1 //===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the transformation that promotes indirect calls to 10 // conditional direct calls when the indirect-call value profile metadata is 11 // available. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 20 #include "llvm/Analysis/IndirectCallVisitor.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Analysis/TypeMetadataUtils.h" 24 #include "llvm/IR/DiagnosticInfo.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/PassManager.h" 32 #include "llvm/IR/ProfDataUtils.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/ProfileData/InstrProf.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/Error.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Instrumentation.h" 41 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" 42 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 43 #include <cassert> 44 #include <cstdint> 45 #include <memory> 46 #include <set> 47 #include <string> 48 #include <unordered_map> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "pgo-icall-prom" 55 56 STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions."); 57 STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites."); 58 59 extern cl::opt<unsigned> MaxNumVTableAnnotations; 60 61 namespace llvm { 62 extern cl::opt<bool> EnableVTableProfileUse; 63 } 64 65 // Command line option to disable indirect-call promotion with the default as 66 // false. This is for debug purpose. 67 static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden, 68 cl::desc("Disable indirect call promotion")); 69 70 // Set the cutoff value for the promotion. If the value is other than 0, we 71 // stop the transformation once the total number of promotions equals the cutoff 72 // value. 73 // For debug use only. 74 static cl::opt<unsigned> 75 ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden, 76 cl::desc("Max number of promotions for this compilation")); 77 78 // If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped. 79 // For debug use only. 80 static cl::opt<unsigned> 81 ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden, 82 cl::desc("Skip Callsite up to this number for this compilation")); 83 84 // Set if the pass is called in LTO optimization. The difference for LTO mode 85 // is the pass won't prefix the source module name to the internal linkage 86 // symbols. 87 static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden, 88 cl::desc("Run indirect-call promotion in LTO " 89 "mode")); 90 91 // Set if the pass is called in SamplePGO mode. The difference for SamplePGO 92 // mode is it will add prof metadatato the created direct call. 93 static cl::opt<bool> 94 ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden, 95 cl::desc("Run indirect-call promotion in SamplePGO mode")); 96 97 // If the option is set to true, only call instructions will be considered for 98 // transformation -- invoke instructions will be ignored. 99 static cl::opt<bool> 100 ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden, 101 cl::desc("Run indirect-call promotion for call instructions " 102 "only")); 103 104 // If the option is set to true, only invoke instructions will be considered for 105 // transformation -- call instructions will be ignored. 106 static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false), 107 cl::Hidden, 108 cl::desc("Run indirect-call promotion for " 109 "invoke instruction only")); 110 111 // Dump the function level IR if the transformation happened in this 112 // function. For debug use only. 113 static cl::opt<bool> 114 ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden, 115 cl::desc("Dump IR after transformation happens")); 116 117 // Indirect call promotion pass will fall back to function-based comparison if 118 // vtable-count / function-count is smaller than this threshold. 119 static cl::opt<float> ICPVTablePercentageThreshold( 120 "icp-vtable-percentage-threshold", cl::init(0.99), cl::Hidden, 121 cl::desc("The percentage threshold of vtable-count / function-count for " 122 "cost-benefit analysis.")); 123 124 // Although comparing vtables can save a vtable load, we may need to compare 125 // vtable pointer with multiple vtable address points due to class inheritance. 126 // Comparing with multiple vtables inserts additional instructions on hot code 127 // path, and doing so for an earlier candidate delays the comparisons for later 128 // candidates. For the last candidate, only the fallback path is affected. 129 // We allow multiple vtable comparison for the last function candidate and use 130 // the option below to cap the number of vtables. 131 static cl::opt<int> ICPMaxNumVTableLastCandidate( 132 "icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden, 133 cl::desc("The maximum number of vtable for the last candidate.")); 134 135 namespace { 136 137 // The key is a vtable global variable, and the value is a map. 138 // In the inner map, the key represents address point offsets and the value is a 139 // constant for this address point. 140 using VTableAddressPointOffsetValMap = 141 SmallDenseMap<const GlobalVariable *, std::unordered_map<int, Constant *>>; 142 143 // A struct to collect type information for a virtual call site. 144 struct VirtualCallSiteInfo { 145 // The offset from the address point to virtual function in the vtable. 146 uint64_t FunctionOffset; 147 // The instruction that computes the address point of vtable. 148 Instruction *VPtr; 149 // The compatible type used in LLVM type intrinsics. 150 StringRef CompatibleTypeStr; 151 }; 152 153 // The key is a virtual call, and value is its type information. 154 using VirtualCallSiteTypeInfoMap = 155 SmallDenseMap<const CallBase *, VirtualCallSiteInfo>; 156 157 // The key is vtable GUID, and value is its value profile count. 158 using VTableGUIDCountsMap = SmallDenseMap<uint64_t, uint64_t, 16>; 159 160 // Return the address point offset of the given compatible type. 161 // 162 // Type metadata of a vtable specifies the types that can contain a pointer to 163 // this vtable, for example, `Base*` can be a pointer to an derived type 164 // but not vice versa. See also https://llvm.org/docs/TypeMetadata.html 165 static std::optional<uint64_t> 166 getAddressPointOffset(const GlobalVariable &VTableVar, 167 StringRef CompatibleType) { 168 SmallVector<MDNode *> Types; 169 VTableVar.getMetadata(LLVMContext::MD_type, Types); 170 171 for (MDNode *Type : Types) 172 if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get()); 173 TypeId && TypeId->getString() == CompatibleType) 174 return cast<ConstantInt>( 175 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 176 ->getZExtValue(); 177 178 return std::nullopt; 179 } 180 181 // Return a constant representing the vtable's address point specified by the 182 // offset. 183 static Constant *getVTableAddressPointOffset(GlobalVariable *VTable, 184 uint32_t AddressPointOffset) { 185 Module &M = *VTable->getParent(); 186 LLVMContext &Context = M.getContext(); 187 assert(AddressPointOffset < 188 M.getDataLayout().getTypeAllocSize(VTable->getValueType()) && 189 "Out-of-bound access"); 190 191 return ConstantExpr::getInBoundsGetElementPtr( 192 Type::getInt8Ty(Context), VTable, 193 llvm::ConstantInt::get(Type::getInt32Ty(Context), AddressPointOffset)); 194 } 195 196 // Return the basic block in which Use `U` is used via its `UserInst`. 197 static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) { 198 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 199 return PN->getIncomingBlock(U); 200 201 return UserInst->getParent(); 202 } 203 204 // `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users 205 // and all users are in `DestBB`. The caller guarantees that `Inst->getParent()` 206 // is the sole predecessor of `DestBB` and `DestBB` is dominated by 207 // `Inst->getParent()`. 208 static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) { 209 // 'BB' is used only by assert. 210 [[maybe_unused]] BasicBlock *BB = Inst->getParent(); 211 212 assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 && 213 DestBB->getUniquePredecessor() == BB && 214 "Guaranteed by ICP transformation"); 215 216 BasicBlock *UserBB = nullptr; 217 for (Use &Use : Inst->uses()) { 218 User *User = Use.getUser(); 219 // Do checked cast since IR verifier guarantees that the user of an 220 // instruction must be an instruction. See `Verifier::visitInstruction`. 221 Instruction *UserInst = cast<Instruction>(User); 222 // We can sink debug or pseudo instructions together with Inst. 223 if (UserInst->isDebugOrPseudoInst()) 224 continue; 225 UserBB = getUserBasicBlock(Use, UserInst); 226 // Do not sink if Inst is used in a basic block that is not DestBB. 227 // TODO: Sink to the common dominator of all user blocks. 228 if (UserBB != DestBB) 229 return false; 230 } 231 return UserBB != nullptr; 232 } 233 234 // For the virtual call dispatch sequence, try to sink vtable load instructions 235 // to the cold indirect call fallback. 236 // FIXME: Move the sink eligibility check below to a utility function in 237 // Transforms/Utils/ directory. 238 static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 239 if (!isDestBBSuitableForSink(I, DestBlock)) 240 return false; 241 242 // Do not move control-flow-involving, volatile loads, vaarg, alloca 243 // instructions, etc. 244 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 245 isa<AllocaInst>(I)) 246 return false; 247 248 // Do not sink convergent call instructions. 249 if (const auto *C = dyn_cast<CallBase>(I)) 250 if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent()) 251 return false; 252 253 // Do not move an instruction that may write to memory. 254 if (I->mayWriteToMemory()) 255 return false; 256 257 // We can only sink load instructions if there is nothing between the load and 258 // the end of block that could change the value. 259 if (I->mayReadFromMemory()) { 260 // We already know that SrcBlock is the unique predecessor of DestBlock. 261 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 262 E = I->getParent()->end(); 263 Scan != E; ++Scan) { 264 // Note analysis analysis can tell whether two pointers can point to the 265 // same object in memory or not thereby find further opportunities to 266 // sink. 267 if (Scan->mayWriteToMemory()) 268 return false; 269 } 270 } 271 272 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 273 I->moveBefore(*DestBlock, InsertPos); 274 275 // TODO: Sink debug intrinsic users of I to 'DestBlock'. 276 // 'InstCombinerImpl::tryToSinkInstructionDbgValues' and 277 // 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have 278 // the core logic to do this. 279 return true; 280 } 281 282 // Try to sink instructions after VPtr to the indirect call fallback. 283 // Return the number of sunk IR instructions. 284 static int tryToSinkInstructions(BasicBlock *OriginalBB, 285 BasicBlock *IndirectCallBB) { 286 int SinkCount = 0; 287 // Do not sink across a critical edge for simplicity. 288 if (IndirectCallBB->getUniquePredecessor() != OriginalBB) 289 return SinkCount; 290 // Sink all eligible instructions in OriginalBB in reverse order. 291 for (Instruction &I : 292 llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB)))) 293 if (tryToSinkInstruction(&I, IndirectCallBB)) 294 SinkCount++; 295 296 return SinkCount; 297 } 298 299 // Promote indirect calls to conditional direct calls, keeping track of 300 // thresholds. 301 class IndirectCallPromoter { 302 private: 303 Function &F; 304 Module &M; 305 306 ProfileSummaryInfo *PSI = nullptr; 307 308 // Symtab that maps indirect call profile values to function names and 309 // defines. 310 InstrProfSymtab *const Symtab; 311 312 const bool SamplePGO; 313 314 // A map from a virtual call to its type information. 315 const VirtualCallSiteTypeInfoMap &VirtualCSInfo; 316 317 VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal; 318 319 OptimizationRemarkEmitter &ORE; 320 321 // A struct that records the direct target and it's call count. 322 struct PromotionCandidate { 323 Function *const TargetFunction; 324 const uint64_t Count; 325 326 // The following fields only exists for promotion candidates with vtable 327 // information. 328 // 329 // Due to class inheritance, one virtual call candidate can come from 330 // multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and 331 // counts for 'TargetFunction'. `AddressPoints` stores the vtable address 332 // points for comparison. 333 VTableGUIDCountsMap VTableGUIDAndCounts; 334 SmallVector<Constant *> AddressPoints; 335 336 PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {} 337 }; 338 339 // Check if the indirect-call call site should be promoted. Return the number 340 // of promotions. Inst is the candidate indirect call, ValueDataRef 341 // contains the array of value profile data for profiled targets, 342 // TotalCount is the total profiled count of call executions, and 343 // NumCandidates is the number of candidate entries in ValueDataRef. 344 std::vector<PromotionCandidate> getPromotionCandidatesForCallSite( 345 const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef, 346 uint64_t TotalCount, uint32_t NumCandidates); 347 348 // Promote a list of targets for one indirect-call callsite by comparing 349 // indirect callee with functions. Return true if there are IR 350 // transformations and false otherwise. 351 bool tryToPromoteWithFuncCmp(CallBase &CB, Instruction *VPtr, 352 ArrayRef<PromotionCandidate> Candidates, 353 uint64_t TotalCount, 354 ArrayRef<InstrProfValueData> ICallProfDataRef, 355 uint32_t NumCandidates, 356 VTableGUIDCountsMap &VTableGUIDCounts); 357 358 // Promote a list of targets for one indirect call by comparing vtables with 359 // functions. Return true if there are IR transformations and false 360 // otherwise. 361 bool tryToPromoteWithVTableCmp( 362 CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates, 363 uint64_t TotalFuncCount, uint32_t NumCandidates, 364 MutableArrayRef<InstrProfValueData> ICallProfDataRef, 365 VTableGUIDCountsMap &VTableGUIDCounts); 366 367 // Return true if it's profitable to compare vtables for the callsite. 368 bool isProfitableToCompareVTables(const CallBase &CB, 369 ArrayRef<PromotionCandidate> Candidates, 370 uint64_t TotalCount); 371 372 // Given an indirect callsite and the list of function candidates, compute 373 // the following vtable information in output parameters and return vtable 374 // pointer if type profiles exist. 375 // - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof 376 // metadata attached on the vtable pointer. 377 // - For each function candidate, finds out the vtables from which it gets 378 // called and stores the <vtable-guid, count> in promotion candidate. 379 Instruction *computeVTableInfos(const CallBase *CB, 380 VTableGUIDCountsMap &VTableGUIDCounts, 381 std::vector<PromotionCandidate> &Candidates); 382 383 Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV, 384 uint64_t AddressPointOffset); 385 386 void updateFuncValueProfiles(CallBase &CB, ArrayRef<InstrProfValueData> VDs, 387 uint64_t Sum, uint32_t MaxMDCount); 388 389 void updateVPtrValueProfiles(Instruction *VPtr, 390 VTableGUIDCountsMap &VTableGUIDCounts); 391 392 public: 393 IndirectCallPromoter( 394 Function &Func, Module &M, ProfileSummaryInfo *PSI, 395 InstrProfSymtab *Symtab, bool SamplePGO, 396 const VirtualCallSiteTypeInfoMap &VirtualCSInfo, 397 VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal, 398 OptimizationRemarkEmitter &ORE) 399 : F(Func), M(M), PSI(PSI), Symtab(Symtab), SamplePGO(SamplePGO), 400 VirtualCSInfo(VirtualCSInfo), 401 VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE) {} 402 IndirectCallPromoter(const IndirectCallPromoter &) = delete; 403 IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete; 404 405 bool processFunction(ProfileSummaryInfo *PSI); 406 }; 407 408 } // end anonymous namespace 409 410 // Indirect-call promotion heuristic. The direct targets are sorted based on 411 // the count. Stop at the first target that is not promoted. 412 std::vector<IndirectCallPromoter::PromotionCandidate> 413 IndirectCallPromoter::getPromotionCandidatesForCallSite( 414 const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef, 415 uint64_t TotalCount, uint32_t NumCandidates) { 416 std::vector<PromotionCandidate> Ret; 417 418 LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB 419 << " Num_targets: " << ValueDataRef.size() 420 << " Num_candidates: " << NumCandidates << "\n"); 421 NumOfPGOICallsites++; 422 if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) { 423 LLVM_DEBUG(dbgs() << " Skip: User options.\n"); 424 return Ret; 425 } 426 427 for (uint32_t I = 0; I < NumCandidates; I++) { 428 uint64_t Count = ValueDataRef[I].Count; 429 assert(Count <= TotalCount); 430 (void)TotalCount; 431 uint64_t Target = ValueDataRef[I].Value; 432 LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count 433 << " Target_func: " << Target << "\n"); 434 435 if (ICPInvokeOnly && isa<CallInst>(CB)) { 436 LLVM_DEBUG(dbgs() << " Not promote: User options.\n"); 437 ORE.emit([&]() { 438 return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB) 439 << " Not promote: User options"; 440 }); 441 break; 442 } 443 if (ICPCallOnly && isa<InvokeInst>(CB)) { 444 LLVM_DEBUG(dbgs() << " Not promote: User option.\n"); 445 ORE.emit([&]() { 446 return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB) 447 << " Not promote: User options"; 448 }); 449 break; 450 } 451 if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { 452 LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n"); 453 ORE.emit([&]() { 454 return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB) 455 << " Not promote: Cutoff reached"; 456 }); 457 break; 458 } 459 460 // Don't promote if the symbol is not defined in the module. This avoids 461 // creating a reference to a symbol that doesn't exist in the module 462 // This can happen when we compile with a sample profile collected from 463 // one binary but used for another, which may have profiled targets that 464 // aren't used in the new binary. We might have a declaration initially in 465 // the case where the symbol is globally dead in the binary and removed by 466 // ThinLTO. 467 Function *TargetFunction = Symtab->getFunction(Target); 468 if (TargetFunction == nullptr || TargetFunction->isDeclaration()) { 469 LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n"); 470 ORE.emit([&]() { 471 return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB) 472 << "Cannot promote indirect call: target with md5sum " 473 << ore::NV("target md5sum", Target) << " not found"; 474 }); 475 break; 476 } 477 478 const char *Reason = nullptr; 479 if (!isLegalToPromote(CB, TargetFunction, &Reason)) { 480 using namespace ore; 481 482 ORE.emit([&]() { 483 return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB) 484 << "Cannot promote indirect call to " 485 << NV("TargetFunction", TargetFunction) << " with count of " 486 << NV("Count", Count) << ": " << Reason; 487 }); 488 break; 489 } 490 491 Ret.push_back(PromotionCandidate(TargetFunction, Count)); 492 TotalCount -= Count; 493 } 494 return Ret; 495 } 496 497 Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar( 498 GlobalVariable *GV, uint64_t AddressPointOffset) { 499 auto [Iter, Inserted] = 500 VTableAddressPointOffsetVal[GV].try_emplace(AddressPointOffset, nullptr); 501 if (Inserted) 502 Iter->second = getVTableAddressPointOffset(GV, AddressPointOffset); 503 return Iter->second; 504 } 505 506 Instruction *IndirectCallPromoter::computeVTableInfos( 507 const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap, 508 std::vector<PromotionCandidate> &Candidates) { 509 if (!EnableVTableProfileUse) 510 return nullptr; 511 512 // Take the following code sequence as an example, here is how the code works 513 // @vtable1 = {[n x ptr] [... ptr @func1]} 514 // @vtable2 = {[m x ptr] [... ptr @func2]} 515 // 516 // %vptr = load ptr, ptr %d, !prof !0 517 // %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1") 518 // tail call void @llvm.assume(i1 %0) 519 // %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1 520 // %1 = load ptr, ptr %vfn 521 // call void %1(ptr %d), !prof !1 522 // 523 // !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50} 524 // !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50} 525 // 526 // Step 1. Find out the %vptr instruction for indirect call and use its !prof 527 // to populate `GUIDCountsMap`. 528 // Step 2. For each vtable-guid, look up its definition from symtab. LTO can 529 // make vtable definitions visible across modules. 530 // Step 3. Compute the byte offset of the virtual call, by adding vtable 531 // address point offset and function's offset relative to vtable address 532 // point. For each function candidate, this step tells us the vtable from 533 // which it comes from, and the vtable address point to compare %vptr with. 534 535 // Only virtual calls have virtual call site info. 536 auto Iter = VirtualCSInfo.find(CB); 537 if (Iter == VirtualCSInfo.end()) 538 return nullptr; 539 540 LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #" 541 << NumOfPGOICallsites << "\n"); 542 543 const auto &VirtualCallInfo = Iter->second; 544 Instruction *VPtr = VirtualCallInfo.VPtr; 545 546 SmallDenseMap<Function *, int, 4> CalleeIndexMap; 547 for (size_t I = 0; I < Candidates.size(); I++) 548 CalleeIndexMap[Candidates[I].TargetFunction] = I; 549 550 uint64_t TotalVTableCount = 0; 551 auto VTableValueDataArray = 552 getValueProfDataFromInst(*VirtualCallInfo.VPtr, IPVK_VTableTarget, 553 MaxNumVTableAnnotations, TotalVTableCount); 554 if (VTableValueDataArray.empty()) 555 return VPtr; 556 557 // Compute the functions and counts from by each vtable. 558 for (const auto &V : VTableValueDataArray) { 559 uint64_t VTableVal = V.Value; 560 GUIDCountsMap[VTableVal] = V.Count; 561 GlobalVariable *VTableVar = Symtab->getGlobalVariable(VTableVal); 562 if (!VTableVar) { 563 LLVM_DEBUG(dbgs() << " Cannot find vtable definition for " << VTableVal 564 << "; maybe the vtable isn't imported\n"); 565 continue; 566 } 567 568 std::optional<uint64_t> MaybeAddressPointOffset = 569 getAddressPointOffset(*VTableVar, VirtualCallInfo.CompatibleTypeStr); 570 if (!MaybeAddressPointOffset) 571 continue; 572 573 const uint64_t AddressPointOffset = *MaybeAddressPointOffset; 574 575 Function *Callee = nullptr; 576 std::tie(Callee, std::ignore) = getFunctionAtVTableOffset( 577 VTableVar, AddressPointOffset + VirtualCallInfo.FunctionOffset, M); 578 if (!Callee) 579 continue; 580 auto CalleeIndexIter = CalleeIndexMap.find(Callee); 581 if (CalleeIndexIter == CalleeIndexMap.end()) 582 continue; 583 584 auto &Candidate = Candidates[CalleeIndexIter->second]; 585 // There shouldn't be duplicate GUIDs in one !prof metadata (except 586 // duplicated zeros), so assign counters directly won't cause overwrite or 587 // counter loss. 588 Candidate.VTableGUIDAndCounts[VTableVal] = V.Count; 589 Candidate.AddressPoints.push_back( 590 getOrCreateVTableAddressPointVar(VTableVar, AddressPointOffset)); 591 } 592 593 return VPtr; 594 } 595 596 // Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight. 597 // Scales uint64_t counters down to uint32_t if necessary to prevent overflow. 598 static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight, 599 uint64_t FalseWeight) { 600 MDBuilder MDB(Context); 601 uint64_t Scale = calculateCountScale(std::max(TrueWeight, FalseWeight)); 602 return MDB.createBranchWeights(scaleBranchCount(TrueWeight, Scale), 603 scaleBranchCount(FalseWeight, Scale)); 604 } 605 606 CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee, 607 uint64_t Count, uint64_t TotalCount, 608 bool AttachProfToDirectCall, 609 OptimizationRemarkEmitter *ORE) { 610 CallBase &NewInst = promoteCallWithIfThenElse( 611 CB, DirectCallee, 612 createBranchWeights(CB.getContext(), Count, TotalCount - Count)); 613 614 if (AttachProfToDirectCall) 615 setBranchWeights(NewInst, {static_cast<uint32_t>(Count)}, 616 /*IsExpected=*/false); 617 618 using namespace ore; 619 620 if (ORE) 621 ORE->emit([&]() { 622 return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB) 623 << "Promote indirect call to " << NV("DirectCallee", DirectCallee) 624 << " with count " << NV("Count", Count) << " out of " 625 << NV("TotalCount", TotalCount); 626 }); 627 return NewInst; 628 } 629 630 // Promote indirect-call to conditional direct-call for one callsite. 631 bool IndirectCallPromoter::tryToPromoteWithFuncCmp( 632 CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates, 633 uint64_t TotalCount, ArrayRef<InstrProfValueData> ICallProfDataRef, 634 uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) { 635 uint32_t NumPromoted = 0; 636 637 for (const auto &C : Candidates) { 638 uint64_t FuncCount = C.Count; 639 pgo::promoteIndirectCall(CB, C.TargetFunction, FuncCount, TotalCount, 640 SamplePGO, &ORE); 641 assert(TotalCount >= FuncCount); 642 TotalCount -= FuncCount; 643 NumOfPGOICallPromotion++; 644 NumPromoted++; 645 646 if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty()) 647 continue; 648 649 // After a virtual call candidate gets promoted, update the vtable's counts 650 // proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents 651 // a vtable from which the virtual call is loaded. Compute the sum and use 652 // 128-bit APInt to improve accuracy. 653 uint64_t SumVTableCount = 0; 654 for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) 655 SumVTableCount += VTableCount; 656 657 for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) { 658 APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/); 659 APFuncCount *= VTableCount; 660 VTableGUIDCounts[GUID] -= APFuncCount.udiv(SumVTableCount).getZExtValue(); 661 } 662 } 663 if (NumPromoted == 0) 664 return false; 665 666 assert(NumPromoted <= ICallProfDataRef.size() && 667 "Number of promoted functions should not be greater than the number " 668 "of values in profile metadata"); 669 670 // Update value profiles on the indirect call. 671 updateFuncValueProfiles(CB, ICallProfDataRef.slice(NumPromoted), TotalCount, 672 NumCandidates); 673 updateVPtrValueProfiles(VPtr, VTableGUIDCounts); 674 return true; 675 } 676 677 void IndirectCallPromoter::updateFuncValueProfiles( 678 CallBase &CB, ArrayRef<InstrProfValueData> CallVDs, uint64_t TotalCount, 679 uint32_t MaxMDCount) { 680 // First clear the existing !prof. 681 CB.setMetadata(LLVMContext::MD_prof, nullptr); 682 // Annotate the remaining value profiles if counter is not zero. 683 if (TotalCount != 0) 684 annotateValueSite(M, CB, CallVDs, TotalCount, IPVK_IndirectCallTarget, 685 MaxMDCount); 686 } 687 688 void IndirectCallPromoter::updateVPtrValueProfiles( 689 Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) { 690 if (!EnableVTableProfileUse || VPtr == nullptr || 691 !VPtr->getMetadata(LLVMContext::MD_prof)) 692 return; 693 VPtr->setMetadata(LLVMContext::MD_prof, nullptr); 694 std::vector<InstrProfValueData> VTableValueProfiles; 695 uint64_t TotalVTableCount = 0; 696 for (auto [GUID, Count] : VTableGUIDCounts) { 697 if (Count == 0) 698 continue; 699 700 VTableValueProfiles.push_back({GUID, Count}); 701 TotalVTableCount += Count; 702 } 703 llvm::sort(VTableValueProfiles, 704 [](const InstrProfValueData &LHS, const InstrProfValueData &RHS) { 705 return LHS.Count > RHS.Count; 706 }); 707 708 annotateValueSite(M, *VPtr, VTableValueProfiles, TotalVTableCount, 709 IPVK_VTableTarget, VTableValueProfiles.size()); 710 } 711 712 bool IndirectCallPromoter::tryToPromoteWithVTableCmp( 713 CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates, 714 uint64_t TotalFuncCount, uint32_t NumCandidates, 715 MutableArrayRef<InstrProfValueData> ICallProfDataRef, 716 VTableGUIDCountsMap &VTableGUIDCounts) { 717 SmallVector<uint64_t, 4> PromotedFuncCount; 718 719 for (const auto &Candidate : Candidates) { 720 for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts) 721 VTableGUIDCounts[GUID] -= Count; 722 723 // 'OriginalBB' is the basic block of indirect call. After each candidate 724 // is promoted, a new basic block is created for the indirect fallback basic 725 // block and indirect call `CB` is moved into this new BB. 726 BasicBlock *OriginalBB = CB.getParent(); 727 promoteCallWithVTableCmp( 728 CB, VPtr, Candidate.TargetFunction, Candidate.AddressPoints, 729 createBranchWeights(CB.getContext(), Candidate.Count, 730 TotalFuncCount - Candidate.Count)); 731 732 int SinkCount = tryToSinkInstructions(OriginalBB, CB.getParent()); 733 734 ORE.emit([&]() { 735 OptimizationRemark Remark(DEBUG_TYPE, "Promoted", &CB); 736 737 const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts; 738 Remark << "Promote indirect call to " 739 << ore::NV("DirectCallee", Candidate.TargetFunction) 740 << " with count " << ore::NV("Count", Candidate.Count) 741 << " out of " << ore::NV("TotalCount", TotalFuncCount) << ", sink " 742 << ore::NV("SinkCount", SinkCount) 743 << " instruction(s) and compare " 744 << ore::NV("VTable", VTableGUIDAndCounts.size()) 745 << " vtable(s): {"; 746 747 // Sort GUIDs so remark message is deterministic. 748 std::set<uint64_t> GUIDSet; 749 for (auto [GUID, Count] : VTableGUIDAndCounts) 750 GUIDSet.insert(GUID); 751 for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) { 752 if (Iter != GUIDSet.begin()) 753 Remark << ", "; 754 Remark << ore::NV("VTable", Symtab->getGlobalVariable(*Iter)); 755 } 756 757 Remark << "}"; 758 759 return Remark; 760 }); 761 762 PromotedFuncCount.push_back(Candidate.Count); 763 764 assert(TotalFuncCount >= Candidate.Count && 765 "Within one prof metadata, total count is the sum of counts from " 766 "individual <target, count> pairs"); 767 // Use std::min since 'TotalFuncCount' is the saturated sum of individual 768 // counts, see 769 // https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288 770 TotalFuncCount -= std::min(TotalFuncCount, Candidate.Count); 771 NumOfPGOICallPromotion++; 772 } 773 774 if (PromotedFuncCount.empty()) 775 return false; 776 777 // Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a 778 // a distinct 'VPtr'. 779 // FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be 780 // used to load multiple virtual functions. The vtable profiles needs to be 781 // updated properly in that case (e.g, for each indirect call annotate both 782 // type profiles and function profiles in one !prof). 783 for (size_t I = 0; I < PromotedFuncCount.size(); I++) 784 ICallProfDataRef[I].Count -= 785 std::max(PromotedFuncCount[I], ICallProfDataRef[I].Count); 786 // Sort value profiles by count in descending order. 787 llvm::stable_sort(ICallProfDataRef, [](const InstrProfValueData &LHS, 788 const InstrProfValueData &RHS) { 789 return LHS.Count > RHS.Count; 790 }); 791 // Drop the <target-value, count> pair if count is zero. 792 ArrayRef<InstrProfValueData> VDs( 793 ICallProfDataRef.begin(), 794 llvm::upper_bound(ICallProfDataRef, 0U, 795 [](uint64_t Count, const InstrProfValueData &ProfData) { 796 return ProfData.Count <= Count; 797 })); 798 updateFuncValueProfiles(CB, VDs, TotalFuncCount, NumCandidates); 799 updateVPtrValueProfiles(VPtr, VTableGUIDCounts); 800 return true; 801 } 802 803 // Traverse all the indirect-call callsite and get the value profile 804 // annotation to perform indirect-call promotion. 805 bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) { 806 bool Changed = false; 807 ICallPromotionAnalysis ICallAnalysis; 808 for (auto *CB : findIndirectCalls(F)) { 809 uint32_t NumCandidates; 810 uint64_t TotalCount; 811 auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction( 812 CB, TotalCount, NumCandidates); 813 if (!NumCandidates || 814 (PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount))) 815 continue; 816 817 auto PromotionCandidates = getPromotionCandidatesForCallSite( 818 *CB, ICallProfDataRef, TotalCount, NumCandidates); 819 820 VTableGUIDCountsMap VTableGUIDCounts; 821 Instruction *VPtr = 822 computeVTableInfos(CB, VTableGUIDCounts, PromotionCandidates); 823 824 if (isProfitableToCompareVTables(*CB, PromotionCandidates, TotalCount)) 825 Changed |= tryToPromoteWithVTableCmp(*CB, VPtr, PromotionCandidates, 826 TotalCount, NumCandidates, 827 ICallProfDataRef, VTableGUIDCounts); 828 else 829 Changed |= tryToPromoteWithFuncCmp(*CB, VPtr, PromotionCandidates, 830 TotalCount, ICallProfDataRef, 831 NumCandidates, VTableGUIDCounts); 832 } 833 return Changed; 834 } 835 836 // TODO: Return false if the function addressing and vtable load instructions 837 // cannot sink to indirect fallback. 838 bool IndirectCallPromoter::isProfitableToCompareVTables( 839 const CallBase &CB, ArrayRef<PromotionCandidate> Candidates, 840 uint64_t TotalCount) { 841 if (!EnableVTableProfileUse || Candidates.empty()) 842 return false; 843 LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #" 844 << NumOfPGOICallsites << CB << "\n"); 845 uint64_t RemainingVTableCount = TotalCount; 846 const size_t CandidateSize = Candidates.size(); 847 for (size_t I = 0; I < CandidateSize; I++) { 848 auto &Candidate = Candidates[I]; 849 auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts; 850 851 LLVM_DEBUG(dbgs() << " Candidate " << I << " FunctionCount: " 852 << Candidate.Count << ", VTableCounts:"); 853 // Add [[maybe_unused]] since <GUID, Count> are only used by LLVM_DEBUG. 854 for ([[maybe_unused]] auto &[GUID, Count] : VTableGUIDAndCounts) 855 LLVM_DEBUG(dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName() 856 << ", " << Count << "}"); 857 LLVM_DEBUG(dbgs() << "\n"); 858 859 uint64_t CandidateVTableCount = 0; 860 for (auto &[GUID, Count] : VTableGUIDAndCounts) 861 CandidateVTableCount += Count; 862 863 if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) { 864 LLVM_DEBUG( 865 dbgs() << " function count " << Candidate.Count 866 << " and its vtable sum count " << CandidateVTableCount 867 << " have discrepancies. Bail out vtable comparison.\n"); 868 return false; 869 } 870 871 RemainingVTableCount -= Candidate.Count; 872 873 // 'MaxNumVTable' limits the number of vtables to make vtable comparison 874 // profitable. Comparing multiple vtables for one function candidate will 875 // insert additional instructions on the hot path, and allowing more than 876 // one vtable for non last candidates may or may not elongate the dependency 877 // chain for the subsequent candidates. Set its value to 1 for non-last 878 // candidate and allow option to override it for the last candidate. 879 int MaxNumVTable = 1; 880 if (I == CandidateSize - 1) 881 MaxNumVTable = ICPMaxNumVTableLastCandidate; 882 883 if ((int)Candidate.AddressPoints.size() > MaxNumVTable) { 884 LLVM_DEBUG(dbgs() << " allow at most " << MaxNumVTable << " and got " 885 << Candidate.AddressPoints.size() 886 << " vtables. Bail out for vtable comparison.\n"); 887 return false; 888 } 889 } 890 891 // If the indirect fallback is not cold, don't compare vtables. 892 if (PSI && PSI->hasProfileSummary() && 893 !PSI->isColdCount(RemainingVTableCount)) { 894 LLVM_DEBUG(dbgs() << " Indirect fallback basic block is not cold. Bail " 895 "out for vtable comparison.\n"); 896 return false; 897 } 898 899 return true; 900 } 901 902 // For virtual calls in the module, collect per-callsite information which will 903 // be used to associate an ICP candidate with a vtable and a specific function 904 // in the vtable. With type intrinsics (llvm.type.test), we can find virtual 905 // calls in a compile-time efficient manner (by iterating its users) and more 906 // importantly use the compatible type later to figure out the function byte 907 // offset relative to the start of vtables. 908 static void 909 computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM, 910 VirtualCallSiteTypeInfoMap &VirtualCSInfo) { 911 // Right now only llvm.type.test is used to find out virtual call sites. 912 // With ThinLTO and whole-program-devirtualization, llvm.type.test and 913 // llvm.public.type.test are emitted, and llvm.public.type.test is either 914 // refined to llvm.type.test or dropped before indirect-call-promotion pass. 915 // 916 // FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted. 917 // Find out virtual calls by looking at users of llvm.type.checked.load in 918 // that case. 919 Function *TypeTestFunc = 920 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 921 if (!TypeTestFunc || TypeTestFunc->use_empty()) 922 return; 923 924 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 925 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 926 return FAM.getResult<DominatorTreeAnalysis>(F); 927 }; 928 // Iterate all type.test calls to find all indirect calls. 929 for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) { 930 auto *CI = dyn_cast<CallInst>(U.getUser()); 931 if (!CI) 932 continue; 933 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); 934 if (!TypeMDVal) 935 continue; 936 auto *CompatibleTypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 937 if (!CompatibleTypeId) 938 continue; 939 940 // Find out all devirtualizable call sites given a llvm.type.test 941 // intrinsic call. 942 SmallVector<DevirtCallSite, 1> DevirtCalls; 943 SmallVector<CallInst *, 1> Assumes; 944 auto &DT = LookupDomTree(*CI->getFunction()); 945 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 946 947 for (auto &DevirtCall : DevirtCalls) { 948 CallBase &CB = DevirtCall.CB; 949 // Given an indirect call, try find the instruction which loads a 950 // pointer to virtual table. 951 Instruction *VTablePtr = 952 PGOIndirectCallVisitor::tryGetVTableInstruction(&CB); 953 if (!VTablePtr) 954 continue; 955 VirtualCSInfo[&CB] = {DevirtCall.Offset, VTablePtr, 956 CompatibleTypeId->getString()}; 957 } 958 } 959 } 960 961 // A wrapper function that does the actual work. 962 static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO, 963 bool SamplePGO, ModuleAnalysisManager &MAM) { 964 if (DisableICP) 965 return false; 966 InstrProfSymtab Symtab; 967 if (Error E = Symtab.create(M, InLTO)) { 968 std::string SymtabFailure = toString(std::move(E)); 969 M.getContext().emitError("Failed to create symtab: " + SymtabFailure); 970 return false; 971 } 972 bool Changed = false; 973 VirtualCallSiteTypeInfoMap VirtualCSInfo; 974 975 if (EnableVTableProfileUse) 976 computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo); 977 978 // VTableAddressPointOffsetVal stores the vtable address points. The vtable 979 // address point of a given <vtable, address point offset> is static (doesn't 980 // change after being computed once). 981 // IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map 982 // entry the first time a <vtable, offset> pair is seen, as 983 // promoteIndirectCalls processes an IR module and calls IndirectCallPromoter 984 // repeatedly on each function. 985 VTableAddressPointOffsetValMap VTableAddressPointOffsetVal; 986 987 for (auto &F : M) { 988 if (F.isDeclaration() || F.hasOptNone()) 989 continue; 990 991 auto &FAM = 992 MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 993 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 994 995 IndirectCallPromoter CallPromoter(F, M, PSI, &Symtab, SamplePGO, 996 VirtualCSInfo, 997 VTableAddressPointOffsetVal, ORE); 998 bool FuncChanged = CallPromoter.processFunction(PSI); 999 if (ICPDUMPAFTER && FuncChanged) { 1000 LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs())); 1001 LLVM_DEBUG(dbgs() << "\n"); 1002 } 1003 Changed |= FuncChanged; 1004 if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { 1005 LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n"); 1006 break; 1007 } 1008 } 1009 return Changed; 1010 } 1011 1012 PreservedAnalyses PGOIndirectCallPromotion::run(Module &M, 1013 ModuleAnalysisManager &MAM) { 1014 ProfileSummaryInfo *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M); 1015 1016 if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode, 1017 SamplePGO | ICPSamplePGOMode, MAM)) 1018 return PreservedAnalyses::all(); 1019 1020 return PreservedAnalyses::none(); 1021 } 1022