xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/MemProfiler.cpp (revision 47ef2a131091508e049ab10cad7f91a3c1342cd9)
1 //===- MemProfiler.cpp - memory allocation and access profiler ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of MemProfiler. Memory accesses are instrumented
10 // to increment the access count held in a shadow memory location, or
11 // alternatively to call into the runtime. Memory intrinsic calls (memmove,
12 // memcpy, memset) are changed to call the memory profiling runtime version
13 // instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Instrumentation/MemProfiler.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/MemoryBuiltins.h"
22 #include "llvm/Analysis/MemoryProfileInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DiagnosticInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/ProfileData/InstrProf.h"
36 #include "llvm/ProfileData/InstrProfReader.h"
37 #include "llvm/Support/BLAKE3.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/HashBuilder.h"
41 #include "llvm/Support/VirtualFileSystem.h"
42 #include "llvm/TargetParser/Triple.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
45 #include <map>
46 #include <set>
47 
48 using namespace llvm;
49 using namespace llvm::memprof;
50 
51 #define DEBUG_TYPE "memprof"
52 
53 namespace llvm {
54 extern cl::opt<bool> PGOWarnMissing;
55 extern cl::opt<bool> NoPGOWarnMismatch;
56 extern cl::opt<bool> NoPGOWarnMismatchComdatWeak;
57 } // namespace llvm
58 
59 constexpr int LLVM_MEM_PROFILER_VERSION = 1;
60 
61 // Size of memory mapped to a single shadow location.
62 constexpr uint64_t DefaultMemGranularity = 64;
63 
64 // Scale from granularity down to shadow size.
65 constexpr uint64_t DefaultShadowScale = 3;
66 
67 constexpr char MemProfModuleCtorName[] = "memprof.module_ctor";
68 constexpr uint64_t MemProfCtorAndDtorPriority = 1;
69 // On Emscripten, the system needs more than one priorities for constructors.
70 constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority = 50;
71 constexpr char MemProfInitName[] = "__memprof_init";
72 constexpr char MemProfVersionCheckNamePrefix[] =
73     "__memprof_version_mismatch_check_v";
74 
75 constexpr char MemProfShadowMemoryDynamicAddress[] =
76     "__memprof_shadow_memory_dynamic_address";
77 
78 constexpr char MemProfFilenameVar[] = "__memprof_profile_filename";
79 
80 constexpr char MemProfHistogramFlagVar[] = "__memprof_histogram";
81 
82 // Command-line flags.
83 
84 static cl::opt<bool> ClInsertVersionCheck(
85     "memprof-guard-against-version-mismatch",
86     cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
87     cl::init(true));
88 
89 // This flag may need to be replaced with -f[no-]memprof-reads.
90 static cl::opt<bool> ClInstrumentReads("memprof-instrument-reads",
91                                        cl::desc("instrument read instructions"),
92                                        cl::Hidden, cl::init(true));
93 
94 static cl::opt<bool>
95     ClInstrumentWrites("memprof-instrument-writes",
96                        cl::desc("instrument write instructions"), cl::Hidden,
97                        cl::init(true));
98 
99 static cl::opt<bool> ClInstrumentAtomics(
100     "memprof-instrument-atomics",
101     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
102     cl::init(true));
103 
104 static cl::opt<bool> ClUseCalls(
105     "memprof-use-callbacks",
106     cl::desc("Use callbacks instead of inline instrumentation sequences."),
107     cl::Hidden, cl::init(false));
108 
109 static cl::opt<std::string>
110     ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix",
111                                  cl::desc("Prefix for memory access callbacks"),
112                                  cl::Hidden, cl::init("__memprof_"));
113 
114 // These flags allow to change the shadow mapping.
115 // The shadow mapping looks like
116 //    Shadow = ((Mem & mask) >> scale) + offset
117 
118 static cl::opt<int> ClMappingScale("memprof-mapping-scale",
119                                    cl::desc("scale of memprof shadow mapping"),
120                                    cl::Hidden, cl::init(DefaultShadowScale));
121 
122 static cl::opt<int>
123     ClMappingGranularity("memprof-mapping-granularity",
124                          cl::desc("granularity of memprof shadow mapping"),
125                          cl::Hidden, cl::init(DefaultMemGranularity));
126 
127 static cl::opt<bool> ClStack("memprof-instrument-stack",
128                              cl::desc("Instrument scalar stack variables"),
129                              cl::Hidden, cl::init(false));
130 
131 // Debug flags.
132 
133 static cl::opt<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden,
134                             cl::init(0));
135 
136 static cl::opt<std::string> ClDebugFunc("memprof-debug-func", cl::Hidden,
137                                         cl::desc("Debug func"));
138 
139 static cl::opt<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"),
140                                cl::Hidden, cl::init(-1));
141 
142 static cl::opt<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"),
143                                cl::Hidden, cl::init(-1));
144 
145 // By default disable matching of allocation profiles onto operator new that
146 // already explicitly pass a hot/cold hint, since we don't currently
147 // override these hints anyway.
148 static cl::opt<bool> ClMemProfMatchHotColdNew(
149     "memprof-match-hot-cold-new",
150  cl::desc(
151         "Match allocation profiles onto existing hot/cold operator new calls"),
152     cl::Hidden, cl::init(false));
153 
154 static cl::opt<bool> ClHistogram("memprof-histogram",
155                                  cl::desc("Collect access count histograms"),
156                                  cl::Hidden, cl::init(false));
157 
158 static cl::opt<bool>
159     ClPrintMemProfMatchInfo("memprof-print-match-info",
160                             cl::desc("Print matching stats for each allocation "
161                                      "context in this module's profiles"),
162                             cl::Hidden, cl::init(false));
163 
164 extern cl::opt<bool> MemProfReportHintedSizes;
165 
166 // Instrumentation statistics
167 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
168 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
169 STATISTIC(NumSkippedStackReads, "Number of non-instrumented stack reads");
170 STATISTIC(NumSkippedStackWrites, "Number of non-instrumented stack writes");
171 
172 // Matching statistics
173 STATISTIC(NumOfMemProfMissing, "Number of functions without memory profile.");
174 STATISTIC(NumOfMemProfMismatch,
175           "Number of functions having mismatched memory profile hash.");
176 STATISTIC(NumOfMemProfFunc, "Number of functions having valid memory profile.");
177 STATISTIC(NumOfMemProfAllocContextProfiles,
178           "Number of alloc contexts in memory profile.");
179 STATISTIC(NumOfMemProfCallSiteProfiles,
180           "Number of callsites in memory profile.");
181 STATISTIC(NumOfMemProfMatchedAllocContexts,
182           "Number of matched memory profile alloc contexts.");
183 STATISTIC(NumOfMemProfMatchedAllocs,
184           "Number of matched memory profile allocs.");
185 STATISTIC(NumOfMemProfMatchedCallSites,
186           "Number of matched memory profile callsites.");
187 
188 namespace {
189 
190 /// This struct defines the shadow mapping using the rule:
191 ///   shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset.
192 struct ShadowMapping {
193   ShadowMapping() {
194     Scale = ClMappingScale;
195     Granularity = ClMappingGranularity;
196     Mask = ~(Granularity - 1);
197   }
198 
199   int Scale;
200   int Granularity;
201   uint64_t Mask; // Computed as ~(Granularity-1)
202 };
203 
204 static uint64_t getCtorAndDtorPriority(Triple &TargetTriple) {
205   return TargetTriple.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority
206                                        : MemProfCtorAndDtorPriority;
207 }
208 
209 struct InterestingMemoryAccess {
210   Value *Addr = nullptr;
211   bool IsWrite;
212   Type *AccessTy;
213   Value *MaybeMask = nullptr;
214 };
215 
216 /// Instrument the code in module to profile memory accesses.
217 class MemProfiler {
218 public:
219   MemProfiler(Module &M) {
220     C = &(M.getContext());
221     LongSize = M.getDataLayout().getPointerSizeInBits();
222     IntptrTy = Type::getIntNTy(*C, LongSize);
223     PtrTy = PointerType::getUnqual(*C);
224   }
225 
226   /// If it is an interesting memory access, populate information
227   /// about the access and return a InterestingMemoryAccess struct.
228   /// Otherwise return std::nullopt.
229   std::optional<InterestingMemoryAccess>
230   isInterestingMemoryAccess(Instruction *I) const;
231 
232   void instrumentMop(Instruction *I, const DataLayout &DL,
233                      InterestingMemoryAccess &Access);
234   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
235                          Value *Addr, bool IsWrite);
236   void instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
237                                    Instruction *I, Value *Addr, Type *AccessTy,
238                                    bool IsWrite);
239   void instrumentMemIntrinsic(MemIntrinsic *MI);
240   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
241   bool instrumentFunction(Function &F);
242   bool maybeInsertMemProfInitAtFunctionEntry(Function &F);
243   bool insertDynamicShadowAtFunctionEntry(Function &F);
244 
245 private:
246   void initializeCallbacks(Module &M);
247 
248   LLVMContext *C;
249   int LongSize;
250   Type *IntptrTy;
251   PointerType *PtrTy;
252   ShadowMapping Mapping;
253 
254   // These arrays is indexed by AccessIsWrite
255   FunctionCallee MemProfMemoryAccessCallback[2];
256 
257   FunctionCallee MemProfMemmove, MemProfMemcpy, MemProfMemset;
258   Value *DynamicShadowOffset = nullptr;
259 };
260 
261 class ModuleMemProfiler {
262 public:
263   ModuleMemProfiler(Module &M) { TargetTriple = Triple(M.getTargetTriple()); }
264 
265   bool instrumentModule(Module &);
266 
267 private:
268   Triple TargetTriple;
269   ShadowMapping Mapping;
270   Function *MemProfCtorFunction = nullptr;
271 };
272 
273 } // end anonymous namespace
274 
275 MemProfilerPass::MemProfilerPass() = default;
276 
277 PreservedAnalyses MemProfilerPass::run(Function &F,
278                                        AnalysisManager<Function> &AM) {
279   Module &M = *F.getParent();
280   MemProfiler Profiler(M);
281   if (Profiler.instrumentFunction(F))
282     return PreservedAnalyses::none();
283   return PreservedAnalyses::all();
284 }
285 
286 ModuleMemProfilerPass::ModuleMemProfilerPass() = default;
287 
288 PreservedAnalyses ModuleMemProfilerPass::run(Module &M,
289                                              AnalysisManager<Module> &AM) {
290 
291   assert((!ClHistogram || (ClHistogram && ClUseCalls)) &&
292          "Cannot use -memprof-histogram without Callbacks. Set "
293          "memprof-use-callbacks");
294 
295   ModuleMemProfiler Profiler(M);
296   if (Profiler.instrumentModule(M))
297     return PreservedAnalyses::none();
298   return PreservedAnalyses::all();
299 }
300 
301 Value *MemProfiler::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
302   // (Shadow & mask) >> scale
303   Shadow = IRB.CreateAnd(Shadow, Mapping.Mask);
304   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
305   // (Shadow >> scale) | offset
306   assert(DynamicShadowOffset);
307   return IRB.CreateAdd(Shadow, DynamicShadowOffset);
308 }
309 
310 // Instrument memset/memmove/memcpy
311 void MemProfiler::instrumentMemIntrinsic(MemIntrinsic *MI) {
312   IRBuilder<> IRB(MI);
313   if (isa<MemTransferInst>(MI)) {
314     IRB.CreateCall(isa<MemMoveInst>(MI) ? MemProfMemmove : MemProfMemcpy,
315                    {MI->getOperand(0), MI->getOperand(1),
316                     IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
317   } else if (isa<MemSetInst>(MI)) {
318     IRB.CreateCall(
319         MemProfMemset,
320         {MI->getOperand(0),
321          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
322          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
323   }
324   MI->eraseFromParent();
325 }
326 
327 std::optional<InterestingMemoryAccess>
328 MemProfiler::isInterestingMemoryAccess(Instruction *I) const {
329   // Do not instrument the load fetching the dynamic shadow address.
330   if (DynamicShadowOffset == I)
331     return std::nullopt;
332 
333   InterestingMemoryAccess Access;
334 
335   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
336     if (!ClInstrumentReads)
337       return std::nullopt;
338     Access.IsWrite = false;
339     Access.AccessTy = LI->getType();
340     Access.Addr = LI->getPointerOperand();
341   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
342     if (!ClInstrumentWrites)
343       return std::nullopt;
344     Access.IsWrite = true;
345     Access.AccessTy = SI->getValueOperand()->getType();
346     Access.Addr = SI->getPointerOperand();
347   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
348     if (!ClInstrumentAtomics)
349       return std::nullopt;
350     Access.IsWrite = true;
351     Access.AccessTy = RMW->getValOperand()->getType();
352     Access.Addr = RMW->getPointerOperand();
353   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
354     if (!ClInstrumentAtomics)
355       return std::nullopt;
356     Access.IsWrite = true;
357     Access.AccessTy = XCHG->getCompareOperand()->getType();
358     Access.Addr = XCHG->getPointerOperand();
359   } else if (auto *CI = dyn_cast<CallInst>(I)) {
360     auto *F = CI->getCalledFunction();
361     if (F && (F->getIntrinsicID() == Intrinsic::masked_load ||
362               F->getIntrinsicID() == Intrinsic::masked_store)) {
363       unsigned OpOffset = 0;
364       if (F->getIntrinsicID() == Intrinsic::masked_store) {
365         if (!ClInstrumentWrites)
366           return std::nullopt;
367         // Masked store has an initial operand for the value.
368         OpOffset = 1;
369         Access.AccessTy = CI->getArgOperand(0)->getType();
370         Access.IsWrite = true;
371       } else {
372         if (!ClInstrumentReads)
373           return std::nullopt;
374         Access.AccessTy = CI->getType();
375         Access.IsWrite = false;
376       }
377 
378       auto *BasePtr = CI->getOperand(0 + OpOffset);
379       Access.MaybeMask = CI->getOperand(2 + OpOffset);
380       Access.Addr = BasePtr;
381     }
382   }
383 
384   if (!Access.Addr)
385     return std::nullopt;
386 
387   // Do not instrument accesses from different address spaces; we cannot deal
388   // with them.
389   Type *PtrTy = cast<PointerType>(Access.Addr->getType()->getScalarType());
390   if (PtrTy->getPointerAddressSpace() != 0)
391     return std::nullopt;
392 
393   // Ignore swifterror addresses.
394   // swifterror memory addresses are mem2reg promoted by instruction
395   // selection. As such they cannot have regular uses like an instrumentation
396   // function and it makes no sense to track them as memory.
397   if (Access.Addr->isSwiftError())
398     return std::nullopt;
399 
400   // Peel off GEPs and BitCasts.
401   auto *Addr = Access.Addr->stripInBoundsOffsets();
402 
403   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
404     // Do not instrument PGO counter updates.
405     if (GV->hasSection()) {
406       StringRef SectionName = GV->getSection();
407       // Check if the global is in the PGO counters section.
408       auto OF = Triple(I->getModule()->getTargetTriple()).getObjectFormat();
409       if (SectionName.ends_with(
410               getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
411         return std::nullopt;
412     }
413 
414     // Do not instrument accesses to LLVM internal variables.
415     if (GV->getName().starts_with("__llvm"))
416       return std::nullopt;
417   }
418 
419   return Access;
420 }
421 
422 void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
423                                               Instruction *I, Value *Addr,
424                                               Type *AccessTy, bool IsWrite) {
425   auto *VTy = cast<FixedVectorType>(AccessTy);
426   unsigned Num = VTy->getNumElements();
427   auto *Zero = ConstantInt::get(IntptrTy, 0);
428   for (unsigned Idx = 0; Idx < Num; ++Idx) {
429     Value *InstrumentedAddress = nullptr;
430     Instruction *InsertBefore = I;
431     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
432       // dyn_cast as we might get UndefValue
433       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
434         if (Masked->isZero())
435           // Mask is constant false, so no instrumentation needed.
436           continue;
437         // If we have a true or undef value, fall through to instrumentAddress.
438         // with InsertBefore == I
439       }
440     } else {
441       IRBuilder<> IRB(I);
442       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
443       Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
444       InsertBefore = ThenTerm;
445     }
446 
447     IRBuilder<> IRB(InsertBefore);
448     InstrumentedAddress =
449         IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
450     instrumentAddress(I, InsertBefore, InstrumentedAddress, IsWrite);
451   }
452 }
453 
454 void MemProfiler::instrumentMop(Instruction *I, const DataLayout &DL,
455                                 InterestingMemoryAccess &Access) {
456   // Skip instrumentation of stack accesses unless requested.
457   if (!ClStack && isa<AllocaInst>(getUnderlyingObject(Access.Addr))) {
458     if (Access.IsWrite)
459       ++NumSkippedStackWrites;
460     else
461       ++NumSkippedStackReads;
462     return;
463   }
464 
465   if (Access.IsWrite)
466     NumInstrumentedWrites++;
467   else
468     NumInstrumentedReads++;
469 
470   if (Access.MaybeMask) {
471     instrumentMaskedLoadOrStore(DL, Access.MaybeMask, I, Access.Addr,
472                                 Access.AccessTy, Access.IsWrite);
473   } else {
474     // Since the access counts will be accumulated across the entire allocation,
475     // we only update the shadow access count for the first location and thus
476     // don't need to worry about alignment and type size.
477     instrumentAddress(I, I, Access.Addr, Access.IsWrite);
478   }
479 }
480 
481 void MemProfiler::instrumentAddress(Instruction *OrigIns,
482                                     Instruction *InsertBefore, Value *Addr,
483                                     bool IsWrite) {
484   IRBuilder<> IRB(InsertBefore);
485   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
486 
487   if (ClUseCalls) {
488     IRB.CreateCall(MemProfMemoryAccessCallback[IsWrite], AddrLong);
489     return;
490   }
491 
492   // Create an inline sequence to compute shadow location, and increment the
493   // value by one.
494   Type *ShadowTy = Type::getInt64Ty(*C);
495   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
496   Value *ShadowPtr = memToShadow(AddrLong, IRB);
497   Value *ShadowAddr = IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy);
498   Value *ShadowValue = IRB.CreateLoad(ShadowTy, ShadowAddr);
499   Value *Inc = ConstantInt::get(Type::getInt64Ty(*C), 1);
500   ShadowValue = IRB.CreateAdd(ShadowValue, Inc);
501   IRB.CreateStore(ShadowValue, ShadowAddr);
502 }
503 
504 // Create the variable for the profile file name.
505 void createProfileFileNameVar(Module &M) {
506   const MDString *MemProfFilename =
507       dyn_cast_or_null<MDString>(M.getModuleFlag("MemProfProfileFilename"));
508   if (!MemProfFilename)
509     return;
510   assert(!MemProfFilename->getString().empty() &&
511          "Unexpected MemProfProfileFilename metadata with empty string");
512   Constant *ProfileNameConst = ConstantDataArray::getString(
513       M.getContext(), MemProfFilename->getString(), true);
514   GlobalVariable *ProfileNameVar = new GlobalVariable(
515       M, ProfileNameConst->getType(), /*isConstant=*/true,
516       GlobalValue::WeakAnyLinkage, ProfileNameConst, MemProfFilenameVar);
517   Triple TT(M.getTargetTriple());
518   if (TT.supportsCOMDAT()) {
519     ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
520     ProfileNameVar->setComdat(M.getOrInsertComdat(MemProfFilenameVar));
521   }
522 }
523 
524 // Set MemprofHistogramFlag as a Global veriable in IR. This makes it accessible
525 // to the runtime, changing shadow count behavior.
526 void createMemprofHistogramFlagVar(Module &M) {
527   const StringRef VarName(MemProfHistogramFlagVar);
528   Type *IntTy1 = Type::getInt1Ty(M.getContext());
529   auto MemprofHistogramFlag = new GlobalVariable(
530       M, IntTy1, true, GlobalValue::WeakAnyLinkage,
531       Constant::getIntegerValue(IntTy1, APInt(1, ClHistogram)), VarName);
532   Triple TT(M.getTargetTriple());
533   if (TT.supportsCOMDAT()) {
534     MemprofHistogramFlag->setLinkage(GlobalValue::ExternalLinkage);
535     MemprofHistogramFlag->setComdat(M.getOrInsertComdat(VarName));
536   }
537   appendToCompilerUsed(M, MemprofHistogramFlag);
538 }
539 
540 bool ModuleMemProfiler::instrumentModule(Module &M) {
541 
542   // Create a module constructor.
543   std::string MemProfVersion = std::to_string(LLVM_MEM_PROFILER_VERSION);
544   std::string VersionCheckName =
545       ClInsertVersionCheck ? (MemProfVersionCheckNamePrefix + MemProfVersion)
546                            : "";
547   std::tie(MemProfCtorFunction, std::ignore) =
548       createSanitizerCtorAndInitFunctions(M, MemProfModuleCtorName,
549                                           MemProfInitName, /*InitArgTypes=*/{},
550                                           /*InitArgs=*/{}, VersionCheckName);
551 
552   const uint64_t Priority = getCtorAndDtorPriority(TargetTriple);
553   appendToGlobalCtors(M, MemProfCtorFunction, Priority);
554 
555   createProfileFileNameVar(M);
556 
557   createMemprofHistogramFlagVar(M);
558 
559   return true;
560 }
561 
562 void MemProfiler::initializeCallbacks(Module &M) {
563   IRBuilder<> IRB(*C);
564 
565   for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
566     const std::string TypeStr = AccessIsWrite ? "store" : "load";
567     const std::string HistPrefix = ClHistogram ? "hist_" : "";
568 
569     SmallVector<Type *, 2> Args1{1, IntptrTy};
570     MemProfMemoryAccessCallback[AccessIsWrite] = M.getOrInsertFunction(
571         ClMemoryAccessCallbackPrefix + HistPrefix + TypeStr,
572         FunctionType::get(IRB.getVoidTy(), Args1, false));
573   }
574   MemProfMemmove = M.getOrInsertFunction(
575       ClMemoryAccessCallbackPrefix + "memmove", PtrTy, PtrTy, PtrTy, IntptrTy);
576   MemProfMemcpy = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memcpy",
577                                         PtrTy, PtrTy, PtrTy, IntptrTy);
578   MemProfMemset =
579       M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memset", PtrTy,
580                             PtrTy, IRB.getInt32Ty(), IntptrTy);
581 }
582 
583 bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function &F) {
584   // For each NSObject descendant having a +load method, this method is invoked
585   // by the ObjC runtime before any of the static constructors is called.
586   // Therefore we need to instrument such methods with a call to __memprof_init
587   // at the beginning in order to initialize our runtime before any access to
588   // the shadow memory.
589   // We cannot just ignore these methods, because they may call other
590   // instrumented functions.
591   if (F.getName().contains(" load]")) {
592     FunctionCallee MemProfInitFunction =
593         declareSanitizerInitFunction(*F.getParent(), MemProfInitName, {});
594     IRBuilder<> IRB(&F.front(), F.front().begin());
595     IRB.CreateCall(MemProfInitFunction, {});
596     return true;
597   }
598   return false;
599 }
600 
601 bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function &F) {
602   IRBuilder<> IRB(&F.front().front());
603   Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
604       MemProfShadowMemoryDynamicAddress, IntptrTy);
605   if (F.getParent()->getPICLevel() == PICLevel::NotPIC)
606     cast<GlobalVariable>(GlobalDynamicAddress)->setDSOLocal(true);
607   DynamicShadowOffset = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
608   return true;
609 }
610 
611 bool MemProfiler::instrumentFunction(Function &F) {
612   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage)
613     return false;
614   if (ClDebugFunc == F.getName())
615     return false;
616   if (F.getName().starts_with("__memprof_"))
617     return false;
618 
619   bool FunctionModified = false;
620 
621   // If needed, insert __memprof_init.
622   // This function needs to be called even if the function body is not
623   // instrumented.
624   if (maybeInsertMemProfInitAtFunctionEntry(F))
625     FunctionModified = true;
626 
627   LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F << "\n");
628 
629   initializeCallbacks(*F.getParent());
630 
631   SmallVector<Instruction *, 16> ToInstrument;
632 
633   // Fill the set of memory operations to instrument.
634   for (auto &BB : F) {
635     for (auto &Inst : BB) {
636       if (isInterestingMemoryAccess(&Inst) || isa<MemIntrinsic>(Inst))
637         ToInstrument.push_back(&Inst);
638     }
639   }
640 
641   if (ToInstrument.empty()) {
642     LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified
643                       << " " << F << "\n");
644 
645     return FunctionModified;
646   }
647 
648   FunctionModified |= insertDynamicShadowAtFunctionEntry(F);
649 
650   int NumInstrumented = 0;
651   for (auto *Inst : ToInstrument) {
652     if (ClDebugMin < 0 || ClDebugMax < 0 ||
653         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
654       std::optional<InterestingMemoryAccess> Access =
655           isInterestingMemoryAccess(Inst);
656       if (Access)
657         instrumentMop(Inst, F.getDataLayout(), *Access);
658       else
659         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
660     }
661     NumInstrumented++;
662   }
663 
664   if (NumInstrumented > 0)
665     FunctionModified = true;
666 
667   LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified << " "
668                     << F << "\n");
669 
670   return FunctionModified;
671 }
672 
673 static void addCallsiteMetadata(Instruction &I,
674                                 std::vector<uint64_t> &InlinedCallStack,
675                                 LLVMContext &Ctx) {
676   I.setMetadata(LLVMContext::MD_callsite,
677                 buildCallstackMetadata(InlinedCallStack, Ctx));
678 }
679 
680 static uint64_t computeStackId(GlobalValue::GUID Function, uint32_t LineOffset,
681                                uint32_t Column) {
682   llvm::HashBuilder<llvm::TruncatedBLAKE3<8>, llvm::endianness::little>
683       HashBuilder;
684   HashBuilder.add(Function, LineOffset, Column);
685   llvm::BLAKE3Result<8> Hash = HashBuilder.final();
686   uint64_t Id;
687   std::memcpy(&Id, Hash.data(), sizeof(Hash));
688   return Id;
689 }
690 
691 static uint64_t computeStackId(const memprof::Frame &Frame) {
692   return computeStackId(Frame.Function, Frame.LineOffset, Frame.Column);
693 }
694 
695 // Helper to generate a single hash id for a given callstack, used for emitting
696 // matching statistics and useful for uniquing such statistics across modules.
697 static uint64_t
698 computeFullStackId(const std::vector<memprof::Frame> &CallStack) {
699   llvm::HashBuilder<llvm::TruncatedBLAKE3<8>, llvm::endianness::little>
700       HashBuilder;
701   for (auto &F : CallStack)
702     HashBuilder.add(F.Function, F.LineOffset, F.Column);
703   llvm::BLAKE3Result<8> Hash = HashBuilder.final();
704   uint64_t Id;
705   std::memcpy(&Id, Hash.data(), sizeof(Hash));
706   return Id;
707 }
708 
709 static AllocationType addCallStack(CallStackTrie &AllocTrie,
710                                    const AllocationInfo *AllocInfo) {
711   SmallVector<uint64_t> StackIds;
712   for (const auto &StackFrame : AllocInfo->CallStack)
713     StackIds.push_back(computeStackId(StackFrame));
714   auto AllocType = getAllocType(AllocInfo->Info.getTotalLifetimeAccessDensity(),
715                                 AllocInfo->Info.getAllocCount(),
716                                 AllocInfo->Info.getTotalLifetime());
717   uint64_t TotalSize = 0;
718   if (MemProfReportHintedSizes) {
719     TotalSize = AllocInfo->Info.getTotalSize();
720     assert(TotalSize);
721   }
722   AllocTrie.addCallStack(AllocType, StackIds, TotalSize);
723   return AllocType;
724 }
725 
726 // Helper to compare the InlinedCallStack computed from an instruction's debug
727 // info to a list of Frames from profile data (either the allocation data or a
728 // callsite). For callsites, the StartIndex to use in the Frame array may be
729 // non-zero.
730 static bool
731 stackFrameIncludesInlinedCallStack(ArrayRef<Frame> ProfileCallStack,
732                                    ArrayRef<uint64_t> InlinedCallStack,
733                                    unsigned StartIndex = 0) {
734   auto StackFrame = ProfileCallStack.begin() + StartIndex;
735   auto InlCallStackIter = InlinedCallStack.begin();
736   for (; StackFrame != ProfileCallStack.end() &&
737          InlCallStackIter != InlinedCallStack.end();
738        ++StackFrame, ++InlCallStackIter) {
739     uint64_t StackId = computeStackId(*StackFrame);
740     if (StackId != *InlCallStackIter)
741       return false;
742   }
743   // Return true if we found and matched all stack ids from the call
744   // instruction.
745   return InlCallStackIter == InlinedCallStack.end();
746 }
747 
748 static bool isNewWithHotColdVariant(Function *Callee,
749                                     const TargetLibraryInfo &TLI) {
750   if (!Callee)
751     return false;
752   LibFunc Func;
753   if (!TLI.getLibFunc(*Callee, Func))
754     return false;
755   switch (Func) {
756   case LibFunc_Znwm:
757   case LibFunc_ZnwmRKSt9nothrow_t:
758   case LibFunc_ZnwmSt11align_val_t:
759   case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
760   case LibFunc_Znam:
761   case LibFunc_ZnamRKSt9nothrow_t:
762   case LibFunc_ZnamSt11align_val_t:
763   case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
764     return true;
765   case LibFunc_Znwm12__hot_cold_t:
766   case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
767   case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
768   case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
769   case LibFunc_Znam12__hot_cold_t:
770   case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
771   case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
772   case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
773     return ClMemProfMatchHotColdNew;
774   default:
775     return false;
776   }
777 }
778 
779 struct AllocMatchInfo {
780   uint64_t TotalSize = 0;
781   AllocationType AllocType = AllocationType::None;
782   bool Matched = false;
783 };
784 
785 static void
786 readMemprof(Module &M, Function &F, IndexedInstrProfReader *MemProfReader,
787             const TargetLibraryInfo &TLI,
788             std::map<uint64_t, AllocMatchInfo> &FullStackIdToAllocMatchInfo) {
789   auto &Ctx = M.getContext();
790   // Previously we used getIRPGOFuncName() here. If F is local linkage,
791   // getIRPGOFuncName() returns FuncName with prefix 'FileName;'. But
792   // llvm-profdata uses FuncName in dwarf to create GUID which doesn't
793   // contain FileName's prefix. It caused local linkage function can't
794   // find MemProfRecord. So we use getName() now.
795   // 'unique-internal-linkage-names' can make MemProf work better for local
796   // linkage function.
797   auto FuncName = F.getName();
798   auto FuncGUID = Function::getGUID(FuncName);
799   std::optional<memprof::MemProfRecord> MemProfRec;
800   auto Err = MemProfReader->getMemProfRecord(FuncGUID).moveInto(MemProfRec);
801   if (Err) {
802     handleAllErrors(std::move(Err), [&](const InstrProfError &IPE) {
803       auto Err = IPE.get();
804       bool SkipWarning = false;
805       LLVM_DEBUG(dbgs() << "Error in reading profile for Func " << FuncName
806                         << ": ");
807       if (Err == instrprof_error::unknown_function) {
808         NumOfMemProfMissing++;
809         SkipWarning = !PGOWarnMissing;
810         LLVM_DEBUG(dbgs() << "unknown function");
811       } else if (Err == instrprof_error::hash_mismatch) {
812         NumOfMemProfMismatch++;
813         SkipWarning =
814             NoPGOWarnMismatch ||
815             (NoPGOWarnMismatchComdatWeak &&
816              (F.hasComdat() ||
817               F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
818         LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")");
819       }
820 
821       if (SkipWarning)
822         return;
823 
824       std::string Msg = (IPE.message() + Twine(" ") + F.getName().str() +
825                          Twine(" Hash = ") + std::to_string(FuncGUID))
826                             .str();
827 
828       Ctx.diagnose(
829           DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning));
830     });
831     return;
832   }
833 
834   NumOfMemProfFunc++;
835 
836   // Detect if there are non-zero column numbers in the profile. If not,
837   // treat all column numbers as 0 when matching (i.e. ignore any non-zero
838   // columns in the IR). The profiled binary might have been built with
839   // column numbers disabled, for example.
840   bool ProfileHasColumns = false;
841 
842   // Build maps of the location hash to all profile data with that leaf location
843   // (allocation info and the callsites).
844   std::map<uint64_t, std::set<const AllocationInfo *>> LocHashToAllocInfo;
845   // For the callsites we need to record the index of the associated frame in
846   // the frame array (see comments below where the map entries are added).
847   std::map<uint64_t, std::set<std::pair<const std::vector<Frame> *, unsigned>>>
848       LocHashToCallSites;
849   for (auto &AI : MemProfRec->AllocSites) {
850     NumOfMemProfAllocContextProfiles++;
851     // Associate the allocation info with the leaf frame. The later matching
852     // code will match any inlined call sequences in the IR with a longer prefix
853     // of call stack frames.
854     uint64_t StackId = computeStackId(AI.CallStack[0]);
855     LocHashToAllocInfo[StackId].insert(&AI);
856     ProfileHasColumns |= AI.CallStack[0].Column;
857   }
858   for (auto &CS : MemProfRec->CallSites) {
859     NumOfMemProfCallSiteProfiles++;
860     // Need to record all frames from leaf up to and including this function,
861     // as any of these may or may not have been inlined at this point.
862     unsigned Idx = 0;
863     for (auto &StackFrame : CS) {
864       uint64_t StackId = computeStackId(StackFrame);
865       LocHashToCallSites[StackId].insert(std::make_pair(&CS, Idx++));
866       ProfileHasColumns |= StackFrame.Column;
867       // Once we find this function, we can stop recording.
868       if (StackFrame.Function == FuncGUID)
869         break;
870     }
871     assert(Idx <= CS.size() && CS[Idx - 1].Function == FuncGUID);
872   }
873 
874   auto GetOffset = [](const DILocation *DIL) {
875     return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
876            0xffff;
877   };
878 
879   // Now walk the instructions, looking up the associated profile data using
880   // debug locations.
881   for (auto &BB : F) {
882     for (auto &I : BB) {
883       if (I.isDebugOrPseudoInst())
884         continue;
885       // We are only interested in calls (allocation or interior call stack
886       // context calls).
887       auto *CI = dyn_cast<CallBase>(&I);
888       if (!CI)
889         continue;
890       auto *CalledFunction = CI->getCalledFunction();
891       if (CalledFunction && CalledFunction->isIntrinsic())
892         continue;
893       // List of call stack ids computed from the location hashes on debug
894       // locations (leaf to inlined at root).
895       std::vector<uint64_t> InlinedCallStack;
896       // Was the leaf location found in one of the profile maps?
897       bool LeafFound = false;
898       // If leaf was found in a map, iterators pointing to its location in both
899       // of the maps. It might exist in neither, one, or both (the latter case
900       // can happen because we don't currently have discriminators to
901       // distinguish the case when a single line/col maps to both an allocation
902       // and another callsite).
903       std::map<uint64_t, std::set<const AllocationInfo *>>::iterator
904           AllocInfoIter;
905       std::map<uint64_t, std::set<std::pair<const std::vector<Frame> *,
906                                             unsigned>>>::iterator CallSitesIter;
907       for (const DILocation *DIL = I.getDebugLoc(); DIL != nullptr;
908            DIL = DIL->getInlinedAt()) {
909         // Use C++ linkage name if possible. Need to compile with
910         // -fdebug-info-for-profiling to get linkage name.
911         StringRef Name = DIL->getScope()->getSubprogram()->getLinkageName();
912         if (Name.empty())
913           Name = DIL->getScope()->getSubprogram()->getName();
914         auto CalleeGUID = Function::getGUID(Name);
915         auto StackId = computeStackId(CalleeGUID, GetOffset(DIL),
916                                       ProfileHasColumns ? DIL->getColumn() : 0);
917         // Check if we have found the profile's leaf frame. If yes, collect
918         // the rest of the call's inlined context starting here. If not, see if
919         // we find a match further up the inlined context (in case the profile
920         // was missing debug frames at the leaf).
921         if (!LeafFound) {
922           AllocInfoIter = LocHashToAllocInfo.find(StackId);
923           CallSitesIter = LocHashToCallSites.find(StackId);
924           if (AllocInfoIter != LocHashToAllocInfo.end() ||
925               CallSitesIter != LocHashToCallSites.end())
926             LeafFound = true;
927         }
928         if (LeafFound)
929           InlinedCallStack.push_back(StackId);
930       }
931       // If leaf not in either of the maps, skip inst.
932       if (!LeafFound)
933         continue;
934 
935       // First add !memprof metadata from allocation info, if we found the
936       // instruction's leaf location in that map, and if the rest of the
937       // instruction's locations match the prefix Frame locations on an
938       // allocation context with the same leaf.
939       if (AllocInfoIter != LocHashToAllocInfo.end()) {
940         // Only consider allocations via new, to reduce unnecessary metadata,
941         // since those are the only allocations that will be targeted initially.
942         if (!isNewWithHotColdVariant(CI->getCalledFunction(), TLI))
943           continue;
944         // We may match this instruction's location list to multiple MIB
945         // contexts. Add them to a Trie specialized for trimming the contexts to
946         // the minimal needed to disambiguate contexts with unique behavior.
947         CallStackTrie AllocTrie;
948         for (auto *AllocInfo : AllocInfoIter->second) {
949           // Check the full inlined call stack against this one.
950           // If we found and thus matched all frames on the call, include
951           // this MIB.
952           if (stackFrameIncludesInlinedCallStack(AllocInfo->CallStack,
953                                                  InlinedCallStack)) {
954             NumOfMemProfMatchedAllocContexts++;
955             auto AllocType = addCallStack(AllocTrie, AllocInfo);
956             // Record information about the allocation if match info printing
957             // was requested.
958             if (ClPrintMemProfMatchInfo) {
959               auto FullStackId = computeFullStackId(AllocInfo->CallStack);
960               FullStackIdToAllocMatchInfo[FullStackId] = {
961                   AllocInfo->Info.getTotalSize(), AllocType, /*Matched=*/true};
962             }
963           }
964         }
965         // We might not have matched any to the full inlined call stack.
966         // But if we did, create and attach metadata, or a function attribute if
967         // all contexts have identical profiled behavior.
968         if (!AllocTrie.empty()) {
969           NumOfMemProfMatchedAllocs++;
970           // MemprofMDAttached will be false if a function attribute was
971           // attached.
972           bool MemprofMDAttached = AllocTrie.buildAndAttachMIBMetadata(CI);
973           assert(MemprofMDAttached == I.hasMetadata(LLVMContext::MD_memprof));
974           if (MemprofMDAttached) {
975             // Add callsite metadata for the instruction's location list so that
976             // it simpler later on to identify which part of the MIB contexts
977             // are from this particular instruction (including during inlining,
978             // when the callsite metadata will be updated appropriately).
979             // FIXME: can this be changed to strip out the matching stack
980             // context ids from the MIB contexts and not add any callsite
981             // metadata here to save space?
982             addCallsiteMetadata(I, InlinedCallStack, Ctx);
983           }
984         }
985         continue;
986       }
987 
988       // Otherwise, add callsite metadata. If we reach here then we found the
989       // instruction's leaf location in the callsites map and not the allocation
990       // map.
991       assert(CallSitesIter != LocHashToCallSites.end());
992       for (auto CallStackIdx : CallSitesIter->second) {
993         // If we found and thus matched all frames on the call, create and
994         // attach call stack metadata.
995         if (stackFrameIncludesInlinedCallStack(
996                 *CallStackIdx.first, InlinedCallStack, CallStackIdx.second)) {
997           NumOfMemProfMatchedCallSites++;
998           addCallsiteMetadata(I, InlinedCallStack, Ctx);
999           // Only need to find one with a matching call stack and add a single
1000           // callsite metadata.
1001           break;
1002         }
1003       }
1004     }
1005   }
1006 }
1007 
1008 MemProfUsePass::MemProfUsePass(std::string MemoryProfileFile,
1009                                IntrusiveRefCntPtr<vfs::FileSystem> FS)
1010     : MemoryProfileFileName(MemoryProfileFile), FS(FS) {
1011   if (!FS)
1012     this->FS = vfs::getRealFileSystem();
1013 }
1014 
1015 PreservedAnalyses MemProfUsePass::run(Module &M, ModuleAnalysisManager &AM) {
1016   LLVM_DEBUG(dbgs() << "Read in memory profile:");
1017   auto &Ctx = M.getContext();
1018   auto ReaderOrErr = IndexedInstrProfReader::create(MemoryProfileFileName, *FS);
1019   if (Error E = ReaderOrErr.takeError()) {
1020     handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
1021       Ctx.diagnose(
1022           DiagnosticInfoPGOProfile(MemoryProfileFileName.data(), EI.message()));
1023     });
1024     return PreservedAnalyses::all();
1025   }
1026 
1027   std::unique_ptr<IndexedInstrProfReader> MemProfReader =
1028       std::move(ReaderOrErr.get());
1029   if (!MemProfReader) {
1030     Ctx.diagnose(DiagnosticInfoPGOProfile(
1031         MemoryProfileFileName.data(), StringRef("Cannot get MemProfReader")));
1032     return PreservedAnalyses::all();
1033   }
1034 
1035   if (!MemProfReader->hasMemoryProfile()) {
1036     Ctx.diagnose(DiagnosticInfoPGOProfile(MemoryProfileFileName.data(),
1037                                           "Not a memory profile"));
1038     return PreservedAnalyses::all();
1039   }
1040 
1041   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1042 
1043   // Map from the stack has of each allocation context in the function profiles
1044   // to the total profiled size (bytes), allocation type, and whether we matched
1045   // it to an allocation in the IR.
1046   std::map<uint64_t, AllocMatchInfo> FullStackIdToAllocMatchInfo;
1047 
1048   for (auto &F : M) {
1049     if (F.isDeclaration())
1050       continue;
1051 
1052     const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1053     readMemprof(M, F, MemProfReader.get(), TLI, FullStackIdToAllocMatchInfo);
1054   }
1055 
1056   if (ClPrintMemProfMatchInfo) {
1057     for (const auto &[Id, Info] : FullStackIdToAllocMatchInfo)
1058       errs() << "MemProf " << getAllocTypeAttributeString(Info.AllocType)
1059              << " context with id " << Id << " has total profiled size "
1060              << Info.TotalSize << (Info.Matched ? " is" : " not")
1061              << " matched\n";
1062   }
1063 
1064   return PreservedAnalyses::none();
1065 }
1066