1 //===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass lowers instrprof_* intrinsics emitted by a frontend for profiling. 10 // It also builds the data structures and initialization code needed for 11 // updating execution counts and emitting the profile at runtime. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DIBuilder.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/ProfileData/InstrProf.h" 44 #include "llvm/ProfileData/InstrProfCorrelator.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Error.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/TargetParser/Triple.h" 50 #include "llvm/Transforms/Utils/ModuleUtils.h" 51 #include "llvm/Transforms/Utils/SSAUpdater.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <string> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "instrprof" 60 61 namespace llvm { 62 cl::opt<bool> 63 DebugInfoCorrelate("debug-info-correlate", 64 cl::desc("Use debug info to correlate profiles."), 65 cl::init(false)); 66 } // namespace llvm 67 68 namespace { 69 70 cl::opt<bool> DoHashBasedCounterSplit( 71 "hash-based-counter-split", 72 cl::desc("Rename counter variable of a comdat function based on cfg hash"), 73 cl::init(true)); 74 75 cl::opt<bool> 76 RuntimeCounterRelocation("runtime-counter-relocation", 77 cl::desc("Enable relocating counters at runtime."), 78 cl::init(false)); 79 80 cl::opt<bool> ValueProfileStaticAlloc( 81 "vp-static-alloc", 82 cl::desc("Do static counter allocation for value profiler"), 83 cl::init(true)); 84 85 cl::opt<double> NumCountersPerValueSite( 86 "vp-counters-per-site", 87 cl::desc("The average number of profile counters allocated " 88 "per value profiling site."), 89 // This is set to a very small value because in real programs, only 90 // a very small percentage of value sites have non-zero targets, e.g, 1/30. 91 // For those sites with non-zero profile, the average number of targets 92 // is usually smaller than 2. 93 cl::init(1.0)); 94 95 cl::opt<bool> AtomicCounterUpdateAll( 96 "instrprof-atomic-counter-update-all", 97 cl::desc("Make all profile counter updates atomic (for testing only)"), 98 cl::init(false)); 99 100 cl::opt<bool> AtomicCounterUpdatePromoted( 101 "atomic-counter-update-promoted", 102 cl::desc("Do counter update using atomic fetch add " 103 " for promoted counters only"), 104 cl::init(false)); 105 106 cl::opt<bool> AtomicFirstCounter( 107 "atomic-first-counter", 108 cl::desc("Use atomic fetch add for first counter in a function (usually " 109 "the entry counter)"), 110 cl::init(false)); 111 112 // If the option is not specified, the default behavior about whether 113 // counter promotion is done depends on how instrumentaiton lowering 114 // pipeline is setup, i.e., the default value of true of this option 115 // does not mean the promotion will be done by default. Explicitly 116 // setting this option can override the default behavior. 117 cl::opt<bool> DoCounterPromotion("do-counter-promotion", 118 cl::desc("Do counter register promotion"), 119 cl::init(false)); 120 cl::opt<unsigned> MaxNumOfPromotionsPerLoop( 121 "max-counter-promotions-per-loop", cl::init(20), 122 cl::desc("Max number counter promotions per loop to avoid" 123 " increasing register pressure too much")); 124 125 // A debug option 126 cl::opt<int> 127 MaxNumOfPromotions("max-counter-promotions", cl::init(-1), 128 cl::desc("Max number of allowed counter promotions")); 129 130 cl::opt<unsigned> SpeculativeCounterPromotionMaxExiting( 131 "speculative-counter-promotion-max-exiting", cl::init(3), 132 cl::desc("The max number of exiting blocks of a loop to allow " 133 " speculative counter promotion")); 134 135 cl::opt<bool> SpeculativeCounterPromotionToLoop( 136 "speculative-counter-promotion-to-loop", 137 cl::desc("When the option is false, if the target block is in a loop, " 138 "the promotion will be disallowed unless the promoted counter " 139 " update can be further/iteratively promoted into an acyclic " 140 " region.")); 141 142 cl::opt<bool> IterativeCounterPromotion( 143 "iterative-counter-promotion", cl::init(true), 144 cl::desc("Allow counter promotion across the whole loop nest.")); 145 146 cl::opt<bool> SkipRetExitBlock( 147 "skip-ret-exit-block", cl::init(true), 148 cl::desc("Suppress counter promotion if exit blocks contain ret.")); 149 150 /// 151 /// A helper class to promote one counter RMW operation in the loop 152 /// into register update. 153 /// 154 /// RWM update for the counter will be sinked out of the loop after 155 /// the transformation. 156 /// 157 class PGOCounterPromoterHelper : public LoadAndStorePromoter { 158 public: 159 PGOCounterPromoterHelper( 160 Instruction *L, Instruction *S, SSAUpdater &SSA, Value *Init, 161 BasicBlock *PH, ArrayRef<BasicBlock *> ExitBlocks, 162 ArrayRef<Instruction *> InsertPts, 163 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, 164 LoopInfo &LI) 165 : LoadAndStorePromoter({L, S}, SSA), Store(S), ExitBlocks(ExitBlocks), 166 InsertPts(InsertPts), LoopToCandidates(LoopToCands), LI(LI) { 167 assert(isa<LoadInst>(L)); 168 assert(isa<StoreInst>(S)); 169 SSA.AddAvailableValue(PH, Init); 170 } 171 172 void doExtraRewritesBeforeFinalDeletion() override { 173 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 174 BasicBlock *ExitBlock = ExitBlocks[i]; 175 Instruction *InsertPos = InsertPts[i]; 176 // Get LiveIn value into the ExitBlock. If there are multiple 177 // predecessors, the value is defined by a PHI node in this 178 // block. 179 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 180 Value *Addr = cast<StoreInst>(Store)->getPointerOperand(); 181 Type *Ty = LiveInValue->getType(); 182 IRBuilder<> Builder(InsertPos); 183 if (auto *AddrInst = dyn_cast_or_null<IntToPtrInst>(Addr)) { 184 // If isRuntimeCounterRelocationEnabled() is true then the address of 185 // the store instruction is computed with two instructions in 186 // InstrProfiling::getCounterAddress(). We need to copy those 187 // instructions to this block to compute Addr correctly. 188 // %BiasAdd = add i64 ptrtoint <__profc_>, <__llvm_profile_counter_bias> 189 // %Addr = inttoptr i64 %BiasAdd to i64* 190 auto *OrigBiasInst = dyn_cast<BinaryOperator>(AddrInst->getOperand(0)); 191 assert(OrigBiasInst->getOpcode() == Instruction::BinaryOps::Add); 192 Value *BiasInst = Builder.Insert(OrigBiasInst->clone()); 193 Addr = Builder.CreateIntToPtr(BiasInst, Ty->getPointerTo()); 194 } 195 if (AtomicCounterUpdatePromoted) 196 // automic update currently can only be promoted across the current 197 // loop, not the whole loop nest. 198 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, LiveInValue, 199 MaybeAlign(), 200 AtomicOrdering::SequentiallyConsistent); 201 else { 202 LoadInst *OldVal = Builder.CreateLoad(Ty, Addr, "pgocount.promoted"); 203 auto *NewVal = Builder.CreateAdd(OldVal, LiveInValue); 204 auto *NewStore = Builder.CreateStore(NewVal, Addr); 205 206 // Now update the parent loop's candidate list: 207 if (IterativeCounterPromotion) { 208 auto *TargetLoop = LI.getLoopFor(ExitBlock); 209 if (TargetLoop) 210 LoopToCandidates[TargetLoop].emplace_back(OldVal, NewStore); 211 } 212 } 213 } 214 } 215 216 private: 217 Instruction *Store; 218 ArrayRef<BasicBlock *> ExitBlocks; 219 ArrayRef<Instruction *> InsertPts; 220 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; 221 LoopInfo &LI; 222 }; 223 224 /// A helper class to do register promotion for all profile counter 225 /// updates in a loop. 226 /// 227 class PGOCounterPromoter { 228 public: 229 PGOCounterPromoter( 230 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, 231 Loop &CurLoop, LoopInfo &LI, BlockFrequencyInfo *BFI) 232 : LoopToCandidates(LoopToCands), L(CurLoop), LI(LI), BFI(BFI) { 233 234 // Skip collection of ExitBlocks and InsertPts for loops that will not be 235 // able to have counters promoted. 236 SmallVector<BasicBlock *, 8> LoopExitBlocks; 237 SmallPtrSet<BasicBlock *, 8> BlockSet; 238 239 L.getExitBlocks(LoopExitBlocks); 240 if (!isPromotionPossible(&L, LoopExitBlocks)) 241 return; 242 243 for (BasicBlock *ExitBlock : LoopExitBlocks) { 244 if (BlockSet.insert(ExitBlock).second) { 245 ExitBlocks.push_back(ExitBlock); 246 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 247 } 248 } 249 } 250 251 bool run(int64_t *NumPromoted) { 252 // Skip 'infinite' loops: 253 if (ExitBlocks.size() == 0) 254 return false; 255 256 // Skip if any of the ExitBlocks contains a ret instruction. 257 // This is to prevent dumping of incomplete profile -- if the 258 // the loop is a long running loop and dump is called in the middle 259 // of the loop, the result profile is incomplete. 260 // FIXME: add other heuristics to detect long running loops. 261 if (SkipRetExitBlock) { 262 for (auto *BB : ExitBlocks) 263 if (isa<ReturnInst>(BB->getTerminator())) 264 return false; 265 } 266 267 unsigned MaxProm = getMaxNumOfPromotionsInLoop(&L); 268 if (MaxProm == 0) 269 return false; 270 271 unsigned Promoted = 0; 272 for (auto &Cand : LoopToCandidates[&L]) { 273 274 SmallVector<PHINode *, 4> NewPHIs; 275 SSAUpdater SSA(&NewPHIs); 276 Value *InitVal = ConstantInt::get(Cand.first->getType(), 0); 277 278 // If BFI is set, we will use it to guide the promotions. 279 if (BFI) { 280 auto *BB = Cand.first->getParent(); 281 auto InstrCount = BFI->getBlockProfileCount(BB); 282 if (!InstrCount) 283 continue; 284 auto PreheaderCount = BFI->getBlockProfileCount(L.getLoopPreheader()); 285 // If the average loop trip count is not greater than 1.5, we skip 286 // promotion. 287 if (PreheaderCount && (*PreheaderCount * 3) >= (*InstrCount * 2)) 288 continue; 289 } 290 291 PGOCounterPromoterHelper Promoter(Cand.first, Cand.second, SSA, InitVal, 292 L.getLoopPreheader(), ExitBlocks, 293 InsertPts, LoopToCandidates, LI); 294 Promoter.run(SmallVector<Instruction *, 2>({Cand.first, Cand.second})); 295 Promoted++; 296 if (Promoted >= MaxProm) 297 break; 298 299 (*NumPromoted)++; 300 if (MaxNumOfPromotions != -1 && *NumPromoted >= MaxNumOfPromotions) 301 break; 302 } 303 304 LLVM_DEBUG(dbgs() << Promoted << " counters promoted for loop (depth=" 305 << L.getLoopDepth() << ")\n"); 306 return Promoted != 0; 307 } 308 309 private: 310 bool allowSpeculativeCounterPromotion(Loop *LP) { 311 SmallVector<BasicBlock *, 8> ExitingBlocks; 312 L.getExitingBlocks(ExitingBlocks); 313 // Not considierered speculative. 314 if (ExitingBlocks.size() == 1) 315 return true; 316 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) 317 return false; 318 return true; 319 } 320 321 // Check whether the loop satisfies the basic conditions needed to perform 322 // Counter Promotions. 323 bool 324 isPromotionPossible(Loop *LP, 325 const SmallVectorImpl<BasicBlock *> &LoopExitBlocks) { 326 // We can't insert into a catchswitch. 327 if (llvm::any_of(LoopExitBlocks, [](BasicBlock *Exit) { 328 return isa<CatchSwitchInst>(Exit->getTerminator()); 329 })) 330 return false; 331 332 if (!LP->hasDedicatedExits()) 333 return false; 334 335 BasicBlock *PH = LP->getLoopPreheader(); 336 if (!PH) 337 return false; 338 339 return true; 340 } 341 342 // Returns the max number of Counter Promotions for LP. 343 unsigned getMaxNumOfPromotionsInLoop(Loop *LP) { 344 SmallVector<BasicBlock *, 8> LoopExitBlocks; 345 LP->getExitBlocks(LoopExitBlocks); 346 if (!isPromotionPossible(LP, LoopExitBlocks)) 347 return 0; 348 349 SmallVector<BasicBlock *, 8> ExitingBlocks; 350 LP->getExitingBlocks(ExitingBlocks); 351 352 // If BFI is set, we do more aggressive promotions based on BFI. 353 if (BFI) 354 return (unsigned)-1; 355 356 // Not considierered speculative. 357 if (ExitingBlocks.size() == 1) 358 return MaxNumOfPromotionsPerLoop; 359 360 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) 361 return 0; 362 363 // Whether the target block is in a loop does not matter: 364 if (SpeculativeCounterPromotionToLoop) 365 return MaxNumOfPromotionsPerLoop; 366 367 // Now check the target block: 368 unsigned MaxProm = MaxNumOfPromotionsPerLoop; 369 for (auto *TargetBlock : LoopExitBlocks) { 370 auto *TargetLoop = LI.getLoopFor(TargetBlock); 371 if (!TargetLoop) 372 continue; 373 unsigned MaxPromForTarget = getMaxNumOfPromotionsInLoop(TargetLoop); 374 unsigned PendingCandsInTarget = LoopToCandidates[TargetLoop].size(); 375 MaxProm = 376 std::min(MaxProm, std::max(MaxPromForTarget, PendingCandsInTarget) - 377 PendingCandsInTarget); 378 } 379 return MaxProm; 380 } 381 382 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; 383 SmallVector<BasicBlock *, 8> ExitBlocks; 384 SmallVector<Instruction *, 8> InsertPts; 385 Loop &L; 386 LoopInfo &LI; 387 BlockFrequencyInfo *BFI; 388 }; 389 390 enum class ValueProfilingCallType { 391 // Individual values are tracked. Currently used for indiret call target 392 // profiling. 393 Default, 394 395 // MemOp: the memop size value profiling. 396 MemOp 397 }; 398 399 } // end anonymous namespace 400 401 PreservedAnalyses InstrProfiling::run(Module &M, ModuleAnalysisManager &AM) { 402 FunctionAnalysisManager &FAM = 403 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 404 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 405 return FAM.getResult<TargetLibraryAnalysis>(F); 406 }; 407 if (!run(M, GetTLI)) 408 return PreservedAnalyses::all(); 409 410 return PreservedAnalyses::none(); 411 } 412 413 bool InstrProfiling::lowerIntrinsics(Function *F) { 414 bool MadeChange = false; 415 PromotionCandidates.clear(); 416 for (BasicBlock &BB : *F) { 417 for (Instruction &Instr : llvm::make_early_inc_range(BB)) { 418 if (auto *IPIS = dyn_cast<InstrProfIncrementInstStep>(&Instr)) { 419 lowerIncrement(IPIS); 420 MadeChange = true; 421 } else if (auto *IPI = dyn_cast<InstrProfIncrementInst>(&Instr)) { 422 lowerIncrement(IPI); 423 MadeChange = true; 424 } else if (auto *IPC = dyn_cast<InstrProfTimestampInst>(&Instr)) { 425 lowerTimestamp(IPC); 426 MadeChange = true; 427 } else if (auto *IPC = dyn_cast<InstrProfCoverInst>(&Instr)) { 428 lowerCover(IPC); 429 MadeChange = true; 430 } else if (auto *IPVP = dyn_cast<InstrProfValueProfileInst>(&Instr)) { 431 lowerValueProfileInst(IPVP); 432 MadeChange = true; 433 } 434 } 435 } 436 437 if (!MadeChange) 438 return false; 439 440 promoteCounterLoadStores(F); 441 return true; 442 } 443 444 bool InstrProfiling::isRuntimeCounterRelocationEnabled() const { 445 // Mach-O don't support weak external references. 446 if (TT.isOSBinFormatMachO()) 447 return false; 448 449 if (RuntimeCounterRelocation.getNumOccurrences() > 0) 450 return RuntimeCounterRelocation; 451 452 // Fuchsia uses runtime counter relocation by default. 453 return TT.isOSFuchsia(); 454 } 455 456 bool InstrProfiling::isCounterPromotionEnabled() const { 457 if (DoCounterPromotion.getNumOccurrences() > 0) 458 return DoCounterPromotion; 459 460 return Options.DoCounterPromotion; 461 } 462 463 void InstrProfiling::promoteCounterLoadStores(Function *F) { 464 if (!isCounterPromotionEnabled()) 465 return; 466 467 DominatorTree DT(*F); 468 LoopInfo LI(DT); 469 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> LoopPromotionCandidates; 470 471 std::unique_ptr<BlockFrequencyInfo> BFI; 472 if (Options.UseBFIInPromotion) { 473 std::unique_ptr<BranchProbabilityInfo> BPI; 474 BPI.reset(new BranchProbabilityInfo(*F, LI, &GetTLI(*F))); 475 BFI.reset(new BlockFrequencyInfo(*F, *BPI, LI)); 476 } 477 478 for (const auto &LoadStore : PromotionCandidates) { 479 auto *CounterLoad = LoadStore.first; 480 auto *CounterStore = LoadStore.second; 481 BasicBlock *BB = CounterLoad->getParent(); 482 Loop *ParentLoop = LI.getLoopFor(BB); 483 if (!ParentLoop) 484 continue; 485 LoopPromotionCandidates[ParentLoop].emplace_back(CounterLoad, CounterStore); 486 } 487 488 SmallVector<Loop *, 4> Loops = LI.getLoopsInPreorder(); 489 490 // Do a post-order traversal of the loops so that counter updates can be 491 // iteratively hoisted outside the loop nest. 492 for (auto *Loop : llvm::reverse(Loops)) { 493 PGOCounterPromoter Promoter(LoopPromotionCandidates, *Loop, LI, BFI.get()); 494 Promoter.run(&TotalCountersPromoted); 495 } 496 } 497 498 static bool needsRuntimeHookUnconditionally(const Triple &TT) { 499 // On Fuchsia, we only need runtime hook if any counters are present. 500 if (TT.isOSFuchsia()) 501 return false; 502 503 return true; 504 } 505 506 /// Check if the module contains uses of any profiling intrinsics. 507 static bool containsProfilingIntrinsics(Module &M) { 508 auto containsIntrinsic = [&](int ID) { 509 if (auto *F = M.getFunction(Intrinsic::getName(ID))) 510 return !F->use_empty(); 511 return false; 512 }; 513 return containsIntrinsic(llvm::Intrinsic::instrprof_cover) || 514 containsIntrinsic(llvm::Intrinsic::instrprof_increment) || 515 containsIntrinsic(llvm::Intrinsic::instrprof_increment_step) || 516 containsIntrinsic(llvm::Intrinsic::instrprof_timestamp) || 517 containsIntrinsic(llvm::Intrinsic::instrprof_value_profile); 518 } 519 520 bool InstrProfiling::run( 521 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI) { 522 this->M = &M; 523 this->GetTLI = std::move(GetTLI); 524 NamesVar = nullptr; 525 NamesSize = 0; 526 ProfileDataMap.clear(); 527 CompilerUsedVars.clear(); 528 UsedVars.clear(); 529 TT = Triple(M.getTargetTriple()); 530 531 bool MadeChange = false; 532 bool NeedsRuntimeHook = needsRuntimeHookUnconditionally(TT); 533 if (NeedsRuntimeHook) 534 MadeChange = emitRuntimeHook(); 535 536 bool ContainsProfiling = containsProfilingIntrinsics(M); 537 GlobalVariable *CoverageNamesVar = 538 M.getNamedGlobal(getCoverageUnusedNamesVarName()); 539 // Improve compile time by avoiding linear scans when there is no work. 540 if (!ContainsProfiling && !CoverageNamesVar) 541 return MadeChange; 542 543 // We did not know how many value sites there would be inside 544 // the instrumented function. This is counting the number of instrumented 545 // target value sites to enter it as field in the profile data variable. 546 for (Function &F : M) { 547 InstrProfInstBase *FirstProfInst = nullptr; 548 for (BasicBlock &BB : F) 549 for (auto I = BB.begin(), E = BB.end(); I != E; I++) 550 if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I)) 551 computeNumValueSiteCounts(Ind); 552 else if (FirstProfInst == nullptr && 553 (isa<InstrProfIncrementInst>(I) || isa<InstrProfCoverInst>(I))) 554 FirstProfInst = dyn_cast<InstrProfInstBase>(I); 555 556 // Value profiling intrinsic lowering requires per-function profile data 557 // variable to be created first. 558 if (FirstProfInst != nullptr) 559 static_cast<void>(getOrCreateRegionCounters(FirstProfInst)); 560 } 561 562 for (Function &F : M) 563 MadeChange |= lowerIntrinsics(&F); 564 565 if (CoverageNamesVar) { 566 lowerCoverageData(CoverageNamesVar); 567 MadeChange = true; 568 } 569 570 if (!MadeChange) 571 return false; 572 573 emitVNodes(); 574 emitNameData(); 575 576 // Emit runtime hook for the cases where the target does not unconditionally 577 // require pulling in profile runtime, and coverage is enabled on code that is 578 // not eliminated by the front-end, e.g. unused functions with internal 579 // linkage. 580 if (!NeedsRuntimeHook && ContainsProfiling) 581 emitRuntimeHook(); 582 583 emitRegistration(); 584 emitUses(); 585 emitInitialization(); 586 return true; 587 } 588 589 static FunctionCallee getOrInsertValueProfilingCall( 590 Module &M, const TargetLibraryInfo &TLI, 591 ValueProfilingCallType CallType = ValueProfilingCallType::Default) { 592 LLVMContext &Ctx = M.getContext(); 593 auto *ReturnTy = Type::getVoidTy(M.getContext()); 594 595 AttributeList AL; 596 if (auto AK = TLI.getExtAttrForI32Param(false)) 597 AL = AL.addParamAttribute(M.getContext(), 2, AK); 598 599 assert((CallType == ValueProfilingCallType::Default || 600 CallType == ValueProfilingCallType::MemOp) && 601 "Must be Default or MemOp"); 602 Type *ParamTypes[] = { 603 #define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType 604 #include "llvm/ProfileData/InstrProfData.inc" 605 }; 606 auto *ValueProfilingCallTy = 607 FunctionType::get(ReturnTy, ArrayRef(ParamTypes), false); 608 StringRef FuncName = CallType == ValueProfilingCallType::Default 609 ? getInstrProfValueProfFuncName() 610 : getInstrProfValueProfMemOpFuncName(); 611 return M.getOrInsertFunction(FuncName, ValueProfilingCallTy, AL); 612 } 613 614 void InstrProfiling::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) { 615 GlobalVariable *Name = Ind->getName(); 616 uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); 617 uint64_t Index = Ind->getIndex()->getZExtValue(); 618 auto &PD = ProfileDataMap[Name]; 619 PD.NumValueSites[ValueKind] = 620 std::max(PD.NumValueSites[ValueKind], (uint32_t)(Index + 1)); 621 } 622 623 void InstrProfiling::lowerValueProfileInst(InstrProfValueProfileInst *Ind) { 624 // TODO: Value profiling heavily depends on the data section which is omitted 625 // in lightweight mode. We need to move the value profile pointer to the 626 // Counter struct to get this working. 627 assert( 628 !DebugInfoCorrelate && 629 "Value profiling is not yet supported with lightweight instrumentation"); 630 GlobalVariable *Name = Ind->getName(); 631 auto It = ProfileDataMap.find(Name); 632 assert(It != ProfileDataMap.end() && It->second.DataVar && 633 "value profiling detected in function with no counter incerement"); 634 635 GlobalVariable *DataVar = It->second.DataVar; 636 uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); 637 uint64_t Index = Ind->getIndex()->getZExtValue(); 638 for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind) 639 Index += It->second.NumValueSites[Kind]; 640 641 IRBuilder<> Builder(Ind); 642 bool IsMemOpSize = (Ind->getValueKind()->getZExtValue() == 643 llvm::InstrProfValueKind::IPVK_MemOPSize); 644 CallInst *Call = nullptr; 645 auto *TLI = &GetTLI(*Ind->getFunction()); 646 647 // To support value profiling calls within Windows exception handlers, funclet 648 // information contained within operand bundles needs to be copied over to 649 // the library call. This is required for the IR to be processed by the 650 // WinEHPrepare pass. 651 SmallVector<OperandBundleDef, 1> OpBundles; 652 Ind->getOperandBundlesAsDefs(OpBundles); 653 if (!IsMemOpSize) { 654 Value *Args[3] = {Ind->getTargetValue(), 655 Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()), 656 Builder.getInt32(Index)}; 657 Call = Builder.CreateCall(getOrInsertValueProfilingCall(*M, *TLI), Args, 658 OpBundles); 659 } else { 660 Value *Args[3] = {Ind->getTargetValue(), 661 Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()), 662 Builder.getInt32(Index)}; 663 Call = Builder.CreateCall( 664 getOrInsertValueProfilingCall(*M, *TLI, ValueProfilingCallType::MemOp), 665 Args, OpBundles); 666 } 667 if (auto AK = TLI->getExtAttrForI32Param(false)) 668 Call->addParamAttr(2, AK); 669 Ind->replaceAllUsesWith(Call); 670 Ind->eraseFromParent(); 671 } 672 673 Value *InstrProfiling::getCounterAddress(InstrProfInstBase *I) { 674 auto *Counters = getOrCreateRegionCounters(I); 675 IRBuilder<> Builder(I); 676 677 if (isa<InstrProfTimestampInst>(I)) 678 Counters->setAlignment(Align(8)); 679 680 auto *Addr = Builder.CreateConstInBoundsGEP2_32( 681 Counters->getValueType(), Counters, 0, I->getIndex()->getZExtValue()); 682 683 if (!isRuntimeCounterRelocationEnabled()) 684 return Addr; 685 686 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 687 Function *Fn = I->getParent()->getParent(); 688 LoadInst *&BiasLI = FunctionToProfileBiasMap[Fn]; 689 if (!BiasLI) { 690 IRBuilder<> EntryBuilder(&Fn->getEntryBlock().front()); 691 auto *Bias = M->getGlobalVariable(getInstrProfCounterBiasVarName()); 692 if (!Bias) { 693 // Compiler must define this variable when runtime counter relocation 694 // is being used. Runtime has a weak external reference that is used 695 // to check whether that's the case or not. 696 Bias = new GlobalVariable( 697 *M, Int64Ty, false, GlobalValue::LinkOnceODRLinkage, 698 Constant::getNullValue(Int64Ty), getInstrProfCounterBiasVarName()); 699 Bias->setVisibility(GlobalVariable::HiddenVisibility); 700 // A definition that's weak (linkonce_odr) without being in a COMDAT 701 // section wouldn't lead to link errors, but it would lead to a dead 702 // data word from every TU but one. Putting it in COMDAT ensures there 703 // will be exactly one data slot in the link. 704 if (TT.supportsCOMDAT()) 705 Bias->setComdat(M->getOrInsertComdat(Bias->getName())); 706 } 707 BiasLI = EntryBuilder.CreateLoad(Int64Ty, Bias); 708 } 709 auto *Add = Builder.CreateAdd(Builder.CreatePtrToInt(Addr, Int64Ty), BiasLI); 710 return Builder.CreateIntToPtr(Add, Addr->getType()); 711 } 712 713 void InstrProfiling::lowerCover(InstrProfCoverInst *CoverInstruction) { 714 auto *Addr = getCounterAddress(CoverInstruction); 715 IRBuilder<> Builder(CoverInstruction); 716 // We store zero to represent that this block is covered. 717 Builder.CreateStore(Builder.getInt8(0), Addr); 718 CoverInstruction->eraseFromParent(); 719 } 720 721 void InstrProfiling::lowerTimestamp( 722 InstrProfTimestampInst *TimestampInstruction) { 723 assert(TimestampInstruction->getIndex()->isZeroValue() && 724 "timestamp probes are always the first probe for a function"); 725 auto &Ctx = M->getContext(); 726 auto *TimestampAddr = getCounterAddress(TimestampInstruction); 727 IRBuilder<> Builder(TimestampInstruction); 728 auto *CalleeTy = 729 FunctionType::get(Type::getVoidTy(Ctx), TimestampAddr->getType(), false); 730 auto Callee = M->getOrInsertFunction( 731 INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_SET_TIMESTAMP), CalleeTy); 732 Builder.CreateCall(Callee, {TimestampAddr}); 733 TimestampInstruction->eraseFromParent(); 734 } 735 736 void InstrProfiling::lowerIncrement(InstrProfIncrementInst *Inc) { 737 auto *Addr = getCounterAddress(Inc); 738 739 IRBuilder<> Builder(Inc); 740 if (Options.Atomic || AtomicCounterUpdateAll || 741 (Inc->getIndex()->isZeroValue() && AtomicFirstCounter)) { 742 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, Inc->getStep(), 743 MaybeAlign(), AtomicOrdering::Monotonic); 744 } else { 745 Value *IncStep = Inc->getStep(); 746 Value *Load = Builder.CreateLoad(IncStep->getType(), Addr, "pgocount"); 747 auto *Count = Builder.CreateAdd(Load, Inc->getStep()); 748 auto *Store = Builder.CreateStore(Count, Addr); 749 if (isCounterPromotionEnabled()) 750 PromotionCandidates.emplace_back(cast<Instruction>(Load), Store); 751 } 752 Inc->eraseFromParent(); 753 } 754 755 void InstrProfiling::lowerCoverageData(GlobalVariable *CoverageNamesVar) { 756 ConstantArray *Names = 757 cast<ConstantArray>(CoverageNamesVar->getInitializer()); 758 for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) { 759 Constant *NC = Names->getOperand(I); 760 Value *V = NC->stripPointerCasts(); 761 assert(isa<GlobalVariable>(V) && "Missing reference to function name"); 762 GlobalVariable *Name = cast<GlobalVariable>(V); 763 764 Name->setLinkage(GlobalValue::PrivateLinkage); 765 ReferencedNames.push_back(Name); 766 if (isa<ConstantExpr>(NC)) 767 NC->dropAllReferences(); 768 } 769 CoverageNamesVar->eraseFromParent(); 770 } 771 772 /// Get the name of a profiling variable for a particular function. 773 static std::string getVarName(InstrProfInstBase *Inc, StringRef Prefix, 774 bool &Renamed) { 775 StringRef NamePrefix = getInstrProfNameVarPrefix(); 776 StringRef Name = Inc->getName()->getName().substr(NamePrefix.size()); 777 Function *F = Inc->getParent()->getParent(); 778 Module *M = F->getParent(); 779 if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) || 780 !canRenameComdatFunc(*F)) { 781 Renamed = false; 782 return (Prefix + Name).str(); 783 } 784 Renamed = true; 785 uint64_t FuncHash = Inc->getHash()->getZExtValue(); 786 SmallVector<char, 24> HashPostfix; 787 if (Name.endswith((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix))) 788 return (Prefix + Name).str(); 789 return (Prefix + Name + "." + Twine(FuncHash)).str(); 790 } 791 792 static uint64_t getIntModuleFlagOrZero(const Module &M, StringRef Flag) { 793 auto *MD = dyn_cast_or_null<ConstantAsMetadata>(M.getModuleFlag(Flag)); 794 if (!MD) 795 return 0; 796 797 // If the flag is a ConstantAsMetadata, it should be an integer representable 798 // in 64-bits. 799 return cast<ConstantInt>(MD->getValue())->getZExtValue(); 800 } 801 802 static bool enablesValueProfiling(const Module &M) { 803 return isIRPGOFlagSet(&M) || 804 getIntModuleFlagOrZero(M, "EnableValueProfiling") != 0; 805 } 806 807 // Conservatively returns true if data variables may be referenced by code. 808 static bool profDataReferencedByCode(const Module &M) { 809 return enablesValueProfiling(M); 810 } 811 812 static inline bool shouldRecordFunctionAddr(Function *F) { 813 // Only record function addresses if IR PGO is enabled or if clang value 814 // profiling is enabled. Recording function addresses greatly increases object 815 // file size, because it prevents the inliner from deleting functions that 816 // have been inlined everywhere. 817 if (!profDataReferencedByCode(*F->getParent())) 818 return false; 819 820 // Check the linkage 821 bool HasAvailableExternallyLinkage = F->hasAvailableExternallyLinkage(); 822 if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() && 823 !HasAvailableExternallyLinkage) 824 return true; 825 826 // A function marked 'alwaysinline' with available_externally linkage can't 827 // have its address taken. Doing so would create an undefined external ref to 828 // the function, which would fail to link. 829 if (HasAvailableExternallyLinkage && 830 F->hasFnAttribute(Attribute::AlwaysInline)) 831 return false; 832 833 // Prohibit function address recording if the function is both internal and 834 // COMDAT. This avoids the profile data variable referencing internal symbols 835 // in COMDAT. 836 if (F->hasLocalLinkage() && F->hasComdat()) 837 return false; 838 839 // Check uses of this function for other than direct calls or invokes to it. 840 // Inline virtual functions have linkeOnceODR linkage. When a key method 841 // exists, the vtable will only be emitted in the TU where the key method 842 // is defined. In a TU where vtable is not available, the function won't 843 // be 'addresstaken'. If its address is not recorded here, the profile data 844 // with missing address may be picked by the linker leading to missing 845 // indirect call target info. 846 return F->hasAddressTaken() || F->hasLinkOnceLinkage(); 847 } 848 849 static inline bool shouldUsePublicSymbol(Function *Fn) { 850 // It isn't legal to make an alias of this function at all 851 if (Fn->isDeclarationForLinker()) 852 return true; 853 854 // Symbols with local linkage can just use the symbol directly without 855 // introducing relocations 856 if (Fn->hasLocalLinkage()) 857 return true; 858 859 // PGO + ThinLTO + CFI cause duplicate symbols to be introduced due to some 860 // unfavorable interaction between the new alias and the alias renaming done 861 // in LowerTypeTests under ThinLTO. For comdat functions that would normally 862 // be deduplicated, but the renaming scheme ends up preventing renaming, since 863 // it creates unique names for each alias, resulting in duplicated symbols. In 864 // the future, we should update the CFI related passes to migrate these 865 // aliases to the same module as the jump-table they refer to will be defined. 866 if (Fn->hasMetadata(LLVMContext::MD_type)) 867 return true; 868 869 // For comdat functions, an alias would need the same linkage as the original 870 // function and hidden visibility. There is no point in adding an alias with 871 // identical linkage an visibility to avoid introducing symbolic relocations. 872 if (Fn->hasComdat() && 873 (Fn->getVisibility() == GlobalValue::VisibilityTypes::HiddenVisibility)) 874 return true; 875 876 // its OK to use an alias 877 return false; 878 } 879 880 static inline Constant *getFuncAddrForProfData(Function *Fn) { 881 auto *Int8PtrTy = Type::getInt8PtrTy(Fn->getContext()); 882 // Store a nullptr in __llvm_profd, if we shouldn't use a real address 883 if (!shouldRecordFunctionAddr(Fn)) 884 return ConstantPointerNull::get(Int8PtrTy); 885 886 // If we can't use an alias, we must use the public symbol, even though this 887 // may require a symbolic relocation. 888 if (shouldUsePublicSymbol(Fn)) 889 return ConstantExpr::getBitCast(Fn, Int8PtrTy); 890 891 // When possible use a private alias to avoid symbolic relocations. 892 auto *GA = GlobalAlias::create(GlobalValue::LinkageTypes::PrivateLinkage, 893 Fn->getName() + ".local", Fn); 894 895 // When the instrumented function is a COMDAT function, we cannot use a 896 // private alias. If we did, we would create reference to a local label in 897 // this function's section. If this version of the function isn't selected by 898 // the linker, then the metadata would introduce a reference to a discarded 899 // section. So, for COMDAT functions, we need to adjust the linkage of the 900 // alias. Using hidden visibility avoids a dynamic relocation and an entry in 901 // the dynamic symbol table. 902 // 903 // Note that this handles COMDAT functions with visibility other than Hidden, 904 // since that case is covered in shouldUsePublicSymbol() 905 if (Fn->hasComdat()) { 906 GA->setLinkage(Fn->getLinkage()); 907 GA->setVisibility(GlobalValue::VisibilityTypes::HiddenVisibility); 908 } 909 910 // appendToCompilerUsed(*Fn->getParent(), {GA}); 911 912 return ConstantExpr::getBitCast(GA, Int8PtrTy); 913 } 914 915 static bool needsRuntimeRegistrationOfSectionRange(const Triple &TT) { 916 // Don't do this for Darwin. compiler-rt uses linker magic. 917 if (TT.isOSDarwin()) 918 return false; 919 // Use linker script magic to get data/cnts/name start/end. 920 if (TT.isOSAIX() || TT.isOSLinux() || TT.isOSFreeBSD() || TT.isOSNetBSD() || 921 TT.isOSSolaris() || TT.isOSFuchsia() || TT.isPS() || TT.isOSWindows()) 922 return false; 923 924 return true; 925 } 926 927 GlobalVariable * 928 InstrProfiling::createRegionCounters(InstrProfInstBase *Inc, StringRef Name, 929 GlobalValue::LinkageTypes Linkage) { 930 uint64_t NumCounters = Inc->getNumCounters()->getZExtValue(); 931 auto &Ctx = M->getContext(); 932 GlobalVariable *GV; 933 if (isa<InstrProfCoverInst>(Inc)) { 934 auto *CounterTy = Type::getInt8Ty(Ctx); 935 auto *CounterArrTy = ArrayType::get(CounterTy, NumCounters); 936 // TODO: `Constant::getAllOnesValue()` does not yet accept an array type. 937 std::vector<Constant *> InitialValues(NumCounters, 938 Constant::getAllOnesValue(CounterTy)); 939 GV = new GlobalVariable(*M, CounterArrTy, false, Linkage, 940 ConstantArray::get(CounterArrTy, InitialValues), 941 Name); 942 GV->setAlignment(Align(1)); 943 } else { 944 auto *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters); 945 GV = new GlobalVariable(*M, CounterTy, false, Linkage, 946 Constant::getNullValue(CounterTy), Name); 947 GV->setAlignment(Align(8)); 948 } 949 return GV; 950 } 951 952 GlobalVariable * 953 InstrProfiling::getOrCreateRegionCounters(InstrProfInstBase *Inc) { 954 GlobalVariable *NamePtr = Inc->getName(); 955 auto &PD = ProfileDataMap[NamePtr]; 956 if (PD.RegionCounters) 957 return PD.RegionCounters; 958 959 // Match the linkage and visibility of the name global. 960 Function *Fn = Inc->getParent()->getParent(); 961 GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage(); 962 GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility(); 963 964 // Use internal rather than private linkage so the counter variable shows up 965 // in the symbol table when using debug info for correlation. 966 if (DebugInfoCorrelate && TT.isOSBinFormatMachO() && 967 Linkage == GlobalValue::PrivateLinkage) 968 Linkage = GlobalValue::InternalLinkage; 969 970 // Due to the limitation of binder as of 2021/09/28, the duplicate weak 971 // symbols in the same csect won't be discarded. When there are duplicate weak 972 // symbols, we can NOT guarantee that the relocations get resolved to the 973 // intended weak symbol, so we can not ensure the correctness of the relative 974 // CounterPtr, so we have to use private linkage for counter and data symbols. 975 if (TT.isOSBinFormatXCOFF()) { 976 Linkage = GlobalValue::PrivateLinkage; 977 Visibility = GlobalValue::DefaultVisibility; 978 } 979 // Move the name variable to the right section. Place them in a COMDAT group 980 // if the associated function is a COMDAT. This will make sure that only one 981 // copy of counters of the COMDAT function will be emitted after linking. Keep 982 // in mind that this pass may run before the inliner, so we need to create a 983 // new comdat group for the counters and profiling data. If we use the comdat 984 // of the parent function, that will result in relocations against discarded 985 // sections. 986 // 987 // If the data variable is referenced by code, counters and data have to be 988 // in different comdats for COFF because the Visual C++ linker will report 989 // duplicate symbol errors if there are multiple external symbols with the 990 // same name marked IMAGE_COMDAT_SELECT_ASSOCIATIVE. 991 // 992 // For ELF, when not using COMDAT, put counters, data and values into a 993 // nodeduplicate COMDAT which is lowered to a zero-flag section group. This 994 // allows -z start-stop-gc to discard the entire group when the function is 995 // discarded. 996 bool DataReferencedByCode = profDataReferencedByCode(*M); 997 bool NeedComdat = needsComdatForCounter(*Fn, *M); 998 bool Renamed; 999 std::string CntsVarName = 1000 getVarName(Inc, getInstrProfCountersVarPrefix(), Renamed); 1001 std::string DataVarName = 1002 getVarName(Inc, getInstrProfDataVarPrefix(), Renamed); 1003 auto MaybeSetComdat = [&](GlobalVariable *GV) { 1004 bool UseComdat = (NeedComdat || TT.isOSBinFormatELF()); 1005 if (UseComdat) { 1006 StringRef GroupName = TT.isOSBinFormatCOFF() && DataReferencedByCode 1007 ? GV->getName() 1008 : CntsVarName; 1009 Comdat *C = M->getOrInsertComdat(GroupName); 1010 if (!NeedComdat) 1011 C->setSelectionKind(Comdat::NoDeduplicate); 1012 GV->setComdat(C); 1013 // COFF doesn't allow the comdat group leader to have private linkage, so 1014 // upgrade private linkage to internal linkage to produce a symbol table 1015 // entry. 1016 if (TT.isOSBinFormatCOFF() && GV->hasPrivateLinkage()) 1017 GV->setLinkage(GlobalValue::InternalLinkage); 1018 } 1019 }; 1020 1021 uint64_t NumCounters = Inc->getNumCounters()->getZExtValue(); 1022 LLVMContext &Ctx = M->getContext(); 1023 1024 auto *CounterPtr = createRegionCounters(Inc, CntsVarName, Linkage); 1025 CounterPtr->setVisibility(Visibility); 1026 CounterPtr->setSection( 1027 getInstrProfSectionName(IPSK_cnts, TT.getObjectFormat())); 1028 CounterPtr->setLinkage(Linkage); 1029 MaybeSetComdat(CounterPtr); 1030 PD.RegionCounters = CounterPtr; 1031 if (DebugInfoCorrelate) { 1032 if (auto *SP = Fn->getSubprogram()) { 1033 DIBuilder DB(*M, true, SP->getUnit()); 1034 Metadata *FunctionNameAnnotation[] = { 1035 MDString::get(Ctx, InstrProfCorrelator::FunctionNameAttributeName), 1036 MDString::get(Ctx, getPGOFuncNameVarInitializer(NamePtr)), 1037 }; 1038 Metadata *CFGHashAnnotation[] = { 1039 MDString::get(Ctx, InstrProfCorrelator::CFGHashAttributeName), 1040 ConstantAsMetadata::get(Inc->getHash()), 1041 }; 1042 Metadata *NumCountersAnnotation[] = { 1043 MDString::get(Ctx, InstrProfCorrelator::NumCountersAttributeName), 1044 ConstantAsMetadata::get(Inc->getNumCounters()), 1045 }; 1046 auto Annotations = DB.getOrCreateArray({ 1047 MDNode::get(Ctx, FunctionNameAnnotation), 1048 MDNode::get(Ctx, CFGHashAnnotation), 1049 MDNode::get(Ctx, NumCountersAnnotation), 1050 }); 1051 auto *DICounter = DB.createGlobalVariableExpression( 1052 SP, CounterPtr->getName(), /*LinkageName=*/StringRef(), SP->getFile(), 1053 /*LineNo=*/0, DB.createUnspecifiedType("Profile Data Type"), 1054 CounterPtr->hasLocalLinkage(), /*IsDefined=*/true, /*Expr=*/nullptr, 1055 /*Decl=*/nullptr, /*TemplateParams=*/nullptr, /*AlignInBits=*/0, 1056 Annotations); 1057 CounterPtr->addDebugInfo(DICounter); 1058 DB.finalize(); 1059 } else { 1060 std::string Msg = ("Missing debug info for function " + Fn->getName() + 1061 "; required for profile correlation.") 1062 .str(); 1063 Ctx.diagnose( 1064 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning)); 1065 } 1066 } 1067 1068 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 1069 // Allocate statically the array of pointers to value profile nodes for 1070 // the current function. 1071 Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy); 1072 uint64_t NS = 0; 1073 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1074 NS += PD.NumValueSites[Kind]; 1075 if (NS > 0 && ValueProfileStaticAlloc && 1076 !needsRuntimeRegistrationOfSectionRange(TT)) { 1077 ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS); 1078 auto *ValuesVar = new GlobalVariable( 1079 *M, ValuesTy, false, Linkage, Constant::getNullValue(ValuesTy), 1080 getVarName(Inc, getInstrProfValuesVarPrefix(), Renamed)); 1081 ValuesVar->setVisibility(Visibility); 1082 ValuesVar->setSection( 1083 getInstrProfSectionName(IPSK_vals, TT.getObjectFormat())); 1084 ValuesVar->setAlignment(Align(8)); 1085 MaybeSetComdat(ValuesVar); 1086 ValuesPtrExpr = 1087 ConstantExpr::getBitCast(ValuesVar, Type::getInt8PtrTy(Ctx)); 1088 } 1089 1090 if (DebugInfoCorrelate) { 1091 // Mark the counter variable as used so that it isn't optimized out. 1092 CompilerUsedVars.push_back(PD.RegionCounters); 1093 return PD.RegionCounters; 1094 } 1095 1096 // Create data variable. 1097 auto *IntPtrTy = M->getDataLayout().getIntPtrType(M->getContext()); 1098 auto *Int16Ty = Type::getInt16Ty(Ctx); 1099 auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1); 1100 Type *DataTypes[] = { 1101 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType, 1102 #include "llvm/ProfileData/InstrProfData.inc" 1103 }; 1104 auto *DataTy = StructType::get(Ctx, ArrayRef(DataTypes)); 1105 1106 Constant *FunctionAddr = getFuncAddrForProfData(Fn); 1107 1108 Constant *Int16ArrayVals[IPVK_Last + 1]; 1109 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1110 Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]); 1111 1112 // If the data variable is not referenced by code (if we don't emit 1113 // @llvm.instrprof.value.profile, NS will be 0), and the counter keeps the 1114 // data variable live under linker GC, the data variable can be private. This 1115 // optimization applies to ELF. 1116 // 1117 // On COFF, a comdat leader cannot be local so we require DataReferencedByCode 1118 // to be false. 1119 // 1120 // If profd is in a deduplicate comdat, NS==0 with a hash suffix guarantees 1121 // that other copies must have the same CFG and cannot have value profiling. 1122 // If no hash suffix, other profd copies may be referenced by code. 1123 if (NS == 0 && !(DataReferencedByCode && NeedComdat && !Renamed) && 1124 (TT.isOSBinFormatELF() || 1125 (!DataReferencedByCode && TT.isOSBinFormatCOFF()))) { 1126 Linkage = GlobalValue::PrivateLinkage; 1127 Visibility = GlobalValue::DefaultVisibility; 1128 } 1129 auto *Data = 1130 new GlobalVariable(*M, DataTy, false, Linkage, nullptr, DataVarName); 1131 // Reference the counter variable with a label difference (link-time 1132 // constant). 1133 auto *RelativeCounterPtr = 1134 ConstantExpr::getSub(ConstantExpr::getPtrToInt(CounterPtr, IntPtrTy), 1135 ConstantExpr::getPtrToInt(Data, IntPtrTy)); 1136 1137 Constant *DataVals[] = { 1138 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init, 1139 #include "llvm/ProfileData/InstrProfData.inc" 1140 }; 1141 Data->setInitializer(ConstantStruct::get(DataTy, DataVals)); 1142 1143 Data->setVisibility(Visibility); 1144 Data->setSection(getInstrProfSectionName(IPSK_data, TT.getObjectFormat())); 1145 Data->setAlignment(Align(INSTR_PROF_DATA_ALIGNMENT)); 1146 MaybeSetComdat(Data); 1147 1148 PD.DataVar = Data; 1149 1150 // Mark the data variable as used so that it isn't stripped out. 1151 CompilerUsedVars.push_back(Data); 1152 // Now that the linkage set by the FE has been passed to the data and counter 1153 // variables, reset Name variable's linkage and visibility to private so that 1154 // it can be removed later by the compiler. 1155 NamePtr->setLinkage(GlobalValue::PrivateLinkage); 1156 // Collect the referenced names to be used by emitNameData. 1157 ReferencedNames.push_back(NamePtr); 1158 1159 return PD.RegionCounters; 1160 } 1161 1162 void InstrProfiling::emitVNodes() { 1163 if (!ValueProfileStaticAlloc) 1164 return; 1165 1166 // For now only support this on platforms that do 1167 // not require runtime registration to discover 1168 // named section start/end. 1169 if (needsRuntimeRegistrationOfSectionRange(TT)) 1170 return; 1171 1172 size_t TotalNS = 0; 1173 for (auto &PD : ProfileDataMap) { 1174 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1175 TotalNS += PD.second.NumValueSites[Kind]; 1176 } 1177 1178 if (!TotalNS) 1179 return; 1180 1181 uint64_t NumCounters = TotalNS * NumCountersPerValueSite; 1182 // Heuristic for small programs with very few total value sites. 1183 // The default value of vp-counters-per-site is chosen based on 1184 // the observation that large apps usually have a low percentage 1185 // of value sites that actually have any profile data, and thus 1186 // the average number of counters per site is low. For small 1187 // apps with very few sites, this may not be true. Bump up the 1188 // number of counters in this case. 1189 #define INSTR_PROF_MIN_VAL_COUNTS 10 1190 if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS) 1191 NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2); 1192 1193 auto &Ctx = M->getContext(); 1194 Type *VNodeTypes[] = { 1195 #define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType, 1196 #include "llvm/ProfileData/InstrProfData.inc" 1197 }; 1198 auto *VNodeTy = StructType::get(Ctx, ArrayRef(VNodeTypes)); 1199 1200 ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters); 1201 auto *VNodesVar = new GlobalVariable( 1202 *M, VNodesTy, false, GlobalValue::PrivateLinkage, 1203 Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName()); 1204 VNodesVar->setSection( 1205 getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat())); 1206 VNodesVar->setAlignment(M->getDataLayout().getABITypeAlign(VNodesTy)); 1207 // VNodesVar is used by runtime but not referenced via relocation by other 1208 // sections. Conservatively make it linker retained. 1209 UsedVars.push_back(VNodesVar); 1210 } 1211 1212 void InstrProfiling::emitNameData() { 1213 std::string UncompressedData; 1214 1215 if (ReferencedNames.empty()) 1216 return; 1217 1218 std::string CompressedNameStr; 1219 if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr, 1220 DoInstrProfNameCompression)) { 1221 report_fatal_error(Twine(toString(std::move(E))), false); 1222 } 1223 1224 auto &Ctx = M->getContext(); 1225 auto *NamesVal = 1226 ConstantDataArray::getString(Ctx, StringRef(CompressedNameStr), false); 1227 NamesVar = new GlobalVariable(*M, NamesVal->getType(), true, 1228 GlobalValue::PrivateLinkage, NamesVal, 1229 getInstrProfNamesVarName()); 1230 NamesSize = CompressedNameStr.size(); 1231 NamesVar->setSection( 1232 getInstrProfSectionName(IPSK_name, TT.getObjectFormat())); 1233 // On COFF, it's important to reduce the alignment down to 1 to prevent the 1234 // linker from inserting padding before the start of the names section or 1235 // between names entries. 1236 NamesVar->setAlignment(Align(1)); 1237 // NamesVar is used by runtime but not referenced via relocation by other 1238 // sections. Conservatively make it linker retained. 1239 UsedVars.push_back(NamesVar); 1240 1241 for (auto *NamePtr : ReferencedNames) 1242 NamePtr->eraseFromParent(); 1243 } 1244 1245 void InstrProfiling::emitRegistration() { 1246 if (!needsRuntimeRegistrationOfSectionRange(TT)) 1247 return; 1248 1249 // Construct the function. 1250 auto *VoidTy = Type::getVoidTy(M->getContext()); 1251 auto *VoidPtrTy = Type::getInt8PtrTy(M->getContext()); 1252 auto *Int64Ty = Type::getInt64Ty(M->getContext()); 1253 auto *RegisterFTy = FunctionType::get(VoidTy, false); 1254 auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage, 1255 getInstrProfRegFuncsName(), M); 1256 RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1257 if (Options.NoRedZone) 1258 RegisterF->addFnAttr(Attribute::NoRedZone); 1259 1260 auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false); 1261 auto *RuntimeRegisterF = 1262 Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage, 1263 getInstrProfRegFuncName(), M); 1264 1265 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", RegisterF)); 1266 for (Value *Data : CompilerUsedVars) 1267 if (!isa<Function>(Data)) 1268 IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy)); 1269 for (Value *Data : UsedVars) 1270 if (Data != NamesVar && !isa<Function>(Data)) 1271 IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy)); 1272 1273 if (NamesVar) { 1274 Type *ParamTypes[] = {VoidPtrTy, Int64Ty}; 1275 auto *NamesRegisterTy = 1276 FunctionType::get(VoidTy, ArrayRef(ParamTypes), false); 1277 auto *NamesRegisterF = 1278 Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage, 1279 getInstrProfNamesRegFuncName(), M); 1280 IRB.CreateCall(NamesRegisterF, {IRB.CreateBitCast(NamesVar, VoidPtrTy), 1281 IRB.getInt64(NamesSize)}); 1282 } 1283 1284 IRB.CreateRetVoid(); 1285 } 1286 1287 bool InstrProfiling::emitRuntimeHook() { 1288 // We expect the linker to be invoked with -u<hook_var> flag for Linux 1289 // in which case there is no need to emit the external variable. 1290 if (TT.isOSLinux() || TT.isOSAIX()) 1291 return false; 1292 1293 // If the module's provided its own runtime, we don't need to do anything. 1294 if (M->getGlobalVariable(getInstrProfRuntimeHookVarName())) 1295 return false; 1296 1297 // Declare an external variable that will pull in the runtime initialization. 1298 auto *Int32Ty = Type::getInt32Ty(M->getContext()); 1299 auto *Var = 1300 new GlobalVariable(*M, Int32Ty, false, GlobalValue::ExternalLinkage, 1301 nullptr, getInstrProfRuntimeHookVarName()); 1302 Var->setVisibility(GlobalValue::HiddenVisibility); 1303 1304 if (TT.isOSBinFormatELF() && !TT.isPS()) { 1305 // Mark the user variable as used so that it isn't stripped out. 1306 CompilerUsedVars.push_back(Var); 1307 } else { 1308 // Make a function that uses it. 1309 auto *User = Function::Create(FunctionType::get(Int32Ty, false), 1310 GlobalValue::LinkOnceODRLinkage, 1311 getInstrProfRuntimeHookVarUseFuncName(), M); 1312 User->addFnAttr(Attribute::NoInline); 1313 if (Options.NoRedZone) 1314 User->addFnAttr(Attribute::NoRedZone); 1315 User->setVisibility(GlobalValue::HiddenVisibility); 1316 if (TT.supportsCOMDAT()) 1317 User->setComdat(M->getOrInsertComdat(User->getName())); 1318 1319 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", User)); 1320 auto *Load = IRB.CreateLoad(Int32Ty, Var); 1321 IRB.CreateRet(Load); 1322 1323 // Mark the function as used so that it isn't stripped out. 1324 CompilerUsedVars.push_back(User); 1325 } 1326 return true; 1327 } 1328 1329 void InstrProfiling::emitUses() { 1330 // The metadata sections are parallel arrays. Optimizers (e.g. 1331 // GlobalOpt/ConstantMerge) may not discard associated sections as a unit, so 1332 // we conservatively retain all unconditionally in the compiler. 1333 // 1334 // On ELF and Mach-O, the linker can guarantee the associated sections will be 1335 // retained or discarded as a unit, so llvm.compiler.used is sufficient. 1336 // Similarly on COFF, if prof data is not referenced by code we use one comdat 1337 // and ensure this GC property as well. Otherwise, we have to conservatively 1338 // make all of the sections retained by the linker. 1339 if (TT.isOSBinFormatELF() || TT.isOSBinFormatMachO() || 1340 (TT.isOSBinFormatCOFF() && !profDataReferencedByCode(*M))) 1341 appendToCompilerUsed(*M, CompilerUsedVars); 1342 else 1343 appendToUsed(*M, CompilerUsedVars); 1344 1345 // We do not add proper references from used metadata sections to NamesVar and 1346 // VNodesVar, so we have to be conservative and place them in llvm.used 1347 // regardless of the target, 1348 appendToUsed(*M, UsedVars); 1349 } 1350 1351 void InstrProfiling::emitInitialization() { 1352 // Create ProfileFileName variable. Don't don't this for the 1353 // context-sensitive instrumentation lowering: This lowering is after 1354 // LTO/ThinLTO linking. Pass PGOInstrumentationGenCreateVar should 1355 // have already create the variable before LTO/ThinLTO linking. 1356 if (!IsCS) 1357 createProfileFileNameVar(*M, Options.InstrProfileOutput); 1358 Function *RegisterF = M->getFunction(getInstrProfRegFuncsName()); 1359 if (!RegisterF) 1360 return; 1361 1362 // Create the initialization function. 1363 auto *VoidTy = Type::getVoidTy(M->getContext()); 1364 auto *F = Function::Create(FunctionType::get(VoidTy, false), 1365 GlobalValue::InternalLinkage, 1366 getInstrProfInitFuncName(), M); 1367 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1368 F->addFnAttr(Attribute::NoInline); 1369 if (Options.NoRedZone) 1370 F->addFnAttr(Attribute::NoRedZone); 1371 1372 // Add the basic block and the necessary calls. 1373 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", F)); 1374 IRB.CreateCall(RegisterF, {}); 1375 IRB.CreateRetVoid(); 1376 1377 appendToGlobalCtors(*M, F, 0); 1378 } 1379