1 //===- MemProfiler.cpp - memory allocation and access profiler ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of MemProfiler. Memory accesses are instrumented 10 // to increment the access count held in a shadow memory location, or 11 // alternatively to call into the runtime. Memory intrinsic calls (memmove, 12 // memcpy, memset) are changed to call the memory profiling runtime version 13 // instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Pass.h" 35 #include "llvm/ProfileData/InstrProf.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/ModuleUtils.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "memprof" 44 45 constexpr int LLVM_MEM_PROFILER_VERSION = 1; 46 47 // Size of memory mapped to a single shadow location. 48 constexpr uint64_t DefaultShadowGranularity = 64; 49 50 // Scale from granularity down to shadow size. 51 constexpr uint64_t DefaultShadowScale = 3; 52 53 constexpr char MemProfModuleCtorName[] = "memprof.module_ctor"; 54 constexpr uint64_t MemProfCtorAndDtorPriority = 1; 55 // On Emscripten, the system needs more than one priorities for constructors. 56 constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority = 50; 57 constexpr char MemProfInitName[] = "__memprof_init"; 58 constexpr char MemProfVersionCheckNamePrefix[] = 59 "__memprof_version_mismatch_check_v"; 60 61 constexpr char MemProfShadowMemoryDynamicAddress[] = 62 "__memprof_shadow_memory_dynamic_address"; 63 64 constexpr char MemProfFilenameVar[] = "__memprof_profile_filename"; 65 66 // Command-line flags. 67 68 static cl::opt<bool> ClInsertVersionCheck( 69 "memprof-guard-against-version-mismatch", 70 cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden, 71 cl::init(true)); 72 73 // This flag may need to be replaced with -f[no-]memprof-reads. 74 static cl::opt<bool> ClInstrumentReads("memprof-instrument-reads", 75 cl::desc("instrument read instructions"), 76 cl::Hidden, cl::init(true)); 77 78 static cl::opt<bool> 79 ClInstrumentWrites("memprof-instrument-writes", 80 cl::desc("instrument write instructions"), cl::Hidden, 81 cl::init(true)); 82 83 static cl::opt<bool> ClInstrumentAtomics( 84 "memprof-instrument-atomics", 85 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 86 cl::init(true)); 87 88 static cl::opt<bool> ClUseCalls( 89 "memprof-use-callbacks", 90 cl::desc("Use callbacks instead of inline instrumentation sequences."), 91 cl::Hidden, cl::init(false)); 92 93 static cl::opt<std::string> 94 ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix", 95 cl::desc("Prefix for memory access callbacks"), 96 cl::Hidden, cl::init("__memprof_")); 97 98 // These flags allow to change the shadow mapping. 99 // The shadow mapping looks like 100 // Shadow = ((Mem & mask) >> scale) + offset 101 102 static cl::opt<int> ClMappingScale("memprof-mapping-scale", 103 cl::desc("scale of memprof shadow mapping"), 104 cl::Hidden, cl::init(DefaultShadowScale)); 105 106 static cl::opt<int> 107 ClMappingGranularity("memprof-mapping-granularity", 108 cl::desc("granularity of memprof shadow mapping"), 109 cl::Hidden, cl::init(DefaultShadowGranularity)); 110 111 static cl::opt<bool> ClStack("memprof-instrument-stack", 112 cl::desc("Instrument scalar stack variables"), 113 cl::Hidden, cl::init(false)); 114 115 // Debug flags. 116 117 static cl::opt<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden, 118 cl::init(0)); 119 120 static cl::opt<std::string> ClDebugFunc("memprof-debug-func", cl::Hidden, 121 cl::desc("Debug func")); 122 123 static cl::opt<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"), 124 cl::Hidden, cl::init(-1)); 125 126 static cl::opt<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"), 127 cl::Hidden, cl::init(-1)); 128 129 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 130 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 131 STATISTIC(NumSkippedStackReads, "Number of non-instrumented stack reads"); 132 STATISTIC(NumSkippedStackWrites, "Number of non-instrumented stack writes"); 133 134 namespace { 135 136 /// This struct defines the shadow mapping using the rule: 137 /// shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset. 138 struct ShadowMapping { 139 ShadowMapping() { 140 Scale = ClMappingScale; 141 Granularity = ClMappingGranularity; 142 Mask = ~(Granularity - 1); 143 } 144 145 int Scale; 146 int Granularity; 147 uint64_t Mask; // Computed as ~(Granularity-1) 148 }; 149 150 static uint64_t getCtorAndDtorPriority(Triple &TargetTriple) { 151 return TargetTriple.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority 152 : MemProfCtorAndDtorPriority; 153 } 154 155 struct InterestingMemoryAccess { 156 Value *Addr = nullptr; 157 bool IsWrite; 158 Type *AccessTy; 159 uint64_t TypeSize; 160 Value *MaybeMask = nullptr; 161 }; 162 163 /// Instrument the code in module to profile memory accesses. 164 class MemProfiler { 165 public: 166 MemProfiler(Module &M) { 167 C = &(M.getContext()); 168 LongSize = M.getDataLayout().getPointerSizeInBits(); 169 IntptrTy = Type::getIntNTy(*C, LongSize); 170 } 171 172 /// If it is an interesting memory access, populate information 173 /// about the access and return a InterestingMemoryAccess struct. 174 /// Otherwise return std::nullopt. 175 std::optional<InterestingMemoryAccess> 176 isInterestingMemoryAccess(Instruction *I) const; 177 178 void instrumentMop(Instruction *I, const DataLayout &DL, 179 InterestingMemoryAccess &Access); 180 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 181 Value *Addr, uint32_t TypeSize, bool IsWrite); 182 void instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask, 183 Instruction *I, Value *Addr, Type *AccessTy, 184 bool IsWrite); 185 void instrumentMemIntrinsic(MemIntrinsic *MI); 186 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 187 bool instrumentFunction(Function &F); 188 bool maybeInsertMemProfInitAtFunctionEntry(Function &F); 189 bool insertDynamicShadowAtFunctionEntry(Function &F); 190 191 private: 192 void initializeCallbacks(Module &M); 193 194 LLVMContext *C; 195 int LongSize; 196 Type *IntptrTy; 197 ShadowMapping Mapping; 198 199 // These arrays is indexed by AccessIsWrite 200 FunctionCallee MemProfMemoryAccessCallback[2]; 201 FunctionCallee MemProfMemoryAccessCallbackSized[2]; 202 203 FunctionCallee MemProfMemmove, MemProfMemcpy, MemProfMemset; 204 Value *DynamicShadowOffset = nullptr; 205 }; 206 207 class ModuleMemProfiler { 208 public: 209 ModuleMemProfiler(Module &M) { TargetTriple = Triple(M.getTargetTriple()); } 210 211 bool instrumentModule(Module &); 212 213 private: 214 Triple TargetTriple; 215 ShadowMapping Mapping; 216 Function *MemProfCtorFunction = nullptr; 217 }; 218 219 } // end anonymous namespace 220 221 MemProfilerPass::MemProfilerPass() = default; 222 223 PreservedAnalyses MemProfilerPass::run(Function &F, 224 AnalysisManager<Function> &AM) { 225 Module &M = *F.getParent(); 226 MemProfiler Profiler(M); 227 if (Profiler.instrumentFunction(F)) 228 return PreservedAnalyses::none(); 229 return PreservedAnalyses::all(); 230 } 231 232 ModuleMemProfilerPass::ModuleMemProfilerPass() = default; 233 234 PreservedAnalyses ModuleMemProfilerPass::run(Module &M, 235 AnalysisManager<Module> &AM) { 236 ModuleMemProfiler Profiler(M); 237 if (Profiler.instrumentModule(M)) 238 return PreservedAnalyses::none(); 239 return PreservedAnalyses::all(); 240 } 241 242 Value *MemProfiler::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 243 // (Shadow & mask) >> scale 244 Shadow = IRB.CreateAnd(Shadow, Mapping.Mask); 245 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 246 // (Shadow >> scale) | offset 247 assert(DynamicShadowOffset); 248 return IRB.CreateAdd(Shadow, DynamicShadowOffset); 249 } 250 251 // Instrument memset/memmove/memcpy 252 void MemProfiler::instrumentMemIntrinsic(MemIntrinsic *MI) { 253 IRBuilder<> IRB(MI); 254 if (isa<MemTransferInst>(MI)) { 255 IRB.CreateCall( 256 isa<MemMoveInst>(MI) ? MemProfMemmove : MemProfMemcpy, 257 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 258 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 259 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 260 } else if (isa<MemSetInst>(MI)) { 261 IRB.CreateCall( 262 MemProfMemset, 263 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 264 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 265 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 266 } 267 MI->eraseFromParent(); 268 } 269 270 std::optional<InterestingMemoryAccess> 271 MemProfiler::isInterestingMemoryAccess(Instruction *I) const { 272 // Do not instrument the load fetching the dynamic shadow address. 273 if (DynamicShadowOffset == I) 274 return std::nullopt; 275 276 InterestingMemoryAccess Access; 277 278 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 279 if (!ClInstrumentReads) 280 return std::nullopt; 281 Access.IsWrite = false; 282 Access.AccessTy = LI->getType(); 283 Access.Addr = LI->getPointerOperand(); 284 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 285 if (!ClInstrumentWrites) 286 return std::nullopt; 287 Access.IsWrite = true; 288 Access.AccessTy = SI->getValueOperand()->getType(); 289 Access.Addr = SI->getPointerOperand(); 290 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 291 if (!ClInstrumentAtomics) 292 return std::nullopt; 293 Access.IsWrite = true; 294 Access.AccessTy = RMW->getValOperand()->getType(); 295 Access.Addr = RMW->getPointerOperand(); 296 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 297 if (!ClInstrumentAtomics) 298 return std::nullopt; 299 Access.IsWrite = true; 300 Access.AccessTy = XCHG->getCompareOperand()->getType(); 301 Access.Addr = XCHG->getPointerOperand(); 302 } else if (auto *CI = dyn_cast<CallInst>(I)) { 303 auto *F = CI->getCalledFunction(); 304 if (F && (F->getIntrinsicID() == Intrinsic::masked_load || 305 F->getIntrinsicID() == Intrinsic::masked_store)) { 306 unsigned OpOffset = 0; 307 if (F->getIntrinsicID() == Intrinsic::masked_store) { 308 if (!ClInstrumentWrites) 309 return std::nullopt; 310 // Masked store has an initial operand for the value. 311 OpOffset = 1; 312 Access.AccessTy = CI->getArgOperand(0)->getType(); 313 Access.IsWrite = true; 314 } else { 315 if (!ClInstrumentReads) 316 return std::nullopt; 317 Access.AccessTy = CI->getType(); 318 Access.IsWrite = false; 319 } 320 321 auto *BasePtr = CI->getOperand(0 + OpOffset); 322 Access.MaybeMask = CI->getOperand(2 + OpOffset); 323 Access.Addr = BasePtr; 324 } 325 } 326 327 if (!Access.Addr) 328 return std::nullopt; 329 330 // Do not instrument accesses from different address spaces; we cannot deal 331 // with them. 332 Type *PtrTy = cast<PointerType>(Access.Addr->getType()->getScalarType()); 333 if (PtrTy->getPointerAddressSpace() != 0) 334 return std::nullopt; 335 336 // Ignore swifterror addresses. 337 // swifterror memory addresses are mem2reg promoted by instruction 338 // selection. As such they cannot have regular uses like an instrumentation 339 // function and it makes no sense to track them as memory. 340 if (Access.Addr->isSwiftError()) 341 return std::nullopt; 342 343 // Peel off GEPs and BitCasts. 344 auto *Addr = Access.Addr->stripInBoundsOffsets(); 345 346 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 347 // Do not instrument PGO counter updates. 348 if (GV->hasSection()) { 349 StringRef SectionName = GV->getSection(); 350 // Check if the global is in the PGO counters section. 351 auto OF = Triple(I->getModule()->getTargetTriple()).getObjectFormat(); 352 if (SectionName.endswith( 353 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false))) 354 return std::nullopt; 355 } 356 357 // Do not instrument accesses to LLVM internal variables. 358 if (GV->getName().startswith("__llvm")) 359 return std::nullopt; 360 } 361 362 const DataLayout &DL = I->getModule()->getDataLayout(); 363 Access.TypeSize = DL.getTypeStoreSizeInBits(Access.AccessTy); 364 return Access; 365 } 366 367 void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask, 368 Instruction *I, Value *Addr, 369 Type *AccessTy, bool IsWrite) { 370 auto *VTy = cast<FixedVectorType>(AccessTy); 371 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 372 unsigned Num = VTy->getNumElements(); 373 auto *Zero = ConstantInt::get(IntptrTy, 0); 374 for (unsigned Idx = 0; Idx < Num; ++Idx) { 375 Value *InstrumentedAddress = nullptr; 376 Instruction *InsertBefore = I; 377 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 378 // dyn_cast as we might get UndefValue 379 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 380 if (Masked->isZero()) 381 // Mask is constant false, so no instrumentation needed. 382 continue; 383 // If we have a true or undef value, fall through to instrumentAddress. 384 // with InsertBefore == I 385 } 386 } else { 387 IRBuilder<> IRB(I); 388 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 389 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 390 InsertBefore = ThenTerm; 391 } 392 393 IRBuilder<> IRB(InsertBefore); 394 InstrumentedAddress = 395 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 396 instrumentAddress(I, InsertBefore, InstrumentedAddress, ElemTypeSize, 397 IsWrite); 398 } 399 } 400 401 void MemProfiler::instrumentMop(Instruction *I, const DataLayout &DL, 402 InterestingMemoryAccess &Access) { 403 // Skip instrumentation of stack accesses unless requested. 404 if (!ClStack && isa<AllocaInst>(getUnderlyingObject(Access.Addr))) { 405 if (Access.IsWrite) 406 ++NumSkippedStackWrites; 407 else 408 ++NumSkippedStackReads; 409 return; 410 } 411 412 if (Access.IsWrite) 413 NumInstrumentedWrites++; 414 else 415 NumInstrumentedReads++; 416 417 if (Access.MaybeMask) { 418 instrumentMaskedLoadOrStore(DL, Access.MaybeMask, I, Access.Addr, 419 Access.AccessTy, Access.IsWrite); 420 } else { 421 // Since the access counts will be accumulated across the entire allocation, 422 // we only update the shadow access count for the first location and thus 423 // don't need to worry about alignment and type size. 424 instrumentAddress(I, I, Access.Addr, Access.TypeSize, Access.IsWrite); 425 } 426 } 427 428 void MemProfiler::instrumentAddress(Instruction *OrigIns, 429 Instruction *InsertBefore, Value *Addr, 430 uint32_t TypeSize, bool IsWrite) { 431 IRBuilder<> IRB(InsertBefore); 432 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 433 434 if (ClUseCalls) { 435 IRB.CreateCall(MemProfMemoryAccessCallback[IsWrite], AddrLong); 436 return; 437 } 438 439 // Create an inline sequence to compute shadow location, and increment the 440 // value by one. 441 Type *ShadowTy = Type::getInt64Ty(*C); 442 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 443 Value *ShadowPtr = memToShadow(AddrLong, IRB); 444 Value *ShadowAddr = IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy); 445 Value *ShadowValue = IRB.CreateLoad(ShadowTy, ShadowAddr); 446 Value *Inc = ConstantInt::get(Type::getInt64Ty(*C), 1); 447 ShadowValue = IRB.CreateAdd(ShadowValue, Inc); 448 IRB.CreateStore(ShadowValue, ShadowAddr); 449 } 450 451 // Create the variable for the profile file name. 452 void createProfileFileNameVar(Module &M) { 453 const MDString *MemProfFilename = 454 dyn_cast_or_null<MDString>(M.getModuleFlag("MemProfProfileFilename")); 455 if (!MemProfFilename) 456 return; 457 assert(!MemProfFilename->getString().empty() && 458 "Unexpected MemProfProfileFilename metadata with empty string"); 459 Constant *ProfileNameConst = ConstantDataArray::getString( 460 M.getContext(), MemProfFilename->getString(), true); 461 GlobalVariable *ProfileNameVar = new GlobalVariable( 462 M, ProfileNameConst->getType(), /*isConstant=*/true, 463 GlobalValue::WeakAnyLinkage, ProfileNameConst, MemProfFilenameVar); 464 Triple TT(M.getTargetTriple()); 465 if (TT.supportsCOMDAT()) { 466 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); 467 ProfileNameVar->setComdat(M.getOrInsertComdat(MemProfFilenameVar)); 468 } 469 } 470 471 bool ModuleMemProfiler::instrumentModule(Module &M) { 472 // Create a module constructor. 473 std::string MemProfVersion = std::to_string(LLVM_MEM_PROFILER_VERSION); 474 std::string VersionCheckName = 475 ClInsertVersionCheck ? (MemProfVersionCheckNamePrefix + MemProfVersion) 476 : ""; 477 std::tie(MemProfCtorFunction, std::ignore) = 478 createSanitizerCtorAndInitFunctions(M, MemProfModuleCtorName, 479 MemProfInitName, /*InitArgTypes=*/{}, 480 /*InitArgs=*/{}, VersionCheckName); 481 482 const uint64_t Priority = getCtorAndDtorPriority(TargetTriple); 483 appendToGlobalCtors(M, MemProfCtorFunction, Priority); 484 485 createProfileFileNameVar(M); 486 487 return true; 488 } 489 490 void MemProfiler::initializeCallbacks(Module &M) { 491 IRBuilder<> IRB(*C); 492 493 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 494 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 495 496 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 497 SmallVector<Type *, 2> Args1{1, IntptrTy}; 498 MemProfMemoryAccessCallbackSized[AccessIsWrite] = 499 M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr + "N", 500 FunctionType::get(IRB.getVoidTy(), Args2, false)); 501 502 MemProfMemoryAccessCallback[AccessIsWrite] = 503 M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr, 504 FunctionType::get(IRB.getVoidTy(), Args1, false)); 505 } 506 MemProfMemmove = M.getOrInsertFunction( 507 ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(), 508 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 509 MemProfMemcpy = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memcpy", 510 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 511 IRB.getInt8PtrTy(), IntptrTy); 512 MemProfMemset = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memset", 513 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 514 IRB.getInt32Ty(), IntptrTy); 515 } 516 517 bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function &F) { 518 // For each NSObject descendant having a +load method, this method is invoked 519 // by the ObjC runtime before any of the static constructors is called. 520 // Therefore we need to instrument such methods with a call to __memprof_init 521 // at the beginning in order to initialize our runtime before any access to 522 // the shadow memory. 523 // We cannot just ignore these methods, because they may call other 524 // instrumented functions. 525 if (F.getName().find(" load]") != std::string::npos) { 526 FunctionCallee MemProfInitFunction = 527 declareSanitizerInitFunction(*F.getParent(), MemProfInitName, {}); 528 IRBuilder<> IRB(&F.front(), F.front().begin()); 529 IRB.CreateCall(MemProfInitFunction, {}); 530 return true; 531 } 532 return false; 533 } 534 535 bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function &F) { 536 IRBuilder<> IRB(&F.front().front()); 537 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 538 MemProfShadowMemoryDynamicAddress, IntptrTy); 539 if (F.getParent()->getPICLevel() == PICLevel::NotPIC) 540 cast<GlobalVariable>(GlobalDynamicAddress)->setDSOLocal(true); 541 DynamicShadowOffset = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 542 return true; 543 } 544 545 bool MemProfiler::instrumentFunction(Function &F) { 546 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) 547 return false; 548 if (ClDebugFunc == F.getName()) 549 return false; 550 if (F.getName().startswith("__memprof_")) 551 return false; 552 553 bool FunctionModified = false; 554 555 // If needed, insert __memprof_init. 556 // This function needs to be called even if the function body is not 557 // instrumented. 558 if (maybeInsertMemProfInitAtFunctionEntry(F)) 559 FunctionModified = true; 560 561 LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F << "\n"); 562 563 initializeCallbacks(*F.getParent()); 564 565 SmallVector<Instruction *, 16> ToInstrument; 566 567 // Fill the set of memory operations to instrument. 568 for (auto &BB : F) { 569 for (auto &Inst : BB) { 570 if (isInterestingMemoryAccess(&Inst) || isa<MemIntrinsic>(Inst)) 571 ToInstrument.push_back(&Inst); 572 } 573 } 574 575 if (ToInstrument.empty()) { 576 LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified 577 << " " << F << "\n"); 578 579 return FunctionModified; 580 } 581 582 FunctionModified |= insertDynamicShadowAtFunctionEntry(F); 583 584 int NumInstrumented = 0; 585 for (auto *Inst : ToInstrument) { 586 if (ClDebugMin < 0 || ClDebugMax < 0 || 587 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 588 std::optional<InterestingMemoryAccess> Access = 589 isInterestingMemoryAccess(Inst); 590 if (Access) 591 instrumentMop(Inst, F.getParent()->getDataLayout(), *Access); 592 else 593 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 594 } 595 NumInstrumented++; 596 } 597 598 if (NumInstrumented > 0) 599 FunctionModified = true; 600 601 LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified << " " 602 << F << "\n"); 603 604 return FunctionModified; 605 } 606