       // This looks like a vector load.
2561       return handleVectorLoadIntrinsic(I);
2562     }
2563 
2564     if (I.doesNotAccessMemory())
2565       if (maybeHandleSimpleNomemIntrinsic(I))
2566         return true;
2567 
2568     // FIXME: detect and handle SSE maskstore/maskload
2569     return false;
2570   }
2571 
2572   void handleInvariantGroup(IntrinsicInst &I) {
2573     setShadow(&I, getShadow(&I, 0));
2574     setOrigin(&I, getOrigin(&I, 0));
2575   }
2576 
2577   void handleLifetimeStart(IntrinsicInst &I) {
2578     if (!PoisonStack)
2579       return;
2580     DenseMap<Value *, AllocaInst *> AllocaForValue;
2581     AllocaInst *AI =
2582         llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue);
2583     if (!AI)
2584       InstrumentLifetimeStart = false;
2585     LifetimeStartList.push_back(std::make_pair(&I, AI));
2586   }
2587 
2588   void handleBswap(IntrinsicInst &I) {
2589     IRBuilder<> IRB(&I);
2590     Value *Op = I.getArgOperand(0);
2591     Type *OpType = Op->getType();
2592     Function *BswapFunc = Intrinsic::getDeclaration(
2593       F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
2594     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
2595     setOrigin(&I, getOrigin(Op));
2596   }
2597 
2598   // Instrument vector convert instrinsic.
2599   //
2600   // This function instruments intrinsics like cvtsi2ss:
2601   // %Out = int_xxx_cvtyyy(%ConvertOp)
2602   // or
2603   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2604   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2605   // number \p Out elements, and (if has 2 arguments) copies the rest of the
2606   // elements from \p CopyOp.
2607   // In most cases conversion involves floating-point value which may trigger a
2608   // hardware exception when not fully initialized. For this reason we require
2609   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2610   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2611   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2612   // return a fully initialized value.
2613   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
2614     IRBuilder<> IRB(&I);
2615     Value *CopyOp, *ConvertOp;
2616 
2617     switch (I.getNumArgOperands()) {
2618     case 3:
2619       assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
2620       LLVM_FALLTHROUGH;
2621     case 2:
2622       CopyOp = I.getArgOperand(0);
2623       ConvertOp = I.getArgOperand(1);
2624       break;
2625     case 1:
2626       ConvertOp = I.getArgOperand(0);
2627       CopyOp = nullptr;
2628       break;
2629     default:
2630       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
2631     }
2632 
2633     // The first *NumUsedElements* elements of ConvertOp are converted to the
2634     // same number of output elements. The rest of the output is copied from
2635     // CopyOp, or (if not available) filled with zeroes.
2636     // Combine shadow for elements of ConvertOp that are used in this operation,
2637     // and insert a check.
2638     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2639     // int->any conversion.
2640     Value *ConvertShadow = getShadow(ConvertOp);
2641     Value *AggShadow = nullptr;
2642     if (ConvertOp->getType()->isVectorTy()) {
2643       AggShadow = IRB.CreateExtractElement(
2644           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2645       for (int i = 1; i < NumUsedElements; ++i) {
2646         Value *MoreShadow = IRB.CreateExtractElement(
2647             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2648         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2649       }
2650     } else {
2651       AggShadow = ConvertShadow;
2652     }
2653     assert(AggShadow->getType()->isIntegerTy());
2654     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2655 
2656     // Build result shadow by zero-filling parts of CopyOp shadow that come from
2657     // ConvertOp.
2658     if (CopyOp) {
2659       assert(CopyOp->getType() == I.getType());
2660       assert(CopyOp->getType()->isVectorTy());
2661       Value *ResultShadow = getShadow(CopyOp);
2662       Type *EltTy = ResultShadow->getType()->getVectorElementType();
2663       for (int i = 0; i < NumUsedElements; ++i) {
2664         ResultShadow = IRB.CreateInsertElement(
2665             ResultShadow, ConstantInt::getNullValue(EltTy),
2666             ConstantInt::get(IRB.getInt32Ty(), i));
2667       }
2668       setShadow(&I, ResultShadow);
2669       setOrigin(&I, getOrigin(CopyOp));
2670     } else {
2671       setShadow(&I, getCleanShadow(&I));
2672       setOrigin(&I, getCleanOrigin());
2673     }
2674   }
2675 
2676   // Given a scalar or vector, extract lower 64 bits (or less), and return all
2677   // zeroes if it is zero, and all ones otherwise.
2678   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2679     if (S->getType()->isVectorTy())
2680       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2681     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2682     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2683     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2684   }
2685 
2686   // Given a vector, extract its first element, and return all
2687   // zeroes if it is zero, and all ones otherwise.
2688   Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2689     Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
2690     Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
2691     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2692   }
2693 
2694   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2695     Type *T = S->getType();
2696     assert(T->isVectorTy());
2697     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2698     return IRB.CreateSExt(S2, T);
2699   }
2700 
2701   // Instrument vector shift instrinsic.
2702   //
2703   // This function instruments intrinsics like int_x86_avx2_psll_w.
2704   // Intrinsic shifts %In by %ShiftSize bits.
2705   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2706   // size, and the rest is ignored. Behavior is defined even if shift size is
2707   // greater than register (or field) width.
2708   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2709     assert(I.getNumArgOperands() == 2);
2710     IRBuilder<> IRB(&I);
2711     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2712     // Otherwise perform the same shift on S1.
2713     Value *S1 = getShadow(&I, 0);
2714     Value *S2 = getShadow(&I, 1);
2715     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2716                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2717     Value *V1 = I.getOperand(0);
2718     Value *V2 = I.getOperand(1);
2719     Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(),
2720                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
2721     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2722     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2723     setOriginForNaryOp(I);
2724   }
2725 
2726   // Get an X86_MMX-sized vector type.
2727   Type *getMMXVectorTy(unsigned EltSizeInBits) {
2728     const unsigned X86_MMXSizeInBits = 64;
2729     assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
2730            "Illegal MMX vector element size");
2731     return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2732                            X86_MMXSizeInBits / EltSizeInBits);
2733   }
2734 
2735   // Returns a signed counterpart for an (un)signed-saturate-and-pack
2736   // intrinsic.
2737   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2738     switch (id) {
2739       case Intrinsic::x86_sse2_packsswb_128:
2740       case Intrinsic::x86_sse2_packuswb_128:
2741         return Intrinsic::x86_sse2_packsswb_128;
2742 
2743       case Intrinsic::x86_sse2_packssdw_128:
2744       case Intrinsic::x86_sse41_packusdw:
2745         return Intrinsic::x86_sse2_packssdw_128;
2746 
2747       case Intrinsic::x86_avx2_packsswb:
2748       case Intrinsic::x86_avx2_packuswb:
2749         return Intrinsic::x86_avx2_packsswb;
2750 
2751       case Intrinsic::x86_avx2_packssdw:
2752       case Intrinsic::x86_avx2_packusdw:
2753         return Intrinsic::x86_avx2_packssdw;
2754 
2755       case Intrinsic::x86_mmx_packsswb:
2756       case Intrinsic::x86_mmx_packuswb:
2757         return Intrinsic::x86_mmx_packsswb;
2758 
2759       case Intrinsic::x86_mmx_packssdw:
2760         return Intrinsic::x86_mmx_packssdw;
2761       default:
2762         llvm_unreachable("unexpected intrinsic id");
2763     }
2764   }
2765 
2766   // Instrument vector pack instrinsic.
2767   //
2768   // This function instruments intrinsics like x86_mmx_packsswb, that
2769   // packs elements of 2 input vectors into half as many bits with saturation.
2770   // Shadow is propagated with the signed variant of the same intrinsic applied
2771   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2772   // EltSizeInBits is used only for x86mmx arguments.
2773   void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2774     assert(I.getNumArgOperands() == 2);
2775     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2776     IRBuilder<> IRB(&I);
2777     Value *S1 = getShadow(&I, 0);
2778     Value *S2 = getShadow(&I, 1);
2779     assert(isX86_MMX || S1->getType()->isVectorTy());
2780 
2781     // SExt and ICmpNE below must apply to individual elements of input vectors.
2782     // In case of x86mmx arguments, cast them to appropriate vector types and
2783     // back.
2784     Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2785     if (isX86_MMX) {
2786       S1 = IRB.CreateBitCast(S1, T);
2787       S2 = IRB.CreateBitCast(S2, T);
2788     }
2789     Value *S1_ext = IRB.CreateSExt(
2790         IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
2791     Value *S2_ext = IRB.CreateSExt(
2792         IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
2793     if (isX86_MMX) {
2794       Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2795       S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2796       S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2797     }
2798 
2799     Function *ShadowFn = Intrinsic::getDeclaration(
2800         F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2801 
2802     Value *S =
2803         IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
2804     if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2805     setShadow(&I, S);
2806     setOriginForNaryOp(I);
2807   }
2808 
2809   // Instrument sum-of-absolute-differencies intrinsic.
2810   void handleVectorSadIntrinsic(IntrinsicInst &I) {
2811     const unsigned SignificantBitsPerResultElement = 16;
2812     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2813     Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2814     unsigned ZeroBitsPerResultElement =
2815         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2816 
2817     IRBuilder<> IRB(&I);
2818     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2819     S = IRB.CreateBitCast(S, ResTy);
2820     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2821                        ResTy);
2822     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2823     S = IRB.CreateBitCast(S, getShadowTy(&I));
2824     setShadow(&I, S);
2825     setOriginForNaryOp(I);
2826   }
2827 
2828   // Instrument multiply-add intrinsic.
2829   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2830                                   unsigned EltSizeInBits = 0) {
2831     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2832     Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2833     IRBuilder<> IRB(&I);
2834     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2835     S = IRB.CreateBitCast(S, ResTy);
2836     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2837                        ResTy);
2838     S = IRB.CreateBitCast(S, getShadowTy(&I));
2839     setShadow(&I, S);
2840     setOriginForNaryOp(I);
2841   }
2842 
2843   // Instrument compare-packed intrinsic.
2844   // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
2845   // all-ones shadow.
2846   void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
2847     IRBuilder<> IRB(&I);
2848     Type *ResTy = getShadowTy(&I);
2849     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2850     Value *S = IRB.CreateSExt(
2851         IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
2852     setShadow(&I, S);
2853     setOriginForNaryOp(I);
2854   }
2855 
2856   // Instrument compare-scalar intrinsic.
2857   // This handles both cmp* intrinsics which return the result in the first
2858   // element of a vector, and comi* which return the result as i32.
2859   void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
2860     IRBuilder<> IRB(&I);
2861     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2862     Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
2863     setShadow(&I, S);
2864     setOriginForNaryOp(I);
2865   }
2866 
2867   void handleStmxcsr(IntrinsicInst &I) {
2868     IRBuilder<> IRB(&I);
2869     Value* Addr = I.getArgOperand(0);
2870     Type *Ty = IRB.getInt32Ty();
2871     Value *ShadowPtr =
2872         getShadowOriginPtr(Addr, IRB, Ty, Align::None(), /*isStore*/ true)
2873             .first;
2874 
2875     IRB.CreateStore(getCleanShadow(Ty),
2876                     IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
2877 
2878     if (ClCheckAccessAddress)
2879       insertShadowCheck(Addr, &I);
2880   }
2881 
2882   void handleLdmxcsr(IntrinsicInst &I) {
2883     if (!InsertChecks) return;
2884 
2885     IRBuilder<> IRB(&I);
2886     Value *Addr = I.getArgOperand(0);
2887     Type *Ty = IRB.getInt32Ty();
2888     const Align Alignment = Align::None();
2889     Value *ShadowPtr, *OriginPtr;
2890     std::tie(ShadowPtr, OriginPtr) =
2891         getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
2892 
2893     if (ClCheckAccessAddress)
2894       insertShadowCheck(Addr, &I);
2895 
2896     Value *Shadow =
2897         IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment.value(), "_ldmxcsr");
2898     Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
2899                                     : getCleanOrigin();
2900     insertShadowCheck(Shadow, Origin, &I);
2901   }
2902 
2903   void handleMaskedStore(IntrinsicInst &I) {
2904     IRBuilder<> IRB(&I);
2905     Value *V = I.getArgOperand(0);
2906     Value *Addr = I.getArgOperand(1);
2907     const MaybeAlign Alignment(
2908         cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
2909     Value *Mask = I.getArgOperand(3);
2910     Value *Shadow = getShadow(V);
2911 
2912     Value *ShadowPtr;
2913     Value *OriginPtr;
2914     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2915         Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true);
2916 
2917     if (ClCheckAccessAddress) {
2918       insertShadowCheck(Addr, &I);
2919       // Uninitialized mask is kind of like uninitialized address, but not as
2920       // scary.
2921       insertShadowCheck(Mask, &I);
2922     }
2923 
2924     IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment ? Alignment->value() : 0,
2925                           Mask);
2926 
2927     if (MS.TrackOrigins) {
2928       auto &DL = F.getParent()->getDataLayout();
2929       paintOrigin(IRB, getOrigin(V), OriginPtr,
2930                   DL.getTypeStoreSize(Shadow->getType()),
2931                   llvm::max(Alignment, kMinOriginAlignment));
2932     }
2933   }
2934 
2935   bool handleMaskedLoad(IntrinsicInst &I) {
2936     IRBuilder<> IRB(&I);
2937     Value *Addr = I.getArgOperand(0);
2938     const MaybeAlign Alignment(
2939         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
2940     Value *Mask = I.getArgOperand(2);
2941     Value *PassThru = I.getArgOperand(3);
2942 
2943     Type *ShadowTy = getShadowTy(&I);
2944     Value *ShadowPtr, *OriginPtr;
2945     if (PropagateShadow) {
2946       std::tie(ShadowPtr, OriginPtr) =
2947           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2948       setShadow(&I, IRB.CreateMaskedLoad(
2949                         ShadowPtr, Alignment ? Alignment->value() : 0, Mask,
2950                         getShadow(PassThru), "_msmaskedld"));
2951     } else {
2952       setShadow(&I, getCleanShadow(&I));
2953     }
2954 
2955     if (ClCheckAccessAddress) {
2956       insertShadowCheck(Addr, &I);
2957       insertShadowCheck(Mask, &I);
2958     }
2959 
2960     if (MS.TrackOrigins) {
2961       if (PropagateShadow) {
2962         // Choose between PassThru's and the loaded value's origins.
2963         Value *MaskedPassThruShadow = IRB.CreateAnd(
2964             getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
2965 
2966         Value *Acc = IRB.CreateExtractElement(
2967             MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2968         for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N;
2969              ++i) {
2970           Value *More = IRB.CreateExtractElement(
2971               MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2972           Acc = IRB.CreateOr(Acc, More);
2973         }
2974 
2975         Value *Origin = IRB.CreateSelect(
2976             IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())),
2977             getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr));
2978 
2979         setOrigin(&I, Origin);
2980       } else {
2981         setOrigin(&I, getCleanOrigin());
2982       }
2983     }
2984     return true;
2985   }
2986 
2987   // Instrument BMI / BMI2 intrinsics.
2988   // All of these intrinsics are Z = I(X, Y)
2989   // where the types of all operands and the result match, and are either i32 or i64.
2990   // The following instrumentation happens to work for all of them:
2991   //   Sz = I(Sx, Y) | (sext (Sy != 0))
2992   void handleBmiIntrinsic(IntrinsicInst &I) {
2993     IRBuilder<> IRB(&I);
2994     Type *ShadowTy = getShadowTy(&I);
2995 
2996     // If any bit of the mask operand is poisoned, then the whole thing is.
2997     Value *SMask = getShadow(&I, 1);
2998     SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
2999                            ShadowTy);
3000     // Apply the same intrinsic to the shadow of the first operand.
3001     Value *S = IRB.CreateCall(I.getCalledFunction(),
3002                               {getShadow(&I, 0), I.getOperand(1)});
3003     S = IRB.CreateOr(SMask, S);
3004     setShadow(&I, S);
3005     setOriginForNaryOp(I);
3006   }
3007 
3008   Constant *getPclmulMask(IRBuilder<> &IRB, unsigned Width, bool OddElements) {
3009     SmallVector<Constant *, 8> Mask;
3010     for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) {
3011       Constant *C = ConstantInt::get(IRB.getInt32Ty(), X);
3012       Mask.push_back(C);
3013       Mask.push_back(C);
3014     }
3015     return ConstantVector::get(Mask);
3016   }
3017 
3018   // Instrument pclmul intrinsics.
3019   // These intrinsics operate either on odd or on even elements of the input
3020   // vectors, depending on the constant in the 3rd argument, ignoring the rest.
3021   // Replace the unused elements with copies of the used ones, ex:
3022   //   (0, 1, 2, 3) -> (0, 0, 2, 2) (even case)
3023   // or
3024   //   (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case)
3025   // and then apply the usual shadow combining logic.
3026   void handlePclmulIntrinsic(IntrinsicInst &I) {
3027     IRBuilder<> IRB(&I);
3028     Type *ShadowTy = getShadowTy(&I);
3029     unsigned Width = I.getArgOperand(0)->getType()->getVectorNumElements();
3030     assert(isa<ConstantInt>(I.getArgOperand(2)) &&
3031            "pclmul 3rd operand must be a constant");
3032     unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3033     Value *Shuf0 =
3034         IRB.CreateShuffleVector(getShadow(&I, 0), UndefValue::get(ShadowTy),
3035                                 getPclmulMask(IRB, Width, Imm & 0x01));
3036     Value *Shuf1 =
3037         IRB.CreateShuffleVector(getShadow(&I, 1), UndefValue::get(ShadowTy),
3038                                 getPclmulMask(IRB, Width, Imm & 0x10));
3039     ShadowAndOriginCombiner SOC(this, IRB);
3040     SOC.Add(Shuf0, getOrigin(&I, 0));
3041     SOC.Add(Shuf1, getOrigin(&I, 1));
3042     SOC.Done(&I);
3043   }
3044 
3045   void visitIntrinsicInst(IntrinsicInst &I) {
3046     switch (I.getIntrinsicID()) {
3047     case Intrinsic::lifetime_start:
3048       handleLifetimeStart(I);
3049       break;
3050     case Intrinsic::launder_invariant_group:
3051     case Intrinsic::strip_invariant_group:
3052       handleInvariantGroup(I);
3053       break;
3054     case Intrinsic::bswap:
3055       handleBswap(I);
3056       break;
3057     case Intrinsic::masked_store:
3058       handleMaskedStore(I);
3059       break;
3060     case Intrinsic::masked_load:
3061       handleMaskedLoad(I);
3062       break;
3063     case Intrinsic::x86_sse_stmxcsr:
3064       handleStmxcsr(I);
3065       break;
3066     case Intrinsic::x86_sse_ldmxcsr:
3067       handleLdmxcsr(I);
3068       break;
3069     case Intrinsic::x86_avx512_vcvtsd2usi64:
3070     case Intrinsic::x86_avx512_vcvtsd2usi32:
3071     case Intrinsic::x86_avx512_vcvtss2usi64:
3072     case Intrinsic::x86_avx512_vcvtss2usi32:
3073     case Intrinsic::x86_avx512_cvttss2usi64:
3074     case Intrinsic::x86_avx512_cvttss2usi:
3075     case Intrinsic::x86_avx512_cvttsd2usi64:
3076     case Intrinsic::x86_avx512_cvttsd2usi:
3077     case Intrinsic::x86_avx512_cvtusi2ss:
3078     case Intrinsic::x86_avx512_cvtusi642sd:
3079     case Intrinsic::x86_avx512_cvtusi642ss:
3080     case Intrinsic::x86_sse2_cvtsd2si64:
3081     case Intrinsic::x86_sse2_cvtsd2si:
3082     case Intrinsic::x86_sse2_cvtsd2ss:
3083     case Intrinsic::x86_sse2_cvttsd2si64:
3084     case Intrinsic::x86_sse2_cvttsd2si:
3085     case Intrinsic::x86_sse_cvtss2si64:
3086     case Intrinsic::x86_sse_cvtss2si:
3087     case Intrinsic::x86_sse_cvttss2si64:
3088     case Intrinsic::x86_sse_cvttss2si:
3089       handleVectorConvertIntrinsic(I, 1);
3090       break;
3091     case Intrinsic::x86_sse_cvtps2pi:
3092     case Intrinsic::x86_sse_cvttps2pi:
3093       handleVectorConvertIntrinsic(I, 2);
3094       break;
3095 
3096     case Intrinsic::x86_avx512_psll_w_512:
3097     case Intrinsic::x86_avx512_psll_d_512:
3098     case Intrinsic::x86_avx512_psll_q_512:
3099     case Intrinsic::x86_avx512_pslli_w_512:
3100     case Intrinsic::x86_avx512_pslli_d_512:
3101     case Intrinsic::x86_avx512_pslli_q_512:
3102     case Intrinsic::x86_avx512_psrl_w_512:
3103     case Intrinsic::x86_avx512_psrl_d_512:
3104     case Intrinsic::x86_avx512_psrl_q_512:
3105     case Intrinsic::x86_avx512_psra_w_512:
3106     case Intrinsic::x86_avx512_psra_d_512:
3107     case Intrinsic::x86_avx512_psra_q_512:
3108     case Intrinsic::x86_avx512_psrli_w_512:
3109     case Intrinsic::x86_avx512_psrli_d_512:
3110     case Intrinsic::x86_avx512_psrli_q_512:
3111     case Intrinsic::x86_avx512_psrai_w_512:
3112     case Intrinsic::x86_avx512_psrai_d_512:
3113     case Intrinsic::x86_avx512_psrai_q_512:
3114     case Intrinsic::x86_avx512_psra_q_256:
3115     case Intrinsic::x86_avx512_psra_q_128:
3116     case Intrinsic::x86_avx512_psrai_q_256:
3117     case Intrinsic::x86_avx512_psrai_q_128:
3118     case Intrinsic::x86_avx2_psll_w:
3119     case Intrinsic::x86_avx2_psll_d:
3120     case Intrinsic::x86_avx2_psll_q:
3121     case Intrinsic::x86_avx2_pslli_w:
3122     case Intrinsic::x86_avx2_pslli_d:
3123     case Intrinsic::x86_avx2_pslli_q:
3124     case Intrinsic::x86_avx2_psrl_w:
3125     case Intrinsic::x86_avx2_psrl_d:
3126     case Intrinsic::x86_avx2_psrl_q:
3127     case Intrinsic::x86_avx2_psra_w:
3128     case Intrinsic::x86_avx2_psra_d:
3129     case Intrinsic::x86_avx2_psrli_w:
3130     case Intrinsic::x86_avx2_psrli_d:
3131     case Intrinsic::x86_avx2_psrli_q:
3132     case Intrinsic::x86_avx2_psrai_w:
3133     case Intrinsic::x86_avx2_psrai_d:
3134     case Intrinsic::x86_sse2_psll_w:
3135     case Intrinsic::x86_sse2_psll_d:
3136     case Intrinsic::x86_sse2_psll_q:
3137     case Intrinsic::x86_sse2_pslli_w:
3138     case Intrinsic::x86_sse2_pslli_d:
3139     case Intrinsic::x86_sse2_pslli_q:
3140     case Intrinsic::x86_sse2_psrl_w:
3141     case Intrinsic::x86_sse2_psrl_d:
3142     case Intrinsic::x86_sse2_psrl_q:
3143     case Intrinsic::x86_sse2_psra_w:
3144     case Intrinsic::x86_sse2_psra_d:
3145     case Intrinsic::x86_sse2_psrli_w:
3146     case Intrinsic::x86_sse2_psrli_d:
3147     case Intrinsic::x86_sse2_psrli_q:
3148     case Intrinsic::x86_sse2_psrai_w:
3149     case Intrinsic::x86_sse2_psrai_d:
3150     case Intrinsic::x86_mmx_psll_w:
3151     case Intrinsic::x86_mmx_psll_d:
3152     case Intrinsic::x86_mmx_psll_q:
3153     case Intrinsic::x86_mmx_pslli_w:
3154     case Intrinsic::x86_mmx_pslli_d:
3155     case Intrinsic::x86_mmx_pslli_q:
3156     case Intrinsic::x86_mmx_psrl_w:
3157     case Intrinsic::x86_mmx_psrl_d:
3158     case Intrinsic::x86_mmx_psrl_q:
3159     case Intrinsic::x86_mmx_psra_w:
3160     case Intrinsic::x86_mmx_psra_d:
3161     case Intrinsic::x86_mmx_psrli_w:
3162     case Intrinsic::x86_mmx_psrli_d:
3163     case Intrinsic::x86_mmx_psrli_q:
3164     case Intrinsic::x86_mmx_psrai_w:
3165     case Intrinsic::x86_mmx_psrai_d:
3166       handleVectorShiftIntrinsic(I, /* Variable */ false);
3167       break;
3168     case Intrinsic::x86_avx2_psllv_d:
3169     case Intrinsic::x86_avx2_psllv_d_256:
3170     case Intrinsic::x86_avx512_psllv_d_512:
3171     case Intrinsic::x86_avx2_psllv_q:
3172     case Intrinsic::x86_avx2_psllv_q_256:
3173     case Intrinsic::x86_avx512_psllv_q_512:
3174     case Intrinsic::x86_avx2_psrlv_d:
3175     case Intrinsic::x86_avx2_psrlv_d_256:
3176     case Intrinsic::x86_avx512_psrlv_d_512:
3177     case Intrinsic::x86_avx2_psrlv_q:
3178     case Intrinsic::x86_avx2_psrlv_q_256:
3179     case Intrinsic::x86_avx512_psrlv_q_512:
3180     case Intrinsic::x86_avx2_psrav_d:
3181     case Intrinsic::x86_avx2_psrav_d_256:
3182     case Intrinsic::x86_avx512_psrav_d_512:
3183     case Intrinsic::x86_avx512_psrav_q_128:
3184     case Intrinsic::x86_avx512_psrav_q_256:
3185     case Intrinsic::x86_avx512_psrav_q_512:
3186       handleVectorShiftIntrinsic(I, /* Variable */ true);
3187       break;
3188 
3189     case Intrinsic::x86_sse2_packsswb_128:
3190     case Intrinsic::x86_sse2_packssdw_128:
3191     case Intrinsic::x86_sse2_packuswb_128:
3192     case Intrinsic::x86_sse41_packusdw:
3193     case Intrinsic::x86_avx2_packsswb:
3194     case Intrinsic::x86_avx2_packssdw:
3195     case Intrinsic::x86_avx2_packuswb:
3196     case Intrinsic::x86_avx2_packusdw:
3197       handleVectorPackIntrinsic(I);
3198       break;
3199 
3200     case Intrinsic::x86_mmx_packsswb:
3201     case Intrinsic::x86_mmx_packuswb:
3202       handleVectorPackIntrinsic(I, 16);
3203       break;
3204 
3205     case Intrinsic::x86_mmx_packssdw:
3206       handleVectorPackIntrinsic(I, 32);
3207       break;
3208 
3209     case Intrinsic::x86_mmx_psad_bw:
3210     case Intrinsic::x86_sse2_psad_bw:
3211     case Intrinsic::x86_avx2_psad_bw:
3212       handleVectorSadIntrinsic(I);
3213       break;
3214 
3215     case Intrinsic::x86_sse2_pmadd_wd:
3216     case Intrinsic::x86_avx2_pmadd_wd:
3217     case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
3218     case Intrinsic::x86_avx2_pmadd_ub_sw:
3219       handleVectorPmaddIntrinsic(I);
3220       break;
3221 
3222     case Intrinsic::x86_ssse3_pmadd_ub_sw:
3223       handleVectorPmaddIntrinsic(I, 8);
3224       break;
3225 
3226     case Intrinsic::x86_mmx_pmadd_wd:
3227       handleVectorPmaddIntrinsic(I, 16);
3228       break;
3229 
3230     case Intrinsic::x86_sse_cmp_ss:
3231     case Intrinsic::x86_sse2_cmp_sd:
3232     case Intrinsic::x86_sse_comieq_ss:
3233     case Intrinsic::x86_sse_comilt_ss:
3234     case Intrinsic::x86_sse_comile_ss:
3235     case Intrinsic::x86_sse_comigt_ss:
3236     case Intrinsic::x86_sse_comige_ss:
3237     case Intrinsic::x86_sse_comineq_ss:
3238     case Intrinsic::x86_sse_ucomieq_ss:
3239     case Intrinsic::x86_sse_ucomilt_ss:
3240     case Intrinsic::x86_sse_ucomile_ss:
3241     case Intrinsic::x86_sse_ucomigt_ss:
3242     case Intrinsic::x86_sse_ucomige_ss:
3243     case Intrinsic::x86_sse_ucomineq_ss:
3244     case Intrinsic::x86_sse2_comieq_sd:
3245     case Intrinsic::x86_sse2_comilt_sd:
3246     case Intrinsic::x86_sse2_comile_sd:
3247     case Intrinsic::x86_sse2_comigt_sd:
3248     case Intrinsic::x86_sse2_comige_sd:
3249     case Intrinsic::x86_sse2_comineq_sd:
3250     case Intrinsic::x86_sse2_ucomieq_sd:
3251     case Intrinsic::x86_sse2_ucomilt_sd:
3252     case Intrinsic::x86_sse2_ucomile_sd:
3253     case Intrinsic::x86_sse2_ucomigt_sd:
3254     case Intrinsic::x86_sse2_ucomige_sd:
3255     case Intrinsic::x86_sse2_ucomineq_sd:
3256       handleVectorCompareScalarIntrinsic(I);
3257       break;
3258 
3259     case Intrinsic::x86_sse_cmp_ps:
3260     case Intrinsic::x86_sse2_cmp_pd:
3261       // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
3262       // generates reasonably looking IR that fails in the backend with "Do not
3263       // know how to split the result of this operator!".
3264       handleVectorComparePackedIntrinsic(I);
3265       break;
3266 
3267     case Intrinsic::x86_bmi_bextr_32:
3268     case Intrinsic::x86_bmi_bextr_64:
3269     case Intrinsic::x86_bmi_bzhi_32:
3270     case Intrinsic::x86_bmi_bzhi_64:
3271     case Intrinsic::x86_bmi_pdep_32:
3272     case Intrinsic::x86_bmi_pdep_64:
3273     case Intrinsic::x86_bmi_pext_32:
3274     case Intrinsic::x86_bmi_pext_64:
3275       handleBmiIntrinsic(I);
3276       break;
3277 
3278     case Intrinsic::x86_pclmulqdq:
3279     case Intrinsic::x86_pclmulqdq_256:
3280     case Intrinsic::x86_pclmulqdq_512:
3281       handlePclmulIntrinsic(I);
3282       break;
3283 
3284     case Intrinsic::is_constant:
3285       // The result of llvm.is.constant() is always defined.
3286       setShadow(&I, getCleanShadow(&I));
3287       setOrigin(&I, getCleanOrigin());
3288       break;
3289 
3290     default:
3291       if (!handleUnknownIntrinsic(I))
3292         visitInstruction(I);
3293       break;
3294     }
3295   }
3296 
3297   void visitCallSite(CallSite CS) {
3298     Instruction &I = *CS.getInstruction();
3299     assert(!I.getMetadata("nosanitize"));
3300     assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) &&
3301            "Unknown type of CallSite");
3302     if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) {
3303       // For inline asm (either a call to asm function, or callbr instruction),
3304       // do the usual thing: check argument shadow and mark all outputs as
3305       // clean. Note that any side effects of the inline asm that are not
3306       // immediately visible in its constraints are not handled.
3307       if (ClHandleAsmConservative && MS.CompileKernel)
3308         visitAsmInstruction(I);
3309       else
3310         visitInstruction(I);
3311       return;
3312     }
3313     if (CS.isCall()) {
3314       CallInst *Call = cast<CallInst>(&I);
3315       assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
3316 
3317       // We are going to insert code that relies on the fact that the callee
3318       // will become a non-readonly function after it is instrumented by us. To
3319       // prevent this code from being optimized out, mark that function
3320       // non-readonly in advance.
3321       if (Function *Func = Call->getCalledFunction()) {
3322         // Clear out readonly/readnone attributes.
3323         AttrBuilder B;
3324         B.addAttribute(Attribute::ReadOnly)
3325             .addAttribute(Attribute::ReadNone)
3326             .addAttribute(Attribute::WriteOnly)
3327             .addAttribute(Attribute::ArgMemOnly)
3328             .addAttribute(Attribute::Speculatable);
3329         Func->removeAttributes(AttributeList::FunctionIndex, B);
3330       }
3331 
3332       maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
3333     }
3334     IRBuilder<> IRB(&I);
3335 
3336     unsigned ArgOffset = 0;
3337     LLVM_DEBUG(dbgs() << "  CallSite: " << I << "\n");
3338     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3339          ArgIt != End; ++ArgIt) {
3340       Value *A = *ArgIt;
3341       unsigned i = ArgIt - CS.arg_begin();
3342       if (!A->getType()->isSized()) {
3343         LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
3344         continue;
3345       }
3346       unsigned Size = 0;
3347       Value *Store = nullptr;
3348       // Compute the Shadow for arg even if it is ByVal, because
3349       // in that case getShadow() will copy the actual arg shadow to
3350       // __msan_param_tls.
3351       Value *ArgShadow = getShadow(A);
3352       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
3353       LLVM_DEBUG(dbgs() << "  Arg#" << i << ": " << *A
3354                         << " Shadow: " << *ArgShadow << "\n");
3355       bool ArgIsInitialized = false;
3356       const DataLayout &DL = F.getParent()->getDataLayout();
3357       if (CS.paramHasAttr(i, Attribute::ByVal)) {
3358         assert(A->getType()->isPointerTy() &&
3359                "ByVal argument is not a pointer!");
3360         Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
3361         if (ArgOffset + Size > kParamTLSSize) break;
3362         const MaybeAlign ParamAlignment(CS.getParamAlignment(i));
3363         MaybeAlign Alignment = llvm::None;
3364         if (ParamAlignment)
3365           Alignment = std::min(*ParamAlignment, kShadowTLSAlignment);
3366         Value *AShadowPtr =
3367             getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
3368                                /*isStore*/ false)
3369                 .first;
3370 
3371         Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
3372                                  Alignment, Size);
3373         // TODO(glider): need to copy origins.
3374       } else {
3375         Size = DL.getTypeAllocSize(A->getType());
3376         if (ArgOffset + Size > kParamTLSSize) break;
3377         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
3378                                        kShadowTLSAlignment.value());
3379         Constant *Cst = dyn_cast<Constant>(ArgShadow);
3380         if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
3381       }
3382       if (MS.TrackOrigins && !ArgIsInitialized)
3383         IRB.CreateStore(getOrigin(A),
3384                         getOriginPtrForArgument(A, IRB, ArgOffset));
3385       (void)Store;
3386       assert(Size != 0 && Store != nullptr);
3387       LLVM_DEBUG(dbgs() << "  Param:" << *Store << "\n");
3388       ArgOffset += alignTo(Size, 8);
3389     }
3390     LLVM_DEBUG(dbgs() << "  done with call args\n");
3391 
3392     FunctionType *FT = CS.getFunctionType();
3393     if (FT->isVarArg()) {
3394       VAHelper->visitCallSite(CS, IRB);
3395     }
3396 
3397     // Now, get the shadow for the RetVal.
3398     if (!I.getType()->isSized()) return;
3399     // Don't emit the epilogue for musttail call returns.
3400     if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return;
3401     IRBuilder<> IRBBefore(&I);
3402     // Until we have full dynamic coverage, make sure the retval shadow is 0.
3403     Value *Base = getShadowPtrForRetval(&I, IRBBefore);
3404     IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base,
3405                                  kShadowTLSAlignment.value());
3406     BasicBlock::iterator NextInsn;
3407     if (CS.isCall()) {
3408       NextInsn = ++I.getIterator();
3409       assert(NextInsn != I.getParent()->end());
3410     } else {
3411       BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
3412       if (!NormalDest->getSinglePredecessor()) {
3413         // FIXME: this case is tricky, so we are just conservative here.
3414         // Perhaps we need to split the edge between this BB and NormalDest,
3415         // but a naive attempt to use SplitEdge leads to a crash.
3416         setShadow(&I, getCleanShadow(&I));
3417         setOrigin(&I, getCleanOrigin());
3418         return;
3419       }
3420       // FIXME: NextInsn is likely in a basic block that has not been visited yet.
3421       // Anything inserted there will be instrumented by MSan later!
3422       NextInsn = NormalDest->getFirstInsertionPt();
3423       assert(NextInsn != NormalDest->end() &&
3424              "Could not find insertion point for retval shadow load");
3425     }
3426     IRBuilder<> IRBAfter(&*NextInsn);
3427     Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
3428         getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter),
3429         kShadowTLSAlignment.value(), "_msret");
3430     setShadow(&I, RetvalShadow);
3431     if (MS.TrackOrigins)
3432       setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy,
3433                                         getOriginPtrForRetval(IRBAfter)));
3434   }
3435 
3436   bool isAMustTailRetVal(Value *RetVal) {
3437     if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
3438       RetVal = I->getOperand(0);
3439     }
3440     if (auto *I = dyn_cast<CallInst>(RetVal)) {
3441       return I->isMustTailCall();
3442     }
3443     return false;
3444   }
3445 
3446   void visitReturnInst(ReturnInst &I) {
3447     IRBuilder<> IRB(&I);
3448     Value *RetVal = I.getReturnValue();
3449     if (!RetVal) return;
3450     // Don't emit the epilogue for musttail call returns.
3451     if (isAMustTailRetVal(RetVal)) return;
3452     Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
3453     if (CheckReturnValue) {
3454       insertShadowCheck(RetVal, &I);
3455       Value *Shadow = getCleanShadow(RetVal);
3456       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment.value());
3457     } else {
3458       Value *Shadow = getShadow(RetVal);
3459       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment.value());
3460       if (MS.TrackOrigins)
3461         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
3462     }
3463   }
3464 
3465   void visitPHINode(PHINode &I) {
3466     IRBuilder<> IRB(&I);
3467     if (!PropagateShadow) {
3468       setShadow(&I, getCleanShadow(&I));
3469       setOrigin(&I, getCleanOrigin());
3470       return;
3471     }
3472 
3473     ShadowPHINodes.push_back(&I);
3474     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
3475                                 "_msphi_s"));
3476     if (MS.TrackOrigins)
3477       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
3478                                   "_msphi_o"));
3479   }
3480 
3481   Value *getLocalVarDescription(AllocaInst &I) {
3482     SmallString<2048> StackDescriptionStorage;
3483     raw_svector_ostream StackDescription(StackDescriptionStorage);
3484     // We create a string with a description of the stack allocation and
3485     // pass it into __msan_set_alloca_origin.
3486     // It will be printed by the run-time if stack-originated UMR is found.
3487     // The first 4 bytes of the string are set to '----' and will be replaced
3488     // by __msan_va_arg_overflow_size_tls at the first call.
3489     StackDescription << "----" << I.getName() << "@" << F.getName();
3490     return createPrivateNonConstGlobalForString(*F.getParent(),
3491                                                 StackDescription.str());
3492   }
3493 
3494   void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3495     if (PoisonStack && ClPoisonStackWithCall) {
3496       IRB.CreateCall(MS.MsanPoisonStackFn,
3497                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3498     } else {
3499       Value *ShadowBase, *OriginBase;
3500       std::tie(ShadowBase, OriginBase) = getShadowOriginPtr(
3501           &I, IRB, IRB.getInt8Ty(), Align::None(), /*isStore*/ true);
3502 
3503       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
3504       IRB.CreateMemSet(ShadowBase, PoisonValue, Len,
3505                        MaybeAlign(I.getAlignment()));
3506     }
3507 
3508     if (PoisonStack && MS.TrackOrigins) {
3509       Value *Descr = getLocalVarDescription(I);
3510       IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
3511                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3512                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
3513                       IRB.CreatePointerCast(&F, MS.IntptrTy)});
3514     }
3515   }
3516 
3517   void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3518     Value *Descr = getLocalVarDescription(I);
3519     if (PoisonStack) {
3520       IRB.CreateCall(MS.MsanPoisonAllocaFn,
3521                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3522                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
3523     } else {
3524       IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
3525                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3526     }
3527   }
3528 
3529   void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
3530     if (!InsPoint)
3531       InsPoint = &I;
3532     IRBuilder<> IRB(InsPoint->getNextNode());
3533     const DataLayout &DL = F.getParent()->getDataLayout();
3534     uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
3535     Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
3536     if (I.isArrayAllocation())
3537       Len = IRB.CreateMul(Len, I.getArraySize());
3538 
3539     if (MS.CompileKernel)
3540       poisonAllocaKmsan(I, IRB, Len);
3541     else
3542       poisonAllocaUserspace(I, IRB, Len);
3543   }
3544 
3545   void visitAllocaInst(AllocaInst &I) {
3546     setShadow(&I, getCleanShadow(&I));
3547     setOrigin(&I, getCleanOrigin());
3548     // We'll get to this alloca later unless it's poisoned at the corresponding
3549     // llvm.lifetime.start.
3550     AllocaSet.insert(&I);
3551   }
3552 
3553   void visitSelectInst(SelectInst& I) {
3554     IRBuilder<> IRB(&I);
3555     // a = select b, c, d
3556     Value *B = I.getCondition();
3557     Value *C = I.getTrueValue();
3558     Value *D = I.getFalseValue();
3559     Value *Sb = getShadow(B);
3560     Value *Sc = getShadow(C);
3561     Value *Sd = getShadow(D);
3562 
3563     // Result shadow if condition shadow is 0.
3564     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
3565     Value *Sa1;
3566     if (I.getType()->isAggregateType()) {
3567       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
3568       // an extra "select". This results in much more compact IR.
3569       // Sa = select Sb, poisoned, (select b, Sc, Sd)
3570       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
3571     } else {
3572       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
3573       // If Sb (condition is poisoned), look for bits in c and d that are equal
3574       // and both unpoisoned.
3575       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
3576 
3577       // Cast arguments to shadow-compatible type.
3578       C = CreateAppToShadowCast(IRB, C);
3579       D = CreateAppToShadowCast(IRB, D);
3580 
3581       // Result shadow if condition shadow is 1.
3582       Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
3583     }
3584     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
3585     setShadow(&I, Sa);
3586     if (MS.TrackOrigins) {
3587       // Origins are always i32, so any vector conditions must be flattened.
3588       // FIXME: consider tracking vector origins for app vectors?
3589       if (B->getType()->isVectorTy()) {
3590         Type *FlatTy = getShadowTyNoVec(B->getType());
3591         B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
3592                                 ConstantInt::getNullValue(FlatTy));
3593         Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
3594                                       ConstantInt::getNullValue(FlatTy));
3595       }
3596       // a = select b, c, d
3597       // Oa = Sb ? Ob : (b ? Oc : Od)
3598       setOrigin(
3599           &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
3600                                IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
3601                                                 getOrigin(I.getFalseValue()))));
3602     }
3603   }
3604 
3605   void visitLandingPadInst(LandingPadInst &I) {
3606     // Do nothing.
3607     // See https://github.com/google/sanitizers/issues/504
3608     setShadow(&I, getCleanShadow(&I));
3609     setOrigin(&I, getCleanOrigin());
3610   }
3611 
3612   void visitCatchSwitchInst(CatchSwitchInst &I) {
3613     setShadow(&I, getCleanShadow(&I));
3614     setOrigin(&I, getCleanOrigin());
3615   }
3616 
3617   void visitFuncletPadInst(FuncletPadInst &I) {
3618     setShadow(&I, getCleanShadow(&I));
3619     setOrigin(&I, getCleanOrigin());
3620   }
3621 
3622   void visitGetElementPtrInst(GetElementPtrInst &I) {
3623     handleShadowOr(I);
3624   }
3625 
3626   void visitExtractValueInst(ExtractValueInst &I) {
3627     IRBuilder<> IRB(&I);
3628     Value *Agg = I.getAggregateOperand();
3629     LLVM_DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
3630     Value *AggShadow = getShadow(Agg);
3631     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
3632     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
3633     LLVM_DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
3634     setShadow(&I, ResShadow);
3635     setOriginForNaryOp(I);
3636   }
3637 
3638   void visitInsertValueInst(InsertValueInst &I) {
3639     IRBuilder<> IRB(&I);
3640     LLVM_DEBUG(dbgs() << "InsertValue:  " << I << "\n");
3641     Value *AggShadow = getShadow(I.getAggregateOperand());
3642     Value *InsShadow = getShadow(I.getInsertedValueOperand());
3643     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
3644     LLVM_DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
3645     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
3646     LLVM_DEBUG(dbgs() << "   Res:        " << *Res << "\n");
3647     setShadow(&I, Res);
3648     setOriginForNaryOp(I);
3649   }
3650 
3651   void dumpInst(Instruction &I) {
3652     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
3653       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
3654     } else {
3655       errs() << "ZZZ " << I.getOpcodeName() << "\n";
3656     }
3657     errs() << "QQQ " << I << "\n";
3658   }
3659 
3660   void visitResumeInst(ResumeInst &I) {
3661     LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
3662     // Nothing to do here.
3663   }
3664 
3665   void visitCleanupReturnInst(CleanupReturnInst &CRI) {
3666     LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
3667     // Nothing to do here.
3668   }
3669 
3670   void visitCatchReturnInst(CatchReturnInst &CRI) {
3671     LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
3672     // Nothing to do here.
3673   }
3674 
3675   void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB,
3676                              const DataLayout &DL, bool isOutput) {
3677     // For each assembly argument, we check its value for being initialized.
3678     // If the argument is a pointer, we assume it points to a single element
3679     // of the corresponding type (or to a 8-byte word, if the type is unsized).
3680     // Each such pointer is instrumented with a call to the runtime library.
3681     Type *OpType = Operand->getType();
3682     // Check the operand value itself.
3683     insertShadowCheck(Operand, &I);
3684     if (!OpType->isPointerTy() || !isOutput) {
3685       assert(!isOutput);
3686       return;
3687     }
3688     Type *ElType = OpType->getPointerElementType();
3689     if (!ElType->isSized())
3690       return;
3691     int Size = DL.getTypeStoreSize(ElType);
3692     Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
3693     Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
3694     IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
3695   }
3696 
3697   /// Get the number of output arguments returned by pointers.
3698   int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
3699     int NumRetOutputs = 0;
3700     int NumOutputs = 0;
3701     Type *RetTy = cast<Value>(CB)->getType();
3702     if (!RetTy->isVoidTy()) {
3703       // Register outputs are returned via the CallInst return value.
3704       auto *ST = dyn_cast<StructType>(RetTy);
3705       if (ST)
3706         NumRetOutputs = ST->getNumElements();
3707       else
3708         NumRetOutputs = 1;
3709     }
3710     InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
3711     for (size_t i = 0, n = Constraints.size(); i < n; i++) {
3712       InlineAsm::ConstraintInfo Info = Constraints[i];
3713       switch (Info.Type) {
3714       case InlineAsm::isOutput:
3715         NumOutputs++;
3716         break;
3717       default:
3718         break;
3719       }
3720     }
3721     return NumOutputs - NumRetOutputs;
3722   }
3723 
3724   void visitAsmInstruction(Instruction &I) {
3725     // Conservative inline assembly handling: check for poisoned shadow of
3726     // asm() arguments, then unpoison the result and all the memory locations
3727     // pointed to by those arguments.
3728     // An inline asm() statement in C++ contains lists of input and output
3729     // arguments used by the assembly code. These are mapped to operands of the
3730     // CallInst as follows:
3731     //  - nR register outputs ("=r) are returned by value in a single structure
3732     //  (SSA value of the CallInst);
3733     //  - nO other outputs ("=m" and others) are returned by pointer as first
3734     // nO operands of the CallInst;
3735     //  - nI inputs ("r", "m" and others) are passed to CallInst as the
3736     // remaining nI operands.
3737     // The total number of asm() arguments in the source is nR+nO+nI, and the
3738     // corresponding CallInst has nO+nI+1 operands (the last operand is the
3739     // function to be called).
3740     const DataLayout &DL = F.getParent()->getDataLayout();
3741     CallBase *CB = cast<CallBase>(&I);
3742     IRBuilder<> IRB(&I);
3743     InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue());
3744     int OutputArgs = getNumOutputArgs(IA, CB);
3745     // The last operand of a CallInst is the function itself.
3746     int NumOperands = CB->getNumOperands() - 1;
3747 
3748     // Check input arguments. Doing so before unpoisoning output arguments, so
3749     // that we won't overwrite uninit values before checking them.
3750     for (int i = OutputArgs; i < NumOperands; i++) {
3751       Value *Operand = CB->getOperand(i);
3752       instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false);
3753     }
3754     // Unpoison output arguments. This must happen before the actual InlineAsm
3755     // call, so that the shadow for memory published in the asm() statement
3756     // remains valid.
3757     for (int i = 0; i < OutputArgs; i++) {
3758       Value *Operand = CB->getOperand(i);
3759       instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true);
3760     }
3761 
3762     setShadow(&I, getCleanShadow(&I));
3763     setOrigin(&I, getCleanOrigin());
3764   }
3765 
3766   void visitInstruction(Instruction &I) {
3767     // Everything else: stop propagating and check for poisoned shadow.
3768     if (ClDumpStrictInstructions)
3769       dumpInst(I);
3770     LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
3771     for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
3772       Value *Operand = I.getOperand(i);
3773       if (Operand->getType()->isSized())
3774         insertShadowCheck(Operand, &I);
3775     }
3776     setShadow(&I, getCleanShadow(&I));
3777     setOrigin(&I, getCleanOrigin());
3778   }
3779 };
3780 
3781 /// AMD64-specific implementation of VarArgHelper.
3782 struct VarArgAMD64Helper : public VarArgHelper {
3783   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
3784   // See a comment in visitCallSite for more details.
3785   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
3786   static const unsigned AMD64FpEndOffsetSSE = 176;
3787   // If SSE is disabled, fp_offset in va_list is zero.
3788   static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
3789 
3790   unsigned AMD64FpEndOffset;
3791   Function &F;
3792   MemorySanitizer &MS;
3793   MemorySanitizerVisitor &MSV;
3794   Value *VAArgTLSCopy = nullptr;
3795   Value *VAArgTLSOriginCopy = nullptr;
3796   Value *VAArgOverflowSize = nullptr;
3797 
3798   SmallVector<CallInst*, 16> VAStartInstrumentationList;
3799 
3800   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
3801 
3802   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
3803                     MemorySanitizerVisitor &MSV)
3804       : F(F), MS(MS), MSV(MSV) {
3805     AMD64FpEndOffset = AMD64FpEndOffsetSSE;
3806     for (const auto &Attr : F.getAttributes().getFnAttributes()) {
3807       if (Attr.isStringAttribute() &&
3808           (Attr.getKindAsString() == "target-features")) {
3809         if (Attr.getValueAsString().contains("-sse"))
3810           AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
3811         break;
3812       }
3813     }
3814   }
3815 
3816   ArgKind classifyArgument(Value* arg) {
3817     // A very rough approximation of X86_64 argument classification rules.
3818     Type *T = arg->getType();
3819     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
3820       return AK_FloatingPoint;
3821     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
3822       return AK_GeneralPurpose;
3823     if (T->isPointerTy())
3824       return AK_GeneralPurpose;
3825     return AK_Memory;
3826   }
3827 
3828   // For VarArg functions, store the argument shadow in an ABI-specific format
3829   // that corresponds to va_list layout.
3830   // We do this because Clang lowers va_arg in the frontend, and this pass
3831   // only sees the low level code that deals with va_list internals.
3832   // A much easier alternative (provided that Clang emits va_arg instructions)
3833   // would have been to associate each live instance of va_list with a copy of
3834   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
3835   // order.
3836   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3837     unsigned GpOffset = 0;
3838     unsigned FpOffset = AMD64GpEndOffset;
3839     unsigned OverflowOffset = AMD64FpEndOffset;
3840     const DataLayout &DL = F.getParent()->getDataLayout();
3841     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3842          ArgIt != End; ++ArgIt) {
3843       Value *A = *ArgIt;
3844       unsigned ArgNo = CS.getArgumentNo(ArgIt);
3845       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
3846       bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
3847       if (IsByVal) {
3848         // ByVal arguments always go to the overflow area.
3849         // Fixed arguments passed through the overflow area will be stepped
3850         // over by va_start, so don't count them towards the offset.
3851         if (IsFixed)
3852           continue;
3853         assert(A->getType()->isPointerTy());
3854         Type *RealTy = A->getType()->getPointerElementType();
3855         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
3856         Value *ShadowBase = getShadowPtrForVAArgument(
3857             RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
3858         Value *OriginBase = nullptr;
3859         if (MS.TrackOrigins)
3860           OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
3861         OverflowOffset += alignTo(ArgSize, 8);
3862         if (!ShadowBase)
3863           continue;
3864         Value *ShadowPtr, *OriginPtr;
3865         std::tie(ShadowPtr, OriginPtr) =
3866             MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
3867                                    /*isStore*/ false);
3868 
3869         IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
3870                          kShadowTLSAlignment, ArgSize);
3871         if (MS.TrackOrigins)
3872           IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
3873                            kShadowTLSAlignment, ArgSize);
3874       } else {
3875         ArgKind AK = classifyArgument(A);
3876         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
3877           AK = AK_Memory;
3878         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
3879           AK = AK_Memory;
3880         Value *ShadowBase, *OriginBase = nullptr;
3881         switch (AK) {
3882           case AK_GeneralPurpose:
3883             ShadowBase =
3884                 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
3885             if (MS.TrackOrigins)
3886               OriginBase =
3887                   getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
3888             GpOffset += 8;
3889             break;
3890           case AK_FloatingPoint:
3891             ShadowBase =
3892                 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
3893             if (MS.TrackOrigins)
3894               OriginBase =
3895                   getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
3896             FpOffset += 16;
3897             break;
3898           case AK_Memory:
3899             if (IsFixed)
3900               continue;
3901             uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3902             ShadowBase =
3903                 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
3904             if (MS.TrackOrigins)
3905               OriginBase =
3906                   getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
3907             OverflowOffset += alignTo(ArgSize, 8);
3908         }
3909         // Take fixed arguments into account for GpOffset and FpOffset,
3910         // but don't actually store shadows for them.
3911         // TODO(glider): don't call get*PtrForVAArgument() for them.
3912         if (IsFixed)
3913           continue;
3914         if (!ShadowBase)
3915           continue;
3916         Value *Shadow = MSV.getShadow(A);
3917         IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment.value());
3918         if (MS.TrackOrigins) {
3919           Value *Origin = MSV.getOrigin(A);
3920           unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
3921           MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
3922                           std::max(kShadowTLSAlignment, kMinOriginAlignment));
3923         }
3924       }
3925     }
3926     Constant *OverflowSize =
3927       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
3928     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
3929   }
3930 
3931   /// Compute the shadow address for a given va_arg.
3932   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3933                                    unsigned ArgOffset, unsigned ArgSize) {
3934     // Make sure we don't overflow __msan_va_arg_tls.
3935     if (ArgOffset + ArgSize > kParamTLSSize)
3936       return nullptr;
3937     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3938     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3939     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3940                               "_msarg_va_s");
3941   }
3942 
3943   /// Compute the origin address for a given va_arg.
3944   Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
3945     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
3946     // getOriginPtrForVAArgument() is always called after
3947     // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
3948     // overflow.
3949     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3950     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
3951                               "_msarg_va_o");
3952   }
3953 
3954   void unpoisonVAListTagForInst(IntrinsicInst &I) {
3955     IRBuilder<> IRB(&I);
3956     Value *VAListTag = I.getArgOperand(0);
3957     Value *ShadowPtr, *OriginPtr;
3958     const Align Alignment = Align(8);
3959     std::tie(ShadowPtr, OriginPtr) =
3960         MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
3961                                /*isStore*/ true);
3962 
3963     // Unpoison the whole __va_list_tag.
3964     // FIXME: magic ABI constants.
3965     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3966                      /* size */ 24, Alignment, false);
3967     // We shouldn't need to zero out the origins, as they're only checked for
3968     // nonzero shadow.
3969   }
3970 
3971   void visitVAStartInst(VAStartInst &I) override {
3972     if (F.getCallingConv() == CallingConv::Win64)
3973       return;
3974     VAStartInstrumentationList.push_back(&I);
3975     unpoisonVAListTagForInst(I);
3976   }
3977 
3978   void visitVACopyInst(VACopyInst &I) override {
3979     if (F.getCallingConv() == CallingConv::Win64) return;
3980     unpoisonVAListTagForInst(I);
3981   }
3982 
3983   void finalizeInstrumentation() override {
3984     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
3985            "finalizeInstrumentation called twice");
3986     if (!VAStartInstrumentationList.empty()) {
3987       // If there is a va_start in this function, make a backup copy of
3988       // va_arg_tls somewhere in the function entry block.
3989       IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
3990       VAArgOverflowSize =
3991           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
3992       Value *CopySize =
3993         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
3994                       VAArgOverflowSize);
3995       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3996       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
3997       if (MS.TrackOrigins) {
3998         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3999         IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS,
4000                          Align(8), CopySize);
4001       }
4002     }
4003 
4004     // Instrument va_start.
4005     // Copy va_list shadow from the backup copy of the TLS contents.
4006     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4007       CallInst *OrigInst = VAStartInstrumentationList[i];
4008       IRBuilder<> IRB(OrigInst->getNextNode());
4009       Value *VAListTag = OrigInst->getArgOperand(0);
4010 
4011       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4012       Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
4013           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4014                         ConstantInt::get(MS.IntptrTy, 16)),
4015           PointerType::get(RegSaveAreaPtrTy, 0));
4016       Value *RegSaveAreaPtr =
4017           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4018       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4019       const Align Alignment = Align(16);
4020       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4021           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4022                                  Alignment, /*isStore*/ true);
4023       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4024                        AMD64FpEndOffset);
4025       if (MS.TrackOrigins)
4026         IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
4027                          Alignment, AMD64FpEndOffset);
4028       Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4029       Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
4030           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4031                         ConstantInt::get(MS.IntptrTy, 8)),
4032           PointerType::get(OverflowArgAreaPtrTy, 0));
4033       Value *OverflowArgAreaPtr =
4034           IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
4035       Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
4036       std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
4037           MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
4038                                  Alignment, /*isStore*/ true);
4039       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
4040                                              AMD64FpEndOffset);
4041       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
4042                        VAArgOverflowSize);
4043       if (MS.TrackOrigins) {
4044         SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
4045                                         AMD64FpEndOffset);
4046         IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
4047                          VAArgOverflowSize);
4048       }
4049     }
4050   }
4051 };
4052 
4053 /// MIPS64-specific implementation of VarArgHelper.
4054 struct VarArgMIPS64Helper : public VarArgHelper {
4055   Function &F;
4056   MemorySanitizer &MS;
4057   MemorySanitizerVisitor &MSV;
4058   Value *VAArgTLSCopy = nullptr;
4059   Value *VAArgSize = nullptr;
4060 
4061   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4062 
4063   VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
4064                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4065 
4066   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
4067     unsigned VAArgOffset = 0;
4068     const DataLayout &DL = F.getParent()->getDataLayout();
4069     for (CallSite::arg_iterator ArgIt = CS.arg_begin() +
4070          CS.getFunctionType()->getNumParams(), End = CS.arg_end();
4071          ArgIt != End; ++ArgIt) {
4072       Triple TargetTriple(F.getParent()->getTargetTriple());
4073       Value *A = *ArgIt;
4074       Value *Base;
4075       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4076       if (TargetTriple.getArch() == Triple::mips64) {
4077         // Adjusting the shadow for argument with size < 8 to match the placement
4078         // of bits in big endian system
4079         if (ArgSize < 8)
4080           VAArgOffset += (8 - ArgSize);
4081       }
4082       Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
4083       VAArgOffset += ArgSize;
4084       VAArgOffset = alignTo(VAArgOffset, 8);
4085       if (!Base)
4086         continue;
4087       IRB.CreateAlignedStore(MSV.getShadow(A), Base,
4088                              kShadowTLSAlignment.value());
4089     }
4090 
4091     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
4092     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4093     // a new class member i.e. it is the total size of all VarArgs.
4094     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4095   }
4096 
4097   /// Compute the shadow address for a given va_arg.
4098   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4099                                    unsigned ArgOffset, unsigned ArgSize) {
4100     // Make sure we don't overflow __msan_va_arg_tls.
4101     if (ArgOffset + ArgSize > kParamTLSSize)
4102       return nullptr;
4103     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4104     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4105     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4106                               "_msarg");
4107   }
4108 
4109   void visitVAStartInst(VAStartInst &I) override {
4110     IRBuilder<> IRB(&I);
4111     VAStartInstrumentationList.push_back(&I);
4112     Value *VAListTag = I.getArgOperand(0);
4113     Value *ShadowPtr, *OriginPtr;
4114     const Align Alignment = Align(8);
4115     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4116         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4117     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4118                      /* size */ 8, Alignment, false);
4119   }
4120 
4121   void visitVACopyInst(VACopyInst &I) override {
4122     IRBuilder<> IRB(&I);
4123     VAStartInstrumentationList.push_back(&I);
4124     Value *VAListTag = I.getArgOperand(0);
4125     Value *ShadowPtr, *OriginPtr;
4126     const Align Alignment = Align(8);
4127     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4128         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4129     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4130                      /* size */ 8, Alignment, false);
4131   }
4132 
4133   void finalizeInstrumentation() override {
4134     assert(!VAArgSize && !VAArgTLSCopy &&
4135            "finalizeInstrumentation called twice");
4136     IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
4137     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4138     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4139                                     VAArgSize);
4140 
4141     if (!VAStartInstrumentationList.empty()) {
4142       // If there is a va_start in this function, make a backup copy of
4143       // va_arg_tls somewhere in the function entry block.
4144       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4145       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4146     }
4147 
4148     // Instrument va_start.
4149     // Copy va_list shadow from the backup copy of the TLS contents.
4150     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4151       CallInst *OrigInst = VAStartInstrumentationList[i];
4152       IRBuilder<> IRB(OrigInst->getNextNode());
4153       Value *VAListTag = OrigInst->getArgOperand(0);
4154       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4155       Value *RegSaveAreaPtrPtr =
4156           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4157                              PointerType::get(RegSaveAreaPtrTy, 0));
4158       Value *RegSaveAreaPtr =
4159           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4160       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4161       const Align Alignment = Align(8);
4162       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4163           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4164                                  Alignment, /*isStore*/ true);
4165       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4166                        CopySize);
4167     }
4168   }
4169 };
4170 
4171 /// AArch64-specific implementation of VarArgHelper.
4172 struct VarArgAArch64Helper : public VarArgHelper {
4173   static const unsigned kAArch64GrArgSize = 64;
4174   static const unsigned kAArch64VrArgSize = 128;
4175 
4176   static const unsigned AArch64GrBegOffset = 0;
4177   static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
4178   // Make VR space aligned to 16 bytes.
4179   static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
4180   static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
4181                                              + kAArch64VrArgSize;
4182   static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
4183 
4184   Function &F;
4185   MemorySanitizer &MS;
4186   MemorySanitizerVisitor &MSV;
4187   Value *VAArgTLSCopy = nullptr;
4188   Value *VAArgOverflowSize = nullptr;
4189 
4190   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4191 
4192   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4193 
4194   VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
4195                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4196 
4197   ArgKind classifyArgument(Value* arg) {
4198     Type *T = arg->getType();
4199     if (T->isFPOrFPVectorTy())
4200       return AK_FloatingPoint;
4201     if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4202         || (T->isPointerTy()))
4203       return AK_GeneralPurpose;
4204     return AK_Memory;
4205   }
4206 
4207   // The instrumentation stores the argument shadow in a non ABI-specific
4208   // format because it does not know which argument is named (since Clang,
4209   // like x86_64 case, lowers the va_args in the frontend and this pass only
4210   // sees the low level code that deals with va_list internals).
4211   // The first seven GR registers are saved in the first 56 bytes of the
4212   // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
4213   // the remaining arguments.
4214   // Using constant offset within the va_arg TLS array allows fast copy
4215   // in the finalize instrumentation.
4216   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
4217     unsigned GrOffset = AArch64GrBegOffset;
4218     unsigned VrOffset = AArch64VrBegOffset;
4219     unsigned OverflowOffset = AArch64VAEndOffset;
4220 
4221     const DataLayout &DL = F.getParent()->getDataLayout();
4222     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
4223          ArgIt != End; ++ArgIt) {
4224       Value *A = *ArgIt;
4225       unsigned ArgNo = CS.getArgumentNo(ArgIt);
4226       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
4227       ArgKind AK = classifyArgument(A);
4228       if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
4229         AK = AK_Memory;
4230       if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
4231         AK = AK_Memory;
4232       Value *Base;
4233       switch (AK) {
4234         case AK_GeneralPurpose:
4235           Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
4236           GrOffset += 8;
4237           break;
4238         case AK_FloatingPoint:
4239           Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
4240           VrOffset += 16;
4241           break;
4242         case AK_Memory:
4243           // Don't count fixed arguments in the overflow area - va_start will
4244           // skip right over them.
4245           if (IsFixed)
4246             continue;
4247           uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4248           Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
4249                                            alignTo(ArgSize, 8));
4250           OverflowOffset += alignTo(ArgSize, 8);
4251           break;
4252       }
4253       // Count Gp/Vr fixed arguments to their respective offsets, but don't
4254       // bother to actually store a shadow.
4255       if (IsFixed)
4256         continue;
4257       if (!Base)
4258         continue;
4259       IRB.CreateAlignedStore(MSV.getShadow(A), Base,
4260                              kShadowTLSAlignment.value());
4261     }
4262     Constant *OverflowSize =
4263       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
4264     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4265   }
4266 
4267   /// Compute the shadow address for a given va_arg.
4268   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4269                                    unsigned ArgOffset, unsigned ArgSize) {
4270     // Make sure we don't overflow __msan_va_arg_tls.
4271     if (ArgOffset + ArgSize > kParamTLSSize)
4272       return nullptr;
4273     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4274     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4275     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4276                               "_msarg");
4277   }
4278 
4279   void visitVAStartInst(VAStartInst &I) override {
4280     IRBuilder<> IRB(&I);
4281     VAStartInstrumentationList.push_back(&I);
4282     Value *VAListTag = I.getArgOperand(0);
4283     Value *ShadowPtr, *OriginPtr;
4284     const Align Alignment = Align(8);
4285     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4286         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4287     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4288                      /* size */ 32, Alignment, false);
4289   }
4290 
4291   void visitVACopyInst(VACopyInst &I) override {
4292     IRBuilder<> IRB(&I);
4293     VAStartInstrumentationList.push_back(&I);
4294     Value *VAListTag = I.getArgOperand(0);
4295     Value *ShadowPtr, *OriginPtr;
4296     const Align Alignment = Align(8);
4297     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4298         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4299     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4300                      /* size */ 32, Alignment, false);
4301   }
4302 
4303   // Retrieve a va_list field of 'void*' size.
4304   Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4305     Value *SaveAreaPtrPtr =
4306       IRB.CreateIntToPtr(
4307         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4308                       ConstantInt::get(MS.IntptrTy, offset)),
4309         Type::getInt64PtrTy(*MS.C));
4310     return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
4311   }
4312 
4313   // Retrieve a va_list field of 'int' size.
4314   Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4315     Value *SaveAreaPtr =
4316       IRB.CreateIntToPtr(
4317         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4318                       ConstantInt::get(MS.IntptrTy, offset)),
4319         Type::getInt32PtrTy(*MS.C));
4320     Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
4321     return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
4322   }
4323 
4324   void finalizeInstrumentation() override {
4325     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
4326            "finalizeInstrumentation called twice");
4327     if (!VAStartInstrumentationList.empty()) {
4328       // If there is a va_start in this function, make a backup copy of
4329       // va_arg_tls somewhere in the function entry block.
4330       IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
4331       VAArgOverflowSize =
4332           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4333       Value *CopySize =
4334         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
4335                       VAArgOverflowSize);
4336       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4337       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4338     }
4339 
4340     Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
4341     Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
4342 
4343     // Instrument va_start, copy va_list shadow from the backup copy of
4344     // the TLS contents.
4345     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4346       CallInst *OrigInst = VAStartInstrumentationList[i];
4347       IRBuilder<> IRB(OrigInst->getNextNode());
4348 
4349       Value *VAListTag = OrigInst->getArgOperand(0);
4350 
4351       // The variadic ABI for AArch64 creates two areas to save the incoming
4352       // argument registers (one for 64-bit general register xn-x7 and another
4353       // for 128-bit FP/SIMD vn-v7).
4354       // We need then to propagate the shadow arguments on both regions
4355       // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
4356       // The remaning arguments are saved on shadow for 'va::stack'.
4357       // One caveat is it requires only to propagate the non-named arguments,
4358       // however on the call site instrumentation 'all' the arguments are
4359       // saved. So to copy the shadow values from the va_arg TLS array
4360       // we need to adjust the offset for both GR and VR fields based on
4361       // the __{gr,vr}_offs value (since they are stores based on incoming
4362       // named arguments).
4363 
4364       // Read the stack pointer from the va_list.
4365       Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
4366 
4367       // Read both the __gr_top and __gr_off and add them up.
4368       Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
4369       Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
4370 
4371       Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
4372 
4373       // Read both the __vr_top and __vr_off and add them up.
4374       Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
4375       Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
4376 
4377       Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
4378 
4379       // It does not know how many named arguments is being used and, on the
4380       // callsite all the arguments were saved.  Since __gr_off is defined as
4381       // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
4382       // argument by ignoring the bytes of shadow from named arguments.
4383       Value *GrRegSaveAreaShadowPtrOff =
4384         IRB.CreateAdd(GrArgSize, GrOffSaveArea);
4385 
4386       Value *GrRegSaveAreaShadowPtr =
4387           MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4388                                  Align(8), /*isStore*/ true)
4389               .first;
4390 
4391       Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4392                                               GrRegSaveAreaShadowPtrOff);
4393       Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
4394 
4395       IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8),
4396                        GrCopySize);
4397 
4398       // Again, but for FP/SIMD values.
4399       Value *VrRegSaveAreaShadowPtrOff =
4400           IRB.CreateAdd(VrArgSize, VrOffSaveArea);
4401 
4402       Value *VrRegSaveAreaShadowPtr =
4403           MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4404                                  Align(8), /*isStore*/ true)
4405               .first;
4406 
4407       Value *VrSrcPtr = IRB.CreateInBoundsGEP(
4408         IRB.getInt8Ty(),
4409         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4410                               IRB.getInt32(AArch64VrBegOffset)),
4411         VrRegSaveAreaShadowPtrOff);
4412       Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
4413 
4414       IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8),
4415                        VrCopySize);
4416 
4417       // And finally for remaining arguments.
4418       Value *StackSaveAreaShadowPtr =
4419           MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
4420                                  Align(16), /*isStore*/ true)
4421               .first;
4422 
4423       Value *StackSrcPtr =
4424         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4425                               IRB.getInt32(AArch64VAEndOffset));
4426 
4427       IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr,
4428                        Align(16), VAArgOverflowSize);
4429     }
4430   }
4431 };
4432 
4433 /// PowerPC64-specific implementation of VarArgHelper.
4434 struct VarArgPowerPC64Helper : public VarArgHelper {
4435   Function &F;
4436   MemorySanitizer &MS;
4437   MemorySanitizerVisitor &MSV;
4438   Value *VAArgTLSCopy = nullptr;
4439   Value *VAArgSize = nullptr;
4440 
4441   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4442 
4443   VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
4444                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4445 
4446   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
4447     // For PowerPC, we need to deal with alignment of stack arguments -
4448     // they are mostly aligned to 8 bytes, but vectors and i128 arrays
4449     // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
4450     // and QPX vectors are aligned to 32 bytes.  For that reason, we
4451     // compute current offset from stack pointer (which is always properly
4452     // aligned), and offset for the first vararg, then subtract them.
4453     unsigned VAArgBase;
4454     Triple TargetTriple(F.getParent()->getTargetTriple());
4455     // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
4456     // and 32 bytes for ABIv2.  This is usually determined by target
4457     // endianness, but in theory could be overriden by function attribute.
4458     // For simplicity, we ignore it here (it'd only matter for QPX vectors).
4459     if (TargetTriple.getArch() == Triple::ppc64)
4460       VAArgBase = 48;
4461     else
4462       VAArgBase = 32;
4463     unsigned VAArgOffset = VAArgBase;
4464     const DataLayout &DL = F.getParent()->getDataLayout();
4465     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
4466          ArgIt != End; ++ArgIt) {
4467       Value *A = *ArgIt;
4468       unsigned ArgNo = CS.getArgumentNo(ArgIt);
4469       bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
4470       bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
4471       if (IsByVal) {
4472         assert(A->getType()->isPointerTy());
4473         Type *RealTy = A->getType()->getPointerElementType();
4474         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4475         uint64_t ArgAlign = CS.getParamAlignment(ArgNo);
4476         if (ArgAlign < 8)
4477           ArgAlign = 8;
4478         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4479         if (!IsFixed) {
4480           Value *Base = getShadowPtrForVAArgument(
4481               RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
4482           if (Base) {
4483             Value *AShadowPtr, *AOriginPtr;
4484             std::tie(AShadowPtr, AOriginPtr) =
4485                 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
4486                                        kShadowTLSAlignment, /*isStore*/ false);
4487 
4488             IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
4489                              kShadowTLSAlignment, ArgSize);
4490           }
4491         }
4492         VAArgOffset += alignTo(ArgSize, 8);
4493       } else {
4494         Value *Base;
4495         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4496         uint64_t ArgAlign = 8;
4497         if (A->getType()->isArrayTy()) {
4498           // Arrays are aligned to element size, except for long double
4499           // arrays, which are aligned to 8 bytes.
4500           Type *ElementTy = A->getType()->getArrayElementType();
4501           if (!ElementTy->isPPC_FP128Ty())
4502             ArgAlign = DL.getTypeAllocSize(ElementTy);
4503         } else if (A->getType()->isVectorTy()) {
4504           // Vectors are naturally aligned.
4505           ArgAlign = DL.getTypeAllocSize(A->getType());
4506         }
4507         if (ArgAlign < 8)
4508           ArgAlign = 8;
4509         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4510         if (DL.isBigEndian()) {
4511           // Adjusting the shadow for argument with size < 8 to match the placement
4512           // of bits in big endian system
4513           if (ArgSize < 8)
4514             VAArgOffset += (8 - ArgSize);
4515         }
4516         if (!IsFixed) {
4517           Base = getShadowPtrForVAArgument(A->getType(), IRB,
4518                                            VAArgOffset - VAArgBase, ArgSize);
4519           if (Base)
4520             IRB.CreateAlignedStore(MSV.getShadow(A), Base,
4521                                    kShadowTLSAlignment.value());
4522         }
4523         VAArgOffset += ArgSize;
4524         VAArgOffset = alignTo(VAArgOffset, 8);
4525       }
4526       if (IsFixed)
4527         VAArgBase = VAArgOffset;
4528     }
4529 
4530     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
4531                                                 VAArgOffset - VAArgBase);
4532     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4533     // a new class member i.e. it is the total size of all VarArgs.
4534     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4535   }
4536 
4537   /// Compute the shadow address for a given va_arg.
4538   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4539                                    unsigned ArgOffset, unsigned ArgSize) {
4540     // Make sure we don't overflow __msan_va_arg_tls.
4541     if (ArgOffset + ArgSize > kParamTLSSize)
4542       return nullptr;
4543     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4544     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4545     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4546                               "_msarg");
4547   }
4548 
4549   void visitVAStartInst(VAStartInst &I) override {
4550     IRBuilder<> IRB(&I);
4551     VAStartInstrumentationList.push_back(&I);
4552     Value *VAListTag = I.getArgOperand(0);
4553     Value *ShadowPtr, *OriginPtr;
4554     const Align Alignment = Align(8);
4555     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4556         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4557     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4558                      /* size */ 8, Alignment, false);
4559   }
4560 
4561   void visitVACopyInst(VACopyInst &I) override {
4562     IRBuilder<> IRB(&I);
4563     Value *VAListTag = I.getArgOperand(0);
4564     Value *ShadowPtr, *OriginPtr;
4565     const Align Alignment = Align(8);
4566     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4567         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4568     // Unpoison the whole __va_list_tag.
4569     // FIXME: magic ABI constants.
4570     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4571                      /* size */ 8, Alignment, false);
4572   }
4573 
4574   void finalizeInstrumentation() override {
4575     assert(!VAArgSize && !VAArgTLSCopy &&
4576            "finalizeInstrumentation called twice");
4577     IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
4578     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4579     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4580                                     VAArgSize);
4581 
4582     if (!VAStartInstrumentationList.empty()) {
4583       // If there is a va_start in this function, make a backup copy of
4584       // va_arg_tls somewhere in the function entry block.
4585       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4586       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4587     }
4588 
4589     // Instrument va_start.
4590     // Copy va_list shadow from the backup copy of the TLS contents.
4591     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4592       CallInst *OrigInst = VAStartInstrumentationList[i];
4593       IRBuilder<> IRB(OrigInst->getNextNode());
4594       Value *VAListTag = OrigInst->getArgOperand(0);
4595       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4596       Value *RegSaveAreaPtrPtr =
4597           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4598                              PointerType::get(RegSaveAreaPtrTy, 0));
4599       Value *RegSaveAreaPtr =
4600           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4601       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4602       const Align Alignment = Align(8);
4603       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4604           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4605                                  Alignment, /*isStore*/ true);
4606       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4607                        CopySize);
4608     }
4609   }
4610 };
4611 
4612 /// A no-op implementation of VarArgHelper.
4613 struct VarArgNoOpHelper : public VarArgHelper {
4614   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
4615                    MemorySanitizerVisitor &MSV) {}
4616 
4617   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
4618 
4619   void visitVAStartInst(VAStartInst &I) override {}
4620 
4621   void visitVACopyInst(VACopyInst &I) override {}
4622 
4623   void finalizeInstrumentation() override {}
4624 };
4625 
4626 } // end anonymous namespace
4627 
4628 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
4629                                         MemorySanitizerVisitor &Visitor) {
4630   // VarArg handling is only implemented on AMD64. False positives are possible
4631   // on other platforms.
4632   Triple TargetTriple(Func.getParent()->getTargetTriple());
4633   if (TargetTriple.getArch() == Triple::x86_64)
4634     return new VarArgAMD64Helper(Func, Msan, Visitor);
4635   else if (TargetTriple.isMIPS64())
4636     return new VarArgMIPS64Helper(Func, Msan, Visitor);
4637   else if (TargetTriple.getArch() == Triple::aarch64)
4638     return new VarArgAArch64Helper(Func, Msan, Visitor);
4639   else if (TargetTriple.getArch() == Triple::ppc64 ||
4640            TargetTriple.getArch() == Triple::ppc64le)
4641     return new VarArgPowerPC64Helper(Func, Msan, Visitor);
4642   else
4643     return new VarArgNoOpHelper(Func, Msan, Visitor);
4644 }
4645 
4646 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
4647   if (!CompileKernel && F.getName() == kMsanModuleCtorName)
4648     return false;
4649 
4650   MemorySanitizerVisitor Visitor(F, *this, TLI);
4651 
4652   // Clear out readonly/readnone attributes.
4653   AttrBuilder B;
4654   B.addAttribute(Attribute::ReadOnly)
4655       .addAttribute(Attribute::ReadNone)
4656       .addAttribute(Attribute::WriteOnly)
4657       .addAttribute(Attribute::ArgMemOnly)
4658       .addAttribute(Attribute::Speculatable);
4659   F.removeAttributes(AttributeList::FunctionIndex, B);
4660 
4661   return Visitor.runOnFunction();
4662 }
4663