xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own.  Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation.  Each
20 /// byte of application memory is backed by two bytes of shadow memory which
21 /// hold the label.  On Linux/x86_64, memory is laid out as follows:
22 ///
23 /// +--------------------+ 0x800000000000 (top of memory)
24 /// | application memory |
25 /// +--------------------+ 0x700000008000 (kAppAddr)
26 /// |                    |
27 /// |       unused       |
28 /// |                    |
29 /// +--------------------+ 0x200200000000 (kUnusedAddr)
30 /// |    union table     |
31 /// +--------------------+ 0x200000000000 (kUnionTableAddr)
32 /// |   shadow memory    |
33 /// +--------------------+ 0x000000010000 (kShadowAddr)
34 /// | reserved by kernel |
35 /// +--------------------+ 0x000000000000
36 ///
37 /// To derive a shadow memory address from an application memory address,
38 /// bits 44-46 are cleared to bring the address into the range
39 /// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
40 /// account for the double byte representation of shadow labels and move the
41 /// address into the shadow memory range.  See the function
42 /// DataFlowSanitizer::getShadowAddress below.
43 ///
44 /// For more information, please refer to the design document:
45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
46 //
47 //===----------------------------------------------------------------------===//
48 
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/DenseSet.h"
51 #include "llvm/ADT/DepthFirstIterator.h"
52 #include "llvm/ADT/None.h"
53 #include "llvm/ADT/SmallPtrSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/ADT/Triple.h"
58 #include "llvm/Analysis/ValueTracking.h"
59 #include "llvm/IR/Argument.h"
60 #include "llvm/IR/Attributes.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DerivedTypes.h"
66 #include "llvm/IR/Dominators.h"
67 #include "llvm/IR/Function.h"
68 #include "llvm/IR/GlobalAlias.h"
69 #include "llvm/IR/GlobalValue.h"
70 #include "llvm/IR/GlobalVariable.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstVisitor.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/LLVMContext.h"
79 #include "llvm/IR/MDBuilder.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/User.h"
83 #include "llvm/IR/Value.h"
84 #include "llvm/InitializePasses.h"
85 #include "llvm/Pass.h"
86 #include "llvm/Support/Casting.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/ErrorHandling.h"
89 #include "llvm/Support/SpecialCaseList.h"
90 #include "llvm/Support/VirtualFileSystem.h"
91 #include "llvm/Transforms/Instrumentation.h"
92 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstddef>
97 #include <cstdint>
98 #include <iterator>
99 #include <memory>
100 #include <set>
101 #include <string>
102 #include <utility>
103 #include <vector>
104 
105 using namespace llvm;
106 
107 // External symbol to be used when generating the shadow address for
108 // architectures with multiple VMAs. Instead of using a constant integer
109 // the runtime will set the external mask based on the VMA range.
110 static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask";
111 
112 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
113 // alignment requirements provided by the input IR are correct.  For example,
114 // if the input IR contains a load with alignment 8, this flag will cause
115 // the shadow load to have alignment 16.  This flag is disabled by default as
116 // we have unfortunately encountered too much code (including Clang itself;
117 // see PR14291) which performs misaligned access.
118 static cl::opt<bool> ClPreserveAlignment(
119     "dfsan-preserve-alignment",
120     cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
121     cl::init(false));
122 
123 // The ABI list files control how shadow parameters are passed. The pass treats
124 // every function labelled "uninstrumented" in the ABI list file as conforming
125 // to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains
126 // additional annotations for those functions, a call to one of those functions
127 // will produce a warning message, as the labelling behaviour of the function is
128 // unknown.  The other supported annotations are "functional" and "discard",
129 // which are described below under DataFlowSanitizer::WrapperKind.
130 static cl::list<std::string> ClABIListFiles(
131     "dfsan-abilist",
132     cl::desc("File listing native ABI functions and how the pass treats them"),
133     cl::Hidden);
134 
135 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
136 // functions (see DataFlowSanitizer::InstrumentedABI below).
137 static cl::opt<bool> ClArgsABI(
138     "dfsan-args-abi",
139     cl::desc("Use the argument ABI rather than the TLS ABI"),
140     cl::Hidden);
141 
142 // Controls whether the pass includes or ignores the labels of pointers in load
143 // instructions.
144 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
145     "dfsan-combine-pointer-labels-on-load",
146     cl::desc("Combine the label of the pointer with the label of the data when "
147              "loading from memory."),
148     cl::Hidden, cl::init(true));
149 
150 // Controls whether the pass includes or ignores the labels of pointers in
151 // stores instructions.
152 static cl::opt<bool> ClCombinePointerLabelsOnStore(
153     "dfsan-combine-pointer-labels-on-store",
154     cl::desc("Combine the label of the pointer with the label of the data when "
155              "storing in memory."),
156     cl::Hidden, cl::init(false));
157 
158 static cl::opt<bool> ClDebugNonzeroLabels(
159     "dfsan-debug-nonzero-labels",
160     cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
161              "load or return with a nonzero label"),
162     cl::Hidden);
163 
164 // Experimental feature that inserts callbacks for certain data events.
165 // Currently callbacks are only inserted for loads, stores, memory transfers
166 // (i.e. memcpy and memmove), and comparisons.
167 //
168 // If this flag is set to true, the user must provide definitions for the
169 // following callback functions:
170 //   void __dfsan_load_callback(dfsan_label Label);
171 //   void __dfsan_store_callback(dfsan_label Label);
172 //   void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
173 //   void __dfsan_cmp_callback(dfsan_label CombinedLabel);
174 static cl::opt<bool> ClEventCallbacks(
175     "dfsan-event-callbacks",
176     cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
177     cl::Hidden, cl::init(false));
178 
179 static StringRef GetGlobalTypeString(const GlobalValue &G) {
180   // Types of GlobalVariables are always pointer types.
181   Type *GType = G.getValueType();
182   // For now we support excluding struct types only.
183   if (StructType *SGType = dyn_cast<StructType>(GType)) {
184     if (!SGType->isLiteral())
185       return SGType->getName();
186   }
187   return "<unknown type>";
188 }
189 
190 namespace {
191 
192 class DFSanABIList {
193   std::unique_ptr<SpecialCaseList> SCL;
194 
195  public:
196   DFSanABIList() = default;
197 
198   void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
199 
200   /// Returns whether either this function or its source file are listed in the
201   /// given category.
202   bool isIn(const Function &F, StringRef Category) const {
203     return isIn(*F.getParent(), Category) ||
204            SCL->inSection("dataflow", "fun", F.getName(), Category);
205   }
206 
207   /// Returns whether this global alias is listed in the given category.
208   ///
209   /// If GA aliases a function, the alias's name is matched as a function name
210   /// would be.  Similarly, aliases of globals are matched like globals.
211   bool isIn(const GlobalAlias &GA, StringRef Category) const {
212     if (isIn(*GA.getParent(), Category))
213       return true;
214 
215     if (isa<FunctionType>(GA.getValueType()))
216       return SCL->inSection("dataflow", "fun", GA.getName(), Category);
217 
218     return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
219            SCL->inSection("dataflow", "type", GetGlobalTypeString(GA),
220                           Category);
221   }
222 
223   /// Returns whether this module is listed in the given category.
224   bool isIn(const Module &M, StringRef Category) const {
225     return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
226   }
227 };
228 
229 /// TransformedFunction is used to express the result of transforming one
230 /// function type into another.  This struct is immutable.  It holds metadata
231 /// useful for updating calls of the old function to the new type.
232 struct TransformedFunction {
233   TransformedFunction(FunctionType* OriginalType,
234                       FunctionType* TransformedType,
235                       std::vector<unsigned> ArgumentIndexMapping)
236       : OriginalType(OriginalType),
237         TransformedType(TransformedType),
238         ArgumentIndexMapping(ArgumentIndexMapping) {}
239 
240   // Disallow copies.
241   TransformedFunction(const TransformedFunction&) = delete;
242   TransformedFunction& operator=(const TransformedFunction&) = delete;
243 
244   // Allow moves.
245   TransformedFunction(TransformedFunction&&) = default;
246   TransformedFunction& operator=(TransformedFunction&&) = default;
247 
248   /// Type of the function before the transformation.
249   FunctionType *OriginalType;
250 
251   /// Type of the function after the transformation.
252   FunctionType *TransformedType;
253 
254   /// Transforming a function may change the position of arguments.  This
255   /// member records the mapping from each argument's old position to its new
256   /// position.  Argument positions are zero-indexed.  If the transformation
257   /// from F to F' made the first argument of F into the third argument of F',
258   /// then ArgumentIndexMapping[0] will equal 2.
259   std::vector<unsigned> ArgumentIndexMapping;
260 };
261 
262 /// Given function attributes from a call site for the original function,
263 /// return function attributes appropriate for a call to the transformed
264 /// function.
265 AttributeList TransformFunctionAttributes(
266     const TransformedFunction& TransformedFunction,
267     LLVMContext& Ctx, AttributeList CallSiteAttrs) {
268 
269   // Construct a vector of AttributeSet for each function argument.
270   std::vector<llvm::AttributeSet> ArgumentAttributes(
271       TransformedFunction.TransformedType->getNumParams());
272 
273   // Copy attributes from the parameter of the original function to the
274   // transformed version.  'ArgumentIndexMapping' holds the mapping from
275   // old argument position to new.
276   for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size();
277        i < ie; ++i) {
278     unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i];
279     ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i);
280   }
281 
282   // Copy annotations on varargs arguments.
283   for (unsigned i = TransformedFunction.OriginalType->getNumParams(),
284        ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) {
285     ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i));
286   }
287 
288   return AttributeList::get(
289       Ctx,
290       CallSiteAttrs.getFnAttributes(),
291       CallSiteAttrs.getRetAttributes(),
292       llvm::makeArrayRef(ArgumentAttributes));
293 }
294 
295 class DataFlowSanitizer : public ModulePass {
296   friend struct DFSanFunction;
297   friend class DFSanVisitor;
298 
299   enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 };
300 
301   /// Which ABI should be used for instrumented functions?
302   enum InstrumentedABI {
303     /// Argument and return value labels are passed through additional
304     /// arguments and by modifying the return type.
305     IA_Args,
306 
307     /// Argument and return value labels are passed through TLS variables
308     /// __dfsan_arg_tls and __dfsan_retval_tls.
309     IA_TLS
310   };
311 
312   /// How should calls to uninstrumented functions be handled?
313   enum WrapperKind {
314     /// This function is present in an uninstrumented form but we don't know
315     /// how it should be handled.  Print a warning and call the function anyway.
316     /// Don't label the return value.
317     WK_Warning,
318 
319     /// This function does not write to (user-accessible) memory, and its return
320     /// value is unlabelled.
321     WK_Discard,
322 
323     /// This function does not write to (user-accessible) memory, and the label
324     /// of its return value is the union of the label of its arguments.
325     WK_Functional,
326 
327     /// Instead of calling the function, a custom wrapper __dfsw_F is called,
328     /// where F is the name of the function.  This function may wrap the
329     /// original function or provide its own implementation.  This is similar to
330     /// the IA_Args ABI, except that IA_Args uses a struct return type to
331     /// pass the return value shadow in a register, while WK_Custom uses an
332     /// extra pointer argument to return the shadow.  This allows the wrapped
333     /// form of the function type to be expressed in C.
334     WK_Custom
335   };
336 
337   Module *Mod;
338   LLVMContext *Ctx;
339   IntegerType *ShadowTy;
340   PointerType *ShadowPtrTy;
341   IntegerType *IntptrTy;
342   ConstantInt *ZeroShadow;
343   ConstantInt *ShadowPtrMask;
344   ConstantInt *ShadowPtrMul;
345   Constant *ArgTLS;
346   Constant *RetvalTLS;
347   void *(*GetArgTLSPtr)();
348   void *(*GetRetvalTLSPtr)();
349   FunctionType *GetArgTLSTy;
350   FunctionType *GetRetvalTLSTy;
351   Constant *GetArgTLS;
352   Constant *GetRetvalTLS;
353   Constant *ExternalShadowMask;
354   FunctionType *DFSanUnionFnTy;
355   FunctionType *DFSanUnionLoadFnTy;
356   FunctionType *DFSanUnimplementedFnTy;
357   FunctionType *DFSanSetLabelFnTy;
358   FunctionType *DFSanNonzeroLabelFnTy;
359   FunctionType *DFSanVarargWrapperFnTy;
360   FunctionType *DFSanLoadStoreCmpCallbackFnTy;
361   FunctionType *DFSanMemTransferCallbackFnTy;
362   FunctionCallee DFSanUnionFn;
363   FunctionCallee DFSanCheckedUnionFn;
364   FunctionCallee DFSanUnionLoadFn;
365   FunctionCallee DFSanUnimplementedFn;
366   FunctionCallee DFSanSetLabelFn;
367   FunctionCallee DFSanNonzeroLabelFn;
368   FunctionCallee DFSanVarargWrapperFn;
369   FunctionCallee DFSanLoadCallbackFn;
370   FunctionCallee DFSanStoreCallbackFn;
371   FunctionCallee DFSanMemTransferCallbackFn;
372   FunctionCallee DFSanCmpCallbackFn;
373   MDNode *ColdCallWeights;
374   DFSanABIList ABIList;
375   DenseMap<Value *, Function *> UnwrappedFnMap;
376   AttrBuilder ReadOnlyNoneAttrs;
377   bool DFSanRuntimeShadowMask = false;
378 
379   Value *getShadowAddress(Value *Addr, Instruction *Pos);
380   bool isInstrumented(const Function *F);
381   bool isInstrumented(const GlobalAlias *GA);
382   FunctionType *getArgsFunctionType(FunctionType *T);
383   FunctionType *getTrampolineFunctionType(FunctionType *T);
384   TransformedFunction getCustomFunctionType(FunctionType *T);
385   InstrumentedABI getInstrumentedABI();
386   WrapperKind getWrapperKind(Function *F);
387   void addGlobalNamePrefix(GlobalValue *GV);
388   Function *buildWrapperFunction(Function *F, StringRef NewFName,
389                                  GlobalValue::LinkageTypes NewFLink,
390                                  FunctionType *NewFT);
391   Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
392   void initializeCallbackFunctions(Module &M);
393   void initializeRuntimeFunctions(Module &M);
394 
395 public:
396   static char ID;
397 
398   DataFlowSanitizer(
399       const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
400       void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
401 
402   bool doInitialization(Module &M) override;
403   bool runOnModule(Module &M) override;
404 };
405 
406 struct DFSanFunction {
407   DataFlowSanitizer &DFS;
408   Function *F;
409   DominatorTree DT;
410   DataFlowSanitizer::InstrumentedABI IA;
411   bool IsNativeABI;
412   Value *ArgTLSPtr = nullptr;
413   Value *RetvalTLSPtr = nullptr;
414   AllocaInst *LabelReturnAlloca = nullptr;
415   DenseMap<Value *, Value *> ValShadowMap;
416   DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
417   std::vector<std::pair<PHINode *, PHINode *>> PHIFixups;
418   DenseSet<Instruction *> SkipInsts;
419   std::vector<Value *> NonZeroChecks;
420   bool AvoidNewBlocks;
421 
422   struct CachedCombinedShadow {
423     BasicBlock *Block;
424     Value *Shadow;
425   };
426   DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
427       CachedCombinedShadows;
428   DenseMap<Value *, std::set<Value *>> ShadowElements;
429 
430   DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
431       : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
432     DT.recalculate(*F);
433     // FIXME: Need to track down the register allocator issue which causes poor
434     // performance in pathological cases with large numbers of basic blocks.
435     AvoidNewBlocks = F->size() > 1000;
436   }
437 
438   Value *getArgTLSPtr();
439   Value *getArgTLS(unsigned Index, Instruction *Pos);
440   Value *getRetvalTLS();
441   Value *getShadow(Value *V);
442   void setShadow(Instruction *I, Value *Shadow);
443   Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
444   Value *combineOperandShadows(Instruction *Inst);
445   Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
446                     Instruction *Pos);
447   void storeShadow(Value *Addr, uint64_t Size, Align Alignment, Value *Shadow,
448                    Instruction *Pos);
449 };
450 
451 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
452 public:
453   DFSanFunction &DFSF;
454 
455   DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
456 
457   const DataLayout &getDataLayout() const {
458     return DFSF.F->getParent()->getDataLayout();
459   }
460 
461   // Combines shadow values for all of I's operands. Returns the combined shadow
462   // value.
463   Value *visitOperandShadowInst(Instruction &I);
464 
465   void visitUnaryOperator(UnaryOperator &UO);
466   void visitBinaryOperator(BinaryOperator &BO);
467   void visitCastInst(CastInst &CI);
468   void visitCmpInst(CmpInst &CI);
469   void visitGetElementPtrInst(GetElementPtrInst &GEPI);
470   void visitLoadInst(LoadInst &LI);
471   void visitStoreInst(StoreInst &SI);
472   void visitReturnInst(ReturnInst &RI);
473   void visitCallBase(CallBase &CB);
474   void visitPHINode(PHINode &PN);
475   void visitExtractElementInst(ExtractElementInst &I);
476   void visitInsertElementInst(InsertElementInst &I);
477   void visitShuffleVectorInst(ShuffleVectorInst &I);
478   void visitExtractValueInst(ExtractValueInst &I);
479   void visitInsertValueInst(InsertValueInst &I);
480   void visitAllocaInst(AllocaInst &I);
481   void visitSelectInst(SelectInst &I);
482   void visitMemSetInst(MemSetInst &I);
483   void visitMemTransferInst(MemTransferInst &I);
484 };
485 
486 } // end anonymous namespace
487 
488 char DataFlowSanitizer::ID;
489 
490 INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
491                 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
492 
493 ModulePass *
494 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles,
495                                   void *(*getArgTLS)(),
496                                   void *(*getRetValTLS)()) {
497   return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS);
498 }
499 
500 DataFlowSanitizer::DataFlowSanitizer(
501     const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(),
502     void *(*getRetValTLS)())
503     : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) {
504   std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
505   AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
506                          ClABIListFiles.end());
507   // FIXME: should we propagate vfs::FileSystem to this constructor?
508   ABIList.set(
509       SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
510 }
511 
512 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
513   SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
514   ArgTypes.append(T->getNumParams(), ShadowTy);
515   if (T->isVarArg())
516     ArgTypes.push_back(ShadowPtrTy);
517   Type *RetType = T->getReturnType();
518   if (!RetType->isVoidTy())
519     RetType = StructType::get(RetType, ShadowTy);
520   return FunctionType::get(RetType, ArgTypes, T->isVarArg());
521 }
522 
523 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
524   assert(!T->isVarArg());
525   SmallVector<Type *, 4> ArgTypes;
526   ArgTypes.push_back(T->getPointerTo());
527   ArgTypes.append(T->param_begin(), T->param_end());
528   ArgTypes.append(T->getNumParams(), ShadowTy);
529   Type *RetType = T->getReturnType();
530   if (!RetType->isVoidTy())
531     ArgTypes.push_back(ShadowPtrTy);
532   return FunctionType::get(T->getReturnType(), ArgTypes, false);
533 }
534 
535 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
536   SmallVector<Type *, 4> ArgTypes;
537 
538   // Some parameters of the custom function being constructed are
539   // parameters of T.  Record the mapping from parameters of T to
540   // parameters of the custom function, so that parameter attributes
541   // at call sites can be updated.
542   std::vector<unsigned> ArgumentIndexMapping;
543   for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) {
544     Type* param_type = T->getParamType(i);
545     FunctionType *FT;
546     if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>(
547             cast<PointerType>(param_type)->getElementType()))) {
548       ArgumentIndexMapping.push_back(ArgTypes.size());
549       ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
550       ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
551     } else {
552       ArgumentIndexMapping.push_back(ArgTypes.size());
553       ArgTypes.push_back(param_type);
554     }
555   }
556   for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
557     ArgTypes.push_back(ShadowTy);
558   if (T->isVarArg())
559     ArgTypes.push_back(ShadowPtrTy);
560   Type *RetType = T->getReturnType();
561   if (!RetType->isVoidTy())
562     ArgTypes.push_back(ShadowPtrTy);
563   return TransformedFunction(
564       T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
565       ArgumentIndexMapping);
566 }
567 
568 bool DataFlowSanitizer::doInitialization(Module &M) {
569   Triple TargetTriple(M.getTargetTriple());
570   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
571   bool IsMIPS64 = TargetTriple.isMIPS64();
572   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
573                    TargetTriple.getArch() == Triple::aarch64_be;
574 
575   const DataLayout &DL = M.getDataLayout();
576 
577   Mod = &M;
578   Ctx = &M.getContext();
579   ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
580   ShadowPtrTy = PointerType::getUnqual(ShadowTy);
581   IntptrTy = DL.getIntPtrType(*Ctx);
582   ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
583   ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes);
584   if (IsX86_64)
585     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
586   else if (IsMIPS64)
587     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
588   // AArch64 supports multiple VMAs and the shadow mask is set at runtime.
589   else if (IsAArch64)
590     DFSanRuntimeShadowMask = true;
591   else
592     report_fatal_error("unsupported triple");
593 
594   Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
595   DFSanUnionFnTy =
596       FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
597   Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
598   DFSanUnionLoadFnTy =
599       FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
600   DFSanUnimplementedFnTy = FunctionType::get(
601       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
602   Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
603   DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
604                                         DFSanSetLabelArgs, /*isVarArg=*/false);
605   DFSanNonzeroLabelFnTy = FunctionType::get(
606       Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
607   DFSanVarargWrapperFnTy = FunctionType::get(
608       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
609   DFSanLoadStoreCmpCallbackFnTy =
610       FunctionType::get(Type::getVoidTy(*Ctx), ShadowTy, /*isVarArg=*/false);
611   Type *DFSanMemTransferCallbackArgs[2] = {ShadowPtrTy, IntptrTy};
612   DFSanMemTransferCallbackFnTy =
613       FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
614                         /*isVarArg=*/false);
615 
616   if (GetArgTLSPtr) {
617     Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
618     ArgTLS = nullptr;
619     GetArgTLSTy = FunctionType::get(PointerType::getUnqual(ArgTLSTy), false);
620     GetArgTLS = ConstantExpr::getIntToPtr(
621         ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
622         PointerType::getUnqual(GetArgTLSTy));
623   }
624   if (GetRetvalTLSPtr) {
625     RetvalTLS = nullptr;
626     GetRetvalTLSTy = FunctionType::get(PointerType::getUnqual(ShadowTy), false);
627     GetRetvalTLS = ConstantExpr::getIntToPtr(
628         ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
629         PointerType::getUnqual(GetRetvalTLSTy));
630   }
631 
632   ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
633   return true;
634 }
635 
636 bool DataFlowSanitizer::isInstrumented(const Function *F) {
637   return !ABIList.isIn(*F, "uninstrumented");
638 }
639 
640 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
641   return !ABIList.isIn(*GA, "uninstrumented");
642 }
643 
644 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
645   return ClArgsABI ? IA_Args : IA_TLS;
646 }
647 
648 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
649   if (ABIList.isIn(*F, "functional"))
650     return WK_Functional;
651   if (ABIList.isIn(*F, "discard"))
652     return WK_Discard;
653   if (ABIList.isIn(*F, "custom"))
654     return WK_Custom;
655 
656   return WK_Warning;
657 }
658 
659 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
660   std::string GVName = std::string(GV->getName()), Prefix = "dfs$";
661   GV->setName(Prefix + GVName);
662 
663   // Try to change the name of the function in module inline asm.  We only do
664   // this for specific asm directives, currently only ".symver", to try to avoid
665   // corrupting asm which happens to contain the symbol name as a substring.
666   // Note that the substitution for .symver assumes that the versioned symbol
667   // also has an instrumented name.
668   std::string Asm = GV->getParent()->getModuleInlineAsm();
669   std::string SearchStr = ".symver " + GVName + ",";
670   size_t Pos = Asm.find(SearchStr);
671   if (Pos != std::string::npos) {
672     Asm.replace(Pos, SearchStr.size(),
673                 ".symver " + Prefix + GVName + "," + Prefix);
674     GV->getParent()->setModuleInlineAsm(Asm);
675   }
676 }
677 
678 Function *
679 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
680                                         GlobalValue::LinkageTypes NewFLink,
681                                         FunctionType *NewFT) {
682   FunctionType *FT = F->getFunctionType();
683   Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
684                                     NewFName, F->getParent());
685   NewF->copyAttributesFrom(F);
686   NewF->removeAttributes(
687       AttributeList::ReturnIndex,
688       AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
689 
690   BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
691   if (F->isVarArg()) {
692     NewF->removeAttributes(AttributeList::FunctionIndex,
693                            AttrBuilder().addAttribute("split-stack"));
694     CallInst::Create(DFSanVarargWrapperFn,
695                      IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
696                      BB);
697     new UnreachableInst(*Ctx, BB);
698   } else {
699     std::vector<Value *> Args;
700     unsigned n = FT->getNumParams();
701     for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
702       Args.push_back(&*ai);
703     CallInst *CI = CallInst::Create(F, Args, "", BB);
704     if (FT->getReturnType()->isVoidTy())
705       ReturnInst::Create(*Ctx, BB);
706     else
707       ReturnInst::Create(*Ctx, CI, BB);
708   }
709 
710   return NewF;
711 }
712 
713 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
714                                                           StringRef FName) {
715   FunctionType *FTT = getTrampolineFunctionType(FT);
716   FunctionCallee C = Mod->getOrInsertFunction(FName, FTT);
717   Function *F = dyn_cast<Function>(C.getCallee());
718   if (F && F->isDeclaration()) {
719     F->setLinkage(GlobalValue::LinkOnceODRLinkage);
720     BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
721     std::vector<Value *> Args;
722     Function::arg_iterator AI = F->arg_begin(); ++AI;
723     for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
724       Args.push_back(&*AI);
725     CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB);
726     ReturnInst *RI;
727     if (FT->getReturnType()->isVoidTy())
728       RI = ReturnInst::Create(*Ctx, BB);
729     else
730       RI = ReturnInst::Create(*Ctx, CI, BB);
731 
732     DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
733     Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
734     for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
735       DFSF.ValShadowMap[&*ValAI] = &*ShadowAI;
736     DFSanVisitor(DFSF).visitCallInst(*CI);
737     if (!FT->getReturnType()->isVoidTy())
738       new StoreInst(DFSF.getShadow(RI->getReturnValue()),
739                     &*std::prev(F->arg_end()), RI);
740   }
741 
742   return cast<Constant>(C.getCallee());
743 }
744 
745 // Initialize DataFlowSanitizer runtime functions and declare them in the module
746 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
747   {
748     AttributeList AL;
749     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
750                          Attribute::NoUnwind);
751     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
752                          Attribute::ReadNone);
753     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
754                          Attribute::ZExt);
755     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
756     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
757     DFSanUnionFn =
758         Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL);
759   }
760   {
761     AttributeList AL;
762     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
763                          Attribute::NoUnwind);
764     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
765                          Attribute::ReadNone);
766     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
767                          Attribute::ZExt);
768     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
769     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
770     DFSanCheckedUnionFn =
771         Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL);
772   }
773   {
774     AttributeList AL;
775     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
776                          Attribute::NoUnwind);
777     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
778                          Attribute::ReadOnly);
779     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
780                          Attribute::ZExt);
781     DFSanUnionLoadFn =
782         Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
783   }
784   DFSanUnimplementedFn =
785       Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
786   {
787     AttributeList AL;
788     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
789     DFSanSetLabelFn =
790         Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
791   }
792   DFSanNonzeroLabelFn =
793       Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
794   DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
795                                                   DFSanVarargWrapperFnTy);
796 }
797 
798 // Initializes event callback functions and declare them in the module
799 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
800   DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback",
801                                                  DFSanLoadStoreCmpCallbackFnTy);
802   DFSanStoreCallbackFn = Mod->getOrInsertFunction(
803       "__dfsan_store_callback", DFSanLoadStoreCmpCallbackFnTy);
804   DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
805       "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
806   DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback",
807                                                 DFSanLoadStoreCmpCallbackFnTy);
808 }
809 
810 bool DataFlowSanitizer::runOnModule(Module &M) {
811   if (ABIList.isIn(M, "skip"))
812     return false;
813 
814   const unsigned InitialGlobalSize = M.global_size();
815   const unsigned InitialModuleSize = M.size();
816 
817   bool Changed = false;
818 
819   if (!GetArgTLSPtr) {
820     Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
821     ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
822     if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) {
823       Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
824       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
825     }
826   }
827   if (!GetRetvalTLSPtr) {
828     RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
829     if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) {
830       Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
831       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
832     }
833   }
834 
835   ExternalShadowMask =
836       Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy);
837 
838   initializeCallbackFunctions(M);
839   initializeRuntimeFunctions(M);
840 
841   std::vector<Function *> FnsToInstrument;
842   SmallPtrSet<Function *, 2> FnsWithNativeABI;
843   for (Function &i : M) {
844     if (!i.isIntrinsic() &&
845         &i != DFSanUnionFn.getCallee()->stripPointerCasts() &&
846         &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() &&
847         &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() &&
848         &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() &&
849         &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() &&
850         &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() &&
851         &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() &&
852         &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() &&
853         &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() &&
854         &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() &&
855         &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts())
856       FnsToInstrument.push_back(&i);
857   }
858 
859   // Give function aliases prefixes when necessary, and build wrappers where the
860   // instrumentedness is inconsistent.
861   for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
862     GlobalAlias *GA = &*i;
863     ++i;
864     // Don't stop on weak.  We assume people aren't playing games with the
865     // instrumentedness of overridden weak aliases.
866     if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
867       bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
868       if (GAInst && FInst) {
869         addGlobalNamePrefix(GA);
870       } else if (GAInst != FInst) {
871         // Non-instrumented alias of an instrumented function, or vice versa.
872         // Replace the alias with a native-ABI wrapper of the aliasee.  The pass
873         // below will take care of instrumenting it.
874         Function *NewF =
875             buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
876         GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
877         NewF->takeName(GA);
878         GA->eraseFromParent();
879         FnsToInstrument.push_back(NewF);
880       }
881     }
882   }
883 
884   ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
885       .addAttribute(Attribute::ReadNone);
886 
887   // First, change the ABI of every function in the module.  ABI-listed
888   // functions keep their original ABI and get a wrapper function.
889   for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
890                                          e = FnsToInstrument.end();
891        i != e; ++i) {
892     Function &F = **i;
893     FunctionType *FT = F.getFunctionType();
894 
895     bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
896                               FT->getReturnType()->isVoidTy());
897 
898     if (isInstrumented(&F)) {
899       // Instrumented functions get a 'dfs$' prefix.  This allows us to more
900       // easily identify cases of mismatching ABIs.
901       if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
902         FunctionType *NewFT = getArgsFunctionType(FT);
903         Function *NewF = Function::Create(NewFT, F.getLinkage(),
904                                           F.getAddressSpace(), "", &M);
905         NewF->copyAttributesFrom(&F);
906         NewF->removeAttributes(
907             AttributeList::ReturnIndex,
908             AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
909         for (Function::arg_iterator FArg = F.arg_begin(),
910                                     NewFArg = NewF->arg_begin(),
911                                     FArgEnd = F.arg_end();
912              FArg != FArgEnd; ++FArg, ++NewFArg) {
913           FArg->replaceAllUsesWith(&*NewFArg);
914         }
915         NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
916 
917         for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
918              UI != UE;) {
919           BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
920           ++UI;
921           if (BA) {
922             BA->replaceAllUsesWith(
923                 BlockAddress::get(NewF, BA->getBasicBlock()));
924             delete BA;
925           }
926         }
927         F.replaceAllUsesWith(
928             ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
929         NewF->takeName(&F);
930         F.eraseFromParent();
931         *i = NewF;
932         addGlobalNamePrefix(NewF);
933       } else {
934         addGlobalNamePrefix(&F);
935       }
936     } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
937       // Build a wrapper function for F.  The wrapper simply calls F, and is
938       // added to FnsToInstrument so that any instrumentation according to its
939       // WrapperKind is done in the second pass below.
940       FunctionType *NewFT = getInstrumentedABI() == IA_Args
941                                 ? getArgsFunctionType(FT)
942                                 : FT;
943 
944       // If the function being wrapped has local linkage, then preserve the
945       // function's linkage in the wrapper function.
946       GlobalValue::LinkageTypes wrapperLinkage =
947           F.hasLocalLinkage()
948               ? F.getLinkage()
949               : GlobalValue::LinkOnceODRLinkage;
950 
951       Function *NewF = buildWrapperFunction(
952           &F, std::string("dfsw$") + std::string(F.getName()),
953           wrapperLinkage, NewFT);
954       if (getInstrumentedABI() == IA_TLS)
955         NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
956 
957       Value *WrappedFnCst =
958           ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
959       F.replaceAllUsesWith(WrappedFnCst);
960 
961       UnwrappedFnMap[WrappedFnCst] = &F;
962       *i = NewF;
963 
964       if (!F.isDeclaration()) {
965         // This function is probably defining an interposition of an
966         // uninstrumented function and hence needs to keep the original ABI.
967         // But any functions it may call need to use the instrumented ABI, so
968         // we instrument it in a mode which preserves the original ABI.
969         FnsWithNativeABI.insert(&F);
970 
971         // This code needs to rebuild the iterators, as they may be invalidated
972         // by the push_back, taking care that the new range does not include
973         // any functions added by this code.
974         size_t N = i - FnsToInstrument.begin(),
975                Count = e - FnsToInstrument.begin();
976         FnsToInstrument.push_back(&F);
977         i = FnsToInstrument.begin() + N;
978         e = FnsToInstrument.begin() + Count;
979       }
980                // Hopefully, nobody will try to indirectly call a vararg
981                // function... yet.
982     } else if (FT->isVarArg()) {
983       UnwrappedFnMap[&F] = &F;
984       *i = nullptr;
985     }
986   }
987 
988   for (Function *i : FnsToInstrument) {
989     if (!i || i->isDeclaration())
990       continue;
991 
992     removeUnreachableBlocks(*i);
993 
994     DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i));
995 
996     // DFSanVisitor may create new basic blocks, which confuses df_iterator.
997     // Build a copy of the list before iterating over it.
998     SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock()));
999 
1000     for (BasicBlock *i : BBList) {
1001       Instruction *Inst = &i->front();
1002       while (true) {
1003         // DFSanVisitor may split the current basic block, changing the current
1004         // instruction's next pointer and moving the next instruction to the
1005         // tail block from which we should continue.
1006         Instruction *Next = Inst->getNextNode();
1007         // DFSanVisitor may delete Inst, so keep track of whether it was a
1008         // terminator.
1009         bool IsTerminator = Inst->isTerminator();
1010         if (!DFSF.SkipInsts.count(Inst))
1011           DFSanVisitor(DFSF).visit(Inst);
1012         if (IsTerminator)
1013           break;
1014         Inst = Next;
1015       }
1016     }
1017 
1018     // We will not necessarily be able to compute the shadow for every phi node
1019     // until we have visited every block.  Therefore, the code that handles phi
1020     // nodes adds them to the PHIFixups list so that they can be properly
1021     // handled here.
1022     for (std::vector<std::pair<PHINode *, PHINode *>>::iterator
1023              i = DFSF.PHIFixups.begin(),
1024              e = DFSF.PHIFixups.end();
1025          i != e; ++i) {
1026       for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
1027            ++val) {
1028         i->second->setIncomingValue(
1029             val, DFSF.getShadow(i->first->getIncomingValue(val)));
1030       }
1031     }
1032 
1033     // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
1034     // places (i.e. instructions in basic blocks we haven't even begun visiting
1035     // yet).  To make our life easier, do this work in a pass after the main
1036     // instrumentation.
1037     if (ClDebugNonzeroLabels) {
1038       for (Value *V : DFSF.NonZeroChecks) {
1039         Instruction *Pos;
1040         if (Instruction *I = dyn_cast<Instruction>(V))
1041           Pos = I->getNextNode();
1042         else
1043           Pos = &DFSF.F->getEntryBlock().front();
1044         while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
1045           Pos = Pos->getNextNode();
1046         IRBuilder<> IRB(Pos);
1047         Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
1048         BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1049             Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
1050         IRBuilder<> ThenIRB(BI);
1051         ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
1052       }
1053     }
1054   }
1055 
1056   return Changed || !FnsToInstrument.empty() ||
1057          M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
1058 }
1059 
1060 Value *DFSanFunction::getArgTLSPtr() {
1061   if (ArgTLSPtr)
1062     return ArgTLSPtr;
1063   if (DFS.ArgTLS)
1064     return ArgTLSPtr = DFS.ArgTLS;
1065 
1066   IRBuilder<> IRB(&F->getEntryBlock().front());
1067   return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLSTy, DFS.GetArgTLS, {});
1068 }
1069 
1070 Value *DFSanFunction::getRetvalTLS() {
1071   if (RetvalTLSPtr)
1072     return RetvalTLSPtr;
1073   if (DFS.RetvalTLS)
1074     return RetvalTLSPtr = DFS.RetvalTLS;
1075 
1076   IRBuilder<> IRB(&F->getEntryBlock().front());
1077   return RetvalTLSPtr =
1078              IRB.CreateCall(DFS.GetRetvalTLSTy, DFS.GetRetvalTLS, {});
1079 }
1080 
1081 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
1082   IRBuilder<> IRB(Pos);
1083   return IRB.CreateConstGEP2_64(ArrayType::get(DFS.ShadowTy, 64),
1084                                 getArgTLSPtr(), 0, Idx);
1085 }
1086 
1087 Value *DFSanFunction::getShadow(Value *V) {
1088   if (!isa<Argument>(V) && !isa<Instruction>(V))
1089     return DFS.ZeroShadow;
1090   Value *&Shadow = ValShadowMap[V];
1091   if (!Shadow) {
1092     if (Argument *A = dyn_cast<Argument>(V)) {
1093       if (IsNativeABI)
1094         return DFS.ZeroShadow;
1095       switch (IA) {
1096       case DataFlowSanitizer::IA_TLS: {
1097         Value *ArgTLSPtr = getArgTLSPtr();
1098         Instruction *ArgTLSPos =
1099             DFS.ArgTLS ? &*F->getEntryBlock().begin()
1100                        : cast<Instruction>(ArgTLSPtr)->getNextNode();
1101         IRBuilder<> IRB(ArgTLSPos);
1102         Shadow =
1103             IRB.CreateLoad(DFS.ShadowTy, getArgTLS(A->getArgNo(), ArgTLSPos));
1104         break;
1105       }
1106       case DataFlowSanitizer::IA_Args: {
1107         unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
1108         Function::arg_iterator i = F->arg_begin();
1109         while (ArgIdx--)
1110           ++i;
1111         Shadow = &*i;
1112         assert(Shadow->getType() == DFS.ShadowTy);
1113         break;
1114       }
1115       }
1116       NonZeroChecks.push_back(Shadow);
1117     } else {
1118       Shadow = DFS.ZeroShadow;
1119     }
1120   }
1121   return Shadow;
1122 }
1123 
1124 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1125   assert(!ValShadowMap.count(I));
1126   assert(Shadow->getType() == DFS.ShadowTy);
1127   ValShadowMap[I] = Shadow;
1128 }
1129 
1130 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1131   assert(Addr != RetvalTLS && "Reinstrumenting?");
1132   IRBuilder<> IRB(Pos);
1133   Value *ShadowPtrMaskValue;
1134   if (DFSanRuntimeShadowMask)
1135     ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
1136   else
1137     ShadowPtrMaskValue = ShadowPtrMask;
1138   return IRB.CreateIntToPtr(
1139       IRB.CreateMul(
1140           IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
1141                         IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)),
1142           ShadowPtrMul),
1143       ShadowPtrTy);
1144 }
1145 
1146 // Generates IR to compute the union of the two given shadows, inserting it
1147 // before Pos.  Returns the computed union Value.
1148 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1149   if (V1 == DFS.ZeroShadow)
1150     return V2;
1151   if (V2 == DFS.ZeroShadow)
1152     return V1;
1153   if (V1 == V2)
1154     return V1;
1155 
1156   auto V1Elems = ShadowElements.find(V1);
1157   auto V2Elems = ShadowElements.find(V2);
1158   if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1159     if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1160                       V2Elems->second.begin(), V2Elems->second.end())) {
1161       return V1;
1162     } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1163                              V1Elems->second.begin(), V1Elems->second.end())) {
1164       return V2;
1165     }
1166   } else if (V1Elems != ShadowElements.end()) {
1167     if (V1Elems->second.count(V2))
1168       return V1;
1169   } else if (V2Elems != ShadowElements.end()) {
1170     if (V2Elems->second.count(V1))
1171       return V2;
1172   }
1173 
1174   auto Key = std::make_pair(V1, V2);
1175   if (V1 > V2)
1176     std::swap(Key.first, Key.second);
1177   CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
1178   if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1179     return CCS.Shadow;
1180 
1181   IRBuilder<> IRB(Pos);
1182   if (AvoidNewBlocks) {
1183     CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2});
1184     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1185     Call->addParamAttr(0, Attribute::ZExt);
1186     Call->addParamAttr(1, Attribute::ZExt);
1187 
1188     CCS.Block = Pos->getParent();
1189     CCS.Shadow = Call;
1190   } else {
1191     BasicBlock *Head = Pos->getParent();
1192     Value *Ne = IRB.CreateICmpNE(V1, V2);
1193     BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1194         Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
1195     IRBuilder<> ThenIRB(BI);
1196     CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2});
1197     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1198     Call->addParamAttr(0, Attribute::ZExt);
1199     Call->addParamAttr(1, Attribute::ZExt);
1200 
1201     BasicBlock *Tail = BI->getSuccessor(0);
1202     PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1203     Phi->addIncoming(Call, Call->getParent());
1204     Phi->addIncoming(V1, Head);
1205 
1206     CCS.Block = Tail;
1207     CCS.Shadow = Phi;
1208   }
1209 
1210   std::set<Value *> UnionElems;
1211   if (V1Elems != ShadowElements.end()) {
1212     UnionElems = V1Elems->second;
1213   } else {
1214     UnionElems.insert(V1);
1215   }
1216   if (V2Elems != ShadowElements.end()) {
1217     UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1218   } else {
1219     UnionElems.insert(V2);
1220   }
1221   ShadowElements[CCS.Shadow] = std::move(UnionElems);
1222 
1223   return CCS.Shadow;
1224 }
1225 
1226 // A convenience function which folds the shadows of each of the operands
1227 // of the provided instruction Inst, inserting the IR before Inst.  Returns
1228 // the computed union Value.
1229 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
1230   if (Inst->getNumOperands() == 0)
1231     return DFS.ZeroShadow;
1232 
1233   Value *Shadow = getShadow(Inst->getOperand(0));
1234   for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
1235     Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
1236   }
1237   return Shadow;
1238 }
1239 
1240 Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) {
1241   Value *CombinedShadow = DFSF.combineOperandShadows(&I);
1242   DFSF.setShadow(&I, CombinedShadow);
1243   return CombinedShadow;
1244 }
1245 
1246 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
1247 // Addr has alignment Align, and take the union of each of those shadows.
1248 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
1249                                  Instruction *Pos) {
1250   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1251     const auto i = AllocaShadowMap.find(AI);
1252     if (i != AllocaShadowMap.end()) {
1253       IRBuilder<> IRB(Pos);
1254       return IRB.CreateLoad(DFS.ShadowTy, i->second);
1255     }
1256   }
1257 
1258   const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes);
1259   SmallVector<const Value *, 2> Objs;
1260   GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
1261   bool AllConstants = true;
1262   for (const Value *Obj : Objs) {
1263     if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
1264       continue;
1265     if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
1266       continue;
1267 
1268     AllConstants = false;
1269     break;
1270   }
1271   if (AllConstants)
1272     return DFS.ZeroShadow;
1273 
1274   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1275   switch (Size) {
1276   case 0:
1277     return DFS.ZeroShadow;
1278   case 1: {
1279     LoadInst *LI = new LoadInst(DFS.ShadowTy, ShadowAddr, "", Pos);
1280     LI->setAlignment(ShadowAlign);
1281     return LI;
1282   }
1283   case 2: {
1284     IRBuilder<> IRB(Pos);
1285     Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
1286                                        ConstantInt::get(DFS.IntptrTy, 1));
1287     return combineShadows(
1288         IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr, ShadowAlign),
1289         IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr1, ShadowAlign), Pos);
1290   }
1291   }
1292   if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) {
1293     // Fast path for the common case where each byte has identical shadow: load
1294     // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
1295     // shadow is non-equal.
1296     BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
1297     IRBuilder<> FallbackIRB(FallbackBB);
1298     CallInst *FallbackCall = FallbackIRB.CreateCall(
1299         DFS.DFSanUnionLoadFn,
1300         {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1301     FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1302 
1303     // Compare each of the shadows stored in the loaded 64 bits to each other,
1304     // by computing (WideShadow rotl ShadowWidthBits) == WideShadow.
1305     IRBuilder<> IRB(Pos);
1306     Value *WideAddr =
1307         IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1308     Value *WideShadow =
1309         IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign);
1310     Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
1311     Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits);
1312     Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits);
1313     Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
1314     Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
1315 
1316     BasicBlock *Head = Pos->getParent();
1317     BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
1318 
1319     if (DomTreeNode *OldNode = DT.getNode(Head)) {
1320       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1321 
1322       DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
1323       for (auto Child : Children)
1324         DT.changeImmediateDominator(Child, NewNode);
1325     }
1326 
1327     // In the following code LastBr will refer to the previous basic block's
1328     // conditional branch instruction, whose true successor is fixed up to point
1329     // to the next block during the loop below or to the tail after the final
1330     // iteration.
1331     BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
1332     ReplaceInstWithInst(Head->getTerminator(), LastBr);
1333     DT.addNewBlock(FallbackBB, Head);
1334 
1335     for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size;
1336          Ofs += 64 / DFS.ShadowWidthBits) {
1337       BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
1338       DT.addNewBlock(NextBB, LastBr->getParent());
1339       IRBuilder<> NextIRB(NextBB);
1340       WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1341                                    ConstantInt::get(DFS.IntptrTy, 1));
1342       Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(),
1343                                                         WideAddr, ShadowAlign);
1344       ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
1345       LastBr->setSuccessor(0, NextBB);
1346       LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
1347     }
1348 
1349     LastBr->setSuccessor(0, Tail);
1350     FallbackIRB.CreateBr(Tail);
1351     PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1352     Shadow->addIncoming(FallbackCall, FallbackBB);
1353     Shadow->addIncoming(TruncShadow, LastBr->getParent());
1354     return Shadow;
1355   }
1356 
1357   IRBuilder<> IRB(Pos);
1358   CallInst *FallbackCall = IRB.CreateCall(
1359       DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1360   FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1361   return FallbackCall;
1362 }
1363 
1364 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
1365   auto &DL = LI.getModule()->getDataLayout();
1366   uint64_t Size = DL.getTypeStoreSize(LI.getType());
1367   if (Size == 0) {
1368     DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
1369     return;
1370   }
1371 
1372   Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1);
1373   Value *Shadow =
1374       DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI);
1375   if (ClCombinePointerLabelsOnLoad) {
1376     Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
1377     Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
1378   }
1379   if (Shadow != DFSF.DFS.ZeroShadow)
1380     DFSF.NonZeroChecks.push_back(Shadow);
1381 
1382   DFSF.setShadow(&LI, Shadow);
1383   if (ClEventCallbacks) {
1384     IRBuilder<> IRB(&LI);
1385     IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, Shadow);
1386   }
1387 }
1388 
1389 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, Align Alignment,
1390                                 Value *Shadow, Instruction *Pos) {
1391   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1392     const auto i = AllocaShadowMap.find(AI);
1393     if (i != AllocaShadowMap.end()) {
1394       IRBuilder<> IRB(Pos);
1395       IRB.CreateStore(Shadow, i->second);
1396       return;
1397     }
1398   }
1399 
1400   const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes);
1401   IRBuilder<> IRB(Pos);
1402   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1403   if (Shadow == DFS.ZeroShadow) {
1404     IntegerType *ShadowTy =
1405         IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
1406     Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1407     Value *ExtShadowAddr =
1408         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1409     IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1410     return;
1411   }
1412 
1413   const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits;
1414   uint64_t Offset = 0;
1415   if (Size >= ShadowVecSize) {
1416     auto *ShadowVecTy = FixedVectorType::get(DFS.ShadowTy, ShadowVecSize);
1417     Value *ShadowVec = UndefValue::get(ShadowVecTy);
1418     for (unsigned i = 0; i != ShadowVecSize; ++i) {
1419       ShadowVec = IRB.CreateInsertElement(
1420           ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1421     }
1422     Value *ShadowVecAddr =
1423         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1424     do {
1425       Value *CurShadowVecAddr =
1426           IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
1427       IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1428       Size -= ShadowVecSize;
1429       ++Offset;
1430     } while (Size >= ShadowVecSize);
1431     Offset *= ShadowVecSize;
1432   }
1433   while (Size > 0) {
1434     Value *CurShadowAddr =
1435         IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
1436     IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
1437     --Size;
1438     ++Offset;
1439   }
1440 }
1441 
1442 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1443   auto &DL = SI.getModule()->getDataLayout();
1444   uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
1445   if (Size == 0)
1446     return;
1447 
1448   const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1);
1449 
1450   Value* Shadow = DFSF.getShadow(SI.getValueOperand());
1451   if (ClCombinePointerLabelsOnStore) {
1452     Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
1453     Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
1454   }
1455   DFSF.storeShadow(SI.getPointerOperand(), Size, Alignment, Shadow, &SI);
1456   if (ClEventCallbacks) {
1457     IRBuilder<> IRB(&SI);
1458     IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, Shadow);
1459   }
1460 }
1461 
1462 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
1463   visitOperandShadowInst(UO);
1464 }
1465 
1466 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1467   visitOperandShadowInst(BO);
1468 }
1469 
1470 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1471 
1472 void DFSanVisitor::visitCmpInst(CmpInst &CI) {
1473   Value *CombinedShadow = visitOperandShadowInst(CI);
1474   if (ClEventCallbacks) {
1475     IRBuilder<> IRB(&CI);
1476     IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
1477   }
1478 }
1479 
1480 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1481   visitOperandShadowInst(GEPI);
1482 }
1483 
1484 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1485   visitOperandShadowInst(I);
1486 }
1487 
1488 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1489   visitOperandShadowInst(I);
1490 }
1491 
1492 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1493   visitOperandShadowInst(I);
1494 }
1495 
1496 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1497   visitOperandShadowInst(I);
1498 }
1499 
1500 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1501   visitOperandShadowInst(I);
1502 }
1503 
1504 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1505   bool AllLoadsStores = true;
1506   for (User *U : I.users()) {
1507     if (isa<LoadInst>(U))
1508       continue;
1509 
1510     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1511       if (SI->getPointerOperand() == &I)
1512         continue;
1513     }
1514 
1515     AllLoadsStores = false;
1516     break;
1517   }
1518   if (AllLoadsStores) {
1519     IRBuilder<> IRB(&I);
1520     DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
1521   }
1522   DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
1523 }
1524 
1525 void DFSanVisitor::visitSelectInst(SelectInst &I) {
1526   Value *CondShadow = DFSF.getShadow(I.getCondition());
1527   Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1528   Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1529 
1530   if (isa<VectorType>(I.getCondition()->getType())) {
1531     DFSF.setShadow(
1532         &I,
1533         DFSF.combineShadows(
1534             CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I));
1535   } else {
1536     Value *ShadowSel;
1537     if (TrueShadow == FalseShadow) {
1538       ShadowSel = TrueShadow;
1539     } else {
1540       ShadowSel =
1541           SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1542     }
1543     DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I));
1544   }
1545 }
1546 
1547 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1548   IRBuilder<> IRB(&I);
1549   Value *ValShadow = DFSF.getShadow(I.getValue());
1550   IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
1551                  {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
1552                                                                 *DFSF.DFS.Ctx)),
1553                   IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
1554 }
1555 
1556 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1557   IRBuilder<> IRB(&I);
1558   Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1559   Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1560   Value *LenShadow =
1561       IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
1562                                                     DFSF.DFS.ShadowWidthBytes));
1563   Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1564   Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
1565   SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1566   auto *MTI = cast<MemTransferInst>(
1567       IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
1568                      {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
1569   if (ClPreserveAlignment) {
1570     MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes);
1571     MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes);
1572   } else {
1573     MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes));
1574     MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes));
1575   }
1576   if (ClEventCallbacks) {
1577     IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
1578                    {RawDestShadow, I.getLength()});
1579   }
1580 }
1581 
1582 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
1583   if (!DFSF.IsNativeABI && RI.getReturnValue()) {
1584     switch (DFSF.IA) {
1585     case DataFlowSanitizer::IA_TLS: {
1586       Value *S = DFSF.getShadow(RI.getReturnValue());
1587       IRBuilder<> IRB(&RI);
1588       IRB.CreateStore(S, DFSF.getRetvalTLS());
1589       break;
1590     }
1591     case DataFlowSanitizer::IA_Args: {
1592       IRBuilder<> IRB(&RI);
1593       Type *RT = DFSF.F->getFunctionType()->getReturnType();
1594       Value *InsVal =
1595           IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1596       Value *InsShadow =
1597           IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1598       RI.setOperand(0, InsShadow);
1599       break;
1600     }
1601     }
1602   }
1603 }
1604 
1605 void DFSanVisitor::visitCallBase(CallBase &CB) {
1606   Function *F = CB.getCalledFunction();
1607   if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
1608     visitOperandShadowInst(CB);
1609     return;
1610   }
1611 
1612   // Calls to this function are synthesized in wrappers, and we shouldn't
1613   // instrument them.
1614   if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
1615     return;
1616 
1617   IRBuilder<> IRB(&CB);
1618 
1619   DenseMap<Value *, Function *>::iterator i =
1620       DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
1621   if (i != DFSF.DFS.UnwrappedFnMap.end()) {
1622     Function *F = i->second;
1623     switch (DFSF.DFS.getWrapperKind(F)) {
1624     case DataFlowSanitizer::WK_Warning:
1625       CB.setCalledFunction(F);
1626       IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1627                      IRB.CreateGlobalStringPtr(F->getName()));
1628       DFSF.setShadow(&CB, DFSF.DFS.ZeroShadow);
1629       return;
1630     case DataFlowSanitizer::WK_Discard:
1631       CB.setCalledFunction(F);
1632       DFSF.setShadow(&CB, DFSF.DFS.ZeroShadow);
1633       return;
1634     case DataFlowSanitizer::WK_Functional:
1635       CB.setCalledFunction(F);
1636       visitOperandShadowInst(CB);
1637       return;
1638     case DataFlowSanitizer::WK_Custom:
1639       // Don't try to handle invokes of custom functions, it's too complicated.
1640       // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1641       // wrapper.
1642       if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1643         FunctionType *FT = F->getFunctionType();
1644         TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
1645         std::string CustomFName = "__dfsw_";
1646         CustomFName += F->getName();
1647         FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
1648             CustomFName, CustomFn.TransformedType);
1649         if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
1650           CustomFn->copyAttributesFrom(F);
1651 
1652           // Custom functions returning non-void will write to the return label.
1653           if (!FT->getReturnType()->isVoidTy()) {
1654             CustomFn->removeAttributes(AttributeList::FunctionIndex,
1655                                        DFSF.DFS.ReadOnlyNoneAttrs);
1656           }
1657         }
1658 
1659         std::vector<Value *> Args;
1660 
1661         auto i = CB.arg_begin();
1662         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
1663           Type *T = (*i)->getType();
1664           FunctionType *ParamFT;
1665           if (isa<PointerType>(T) &&
1666               (ParamFT = dyn_cast<FunctionType>(
1667                    cast<PointerType>(T)->getElementType()))) {
1668             std::string TName = "dfst";
1669             TName += utostr(FT->getNumParams() - n);
1670             TName += "$";
1671             TName += F->getName();
1672             Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
1673             Args.push_back(T);
1674             Args.push_back(
1675                 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
1676           } else {
1677             Args.push_back(*i);
1678           }
1679         }
1680 
1681         i = CB.arg_begin();
1682         const unsigned ShadowArgStart = Args.size();
1683         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1684           Args.push_back(DFSF.getShadow(*i));
1685 
1686         if (FT->isVarArg()) {
1687           auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
1688                                            CB.arg_size() - FT->getNumParams());
1689           auto *LabelVAAlloca = new AllocaInst(
1690               LabelVATy, getDataLayout().getAllocaAddrSpace(),
1691               "labelva", &DFSF.F->getEntryBlock().front());
1692 
1693           for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) {
1694             auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
1695             IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
1696           }
1697 
1698           Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
1699         }
1700 
1701         if (!FT->getReturnType()->isVoidTy()) {
1702           if (!DFSF.LabelReturnAlloca) {
1703             DFSF.LabelReturnAlloca =
1704               new AllocaInst(DFSF.DFS.ShadowTy,
1705                              getDataLayout().getAllocaAddrSpace(),
1706                              "labelreturn", &DFSF.F->getEntryBlock().front());
1707           }
1708           Args.push_back(DFSF.LabelReturnAlloca);
1709         }
1710 
1711         for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i)
1712           Args.push_back(*i);
1713 
1714         CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
1715         CustomCI->setCallingConv(CI->getCallingConv());
1716         CustomCI->setAttributes(TransformFunctionAttributes(CustomFn,
1717             CI->getContext(), CI->getAttributes()));
1718 
1719         // Update the parameter attributes of the custom call instruction to
1720         // zero extend the shadow parameters. This is required for targets
1721         // which consider ShadowTy an illegal type.
1722         for (unsigned n = 0; n < FT->getNumParams(); n++) {
1723           const unsigned ArgNo = ShadowArgStart + n;
1724           if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy)
1725             CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
1726         }
1727 
1728         if (!FT->getReturnType()->isVoidTy()) {
1729           LoadInst *LabelLoad =
1730               IRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.LabelReturnAlloca);
1731           DFSF.setShadow(CustomCI, LabelLoad);
1732         }
1733 
1734         CI->replaceAllUsesWith(CustomCI);
1735         CI->eraseFromParent();
1736         return;
1737       }
1738       break;
1739     }
1740   }
1741 
1742   FunctionType *FT = CB.getFunctionType();
1743   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1744     for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
1745       IRB.CreateStore(DFSF.getShadow(CB.getArgOperand(i)),
1746                       DFSF.getArgTLS(i, &CB));
1747     }
1748   }
1749 
1750   Instruction *Next = nullptr;
1751   if (!CB.getType()->isVoidTy()) {
1752     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
1753       if (II->getNormalDest()->getSinglePredecessor()) {
1754         Next = &II->getNormalDest()->front();
1755       } else {
1756         BasicBlock *NewBB =
1757             SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
1758         Next = &NewBB->front();
1759       }
1760     } else {
1761       assert(CB.getIterator() != CB.getParent()->end());
1762       Next = CB.getNextNode();
1763     }
1764 
1765     if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1766       IRBuilder<> NextIRB(Next);
1767       LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.getRetvalTLS());
1768       DFSF.SkipInsts.insert(LI);
1769       DFSF.setShadow(&CB, LI);
1770       DFSF.NonZeroChecks.push_back(LI);
1771     }
1772   }
1773 
1774   // Do all instrumentation for IA_Args down here to defer tampering with the
1775   // CFG in a way that SplitEdge may be able to detect.
1776   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
1777     FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
1778     Value *Func =
1779         IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT));
1780     std::vector<Value *> Args;
1781 
1782     auto i = CB.arg_begin(), E = CB.arg_end();
1783     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1784       Args.push_back(*i);
1785 
1786     i = CB.arg_begin();
1787     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1788       Args.push_back(DFSF.getShadow(*i));
1789 
1790     if (FT->isVarArg()) {
1791       unsigned VarArgSize = CB.arg_size() - FT->getNumParams();
1792       ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
1793       AllocaInst *VarArgShadow =
1794         new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
1795                        "", &DFSF.F->getEntryBlock().front());
1796       Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
1797       for (unsigned n = 0; i != E; ++i, ++n) {
1798         IRB.CreateStore(
1799             DFSF.getShadow(*i),
1800             IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
1801         Args.push_back(*i);
1802       }
1803     }
1804 
1805     CallBase *NewCB;
1806     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
1807       NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(),
1808                                II->getUnwindDest(), Args);
1809     } else {
1810       NewCB = IRB.CreateCall(NewFT, Func, Args);
1811     }
1812     NewCB->setCallingConv(CB.getCallingConv());
1813     NewCB->setAttributes(CB.getAttributes().removeAttributes(
1814         *DFSF.DFS.Ctx, AttributeList::ReturnIndex,
1815         AttributeFuncs::typeIncompatible(NewCB->getType())));
1816 
1817     if (Next) {
1818       ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next);
1819       DFSF.SkipInsts.insert(ExVal);
1820       ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next);
1821       DFSF.SkipInsts.insert(ExShadow);
1822       DFSF.setShadow(ExVal, ExShadow);
1823       DFSF.NonZeroChecks.push_back(ExShadow);
1824 
1825       CB.replaceAllUsesWith(ExVal);
1826     }
1827 
1828     CB.eraseFromParent();
1829   }
1830 }
1831 
1832 void DFSanVisitor::visitPHINode(PHINode &PN) {
1833   PHINode *ShadowPN =
1834       PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
1835 
1836   // Give the shadow phi node valid predecessors to fool SplitEdge into working.
1837   Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
1838   for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
1839        ++i) {
1840     ShadowPN->addIncoming(UndefShadow, *i);
1841   }
1842 
1843   DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
1844   DFSF.setShadow(&PN, ShadowPN);
1845 }
1846