1 //===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass lowers instrprof_* intrinsics emitted by an instrumentor. 10 // It also builds the data structures and initialization code needed for 11 // updating execution counts and emitting the profile at runtime. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/GlobalValue.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/ProfileData/InstrProf.h" 47 #include "llvm/ProfileData/InstrProfCorrelator.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Error.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/TargetParser/Triple.h" 53 #include "llvm/Transforms/Instrumentation.h" 54 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" 55 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56 #include "llvm/Transforms/Utils/ModuleUtils.h" 57 #include "llvm/Transforms/Utils/SSAUpdater.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 #include <string> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "instrprof" 66 67 namespace llvm { 68 // Command line option to enable vtable value profiling. Defined in 69 // ProfileData/InstrProf.cpp: -enable-vtable-value-profiling= 70 extern cl::opt<bool> EnableVTableValueProfiling; 71 // TODO: Remove -debug-info-correlate in next LLVM release, in favor of 72 // -profile-correlate=debug-info. 73 cl::opt<bool> DebugInfoCorrelate( 74 "debug-info-correlate", 75 cl::desc("Use debug info to correlate profiles. (Deprecated, use " 76 "-profile-correlate=debug-info)"), 77 cl::init(false)); 78 79 cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate( 80 "profile-correlate", 81 cl::desc("Use debug info or binary file to correlate profiles."), 82 cl::init(InstrProfCorrelator::NONE), 83 cl::values(clEnumValN(InstrProfCorrelator::NONE, "", 84 "No profile correlation"), 85 clEnumValN(InstrProfCorrelator::DEBUG_INFO, "debug-info", 86 "Use debug info to correlate"), 87 clEnumValN(InstrProfCorrelator::BINARY, "binary", 88 "Use binary to correlate"))); 89 } // namespace llvm 90 91 namespace { 92 93 cl::opt<bool> DoHashBasedCounterSplit( 94 "hash-based-counter-split", 95 cl::desc("Rename counter variable of a comdat function based on cfg hash"), 96 cl::init(true)); 97 98 cl::opt<bool> 99 RuntimeCounterRelocation("runtime-counter-relocation", 100 cl::desc("Enable relocating counters at runtime."), 101 cl::init(false)); 102 103 cl::opt<bool> ValueProfileStaticAlloc( 104 "vp-static-alloc", 105 cl::desc("Do static counter allocation for value profiler"), 106 cl::init(true)); 107 108 cl::opt<double> NumCountersPerValueSite( 109 "vp-counters-per-site", 110 cl::desc("The average number of profile counters allocated " 111 "per value profiling site."), 112 // This is set to a very small value because in real programs, only 113 // a very small percentage of value sites have non-zero targets, e.g, 1/30. 114 // For those sites with non-zero profile, the average number of targets 115 // is usually smaller than 2. 116 cl::init(1.0)); 117 118 cl::opt<bool> AtomicCounterUpdateAll( 119 "instrprof-atomic-counter-update-all", 120 cl::desc("Make all profile counter updates atomic (for testing only)"), 121 cl::init(false)); 122 123 cl::opt<bool> AtomicCounterUpdatePromoted( 124 "atomic-counter-update-promoted", 125 cl::desc("Do counter update using atomic fetch add " 126 " for promoted counters only"), 127 cl::init(false)); 128 129 cl::opt<bool> AtomicFirstCounter( 130 "atomic-first-counter", 131 cl::desc("Use atomic fetch add for first counter in a function (usually " 132 "the entry counter)"), 133 cl::init(false)); 134 135 // If the option is not specified, the default behavior about whether 136 // counter promotion is done depends on how instrumentaiton lowering 137 // pipeline is setup, i.e., the default value of true of this option 138 // does not mean the promotion will be done by default. Explicitly 139 // setting this option can override the default behavior. 140 cl::opt<bool> DoCounterPromotion("do-counter-promotion", 141 cl::desc("Do counter register promotion"), 142 cl::init(false)); 143 cl::opt<unsigned> MaxNumOfPromotionsPerLoop( 144 "max-counter-promotions-per-loop", cl::init(20), 145 cl::desc("Max number counter promotions per loop to avoid" 146 " increasing register pressure too much")); 147 148 // A debug option 149 cl::opt<int> 150 MaxNumOfPromotions("max-counter-promotions", cl::init(-1), 151 cl::desc("Max number of allowed counter promotions")); 152 153 cl::opt<unsigned> SpeculativeCounterPromotionMaxExiting( 154 "speculative-counter-promotion-max-exiting", cl::init(3), 155 cl::desc("The max number of exiting blocks of a loop to allow " 156 " speculative counter promotion")); 157 158 cl::opt<bool> SpeculativeCounterPromotionToLoop( 159 "speculative-counter-promotion-to-loop", 160 cl::desc("When the option is false, if the target block is in a loop, " 161 "the promotion will be disallowed unless the promoted counter " 162 " update can be further/iteratively promoted into an acyclic " 163 " region.")); 164 165 cl::opt<bool> IterativeCounterPromotion( 166 "iterative-counter-promotion", cl::init(true), 167 cl::desc("Allow counter promotion across the whole loop nest.")); 168 169 cl::opt<bool> SkipRetExitBlock( 170 "skip-ret-exit-block", cl::init(true), 171 cl::desc("Suppress counter promotion if exit blocks contain ret.")); 172 173 static cl::opt<bool> SampledInstr("sampled-instrumentation", cl::ZeroOrMore, 174 cl::init(false), 175 cl::desc("Do PGO instrumentation sampling")); 176 177 static cl::opt<unsigned> SampledInstrPeriod( 178 "sampled-instr-period", 179 cl::desc("Set the profile instrumentation sample period. For each sample " 180 "period, a fixed number of consecutive samples will be recorded. " 181 "The number is controlled by 'sampled-instr-burst-duration' flag. " 182 "The default sample period of 65535 is optimized for generating " 183 "efficient code that leverages unsigned integer wrapping in " 184 "overflow."), 185 cl::init(65535)); 186 187 static cl::opt<unsigned> SampledInstrBurstDuration( 188 "sampled-instr-burst-duration", 189 cl::desc("Set the profile instrumentation burst duration, which can range " 190 "from 0 to one less than the value of 'sampled-instr-period'. " 191 "This number of samples will be recorded for each " 192 "'sampled-instr-period' count update. Setting to 1 enables " 193 "simple sampling, in which case it is recommended to set " 194 "'sampled-instr-period' to a prime number."), 195 cl::init(200)); 196 197 using LoadStorePair = std::pair<Instruction *, Instruction *>; 198 199 static uint64_t getIntModuleFlagOrZero(const Module &M, StringRef Flag) { 200 auto *MD = dyn_cast_or_null<ConstantAsMetadata>(M.getModuleFlag(Flag)); 201 if (!MD) 202 return 0; 203 204 // If the flag is a ConstantAsMetadata, it should be an integer representable 205 // in 64-bits. 206 return cast<ConstantInt>(MD->getValue())->getZExtValue(); 207 } 208 209 static bool enablesValueProfiling(const Module &M) { 210 return isIRPGOFlagSet(&M) || 211 getIntModuleFlagOrZero(M, "EnableValueProfiling") != 0; 212 } 213 214 // Conservatively returns true if value profiling is enabled. 215 static bool profDataReferencedByCode(const Module &M) { 216 return enablesValueProfiling(M); 217 } 218 219 class InstrLowerer final { 220 public: 221 InstrLowerer(Module &M, const InstrProfOptions &Options, 222 std::function<const TargetLibraryInfo &(Function &F)> GetTLI, 223 bool IsCS) 224 : M(M), Options(Options), TT(Triple(M.getTargetTriple())), IsCS(IsCS), 225 GetTLI(GetTLI), DataReferencedByCode(profDataReferencedByCode(M)) {} 226 227 bool lower(); 228 229 private: 230 Module &M; 231 const InstrProfOptions Options; 232 const Triple TT; 233 // Is this lowering for the context-sensitive instrumentation. 234 const bool IsCS; 235 236 std::function<const TargetLibraryInfo &(Function &F)> GetTLI; 237 238 const bool DataReferencedByCode; 239 240 struct PerFunctionProfileData { 241 uint32_t NumValueSites[IPVK_Last + 1] = {}; 242 GlobalVariable *RegionCounters = nullptr; 243 GlobalVariable *DataVar = nullptr; 244 GlobalVariable *RegionBitmaps = nullptr; 245 uint32_t NumBitmapBytes = 0; 246 247 PerFunctionProfileData() = default; 248 }; 249 DenseMap<GlobalVariable *, PerFunctionProfileData> ProfileDataMap; 250 // Key is virtual table variable, value is 'VTableProfData' in the form of 251 // GlobalVariable. 252 DenseMap<GlobalVariable *, GlobalVariable *> VTableDataMap; 253 /// If runtime relocation is enabled, this maps functions to the load 254 /// instruction that produces the profile relocation bias. 255 DenseMap<const Function *, LoadInst *> FunctionToProfileBiasMap; 256 std::vector<GlobalValue *> CompilerUsedVars; 257 std::vector<GlobalValue *> UsedVars; 258 std::vector<GlobalVariable *> ReferencedNames; 259 // The list of virtual table variables of which the VTableProfData is 260 // collected. 261 std::vector<GlobalVariable *> ReferencedVTables; 262 GlobalVariable *NamesVar = nullptr; 263 size_t NamesSize = 0; 264 265 /// The instance of [[alwaysinline]] rmw_or(ptr, i8). 266 /// This is name-insensitive. 267 Function *RMWOrFunc = nullptr; 268 269 // vector of counter load/store pairs to be register promoted. 270 std::vector<LoadStorePair> PromotionCandidates; 271 272 int64_t TotalCountersPromoted = 0; 273 274 /// Lower instrumentation intrinsics in the function. Returns true if there 275 /// any lowering. 276 bool lowerIntrinsics(Function *F); 277 278 /// Register-promote counter loads and stores in loops. 279 void promoteCounterLoadStores(Function *F); 280 281 /// Returns true if relocating counters at runtime is enabled. 282 bool isRuntimeCounterRelocationEnabled() const; 283 284 /// Returns true if profile counter update register promotion is enabled. 285 bool isCounterPromotionEnabled() const; 286 287 /// Return true if profile sampling is enabled. 288 bool isSamplingEnabled() const; 289 290 /// Count the number of instrumented value sites for the function. 291 void computeNumValueSiteCounts(InstrProfValueProfileInst *Ins); 292 293 /// Replace instrprof.value.profile with a call to runtime library. 294 void lowerValueProfileInst(InstrProfValueProfileInst *Ins); 295 296 /// Replace instrprof.cover with a store instruction to the coverage byte. 297 void lowerCover(InstrProfCoverInst *Inc); 298 299 /// Replace instrprof.timestamp with a call to 300 /// INSTR_PROF_PROFILE_SET_TIMESTAMP. 301 void lowerTimestamp(InstrProfTimestampInst *TimestampInstruction); 302 303 /// Replace instrprof.increment with an increment of the appropriate value. 304 void lowerIncrement(InstrProfIncrementInst *Inc); 305 306 /// Force emitting of name vars for unused functions. 307 void lowerCoverageData(GlobalVariable *CoverageNamesVar); 308 309 /// Replace instrprof.mcdc.tvbitmask.update with a shift and or instruction 310 /// using the index represented by the a temp value into a bitmap. 311 void lowerMCDCTestVectorBitmapUpdate(InstrProfMCDCTVBitmapUpdate *Ins); 312 313 /// Get the Bias value for data to access mmap-ed area. 314 /// Create it if it hasn't been seen. 315 GlobalVariable *getOrCreateBiasVar(StringRef VarName); 316 317 /// Compute the address of the counter value that this profiling instruction 318 /// acts on. 319 Value *getCounterAddress(InstrProfCntrInstBase *I); 320 321 /// Lower the incremental instructions under profile sampling predicates. 322 void doSampling(Instruction *I); 323 324 /// Get the region counters for an increment, creating them if necessary. 325 /// 326 /// If the counter array doesn't yet exist, the profile data variables 327 /// referring to them will also be created. 328 GlobalVariable *getOrCreateRegionCounters(InstrProfCntrInstBase *Inc); 329 330 /// Create the region counters. 331 GlobalVariable *createRegionCounters(InstrProfCntrInstBase *Inc, 332 StringRef Name, 333 GlobalValue::LinkageTypes Linkage); 334 335 /// Create [[alwaysinline]] rmw_or(ptr, i8). 336 /// This doesn't update `RMWOrFunc`. 337 Function *createRMWOrFunc(); 338 339 /// Get the call to `rmw_or`. 340 /// Create the instance if it is unknown. 341 CallInst *getRMWOrCall(Value *Addr, Value *Val); 342 343 /// Compute the address of the test vector bitmap that this profiling 344 /// instruction acts on. 345 Value *getBitmapAddress(InstrProfMCDCTVBitmapUpdate *I); 346 347 /// Get the region bitmaps for an increment, creating them if necessary. 348 /// 349 /// If the bitmap array doesn't yet exist, the profile data variables 350 /// referring to them will also be created. 351 GlobalVariable *getOrCreateRegionBitmaps(InstrProfMCDCBitmapInstBase *Inc); 352 353 /// Create the MC/DC bitmap as a byte-aligned array of bytes associated with 354 /// an MC/DC Decision region. The number of bytes required is indicated by 355 /// the intrinsic used (type InstrProfMCDCBitmapInstBase). This is called 356 /// as part of setupProfileSection() and is conceptually very similar to 357 /// what is done for profile data counters in createRegionCounters(). 358 GlobalVariable *createRegionBitmaps(InstrProfMCDCBitmapInstBase *Inc, 359 StringRef Name, 360 GlobalValue::LinkageTypes Linkage); 361 362 /// Set Comdat property of GV, if required. 363 void maybeSetComdat(GlobalVariable *GV, GlobalObject *GO, StringRef VarName); 364 365 /// Setup the sections into which counters and bitmaps are allocated. 366 GlobalVariable *setupProfileSection(InstrProfInstBase *Inc, 367 InstrProfSectKind IPSK); 368 369 /// Create INSTR_PROF_DATA variable for counters and bitmaps. 370 void createDataVariable(InstrProfCntrInstBase *Inc); 371 372 /// Get the counters for virtual table values, creating them if necessary. 373 void getOrCreateVTableProfData(GlobalVariable *GV); 374 375 /// Emit the section with compressed function names. 376 void emitNameData(); 377 378 /// Emit the section with compressed vtable names. 379 void emitVTableNames(); 380 381 /// Emit value nodes section for value profiling. 382 void emitVNodes(); 383 384 /// Emit runtime registration functions for each profile data variable. 385 void emitRegistration(); 386 387 /// Emit the necessary plumbing to pull in the runtime initialization. 388 /// Returns true if a change was made. 389 bool emitRuntimeHook(); 390 391 /// Add uses of our data variables and runtime hook. 392 void emitUses(); 393 394 /// Create a static initializer for our data, on platforms that need it, 395 /// and for any profile output file that was specified. 396 void emitInitialization(); 397 }; 398 399 /// 400 /// A helper class to promote one counter RMW operation in the loop 401 /// into register update. 402 /// 403 /// RWM update for the counter will be sinked out of the loop after 404 /// the transformation. 405 /// 406 class PGOCounterPromoterHelper : public LoadAndStorePromoter { 407 public: 408 PGOCounterPromoterHelper( 409 Instruction *L, Instruction *S, SSAUpdater &SSA, Value *Init, 410 BasicBlock *PH, ArrayRef<BasicBlock *> ExitBlocks, 411 ArrayRef<Instruction *> InsertPts, 412 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, 413 LoopInfo &LI) 414 : LoadAndStorePromoter({L, S}, SSA), Store(S), ExitBlocks(ExitBlocks), 415 InsertPts(InsertPts), LoopToCandidates(LoopToCands), LI(LI) { 416 assert(isa<LoadInst>(L)); 417 assert(isa<StoreInst>(S)); 418 SSA.AddAvailableValue(PH, Init); 419 } 420 421 void doExtraRewritesBeforeFinalDeletion() override { 422 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 423 BasicBlock *ExitBlock = ExitBlocks[i]; 424 Instruction *InsertPos = InsertPts[i]; 425 // Get LiveIn value into the ExitBlock. If there are multiple 426 // predecessors, the value is defined by a PHI node in this 427 // block. 428 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 429 Value *Addr = cast<StoreInst>(Store)->getPointerOperand(); 430 Type *Ty = LiveInValue->getType(); 431 IRBuilder<> Builder(InsertPos); 432 if (auto *AddrInst = dyn_cast_or_null<IntToPtrInst>(Addr)) { 433 // If isRuntimeCounterRelocationEnabled() is true then the address of 434 // the store instruction is computed with two instructions in 435 // InstrProfiling::getCounterAddress(). We need to copy those 436 // instructions to this block to compute Addr correctly. 437 // %BiasAdd = add i64 ptrtoint <__profc_>, <__llvm_profile_counter_bias> 438 // %Addr = inttoptr i64 %BiasAdd to i64* 439 auto *OrigBiasInst = dyn_cast<BinaryOperator>(AddrInst->getOperand(0)); 440 assert(OrigBiasInst->getOpcode() == Instruction::BinaryOps::Add); 441 Value *BiasInst = Builder.Insert(OrigBiasInst->clone()); 442 Addr = Builder.CreateIntToPtr(BiasInst, 443 PointerType::getUnqual(Ty->getContext())); 444 } 445 if (AtomicCounterUpdatePromoted) 446 // automic update currently can only be promoted across the current 447 // loop, not the whole loop nest. 448 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, LiveInValue, 449 MaybeAlign(), 450 AtomicOrdering::SequentiallyConsistent); 451 else { 452 LoadInst *OldVal = Builder.CreateLoad(Ty, Addr, "pgocount.promoted"); 453 auto *NewVal = Builder.CreateAdd(OldVal, LiveInValue); 454 auto *NewStore = Builder.CreateStore(NewVal, Addr); 455 456 // Now update the parent loop's candidate list: 457 if (IterativeCounterPromotion) { 458 auto *TargetLoop = LI.getLoopFor(ExitBlock); 459 if (TargetLoop) 460 LoopToCandidates[TargetLoop].emplace_back(OldVal, NewStore); 461 } 462 } 463 } 464 } 465 466 private: 467 Instruction *Store; 468 ArrayRef<BasicBlock *> ExitBlocks; 469 ArrayRef<Instruction *> InsertPts; 470 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; 471 LoopInfo &LI; 472 }; 473 474 /// A helper class to do register promotion for all profile counter 475 /// updates in a loop. 476 /// 477 class PGOCounterPromoter { 478 public: 479 PGOCounterPromoter( 480 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, 481 Loop &CurLoop, LoopInfo &LI, BlockFrequencyInfo *BFI) 482 : LoopToCandidates(LoopToCands), L(CurLoop), LI(LI), BFI(BFI) { 483 484 // Skip collection of ExitBlocks and InsertPts for loops that will not be 485 // able to have counters promoted. 486 SmallVector<BasicBlock *, 8> LoopExitBlocks; 487 SmallPtrSet<BasicBlock *, 8> BlockSet; 488 489 L.getExitBlocks(LoopExitBlocks); 490 if (!isPromotionPossible(&L, LoopExitBlocks)) 491 return; 492 493 for (BasicBlock *ExitBlock : LoopExitBlocks) { 494 if (BlockSet.insert(ExitBlock).second && 495 llvm::none_of(predecessors(ExitBlock), [&](const BasicBlock *Pred) { 496 return llvm::isPresplitCoroSuspendExitEdge(*Pred, *ExitBlock); 497 })) { 498 ExitBlocks.push_back(ExitBlock); 499 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 500 } 501 } 502 } 503 504 bool run(int64_t *NumPromoted) { 505 // Skip 'infinite' loops: 506 if (ExitBlocks.size() == 0) 507 return false; 508 509 // Skip if any of the ExitBlocks contains a ret instruction. 510 // This is to prevent dumping of incomplete profile -- if the 511 // the loop is a long running loop and dump is called in the middle 512 // of the loop, the result profile is incomplete. 513 // FIXME: add other heuristics to detect long running loops. 514 if (SkipRetExitBlock) { 515 for (auto *BB : ExitBlocks) 516 if (isa<ReturnInst>(BB->getTerminator())) 517 return false; 518 } 519 520 unsigned MaxProm = getMaxNumOfPromotionsInLoop(&L); 521 if (MaxProm == 0) 522 return false; 523 524 unsigned Promoted = 0; 525 for (auto &Cand : LoopToCandidates[&L]) { 526 527 SmallVector<PHINode *, 4> NewPHIs; 528 SSAUpdater SSA(&NewPHIs); 529 Value *InitVal = ConstantInt::get(Cand.first->getType(), 0); 530 531 // If BFI is set, we will use it to guide the promotions. 532 if (BFI) { 533 auto *BB = Cand.first->getParent(); 534 auto InstrCount = BFI->getBlockProfileCount(BB); 535 if (!InstrCount) 536 continue; 537 auto PreheaderCount = BFI->getBlockProfileCount(L.getLoopPreheader()); 538 // If the average loop trip count is not greater than 1.5, we skip 539 // promotion. 540 if (PreheaderCount && (*PreheaderCount * 3) >= (*InstrCount * 2)) 541 continue; 542 } 543 544 PGOCounterPromoterHelper Promoter(Cand.first, Cand.second, SSA, InitVal, 545 L.getLoopPreheader(), ExitBlocks, 546 InsertPts, LoopToCandidates, LI); 547 Promoter.run(SmallVector<Instruction *, 2>({Cand.first, Cand.second})); 548 Promoted++; 549 if (Promoted >= MaxProm) 550 break; 551 552 (*NumPromoted)++; 553 if (MaxNumOfPromotions != -1 && *NumPromoted >= MaxNumOfPromotions) 554 break; 555 } 556 557 LLVM_DEBUG(dbgs() << Promoted << " counters promoted for loop (depth=" 558 << L.getLoopDepth() << ")\n"); 559 return Promoted != 0; 560 } 561 562 private: 563 bool allowSpeculativeCounterPromotion(Loop *LP) { 564 SmallVector<BasicBlock *, 8> ExitingBlocks; 565 L.getExitingBlocks(ExitingBlocks); 566 // Not considierered speculative. 567 if (ExitingBlocks.size() == 1) 568 return true; 569 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) 570 return false; 571 return true; 572 } 573 574 // Check whether the loop satisfies the basic conditions needed to perform 575 // Counter Promotions. 576 bool 577 isPromotionPossible(Loop *LP, 578 const SmallVectorImpl<BasicBlock *> &LoopExitBlocks) { 579 // We can't insert into a catchswitch. 580 if (llvm::any_of(LoopExitBlocks, [](BasicBlock *Exit) { 581 return isa<CatchSwitchInst>(Exit->getTerminator()); 582 })) 583 return false; 584 585 if (!LP->hasDedicatedExits()) 586 return false; 587 588 BasicBlock *PH = LP->getLoopPreheader(); 589 if (!PH) 590 return false; 591 592 return true; 593 } 594 595 // Returns the max number of Counter Promotions for LP. 596 unsigned getMaxNumOfPromotionsInLoop(Loop *LP) { 597 SmallVector<BasicBlock *, 8> LoopExitBlocks; 598 LP->getExitBlocks(LoopExitBlocks); 599 if (!isPromotionPossible(LP, LoopExitBlocks)) 600 return 0; 601 602 SmallVector<BasicBlock *, 8> ExitingBlocks; 603 LP->getExitingBlocks(ExitingBlocks); 604 605 // If BFI is set, we do more aggressive promotions based on BFI. 606 if (BFI) 607 return (unsigned)-1; 608 609 // Not considierered speculative. 610 if (ExitingBlocks.size() == 1) 611 return MaxNumOfPromotionsPerLoop; 612 613 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) 614 return 0; 615 616 // Whether the target block is in a loop does not matter: 617 if (SpeculativeCounterPromotionToLoop) 618 return MaxNumOfPromotionsPerLoop; 619 620 // Now check the target block: 621 unsigned MaxProm = MaxNumOfPromotionsPerLoop; 622 for (auto *TargetBlock : LoopExitBlocks) { 623 auto *TargetLoop = LI.getLoopFor(TargetBlock); 624 if (!TargetLoop) 625 continue; 626 unsigned MaxPromForTarget = getMaxNumOfPromotionsInLoop(TargetLoop); 627 unsigned PendingCandsInTarget = LoopToCandidates[TargetLoop].size(); 628 MaxProm = 629 std::min(MaxProm, std::max(MaxPromForTarget, PendingCandsInTarget) - 630 PendingCandsInTarget); 631 } 632 return MaxProm; 633 } 634 635 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; 636 SmallVector<BasicBlock *, 8> ExitBlocks; 637 SmallVector<Instruction *, 8> InsertPts; 638 Loop &L; 639 LoopInfo &LI; 640 BlockFrequencyInfo *BFI; 641 }; 642 643 enum class ValueProfilingCallType { 644 // Individual values are tracked. Currently used for indiret call target 645 // profiling. 646 Default, 647 648 // MemOp: the memop size value profiling. 649 MemOp 650 }; 651 652 } // end anonymous namespace 653 654 PreservedAnalyses InstrProfilingLoweringPass::run(Module &M, 655 ModuleAnalysisManager &AM) { 656 FunctionAnalysisManager &FAM = 657 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 658 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 659 return FAM.getResult<TargetLibraryAnalysis>(F); 660 }; 661 InstrLowerer Lowerer(M, Options, GetTLI, IsCS); 662 if (!Lowerer.lower()) 663 return PreservedAnalyses::all(); 664 665 return PreservedAnalyses::none(); 666 } 667 668 // 669 // Perform instrumentation sampling. 670 // 671 // There are 3 favors of sampling: 672 // (1) Full burst sampling: We transform: 673 // Increment_Instruction; 674 // to: 675 // if (__llvm_profile_sampling__ < SampledInstrBurstDuration) { 676 // Increment_Instruction; 677 // } 678 // __llvm_profile_sampling__ += 1; 679 // if (__llvm_profile_sampling__ >= SampledInstrPeriod) { 680 // __llvm_profile_sampling__ = 0; 681 // } 682 // 683 // "__llvm_profile_sampling__" is a thread-local global shared by all PGO 684 // counters (value-instrumentation and edge instrumentation). 685 // 686 // (2) Fast burst sampling: 687 // "__llvm_profile_sampling__" variable is an unsigned type, meaning it will 688 // wrap around to zero when overflows. In this case, the second check is 689 // unnecessary, so we won't generate check2 when the SampledInstrPeriod is 690 // set to 65535 (64K - 1). The code after: 691 // if (__llvm_profile_sampling__ < SampledInstrBurstDuration) { 692 // Increment_Instruction; 693 // } 694 // __llvm_profile_sampling__ += 1; 695 // 696 // (3) Simple sampling: 697 // When SampledInstrBurstDuration sets to 1, we do a simple sampling: 698 // __llvm_profile_sampling__ += 1; 699 // if (__llvm_profile_sampling__ >= SampledInstrPeriod) { 700 // __llvm_profile_sampling__ = 0; 701 // Increment_Instruction; 702 // } 703 // 704 // Note that, the code snippet after the transformation can still be counter 705 // promoted. However, with sampling enabled, counter updates are expected to 706 // be infrequent, making the benefits of counter promotion negligible. 707 // Moreover, counter promotion can potentially cause issues in server 708 // applications, particularly when the counters are dumped without a clean 709 // exit. To mitigate this risk, counter promotion is disabled by default when 710 // sampling is enabled. This behavior can be overridden using the internal 711 // option. 712 void InstrLowerer::doSampling(Instruction *I) { 713 if (!isSamplingEnabled()) 714 return; 715 716 unsigned SampledBurstDuration = SampledInstrBurstDuration.getValue(); 717 unsigned SampledPeriod = SampledInstrPeriod.getValue(); 718 if (SampledBurstDuration >= SampledPeriod) { 719 report_fatal_error( 720 "SampledPeriod needs to be greater than SampledBurstDuration"); 721 } 722 bool UseShort = (SampledPeriod <= USHRT_MAX); 723 bool IsSimpleSampling = (SampledBurstDuration == 1); 724 // If (SampledBurstDuration == 1 && SampledPeriod == 65535), generate 725 // the simple sampling style code. 726 bool IsFastSampling = (!IsSimpleSampling && SampledPeriod == 65535); 727 728 auto GetConstant = [UseShort](IRBuilder<> &Builder, uint32_t C) { 729 if (UseShort) 730 return Builder.getInt16(C); 731 else 732 return Builder.getInt32(C); 733 }; 734 735 IntegerType *SamplingVarTy; 736 if (UseShort) 737 SamplingVarTy = Type::getInt16Ty(M.getContext()); 738 else 739 SamplingVarTy = Type::getInt32Ty(M.getContext()); 740 auto *SamplingVar = 741 M.getGlobalVariable(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_SAMPLING_VAR)); 742 assert(SamplingVar && "SamplingVar not set properly"); 743 744 // Create the condition for checking the burst duration. 745 Instruction *SamplingVarIncr; 746 Value *NewSamplingVarVal; 747 MDBuilder MDB(I->getContext()); 748 MDNode *BranchWeight; 749 IRBuilder<> CondBuilder(I); 750 auto *LoadSamplingVar = CondBuilder.CreateLoad(SamplingVarTy, SamplingVar); 751 if (IsSimpleSampling) { 752 // For the simple sampling, just create the load and increments. 753 IRBuilder<> IncBuilder(I); 754 NewSamplingVarVal = 755 IncBuilder.CreateAdd(LoadSamplingVar, GetConstant(IncBuilder, 1)); 756 SamplingVarIncr = IncBuilder.CreateStore(NewSamplingVarVal, SamplingVar); 757 } else { 758 // For the bust-sampling, create the conditonal update. 759 auto *DurationCond = CondBuilder.CreateICmpULE( 760 LoadSamplingVar, GetConstant(CondBuilder, SampledBurstDuration)); 761 BranchWeight = MDB.createBranchWeights( 762 SampledBurstDuration, SampledPeriod + 1 - SampledBurstDuration); 763 Instruction *ThenTerm = SplitBlockAndInsertIfThen( 764 DurationCond, I, /* Unreachable */ false, BranchWeight); 765 IRBuilder<> IncBuilder(I); 766 NewSamplingVarVal = 767 IncBuilder.CreateAdd(LoadSamplingVar, GetConstant(IncBuilder, 1)); 768 SamplingVarIncr = IncBuilder.CreateStore(NewSamplingVarVal, SamplingVar); 769 I->moveBefore(ThenTerm); 770 } 771 772 if (IsFastSampling) 773 return; 774 775 // Create the condtion for checking the period. 776 Instruction *ThenTerm, *ElseTerm; 777 IRBuilder<> PeriodCondBuilder(SamplingVarIncr); 778 auto *PeriodCond = PeriodCondBuilder.CreateICmpUGE( 779 NewSamplingVarVal, GetConstant(PeriodCondBuilder, SampledPeriod)); 780 BranchWeight = MDB.createBranchWeights(1, SampledPeriod); 781 SplitBlockAndInsertIfThenElse(PeriodCond, SamplingVarIncr, &ThenTerm, 782 &ElseTerm, BranchWeight); 783 784 // For the simple sampling, the counter update happens in sampling var reset. 785 if (IsSimpleSampling) 786 I->moveBefore(ThenTerm); 787 788 IRBuilder<> ResetBuilder(ThenTerm); 789 ResetBuilder.CreateStore(GetConstant(ResetBuilder, 0), SamplingVar); 790 SamplingVarIncr->moveBefore(ElseTerm); 791 } 792 793 bool InstrLowerer::lowerIntrinsics(Function *F) { 794 bool MadeChange = false; 795 PromotionCandidates.clear(); 796 SmallVector<InstrProfInstBase *, 8> InstrProfInsts; 797 798 // To ensure compatibility with sampling, we save the intrinsics into 799 // a buffer to prevent potential breakage of the iterator (as the 800 // intrinsics will be moved to a different BB). 801 for (BasicBlock &BB : *F) { 802 for (Instruction &Instr : llvm::make_early_inc_range(BB)) { 803 if (auto *IP = dyn_cast<InstrProfInstBase>(&Instr)) 804 InstrProfInsts.push_back(IP); 805 } 806 } 807 808 for (auto *Instr : InstrProfInsts) { 809 doSampling(Instr); 810 if (auto *IPIS = dyn_cast<InstrProfIncrementInstStep>(Instr)) { 811 lowerIncrement(IPIS); 812 MadeChange = true; 813 } else if (auto *IPI = dyn_cast<InstrProfIncrementInst>(Instr)) { 814 lowerIncrement(IPI); 815 MadeChange = true; 816 } else if (auto *IPC = dyn_cast<InstrProfTimestampInst>(Instr)) { 817 lowerTimestamp(IPC); 818 MadeChange = true; 819 } else if (auto *IPC = dyn_cast<InstrProfCoverInst>(Instr)) { 820 lowerCover(IPC); 821 MadeChange = true; 822 } else if (auto *IPVP = dyn_cast<InstrProfValueProfileInst>(Instr)) { 823 lowerValueProfileInst(IPVP); 824 MadeChange = true; 825 } else if (auto *IPMP = dyn_cast<InstrProfMCDCBitmapParameters>(Instr)) { 826 IPMP->eraseFromParent(); 827 MadeChange = true; 828 } else if (auto *IPBU = dyn_cast<InstrProfMCDCTVBitmapUpdate>(Instr)) { 829 lowerMCDCTestVectorBitmapUpdate(IPBU); 830 MadeChange = true; 831 } 832 } 833 834 if (!MadeChange) 835 return false; 836 837 promoteCounterLoadStores(F); 838 return true; 839 } 840 841 bool InstrLowerer::isRuntimeCounterRelocationEnabled() const { 842 // Mach-O don't support weak external references. 843 if (TT.isOSBinFormatMachO()) 844 return false; 845 846 if (RuntimeCounterRelocation.getNumOccurrences() > 0) 847 return RuntimeCounterRelocation; 848 849 // Fuchsia uses runtime counter relocation by default. 850 return TT.isOSFuchsia(); 851 } 852 853 bool InstrLowerer::isSamplingEnabled() const { 854 if (SampledInstr.getNumOccurrences() > 0) 855 return SampledInstr; 856 return Options.Sampling; 857 } 858 859 bool InstrLowerer::isCounterPromotionEnabled() const { 860 if (DoCounterPromotion.getNumOccurrences() > 0) 861 return DoCounterPromotion; 862 863 return Options.DoCounterPromotion; 864 } 865 866 void InstrLowerer::promoteCounterLoadStores(Function *F) { 867 if (!isCounterPromotionEnabled()) 868 return; 869 870 DominatorTree DT(*F); 871 LoopInfo LI(DT); 872 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> LoopPromotionCandidates; 873 874 std::unique_ptr<BlockFrequencyInfo> BFI; 875 if (Options.UseBFIInPromotion) { 876 std::unique_ptr<BranchProbabilityInfo> BPI; 877 BPI.reset(new BranchProbabilityInfo(*F, LI, &GetTLI(*F))); 878 BFI.reset(new BlockFrequencyInfo(*F, *BPI, LI)); 879 } 880 881 for (const auto &LoadStore : PromotionCandidates) { 882 auto *CounterLoad = LoadStore.first; 883 auto *CounterStore = LoadStore.second; 884 BasicBlock *BB = CounterLoad->getParent(); 885 Loop *ParentLoop = LI.getLoopFor(BB); 886 if (!ParentLoop) 887 continue; 888 LoopPromotionCandidates[ParentLoop].emplace_back(CounterLoad, CounterStore); 889 } 890 891 SmallVector<Loop *, 4> Loops = LI.getLoopsInPreorder(); 892 893 // Do a post-order traversal of the loops so that counter updates can be 894 // iteratively hoisted outside the loop nest. 895 for (auto *Loop : llvm::reverse(Loops)) { 896 PGOCounterPromoter Promoter(LoopPromotionCandidates, *Loop, LI, BFI.get()); 897 Promoter.run(&TotalCountersPromoted); 898 } 899 } 900 901 static bool needsRuntimeHookUnconditionally(const Triple &TT) { 902 // On Fuchsia, we only need runtime hook if any counters are present. 903 if (TT.isOSFuchsia()) 904 return false; 905 906 return true; 907 } 908 909 /// Check if the module contains uses of any profiling intrinsics. 910 static bool containsProfilingIntrinsics(Module &M) { 911 auto containsIntrinsic = [&](int ID) { 912 if (auto *F = M.getFunction(Intrinsic::getName(ID))) 913 return !F->use_empty(); 914 return false; 915 }; 916 return containsIntrinsic(llvm::Intrinsic::instrprof_cover) || 917 containsIntrinsic(llvm::Intrinsic::instrprof_increment) || 918 containsIntrinsic(llvm::Intrinsic::instrprof_increment_step) || 919 containsIntrinsic(llvm::Intrinsic::instrprof_timestamp) || 920 containsIntrinsic(llvm::Intrinsic::instrprof_value_profile); 921 } 922 923 bool InstrLowerer::lower() { 924 bool MadeChange = false; 925 bool NeedsRuntimeHook = needsRuntimeHookUnconditionally(TT); 926 if (NeedsRuntimeHook) 927 MadeChange = emitRuntimeHook(); 928 929 if (!IsCS && isSamplingEnabled()) 930 createProfileSamplingVar(M); 931 932 bool ContainsProfiling = containsProfilingIntrinsics(M); 933 GlobalVariable *CoverageNamesVar = 934 M.getNamedGlobal(getCoverageUnusedNamesVarName()); 935 // Improve compile time by avoiding linear scans when there is no work. 936 if (!ContainsProfiling && !CoverageNamesVar) 937 return MadeChange; 938 939 // We did not know how many value sites there would be inside 940 // the instrumented function. This is counting the number of instrumented 941 // target value sites to enter it as field in the profile data variable. 942 for (Function &F : M) { 943 InstrProfCntrInstBase *FirstProfInst = nullptr; 944 for (BasicBlock &BB : F) { 945 for (auto I = BB.begin(), E = BB.end(); I != E; I++) { 946 if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I)) 947 computeNumValueSiteCounts(Ind); 948 else { 949 if (FirstProfInst == nullptr && 950 (isa<InstrProfIncrementInst>(I) || isa<InstrProfCoverInst>(I))) 951 FirstProfInst = dyn_cast<InstrProfCntrInstBase>(I); 952 // If the MCDCBitmapParameters intrinsic seen, create the bitmaps. 953 if (const auto &Params = dyn_cast<InstrProfMCDCBitmapParameters>(I)) 954 static_cast<void>(getOrCreateRegionBitmaps(Params)); 955 } 956 } 957 } 958 959 // Use a profile intrinsic to create the region counters and data variable. 960 // Also create the data variable based on the MCDCParams. 961 if (FirstProfInst != nullptr) { 962 static_cast<void>(getOrCreateRegionCounters(FirstProfInst)); 963 } 964 } 965 966 if (EnableVTableValueProfiling) 967 for (GlobalVariable &GV : M.globals()) 968 // Global variables with type metadata are virtual table variables. 969 if (GV.hasMetadata(LLVMContext::MD_type)) 970 getOrCreateVTableProfData(&GV); 971 972 for (Function &F : M) 973 MadeChange |= lowerIntrinsics(&F); 974 975 if (CoverageNamesVar) { 976 lowerCoverageData(CoverageNamesVar); 977 MadeChange = true; 978 } 979 980 if (!MadeChange) 981 return false; 982 983 emitVNodes(); 984 emitNameData(); 985 emitVTableNames(); 986 987 // Emit runtime hook for the cases where the target does not unconditionally 988 // require pulling in profile runtime, and coverage is enabled on code that is 989 // not eliminated by the front-end, e.g. unused functions with internal 990 // linkage. 991 if (!NeedsRuntimeHook && ContainsProfiling) 992 emitRuntimeHook(); 993 994 emitRegistration(); 995 emitUses(); 996 emitInitialization(); 997 return true; 998 } 999 1000 static FunctionCallee getOrInsertValueProfilingCall( 1001 Module &M, const TargetLibraryInfo &TLI, 1002 ValueProfilingCallType CallType = ValueProfilingCallType::Default) { 1003 LLVMContext &Ctx = M.getContext(); 1004 auto *ReturnTy = Type::getVoidTy(M.getContext()); 1005 1006 AttributeList AL; 1007 if (auto AK = TLI.getExtAttrForI32Param(false)) 1008 AL = AL.addParamAttribute(M.getContext(), 2, AK); 1009 1010 assert((CallType == ValueProfilingCallType::Default || 1011 CallType == ValueProfilingCallType::MemOp) && 1012 "Must be Default or MemOp"); 1013 Type *ParamTypes[] = { 1014 #define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType 1015 #include "llvm/ProfileData/InstrProfData.inc" 1016 }; 1017 auto *ValueProfilingCallTy = 1018 FunctionType::get(ReturnTy, ArrayRef(ParamTypes), false); 1019 StringRef FuncName = CallType == ValueProfilingCallType::Default 1020 ? getInstrProfValueProfFuncName() 1021 : getInstrProfValueProfMemOpFuncName(); 1022 return M.getOrInsertFunction(FuncName, ValueProfilingCallTy, AL); 1023 } 1024 1025 void InstrLowerer::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) { 1026 GlobalVariable *Name = Ind->getName(); 1027 uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); 1028 uint64_t Index = Ind->getIndex()->getZExtValue(); 1029 auto &PD = ProfileDataMap[Name]; 1030 PD.NumValueSites[ValueKind] = 1031 std::max(PD.NumValueSites[ValueKind], (uint32_t)(Index + 1)); 1032 } 1033 1034 void InstrLowerer::lowerValueProfileInst(InstrProfValueProfileInst *Ind) { 1035 // TODO: Value profiling heavily depends on the data section which is omitted 1036 // in lightweight mode. We need to move the value profile pointer to the 1037 // Counter struct to get this working. 1038 assert( 1039 !DebugInfoCorrelate && ProfileCorrelate == InstrProfCorrelator::NONE && 1040 "Value profiling is not yet supported with lightweight instrumentation"); 1041 GlobalVariable *Name = Ind->getName(); 1042 auto It = ProfileDataMap.find(Name); 1043 assert(It != ProfileDataMap.end() && It->second.DataVar && 1044 "value profiling detected in function with no counter incerement"); 1045 1046 GlobalVariable *DataVar = It->second.DataVar; 1047 uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); 1048 uint64_t Index = Ind->getIndex()->getZExtValue(); 1049 for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind) 1050 Index += It->second.NumValueSites[Kind]; 1051 1052 IRBuilder<> Builder(Ind); 1053 bool IsMemOpSize = (Ind->getValueKind()->getZExtValue() == 1054 llvm::InstrProfValueKind::IPVK_MemOPSize); 1055 CallInst *Call = nullptr; 1056 auto *TLI = &GetTLI(*Ind->getFunction()); 1057 1058 // To support value profiling calls within Windows exception handlers, funclet 1059 // information contained within operand bundles needs to be copied over to 1060 // the library call. This is required for the IR to be processed by the 1061 // WinEHPrepare pass. 1062 SmallVector<OperandBundleDef, 1> OpBundles; 1063 Ind->getOperandBundlesAsDefs(OpBundles); 1064 if (!IsMemOpSize) { 1065 Value *Args[3] = {Ind->getTargetValue(), DataVar, Builder.getInt32(Index)}; 1066 Call = Builder.CreateCall(getOrInsertValueProfilingCall(M, *TLI), Args, 1067 OpBundles); 1068 } else { 1069 Value *Args[3] = {Ind->getTargetValue(), DataVar, Builder.getInt32(Index)}; 1070 Call = Builder.CreateCall( 1071 getOrInsertValueProfilingCall(M, *TLI, ValueProfilingCallType::MemOp), 1072 Args, OpBundles); 1073 } 1074 if (auto AK = TLI->getExtAttrForI32Param(false)) 1075 Call->addParamAttr(2, AK); 1076 Ind->replaceAllUsesWith(Call); 1077 Ind->eraseFromParent(); 1078 } 1079 1080 GlobalVariable *InstrLowerer::getOrCreateBiasVar(StringRef VarName) { 1081 GlobalVariable *Bias = M.getGlobalVariable(VarName); 1082 if (Bias) 1083 return Bias; 1084 1085 Type *Int64Ty = Type::getInt64Ty(M.getContext()); 1086 1087 // Compiler must define this variable when runtime counter relocation 1088 // is being used. Runtime has a weak external reference that is used 1089 // to check whether that's the case or not. 1090 Bias = new GlobalVariable(M, Int64Ty, false, GlobalValue::LinkOnceODRLinkage, 1091 Constant::getNullValue(Int64Ty), VarName); 1092 Bias->setVisibility(GlobalVariable::HiddenVisibility); 1093 // A definition that's weak (linkonce_odr) without being in a COMDAT 1094 // section wouldn't lead to link errors, but it would lead to a dead 1095 // data word from every TU but one. Putting it in COMDAT ensures there 1096 // will be exactly one data slot in the link. 1097 if (TT.supportsCOMDAT()) 1098 Bias->setComdat(M.getOrInsertComdat(VarName)); 1099 1100 return Bias; 1101 } 1102 1103 Value *InstrLowerer::getCounterAddress(InstrProfCntrInstBase *I) { 1104 auto *Counters = getOrCreateRegionCounters(I); 1105 IRBuilder<> Builder(I); 1106 1107 if (isa<InstrProfTimestampInst>(I)) 1108 Counters->setAlignment(Align(8)); 1109 1110 auto *Addr = Builder.CreateConstInBoundsGEP2_32( 1111 Counters->getValueType(), Counters, 0, I->getIndex()->getZExtValue()); 1112 1113 if (!isRuntimeCounterRelocationEnabled()) 1114 return Addr; 1115 1116 Type *Int64Ty = Type::getInt64Ty(M.getContext()); 1117 Function *Fn = I->getParent()->getParent(); 1118 LoadInst *&BiasLI = FunctionToProfileBiasMap[Fn]; 1119 if (!BiasLI) { 1120 IRBuilder<> EntryBuilder(&Fn->getEntryBlock().front()); 1121 auto *Bias = getOrCreateBiasVar(getInstrProfCounterBiasVarName()); 1122 BiasLI = EntryBuilder.CreateLoad(Int64Ty, Bias, "profc_bias"); 1123 // Bias doesn't change after startup. 1124 BiasLI->setMetadata(LLVMContext::MD_invariant_load, 1125 MDNode::get(M.getContext(), std::nullopt)); 1126 } 1127 auto *Add = Builder.CreateAdd(Builder.CreatePtrToInt(Addr, Int64Ty), BiasLI); 1128 return Builder.CreateIntToPtr(Add, Addr->getType()); 1129 } 1130 1131 /// Create `void [[alwaysinline]] rmw_or(uint8_t *ArgAddr, uint8_t ArgVal)` 1132 /// "Basic" sequence is `*ArgAddr |= ArgVal` 1133 Function *InstrLowerer::createRMWOrFunc() { 1134 auto &Ctx = M.getContext(); 1135 auto *Int8Ty = Type::getInt8Ty(Ctx); 1136 Function *Fn = Function::Create( 1137 FunctionType::get(Type::getVoidTy(Ctx), 1138 {PointerType::getUnqual(Ctx), Int8Ty}, false), 1139 Function::LinkageTypes::PrivateLinkage, "rmw_or", M); 1140 Fn->addFnAttr(Attribute::AlwaysInline); 1141 auto *ArgAddr = Fn->getArg(0); 1142 auto *ArgVal = Fn->getArg(1); 1143 IRBuilder<> Builder(BasicBlock::Create(Ctx, "", Fn)); 1144 1145 // Load profile bitmap byte. 1146 // %mcdc.bits = load i8, ptr %4, align 1 1147 auto *Bitmap = Builder.CreateLoad(Int8Ty, ArgAddr, "mcdc.bits"); 1148 1149 if (Options.Atomic || AtomicCounterUpdateAll) { 1150 // If ((Bitmap & Val) != Val), then execute atomic (Bitmap |= Val). 1151 // Note, just-loaded Bitmap might not be up-to-date. Use it just for 1152 // early testing. 1153 auto *Masked = Builder.CreateAnd(Bitmap, ArgVal); 1154 auto *ShouldStore = Builder.CreateICmpNE(Masked, ArgVal); 1155 auto *ThenTerm = BasicBlock::Create(Ctx, "", Fn); 1156 auto *ElseTerm = BasicBlock::Create(Ctx, "", Fn); 1157 // Assume updating will be rare. 1158 auto *Unlikely = MDBuilder(Ctx).createUnlikelyBranchWeights(); 1159 Builder.CreateCondBr(ShouldStore, ThenTerm, ElseTerm, Unlikely); 1160 1161 IRBuilder<> ThenBuilder(ThenTerm); 1162 ThenBuilder.CreateAtomicRMW(AtomicRMWInst::Or, ArgAddr, ArgVal, 1163 MaybeAlign(), AtomicOrdering::Monotonic); 1164 ThenBuilder.CreateRetVoid(); 1165 1166 IRBuilder<> ElseBuilder(ElseTerm); 1167 ElseBuilder.CreateRetVoid(); 1168 1169 return Fn; 1170 } 1171 1172 // Perform logical OR of profile bitmap byte and shifted bit offset. 1173 // %8 = or i8 %mcdc.bits, %7 1174 auto *Result = Builder.CreateOr(Bitmap, ArgVal); 1175 1176 // Store the updated profile bitmap byte. 1177 // store i8 %8, ptr %3, align 1 1178 Builder.CreateStore(Result, ArgAddr); 1179 1180 // Terminator 1181 Builder.CreateRetVoid(); 1182 1183 return Fn; 1184 } 1185 1186 CallInst *InstrLowerer::getRMWOrCall(Value *Addr, Value *Val) { 1187 if (!RMWOrFunc) 1188 RMWOrFunc = createRMWOrFunc(); 1189 1190 return CallInst::Create(RMWOrFunc, {Addr, Val}); 1191 } 1192 1193 Value *InstrLowerer::getBitmapAddress(InstrProfMCDCTVBitmapUpdate *I) { 1194 auto *Bitmaps = getOrCreateRegionBitmaps(I); 1195 IRBuilder<> Builder(I); 1196 1197 if (isRuntimeCounterRelocationEnabled()) { 1198 LLVMContext &Ctx = M.getContext(); 1199 Ctx.diagnose(DiagnosticInfoPGOProfile( 1200 M.getName().data(), 1201 Twine("Runtime counter relocation is presently not supported for MC/DC " 1202 "bitmaps."), 1203 DS_Warning)); 1204 } 1205 1206 return Bitmaps; 1207 } 1208 1209 void InstrLowerer::lowerCover(InstrProfCoverInst *CoverInstruction) { 1210 auto *Addr = getCounterAddress(CoverInstruction); 1211 IRBuilder<> Builder(CoverInstruction); 1212 // We store zero to represent that this block is covered. 1213 Builder.CreateStore(Builder.getInt8(0), Addr); 1214 CoverInstruction->eraseFromParent(); 1215 } 1216 1217 void InstrLowerer::lowerTimestamp( 1218 InstrProfTimestampInst *TimestampInstruction) { 1219 assert(TimestampInstruction->getIndex()->isZeroValue() && 1220 "timestamp probes are always the first probe for a function"); 1221 auto &Ctx = M.getContext(); 1222 auto *TimestampAddr = getCounterAddress(TimestampInstruction); 1223 IRBuilder<> Builder(TimestampInstruction); 1224 auto *CalleeTy = 1225 FunctionType::get(Type::getVoidTy(Ctx), TimestampAddr->getType(), false); 1226 auto Callee = M.getOrInsertFunction( 1227 INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_SET_TIMESTAMP), CalleeTy); 1228 Builder.CreateCall(Callee, {TimestampAddr}); 1229 TimestampInstruction->eraseFromParent(); 1230 } 1231 1232 void InstrLowerer::lowerIncrement(InstrProfIncrementInst *Inc) { 1233 auto *Addr = getCounterAddress(Inc); 1234 1235 IRBuilder<> Builder(Inc); 1236 if (Options.Atomic || AtomicCounterUpdateAll || 1237 (Inc->getIndex()->isZeroValue() && AtomicFirstCounter)) { 1238 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, Inc->getStep(), 1239 MaybeAlign(), AtomicOrdering::Monotonic); 1240 } else { 1241 Value *IncStep = Inc->getStep(); 1242 Value *Load = Builder.CreateLoad(IncStep->getType(), Addr, "pgocount"); 1243 auto *Count = Builder.CreateAdd(Load, Inc->getStep()); 1244 auto *Store = Builder.CreateStore(Count, Addr); 1245 if (isCounterPromotionEnabled()) 1246 PromotionCandidates.emplace_back(cast<Instruction>(Load), Store); 1247 } 1248 Inc->eraseFromParent(); 1249 } 1250 1251 void InstrLowerer::lowerCoverageData(GlobalVariable *CoverageNamesVar) { 1252 ConstantArray *Names = 1253 cast<ConstantArray>(CoverageNamesVar->getInitializer()); 1254 for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) { 1255 Constant *NC = Names->getOperand(I); 1256 Value *V = NC->stripPointerCasts(); 1257 assert(isa<GlobalVariable>(V) && "Missing reference to function name"); 1258 GlobalVariable *Name = cast<GlobalVariable>(V); 1259 1260 Name->setLinkage(GlobalValue::PrivateLinkage); 1261 ReferencedNames.push_back(Name); 1262 if (isa<ConstantExpr>(NC)) 1263 NC->dropAllReferences(); 1264 } 1265 CoverageNamesVar->eraseFromParent(); 1266 } 1267 1268 void InstrLowerer::lowerMCDCTestVectorBitmapUpdate( 1269 InstrProfMCDCTVBitmapUpdate *Update) { 1270 IRBuilder<> Builder(Update); 1271 auto *Int8Ty = Type::getInt8Ty(M.getContext()); 1272 auto *Int32Ty = Type::getInt32Ty(M.getContext()); 1273 auto *MCDCCondBitmapAddr = Update->getMCDCCondBitmapAddr(); 1274 auto *BitmapAddr = getBitmapAddress(Update); 1275 1276 // Load Temp Val + BitmapIdx. 1277 // %mcdc.temp = load i32, ptr %mcdc.addr, align 4 1278 auto *Temp = Builder.CreateAdd( 1279 Builder.CreateLoad(Int32Ty, MCDCCondBitmapAddr, "mcdc.temp"), 1280 Update->getBitmapIndex()); 1281 1282 // Calculate byte offset using div8. 1283 // %1 = lshr i32 %mcdc.temp, 3 1284 auto *BitmapByteOffset = Builder.CreateLShr(Temp, 0x3); 1285 1286 // Add byte offset to section base byte address. 1287 // %4 = getelementptr inbounds i8, ptr @__profbm_test, i32 %1 1288 auto *BitmapByteAddr = 1289 Builder.CreateInBoundsPtrAdd(BitmapAddr, BitmapByteOffset); 1290 1291 // Calculate bit offset into bitmap byte by using div8 remainder (AND ~8) 1292 // %5 = and i32 %mcdc.temp, 7 1293 // %6 = trunc i32 %5 to i8 1294 auto *BitToSet = Builder.CreateTrunc(Builder.CreateAnd(Temp, 0x7), Int8Ty); 1295 1296 // Shift bit offset left to form a bitmap. 1297 // %7 = shl i8 1, %6 1298 auto *ShiftedVal = Builder.CreateShl(Builder.getInt8(0x1), BitToSet); 1299 1300 Builder.Insert(getRMWOrCall(BitmapByteAddr, ShiftedVal)); 1301 Update->eraseFromParent(); 1302 } 1303 1304 /// Get the name of a profiling variable for a particular function. 1305 static std::string getVarName(InstrProfInstBase *Inc, StringRef Prefix, 1306 bool &Renamed) { 1307 StringRef NamePrefix = getInstrProfNameVarPrefix(); 1308 StringRef Name = Inc->getName()->getName().substr(NamePrefix.size()); 1309 Function *F = Inc->getParent()->getParent(); 1310 Module *M = F->getParent(); 1311 if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) || 1312 !canRenameComdatFunc(*F)) { 1313 Renamed = false; 1314 return (Prefix + Name).str(); 1315 } 1316 Renamed = true; 1317 uint64_t FuncHash = Inc->getHash()->getZExtValue(); 1318 SmallVector<char, 24> HashPostfix; 1319 if (Name.ends_with((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix))) 1320 return (Prefix + Name).str(); 1321 return (Prefix + Name + "." + Twine(FuncHash)).str(); 1322 } 1323 1324 static inline bool shouldRecordFunctionAddr(Function *F) { 1325 // Only record function addresses if IR PGO is enabled or if clang value 1326 // profiling is enabled. Recording function addresses greatly increases object 1327 // file size, because it prevents the inliner from deleting functions that 1328 // have been inlined everywhere. 1329 if (!profDataReferencedByCode(*F->getParent())) 1330 return false; 1331 1332 // Check the linkage 1333 bool HasAvailableExternallyLinkage = F->hasAvailableExternallyLinkage(); 1334 if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() && 1335 !HasAvailableExternallyLinkage) 1336 return true; 1337 1338 // A function marked 'alwaysinline' with available_externally linkage can't 1339 // have its address taken. Doing so would create an undefined external ref to 1340 // the function, which would fail to link. 1341 if (HasAvailableExternallyLinkage && 1342 F->hasFnAttribute(Attribute::AlwaysInline)) 1343 return false; 1344 1345 // Prohibit function address recording if the function is both internal and 1346 // COMDAT. This avoids the profile data variable referencing internal symbols 1347 // in COMDAT. 1348 if (F->hasLocalLinkage() && F->hasComdat()) 1349 return false; 1350 1351 // Check uses of this function for other than direct calls or invokes to it. 1352 // Inline virtual functions have linkeOnceODR linkage. When a key method 1353 // exists, the vtable will only be emitted in the TU where the key method 1354 // is defined. In a TU where vtable is not available, the function won't 1355 // be 'addresstaken'. If its address is not recorded here, the profile data 1356 // with missing address may be picked by the linker leading to missing 1357 // indirect call target info. 1358 return F->hasAddressTaken() || F->hasLinkOnceLinkage(); 1359 } 1360 1361 static inline bool shouldUsePublicSymbol(Function *Fn) { 1362 // It isn't legal to make an alias of this function at all 1363 if (Fn->isDeclarationForLinker()) 1364 return true; 1365 1366 // Symbols with local linkage can just use the symbol directly without 1367 // introducing relocations 1368 if (Fn->hasLocalLinkage()) 1369 return true; 1370 1371 // PGO + ThinLTO + CFI cause duplicate symbols to be introduced due to some 1372 // unfavorable interaction between the new alias and the alias renaming done 1373 // in LowerTypeTests under ThinLTO. For comdat functions that would normally 1374 // be deduplicated, but the renaming scheme ends up preventing renaming, since 1375 // it creates unique names for each alias, resulting in duplicated symbols. In 1376 // the future, we should update the CFI related passes to migrate these 1377 // aliases to the same module as the jump-table they refer to will be defined. 1378 if (Fn->hasMetadata(LLVMContext::MD_type)) 1379 return true; 1380 1381 // For comdat functions, an alias would need the same linkage as the original 1382 // function and hidden visibility. There is no point in adding an alias with 1383 // identical linkage an visibility to avoid introducing symbolic relocations. 1384 if (Fn->hasComdat() && 1385 (Fn->getVisibility() == GlobalValue::VisibilityTypes::HiddenVisibility)) 1386 return true; 1387 1388 // its OK to use an alias 1389 return false; 1390 } 1391 1392 static inline Constant *getFuncAddrForProfData(Function *Fn) { 1393 auto *Int8PtrTy = PointerType::getUnqual(Fn->getContext()); 1394 // Store a nullptr in __llvm_profd, if we shouldn't use a real address 1395 if (!shouldRecordFunctionAddr(Fn)) 1396 return ConstantPointerNull::get(Int8PtrTy); 1397 1398 // If we can't use an alias, we must use the public symbol, even though this 1399 // may require a symbolic relocation. 1400 if (shouldUsePublicSymbol(Fn)) 1401 return Fn; 1402 1403 // When possible use a private alias to avoid symbolic relocations. 1404 auto *GA = GlobalAlias::create(GlobalValue::LinkageTypes::PrivateLinkage, 1405 Fn->getName() + ".local", Fn); 1406 1407 // When the instrumented function is a COMDAT function, we cannot use a 1408 // private alias. If we did, we would create reference to a local label in 1409 // this function's section. If this version of the function isn't selected by 1410 // the linker, then the metadata would introduce a reference to a discarded 1411 // section. So, for COMDAT functions, we need to adjust the linkage of the 1412 // alias. Using hidden visibility avoids a dynamic relocation and an entry in 1413 // the dynamic symbol table. 1414 // 1415 // Note that this handles COMDAT functions with visibility other than Hidden, 1416 // since that case is covered in shouldUsePublicSymbol() 1417 if (Fn->hasComdat()) { 1418 GA->setLinkage(Fn->getLinkage()); 1419 GA->setVisibility(GlobalValue::VisibilityTypes::HiddenVisibility); 1420 } 1421 1422 // appendToCompilerUsed(*Fn->getParent(), {GA}); 1423 1424 return GA; 1425 } 1426 1427 static bool needsRuntimeRegistrationOfSectionRange(const Triple &TT) { 1428 // compiler-rt uses linker support to get data/counters/name start/end for 1429 // ELF, COFF, Mach-O and XCOFF. 1430 if (TT.isOSBinFormatELF() || TT.isOSBinFormatCOFF() || 1431 TT.isOSBinFormatMachO() || TT.isOSBinFormatXCOFF()) 1432 return false; 1433 1434 return true; 1435 } 1436 1437 void InstrLowerer::maybeSetComdat(GlobalVariable *GV, GlobalObject *GO, 1438 StringRef CounterGroupName) { 1439 // Place lowered global variables in a comdat group if the associated function 1440 // or global variable is a COMDAT. This will make sure that only one copy of 1441 // global variable (e.g. function counters) of the COMDAT function will be 1442 // emitted after linking. 1443 bool NeedComdat = needsComdatForCounter(*GO, M); 1444 bool UseComdat = (NeedComdat || TT.isOSBinFormatELF()); 1445 1446 if (!UseComdat) 1447 return; 1448 1449 // Keep in mind that this pass may run before the inliner, so we need to 1450 // create a new comdat group (for counters, profiling data, etc). If we use 1451 // the comdat of the parent function, that will result in relocations against 1452 // discarded sections. 1453 // 1454 // If the data variable is referenced by code, non-counter variables (notably 1455 // profiling data) and counters have to be in different comdats for COFF 1456 // because the Visual C++ linker will report duplicate symbol errors if there 1457 // are multiple external symbols with the same name marked 1458 // IMAGE_COMDAT_SELECT_ASSOCIATIVE. 1459 StringRef GroupName = TT.isOSBinFormatCOFF() && DataReferencedByCode 1460 ? GV->getName() 1461 : CounterGroupName; 1462 Comdat *C = M.getOrInsertComdat(GroupName); 1463 1464 if (!NeedComdat) { 1465 // Object file format must be ELF since `UseComdat && !NeedComdat` is true. 1466 // 1467 // For ELF, when not using COMDAT, put counters, data and values into a 1468 // nodeduplicate COMDAT which is lowered to a zero-flag section group. This 1469 // allows -z start-stop-gc to discard the entire group when the function is 1470 // discarded. 1471 C->setSelectionKind(Comdat::NoDeduplicate); 1472 } 1473 GV->setComdat(C); 1474 // COFF doesn't allow the comdat group leader to have private linkage, so 1475 // upgrade private linkage to internal linkage to produce a symbol table 1476 // entry. 1477 if (TT.isOSBinFormatCOFF() && GV->hasPrivateLinkage()) 1478 GV->setLinkage(GlobalValue::InternalLinkage); 1479 } 1480 1481 static inline bool shouldRecordVTableAddr(GlobalVariable *GV) { 1482 if (!profDataReferencedByCode(*GV->getParent())) 1483 return false; 1484 1485 if (!GV->hasLinkOnceLinkage() && !GV->hasLocalLinkage() && 1486 !GV->hasAvailableExternallyLinkage()) 1487 return true; 1488 1489 // This avoids the profile data from referencing internal symbols in 1490 // COMDAT. 1491 if (GV->hasLocalLinkage() && GV->hasComdat()) 1492 return false; 1493 1494 return true; 1495 } 1496 1497 // FIXME: Introduce an internal alias like what's done for functions to reduce 1498 // the number of relocation entries. 1499 static inline Constant *getVTableAddrForProfData(GlobalVariable *GV) { 1500 auto *Int8PtrTy = PointerType::getUnqual(GV->getContext()); 1501 1502 // Store a nullptr in __profvt_ if a real address shouldn't be used. 1503 if (!shouldRecordVTableAddr(GV)) 1504 return ConstantPointerNull::get(Int8PtrTy); 1505 1506 return ConstantExpr::getBitCast(GV, Int8PtrTy); 1507 } 1508 1509 void InstrLowerer::getOrCreateVTableProfData(GlobalVariable *GV) { 1510 assert(!DebugInfoCorrelate && 1511 "Value profiling is not supported with lightweight instrumentation"); 1512 if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) 1513 return; 1514 1515 // Skip llvm internal global variable or __prof variables. 1516 if (GV->getName().starts_with("llvm.") || 1517 GV->getName().starts_with("__llvm") || 1518 GV->getName().starts_with("__prof")) 1519 return; 1520 1521 // VTableProfData already created 1522 auto It = VTableDataMap.find(GV); 1523 if (It != VTableDataMap.end() && It->second) 1524 return; 1525 1526 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 1527 GlobalValue::VisibilityTypes Visibility = GV->getVisibility(); 1528 1529 // This is to keep consistent with per-function profile data 1530 // for correctness. 1531 if (TT.isOSBinFormatXCOFF()) { 1532 Linkage = GlobalValue::InternalLinkage; 1533 Visibility = GlobalValue::DefaultVisibility; 1534 } 1535 1536 LLVMContext &Ctx = M.getContext(); 1537 Type *DataTypes[] = { 1538 #define INSTR_PROF_VTABLE_DATA(Type, LLVMType, Name, Init) LLVMType, 1539 #include "llvm/ProfileData/InstrProfData.inc" 1540 #undef INSTR_PROF_VTABLE_DATA 1541 }; 1542 1543 auto *DataTy = StructType::get(Ctx, ArrayRef(DataTypes)); 1544 1545 // Used by INSTR_PROF_VTABLE_DATA MACRO 1546 Constant *VTableAddr = getVTableAddrForProfData(GV); 1547 const std::string PGOVTableName = getPGOName(*GV); 1548 // Record the length of the vtable. This is needed since vtable pointers 1549 // loaded from C++ objects might be from the middle of a vtable definition. 1550 uint32_t VTableSizeVal = 1551 M.getDataLayout().getTypeAllocSize(GV->getValueType()); 1552 1553 Constant *DataVals[] = { 1554 #define INSTR_PROF_VTABLE_DATA(Type, LLVMType, Name, Init) Init, 1555 #include "llvm/ProfileData/InstrProfData.inc" 1556 #undef INSTR_PROF_VTABLE_DATA 1557 }; 1558 1559 auto *Data = 1560 new GlobalVariable(M, DataTy, /*constant=*/false, Linkage, 1561 ConstantStruct::get(DataTy, DataVals), 1562 getInstrProfVTableVarPrefix() + PGOVTableName); 1563 1564 Data->setVisibility(Visibility); 1565 Data->setSection(getInstrProfSectionName(IPSK_vtab, TT.getObjectFormat())); 1566 Data->setAlignment(Align(8)); 1567 1568 maybeSetComdat(Data, GV, Data->getName()); 1569 1570 VTableDataMap[GV] = Data; 1571 1572 ReferencedVTables.push_back(GV); 1573 1574 // VTable <Hash, Addr> is used by runtime but not referenced by other 1575 // sections. Conservatively mark it linker retained. 1576 UsedVars.push_back(Data); 1577 } 1578 1579 GlobalVariable *InstrLowerer::setupProfileSection(InstrProfInstBase *Inc, 1580 InstrProfSectKind IPSK) { 1581 GlobalVariable *NamePtr = Inc->getName(); 1582 1583 // Match the linkage and visibility of the name global. 1584 Function *Fn = Inc->getParent()->getParent(); 1585 GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage(); 1586 GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility(); 1587 1588 // Use internal rather than private linkage so the counter variable shows up 1589 // in the symbol table when using debug info for correlation. 1590 if ((DebugInfoCorrelate || 1591 ProfileCorrelate == InstrProfCorrelator::DEBUG_INFO) && 1592 TT.isOSBinFormatMachO() && Linkage == GlobalValue::PrivateLinkage) 1593 Linkage = GlobalValue::InternalLinkage; 1594 1595 // Due to the limitation of binder as of 2021/09/28, the duplicate weak 1596 // symbols in the same csect won't be discarded. When there are duplicate weak 1597 // symbols, we can NOT guarantee that the relocations get resolved to the 1598 // intended weak symbol, so we can not ensure the correctness of the relative 1599 // CounterPtr, so we have to use private linkage for counter and data symbols. 1600 if (TT.isOSBinFormatXCOFF()) { 1601 Linkage = GlobalValue::PrivateLinkage; 1602 Visibility = GlobalValue::DefaultVisibility; 1603 } 1604 // Move the name variable to the right section. 1605 bool Renamed; 1606 GlobalVariable *Ptr; 1607 StringRef VarPrefix; 1608 std::string VarName; 1609 if (IPSK == IPSK_cnts) { 1610 VarPrefix = getInstrProfCountersVarPrefix(); 1611 VarName = getVarName(Inc, VarPrefix, Renamed); 1612 InstrProfCntrInstBase *CntrIncrement = dyn_cast<InstrProfCntrInstBase>(Inc); 1613 Ptr = createRegionCounters(CntrIncrement, VarName, Linkage); 1614 } else if (IPSK == IPSK_bitmap) { 1615 VarPrefix = getInstrProfBitmapVarPrefix(); 1616 VarName = getVarName(Inc, VarPrefix, Renamed); 1617 InstrProfMCDCBitmapInstBase *BitmapUpdate = 1618 dyn_cast<InstrProfMCDCBitmapInstBase>(Inc); 1619 Ptr = createRegionBitmaps(BitmapUpdate, VarName, Linkage); 1620 } else { 1621 llvm_unreachable("Profile Section must be for Counters or Bitmaps"); 1622 } 1623 1624 Ptr->setVisibility(Visibility); 1625 // Put the counters and bitmaps in their own sections so linkers can 1626 // remove unneeded sections. 1627 Ptr->setSection(getInstrProfSectionName(IPSK, TT.getObjectFormat())); 1628 Ptr->setLinkage(Linkage); 1629 maybeSetComdat(Ptr, Fn, VarName); 1630 return Ptr; 1631 } 1632 1633 GlobalVariable * 1634 InstrLowerer::createRegionBitmaps(InstrProfMCDCBitmapInstBase *Inc, 1635 StringRef Name, 1636 GlobalValue::LinkageTypes Linkage) { 1637 uint64_t NumBytes = Inc->getNumBitmapBytes(); 1638 auto *BitmapTy = ArrayType::get(Type::getInt8Ty(M.getContext()), NumBytes); 1639 auto GV = new GlobalVariable(M, BitmapTy, false, Linkage, 1640 Constant::getNullValue(BitmapTy), Name); 1641 GV->setAlignment(Align(1)); 1642 return GV; 1643 } 1644 1645 GlobalVariable * 1646 InstrLowerer::getOrCreateRegionBitmaps(InstrProfMCDCBitmapInstBase *Inc) { 1647 GlobalVariable *NamePtr = Inc->getName(); 1648 auto &PD = ProfileDataMap[NamePtr]; 1649 if (PD.RegionBitmaps) 1650 return PD.RegionBitmaps; 1651 1652 // If RegionBitmaps doesn't already exist, create it by first setting up 1653 // the corresponding profile section. 1654 auto *BitmapPtr = setupProfileSection(Inc, IPSK_bitmap); 1655 PD.RegionBitmaps = BitmapPtr; 1656 PD.NumBitmapBytes = Inc->getNumBitmapBytes(); 1657 return PD.RegionBitmaps; 1658 } 1659 1660 GlobalVariable * 1661 InstrLowerer::createRegionCounters(InstrProfCntrInstBase *Inc, StringRef Name, 1662 GlobalValue::LinkageTypes Linkage) { 1663 uint64_t NumCounters = Inc->getNumCounters()->getZExtValue(); 1664 auto &Ctx = M.getContext(); 1665 GlobalVariable *GV; 1666 if (isa<InstrProfCoverInst>(Inc)) { 1667 auto *CounterTy = Type::getInt8Ty(Ctx); 1668 auto *CounterArrTy = ArrayType::get(CounterTy, NumCounters); 1669 // TODO: `Constant::getAllOnesValue()` does not yet accept an array type. 1670 std::vector<Constant *> InitialValues(NumCounters, 1671 Constant::getAllOnesValue(CounterTy)); 1672 GV = new GlobalVariable(M, CounterArrTy, false, Linkage, 1673 ConstantArray::get(CounterArrTy, InitialValues), 1674 Name); 1675 GV->setAlignment(Align(1)); 1676 } else { 1677 auto *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters); 1678 GV = new GlobalVariable(M, CounterTy, false, Linkage, 1679 Constant::getNullValue(CounterTy), Name); 1680 GV->setAlignment(Align(8)); 1681 } 1682 return GV; 1683 } 1684 1685 GlobalVariable * 1686 InstrLowerer::getOrCreateRegionCounters(InstrProfCntrInstBase *Inc) { 1687 GlobalVariable *NamePtr = Inc->getName(); 1688 auto &PD = ProfileDataMap[NamePtr]; 1689 if (PD.RegionCounters) 1690 return PD.RegionCounters; 1691 1692 // If RegionCounters doesn't already exist, create it by first setting up 1693 // the corresponding profile section. 1694 auto *CounterPtr = setupProfileSection(Inc, IPSK_cnts); 1695 PD.RegionCounters = CounterPtr; 1696 1697 if (DebugInfoCorrelate || 1698 ProfileCorrelate == InstrProfCorrelator::DEBUG_INFO) { 1699 LLVMContext &Ctx = M.getContext(); 1700 Function *Fn = Inc->getParent()->getParent(); 1701 if (auto *SP = Fn->getSubprogram()) { 1702 DIBuilder DB(M, true, SP->getUnit()); 1703 Metadata *FunctionNameAnnotation[] = { 1704 MDString::get(Ctx, InstrProfCorrelator::FunctionNameAttributeName), 1705 MDString::get(Ctx, getPGOFuncNameVarInitializer(NamePtr)), 1706 }; 1707 Metadata *CFGHashAnnotation[] = { 1708 MDString::get(Ctx, InstrProfCorrelator::CFGHashAttributeName), 1709 ConstantAsMetadata::get(Inc->getHash()), 1710 }; 1711 Metadata *NumCountersAnnotation[] = { 1712 MDString::get(Ctx, InstrProfCorrelator::NumCountersAttributeName), 1713 ConstantAsMetadata::get(Inc->getNumCounters()), 1714 }; 1715 auto Annotations = DB.getOrCreateArray({ 1716 MDNode::get(Ctx, FunctionNameAnnotation), 1717 MDNode::get(Ctx, CFGHashAnnotation), 1718 MDNode::get(Ctx, NumCountersAnnotation), 1719 }); 1720 auto *DICounter = DB.createGlobalVariableExpression( 1721 SP, CounterPtr->getName(), /*LinkageName=*/StringRef(), SP->getFile(), 1722 /*LineNo=*/0, DB.createUnspecifiedType("Profile Data Type"), 1723 CounterPtr->hasLocalLinkage(), /*IsDefined=*/true, /*Expr=*/nullptr, 1724 /*Decl=*/nullptr, /*TemplateParams=*/nullptr, /*AlignInBits=*/0, 1725 Annotations); 1726 CounterPtr->addDebugInfo(DICounter); 1727 DB.finalize(); 1728 } 1729 1730 // Mark the counter variable as used so that it isn't optimized out. 1731 CompilerUsedVars.push_back(PD.RegionCounters); 1732 } 1733 1734 // Create the data variable (if it doesn't already exist). 1735 createDataVariable(Inc); 1736 1737 return PD.RegionCounters; 1738 } 1739 1740 void InstrLowerer::createDataVariable(InstrProfCntrInstBase *Inc) { 1741 // When debug information is correlated to profile data, a data variable 1742 // is not needed. 1743 if (DebugInfoCorrelate || ProfileCorrelate == InstrProfCorrelator::DEBUG_INFO) 1744 return; 1745 1746 GlobalVariable *NamePtr = Inc->getName(); 1747 auto &PD = ProfileDataMap[NamePtr]; 1748 1749 // Return if data variable was already created. 1750 if (PD.DataVar) 1751 return; 1752 1753 LLVMContext &Ctx = M.getContext(); 1754 1755 Function *Fn = Inc->getParent()->getParent(); 1756 GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage(); 1757 GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility(); 1758 1759 // Due to the limitation of binder as of 2021/09/28, the duplicate weak 1760 // symbols in the same csect won't be discarded. When there are duplicate weak 1761 // symbols, we can NOT guarantee that the relocations get resolved to the 1762 // intended weak symbol, so we can not ensure the correctness of the relative 1763 // CounterPtr, so we have to use private linkage for counter and data symbols. 1764 if (TT.isOSBinFormatXCOFF()) { 1765 Linkage = GlobalValue::PrivateLinkage; 1766 Visibility = GlobalValue::DefaultVisibility; 1767 } 1768 1769 bool NeedComdat = needsComdatForCounter(*Fn, M); 1770 bool Renamed; 1771 1772 // The Data Variable section is anchored to profile counters. 1773 std::string CntsVarName = 1774 getVarName(Inc, getInstrProfCountersVarPrefix(), Renamed); 1775 std::string DataVarName = 1776 getVarName(Inc, getInstrProfDataVarPrefix(), Renamed); 1777 1778 auto *Int8PtrTy = PointerType::getUnqual(Ctx); 1779 // Allocate statically the array of pointers to value profile nodes for 1780 // the current function. 1781 Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy); 1782 uint64_t NS = 0; 1783 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1784 NS += PD.NumValueSites[Kind]; 1785 if (NS > 0 && ValueProfileStaticAlloc && 1786 !needsRuntimeRegistrationOfSectionRange(TT)) { 1787 ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS); 1788 auto *ValuesVar = new GlobalVariable( 1789 M, ValuesTy, false, Linkage, Constant::getNullValue(ValuesTy), 1790 getVarName(Inc, getInstrProfValuesVarPrefix(), Renamed)); 1791 ValuesVar->setVisibility(Visibility); 1792 setGlobalVariableLargeSection(TT, *ValuesVar); 1793 ValuesVar->setSection( 1794 getInstrProfSectionName(IPSK_vals, TT.getObjectFormat())); 1795 ValuesVar->setAlignment(Align(8)); 1796 maybeSetComdat(ValuesVar, Fn, CntsVarName); 1797 ValuesPtrExpr = ValuesVar; 1798 } 1799 1800 uint64_t NumCounters = Inc->getNumCounters()->getZExtValue(); 1801 auto *CounterPtr = PD.RegionCounters; 1802 1803 uint64_t NumBitmapBytes = PD.NumBitmapBytes; 1804 1805 // Create data variable. 1806 auto *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext()); 1807 auto *Int16Ty = Type::getInt16Ty(Ctx); 1808 auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1); 1809 Type *DataTypes[] = { 1810 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType, 1811 #include "llvm/ProfileData/InstrProfData.inc" 1812 }; 1813 auto *DataTy = StructType::get(Ctx, ArrayRef(DataTypes)); 1814 1815 Constant *FunctionAddr = getFuncAddrForProfData(Fn); 1816 1817 Constant *Int16ArrayVals[IPVK_Last + 1]; 1818 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1819 Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]); 1820 1821 // If the data variable is not referenced by code (if we don't emit 1822 // @llvm.instrprof.value.profile, NS will be 0), and the counter keeps the 1823 // data variable live under linker GC, the data variable can be private. This 1824 // optimization applies to ELF. 1825 // 1826 // On COFF, a comdat leader cannot be local so we require DataReferencedByCode 1827 // to be false. 1828 // 1829 // If profd is in a deduplicate comdat, NS==0 with a hash suffix guarantees 1830 // that other copies must have the same CFG and cannot have value profiling. 1831 // If no hash suffix, other profd copies may be referenced by code. 1832 if (NS == 0 && !(DataReferencedByCode && NeedComdat && !Renamed) && 1833 (TT.isOSBinFormatELF() || 1834 (!DataReferencedByCode && TT.isOSBinFormatCOFF()))) { 1835 Linkage = GlobalValue::PrivateLinkage; 1836 Visibility = GlobalValue::DefaultVisibility; 1837 } 1838 auto *Data = 1839 new GlobalVariable(M, DataTy, false, Linkage, nullptr, DataVarName); 1840 Constant *RelativeCounterPtr; 1841 GlobalVariable *BitmapPtr = PD.RegionBitmaps; 1842 Constant *RelativeBitmapPtr = ConstantInt::get(IntPtrTy, 0); 1843 InstrProfSectKind DataSectionKind; 1844 // With binary profile correlation, profile data is not loaded into memory. 1845 // profile data must reference profile counter with an absolute relocation. 1846 if (ProfileCorrelate == InstrProfCorrelator::BINARY) { 1847 DataSectionKind = IPSK_covdata; 1848 RelativeCounterPtr = ConstantExpr::getPtrToInt(CounterPtr, IntPtrTy); 1849 if (BitmapPtr != nullptr) 1850 RelativeBitmapPtr = ConstantExpr::getPtrToInt(BitmapPtr, IntPtrTy); 1851 } else { 1852 // Reference the counter variable with a label difference (link-time 1853 // constant). 1854 DataSectionKind = IPSK_data; 1855 RelativeCounterPtr = 1856 ConstantExpr::getSub(ConstantExpr::getPtrToInt(CounterPtr, IntPtrTy), 1857 ConstantExpr::getPtrToInt(Data, IntPtrTy)); 1858 if (BitmapPtr != nullptr) 1859 RelativeBitmapPtr = 1860 ConstantExpr::getSub(ConstantExpr::getPtrToInt(BitmapPtr, IntPtrTy), 1861 ConstantExpr::getPtrToInt(Data, IntPtrTy)); 1862 } 1863 1864 Constant *DataVals[] = { 1865 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init, 1866 #include "llvm/ProfileData/InstrProfData.inc" 1867 }; 1868 Data->setInitializer(ConstantStruct::get(DataTy, DataVals)); 1869 1870 Data->setVisibility(Visibility); 1871 Data->setSection( 1872 getInstrProfSectionName(DataSectionKind, TT.getObjectFormat())); 1873 Data->setAlignment(Align(INSTR_PROF_DATA_ALIGNMENT)); 1874 maybeSetComdat(Data, Fn, CntsVarName); 1875 1876 PD.DataVar = Data; 1877 1878 // Mark the data variable as used so that it isn't stripped out. 1879 CompilerUsedVars.push_back(Data); 1880 // Now that the linkage set by the FE has been passed to the data and counter 1881 // variables, reset Name variable's linkage and visibility to private so that 1882 // it can be removed later by the compiler. 1883 NamePtr->setLinkage(GlobalValue::PrivateLinkage); 1884 // Collect the referenced names to be used by emitNameData. 1885 ReferencedNames.push_back(NamePtr); 1886 } 1887 1888 void InstrLowerer::emitVNodes() { 1889 if (!ValueProfileStaticAlloc) 1890 return; 1891 1892 // For now only support this on platforms that do 1893 // not require runtime registration to discover 1894 // named section start/end. 1895 if (needsRuntimeRegistrationOfSectionRange(TT)) 1896 return; 1897 1898 size_t TotalNS = 0; 1899 for (auto &PD : ProfileDataMap) { 1900 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1901 TotalNS += PD.second.NumValueSites[Kind]; 1902 } 1903 1904 if (!TotalNS) 1905 return; 1906 1907 uint64_t NumCounters = TotalNS * NumCountersPerValueSite; 1908 // Heuristic for small programs with very few total value sites. 1909 // The default value of vp-counters-per-site is chosen based on 1910 // the observation that large apps usually have a low percentage 1911 // of value sites that actually have any profile data, and thus 1912 // the average number of counters per site is low. For small 1913 // apps with very few sites, this may not be true. Bump up the 1914 // number of counters in this case. 1915 #define INSTR_PROF_MIN_VAL_COUNTS 10 1916 if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS) 1917 NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2); 1918 1919 auto &Ctx = M.getContext(); 1920 Type *VNodeTypes[] = { 1921 #define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType, 1922 #include "llvm/ProfileData/InstrProfData.inc" 1923 }; 1924 auto *VNodeTy = StructType::get(Ctx, ArrayRef(VNodeTypes)); 1925 1926 ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters); 1927 auto *VNodesVar = new GlobalVariable( 1928 M, VNodesTy, false, GlobalValue::PrivateLinkage, 1929 Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName()); 1930 setGlobalVariableLargeSection(TT, *VNodesVar); 1931 VNodesVar->setSection( 1932 getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat())); 1933 VNodesVar->setAlignment(M.getDataLayout().getABITypeAlign(VNodesTy)); 1934 // VNodesVar is used by runtime but not referenced via relocation by other 1935 // sections. Conservatively make it linker retained. 1936 UsedVars.push_back(VNodesVar); 1937 } 1938 1939 void InstrLowerer::emitNameData() { 1940 std::string UncompressedData; 1941 1942 if (ReferencedNames.empty()) 1943 return; 1944 1945 std::string CompressedNameStr; 1946 if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr, 1947 DoInstrProfNameCompression)) { 1948 report_fatal_error(Twine(toString(std::move(E))), false); 1949 } 1950 1951 auto &Ctx = M.getContext(); 1952 auto *NamesVal = 1953 ConstantDataArray::getString(Ctx, StringRef(CompressedNameStr), false); 1954 NamesVar = new GlobalVariable(M, NamesVal->getType(), true, 1955 GlobalValue::PrivateLinkage, NamesVal, 1956 getInstrProfNamesVarName()); 1957 NamesSize = CompressedNameStr.size(); 1958 setGlobalVariableLargeSection(TT, *NamesVar); 1959 NamesVar->setSection( 1960 ProfileCorrelate == InstrProfCorrelator::BINARY 1961 ? getInstrProfSectionName(IPSK_covname, TT.getObjectFormat()) 1962 : getInstrProfSectionName(IPSK_name, TT.getObjectFormat())); 1963 // On COFF, it's important to reduce the alignment down to 1 to prevent the 1964 // linker from inserting padding before the start of the names section or 1965 // between names entries. 1966 NamesVar->setAlignment(Align(1)); 1967 // NamesVar is used by runtime but not referenced via relocation by other 1968 // sections. Conservatively make it linker retained. 1969 UsedVars.push_back(NamesVar); 1970 1971 for (auto *NamePtr : ReferencedNames) 1972 NamePtr->eraseFromParent(); 1973 } 1974 1975 void InstrLowerer::emitVTableNames() { 1976 if (!EnableVTableValueProfiling || ReferencedVTables.empty()) 1977 return; 1978 1979 // Collect the PGO names of referenced vtables and compress them. 1980 std::string CompressedVTableNames; 1981 if (Error E = collectVTableStrings(ReferencedVTables, CompressedVTableNames, 1982 DoInstrProfNameCompression)) { 1983 report_fatal_error(Twine(toString(std::move(E))), false); 1984 } 1985 1986 auto &Ctx = M.getContext(); 1987 auto *VTableNamesVal = ConstantDataArray::getString( 1988 Ctx, StringRef(CompressedVTableNames), false /* AddNull */); 1989 GlobalVariable *VTableNamesVar = 1990 new GlobalVariable(M, VTableNamesVal->getType(), true /* constant */, 1991 GlobalValue::PrivateLinkage, VTableNamesVal, 1992 getInstrProfVTableNamesVarName()); 1993 VTableNamesVar->setSection( 1994 getInstrProfSectionName(IPSK_vname, TT.getObjectFormat())); 1995 VTableNamesVar->setAlignment(Align(1)); 1996 // Make VTableNames linker retained. 1997 UsedVars.push_back(VTableNamesVar); 1998 } 1999 2000 void InstrLowerer::emitRegistration() { 2001 if (!needsRuntimeRegistrationOfSectionRange(TT)) 2002 return; 2003 2004 // Construct the function. 2005 auto *VoidTy = Type::getVoidTy(M.getContext()); 2006 auto *VoidPtrTy = PointerType::getUnqual(M.getContext()); 2007 auto *Int64Ty = Type::getInt64Ty(M.getContext()); 2008 auto *RegisterFTy = FunctionType::get(VoidTy, false); 2009 auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage, 2010 getInstrProfRegFuncsName(), M); 2011 RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 2012 if (Options.NoRedZone) 2013 RegisterF->addFnAttr(Attribute::NoRedZone); 2014 2015 auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false); 2016 auto *RuntimeRegisterF = 2017 Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage, 2018 getInstrProfRegFuncName(), M); 2019 2020 IRBuilder<> IRB(BasicBlock::Create(M.getContext(), "", RegisterF)); 2021 for (Value *Data : CompilerUsedVars) 2022 if (!isa<Function>(Data)) 2023 IRB.CreateCall(RuntimeRegisterF, Data); 2024 for (Value *Data : UsedVars) 2025 if (Data != NamesVar && !isa<Function>(Data)) 2026 IRB.CreateCall(RuntimeRegisterF, Data); 2027 2028 if (NamesVar) { 2029 Type *ParamTypes[] = {VoidPtrTy, Int64Ty}; 2030 auto *NamesRegisterTy = 2031 FunctionType::get(VoidTy, ArrayRef(ParamTypes), false); 2032 auto *NamesRegisterF = 2033 Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage, 2034 getInstrProfNamesRegFuncName(), M); 2035 IRB.CreateCall(NamesRegisterF, {NamesVar, IRB.getInt64(NamesSize)}); 2036 } 2037 2038 IRB.CreateRetVoid(); 2039 } 2040 2041 bool InstrLowerer::emitRuntimeHook() { 2042 // We expect the linker to be invoked with -u<hook_var> flag for Linux 2043 // in which case there is no need to emit the external variable. 2044 if (TT.isOSLinux() || TT.isOSAIX()) 2045 return false; 2046 2047 // If the module's provided its own runtime, we don't need to do anything. 2048 if (M.getGlobalVariable(getInstrProfRuntimeHookVarName())) 2049 return false; 2050 2051 // Declare an external variable that will pull in the runtime initialization. 2052 auto *Int32Ty = Type::getInt32Ty(M.getContext()); 2053 auto *Var = 2054 new GlobalVariable(M, Int32Ty, false, GlobalValue::ExternalLinkage, 2055 nullptr, getInstrProfRuntimeHookVarName()); 2056 Var->setVisibility(GlobalValue::HiddenVisibility); 2057 2058 if (TT.isOSBinFormatELF() && !TT.isPS()) { 2059 // Mark the user variable as used so that it isn't stripped out. 2060 CompilerUsedVars.push_back(Var); 2061 } else { 2062 // Make a function that uses it. 2063 auto *User = Function::Create(FunctionType::get(Int32Ty, false), 2064 GlobalValue::LinkOnceODRLinkage, 2065 getInstrProfRuntimeHookVarUseFuncName(), M); 2066 User->addFnAttr(Attribute::NoInline); 2067 if (Options.NoRedZone) 2068 User->addFnAttr(Attribute::NoRedZone); 2069 User->setVisibility(GlobalValue::HiddenVisibility); 2070 if (TT.supportsCOMDAT()) 2071 User->setComdat(M.getOrInsertComdat(User->getName())); 2072 2073 IRBuilder<> IRB(BasicBlock::Create(M.getContext(), "", User)); 2074 auto *Load = IRB.CreateLoad(Int32Ty, Var); 2075 IRB.CreateRet(Load); 2076 2077 // Mark the function as used so that it isn't stripped out. 2078 CompilerUsedVars.push_back(User); 2079 } 2080 return true; 2081 } 2082 2083 void InstrLowerer::emitUses() { 2084 // The metadata sections are parallel arrays. Optimizers (e.g. 2085 // GlobalOpt/ConstantMerge) may not discard associated sections as a unit, so 2086 // we conservatively retain all unconditionally in the compiler. 2087 // 2088 // On ELF and Mach-O, the linker can guarantee the associated sections will be 2089 // retained or discarded as a unit, so llvm.compiler.used is sufficient. 2090 // Similarly on COFF, if prof data is not referenced by code we use one comdat 2091 // and ensure this GC property as well. Otherwise, we have to conservatively 2092 // make all of the sections retained by the linker. 2093 if (TT.isOSBinFormatELF() || TT.isOSBinFormatMachO() || 2094 (TT.isOSBinFormatCOFF() && !DataReferencedByCode)) 2095 appendToCompilerUsed(M, CompilerUsedVars); 2096 else 2097 appendToUsed(M, CompilerUsedVars); 2098 2099 // We do not add proper references from used metadata sections to NamesVar and 2100 // VNodesVar, so we have to be conservative and place them in llvm.used 2101 // regardless of the target, 2102 appendToUsed(M, UsedVars); 2103 } 2104 2105 void InstrLowerer::emitInitialization() { 2106 // Create ProfileFileName variable. Don't don't this for the 2107 // context-sensitive instrumentation lowering: This lowering is after 2108 // LTO/ThinLTO linking. Pass PGOInstrumentationGenCreateVar should 2109 // have already create the variable before LTO/ThinLTO linking. 2110 if (!IsCS) 2111 createProfileFileNameVar(M, Options.InstrProfileOutput); 2112 Function *RegisterF = M.getFunction(getInstrProfRegFuncsName()); 2113 if (!RegisterF) 2114 return; 2115 2116 // Create the initialization function. 2117 auto *VoidTy = Type::getVoidTy(M.getContext()); 2118 auto *F = Function::Create(FunctionType::get(VoidTy, false), 2119 GlobalValue::InternalLinkage, 2120 getInstrProfInitFuncName(), M); 2121 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 2122 F->addFnAttr(Attribute::NoInline); 2123 if (Options.NoRedZone) 2124 F->addFnAttr(Attribute::NoRedZone); 2125 2126 // Add the basic block and the necessary calls. 2127 IRBuilder<> IRB(BasicBlock::Create(M.getContext(), "", F)); 2128 IRB.CreateCall(RegisterF, {}); 2129 IRB.CreateRetVoid(); 2130 2131 appendToGlobalCtors(M, F, 0); 2132 } 2133 2134 namespace llvm { 2135 // Create the variable for profile sampling. 2136 void createProfileSamplingVar(Module &M) { 2137 const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_SAMPLING_VAR)); 2138 IntegerType *SamplingVarTy; 2139 Constant *ValueZero; 2140 if (SampledInstrPeriod.getValue() <= USHRT_MAX) { 2141 SamplingVarTy = Type::getInt16Ty(M.getContext()); 2142 ValueZero = Constant::getIntegerValue(SamplingVarTy, APInt(16, 0)); 2143 } else { 2144 SamplingVarTy = Type::getInt32Ty(M.getContext()); 2145 ValueZero = Constant::getIntegerValue(SamplingVarTy, APInt(32, 0)); 2146 } 2147 auto SamplingVar = new GlobalVariable( 2148 M, SamplingVarTy, false, GlobalValue::WeakAnyLinkage, ValueZero, VarName); 2149 SamplingVar->setVisibility(GlobalValue::DefaultVisibility); 2150 SamplingVar->setThreadLocal(true); 2151 Triple TT(M.getTargetTriple()); 2152 if (TT.supportsCOMDAT()) { 2153 SamplingVar->setLinkage(GlobalValue::ExternalLinkage); 2154 SamplingVar->setComdat(M.getOrInsertComdat(VarName)); 2155 } 2156 appendToCompilerUsed(M, SamplingVar); 2157 } 2158 } // namespace llvm 2159