1 //===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass lowers instrprof_* intrinsics emitted by a frontend for profiling. 10 // It also builds the data structures and initialization code needed for 11 // updating execution counts and emitting the profile at runtime. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DIBuilder.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/ProfileData/InstrProf.h" 45 #include "llvm/ProfileData/InstrProfCorrelator.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Error.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Transforms/Utils/ModuleUtils.h" 51 #include "llvm/Transforms/Utils/SSAUpdater.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <string> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "instrprof" 60 61 namespace llvm { 62 cl::opt<bool> 63 DebugInfoCorrelate("debug-info-correlate", 64 cl::desc("Use debug info to correlate profiles."), 65 cl::init(false)); 66 } // namespace llvm 67 68 namespace { 69 70 cl::opt<bool> DoHashBasedCounterSplit( 71 "hash-based-counter-split", 72 cl::desc("Rename counter variable of a comdat function based on cfg hash"), 73 cl::init(true)); 74 75 cl::opt<bool> 76 RuntimeCounterRelocation("runtime-counter-relocation", 77 cl::desc("Enable relocating counters at runtime."), 78 cl::init(false)); 79 80 cl::opt<bool> ValueProfileStaticAlloc( 81 "vp-static-alloc", 82 cl::desc("Do static counter allocation for value profiler"), 83 cl::init(true)); 84 85 cl::opt<double> NumCountersPerValueSite( 86 "vp-counters-per-site", 87 cl::desc("The average number of profile counters allocated " 88 "per value profiling site."), 89 // This is set to a very small value because in real programs, only 90 // a very small percentage of value sites have non-zero targets, e.g, 1/30. 91 // For those sites with non-zero profile, the average number of targets 92 // is usually smaller than 2. 93 cl::init(1.0)); 94 95 cl::opt<bool> AtomicCounterUpdateAll( 96 "instrprof-atomic-counter-update-all", 97 cl::desc("Make all profile counter updates atomic (for testing only)"), 98 cl::init(false)); 99 100 cl::opt<bool> AtomicCounterUpdatePromoted( 101 "atomic-counter-update-promoted", 102 cl::desc("Do counter update using atomic fetch add " 103 " for promoted counters only"), 104 cl::init(false)); 105 106 cl::opt<bool> AtomicFirstCounter( 107 "atomic-first-counter", 108 cl::desc("Use atomic fetch add for first counter in a function (usually " 109 "the entry counter)"), 110 cl::init(false)); 111 112 // If the option is not specified, the default behavior about whether 113 // counter promotion is done depends on how instrumentaiton lowering 114 // pipeline is setup, i.e., the default value of true of this option 115 // does not mean the promotion will be done by default. Explicitly 116 // setting this option can override the default behavior. 117 cl::opt<bool> DoCounterPromotion("do-counter-promotion", 118 cl::desc("Do counter register promotion"), 119 cl::init(false)); 120 cl::opt<unsigned> MaxNumOfPromotionsPerLoop( 121 "max-counter-promotions-per-loop", cl::init(20), 122 cl::desc("Max number counter promotions per loop to avoid" 123 " increasing register pressure too much")); 124 125 // A debug option 126 cl::opt<int> 127 MaxNumOfPromotions("max-counter-promotions", cl::init(-1), 128 cl::desc("Max number of allowed counter promotions")); 129 130 cl::opt<unsigned> SpeculativeCounterPromotionMaxExiting( 131 "speculative-counter-promotion-max-exiting", cl::init(3), 132 cl::desc("The max number of exiting blocks of a loop to allow " 133 " speculative counter promotion")); 134 135 cl::opt<bool> SpeculativeCounterPromotionToLoop( 136 "speculative-counter-promotion-to-loop", 137 cl::desc("When the option is false, if the target block is in a loop, " 138 "the promotion will be disallowed unless the promoted counter " 139 " update can be further/iteratively promoted into an acyclic " 140 " region.")); 141 142 cl::opt<bool> IterativeCounterPromotion( 143 "iterative-counter-promotion", cl::init(true), 144 cl::desc("Allow counter promotion across the whole loop nest.")); 145 146 cl::opt<bool> SkipRetExitBlock( 147 "skip-ret-exit-block", cl::init(true), 148 cl::desc("Suppress counter promotion if exit blocks contain ret.")); 149 150 /// 151 /// A helper class to promote one counter RMW operation in the loop 152 /// into register update. 153 /// 154 /// RWM update for the counter will be sinked out of the loop after 155 /// the transformation. 156 /// 157 class PGOCounterPromoterHelper : public LoadAndStorePromoter { 158 public: 159 PGOCounterPromoterHelper( 160 Instruction *L, Instruction *S, SSAUpdater &SSA, Value *Init, 161 BasicBlock *PH, ArrayRef<BasicBlock *> ExitBlocks, 162 ArrayRef<Instruction *> InsertPts, 163 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, 164 LoopInfo &LI) 165 : LoadAndStorePromoter({L, S}, SSA), Store(S), ExitBlocks(ExitBlocks), 166 InsertPts(InsertPts), LoopToCandidates(LoopToCands), LI(LI) { 167 assert(isa<LoadInst>(L)); 168 assert(isa<StoreInst>(S)); 169 SSA.AddAvailableValue(PH, Init); 170 } 171 172 void doExtraRewritesBeforeFinalDeletion() override { 173 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 174 BasicBlock *ExitBlock = ExitBlocks[i]; 175 Instruction *InsertPos = InsertPts[i]; 176 // Get LiveIn value into the ExitBlock. If there are multiple 177 // predecessors, the value is defined by a PHI node in this 178 // block. 179 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 180 Value *Addr = cast<StoreInst>(Store)->getPointerOperand(); 181 Type *Ty = LiveInValue->getType(); 182 IRBuilder<> Builder(InsertPos); 183 if (auto *AddrInst = dyn_cast_or_null<IntToPtrInst>(Addr)) { 184 // If isRuntimeCounterRelocationEnabled() is true then the address of 185 // the store instruction is computed with two instructions in 186 // InstrProfiling::getCounterAddress(). We need to copy those 187 // instructions to this block to compute Addr correctly. 188 // %BiasAdd = add i64 ptrtoint <__profc_>, <__llvm_profile_counter_bias> 189 // %Addr = inttoptr i64 %BiasAdd to i64* 190 auto *OrigBiasInst = dyn_cast<BinaryOperator>(AddrInst->getOperand(0)); 191 assert(OrigBiasInst->getOpcode() == Instruction::BinaryOps::Add); 192 Value *BiasInst = Builder.Insert(OrigBiasInst->clone()); 193 Addr = Builder.CreateIntToPtr(BiasInst, Ty->getPointerTo()); 194 } 195 if (AtomicCounterUpdatePromoted) 196 // automic update currently can only be promoted across the current 197 // loop, not the whole loop nest. 198 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, LiveInValue, 199 MaybeAlign(), 200 AtomicOrdering::SequentiallyConsistent); 201 else { 202 LoadInst *OldVal = Builder.CreateLoad(Ty, Addr, "pgocount.promoted"); 203 auto *NewVal = Builder.CreateAdd(OldVal, LiveInValue); 204 auto *NewStore = Builder.CreateStore(NewVal, Addr); 205 206 // Now update the parent loop's candidate list: 207 if (IterativeCounterPromotion) { 208 auto *TargetLoop = LI.getLoopFor(ExitBlock); 209 if (TargetLoop) 210 LoopToCandidates[TargetLoop].emplace_back(OldVal, NewStore); 211 } 212 } 213 } 214 } 215 216 private: 217 Instruction *Store; 218 ArrayRef<BasicBlock *> ExitBlocks; 219 ArrayRef<Instruction *> InsertPts; 220 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; 221 LoopInfo &LI; 222 }; 223 224 /// A helper class to do register promotion for all profile counter 225 /// updates in a loop. 226 /// 227 class PGOCounterPromoter { 228 public: 229 PGOCounterPromoter( 230 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, 231 Loop &CurLoop, LoopInfo &LI, BlockFrequencyInfo *BFI) 232 : LoopToCandidates(LoopToCands), L(CurLoop), LI(LI), BFI(BFI) { 233 234 // Skip collection of ExitBlocks and InsertPts for loops that will not be 235 // able to have counters promoted. 236 SmallVector<BasicBlock *, 8> LoopExitBlocks; 237 SmallPtrSet<BasicBlock *, 8> BlockSet; 238 239 L.getExitBlocks(LoopExitBlocks); 240 if (!isPromotionPossible(&L, LoopExitBlocks)) 241 return; 242 243 for (BasicBlock *ExitBlock : LoopExitBlocks) { 244 if (BlockSet.insert(ExitBlock).second) { 245 ExitBlocks.push_back(ExitBlock); 246 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 247 } 248 } 249 } 250 251 bool run(int64_t *NumPromoted) { 252 // Skip 'infinite' loops: 253 if (ExitBlocks.size() == 0) 254 return false; 255 256 // Skip if any of the ExitBlocks contains a ret instruction. 257 // This is to prevent dumping of incomplete profile -- if the 258 // the loop is a long running loop and dump is called in the middle 259 // of the loop, the result profile is incomplete. 260 // FIXME: add other heuristics to detect long running loops. 261 if (SkipRetExitBlock) { 262 for (auto *BB : ExitBlocks) 263 if (isa<ReturnInst>(BB->getTerminator())) 264 return false; 265 } 266 267 unsigned MaxProm = getMaxNumOfPromotionsInLoop(&L); 268 if (MaxProm == 0) 269 return false; 270 271 unsigned Promoted = 0; 272 for (auto &Cand : LoopToCandidates[&L]) { 273 274 SmallVector<PHINode *, 4> NewPHIs; 275 SSAUpdater SSA(&NewPHIs); 276 Value *InitVal = ConstantInt::get(Cand.first->getType(), 0); 277 278 // If BFI is set, we will use it to guide the promotions. 279 if (BFI) { 280 auto *BB = Cand.first->getParent(); 281 auto InstrCount = BFI->getBlockProfileCount(BB); 282 if (!InstrCount) 283 continue; 284 auto PreheaderCount = BFI->getBlockProfileCount(L.getLoopPreheader()); 285 // If the average loop trip count is not greater than 1.5, we skip 286 // promotion. 287 if (PreheaderCount && (*PreheaderCount * 3) >= (*InstrCount * 2)) 288 continue; 289 } 290 291 PGOCounterPromoterHelper Promoter(Cand.first, Cand.second, SSA, InitVal, 292 L.getLoopPreheader(), ExitBlocks, 293 InsertPts, LoopToCandidates, LI); 294 Promoter.run(SmallVector<Instruction *, 2>({Cand.first, Cand.second})); 295 Promoted++; 296 if (Promoted >= MaxProm) 297 break; 298 299 (*NumPromoted)++; 300 if (MaxNumOfPromotions != -1 && *NumPromoted >= MaxNumOfPromotions) 301 break; 302 } 303 304 LLVM_DEBUG(dbgs() << Promoted << " counters promoted for loop (depth=" 305 << L.getLoopDepth() << ")\n"); 306 return Promoted != 0; 307 } 308 309 private: 310 bool allowSpeculativeCounterPromotion(Loop *LP) { 311 SmallVector<BasicBlock *, 8> ExitingBlocks; 312 L.getExitingBlocks(ExitingBlocks); 313 // Not considierered speculative. 314 if (ExitingBlocks.size() == 1) 315 return true; 316 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) 317 return false; 318 return true; 319 } 320 321 // Check whether the loop satisfies the basic conditions needed to perform 322 // Counter Promotions. 323 bool 324 isPromotionPossible(Loop *LP, 325 const SmallVectorImpl<BasicBlock *> &LoopExitBlocks) { 326 // We can't insert into a catchswitch. 327 if (llvm::any_of(LoopExitBlocks, [](BasicBlock *Exit) { 328 return isa<CatchSwitchInst>(Exit->getTerminator()); 329 })) 330 return false; 331 332 if (!LP->hasDedicatedExits()) 333 return false; 334 335 BasicBlock *PH = LP->getLoopPreheader(); 336 if (!PH) 337 return false; 338 339 return true; 340 } 341 342 // Returns the max number of Counter Promotions for LP. 343 unsigned getMaxNumOfPromotionsInLoop(Loop *LP) { 344 SmallVector<BasicBlock *, 8> LoopExitBlocks; 345 LP->getExitBlocks(LoopExitBlocks); 346 if (!isPromotionPossible(LP, LoopExitBlocks)) 347 return 0; 348 349 SmallVector<BasicBlock *, 8> ExitingBlocks; 350 LP->getExitingBlocks(ExitingBlocks); 351 352 // If BFI is set, we do more aggressive promotions based on BFI. 353 if (BFI) 354 return (unsigned)-1; 355 356 // Not considierered speculative. 357 if (ExitingBlocks.size() == 1) 358 return MaxNumOfPromotionsPerLoop; 359 360 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) 361 return 0; 362 363 // Whether the target block is in a loop does not matter: 364 if (SpeculativeCounterPromotionToLoop) 365 return MaxNumOfPromotionsPerLoop; 366 367 // Now check the target block: 368 unsigned MaxProm = MaxNumOfPromotionsPerLoop; 369 for (auto *TargetBlock : LoopExitBlocks) { 370 auto *TargetLoop = LI.getLoopFor(TargetBlock); 371 if (!TargetLoop) 372 continue; 373 unsigned MaxPromForTarget = getMaxNumOfPromotionsInLoop(TargetLoop); 374 unsigned PendingCandsInTarget = LoopToCandidates[TargetLoop].size(); 375 MaxProm = 376 std::min(MaxProm, std::max(MaxPromForTarget, PendingCandsInTarget) - 377 PendingCandsInTarget); 378 } 379 return MaxProm; 380 } 381 382 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; 383 SmallVector<BasicBlock *, 8> ExitBlocks; 384 SmallVector<Instruction *, 8> InsertPts; 385 Loop &L; 386 LoopInfo &LI; 387 BlockFrequencyInfo *BFI; 388 }; 389 390 enum class ValueProfilingCallType { 391 // Individual values are tracked. Currently used for indiret call target 392 // profiling. 393 Default, 394 395 // MemOp: the memop size value profiling. 396 MemOp 397 }; 398 399 } // end anonymous namespace 400 401 PreservedAnalyses InstrProfiling::run(Module &M, ModuleAnalysisManager &AM) { 402 FunctionAnalysisManager &FAM = 403 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 404 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 405 return FAM.getResult<TargetLibraryAnalysis>(F); 406 }; 407 if (!run(M, GetTLI)) 408 return PreservedAnalyses::all(); 409 410 return PreservedAnalyses::none(); 411 } 412 413 bool InstrProfiling::lowerIntrinsics(Function *F) { 414 bool MadeChange = false; 415 PromotionCandidates.clear(); 416 for (BasicBlock &BB : *F) { 417 for (Instruction &Instr : llvm::make_early_inc_range(BB)) { 418 if (auto *IPIS = dyn_cast<InstrProfIncrementInstStep>(&Instr)) { 419 lowerIncrement(IPIS); 420 MadeChange = true; 421 } else if (auto *IPI = dyn_cast<InstrProfIncrementInst>(&Instr)) { 422 lowerIncrement(IPI); 423 MadeChange = true; 424 } else if (auto *IPC = dyn_cast<InstrProfCoverInst>(&Instr)) { 425 lowerCover(IPC); 426 MadeChange = true; 427 } else if (auto *IPVP = dyn_cast<InstrProfValueProfileInst>(&Instr)) { 428 lowerValueProfileInst(IPVP); 429 MadeChange = true; 430 } 431 } 432 } 433 434 if (!MadeChange) 435 return false; 436 437 promoteCounterLoadStores(F); 438 return true; 439 } 440 441 bool InstrProfiling::isRuntimeCounterRelocationEnabled() const { 442 // Mach-O don't support weak external references. 443 if (TT.isOSBinFormatMachO()) 444 return false; 445 446 if (RuntimeCounterRelocation.getNumOccurrences() > 0) 447 return RuntimeCounterRelocation; 448 449 // Fuchsia uses runtime counter relocation by default. 450 return TT.isOSFuchsia(); 451 } 452 453 bool InstrProfiling::isCounterPromotionEnabled() const { 454 if (DoCounterPromotion.getNumOccurrences() > 0) 455 return DoCounterPromotion; 456 457 return Options.DoCounterPromotion; 458 } 459 460 void InstrProfiling::promoteCounterLoadStores(Function *F) { 461 if (!isCounterPromotionEnabled()) 462 return; 463 464 DominatorTree DT(*F); 465 LoopInfo LI(DT); 466 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> LoopPromotionCandidates; 467 468 std::unique_ptr<BlockFrequencyInfo> BFI; 469 if (Options.UseBFIInPromotion) { 470 std::unique_ptr<BranchProbabilityInfo> BPI; 471 BPI.reset(new BranchProbabilityInfo(*F, LI, &GetTLI(*F))); 472 BFI.reset(new BlockFrequencyInfo(*F, *BPI, LI)); 473 } 474 475 for (const auto &LoadStore : PromotionCandidates) { 476 auto *CounterLoad = LoadStore.first; 477 auto *CounterStore = LoadStore.second; 478 BasicBlock *BB = CounterLoad->getParent(); 479 Loop *ParentLoop = LI.getLoopFor(BB); 480 if (!ParentLoop) 481 continue; 482 LoopPromotionCandidates[ParentLoop].emplace_back(CounterLoad, CounterStore); 483 } 484 485 SmallVector<Loop *, 4> Loops = LI.getLoopsInPreorder(); 486 487 // Do a post-order traversal of the loops so that counter updates can be 488 // iteratively hoisted outside the loop nest. 489 for (auto *Loop : llvm::reverse(Loops)) { 490 PGOCounterPromoter Promoter(LoopPromotionCandidates, *Loop, LI, BFI.get()); 491 Promoter.run(&TotalCountersPromoted); 492 } 493 } 494 495 static bool needsRuntimeHookUnconditionally(const Triple &TT) { 496 // On Fuchsia, we only need runtime hook if any counters are present. 497 if (TT.isOSFuchsia()) 498 return false; 499 500 return true; 501 } 502 503 /// Check if the module contains uses of any profiling intrinsics. 504 static bool containsProfilingIntrinsics(Module &M) { 505 auto containsIntrinsic = [&](int ID) { 506 if (auto *F = M.getFunction(Intrinsic::getName(ID))) 507 return !F->use_empty(); 508 return false; 509 }; 510 return containsIntrinsic(llvm::Intrinsic::instrprof_cover) || 511 containsIntrinsic(llvm::Intrinsic::instrprof_increment) || 512 containsIntrinsic(llvm::Intrinsic::instrprof_increment_step) || 513 containsIntrinsic(llvm::Intrinsic::instrprof_value_profile); 514 } 515 516 bool InstrProfiling::run( 517 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI) { 518 this->M = &M; 519 this->GetTLI = std::move(GetTLI); 520 NamesVar = nullptr; 521 NamesSize = 0; 522 ProfileDataMap.clear(); 523 CompilerUsedVars.clear(); 524 UsedVars.clear(); 525 TT = Triple(M.getTargetTriple()); 526 527 bool MadeChange = false; 528 bool NeedsRuntimeHook = needsRuntimeHookUnconditionally(TT); 529 if (NeedsRuntimeHook) 530 MadeChange = emitRuntimeHook(); 531 532 bool ContainsProfiling = containsProfilingIntrinsics(M); 533 GlobalVariable *CoverageNamesVar = 534 M.getNamedGlobal(getCoverageUnusedNamesVarName()); 535 // Improve compile time by avoiding linear scans when there is no work. 536 if (!ContainsProfiling && !CoverageNamesVar) 537 return MadeChange; 538 539 // We did not know how many value sites there would be inside 540 // the instrumented function. This is counting the number of instrumented 541 // target value sites to enter it as field in the profile data variable. 542 for (Function &F : M) { 543 InstrProfIncrementInst *FirstProfIncInst = nullptr; 544 for (BasicBlock &BB : F) 545 for (auto I = BB.begin(), E = BB.end(); I != E; I++) 546 if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I)) 547 computeNumValueSiteCounts(Ind); 548 else if (FirstProfIncInst == nullptr) 549 FirstProfIncInst = dyn_cast<InstrProfIncrementInst>(I); 550 551 // Value profiling intrinsic lowering requires per-function profile data 552 // variable to be created first. 553 if (FirstProfIncInst != nullptr) 554 static_cast<void>(getOrCreateRegionCounters(FirstProfIncInst)); 555 } 556 557 for (Function &F : M) 558 MadeChange |= lowerIntrinsics(&F); 559 560 if (CoverageNamesVar) { 561 lowerCoverageData(CoverageNamesVar); 562 MadeChange = true; 563 } 564 565 if (!MadeChange) 566 return false; 567 568 emitVNodes(); 569 emitNameData(); 570 571 // Emit runtime hook for the cases where the target does not unconditionally 572 // require pulling in profile runtime, and coverage is enabled on code that is 573 // not eliminated by the front-end, e.g. unused functions with internal 574 // linkage. 575 if (!NeedsRuntimeHook && ContainsProfiling) 576 emitRuntimeHook(); 577 578 emitRegistration(); 579 emitUses(); 580 emitInitialization(); 581 return true; 582 } 583 584 static FunctionCallee getOrInsertValueProfilingCall( 585 Module &M, const TargetLibraryInfo &TLI, 586 ValueProfilingCallType CallType = ValueProfilingCallType::Default) { 587 LLVMContext &Ctx = M.getContext(); 588 auto *ReturnTy = Type::getVoidTy(M.getContext()); 589 590 AttributeList AL; 591 if (auto AK = TLI.getExtAttrForI32Param(false)) 592 AL = AL.addParamAttribute(M.getContext(), 2, AK); 593 594 assert((CallType == ValueProfilingCallType::Default || 595 CallType == ValueProfilingCallType::MemOp) && 596 "Must be Default or MemOp"); 597 Type *ParamTypes[] = { 598 #define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType 599 #include "llvm/ProfileData/InstrProfData.inc" 600 }; 601 auto *ValueProfilingCallTy = 602 FunctionType::get(ReturnTy, ArrayRef(ParamTypes), false); 603 StringRef FuncName = CallType == ValueProfilingCallType::Default 604 ? getInstrProfValueProfFuncName() 605 : getInstrProfValueProfMemOpFuncName(); 606 return M.getOrInsertFunction(FuncName, ValueProfilingCallTy, AL); 607 } 608 609 void InstrProfiling::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) { 610 GlobalVariable *Name = Ind->getName(); 611 uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); 612 uint64_t Index = Ind->getIndex()->getZExtValue(); 613 auto &PD = ProfileDataMap[Name]; 614 PD.NumValueSites[ValueKind] = 615 std::max(PD.NumValueSites[ValueKind], (uint32_t)(Index + 1)); 616 } 617 618 void InstrProfiling::lowerValueProfileInst(InstrProfValueProfileInst *Ind) { 619 // TODO: Value profiling heavily depends on the data section which is omitted 620 // in lightweight mode. We need to move the value profile pointer to the 621 // Counter struct to get this working. 622 assert( 623 !DebugInfoCorrelate && 624 "Value profiling is not yet supported with lightweight instrumentation"); 625 GlobalVariable *Name = Ind->getName(); 626 auto It = ProfileDataMap.find(Name); 627 assert(It != ProfileDataMap.end() && It->second.DataVar && 628 "value profiling detected in function with no counter incerement"); 629 630 GlobalVariable *DataVar = It->second.DataVar; 631 uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); 632 uint64_t Index = Ind->getIndex()->getZExtValue(); 633 for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind) 634 Index += It->second.NumValueSites[Kind]; 635 636 IRBuilder<> Builder(Ind); 637 bool IsMemOpSize = (Ind->getValueKind()->getZExtValue() == 638 llvm::InstrProfValueKind::IPVK_MemOPSize); 639 CallInst *Call = nullptr; 640 auto *TLI = &GetTLI(*Ind->getFunction()); 641 642 // To support value profiling calls within Windows exception handlers, funclet 643 // information contained within operand bundles needs to be copied over to 644 // the library call. This is required for the IR to be processed by the 645 // WinEHPrepare pass. 646 SmallVector<OperandBundleDef, 1> OpBundles; 647 Ind->getOperandBundlesAsDefs(OpBundles); 648 if (!IsMemOpSize) { 649 Value *Args[3] = {Ind->getTargetValue(), 650 Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()), 651 Builder.getInt32(Index)}; 652 Call = Builder.CreateCall(getOrInsertValueProfilingCall(*M, *TLI), Args, 653 OpBundles); 654 } else { 655 Value *Args[3] = {Ind->getTargetValue(), 656 Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()), 657 Builder.getInt32(Index)}; 658 Call = Builder.CreateCall( 659 getOrInsertValueProfilingCall(*M, *TLI, ValueProfilingCallType::MemOp), 660 Args, OpBundles); 661 } 662 if (auto AK = TLI->getExtAttrForI32Param(false)) 663 Call->addParamAttr(2, AK); 664 Ind->replaceAllUsesWith(Call); 665 Ind->eraseFromParent(); 666 } 667 668 Value *InstrProfiling::getCounterAddress(InstrProfInstBase *I) { 669 auto *Counters = getOrCreateRegionCounters(I); 670 IRBuilder<> Builder(I); 671 672 auto *Addr = Builder.CreateConstInBoundsGEP2_32( 673 Counters->getValueType(), Counters, 0, I->getIndex()->getZExtValue()); 674 675 if (!isRuntimeCounterRelocationEnabled()) 676 return Addr; 677 678 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 679 Function *Fn = I->getParent()->getParent(); 680 LoadInst *&BiasLI = FunctionToProfileBiasMap[Fn]; 681 if (!BiasLI) { 682 IRBuilder<> EntryBuilder(&Fn->getEntryBlock().front()); 683 auto *Bias = M->getGlobalVariable(getInstrProfCounterBiasVarName()); 684 if (!Bias) { 685 // Compiler must define this variable when runtime counter relocation 686 // is being used. Runtime has a weak external reference that is used 687 // to check whether that's the case or not. 688 Bias = new GlobalVariable( 689 *M, Int64Ty, false, GlobalValue::LinkOnceODRLinkage, 690 Constant::getNullValue(Int64Ty), getInstrProfCounterBiasVarName()); 691 Bias->setVisibility(GlobalVariable::HiddenVisibility); 692 // A definition that's weak (linkonce_odr) without being in a COMDAT 693 // section wouldn't lead to link errors, but it would lead to a dead 694 // data word from every TU but one. Putting it in COMDAT ensures there 695 // will be exactly one data slot in the link. 696 if (TT.supportsCOMDAT()) 697 Bias->setComdat(M->getOrInsertComdat(Bias->getName())); 698 } 699 BiasLI = EntryBuilder.CreateLoad(Int64Ty, Bias); 700 } 701 auto *Add = Builder.CreateAdd(Builder.CreatePtrToInt(Addr, Int64Ty), BiasLI); 702 return Builder.CreateIntToPtr(Add, Addr->getType()); 703 } 704 705 void InstrProfiling::lowerCover(InstrProfCoverInst *CoverInstruction) { 706 auto *Addr = getCounterAddress(CoverInstruction); 707 IRBuilder<> Builder(CoverInstruction); 708 // We store zero to represent that this block is covered. 709 Builder.CreateStore(Builder.getInt8(0), Addr); 710 CoverInstruction->eraseFromParent(); 711 } 712 713 void InstrProfiling::lowerIncrement(InstrProfIncrementInst *Inc) { 714 auto *Addr = getCounterAddress(Inc); 715 716 IRBuilder<> Builder(Inc); 717 if (Options.Atomic || AtomicCounterUpdateAll || 718 (Inc->getIndex()->isZeroValue() && AtomicFirstCounter)) { 719 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, Inc->getStep(), 720 MaybeAlign(), AtomicOrdering::Monotonic); 721 } else { 722 Value *IncStep = Inc->getStep(); 723 Value *Load = Builder.CreateLoad(IncStep->getType(), Addr, "pgocount"); 724 auto *Count = Builder.CreateAdd(Load, Inc->getStep()); 725 auto *Store = Builder.CreateStore(Count, Addr); 726 if (isCounterPromotionEnabled()) 727 PromotionCandidates.emplace_back(cast<Instruction>(Load), Store); 728 } 729 Inc->eraseFromParent(); 730 } 731 732 void InstrProfiling::lowerCoverageData(GlobalVariable *CoverageNamesVar) { 733 ConstantArray *Names = 734 cast<ConstantArray>(CoverageNamesVar->getInitializer()); 735 for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) { 736 Constant *NC = Names->getOperand(I); 737 Value *V = NC->stripPointerCasts(); 738 assert(isa<GlobalVariable>(V) && "Missing reference to function name"); 739 GlobalVariable *Name = cast<GlobalVariable>(V); 740 741 Name->setLinkage(GlobalValue::PrivateLinkage); 742 ReferencedNames.push_back(Name); 743 if (isa<ConstantExpr>(NC)) 744 NC->dropAllReferences(); 745 } 746 CoverageNamesVar->eraseFromParent(); 747 } 748 749 /// Get the name of a profiling variable for a particular function. 750 static std::string getVarName(InstrProfInstBase *Inc, StringRef Prefix, 751 bool &Renamed) { 752 StringRef NamePrefix = getInstrProfNameVarPrefix(); 753 StringRef Name = Inc->getName()->getName().substr(NamePrefix.size()); 754 Function *F = Inc->getParent()->getParent(); 755 Module *M = F->getParent(); 756 if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) || 757 !canRenameComdatFunc(*F)) { 758 Renamed = false; 759 return (Prefix + Name).str(); 760 } 761 Renamed = true; 762 uint64_t FuncHash = Inc->getHash()->getZExtValue(); 763 SmallVector<char, 24> HashPostfix; 764 if (Name.endswith((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix))) 765 return (Prefix + Name).str(); 766 return (Prefix + Name + "." + Twine(FuncHash)).str(); 767 } 768 769 static uint64_t getIntModuleFlagOrZero(const Module &M, StringRef Flag) { 770 auto *MD = dyn_cast_or_null<ConstantAsMetadata>(M.getModuleFlag(Flag)); 771 if (!MD) 772 return 0; 773 774 // If the flag is a ConstantAsMetadata, it should be an integer representable 775 // in 64-bits. 776 return cast<ConstantInt>(MD->getValue())->getZExtValue(); 777 } 778 779 static bool enablesValueProfiling(const Module &M) { 780 return isIRPGOFlagSet(&M) || 781 getIntModuleFlagOrZero(M, "EnableValueProfiling") != 0; 782 } 783 784 // Conservatively returns true if data variables may be referenced by code. 785 static bool profDataReferencedByCode(const Module &M) { 786 return enablesValueProfiling(M); 787 } 788 789 static inline bool shouldRecordFunctionAddr(Function *F) { 790 // Only record function addresses if IR PGO is enabled or if clang value 791 // profiling is enabled. Recording function addresses greatly increases object 792 // file size, because it prevents the inliner from deleting functions that 793 // have been inlined everywhere. 794 if (!profDataReferencedByCode(*F->getParent())) 795 return false; 796 797 // Check the linkage 798 bool HasAvailableExternallyLinkage = F->hasAvailableExternallyLinkage(); 799 if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() && 800 !HasAvailableExternallyLinkage) 801 return true; 802 803 // A function marked 'alwaysinline' with available_externally linkage can't 804 // have its address taken. Doing so would create an undefined external ref to 805 // the function, which would fail to link. 806 if (HasAvailableExternallyLinkage && 807 F->hasFnAttribute(Attribute::AlwaysInline)) 808 return false; 809 810 // Prohibit function address recording if the function is both internal and 811 // COMDAT. This avoids the profile data variable referencing internal symbols 812 // in COMDAT. 813 if (F->hasLocalLinkage() && F->hasComdat()) 814 return false; 815 816 // Check uses of this function for other than direct calls or invokes to it. 817 // Inline virtual functions have linkeOnceODR linkage. When a key method 818 // exists, the vtable will only be emitted in the TU where the key method 819 // is defined. In a TU where vtable is not available, the function won't 820 // be 'addresstaken'. If its address is not recorded here, the profile data 821 // with missing address may be picked by the linker leading to missing 822 // indirect call target info. 823 return F->hasAddressTaken() || F->hasLinkOnceLinkage(); 824 } 825 826 static bool needsRuntimeRegistrationOfSectionRange(const Triple &TT) { 827 // Don't do this for Darwin. compiler-rt uses linker magic. 828 if (TT.isOSDarwin()) 829 return false; 830 // Use linker script magic to get data/cnts/name start/end. 831 if (TT.isOSAIX() || TT.isOSLinux() || TT.isOSFreeBSD() || TT.isOSNetBSD() || 832 TT.isOSSolaris() || TT.isOSFuchsia() || TT.isPS() || TT.isOSWindows()) 833 return false; 834 835 return true; 836 } 837 838 GlobalVariable * 839 InstrProfiling::createRegionCounters(InstrProfInstBase *Inc, StringRef Name, 840 GlobalValue::LinkageTypes Linkage) { 841 uint64_t NumCounters = Inc->getNumCounters()->getZExtValue(); 842 auto &Ctx = M->getContext(); 843 GlobalVariable *GV; 844 if (isa<InstrProfCoverInst>(Inc)) { 845 auto *CounterTy = Type::getInt8Ty(Ctx); 846 auto *CounterArrTy = ArrayType::get(CounterTy, NumCounters); 847 // TODO: `Constant::getAllOnesValue()` does not yet accept an array type. 848 std::vector<Constant *> InitialValues(NumCounters, 849 Constant::getAllOnesValue(CounterTy)); 850 GV = new GlobalVariable(*M, CounterArrTy, false, Linkage, 851 ConstantArray::get(CounterArrTy, InitialValues), 852 Name); 853 GV->setAlignment(Align(1)); 854 } else { 855 auto *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters); 856 GV = new GlobalVariable(*M, CounterTy, false, Linkage, 857 Constant::getNullValue(CounterTy), Name); 858 GV->setAlignment(Align(8)); 859 } 860 return GV; 861 } 862 863 GlobalVariable * 864 InstrProfiling::getOrCreateRegionCounters(InstrProfInstBase *Inc) { 865 GlobalVariable *NamePtr = Inc->getName(); 866 auto &PD = ProfileDataMap[NamePtr]; 867 if (PD.RegionCounters) 868 return PD.RegionCounters; 869 870 // Match the linkage and visibility of the name global. 871 Function *Fn = Inc->getParent()->getParent(); 872 GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage(); 873 GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility(); 874 875 // Use internal rather than private linkage so the counter variable shows up 876 // in the symbol table when using debug info for correlation. 877 if (DebugInfoCorrelate && TT.isOSBinFormatMachO() && 878 Linkage == GlobalValue::PrivateLinkage) 879 Linkage = GlobalValue::InternalLinkage; 880 881 // Due to the limitation of binder as of 2021/09/28, the duplicate weak 882 // symbols in the same csect won't be discarded. When there are duplicate weak 883 // symbols, we can NOT guarantee that the relocations get resolved to the 884 // intended weak symbol, so we can not ensure the correctness of the relative 885 // CounterPtr, so we have to use private linkage for counter and data symbols. 886 if (TT.isOSBinFormatXCOFF()) { 887 Linkage = GlobalValue::PrivateLinkage; 888 Visibility = GlobalValue::DefaultVisibility; 889 } 890 // Move the name variable to the right section. Place them in a COMDAT group 891 // if the associated function is a COMDAT. This will make sure that only one 892 // copy of counters of the COMDAT function will be emitted after linking. Keep 893 // in mind that this pass may run before the inliner, so we need to create a 894 // new comdat group for the counters and profiling data. If we use the comdat 895 // of the parent function, that will result in relocations against discarded 896 // sections. 897 // 898 // If the data variable is referenced by code, counters and data have to be 899 // in different comdats for COFF because the Visual C++ linker will report 900 // duplicate symbol errors if there are multiple external symbols with the 901 // same name marked IMAGE_COMDAT_SELECT_ASSOCIATIVE. 902 // 903 // For ELF, when not using COMDAT, put counters, data and values into a 904 // nodeduplicate COMDAT which is lowered to a zero-flag section group. This 905 // allows -z start-stop-gc to discard the entire group when the function is 906 // discarded. 907 bool DataReferencedByCode = profDataReferencedByCode(*M); 908 bool NeedComdat = needsComdatForCounter(*Fn, *M); 909 bool Renamed; 910 std::string CntsVarName = 911 getVarName(Inc, getInstrProfCountersVarPrefix(), Renamed); 912 std::string DataVarName = 913 getVarName(Inc, getInstrProfDataVarPrefix(), Renamed); 914 auto MaybeSetComdat = [&](GlobalVariable *GV) { 915 bool UseComdat = (NeedComdat || TT.isOSBinFormatELF()); 916 if (UseComdat) { 917 StringRef GroupName = TT.isOSBinFormatCOFF() && DataReferencedByCode 918 ? GV->getName() 919 : CntsVarName; 920 Comdat *C = M->getOrInsertComdat(GroupName); 921 if (!NeedComdat) 922 C->setSelectionKind(Comdat::NoDeduplicate); 923 GV->setComdat(C); 924 // COFF doesn't allow the comdat group leader to have private linkage, so 925 // upgrade private linkage to internal linkage to produce a symbol table 926 // entry. 927 if (TT.isOSBinFormatCOFF() && GV->hasPrivateLinkage()) 928 GV->setLinkage(GlobalValue::InternalLinkage); 929 } 930 }; 931 932 uint64_t NumCounters = Inc->getNumCounters()->getZExtValue(); 933 LLVMContext &Ctx = M->getContext(); 934 935 auto *CounterPtr = createRegionCounters(Inc, CntsVarName, Linkage); 936 CounterPtr->setVisibility(Visibility); 937 CounterPtr->setSection( 938 getInstrProfSectionName(IPSK_cnts, TT.getObjectFormat())); 939 CounterPtr->setLinkage(Linkage); 940 MaybeSetComdat(CounterPtr); 941 PD.RegionCounters = CounterPtr; 942 if (DebugInfoCorrelate) { 943 if (auto *SP = Fn->getSubprogram()) { 944 DIBuilder DB(*M, true, SP->getUnit()); 945 Metadata *FunctionNameAnnotation[] = { 946 MDString::get(Ctx, InstrProfCorrelator::FunctionNameAttributeName), 947 MDString::get(Ctx, getPGOFuncNameVarInitializer(NamePtr)), 948 }; 949 Metadata *CFGHashAnnotation[] = { 950 MDString::get(Ctx, InstrProfCorrelator::CFGHashAttributeName), 951 ConstantAsMetadata::get(Inc->getHash()), 952 }; 953 Metadata *NumCountersAnnotation[] = { 954 MDString::get(Ctx, InstrProfCorrelator::NumCountersAttributeName), 955 ConstantAsMetadata::get(Inc->getNumCounters()), 956 }; 957 auto Annotations = DB.getOrCreateArray({ 958 MDNode::get(Ctx, FunctionNameAnnotation), 959 MDNode::get(Ctx, CFGHashAnnotation), 960 MDNode::get(Ctx, NumCountersAnnotation), 961 }); 962 auto *DICounter = DB.createGlobalVariableExpression( 963 SP, CounterPtr->getName(), /*LinkageName=*/StringRef(), SP->getFile(), 964 /*LineNo=*/0, DB.createUnspecifiedType("Profile Data Type"), 965 CounterPtr->hasLocalLinkage(), /*IsDefined=*/true, /*Expr=*/nullptr, 966 /*Decl=*/nullptr, /*TemplateParams=*/nullptr, /*AlignInBits=*/0, 967 Annotations); 968 CounterPtr->addDebugInfo(DICounter); 969 DB.finalize(); 970 } else { 971 std::string Msg = ("Missing debug info for function " + Fn->getName() + 972 "; required for profile correlation.") 973 .str(); 974 Ctx.diagnose( 975 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning)); 976 } 977 } 978 979 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 980 // Allocate statically the array of pointers to value profile nodes for 981 // the current function. 982 Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy); 983 uint64_t NS = 0; 984 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 985 NS += PD.NumValueSites[Kind]; 986 if (NS > 0 && ValueProfileStaticAlloc && 987 !needsRuntimeRegistrationOfSectionRange(TT)) { 988 ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS); 989 auto *ValuesVar = new GlobalVariable( 990 *M, ValuesTy, false, Linkage, Constant::getNullValue(ValuesTy), 991 getVarName(Inc, getInstrProfValuesVarPrefix(), Renamed)); 992 ValuesVar->setVisibility(Visibility); 993 ValuesVar->setSection( 994 getInstrProfSectionName(IPSK_vals, TT.getObjectFormat())); 995 ValuesVar->setAlignment(Align(8)); 996 MaybeSetComdat(ValuesVar); 997 ValuesPtrExpr = 998 ConstantExpr::getBitCast(ValuesVar, Type::getInt8PtrTy(Ctx)); 999 } 1000 1001 if (DebugInfoCorrelate) { 1002 // Mark the counter variable as used so that it isn't optimized out. 1003 CompilerUsedVars.push_back(PD.RegionCounters); 1004 return PD.RegionCounters; 1005 } 1006 1007 // Create data variable. 1008 auto *IntPtrTy = M->getDataLayout().getIntPtrType(M->getContext()); 1009 auto *Int16Ty = Type::getInt16Ty(Ctx); 1010 auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1); 1011 Type *DataTypes[] = { 1012 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType, 1013 #include "llvm/ProfileData/InstrProfData.inc" 1014 }; 1015 auto *DataTy = StructType::get(Ctx, ArrayRef(DataTypes)); 1016 1017 Constant *FunctionAddr = shouldRecordFunctionAddr(Fn) 1018 ? ConstantExpr::getBitCast(Fn, Int8PtrTy) 1019 : ConstantPointerNull::get(Int8PtrTy); 1020 1021 Constant *Int16ArrayVals[IPVK_Last + 1]; 1022 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1023 Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]); 1024 1025 // If the data variable is not referenced by code (if we don't emit 1026 // @llvm.instrprof.value.profile, NS will be 0), and the counter keeps the 1027 // data variable live under linker GC, the data variable can be private. This 1028 // optimization applies to ELF. 1029 // 1030 // On COFF, a comdat leader cannot be local so we require DataReferencedByCode 1031 // to be false. 1032 // 1033 // If profd is in a deduplicate comdat, NS==0 with a hash suffix guarantees 1034 // that other copies must have the same CFG and cannot have value profiling. 1035 // If no hash suffix, other profd copies may be referenced by code. 1036 if (NS == 0 && !(DataReferencedByCode && NeedComdat && !Renamed) && 1037 (TT.isOSBinFormatELF() || 1038 (!DataReferencedByCode && TT.isOSBinFormatCOFF()))) { 1039 Linkage = GlobalValue::PrivateLinkage; 1040 Visibility = GlobalValue::DefaultVisibility; 1041 } 1042 auto *Data = 1043 new GlobalVariable(*M, DataTy, false, Linkage, nullptr, DataVarName); 1044 // Reference the counter variable with a label difference (link-time 1045 // constant). 1046 auto *RelativeCounterPtr = 1047 ConstantExpr::getSub(ConstantExpr::getPtrToInt(CounterPtr, IntPtrTy), 1048 ConstantExpr::getPtrToInt(Data, IntPtrTy)); 1049 1050 Constant *DataVals[] = { 1051 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init, 1052 #include "llvm/ProfileData/InstrProfData.inc" 1053 }; 1054 Data->setInitializer(ConstantStruct::get(DataTy, DataVals)); 1055 1056 Data->setVisibility(Visibility); 1057 Data->setSection(getInstrProfSectionName(IPSK_data, TT.getObjectFormat())); 1058 Data->setAlignment(Align(INSTR_PROF_DATA_ALIGNMENT)); 1059 MaybeSetComdat(Data); 1060 1061 PD.DataVar = Data; 1062 1063 // Mark the data variable as used so that it isn't stripped out. 1064 CompilerUsedVars.push_back(Data); 1065 // Now that the linkage set by the FE has been passed to the data and counter 1066 // variables, reset Name variable's linkage and visibility to private so that 1067 // it can be removed later by the compiler. 1068 NamePtr->setLinkage(GlobalValue::PrivateLinkage); 1069 // Collect the referenced names to be used by emitNameData. 1070 ReferencedNames.push_back(NamePtr); 1071 1072 return PD.RegionCounters; 1073 } 1074 1075 void InstrProfiling::emitVNodes() { 1076 if (!ValueProfileStaticAlloc) 1077 return; 1078 1079 // For now only support this on platforms that do 1080 // not require runtime registration to discover 1081 // named section start/end. 1082 if (needsRuntimeRegistrationOfSectionRange(TT)) 1083 return; 1084 1085 size_t TotalNS = 0; 1086 for (auto &PD : ProfileDataMap) { 1087 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1088 TotalNS += PD.second.NumValueSites[Kind]; 1089 } 1090 1091 if (!TotalNS) 1092 return; 1093 1094 uint64_t NumCounters = TotalNS * NumCountersPerValueSite; 1095 // Heuristic for small programs with very few total value sites. 1096 // The default value of vp-counters-per-site is chosen based on 1097 // the observation that large apps usually have a low percentage 1098 // of value sites that actually have any profile data, and thus 1099 // the average number of counters per site is low. For small 1100 // apps with very few sites, this may not be true. Bump up the 1101 // number of counters in this case. 1102 #define INSTR_PROF_MIN_VAL_COUNTS 10 1103 if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS) 1104 NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2); 1105 1106 auto &Ctx = M->getContext(); 1107 Type *VNodeTypes[] = { 1108 #define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType, 1109 #include "llvm/ProfileData/InstrProfData.inc" 1110 }; 1111 auto *VNodeTy = StructType::get(Ctx, ArrayRef(VNodeTypes)); 1112 1113 ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters); 1114 auto *VNodesVar = new GlobalVariable( 1115 *M, VNodesTy, false, GlobalValue::PrivateLinkage, 1116 Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName()); 1117 VNodesVar->setSection( 1118 getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat())); 1119 // VNodesVar is used by runtime but not referenced via relocation by other 1120 // sections. Conservatively make it linker retained. 1121 UsedVars.push_back(VNodesVar); 1122 } 1123 1124 void InstrProfiling::emitNameData() { 1125 std::string UncompressedData; 1126 1127 if (ReferencedNames.empty()) 1128 return; 1129 1130 std::string CompressedNameStr; 1131 if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr, 1132 DoInstrProfNameCompression)) { 1133 report_fatal_error(Twine(toString(std::move(E))), false); 1134 } 1135 1136 auto &Ctx = M->getContext(); 1137 auto *NamesVal = 1138 ConstantDataArray::getString(Ctx, StringRef(CompressedNameStr), false); 1139 NamesVar = new GlobalVariable(*M, NamesVal->getType(), true, 1140 GlobalValue::PrivateLinkage, NamesVal, 1141 getInstrProfNamesVarName()); 1142 NamesSize = CompressedNameStr.size(); 1143 NamesVar->setSection( 1144 getInstrProfSectionName(IPSK_name, TT.getObjectFormat())); 1145 // On COFF, it's important to reduce the alignment down to 1 to prevent the 1146 // linker from inserting padding before the start of the names section or 1147 // between names entries. 1148 NamesVar->setAlignment(Align(1)); 1149 // NamesVar is used by runtime but not referenced via relocation by other 1150 // sections. Conservatively make it linker retained. 1151 UsedVars.push_back(NamesVar); 1152 1153 for (auto *NamePtr : ReferencedNames) 1154 NamePtr->eraseFromParent(); 1155 } 1156 1157 void InstrProfiling::emitRegistration() { 1158 if (!needsRuntimeRegistrationOfSectionRange(TT)) 1159 return; 1160 1161 // Construct the function. 1162 auto *VoidTy = Type::getVoidTy(M->getContext()); 1163 auto *VoidPtrTy = Type::getInt8PtrTy(M->getContext()); 1164 auto *Int64Ty = Type::getInt64Ty(M->getContext()); 1165 auto *RegisterFTy = FunctionType::get(VoidTy, false); 1166 auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage, 1167 getInstrProfRegFuncsName(), M); 1168 RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1169 if (Options.NoRedZone) 1170 RegisterF->addFnAttr(Attribute::NoRedZone); 1171 1172 auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false); 1173 auto *RuntimeRegisterF = 1174 Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage, 1175 getInstrProfRegFuncName(), M); 1176 1177 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", RegisterF)); 1178 for (Value *Data : CompilerUsedVars) 1179 if (!isa<Function>(Data)) 1180 IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy)); 1181 for (Value *Data : UsedVars) 1182 if (Data != NamesVar && !isa<Function>(Data)) 1183 IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy)); 1184 1185 if (NamesVar) { 1186 Type *ParamTypes[] = {VoidPtrTy, Int64Ty}; 1187 auto *NamesRegisterTy = 1188 FunctionType::get(VoidTy, ArrayRef(ParamTypes), false); 1189 auto *NamesRegisterF = 1190 Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage, 1191 getInstrProfNamesRegFuncName(), M); 1192 IRB.CreateCall(NamesRegisterF, {IRB.CreateBitCast(NamesVar, VoidPtrTy), 1193 IRB.getInt64(NamesSize)}); 1194 } 1195 1196 IRB.CreateRetVoid(); 1197 } 1198 1199 bool InstrProfiling::emitRuntimeHook() { 1200 // We expect the linker to be invoked with -u<hook_var> flag for Linux 1201 // in which case there is no need to emit the external variable. 1202 if (TT.isOSLinux() || TT.isOSAIX()) 1203 return false; 1204 1205 // If the module's provided its own runtime, we don't need to do anything. 1206 if (M->getGlobalVariable(getInstrProfRuntimeHookVarName())) 1207 return false; 1208 1209 // Declare an external variable that will pull in the runtime initialization. 1210 auto *Int32Ty = Type::getInt32Ty(M->getContext()); 1211 auto *Var = 1212 new GlobalVariable(*M, Int32Ty, false, GlobalValue::ExternalLinkage, 1213 nullptr, getInstrProfRuntimeHookVarName()); 1214 Var->setVisibility(GlobalValue::HiddenVisibility); 1215 1216 if (TT.isOSBinFormatELF() && !TT.isPS()) { 1217 // Mark the user variable as used so that it isn't stripped out. 1218 CompilerUsedVars.push_back(Var); 1219 } else { 1220 // Make a function that uses it. 1221 auto *User = Function::Create(FunctionType::get(Int32Ty, false), 1222 GlobalValue::LinkOnceODRLinkage, 1223 getInstrProfRuntimeHookVarUseFuncName(), M); 1224 User->addFnAttr(Attribute::NoInline); 1225 if (Options.NoRedZone) 1226 User->addFnAttr(Attribute::NoRedZone); 1227 User->setVisibility(GlobalValue::HiddenVisibility); 1228 if (TT.supportsCOMDAT()) 1229 User->setComdat(M->getOrInsertComdat(User->getName())); 1230 1231 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", User)); 1232 auto *Load = IRB.CreateLoad(Int32Ty, Var); 1233 IRB.CreateRet(Load); 1234 1235 // Mark the function as used so that it isn't stripped out. 1236 CompilerUsedVars.push_back(User); 1237 } 1238 return true; 1239 } 1240 1241 void InstrProfiling::emitUses() { 1242 // The metadata sections are parallel arrays. Optimizers (e.g. 1243 // GlobalOpt/ConstantMerge) may not discard associated sections as a unit, so 1244 // we conservatively retain all unconditionally in the compiler. 1245 // 1246 // On ELF and Mach-O, the linker can guarantee the associated sections will be 1247 // retained or discarded as a unit, so llvm.compiler.used is sufficient. 1248 // Similarly on COFF, if prof data is not referenced by code we use one comdat 1249 // and ensure this GC property as well. Otherwise, we have to conservatively 1250 // make all of the sections retained by the linker. 1251 if (TT.isOSBinFormatELF() || TT.isOSBinFormatMachO() || 1252 (TT.isOSBinFormatCOFF() && !profDataReferencedByCode(*M))) 1253 appendToCompilerUsed(*M, CompilerUsedVars); 1254 else 1255 appendToUsed(*M, CompilerUsedVars); 1256 1257 // We do not add proper references from used metadata sections to NamesVar and 1258 // VNodesVar, so we have to be conservative and place them in llvm.used 1259 // regardless of the target, 1260 appendToUsed(*M, UsedVars); 1261 } 1262 1263 void InstrProfiling::emitInitialization() { 1264 // Create ProfileFileName variable. Don't don't this for the 1265 // context-sensitive instrumentation lowering: This lowering is after 1266 // LTO/ThinLTO linking. Pass PGOInstrumentationGenCreateVar should 1267 // have already create the variable before LTO/ThinLTO linking. 1268 if (!IsCS) 1269 createProfileFileNameVar(*M, Options.InstrProfileOutput); 1270 Function *RegisterF = M->getFunction(getInstrProfRegFuncsName()); 1271 if (!RegisterF) 1272 return; 1273 1274 // Create the initialization function. 1275 auto *VoidTy = Type::getVoidTy(M->getContext()); 1276 auto *F = Function::Create(FunctionType::get(VoidTy, false), 1277 GlobalValue::InternalLinkage, 1278 getInstrProfInitFuncName(), M); 1279 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1280 F->addFnAttr(Attribute::NoInline); 1281 if (Options.NoRedZone) 1282 F->addFnAttr(Attribute::NoRedZone); 1283 1284 // Add the basic block and the necessary calls. 1285 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", F)); 1286 IRB.CreateCall(RegisterF, {}); 1287 IRB.CreateRetVoid(); 1288 1289 appendToGlobalCtors(*M, F, 0); 1290 } 1291