xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/InstrProfiling.cpp (revision f3087bef11543b42e0d69b708f367097a4118d24)
1 //===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers instrprof_* intrinsics emitted by an instrumentor.
10 // It also builds the data structures and initialization code needed for
11 // updating execution counts and emitting the profile at runtime.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Instrumentation/InstrProfiling.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/DiagnosticInfo.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/ProfileData/InstrProf.h"
47 #include "llvm/ProfileData/InstrProfCorrelator.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Error.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/TargetParser/Triple.h"
53 #include "llvm/Transforms/Instrumentation.h"
54 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/ModuleUtils.h"
57 #include "llvm/Transforms/Utils/SSAUpdater.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <string>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "instrprof"
66 
67 namespace llvm {
68 // Command line option to enable vtable value profiling. Defined in
69 // ProfileData/InstrProf.cpp: -enable-vtable-value-profiling=
70 extern cl::opt<bool> EnableVTableValueProfiling;
71 // TODO: Remove -debug-info-correlate in next LLVM release, in favor of
72 // -profile-correlate=debug-info.
73 cl::opt<bool> DebugInfoCorrelate(
74     "debug-info-correlate",
75     cl::desc("Use debug info to correlate profiles. (Deprecated, use "
76              "-profile-correlate=debug-info)"),
77     cl::init(false));
78 
79 cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate(
80     "profile-correlate",
81     cl::desc("Use debug info or binary file to correlate profiles."),
82     cl::init(InstrProfCorrelator::NONE),
83     cl::values(clEnumValN(InstrProfCorrelator::NONE, "",
84                           "No profile correlation"),
85                clEnumValN(InstrProfCorrelator::DEBUG_INFO, "debug-info",
86                           "Use debug info to correlate"),
87                clEnumValN(InstrProfCorrelator::BINARY, "binary",
88                           "Use binary to correlate")));
89 } // namespace llvm
90 
91 namespace {
92 
93 cl::opt<bool> DoHashBasedCounterSplit(
94     "hash-based-counter-split",
95     cl::desc("Rename counter variable of a comdat function based on cfg hash"),
96     cl::init(true));
97 
98 cl::opt<bool>
99     RuntimeCounterRelocation("runtime-counter-relocation",
100                              cl::desc("Enable relocating counters at runtime."),
101                              cl::init(false));
102 
103 cl::opt<bool> ValueProfileStaticAlloc(
104     "vp-static-alloc",
105     cl::desc("Do static counter allocation for value profiler"),
106     cl::init(true));
107 
108 cl::opt<double> NumCountersPerValueSite(
109     "vp-counters-per-site",
110     cl::desc("The average number of profile counters allocated "
111              "per value profiling site."),
112     // This is set to a very small value because in real programs, only
113     // a very small percentage of value sites have non-zero targets, e.g, 1/30.
114     // For those sites with non-zero profile, the average number of targets
115     // is usually smaller than 2.
116     cl::init(1.0));
117 
118 cl::opt<bool> AtomicCounterUpdateAll(
119     "instrprof-atomic-counter-update-all",
120     cl::desc("Make all profile counter updates atomic (for testing only)"),
121     cl::init(false));
122 
123 cl::opt<bool> AtomicCounterUpdatePromoted(
124     "atomic-counter-update-promoted",
125     cl::desc("Do counter update using atomic fetch add "
126              " for promoted counters only"),
127     cl::init(false));
128 
129 cl::opt<bool> AtomicFirstCounter(
130     "atomic-first-counter",
131     cl::desc("Use atomic fetch add for first counter in a function (usually "
132              "the entry counter)"),
133     cl::init(false));
134 
135 // If the option is not specified, the default behavior about whether
136 // counter promotion is done depends on how instrumentaiton lowering
137 // pipeline is setup, i.e., the default value of true of this option
138 // does not mean the promotion will be done by default. Explicitly
139 // setting this option can override the default behavior.
140 cl::opt<bool> DoCounterPromotion("do-counter-promotion",
141                                  cl::desc("Do counter register promotion"),
142                                  cl::init(false));
143 cl::opt<unsigned> MaxNumOfPromotionsPerLoop(
144     "max-counter-promotions-per-loop", cl::init(20),
145     cl::desc("Max number counter promotions per loop to avoid"
146              " increasing register pressure too much"));
147 
148 // A debug option
149 cl::opt<int>
150     MaxNumOfPromotions("max-counter-promotions", cl::init(-1),
151                        cl::desc("Max number of allowed counter promotions"));
152 
153 cl::opt<unsigned> SpeculativeCounterPromotionMaxExiting(
154     "speculative-counter-promotion-max-exiting", cl::init(3),
155     cl::desc("The max number of exiting blocks of a loop to allow "
156              " speculative counter promotion"));
157 
158 cl::opt<bool> SpeculativeCounterPromotionToLoop(
159     "speculative-counter-promotion-to-loop",
160     cl::desc("When the option is false, if the target block is in a loop, "
161              "the promotion will be disallowed unless the promoted counter "
162              " update can be further/iteratively promoted into an acyclic "
163              " region."));
164 
165 cl::opt<bool> IterativeCounterPromotion(
166     "iterative-counter-promotion", cl::init(true),
167     cl::desc("Allow counter promotion across the whole loop nest."));
168 
169 cl::opt<bool> SkipRetExitBlock(
170     "skip-ret-exit-block", cl::init(true),
171     cl::desc("Suppress counter promotion if exit blocks contain ret."));
172 
173 static cl::opt<bool> SampledInstr("sampled-instrumentation", cl::ZeroOrMore,
174                                   cl::init(false),
175                                   cl::desc("Do PGO instrumentation sampling"));
176 
177 static cl::opt<unsigned> SampledInstrPeriod(
178     "sampled-instr-period",
179     cl::desc("Set the profile instrumentation sample period. For each sample "
180              "period, a fixed number of consecutive samples will be recorded. "
181              "The number is controlled by 'sampled-instr-burst-duration' flag. "
182              "The default sample period of 65535 is optimized for generating "
183              "efficient code that leverages unsigned integer wrapping in "
184              "overflow."),
185     cl::init(65535));
186 
187 static cl::opt<unsigned> SampledInstrBurstDuration(
188     "sampled-instr-burst-duration",
189     cl::desc("Set the profile instrumentation burst duration, which can range "
190              "from 0 to one less than the value of 'sampled-instr-period'. "
191              "This number of samples will be recorded for each "
192              "'sampled-instr-period' count update. Setting to 1 enables "
193              "simple sampling, in which case it is recommended to set "
194              "'sampled-instr-period' to a prime number."),
195     cl::init(200));
196 
197 using LoadStorePair = std::pair<Instruction *, Instruction *>;
198 
199 static uint64_t getIntModuleFlagOrZero(const Module &M, StringRef Flag) {
200   auto *MD = dyn_cast_or_null<ConstantAsMetadata>(M.getModuleFlag(Flag));
201   if (!MD)
202     return 0;
203 
204   // If the flag is a ConstantAsMetadata, it should be an integer representable
205   // in 64-bits.
206   return cast<ConstantInt>(MD->getValue())->getZExtValue();
207 }
208 
209 static bool enablesValueProfiling(const Module &M) {
210   return isIRPGOFlagSet(&M) ||
211          getIntModuleFlagOrZero(M, "EnableValueProfiling") != 0;
212 }
213 
214 // Conservatively returns true if value profiling is enabled.
215 static bool profDataReferencedByCode(const Module &M) {
216   return enablesValueProfiling(M);
217 }
218 
219 class InstrLowerer final {
220 public:
221   InstrLowerer(Module &M, const InstrProfOptions &Options,
222                std::function<const TargetLibraryInfo &(Function &F)> GetTLI,
223                bool IsCS)
224       : M(M), Options(Options), TT(Triple(M.getTargetTriple())), IsCS(IsCS),
225         GetTLI(GetTLI), DataReferencedByCode(profDataReferencedByCode(M)) {}
226 
227   bool lower();
228 
229 private:
230   Module &M;
231   const InstrProfOptions Options;
232   const Triple TT;
233   // Is this lowering for the context-sensitive instrumentation.
234   const bool IsCS;
235 
236   std::function<const TargetLibraryInfo &(Function &F)> GetTLI;
237 
238   const bool DataReferencedByCode;
239 
240   struct PerFunctionProfileData {
241     uint32_t NumValueSites[IPVK_Last + 1] = {};
242     GlobalVariable *RegionCounters = nullptr;
243     GlobalVariable *DataVar = nullptr;
244     GlobalVariable *RegionBitmaps = nullptr;
245     uint32_t NumBitmapBytes = 0;
246 
247     PerFunctionProfileData() = default;
248   };
249   DenseMap<GlobalVariable *, PerFunctionProfileData> ProfileDataMap;
250   // Key is virtual table variable, value is 'VTableProfData' in the form of
251   // GlobalVariable.
252   DenseMap<GlobalVariable *, GlobalVariable *> VTableDataMap;
253   /// If runtime relocation is enabled, this maps functions to the load
254   /// instruction that produces the profile relocation bias.
255   DenseMap<const Function *, LoadInst *> FunctionToProfileBiasMap;
256   std::vector<GlobalValue *> CompilerUsedVars;
257   std::vector<GlobalValue *> UsedVars;
258   std::vector<GlobalVariable *> ReferencedNames;
259   // The list of virtual table variables of which the VTableProfData is
260   // collected.
261   std::vector<GlobalVariable *> ReferencedVTables;
262   GlobalVariable *NamesVar = nullptr;
263   size_t NamesSize = 0;
264 
265   /// The instance of [[alwaysinline]] rmw_or(ptr, i8).
266   /// This is name-insensitive.
267   Function *RMWOrFunc = nullptr;
268 
269   // vector of counter load/store pairs to be register promoted.
270   std::vector<LoadStorePair> PromotionCandidates;
271 
272   int64_t TotalCountersPromoted = 0;
273 
274   /// Lower instrumentation intrinsics in the function. Returns true if there
275   /// any lowering.
276   bool lowerIntrinsics(Function *F);
277 
278   /// Register-promote counter loads and stores in loops.
279   void promoteCounterLoadStores(Function *F);
280 
281   /// Returns true if relocating counters at runtime is enabled.
282   bool isRuntimeCounterRelocationEnabled() const;
283 
284   /// Returns true if profile counter update register promotion is enabled.
285   bool isCounterPromotionEnabled() const;
286 
287   /// Return true if profile sampling is enabled.
288   bool isSamplingEnabled() const;
289 
290   /// Count the number of instrumented value sites for the function.
291   void computeNumValueSiteCounts(InstrProfValueProfileInst *Ins);
292 
293   /// Replace instrprof.value.profile with a call to runtime library.
294   void lowerValueProfileInst(InstrProfValueProfileInst *Ins);
295 
296   /// Replace instrprof.cover with a store instruction to the coverage byte.
297   void lowerCover(InstrProfCoverInst *Inc);
298 
299   /// Replace instrprof.timestamp with a call to
300   /// INSTR_PROF_PROFILE_SET_TIMESTAMP.
301   void lowerTimestamp(InstrProfTimestampInst *TimestampInstruction);
302 
303   /// Replace instrprof.increment with an increment of the appropriate value.
304   void lowerIncrement(InstrProfIncrementInst *Inc);
305 
306   /// Force emitting of name vars for unused functions.
307   void lowerCoverageData(GlobalVariable *CoverageNamesVar);
308 
309   /// Replace instrprof.mcdc.tvbitmask.update with a shift and or instruction
310   /// using the index represented by the a temp value into a bitmap.
311   void lowerMCDCTestVectorBitmapUpdate(InstrProfMCDCTVBitmapUpdate *Ins);
312 
313   /// Get the Bias value for data to access mmap-ed area.
314   /// Create it if it hasn't been seen.
315   GlobalVariable *getOrCreateBiasVar(StringRef VarName);
316 
317   /// Compute the address of the counter value that this profiling instruction
318   /// acts on.
319   Value *getCounterAddress(InstrProfCntrInstBase *I);
320 
321   /// Lower the incremental instructions under profile sampling predicates.
322   void doSampling(Instruction *I);
323 
324   /// Get the region counters for an increment, creating them if necessary.
325   ///
326   /// If the counter array doesn't yet exist, the profile data variables
327   /// referring to them will also be created.
328   GlobalVariable *getOrCreateRegionCounters(InstrProfCntrInstBase *Inc);
329 
330   /// Create the region counters.
331   GlobalVariable *createRegionCounters(InstrProfCntrInstBase *Inc,
332                                        StringRef Name,
333                                        GlobalValue::LinkageTypes Linkage);
334 
335   /// Create [[alwaysinline]] rmw_or(ptr, i8).
336   /// This doesn't update `RMWOrFunc`.
337   Function *createRMWOrFunc();
338 
339   /// Get the call to `rmw_or`.
340   /// Create the instance if it is unknown.
341   CallInst *getRMWOrCall(Value *Addr, Value *Val);
342 
343   /// Compute the address of the test vector bitmap that this profiling
344   /// instruction acts on.
345   Value *getBitmapAddress(InstrProfMCDCTVBitmapUpdate *I);
346 
347   /// Get the region bitmaps for an increment, creating them if necessary.
348   ///
349   /// If the bitmap array doesn't yet exist, the profile data variables
350   /// referring to them will also be created.
351   GlobalVariable *getOrCreateRegionBitmaps(InstrProfMCDCBitmapInstBase *Inc);
352 
353   /// Create the MC/DC bitmap as a byte-aligned array of bytes associated with
354   /// an MC/DC Decision region. The number of bytes required is indicated by
355   /// the intrinsic used (type InstrProfMCDCBitmapInstBase).  This is called
356   /// as part of setupProfileSection() and is conceptually very similar to
357   /// what is done for profile data counters in createRegionCounters().
358   GlobalVariable *createRegionBitmaps(InstrProfMCDCBitmapInstBase *Inc,
359                                       StringRef Name,
360                                       GlobalValue::LinkageTypes Linkage);
361 
362   /// Set Comdat property of GV, if required.
363   void maybeSetComdat(GlobalVariable *GV, GlobalObject *GO, StringRef VarName);
364 
365   /// Setup the sections into which counters and bitmaps are allocated.
366   GlobalVariable *setupProfileSection(InstrProfInstBase *Inc,
367                                       InstrProfSectKind IPSK);
368 
369   /// Create INSTR_PROF_DATA variable for counters and bitmaps.
370   void createDataVariable(InstrProfCntrInstBase *Inc);
371 
372   /// Get the counters for virtual table values, creating them if necessary.
373   void getOrCreateVTableProfData(GlobalVariable *GV);
374 
375   /// Emit the section with compressed function names.
376   void emitNameData();
377 
378   /// Emit the section with compressed vtable names.
379   void emitVTableNames();
380 
381   /// Emit value nodes section for value profiling.
382   void emitVNodes();
383 
384   /// Emit runtime registration functions for each profile data variable.
385   void emitRegistration();
386 
387   /// Emit the necessary plumbing to pull in the runtime initialization.
388   /// Returns true if a change was made.
389   bool emitRuntimeHook();
390 
391   /// Add uses of our data variables and runtime hook.
392   void emitUses();
393 
394   /// Create a static initializer for our data, on platforms that need it,
395   /// and for any profile output file that was specified.
396   void emitInitialization();
397 };
398 
399 ///
400 /// A helper class to promote one counter RMW operation in the loop
401 /// into register update.
402 ///
403 /// RWM update for the counter will be sinked out of the loop after
404 /// the transformation.
405 ///
406 class PGOCounterPromoterHelper : public LoadAndStorePromoter {
407 public:
408   PGOCounterPromoterHelper(
409       Instruction *L, Instruction *S, SSAUpdater &SSA, Value *Init,
410       BasicBlock *PH, ArrayRef<BasicBlock *> ExitBlocks,
411       ArrayRef<Instruction *> InsertPts,
412       DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands,
413       LoopInfo &LI)
414       : LoadAndStorePromoter({L, S}, SSA), Store(S), ExitBlocks(ExitBlocks),
415         InsertPts(InsertPts), LoopToCandidates(LoopToCands), LI(LI) {
416     assert(isa<LoadInst>(L));
417     assert(isa<StoreInst>(S));
418     SSA.AddAvailableValue(PH, Init);
419   }
420 
421   void doExtraRewritesBeforeFinalDeletion() override {
422     for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
423       BasicBlock *ExitBlock = ExitBlocks[i];
424       Instruction *InsertPos = InsertPts[i];
425       // Get LiveIn value into the ExitBlock. If there are multiple
426       // predecessors, the value is defined by a PHI node in this
427       // block.
428       Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
429       Value *Addr = cast<StoreInst>(Store)->getPointerOperand();
430       Type *Ty = LiveInValue->getType();
431       IRBuilder<> Builder(InsertPos);
432       if (auto *AddrInst = dyn_cast_or_null<IntToPtrInst>(Addr)) {
433         // If isRuntimeCounterRelocationEnabled() is true then the address of
434         // the store instruction is computed with two instructions in
435         // InstrProfiling::getCounterAddress(). We need to copy those
436         // instructions to this block to compute Addr correctly.
437         // %BiasAdd = add i64 ptrtoint <__profc_>, <__llvm_profile_counter_bias>
438         // %Addr = inttoptr i64 %BiasAdd to i64*
439         auto *OrigBiasInst = dyn_cast<BinaryOperator>(AddrInst->getOperand(0));
440         assert(OrigBiasInst->getOpcode() == Instruction::BinaryOps::Add);
441         Value *BiasInst = Builder.Insert(OrigBiasInst->clone());
442         Addr = Builder.CreateIntToPtr(BiasInst,
443                                       PointerType::getUnqual(Ty->getContext()));
444       }
445       if (AtomicCounterUpdatePromoted)
446         // automic update currently can only be promoted across the current
447         // loop, not the whole loop nest.
448         Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, LiveInValue,
449                                 MaybeAlign(),
450                                 AtomicOrdering::SequentiallyConsistent);
451       else {
452         LoadInst *OldVal = Builder.CreateLoad(Ty, Addr, "pgocount.promoted");
453         auto *NewVal = Builder.CreateAdd(OldVal, LiveInValue);
454         auto *NewStore = Builder.CreateStore(NewVal, Addr);
455 
456         // Now update the parent loop's candidate list:
457         if (IterativeCounterPromotion) {
458           auto *TargetLoop = LI.getLoopFor(ExitBlock);
459           if (TargetLoop)
460             LoopToCandidates[TargetLoop].emplace_back(OldVal, NewStore);
461         }
462       }
463     }
464   }
465 
466 private:
467   Instruction *Store;
468   ArrayRef<BasicBlock *> ExitBlocks;
469   ArrayRef<Instruction *> InsertPts;
470   DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates;
471   LoopInfo &LI;
472 };
473 
474 /// A helper class to do register promotion for all profile counter
475 /// updates in a loop.
476 ///
477 class PGOCounterPromoter {
478 public:
479   PGOCounterPromoter(
480       DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands,
481       Loop &CurLoop, LoopInfo &LI, BlockFrequencyInfo *BFI)
482       : LoopToCandidates(LoopToCands), L(CurLoop), LI(LI), BFI(BFI) {
483 
484     // Skip collection of ExitBlocks and InsertPts for loops that will not be
485     // able to have counters promoted.
486     SmallVector<BasicBlock *, 8> LoopExitBlocks;
487     SmallPtrSet<BasicBlock *, 8> BlockSet;
488 
489     L.getExitBlocks(LoopExitBlocks);
490     if (!isPromotionPossible(&L, LoopExitBlocks))
491       return;
492 
493     for (BasicBlock *ExitBlock : LoopExitBlocks) {
494       if (BlockSet.insert(ExitBlock).second &&
495           llvm::none_of(predecessors(ExitBlock), [&](const BasicBlock *Pred) {
496             return llvm::isPresplitCoroSuspendExitEdge(*Pred, *ExitBlock);
497           })) {
498         ExitBlocks.push_back(ExitBlock);
499         InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
500       }
501     }
502   }
503 
504   bool run(int64_t *NumPromoted) {
505     // Skip 'infinite' loops:
506     if (ExitBlocks.size() == 0)
507       return false;
508 
509     // Skip if any of the ExitBlocks contains a ret instruction.
510     // This is to prevent dumping of incomplete profile -- if the
511     // the loop is a long running loop and dump is called in the middle
512     // of the loop, the result profile is incomplete.
513     // FIXME: add other heuristics to detect long running loops.
514     if (SkipRetExitBlock) {
515       for (auto *BB : ExitBlocks)
516         if (isa<ReturnInst>(BB->getTerminator()))
517           return false;
518     }
519 
520     unsigned MaxProm = getMaxNumOfPromotionsInLoop(&L);
521     if (MaxProm == 0)
522       return false;
523 
524     unsigned Promoted = 0;
525     for (auto &Cand : LoopToCandidates[&L]) {
526 
527       SmallVector<PHINode *, 4> NewPHIs;
528       SSAUpdater SSA(&NewPHIs);
529       Value *InitVal = ConstantInt::get(Cand.first->getType(), 0);
530 
531       // If BFI is set, we will use it to guide the promotions.
532       if (BFI) {
533         auto *BB = Cand.first->getParent();
534         auto InstrCount = BFI->getBlockProfileCount(BB);
535         if (!InstrCount)
536           continue;
537         auto PreheaderCount = BFI->getBlockProfileCount(L.getLoopPreheader());
538         // If the average loop trip count is not greater than 1.5, we skip
539         // promotion.
540         if (PreheaderCount && (*PreheaderCount * 3) >= (*InstrCount * 2))
541           continue;
542       }
543 
544       PGOCounterPromoterHelper Promoter(Cand.first, Cand.second, SSA, InitVal,
545                                         L.getLoopPreheader(), ExitBlocks,
546                                         InsertPts, LoopToCandidates, LI);
547       Promoter.run(SmallVector<Instruction *, 2>({Cand.first, Cand.second}));
548       Promoted++;
549       if (Promoted >= MaxProm)
550         break;
551 
552       (*NumPromoted)++;
553       if (MaxNumOfPromotions != -1 && *NumPromoted >= MaxNumOfPromotions)
554         break;
555     }
556 
557     LLVM_DEBUG(dbgs() << Promoted << " counters promoted for loop (depth="
558                       << L.getLoopDepth() << ")\n");
559     return Promoted != 0;
560   }
561 
562 private:
563   bool allowSpeculativeCounterPromotion(Loop *LP) {
564     SmallVector<BasicBlock *, 8> ExitingBlocks;
565     L.getExitingBlocks(ExitingBlocks);
566     // Not considierered speculative.
567     if (ExitingBlocks.size() == 1)
568       return true;
569     if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting)
570       return false;
571     return true;
572   }
573 
574   // Check whether the loop satisfies the basic conditions needed to perform
575   // Counter Promotions.
576   bool
577   isPromotionPossible(Loop *LP,
578                       const SmallVectorImpl<BasicBlock *> &LoopExitBlocks) {
579     // We can't insert into a catchswitch.
580     if (llvm::any_of(LoopExitBlocks, [](BasicBlock *Exit) {
581           return isa<CatchSwitchInst>(Exit->getTerminator());
582         }))
583       return false;
584 
585     if (!LP->hasDedicatedExits())
586       return false;
587 
588     BasicBlock *PH = LP->getLoopPreheader();
589     if (!PH)
590       return false;
591 
592     return true;
593   }
594 
595   // Returns the max number of Counter Promotions for LP.
596   unsigned getMaxNumOfPromotionsInLoop(Loop *LP) {
597     SmallVector<BasicBlock *, 8> LoopExitBlocks;
598     LP->getExitBlocks(LoopExitBlocks);
599     if (!isPromotionPossible(LP, LoopExitBlocks))
600       return 0;
601 
602     SmallVector<BasicBlock *, 8> ExitingBlocks;
603     LP->getExitingBlocks(ExitingBlocks);
604 
605     // If BFI is set, we do more aggressive promotions based on BFI.
606     if (BFI)
607       return (unsigned)-1;
608 
609     // Not considierered speculative.
610     if (ExitingBlocks.size() == 1)
611       return MaxNumOfPromotionsPerLoop;
612 
613     if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting)
614       return 0;
615 
616     // Whether the target block is in a loop does not matter:
617     if (SpeculativeCounterPromotionToLoop)
618       return MaxNumOfPromotionsPerLoop;
619 
620     // Now check the target block:
621     unsigned MaxProm = MaxNumOfPromotionsPerLoop;
622     for (auto *TargetBlock : LoopExitBlocks) {
623       auto *TargetLoop = LI.getLoopFor(TargetBlock);
624       if (!TargetLoop)
625         continue;
626       unsigned MaxPromForTarget = getMaxNumOfPromotionsInLoop(TargetLoop);
627       unsigned PendingCandsInTarget = LoopToCandidates[TargetLoop].size();
628       MaxProm =
629           std::min(MaxProm, std::max(MaxPromForTarget, PendingCandsInTarget) -
630                                 PendingCandsInTarget);
631     }
632     return MaxProm;
633   }
634 
635   DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates;
636   SmallVector<BasicBlock *, 8> ExitBlocks;
637   SmallVector<Instruction *, 8> InsertPts;
638   Loop &L;
639   LoopInfo &LI;
640   BlockFrequencyInfo *BFI;
641 };
642 
643 enum class ValueProfilingCallType {
644   // Individual values are tracked. Currently used for indiret call target
645   // profiling.
646   Default,
647 
648   // MemOp: the memop size value profiling.
649   MemOp
650 };
651 
652 } // end anonymous namespace
653 
654 PreservedAnalyses InstrProfilingLoweringPass::run(Module &M,
655                                                   ModuleAnalysisManager &AM) {
656   FunctionAnalysisManager &FAM =
657       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
658   auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
659     return FAM.getResult<TargetLibraryAnalysis>(F);
660   };
661   InstrLowerer Lowerer(M, Options, GetTLI, IsCS);
662   if (!Lowerer.lower())
663     return PreservedAnalyses::all();
664 
665   return PreservedAnalyses::none();
666 }
667 
668 //
669 // Perform instrumentation sampling.
670 //
671 // There are 3 favors of sampling:
672 // (1) Full burst sampling: We transform:
673 //   Increment_Instruction;
674 // to:
675 //   if (__llvm_profile_sampling__ < SampledInstrBurstDuration) {
676 //     Increment_Instruction;
677 //   }
678 //   __llvm_profile_sampling__ += 1;
679 //   if (__llvm_profile_sampling__ >= SampledInstrPeriod) {
680 //     __llvm_profile_sampling__ = 0;
681 //   }
682 //
683 // "__llvm_profile_sampling__" is a thread-local global shared by all PGO
684 // counters (value-instrumentation and edge instrumentation).
685 //
686 // (2) Fast burst sampling:
687 // "__llvm_profile_sampling__" variable is an unsigned type, meaning it will
688 // wrap around to zero when overflows. In this case, the second check is
689 // unnecessary, so we won't generate check2 when the SampledInstrPeriod is
690 // set to 65535 (64K - 1). The code after:
691 //   if (__llvm_profile_sampling__ < SampledInstrBurstDuration) {
692 //     Increment_Instruction;
693 //   }
694 //   __llvm_profile_sampling__ += 1;
695 //
696 // (3) Simple sampling:
697 // When SampledInstrBurstDuration sets to 1, we do a simple sampling:
698 //   __llvm_profile_sampling__ += 1;
699 //   if (__llvm_profile_sampling__ >= SampledInstrPeriod) {
700 //     __llvm_profile_sampling__ = 0;
701 //     Increment_Instruction;
702 //   }
703 //
704 // Note that, the code snippet after the transformation can still be counter
705 // promoted. However, with sampling enabled, counter updates are expected to
706 // be infrequent, making the benefits of counter promotion negligible.
707 // Moreover, counter promotion can potentially cause issues in server
708 // applications, particularly when the counters are dumped without a clean
709 // exit. To mitigate this risk, counter promotion is disabled by default when
710 // sampling is enabled. This behavior can be overridden using the internal
711 // option.
712 void InstrLowerer::doSampling(Instruction *I) {
713   if (!isSamplingEnabled())
714     return;
715 
716   unsigned SampledBurstDuration = SampledInstrBurstDuration.getValue();
717   unsigned SampledPeriod = SampledInstrPeriod.getValue();
718   if (SampledBurstDuration >= SampledPeriod) {
719     report_fatal_error(
720         "SampledPeriod needs to be greater than SampledBurstDuration");
721   }
722   bool UseShort = (SampledPeriod <= USHRT_MAX);
723   bool IsSimpleSampling = (SampledBurstDuration == 1);
724   // If (SampledBurstDuration == 1 && SampledPeriod == 65535), generate
725   // the simple sampling style code.
726   bool IsFastSampling = (!IsSimpleSampling && SampledPeriod == 65535);
727 
728   auto GetConstant = [UseShort](IRBuilder<> &Builder, uint32_t C) {
729     if (UseShort)
730       return Builder.getInt16(C);
731     else
732       return Builder.getInt32(C);
733   };
734 
735   IntegerType *SamplingVarTy;
736   if (UseShort)
737     SamplingVarTy = Type::getInt16Ty(M.getContext());
738   else
739     SamplingVarTy = Type::getInt32Ty(M.getContext());
740   auto *SamplingVar =
741       M.getGlobalVariable(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_SAMPLING_VAR));
742   assert(SamplingVar && "SamplingVar not set properly");
743 
744   // Create the condition for checking the burst duration.
745   Instruction *SamplingVarIncr;
746   Value *NewSamplingVarVal;
747   MDBuilder MDB(I->getContext());
748   MDNode *BranchWeight;
749   IRBuilder<> CondBuilder(I);
750   auto *LoadSamplingVar = CondBuilder.CreateLoad(SamplingVarTy, SamplingVar);
751   if (IsSimpleSampling) {
752     // For the simple sampling, just create the load and increments.
753     IRBuilder<> IncBuilder(I);
754     NewSamplingVarVal =
755         IncBuilder.CreateAdd(LoadSamplingVar, GetConstant(IncBuilder, 1));
756     SamplingVarIncr = IncBuilder.CreateStore(NewSamplingVarVal, SamplingVar);
757   } else {
758     // For the bust-sampling, create the conditonal update.
759     auto *DurationCond = CondBuilder.CreateICmpULE(
760         LoadSamplingVar, GetConstant(CondBuilder, SampledBurstDuration));
761     BranchWeight = MDB.createBranchWeights(
762         SampledBurstDuration, SampledPeriod + 1 - SampledBurstDuration);
763     Instruction *ThenTerm = SplitBlockAndInsertIfThen(
764         DurationCond, I, /* Unreachable */ false, BranchWeight);
765     IRBuilder<> IncBuilder(I);
766     NewSamplingVarVal =
767         IncBuilder.CreateAdd(LoadSamplingVar, GetConstant(IncBuilder, 1));
768     SamplingVarIncr = IncBuilder.CreateStore(NewSamplingVarVal, SamplingVar);
769     I->moveBefore(ThenTerm);
770   }
771 
772   if (IsFastSampling)
773     return;
774 
775   // Create the condtion for checking the period.
776   Instruction *ThenTerm, *ElseTerm;
777   IRBuilder<> PeriodCondBuilder(SamplingVarIncr);
778   auto *PeriodCond = PeriodCondBuilder.CreateICmpUGE(
779       NewSamplingVarVal, GetConstant(PeriodCondBuilder, SampledPeriod));
780   BranchWeight = MDB.createBranchWeights(1, SampledPeriod);
781   SplitBlockAndInsertIfThenElse(PeriodCond, SamplingVarIncr, &ThenTerm,
782                                 &ElseTerm, BranchWeight);
783 
784   // For the simple sampling, the counter update happens in sampling var reset.
785   if (IsSimpleSampling)
786     I->moveBefore(ThenTerm);
787 
788   IRBuilder<> ResetBuilder(ThenTerm);
789   ResetBuilder.CreateStore(GetConstant(ResetBuilder, 0), SamplingVar);
790   SamplingVarIncr->moveBefore(ElseTerm);
791 }
792 
793 bool InstrLowerer::lowerIntrinsics(Function *F) {
794   bool MadeChange = false;
795   PromotionCandidates.clear();
796   SmallVector<InstrProfInstBase *, 8> InstrProfInsts;
797 
798   // To ensure compatibility with sampling, we save the intrinsics into
799   // a buffer to prevent potential breakage of the iterator (as the
800   // intrinsics will be moved to a different BB).
801   for (BasicBlock &BB : *F) {
802     for (Instruction &Instr : llvm::make_early_inc_range(BB)) {
803       if (auto *IP = dyn_cast<InstrProfInstBase>(&Instr))
804         InstrProfInsts.push_back(IP);
805     }
806   }
807 
808   for (auto *Instr : InstrProfInsts) {
809     doSampling(Instr);
810     if (auto *IPIS = dyn_cast<InstrProfIncrementInstStep>(Instr)) {
811       lowerIncrement(IPIS);
812       MadeChange = true;
813     } else if (auto *IPI = dyn_cast<InstrProfIncrementInst>(Instr)) {
814       lowerIncrement(IPI);
815       MadeChange = true;
816     } else if (auto *IPC = dyn_cast<InstrProfTimestampInst>(Instr)) {
817       lowerTimestamp(IPC);
818       MadeChange = true;
819     } else if (auto *IPC = dyn_cast<InstrProfCoverInst>(Instr)) {
820       lowerCover(IPC);
821       MadeChange = true;
822     } else if (auto *IPVP = dyn_cast<InstrProfValueProfileInst>(Instr)) {
823       lowerValueProfileInst(IPVP);
824       MadeChange = true;
825     } else if (auto *IPMP = dyn_cast<InstrProfMCDCBitmapParameters>(Instr)) {
826       IPMP->eraseFromParent();
827       MadeChange = true;
828     } else if (auto *IPBU = dyn_cast<InstrProfMCDCTVBitmapUpdate>(Instr)) {
829       lowerMCDCTestVectorBitmapUpdate(IPBU);
830       MadeChange = true;
831     }
832   }
833 
834   if (!MadeChange)
835     return false;
836 
837   promoteCounterLoadStores(F);
838   return true;
839 }
840 
841 bool InstrLowerer::isRuntimeCounterRelocationEnabled() const {
842   // Mach-O don't support weak external references.
843   if (TT.isOSBinFormatMachO())
844     return false;
845 
846   if (RuntimeCounterRelocation.getNumOccurrences() > 0)
847     return RuntimeCounterRelocation;
848 
849   // Fuchsia uses runtime counter relocation by default.
850   return TT.isOSFuchsia();
851 }
852 
853 bool InstrLowerer::isSamplingEnabled() const {
854   if (SampledInstr.getNumOccurrences() > 0)
855     return SampledInstr;
856   return Options.Sampling;
857 }
858 
859 bool InstrLowerer::isCounterPromotionEnabled() const {
860   if (DoCounterPromotion.getNumOccurrences() > 0)
861     return DoCounterPromotion;
862 
863   return Options.DoCounterPromotion;
864 }
865 
866 void InstrLowerer::promoteCounterLoadStores(Function *F) {
867   if (!isCounterPromotionEnabled())
868     return;
869 
870   DominatorTree DT(*F);
871   LoopInfo LI(DT);
872   DenseMap<Loop *, SmallVector<LoadStorePair, 8>> LoopPromotionCandidates;
873 
874   std::unique_ptr<BlockFrequencyInfo> BFI;
875   if (Options.UseBFIInPromotion) {
876     std::unique_ptr<BranchProbabilityInfo> BPI;
877     BPI.reset(new BranchProbabilityInfo(*F, LI, &GetTLI(*F)));
878     BFI.reset(new BlockFrequencyInfo(*F, *BPI, LI));
879   }
880 
881   for (const auto &LoadStore : PromotionCandidates) {
882     auto *CounterLoad = LoadStore.first;
883     auto *CounterStore = LoadStore.second;
884     BasicBlock *BB = CounterLoad->getParent();
885     Loop *ParentLoop = LI.getLoopFor(BB);
886     if (!ParentLoop)
887       continue;
888     LoopPromotionCandidates[ParentLoop].emplace_back(CounterLoad, CounterStore);
889   }
890 
891   SmallVector<Loop *, 4> Loops = LI.getLoopsInPreorder();
892 
893   // Do a post-order traversal of the loops so that counter updates can be
894   // iteratively hoisted outside the loop nest.
895   for (auto *Loop : llvm::reverse(Loops)) {
896     PGOCounterPromoter Promoter(LoopPromotionCandidates, *Loop, LI, BFI.get());
897     Promoter.run(&TotalCountersPromoted);
898   }
899 }
900 
901 static bool needsRuntimeHookUnconditionally(const Triple &TT) {
902   // On Fuchsia, we only need runtime hook if any counters are present.
903   if (TT.isOSFuchsia())
904     return false;
905 
906   return true;
907 }
908 
909 /// Check if the module contains uses of any profiling intrinsics.
910 static bool containsProfilingIntrinsics(Module &M) {
911   auto containsIntrinsic = [&](int ID) {
912     if (auto *F = M.getFunction(Intrinsic::getName(ID)))
913       return !F->use_empty();
914     return false;
915   };
916   return containsIntrinsic(llvm::Intrinsic::instrprof_cover) ||
917          containsIntrinsic(llvm::Intrinsic::instrprof_increment) ||
918          containsIntrinsic(llvm::Intrinsic::instrprof_increment_step) ||
919          containsIntrinsic(llvm::Intrinsic::instrprof_timestamp) ||
920          containsIntrinsic(llvm::Intrinsic::instrprof_value_profile);
921 }
922 
923 bool InstrLowerer::lower() {
924   bool MadeChange = false;
925   bool NeedsRuntimeHook = needsRuntimeHookUnconditionally(TT);
926   if (NeedsRuntimeHook)
927     MadeChange = emitRuntimeHook();
928 
929   if (!IsCS && isSamplingEnabled())
930     createProfileSamplingVar(M);
931 
932   bool ContainsProfiling = containsProfilingIntrinsics(M);
933   GlobalVariable *CoverageNamesVar =
934       M.getNamedGlobal(getCoverageUnusedNamesVarName());
935   // Improve compile time by avoiding linear scans when there is no work.
936   if (!ContainsProfiling && !CoverageNamesVar)
937     return MadeChange;
938 
939   // We did not know how many value sites there would be inside
940   // the instrumented function. This is counting the number of instrumented
941   // target value sites to enter it as field in the profile data variable.
942   for (Function &F : M) {
943     InstrProfCntrInstBase *FirstProfInst = nullptr;
944     for (BasicBlock &BB : F) {
945       for (auto I = BB.begin(), E = BB.end(); I != E; I++) {
946         if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I))
947           computeNumValueSiteCounts(Ind);
948         else {
949           if (FirstProfInst == nullptr &&
950               (isa<InstrProfIncrementInst>(I) || isa<InstrProfCoverInst>(I)))
951             FirstProfInst = dyn_cast<InstrProfCntrInstBase>(I);
952           // If the MCDCBitmapParameters intrinsic seen, create the bitmaps.
953           if (const auto &Params = dyn_cast<InstrProfMCDCBitmapParameters>(I))
954             static_cast<void>(getOrCreateRegionBitmaps(Params));
955         }
956       }
957     }
958 
959     // Use a profile intrinsic to create the region counters and data variable.
960     // Also create the data variable based on the MCDCParams.
961     if (FirstProfInst != nullptr) {
962       static_cast<void>(getOrCreateRegionCounters(FirstProfInst));
963     }
964   }
965 
966   if (EnableVTableValueProfiling)
967     for (GlobalVariable &GV : M.globals())
968       // Global variables with type metadata are virtual table variables.
969       if (GV.hasMetadata(LLVMContext::MD_type))
970         getOrCreateVTableProfData(&GV);
971 
972   for (Function &F : M)
973     MadeChange |= lowerIntrinsics(&F);
974 
975   if (CoverageNamesVar) {
976     lowerCoverageData(CoverageNamesVar);
977     MadeChange = true;
978   }
979 
980   if (!MadeChange)
981     return false;
982 
983   emitVNodes();
984   emitNameData();
985   emitVTableNames();
986 
987   // Emit runtime hook for the cases where the target does not unconditionally
988   // require pulling in profile runtime, and coverage is enabled on code that is
989   // not eliminated by the front-end, e.g. unused functions with internal
990   // linkage.
991   if (!NeedsRuntimeHook && ContainsProfiling)
992     emitRuntimeHook();
993 
994   emitRegistration();
995   emitUses();
996   emitInitialization();
997   return true;
998 }
999 
1000 static FunctionCallee getOrInsertValueProfilingCall(
1001     Module &M, const TargetLibraryInfo &TLI,
1002     ValueProfilingCallType CallType = ValueProfilingCallType::Default) {
1003   LLVMContext &Ctx = M.getContext();
1004   auto *ReturnTy = Type::getVoidTy(M.getContext());
1005 
1006   AttributeList AL;
1007   if (auto AK = TLI.getExtAttrForI32Param(false))
1008     AL = AL.addParamAttribute(M.getContext(), 2, AK);
1009 
1010   assert((CallType == ValueProfilingCallType::Default ||
1011           CallType == ValueProfilingCallType::MemOp) &&
1012          "Must be Default or MemOp");
1013   Type *ParamTypes[] = {
1014 #define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType
1015 #include "llvm/ProfileData/InstrProfData.inc"
1016   };
1017   auto *ValueProfilingCallTy =
1018       FunctionType::get(ReturnTy, ArrayRef(ParamTypes), false);
1019   StringRef FuncName = CallType == ValueProfilingCallType::Default
1020                            ? getInstrProfValueProfFuncName()
1021                            : getInstrProfValueProfMemOpFuncName();
1022   return M.getOrInsertFunction(FuncName, ValueProfilingCallTy, AL);
1023 }
1024 
1025 void InstrLowerer::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) {
1026   GlobalVariable *Name = Ind->getName();
1027   uint64_t ValueKind = Ind->getValueKind()->getZExtValue();
1028   uint64_t Index = Ind->getIndex()->getZExtValue();
1029   auto &PD = ProfileDataMap[Name];
1030   PD.NumValueSites[ValueKind] =
1031       std::max(PD.NumValueSites[ValueKind], (uint32_t)(Index + 1));
1032 }
1033 
1034 void InstrLowerer::lowerValueProfileInst(InstrProfValueProfileInst *Ind) {
1035   // TODO: Value profiling heavily depends on the data section which is omitted
1036   // in lightweight mode. We need to move the value profile pointer to the
1037   // Counter struct to get this working.
1038   assert(
1039       !DebugInfoCorrelate && ProfileCorrelate == InstrProfCorrelator::NONE &&
1040       "Value profiling is not yet supported with lightweight instrumentation");
1041   GlobalVariable *Name = Ind->getName();
1042   auto It = ProfileDataMap.find(Name);
1043   assert(It != ProfileDataMap.end() && It->second.DataVar &&
1044          "value profiling detected in function with no counter incerement");
1045 
1046   GlobalVariable *DataVar = It->second.DataVar;
1047   uint64_t ValueKind = Ind->getValueKind()->getZExtValue();
1048   uint64_t Index = Ind->getIndex()->getZExtValue();
1049   for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind)
1050     Index += It->second.NumValueSites[Kind];
1051 
1052   IRBuilder<> Builder(Ind);
1053   bool IsMemOpSize = (Ind->getValueKind()->getZExtValue() ==
1054                       llvm::InstrProfValueKind::IPVK_MemOPSize);
1055   CallInst *Call = nullptr;
1056   auto *TLI = &GetTLI(*Ind->getFunction());
1057 
1058   // To support value profiling calls within Windows exception handlers, funclet
1059   // information contained within operand bundles needs to be copied over to
1060   // the library call. This is required for the IR to be processed by the
1061   // WinEHPrepare pass.
1062   SmallVector<OperandBundleDef, 1> OpBundles;
1063   Ind->getOperandBundlesAsDefs(OpBundles);
1064   if (!IsMemOpSize) {
1065     Value *Args[3] = {Ind->getTargetValue(), DataVar, Builder.getInt32(Index)};
1066     Call = Builder.CreateCall(getOrInsertValueProfilingCall(M, *TLI), Args,
1067                               OpBundles);
1068   } else {
1069     Value *Args[3] = {Ind->getTargetValue(), DataVar, Builder.getInt32(Index)};
1070     Call = Builder.CreateCall(
1071         getOrInsertValueProfilingCall(M, *TLI, ValueProfilingCallType::MemOp),
1072         Args, OpBundles);
1073   }
1074   if (auto AK = TLI->getExtAttrForI32Param(false))
1075     Call->addParamAttr(2, AK);
1076   Ind->replaceAllUsesWith(Call);
1077   Ind->eraseFromParent();
1078 }
1079 
1080 GlobalVariable *InstrLowerer::getOrCreateBiasVar(StringRef VarName) {
1081   GlobalVariable *Bias = M.getGlobalVariable(VarName);
1082   if (Bias)
1083     return Bias;
1084 
1085   Type *Int64Ty = Type::getInt64Ty(M.getContext());
1086 
1087   // Compiler must define this variable when runtime counter relocation
1088   // is being used. Runtime has a weak external reference that is used
1089   // to check whether that's the case or not.
1090   Bias = new GlobalVariable(M, Int64Ty, false, GlobalValue::LinkOnceODRLinkage,
1091                             Constant::getNullValue(Int64Ty), VarName);
1092   Bias->setVisibility(GlobalVariable::HiddenVisibility);
1093   // A definition that's weak (linkonce_odr) without being in a COMDAT
1094   // section wouldn't lead to link errors, but it would lead to a dead
1095   // data word from every TU but one. Putting it in COMDAT ensures there
1096   // will be exactly one data slot in the link.
1097   if (TT.supportsCOMDAT())
1098     Bias->setComdat(M.getOrInsertComdat(VarName));
1099 
1100   return Bias;
1101 }
1102 
1103 Value *InstrLowerer::getCounterAddress(InstrProfCntrInstBase *I) {
1104   auto *Counters = getOrCreateRegionCounters(I);
1105   IRBuilder<> Builder(I);
1106 
1107   if (isa<InstrProfTimestampInst>(I))
1108     Counters->setAlignment(Align(8));
1109 
1110   auto *Addr = Builder.CreateConstInBoundsGEP2_32(
1111       Counters->getValueType(), Counters, 0, I->getIndex()->getZExtValue());
1112 
1113   if (!isRuntimeCounterRelocationEnabled())
1114     return Addr;
1115 
1116   Type *Int64Ty = Type::getInt64Ty(M.getContext());
1117   Function *Fn = I->getParent()->getParent();
1118   LoadInst *&BiasLI = FunctionToProfileBiasMap[Fn];
1119   if (!BiasLI) {
1120     IRBuilder<> EntryBuilder(&Fn->getEntryBlock().front());
1121     auto *Bias = getOrCreateBiasVar(getInstrProfCounterBiasVarName());
1122     BiasLI = EntryBuilder.CreateLoad(Int64Ty, Bias, "profc_bias");
1123     // Bias doesn't change after startup.
1124     BiasLI->setMetadata(LLVMContext::MD_invariant_load,
1125                         MDNode::get(M.getContext(), std::nullopt));
1126   }
1127   auto *Add = Builder.CreateAdd(Builder.CreatePtrToInt(Addr, Int64Ty), BiasLI);
1128   return Builder.CreateIntToPtr(Add, Addr->getType());
1129 }
1130 
1131 /// Create `void [[alwaysinline]] rmw_or(uint8_t *ArgAddr, uint8_t ArgVal)`
1132 /// "Basic" sequence is `*ArgAddr |= ArgVal`
1133 Function *InstrLowerer::createRMWOrFunc() {
1134   auto &Ctx = M.getContext();
1135   auto *Int8Ty = Type::getInt8Ty(Ctx);
1136   Function *Fn = Function::Create(
1137       FunctionType::get(Type::getVoidTy(Ctx),
1138                         {PointerType::getUnqual(Ctx), Int8Ty}, false),
1139       Function::LinkageTypes::PrivateLinkage, "rmw_or", M);
1140   Fn->addFnAttr(Attribute::AlwaysInline);
1141   auto *ArgAddr = Fn->getArg(0);
1142   auto *ArgVal = Fn->getArg(1);
1143   IRBuilder<> Builder(BasicBlock::Create(Ctx, "", Fn));
1144 
1145   // Load profile bitmap byte.
1146   //  %mcdc.bits = load i8, ptr %4, align 1
1147   auto *Bitmap = Builder.CreateLoad(Int8Ty, ArgAddr, "mcdc.bits");
1148 
1149   if (Options.Atomic || AtomicCounterUpdateAll) {
1150     // If ((Bitmap & Val) != Val), then execute atomic (Bitmap |= Val).
1151     // Note, just-loaded Bitmap might not be up-to-date. Use it just for
1152     // early testing.
1153     auto *Masked = Builder.CreateAnd(Bitmap, ArgVal);
1154     auto *ShouldStore = Builder.CreateICmpNE(Masked, ArgVal);
1155     auto *ThenTerm = BasicBlock::Create(Ctx, "", Fn);
1156     auto *ElseTerm = BasicBlock::Create(Ctx, "", Fn);
1157     // Assume updating will be rare.
1158     auto *Unlikely = MDBuilder(Ctx).createUnlikelyBranchWeights();
1159     Builder.CreateCondBr(ShouldStore, ThenTerm, ElseTerm, Unlikely);
1160 
1161     IRBuilder<> ThenBuilder(ThenTerm);
1162     ThenBuilder.CreateAtomicRMW(AtomicRMWInst::Or, ArgAddr, ArgVal,
1163                                 MaybeAlign(), AtomicOrdering::Monotonic);
1164     ThenBuilder.CreateRetVoid();
1165 
1166     IRBuilder<> ElseBuilder(ElseTerm);
1167     ElseBuilder.CreateRetVoid();
1168 
1169     return Fn;
1170   }
1171 
1172   // Perform logical OR of profile bitmap byte and shifted bit offset.
1173   //  %8 = or i8 %mcdc.bits, %7
1174   auto *Result = Builder.CreateOr(Bitmap, ArgVal);
1175 
1176   // Store the updated profile bitmap byte.
1177   //  store i8 %8, ptr %3, align 1
1178   Builder.CreateStore(Result, ArgAddr);
1179 
1180   // Terminator
1181   Builder.CreateRetVoid();
1182 
1183   return Fn;
1184 }
1185 
1186 CallInst *InstrLowerer::getRMWOrCall(Value *Addr, Value *Val) {
1187   if (!RMWOrFunc)
1188     RMWOrFunc = createRMWOrFunc();
1189 
1190   return CallInst::Create(RMWOrFunc, {Addr, Val});
1191 }
1192 
1193 Value *InstrLowerer::getBitmapAddress(InstrProfMCDCTVBitmapUpdate *I) {
1194   auto *Bitmaps = getOrCreateRegionBitmaps(I);
1195   IRBuilder<> Builder(I);
1196 
1197   if (isRuntimeCounterRelocationEnabled()) {
1198     LLVMContext &Ctx = M.getContext();
1199     Ctx.diagnose(DiagnosticInfoPGOProfile(
1200         M.getName().data(),
1201         Twine("Runtime counter relocation is presently not supported for MC/DC "
1202               "bitmaps."),
1203         DS_Warning));
1204   }
1205 
1206   return Bitmaps;
1207 }
1208 
1209 void InstrLowerer::lowerCover(InstrProfCoverInst *CoverInstruction) {
1210   auto *Addr = getCounterAddress(CoverInstruction);
1211   IRBuilder<> Builder(CoverInstruction);
1212   // We store zero to represent that this block is covered.
1213   Builder.CreateStore(Builder.getInt8(0), Addr);
1214   CoverInstruction->eraseFromParent();
1215 }
1216 
1217 void InstrLowerer::lowerTimestamp(
1218     InstrProfTimestampInst *TimestampInstruction) {
1219   assert(TimestampInstruction->getIndex()->isZeroValue() &&
1220          "timestamp probes are always the first probe for a function");
1221   auto &Ctx = M.getContext();
1222   auto *TimestampAddr = getCounterAddress(TimestampInstruction);
1223   IRBuilder<> Builder(TimestampInstruction);
1224   auto *CalleeTy =
1225       FunctionType::get(Type::getVoidTy(Ctx), TimestampAddr->getType(), false);
1226   auto Callee = M.getOrInsertFunction(
1227       INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_SET_TIMESTAMP), CalleeTy);
1228   Builder.CreateCall(Callee, {TimestampAddr});
1229   TimestampInstruction->eraseFromParent();
1230 }
1231 
1232 void InstrLowerer::lowerIncrement(InstrProfIncrementInst *Inc) {
1233   auto *Addr = getCounterAddress(Inc);
1234 
1235   IRBuilder<> Builder(Inc);
1236   if (Options.Atomic || AtomicCounterUpdateAll ||
1237       (Inc->getIndex()->isZeroValue() && AtomicFirstCounter)) {
1238     Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, Inc->getStep(),
1239                             MaybeAlign(), AtomicOrdering::Monotonic);
1240   } else {
1241     Value *IncStep = Inc->getStep();
1242     Value *Load = Builder.CreateLoad(IncStep->getType(), Addr, "pgocount");
1243     auto *Count = Builder.CreateAdd(Load, Inc->getStep());
1244     auto *Store = Builder.CreateStore(Count, Addr);
1245     if (isCounterPromotionEnabled())
1246       PromotionCandidates.emplace_back(cast<Instruction>(Load), Store);
1247   }
1248   Inc->eraseFromParent();
1249 }
1250 
1251 void InstrLowerer::lowerCoverageData(GlobalVariable *CoverageNamesVar) {
1252   ConstantArray *Names =
1253       cast<ConstantArray>(CoverageNamesVar->getInitializer());
1254   for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) {
1255     Constant *NC = Names->getOperand(I);
1256     Value *V = NC->stripPointerCasts();
1257     assert(isa<GlobalVariable>(V) && "Missing reference to function name");
1258     GlobalVariable *Name = cast<GlobalVariable>(V);
1259 
1260     Name->setLinkage(GlobalValue::PrivateLinkage);
1261     ReferencedNames.push_back(Name);
1262     if (isa<ConstantExpr>(NC))
1263       NC->dropAllReferences();
1264   }
1265   CoverageNamesVar->eraseFromParent();
1266 }
1267 
1268 void InstrLowerer::lowerMCDCTestVectorBitmapUpdate(
1269     InstrProfMCDCTVBitmapUpdate *Update) {
1270   IRBuilder<> Builder(Update);
1271   auto *Int8Ty = Type::getInt8Ty(M.getContext());
1272   auto *Int32Ty = Type::getInt32Ty(M.getContext());
1273   auto *MCDCCondBitmapAddr = Update->getMCDCCondBitmapAddr();
1274   auto *BitmapAddr = getBitmapAddress(Update);
1275 
1276   // Load Temp Val + BitmapIdx.
1277   //  %mcdc.temp = load i32, ptr %mcdc.addr, align 4
1278   auto *Temp = Builder.CreateAdd(
1279       Builder.CreateLoad(Int32Ty, MCDCCondBitmapAddr, "mcdc.temp"),
1280       Update->getBitmapIndex());
1281 
1282   // Calculate byte offset using div8.
1283   //  %1 = lshr i32 %mcdc.temp, 3
1284   auto *BitmapByteOffset = Builder.CreateLShr(Temp, 0x3);
1285 
1286   // Add byte offset to section base byte address.
1287   // %4 = getelementptr inbounds i8, ptr @__profbm_test, i32 %1
1288   auto *BitmapByteAddr =
1289       Builder.CreateInBoundsPtrAdd(BitmapAddr, BitmapByteOffset);
1290 
1291   // Calculate bit offset into bitmap byte by using div8 remainder (AND ~8)
1292   //  %5 = and i32 %mcdc.temp, 7
1293   //  %6 = trunc i32 %5 to i8
1294   auto *BitToSet = Builder.CreateTrunc(Builder.CreateAnd(Temp, 0x7), Int8Ty);
1295 
1296   // Shift bit offset left to form a bitmap.
1297   //  %7 = shl i8 1, %6
1298   auto *ShiftedVal = Builder.CreateShl(Builder.getInt8(0x1), BitToSet);
1299 
1300   Builder.Insert(getRMWOrCall(BitmapByteAddr, ShiftedVal));
1301   Update->eraseFromParent();
1302 }
1303 
1304 /// Get the name of a profiling variable for a particular function.
1305 static std::string getVarName(InstrProfInstBase *Inc, StringRef Prefix,
1306                               bool &Renamed) {
1307   StringRef NamePrefix = getInstrProfNameVarPrefix();
1308   StringRef Name = Inc->getName()->getName().substr(NamePrefix.size());
1309   Function *F = Inc->getParent()->getParent();
1310   Module *M = F->getParent();
1311   if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) ||
1312       !canRenameComdatFunc(*F)) {
1313     Renamed = false;
1314     return (Prefix + Name).str();
1315   }
1316   Renamed = true;
1317   uint64_t FuncHash = Inc->getHash()->getZExtValue();
1318   SmallVector<char, 24> HashPostfix;
1319   if (Name.ends_with((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix)))
1320     return (Prefix + Name).str();
1321   return (Prefix + Name + "." + Twine(FuncHash)).str();
1322 }
1323 
1324 static inline bool shouldRecordFunctionAddr(Function *F) {
1325   // Only record function addresses if IR PGO is enabled or if clang value
1326   // profiling is enabled. Recording function addresses greatly increases object
1327   // file size, because it prevents the inliner from deleting functions that
1328   // have been inlined everywhere.
1329   if (!profDataReferencedByCode(*F->getParent()))
1330     return false;
1331 
1332   // Check the linkage
1333   bool HasAvailableExternallyLinkage = F->hasAvailableExternallyLinkage();
1334   if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() &&
1335       !HasAvailableExternallyLinkage)
1336     return true;
1337 
1338   // A function marked 'alwaysinline' with available_externally linkage can't
1339   // have its address taken. Doing so would create an undefined external ref to
1340   // the function, which would fail to link.
1341   if (HasAvailableExternallyLinkage &&
1342       F->hasFnAttribute(Attribute::AlwaysInline))
1343     return false;
1344 
1345   // Prohibit function address recording if the function is both internal and
1346   // COMDAT. This avoids the profile data variable referencing internal symbols
1347   // in COMDAT.
1348   if (F->hasLocalLinkage() && F->hasComdat())
1349     return false;
1350 
1351   // Check uses of this function for other than direct calls or invokes to it.
1352   // Inline virtual functions have linkeOnceODR linkage. When a key method
1353   // exists, the vtable will only be emitted in the TU where the key method
1354   // is defined. In a TU where vtable is not available, the function won't
1355   // be 'addresstaken'. If its address is not recorded here, the profile data
1356   // with missing address may be picked by the linker leading  to missing
1357   // indirect call target info.
1358   return F->hasAddressTaken() || F->hasLinkOnceLinkage();
1359 }
1360 
1361 static inline bool shouldUsePublicSymbol(Function *Fn) {
1362   // It isn't legal to make an alias of this function at all
1363   if (Fn->isDeclarationForLinker())
1364     return true;
1365 
1366   // Symbols with local linkage can just use the symbol directly without
1367   // introducing relocations
1368   if (Fn->hasLocalLinkage())
1369     return true;
1370 
1371   // PGO + ThinLTO + CFI cause duplicate symbols to be introduced due to some
1372   // unfavorable interaction between the new alias and the alias renaming done
1373   // in LowerTypeTests under ThinLTO. For comdat functions that would normally
1374   // be deduplicated, but the renaming scheme ends up preventing renaming, since
1375   // it creates unique names for each alias, resulting in duplicated symbols. In
1376   // the future, we should update the CFI related passes to migrate these
1377   // aliases to the same module as the jump-table they refer to will be defined.
1378   if (Fn->hasMetadata(LLVMContext::MD_type))
1379     return true;
1380 
1381   // For comdat functions, an alias would need the same linkage as the original
1382   // function and hidden visibility. There is no point in adding an alias with
1383   // identical linkage an visibility to avoid introducing symbolic relocations.
1384   if (Fn->hasComdat() &&
1385       (Fn->getVisibility() == GlobalValue::VisibilityTypes::HiddenVisibility))
1386     return true;
1387 
1388   // its OK to use an alias
1389   return false;
1390 }
1391 
1392 static inline Constant *getFuncAddrForProfData(Function *Fn) {
1393   auto *Int8PtrTy = PointerType::getUnqual(Fn->getContext());
1394   // Store a nullptr in __llvm_profd, if we shouldn't use a real address
1395   if (!shouldRecordFunctionAddr(Fn))
1396     return ConstantPointerNull::get(Int8PtrTy);
1397 
1398   // If we can't use an alias, we must use the public symbol, even though this
1399   // may require a symbolic relocation.
1400   if (shouldUsePublicSymbol(Fn))
1401     return Fn;
1402 
1403   // When possible use a private alias to avoid symbolic relocations.
1404   auto *GA = GlobalAlias::create(GlobalValue::LinkageTypes::PrivateLinkage,
1405                                  Fn->getName() + ".local", Fn);
1406 
1407   // When the instrumented function is a COMDAT function, we cannot use a
1408   // private alias. If we did, we would create reference to a local label in
1409   // this function's section. If this version of the function isn't selected by
1410   // the linker, then the metadata would introduce a reference to a discarded
1411   // section. So, for COMDAT functions, we need to adjust the linkage of the
1412   // alias. Using hidden visibility avoids a dynamic relocation and an entry in
1413   // the dynamic symbol table.
1414   //
1415   // Note that this handles COMDAT functions with visibility other than Hidden,
1416   // since that case is covered in shouldUsePublicSymbol()
1417   if (Fn->hasComdat()) {
1418     GA->setLinkage(Fn->getLinkage());
1419     GA->setVisibility(GlobalValue::VisibilityTypes::HiddenVisibility);
1420   }
1421 
1422   // appendToCompilerUsed(*Fn->getParent(), {GA});
1423 
1424   return GA;
1425 }
1426 
1427 static bool needsRuntimeRegistrationOfSectionRange(const Triple &TT) {
1428   // compiler-rt uses linker support to get data/counters/name start/end for
1429   // ELF, COFF, Mach-O and XCOFF.
1430   if (TT.isOSBinFormatELF() || TT.isOSBinFormatCOFF() ||
1431       TT.isOSBinFormatMachO() || TT.isOSBinFormatXCOFF())
1432     return false;
1433 
1434   return true;
1435 }
1436 
1437 void InstrLowerer::maybeSetComdat(GlobalVariable *GV, GlobalObject *GO,
1438                                   StringRef CounterGroupName) {
1439   // Place lowered global variables in a comdat group if the associated function
1440   // or global variable is a COMDAT. This will make sure that only one copy of
1441   // global variable (e.g. function counters) of the COMDAT function will be
1442   // emitted after linking.
1443   bool NeedComdat = needsComdatForCounter(*GO, M);
1444   bool UseComdat = (NeedComdat || TT.isOSBinFormatELF());
1445 
1446   if (!UseComdat)
1447     return;
1448 
1449   // Keep in mind that this pass may run before the inliner, so we need to
1450   // create a new comdat group (for counters, profiling data, etc). If we use
1451   // the comdat of the parent function, that will result in relocations against
1452   // discarded sections.
1453   //
1454   // If the data variable is referenced by code, non-counter variables (notably
1455   // profiling data) and counters have to be in different comdats for COFF
1456   // because the Visual C++ linker will report duplicate symbol errors if there
1457   // are multiple external symbols with the same name marked
1458   // IMAGE_COMDAT_SELECT_ASSOCIATIVE.
1459   StringRef GroupName = TT.isOSBinFormatCOFF() && DataReferencedByCode
1460                             ? GV->getName()
1461                             : CounterGroupName;
1462   Comdat *C = M.getOrInsertComdat(GroupName);
1463 
1464   if (!NeedComdat) {
1465     // Object file format must be ELF since `UseComdat && !NeedComdat` is true.
1466     //
1467     // For ELF, when not using COMDAT, put counters, data and values into a
1468     // nodeduplicate COMDAT which is lowered to a zero-flag section group. This
1469     // allows -z start-stop-gc to discard the entire group when the function is
1470     // discarded.
1471     C->setSelectionKind(Comdat::NoDeduplicate);
1472   }
1473   GV->setComdat(C);
1474   // COFF doesn't allow the comdat group leader to have private linkage, so
1475   // upgrade private linkage to internal linkage to produce a symbol table
1476   // entry.
1477   if (TT.isOSBinFormatCOFF() && GV->hasPrivateLinkage())
1478     GV->setLinkage(GlobalValue::InternalLinkage);
1479 }
1480 
1481 static inline bool shouldRecordVTableAddr(GlobalVariable *GV) {
1482   if (!profDataReferencedByCode(*GV->getParent()))
1483     return false;
1484 
1485   if (!GV->hasLinkOnceLinkage() && !GV->hasLocalLinkage() &&
1486       !GV->hasAvailableExternallyLinkage())
1487     return true;
1488 
1489   // This avoids the profile data from referencing internal symbols in
1490   // COMDAT.
1491   if (GV->hasLocalLinkage() && GV->hasComdat())
1492     return false;
1493 
1494   return true;
1495 }
1496 
1497 // FIXME: Introduce an internal alias like what's done for functions to reduce
1498 // the number of relocation entries.
1499 static inline Constant *getVTableAddrForProfData(GlobalVariable *GV) {
1500   auto *Int8PtrTy = PointerType::getUnqual(GV->getContext());
1501 
1502   // Store a nullptr in __profvt_ if a real address shouldn't be used.
1503   if (!shouldRecordVTableAddr(GV))
1504     return ConstantPointerNull::get(Int8PtrTy);
1505 
1506   return ConstantExpr::getBitCast(GV, Int8PtrTy);
1507 }
1508 
1509 void InstrLowerer::getOrCreateVTableProfData(GlobalVariable *GV) {
1510   assert(!DebugInfoCorrelate &&
1511          "Value profiling is not supported with lightweight instrumentation");
1512   if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage())
1513     return;
1514 
1515   // Skip llvm internal global variable or __prof variables.
1516   if (GV->getName().starts_with("llvm.") ||
1517       GV->getName().starts_with("__llvm") ||
1518       GV->getName().starts_with("__prof"))
1519     return;
1520 
1521   // VTableProfData already created
1522   auto It = VTableDataMap.find(GV);
1523   if (It != VTableDataMap.end() && It->second)
1524     return;
1525 
1526   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
1527   GlobalValue::VisibilityTypes Visibility = GV->getVisibility();
1528 
1529   // This is to keep consistent with per-function profile data
1530   // for correctness.
1531   if (TT.isOSBinFormatXCOFF()) {
1532     Linkage = GlobalValue::InternalLinkage;
1533     Visibility = GlobalValue::DefaultVisibility;
1534   }
1535 
1536   LLVMContext &Ctx = M.getContext();
1537   Type *DataTypes[] = {
1538 #define INSTR_PROF_VTABLE_DATA(Type, LLVMType, Name, Init) LLVMType,
1539 #include "llvm/ProfileData/InstrProfData.inc"
1540 #undef INSTR_PROF_VTABLE_DATA
1541   };
1542 
1543   auto *DataTy = StructType::get(Ctx, ArrayRef(DataTypes));
1544 
1545   // Used by INSTR_PROF_VTABLE_DATA MACRO
1546   Constant *VTableAddr = getVTableAddrForProfData(GV);
1547   const std::string PGOVTableName = getPGOName(*GV);
1548   // Record the length of the vtable. This is needed since vtable pointers
1549   // loaded from C++ objects might be from the middle of a vtable definition.
1550   uint32_t VTableSizeVal =
1551       M.getDataLayout().getTypeAllocSize(GV->getValueType());
1552 
1553   Constant *DataVals[] = {
1554 #define INSTR_PROF_VTABLE_DATA(Type, LLVMType, Name, Init) Init,
1555 #include "llvm/ProfileData/InstrProfData.inc"
1556 #undef INSTR_PROF_VTABLE_DATA
1557   };
1558 
1559   auto *Data =
1560       new GlobalVariable(M, DataTy, /*constant=*/false, Linkage,
1561                          ConstantStruct::get(DataTy, DataVals),
1562                          getInstrProfVTableVarPrefix() + PGOVTableName);
1563 
1564   Data->setVisibility(Visibility);
1565   Data->setSection(getInstrProfSectionName(IPSK_vtab, TT.getObjectFormat()));
1566   Data->setAlignment(Align(8));
1567 
1568   maybeSetComdat(Data, GV, Data->getName());
1569 
1570   VTableDataMap[GV] = Data;
1571 
1572   ReferencedVTables.push_back(GV);
1573 
1574   // VTable <Hash, Addr> is used by runtime but not referenced by other
1575   // sections. Conservatively mark it linker retained.
1576   UsedVars.push_back(Data);
1577 }
1578 
1579 GlobalVariable *InstrLowerer::setupProfileSection(InstrProfInstBase *Inc,
1580                                                   InstrProfSectKind IPSK) {
1581   GlobalVariable *NamePtr = Inc->getName();
1582 
1583   // Match the linkage and visibility of the name global.
1584   Function *Fn = Inc->getParent()->getParent();
1585   GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage();
1586   GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility();
1587 
1588   // Use internal rather than private linkage so the counter variable shows up
1589   // in the symbol table when using debug info for correlation.
1590   if ((DebugInfoCorrelate ||
1591        ProfileCorrelate == InstrProfCorrelator::DEBUG_INFO) &&
1592       TT.isOSBinFormatMachO() && Linkage == GlobalValue::PrivateLinkage)
1593     Linkage = GlobalValue::InternalLinkage;
1594 
1595   // Due to the limitation of binder as of 2021/09/28, the duplicate weak
1596   // symbols in the same csect won't be discarded. When there are duplicate weak
1597   // symbols, we can NOT guarantee that the relocations get resolved to the
1598   // intended weak symbol, so we can not ensure the correctness of the relative
1599   // CounterPtr, so we have to use private linkage for counter and data symbols.
1600   if (TT.isOSBinFormatXCOFF()) {
1601     Linkage = GlobalValue::PrivateLinkage;
1602     Visibility = GlobalValue::DefaultVisibility;
1603   }
1604   // Move the name variable to the right section.
1605   bool Renamed;
1606   GlobalVariable *Ptr;
1607   StringRef VarPrefix;
1608   std::string VarName;
1609   if (IPSK == IPSK_cnts) {
1610     VarPrefix = getInstrProfCountersVarPrefix();
1611     VarName = getVarName(Inc, VarPrefix, Renamed);
1612     InstrProfCntrInstBase *CntrIncrement = dyn_cast<InstrProfCntrInstBase>(Inc);
1613     Ptr = createRegionCounters(CntrIncrement, VarName, Linkage);
1614   } else if (IPSK == IPSK_bitmap) {
1615     VarPrefix = getInstrProfBitmapVarPrefix();
1616     VarName = getVarName(Inc, VarPrefix, Renamed);
1617     InstrProfMCDCBitmapInstBase *BitmapUpdate =
1618         dyn_cast<InstrProfMCDCBitmapInstBase>(Inc);
1619     Ptr = createRegionBitmaps(BitmapUpdate, VarName, Linkage);
1620   } else {
1621     llvm_unreachable("Profile Section must be for Counters or Bitmaps");
1622   }
1623 
1624   Ptr->setVisibility(Visibility);
1625   // Put the counters and bitmaps in their own sections so linkers can
1626   // remove unneeded sections.
1627   Ptr->setSection(getInstrProfSectionName(IPSK, TT.getObjectFormat()));
1628   Ptr->setLinkage(Linkage);
1629   maybeSetComdat(Ptr, Fn, VarName);
1630   return Ptr;
1631 }
1632 
1633 GlobalVariable *
1634 InstrLowerer::createRegionBitmaps(InstrProfMCDCBitmapInstBase *Inc,
1635                                   StringRef Name,
1636                                   GlobalValue::LinkageTypes Linkage) {
1637   uint64_t NumBytes = Inc->getNumBitmapBytes();
1638   auto *BitmapTy = ArrayType::get(Type::getInt8Ty(M.getContext()), NumBytes);
1639   auto GV = new GlobalVariable(M, BitmapTy, false, Linkage,
1640                                Constant::getNullValue(BitmapTy), Name);
1641   GV->setAlignment(Align(1));
1642   return GV;
1643 }
1644 
1645 GlobalVariable *
1646 InstrLowerer::getOrCreateRegionBitmaps(InstrProfMCDCBitmapInstBase *Inc) {
1647   GlobalVariable *NamePtr = Inc->getName();
1648   auto &PD = ProfileDataMap[NamePtr];
1649   if (PD.RegionBitmaps)
1650     return PD.RegionBitmaps;
1651 
1652   // If RegionBitmaps doesn't already exist, create it by first setting up
1653   // the corresponding profile section.
1654   auto *BitmapPtr = setupProfileSection(Inc, IPSK_bitmap);
1655   PD.RegionBitmaps = BitmapPtr;
1656   PD.NumBitmapBytes = Inc->getNumBitmapBytes();
1657   return PD.RegionBitmaps;
1658 }
1659 
1660 GlobalVariable *
1661 InstrLowerer::createRegionCounters(InstrProfCntrInstBase *Inc, StringRef Name,
1662                                    GlobalValue::LinkageTypes Linkage) {
1663   uint64_t NumCounters = Inc->getNumCounters()->getZExtValue();
1664   auto &Ctx = M.getContext();
1665   GlobalVariable *GV;
1666   if (isa<InstrProfCoverInst>(Inc)) {
1667     auto *CounterTy = Type::getInt8Ty(Ctx);
1668     auto *CounterArrTy = ArrayType::get(CounterTy, NumCounters);
1669     // TODO: `Constant::getAllOnesValue()` does not yet accept an array type.
1670     std::vector<Constant *> InitialValues(NumCounters,
1671                                           Constant::getAllOnesValue(CounterTy));
1672     GV = new GlobalVariable(M, CounterArrTy, false, Linkage,
1673                             ConstantArray::get(CounterArrTy, InitialValues),
1674                             Name);
1675     GV->setAlignment(Align(1));
1676   } else {
1677     auto *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters);
1678     GV = new GlobalVariable(M, CounterTy, false, Linkage,
1679                             Constant::getNullValue(CounterTy), Name);
1680     GV->setAlignment(Align(8));
1681   }
1682   return GV;
1683 }
1684 
1685 GlobalVariable *
1686 InstrLowerer::getOrCreateRegionCounters(InstrProfCntrInstBase *Inc) {
1687   GlobalVariable *NamePtr = Inc->getName();
1688   auto &PD = ProfileDataMap[NamePtr];
1689   if (PD.RegionCounters)
1690     return PD.RegionCounters;
1691 
1692   // If RegionCounters doesn't already exist, create it by first setting up
1693   // the corresponding profile section.
1694   auto *CounterPtr = setupProfileSection(Inc, IPSK_cnts);
1695   PD.RegionCounters = CounterPtr;
1696 
1697   if (DebugInfoCorrelate ||
1698       ProfileCorrelate == InstrProfCorrelator::DEBUG_INFO) {
1699     LLVMContext &Ctx = M.getContext();
1700     Function *Fn = Inc->getParent()->getParent();
1701     if (auto *SP = Fn->getSubprogram()) {
1702       DIBuilder DB(M, true, SP->getUnit());
1703       Metadata *FunctionNameAnnotation[] = {
1704           MDString::get(Ctx, InstrProfCorrelator::FunctionNameAttributeName),
1705           MDString::get(Ctx, getPGOFuncNameVarInitializer(NamePtr)),
1706       };
1707       Metadata *CFGHashAnnotation[] = {
1708           MDString::get(Ctx, InstrProfCorrelator::CFGHashAttributeName),
1709           ConstantAsMetadata::get(Inc->getHash()),
1710       };
1711       Metadata *NumCountersAnnotation[] = {
1712           MDString::get(Ctx, InstrProfCorrelator::NumCountersAttributeName),
1713           ConstantAsMetadata::get(Inc->getNumCounters()),
1714       };
1715       auto Annotations = DB.getOrCreateArray({
1716           MDNode::get(Ctx, FunctionNameAnnotation),
1717           MDNode::get(Ctx, CFGHashAnnotation),
1718           MDNode::get(Ctx, NumCountersAnnotation),
1719       });
1720       auto *DICounter = DB.createGlobalVariableExpression(
1721           SP, CounterPtr->getName(), /*LinkageName=*/StringRef(), SP->getFile(),
1722           /*LineNo=*/0, DB.createUnspecifiedType("Profile Data Type"),
1723           CounterPtr->hasLocalLinkage(), /*IsDefined=*/true, /*Expr=*/nullptr,
1724           /*Decl=*/nullptr, /*TemplateParams=*/nullptr, /*AlignInBits=*/0,
1725           Annotations);
1726       CounterPtr->addDebugInfo(DICounter);
1727       DB.finalize();
1728     }
1729 
1730     // Mark the counter variable as used so that it isn't optimized out.
1731     CompilerUsedVars.push_back(PD.RegionCounters);
1732   }
1733 
1734   // Create the data variable (if it doesn't already exist).
1735   createDataVariable(Inc);
1736 
1737   return PD.RegionCounters;
1738 }
1739 
1740 void InstrLowerer::createDataVariable(InstrProfCntrInstBase *Inc) {
1741   // When debug information is correlated to profile data, a data variable
1742   // is not needed.
1743   if (DebugInfoCorrelate || ProfileCorrelate == InstrProfCorrelator::DEBUG_INFO)
1744     return;
1745 
1746   GlobalVariable *NamePtr = Inc->getName();
1747   auto &PD = ProfileDataMap[NamePtr];
1748 
1749   // Return if data variable was already created.
1750   if (PD.DataVar)
1751     return;
1752 
1753   LLVMContext &Ctx = M.getContext();
1754 
1755   Function *Fn = Inc->getParent()->getParent();
1756   GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage();
1757   GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility();
1758 
1759   // Due to the limitation of binder as of 2021/09/28, the duplicate weak
1760   // symbols in the same csect won't be discarded. When there are duplicate weak
1761   // symbols, we can NOT guarantee that the relocations get resolved to the
1762   // intended weak symbol, so we can not ensure the correctness of the relative
1763   // CounterPtr, so we have to use private linkage for counter and data symbols.
1764   if (TT.isOSBinFormatXCOFF()) {
1765     Linkage = GlobalValue::PrivateLinkage;
1766     Visibility = GlobalValue::DefaultVisibility;
1767   }
1768 
1769   bool NeedComdat = needsComdatForCounter(*Fn, M);
1770   bool Renamed;
1771 
1772   // The Data Variable section is anchored to profile counters.
1773   std::string CntsVarName =
1774       getVarName(Inc, getInstrProfCountersVarPrefix(), Renamed);
1775   std::string DataVarName =
1776       getVarName(Inc, getInstrProfDataVarPrefix(), Renamed);
1777 
1778   auto *Int8PtrTy = PointerType::getUnqual(Ctx);
1779   // Allocate statically the array of pointers to value profile nodes for
1780   // the current function.
1781   Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy);
1782   uint64_t NS = 0;
1783   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1784     NS += PD.NumValueSites[Kind];
1785   if (NS > 0 && ValueProfileStaticAlloc &&
1786       !needsRuntimeRegistrationOfSectionRange(TT)) {
1787     ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS);
1788     auto *ValuesVar = new GlobalVariable(
1789         M, ValuesTy, false, Linkage, Constant::getNullValue(ValuesTy),
1790         getVarName(Inc, getInstrProfValuesVarPrefix(), Renamed));
1791     ValuesVar->setVisibility(Visibility);
1792     setGlobalVariableLargeSection(TT, *ValuesVar);
1793     ValuesVar->setSection(
1794         getInstrProfSectionName(IPSK_vals, TT.getObjectFormat()));
1795     ValuesVar->setAlignment(Align(8));
1796     maybeSetComdat(ValuesVar, Fn, CntsVarName);
1797     ValuesPtrExpr = ValuesVar;
1798   }
1799 
1800   uint64_t NumCounters = Inc->getNumCounters()->getZExtValue();
1801   auto *CounterPtr = PD.RegionCounters;
1802 
1803   uint64_t NumBitmapBytes = PD.NumBitmapBytes;
1804 
1805   // Create data variable.
1806   auto *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext());
1807   auto *Int16Ty = Type::getInt16Ty(Ctx);
1808   auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1);
1809   Type *DataTypes[] = {
1810 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType,
1811 #include "llvm/ProfileData/InstrProfData.inc"
1812   };
1813   auto *DataTy = StructType::get(Ctx, ArrayRef(DataTypes));
1814 
1815   Constant *FunctionAddr = getFuncAddrForProfData(Fn);
1816 
1817   Constant *Int16ArrayVals[IPVK_Last + 1];
1818   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1819     Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]);
1820 
1821   // If the data variable is not referenced by code (if we don't emit
1822   // @llvm.instrprof.value.profile, NS will be 0), and the counter keeps the
1823   // data variable live under linker GC, the data variable can be private. This
1824   // optimization applies to ELF.
1825   //
1826   // On COFF, a comdat leader cannot be local so we require DataReferencedByCode
1827   // to be false.
1828   //
1829   // If profd is in a deduplicate comdat, NS==0 with a hash suffix guarantees
1830   // that other copies must have the same CFG and cannot have value profiling.
1831   // If no hash suffix, other profd copies may be referenced by code.
1832   if (NS == 0 && !(DataReferencedByCode && NeedComdat && !Renamed) &&
1833       (TT.isOSBinFormatELF() ||
1834        (!DataReferencedByCode && TT.isOSBinFormatCOFF()))) {
1835     Linkage = GlobalValue::PrivateLinkage;
1836     Visibility = GlobalValue::DefaultVisibility;
1837   }
1838   auto *Data =
1839       new GlobalVariable(M, DataTy, false, Linkage, nullptr, DataVarName);
1840   Constant *RelativeCounterPtr;
1841   GlobalVariable *BitmapPtr = PD.RegionBitmaps;
1842   Constant *RelativeBitmapPtr = ConstantInt::get(IntPtrTy, 0);
1843   InstrProfSectKind DataSectionKind;
1844   // With binary profile correlation, profile data is not loaded into memory.
1845   // profile data must reference profile counter with an absolute relocation.
1846   if (ProfileCorrelate == InstrProfCorrelator::BINARY) {
1847     DataSectionKind = IPSK_covdata;
1848     RelativeCounterPtr = ConstantExpr::getPtrToInt(CounterPtr, IntPtrTy);
1849     if (BitmapPtr != nullptr)
1850       RelativeBitmapPtr = ConstantExpr::getPtrToInt(BitmapPtr, IntPtrTy);
1851   } else {
1852     // Reference the counter variable with a label difference (link-time
1853     // constant).
1854     DataSectionKind = IPSK_data;
1855     RelativeCounterPtr =
1856         ConstantExpr::getSub(ConstantExpr::getPtrToInt(CounterPtr, IntPtrTy),
1857                              ConstantExpr::getPtrToInt(Data, IntPtrTy));
1858     if (BitmapPtr != nullptr)
1859       RelativeBitmapPtr =
1860           ConstantExpr::getSub(ConstantExpr::getPtrToInt(BitmapPtr, IntPtrTy),
1861                                ConstantExpr::getPtrToInt(Data, IntPtrTy));
1862   }
1863 
1864   Constant *DataVals[] = {
1865 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init,
1866 #include "llvm/ProfileData/InstrProfData.inc"
1867   };
1868   Data->setInitializer(ConstantStruct::get(DataTy, DataVals));
1869 
1870   Data->setVisibility(Visibility);
1871   Data->setSection(
1872       getInstrProfSectionName(DataSectionKind, TT.getObjectFormat()));
1873   Data->setAlignment(Align(INSTR_PROF_DATA_ALIGNMENT));
1874   maybeSetComdat(Data, Fn, CntsVarName);
1875 
1876   PD.DataVar = Data;
1877 
1878   // Mark the data variable as used so that it isn't stripped out.
1879   CompilerUsedVars.push_back(Data);
1880   // Now that the linkage set by the FE has been passed to the data and counter
1881   // variables, reset Name variable's linkage and visibility to private so that
1882   // it can be removed later by the compiler.
1883   NamePtr->setLinkage(GlobalValue::PrivateLinkage);
1884   // Collect the referenced names to be used by emitNameData.
1885   ReferencedNames.push_back(NamePtr);
1886 }
1887 
1888 void InstrLowerer::emitVNodes() {
1889   if (!ValueProfileStaticAlloc)
1890     return;
1891 
1892   // For now only support this on platforms that do
1893   // not require runtime registration to discover
1894   // named section start/end.
1895   if (needsRuntimeRegistrationOfSectionRange(TT))
1896     return;
1897 
1898   size_t TotalNS = 0;
1899   for (auto &PD : ProfileDataMap) {
1900     for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1901       TotalNS += PD.second.NumValueSites[Kind];
1902   }
1903 
1904   if (!TotalNS)
1905     return;
1906 
1907   uint64_t NumCounters = TotalNS * NumCountersPerValueSite;
1908 // Heuristic for small programs with very few total value sites.
1909 // The default value of vp-counters-per-site is chosen based on
1910 // the observation that large apps usually have a low percentage
1911 // of value sites that actually have any profile data, and thus
1912 // the average number of counters per site is low. For small
1913 // apps with very few sites, this may not be true. Bump up the
1914 // number of counters in this case.
1915 #define INSTR_PROF_MIN_VAL_COUNTS 10
1916   if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS)
1917     NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2);
1918 
1919   auto &Ctx = M.getContext();
1920   Type *VNodeTypes[] = {
1921 #define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType,
1922 #include "llvm/ProfileData/InstrProfData.inc"
1923   };
1924   auto *VNodeTy = StructType::get(Ctx, ArrayRef(VNodeTypes));
1925 
1926   ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters);
1927   auto *VNodesVar = new GlobalVariable(
1928       M, VNodesTy, false, GlobalValue::PrivateLinkage,
1929       Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName());
1930   setGlobalVariableLargeSection(TT, *VNodesVar);
1931   VNodesVar->setSection(
1932       getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat()));
1933   VNodesVar->setAlignment(M.getDataLayout().getABITypeAlign(VNodesTy));
1934   // VNodesVar is used by runtime but not referenced via relocation by other
1935   // sections. Conservatively make it linker retained.
1936   UsedVars.push_back(VNodesVar);
1937 }
1938 
1939 void InstrLowerer::emitNameData() {
1940   std::string UncompressedData;
1941 
1942   if (ReferencedNames.empty())
1943     return;
1944 
1945   std::string CompressedNameStr;
1946   if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr,
1947                                           DoInstrProfNameCompression)) {
1948     report_fatal_error(Twine(toString(std::move(E))), false);
1949   }
1950 
1951   auto &Ctx = M.getContext();
1952   auto *NamesVal =
1953       ConstantDataArray::getString(Ctx, StringRef(CompressedNameStr), false);
1954   NamesVar = new GlobalVariable(M, NamesVal->getType(), true,
1955                                 GlobalValue::PrivateLinkage, NamesVal,
1956                                 getInstrProfNamesVarName());
1957   NamesSize = CompressedNameStr.size();
1958   setGlobalVariableLargeSection(TT, *NamesVar);
1959   NamesVar->setSection(
1960       ProfileCorrelate == InstrProfCorrelator::BINARY
1961           ? getInstrProfSectionName(IPSK_covname, TT.getObjectFormat())
1962           : getInstrProfSectionName(IPSK_name, TT.getObjectFormat()));
1963   // On COFF, it's important to reduce the alignment down to 1 to prevent the
1964   // linker from inserting padding before the start of the names section or
1965   // between names entries.
1966   NamesVar->setAlignment(Align(1));
1967   // NamesVar is used by runtime but not referenced via relocation by other
1968   // sections. Conservatively make it linker retained.
1969   UsedVars.push_back(NamesVar);
1970 
1971   for (auto *NamePtr : ReferencedNames)
1972     NamePtr->eraseFromParent();
1973 }
1974 
1975 void InstrLowerer::emitVTableNames() {
1976   if (!EnableVTableValueProfiling || ReferencedVTables.empty())
1977     return;
1978 
1979   // Collect the PGO names of referenced vtables and compress them.
1980   std::string CompressedVTableNames;
1981   if (Error E = collectVTableStrings(ReferencedVTables, CompressedVTableNames,
1982                                      DoInstrProfNameCompression)) {
1983     report_fatal_error(Twine(toString(std::move(E))), false);
1984   }
1985 
1986   auto &Ctx = M.getContext();
1987   auto *VTableNamesVal = ConstantDataArray::getString(
1988       Ctx, StringRef(CompressedVTableNames), false /* AddNull */);
1989   GlobalVariable *VTableNamesVar =
1990       new GlobalVariable(M, VTableNamesVal->getType(), true /* constant */,
1991                          GlobalValue::PrivateLinkage, VTableNamesVal,
1992                          getInstrProfVTableNamesVarName());
1993   VTableNamesVar->setSection(
1994       getInstrProfSectionName(IPSK_vname, TT.getObjectFormat()));
1995   VTableNamesVar->setAlignment(Align(1));
1996   // Make VTableNames linker retained.
1997   UsedVars.push_back(VTableNamesVar);
1998 }
1999 
2000 void InstrLowerer::emitRegistration() {
2001   if (!needsRuntimeRegistrationOfSectionRange(TT))
2002     return;
2003 
2004   // Construct the function.
2005   auto *VoidTy = Type::getVoidTy(M.getContext());
2006   auto *VoidPtrTy = PointerType::getUnqual(M.getContext());
2007   auto *Int64Ty = Type::getInt64Ty(M.getContext());
2008   auto *RegisterFTy = FunctionType::get(VoidTy, false);
2009   auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage,
2010                                      getInstrProfRegFuncsName(), M);
2011   RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
2012   if (Options.NoRedZone)
2013     RegisterF->addFnAttr(Attribute::NoRedZone);
2014 
2015   auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false);
2016   auto *RuntimeRegisterF =
2017       Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage,
2018                        getInstrProfRegFuncName(), M);
2019 
2020   IRBuilder<> IRB(BasicBlock::Create(M.getContext(), "", RegisterF));
2021   for (Value *Data : CompilerUsedVars)
2022     if (!isa<Function>(Data))
2023       IRB.CreateCall(RuntimeRegisterF, Data);
2024   for (Value *Data : UsedVars)
2025     if (Data != NamesVar && !isa<Function>(Data))
2026       IRB.CreateCall(RuntimeRegisterF, Data);
2027 
2028   if (NamesVar) {
2029     Type *ParamTypes[] = {VoidPtrTy, Int64Ty};
2030     auto *NamesRegisterTy =
2031         FunctionType::get(VoidTy, ArrayRef(ParamTypes), false);
2032     auto *NamesRegisterF =
2033         Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage,
2034                          getInstrProfNamesRegFuncName(), M);
2035     IRB.CreateCall(NamesRegisterF, {NamesVar, IRB.getInt64(NamesSize)});
2036   }
2037 
2038   IRB.CreateRetVoid();
2039 }
2040 
2041 bool InstrLowerer::emitRuntimeHook() {
2042   // We expect the linker to be invoked with -u<hook_var> flag for Linux
2043   // in which case there is no need to emit the external variable.
2044   if (TT.isOSLinux() || TT.isOSAIX())
2045     return false;
2046 
2047   // If the module's provided its own runtime, we don't need to do anything.
2048   if (M.getGlobalVariable(getInstrProfRuntimeHookVarName()))
2049     return false;
2050 
2051   // Declare an external variable that will pull in the runtime initialization.
2052   auto *Int32Ty = Type::getInt32Ty(M.getContext());
2053   auto *Var =
2054       new GlobalVariable(M, Int32Ty, false, GlobalValue::ExternalLinkage,
2055                          nullptr, getInstrProfRuntimeHookVarName());
2056   Var->setVisibility(GlobalValue::HiddenVisibility);
2057 
2058   if (TT.isOSBinFormatELF() && !TT.isPS()) {
2059     // Mark the user variable as used so that it isn't stripped out.
2060     CompilerUsedVars.push_back(Var);
2061   } else {
2062     // Make a function that uses it.
2063     auto *User = Function::Create(FunctionType::get(Int32Ty, false),
2064                                   GlobalValue::LinkOnceODRLinkage,
2065                                   getInstrProfRuntimeHookVarUseFuncName(), M);
2066     User->addFnAttr(Attribute::NoInline);
2067     if (Options.NoRedZone)
2068       User->addFnAttr(Attribute::NoRedZone);
2069     User->setVisibility(GlobalValue::HiddenVisibility);
2070     if (TT.supportsCOMDAT())
2071       User->setComdat(M.getOrInsertComdat(User->getName()));
2072 
2073     IRBuilder<> IRB(BasicBlock::Create(M.getContext(), "", User));
2074     auto *Load = IRB.CreateLoad(Int32Ty, Var);
2075     IRB.CreateRet(Load);
2076 
2077     // Mark the function as used so that it isn't stripped out.
2078     CompilerUsedVars.push_back(User);
2079   }
2080   return true;
2081 }
2082 
2083 void InstrLowerer::emitUses() {
2084   // The metadata sections are parallel arrays. Optimizers (e.g.
2085   // GlobalOpt/ConstantMerge) may not discard associated sections as a unit, so
2086   // we conservatively retain all unconditionally in the compiler.
2087   //
2088   // On ELF and Mach-O, the linker can guarantee the associated sections will be
2089   // retained or discarded as a unit, so llvm.compiler.used is sufficient.
2090   // Similarly on COFF, if prof data is not referenced by code we use one comdat
2091   // and ensure this GC property as well. Otherwise, we have to conservatively
2092   // make all of the sections retained by the linker.
2093   if (TT.isOSBinFormatELF() || TT.isOSBinFormatMachO() ||
2094       (TT.isOSBinFormatCOFF() && !DataReferencedByCode))
2095     appendToCompilerUsed(M, CompilerUsedVars);
2096   else
2097     appendToUsed(M, CompilerUsedVars);
2098 
2099   // We do not add proper references from used metadata sections to NamesVar and
2100   // VNodesVar, so we have to be conservative and place them in llvm.used
2101   // regardless of the target,
2102   appendToUsed(M, UsedVars);
2103 }
2104 
2105 void InstrLowerer::emitInitialization() {
2106   // Create ProfileFileName variable. Don't don't this for the
2107   // context-sensitive instrumentation lowering: This lowering is after
2108   // LTO/ThinLTO linking. Pass PGOInstrumentationGenCreateVar should
2109   // have already create the variable before LTO/ThinLTO linking.
2110   if (!IsCS)
2111     createProfileFileNameVar(M, Options.InstrProfileOutput);
2112   Function *RegisterF = M.getFunction(getInstrProfRegFuncsName());
2113   if (!RegisterF)
2114     return;
2115 
2116   // Create the initialization function.
2117   auto *VoidTy = Type::getVoidTy(M.getContext());
2118   auto *F = Function::Create(FunctionType::get(VoidTy, false),
2119                              GlobalValue::InternalLinkage,
2120                              getInstrProfInitFuncName(), M);
2121   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
2122   F->addFnAttr(Attribute::NoInline);
2123   if (Options.NoRedZone)
2124     F->addFnAttr(Attribute::NoRedZone);
2125 
2126   // Add the basic block and the necessary calls.
2127   IRBuilder<> IRB(BasicBlock::Create(M.getContext(), "", F));
2128   IRB.CreateCall(RegisterF, {});
2129   IRB.CreateRetVoid();
2130 
2131   appendToGlobalCtors(M, F, 0);
2132 }
2133 
2134 namespace llvm {
2135 // Create the variable for profile sampling.
2136 void createProfileSamplingVar(Module &M) {
2137   const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_SAMPLING_VAR));
2138   IntegerType *SamplingVarTy;
2139   Constant *ValueZero;
2140   if (SampledInstrPeriod.getValue() <= USHRT_MAX) {
2141     SamplingVarTy = Type::getInt16Ty(M.getContext());
2142     ValueZero = Constant::getIntegerValue(SamplingVarTy, APInt(16, 0));
2143   } else {
2144     SamplingVarTy = Type::getInt32Ty(M.getContext());
2145     ValueZero = Constant::getIntegerValue(SamplingVarTy, APInt(32, 0));
2146   }
2147   auto SamplingVar = new GlobalVariable(
2148       M, SamplingVarTy, false, GlobalValue::WeakAnyLinkage, ValueZero, VarName);
2149   SamplingVar->setVisibility(GlobalValue::DefaultVisibility);
2150   SamplingVar->setThreadLocal(true);
2151   Triple TT(M.getTargetTriple());
2152   if (TT.supportsCOMDAT()) {
2153     SamplingVar->setLinkage(GlobalValue::ExternalLinkage);
2154     SamplingVar->setComdat(M.getOrInsertComdat(VarName));
2155   }
2156   appendToCompilerUsed(M, SamplingVar);
2157 }
2158 } // namespace llvm
2159