xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own.  Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation.
20 ///
21 /// Argument and return value labels are passed through TLS variables
22 /// __dfsan_arg_tls and __dfsan_retval_tls.
23 ///
24 /// Each byte of application memory is backed by a shadow memory byte. The
25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then
26 /// laid out as follows:
27 ///
28 /// +--------------------+ 0x800000000000 (top of memory)
29 /// |    application 3   |
30 /// +--------------------+ 0x700000000000
31 /// |      invalid       |
32 /// +--------------------+ 0x610000000000
33 /// |      origin 1      |
34 /// +--------------------+ 0x600000000000
35 /// |    application 2   |
36 /// +--------------------+ 0x510000000000
37 /// |      shadow 1      |
38 /// +--------------------+ 0x500000000000
39 /// |      invalid       |
40 /// +--------------------+ 0x400000000000
41 /// |      origin 3      |
42 /// +--------------------+ 0x300000000000
43 /// |      shadow 3      |
44 /// +--------------------+ 0x200000000000
45 /// |      origin 2      |
46 /// +--------------------+ 0x110000000000
47 /// |      invalid       |
48 /// +--------------------+ 0x100000000000
49 /// |      shadow 2      |
50 /// +--------------------+ 0x010000000000
51 /// |    application 1   |
52 /// +--------------------+ 0x000000000000
53 ///
54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000
55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000
56 ///
57 /// For more information, please refer to the design document:
58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
59 //
60 //===----------------------------------------------------------------------===//
61 
62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DenseSet.h"
65 #include "llvm/ADT/DepthFirstIterator.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/StringRef.h"
69 #include "llvm/ADT/StringSet.h"
70 #include "llvm/ADT/iterator.h"
71 #include "llvm/Analysis/DomTreeUpdater.h"
72 #include "llvm/Analysis/GlobalsModRef.h"
73 #include "llvm/Analysis/TargetLibraryInfo.h"
74 #include "llvm/Analysis/ValueTracking.h"
75 #include "llvm/IR/Argument.h"
76 #include "llvm/IR/AttributeMask.h"
77 #include "llvm/IR/Attributes.h"
78 #include "llvm/IR/BasicBlock.h"
79 #include "llvm/IR/Constant.h"
80 #include "llvm/IR/Constants.h"
81 #include "llvm/IR/DataLayout.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/Function.h"
85 #include "llvm/IR/GlobalAlias.h"
86 #include "llvm/IR/GlobalValue.h"
87 #include "llvm/IR/GlobalVariable.h"
88 #include "llvm/IR/IRBuilder.h"
89 #include "llvm/IR/InstVisitor.h"
90 #include "llvm/IR/InstrTypes.h"
91 #include "llvm/IR/Instruction.h"
92 #include "llvm/IR/Instructions.h"
93 #include "llvm/IR/IntrinsicInst.h"
94 #include "llvm/IR/MDBuilder.h"
95 #include "llvm/IR/Module.h"
96 #include "llvm/IR/PassManager.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/Support/Alignment.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/ErrorHandling.h"
104 #include "llvm/Support/SpecialCaseList.h"
105 #include "llvm/Support/VirtualFileSystem.h"
106 #include "llvm/TargetParser/Triple.h"
107 #include "llvm/Transforms/Instrumentation.h"
108 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstddef>
113 #include <cstdint>
114 #include <memory>
115 #include <set>
116 #include <string>
117 #include <utility>
118 #include <vector>
119 
120 using namespace llvm;
121 
122 // This must be consistent with ShadowWidthBits.
123 static const Align ShadowTLSAlignment = Align(2);
124 
125 static const Align MinOriginAlignment = Align(4);
126 
127 // The size of TLS variables. These constants must be kept in sync with the ones
128 // in dfsan.cpp.
129 static const unsigned ArgTLSSize = 800;
130 static const unsigned RetvalTLSSize = 800;
131 
132 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
133 // alignment requirements provided by the input IR are correct.  For example,
134 // if the input IR contains a load with alignment 8, this flag will cause
135 // the shadow load to have alignment 16.  This flag is disabled by default as
136 // we have unfortunately encountered too much code (including Clang itself;
137 // see PR14291) which performs misaligned access.
138 static cl::opt<bool> ClPreserveAlignment(
139     "dfsan-preserve-alignment",
140     cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
141     cl::init(false));
142 
143 // The ABI list files control how shadow parameters are passed. The pass treats
144 // every function labelled "uninstrumented" in the ABI list file as conforming
145 // to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains
146 // additional annotations for those functions, a call to one of those functions
147 // will produce a warning message, as the labelling behaviour of the function is
148 // unknown. The other supported annotations for uninstrumented functions are
149 // "functional" and "discard", which are described below under
150 // DataFlowSanitizer::WrapperKind.
151 // Functions will often be labelled with both "uninstrumented" and one of
152 // "functional" or "discard". This will leave the function unchanged by this
153 // pass, and create a wrapper function that will call the original.
154 //
155 // Instrumented functions can also be annotated as "force_zero_labels", which
156 // will make all shadow and return values set zero labels.
157 // Functions should never be labelled with both "force_zero_labels" and
158 // "uninstrumented" or any of the unistrumented wrapper kinds.
159 static cl::list<std::string> ClABIListFiles(
160     "dfsan-abilist",
161     cl::desc("File listing native ABI functions and how the pass treats them"),
162     cl::Hidden);
163 
164 // Controls whether the pass includes or ignores the labels of pointers in load
165 // instructions.
166 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
167     "dfsan-combine-pointer-labels-on-load",
168     cl::desc("Combine the label of the pointer with the label of the data when "
169              "loading from memory."),
170     cl::Hidden, cl::init(true));
171 
172 // Controls whether the pass includes or ignores the labels of pointers in
173 // stores instructions.
174 static cl::opt<bool> ClCombinePointerLabelsOnStore(
175     "dfsan-combine-pointer-labels-on-store",
176     cl::desc("Combine the label of the pointer with the label of the data when "
177              "storing in memory."),
178     cl::Hidden, cl::init(false));
179 
180 // Controls whether the pass propagates labels of offsets in GEP instructions.
181 static cl::opt<bool> ClCombineOffsetLabelsOnGEP(
182     "dfsan-combine-offset-labels-on-gep",
183     cl::desc(
184         "Combine the label of the offset with the label of the pointer when "
185         "doing pointer arithmetic."),
186     cl::Hidden, cl::init(true));
187 
188 static cl::list<std::string> ClCombineTaintLookupTables(
189     "dfsan-combine-taint-lookup-table",
190     cl::desc(
191         "When dfsan-combine-offset-labels-on-gep and/or "
192         "dfsan-combine-pointer-labels-on-load are false, this flag can "
193         "be used to re-enable combining offset and/or pointer taint when "
194         "loading specific constant global variables (i.e. lookup tables)."),
195     cl::Hidden);
196 
197 static cl::opt<bool> ClDebugNonzeroLabels(
198     "dfsan-debug-nonzero-labels",
199     cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
200              "load or return with a nonzero label"),
201     cl::Hidden);
202 
203 // Experimental feature that inserts callbacks for certain data events.
204 // Currently callbacks are only inserted for loads, stores, memory transfers
205 // (i.e. memcpy and memmove), and comparisons.
206 //
207 // If this flag is set to true, the user must provide definitions for the
208 // following callback functions:
209 //   void __dfsan_load_callback(dfsan_label Label, void* addr);
210 //   void __dfsan_store_callback(dfsan_label Label, void* addr);
211 //   void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
212 //   void __dfsan_cmp_callback(dfsan_label CombinedLabel);
213 static cl::opt<bool> ClEventCallbacks(
214     "dfsan-event-callbacks",
215     cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
216     cl::Hidden, cl::init(false));
217 
218 // Experimental feature that inserts callbacks for conditionals, including:
219 // conditional branch, switch, select.
220 // This must be true for dfsan_set_conditional_callback() to have effect.
221 static cl::opt<bool> ClConditionalCallbacks(
222     "dfsan-conditional-callbacks",
223     cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden,
224     cl::init(false));
225 
226 // Experimental feature that inserts callbacks for data reaching a function,
227 // either via function arguments and loads.
228 // This must be true for dfsan_set_reaches_function_callback() to have effect.
229 static cl::opt<bool> ClReachesFunctionCallbacks(
230     "dfsan-reaches-function-callbacks",
231     cl::desc("Insert calls to callback functions on data reaching a function."),
232     cl::Hidden, cl::init(false));
233 
234 // Controls whether the pass tracks the control flow of select instructions.
235 static cl::opt<bool> ClTrackSelectControlFlow(
236     "dfsan-track-select-control-flow",
237     cl::desc("Propagate labels from condition values of select instructions "
238              "to results."),
239     cl::Hidden, cl::init(true));
240 
241 // TODO: This default value follows MSan. DFSan may use a different value.
242 static cl::opt<int> ClInstrumentWithCallThreshold(
243     "dfsan-instrument-with-call-threshold",
244     cl::desc("If the function being instrumented requires more than "
245              "this number of origin stores, use callbacks instead of "
246              "inline checks (-1 means never use callbacks)."),
247     cl::Hidden, cl::init(3500));
248 
249 // Controls how to track origins.
250 // * 0: do not track origins.
251 // * 1: track origins at memory store operations.
252 // * 2: track origins at memory load and store operations.
253 //      TODO: track callsites.
254 static cl::opt<int> ClTrackOrigins("dfsan-track-origins",
255                                    cl::desc("Track origins of labels"),
256                                    cl::Hidden, cl::init(0));
257 
258 static cl::opt<bool> ClIgnorePersonalityRoutine(
259     "dfsan-ignore-personality-routine",
260     cl::desc("If a personality routine is marked uninstrumented from the ABI "
261              "list, do not create a wrapper for it."),
262     cl::Hidden, cl::init(false));
263 
264 static StringRef getGlobalTypeString(const GlobalValue &G) {
265   // Types of GlobalVariables are always pointer types.
266   Type *GType = G.getValueType();
267   // For now we support excluding struct types only.
268   if (StructType *SGType = dyn_cast<StructType>(GType)) {
269     if (!SGType->isLiteral())
270       return SGType->getName();
271   }
272   return "<unknown type>";
273 }
274 
275 namespace {
276 
277 // Memory map parameters used in application-to-shadow address calculation.
278 // Offset = (Addr & ~AndMask) ^ XorMask
279 // Shadow = ShadowBase + Offset
280 // Origin = (OriginBase + Offset) & ~3ULL
281 struct MemoryMapParams {
282   uint64_t AndMask;
283   uint64_t XorMask;
284   uint64_t ShadowBase;
285   uint64_t OriginBase;
286 };
287 
288 } // end anonymous namespace
289 
290 // NOLINTBEGIN(readability-identifier-naming)
291 // aarch64 Linux
292 const MemoryMapParams Linux_AArch64_MemoryMapParams = {
293     0,               // AndMask (not used)
294     0x0B00000000000, // XorMask
295     0,               // ShadowBase (not used)
296     0x0200000000000, // OriginBase
297 };
298 
299 // x86_64 Linux
300 const MemoryMapParams Linux_X86_64_MemoryMapParams = {
301     0,              // AndMask (not used)
302     0x500000000000, // XorMask
303     0,              // ShadowBase (not used)
304     0x100000000000, // OriginBase
305 };
306 // NOLINTEND(readability-identifier-naming)
307 
308 // loongarch64 Linux
309 const MemoryMapParams Linux_LoongArch64_MemoryMapParams = {
310     0,              // AndMask (not used)
311     0x500000000000, // XorMask
312     0,              // ShadowBase (not used)
313     0x100000000000, // OriginBase
314 };
315 
316 namespace {
317 
318 class DFSanABIList {
319   std::unique_ptr<SpecialCaseList> SCL;
320 
321 public:
322   DFSanABIList() = default;
323 
324   void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
325 
326   /// Returns whether either this function or its source file are listed in the
327   /// given category.
328   bool isIn(const Function &F, StringRef Category) const {
329     return isIn(*F.getParent(), Category) ||
330            SCL->inSection("dataflow", "fun", F.getName(), Category);
331   }
332 
333   /// Returns whether this global alias is listed in the given category.
334   ///
335   /// If GA aliases a function, the alias's name is matched as a function name
336   /// would be.  Similarly, aliases of globals are matched like globals.
337   bool isIn(const GlobalAlias &GA, StringRef Category) const {
338     if (isIn(*GA.getParent(), Category))
339       return true;
340 
341     if (isa<FunctionType>(GA.getValueType()))
342       return SCL->inSection("dataflow", "fun", GA.getName(), Category);
343 
344     return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
345            SCL->inSection("dataflow", "type", getGlobalTypeString(GA),
346                           Category);
347   }
348 
349   /// Returns whether this module is listed in the given category.
350   bool isIn(const Module &M, StringRef Category) const {
351     return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
352   }
353 };
354 
355 /// TransformedFunction is used to express the result of transforming one
356 /// function type into another.  This struct is immutable.  It holds metadata
357 /// useful for updating calls of the old function to the new type.
358 struct TransformedFunction {
359   TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType,
360                       const std::vector<unsigned> &ArgumentIndexMapping)
361       : OriginalType(OriginalType), TransformedType(TransformedType),
362         ArgumentIndexMapping(ArgumentIndexMapping) {}
363 
364   // Disallow copies.
365   TransformedFunction(const TransformedFunction &) = delete;
366   TransformedFunction &operator=(const TransformedFunction &) = delete;
367 
368   // Allow moves.
369   TransformedFunction(TransformedFunction &&) = default;
370   TransformedFunction &operator=(TransformedFunction &&) = default;
371 
372   /// Type of the function before the transformation.
373   FunctionType *OriginalType;
374 
375   /// Type of the function after the transformation.
376   FunctionType *TransformedType;
377 
378   /// Transforming a function may change the position of arguments.  This
379   /// member records the mapping from each argument's old position to its new
380   /// position.  Argument positions are zero-indexed.  If the transformation
381   /// from F to F' made the first argument of F into the third argument of F',
382   /// then ArgumentIndexMapping[0] will equal 2.
383   std::vector<unsigned> ArgumentIndexMapping;
384 };
385 
386 /// Given function attributes from a call site for the original function,
387 /// return function attributes appropriate for a call to the transformed
388 /// function.
389 AttributeList
390 transformFunctionAttributes(const TransformedFunction &TransformedFunction,
391                             LLVMContext &Ctx, AttributeList CallSiteAttrs) {
392 
393   // Construct a vector of AttributeSet for each function argument.
394   std::vector<llvm::AttributeSet> ArgumentAttributes(
395       TransformedFunction.TransformedType->getNumParams());
396 
397   // Copy attributes from the parameter of the original function to the
398   // transformed version.  'ArgumentIndexMapping' holds the mapping from
399   // old argument position to new.
400   for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size();
401        I < IE; ++I) {
402     unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I];
403     ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I);
404   }
405 
406   // Copy annotations on varargs arguments.
407   for (unsigned I = TransformedFunction.OriginalType->getNumParams(),
408                 IE = CallSiteAttrs.getNumAttrSets();
409        I < IE; ++I) {
410     ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I));
411   }
412 
413   return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(),
414                             CallSiteAttrs.getRetAttrs(),
415                             llvm::ArrayRef(ArgumentAttributes));
416 }
417 
418 class DataFlowSanitizer {
419   friend struct DFSanFunction;
420   friend class DFSanVisitor;
421 
422   enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 };
423 
424   enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 };
425 
426   /// How should calls to uninstrumented functions be handled?
427   enum WrapperKind {
428     /// This function is present in an uninstrumented form but we don't know
429     /// how it should be handled.  Print a warning and call the function anyway.
430     /// Don't label the return value.
431     WK_Warning,
432 
433     /// This function does not write to (user-accessible) memory, and its return
434     /// value is unlabelled.
435     WK_Discard,
436 
437     /// This function does not write to (user-accessible) memory, and the label
438     /// of its return value is the union of the label of its arguments.
439     WK_Functional,
440 
441     /// Instead of calling the function, a custom wrapper __dfsw_F is called,
442     /// where F is the name of the function.  This function may wrap the
443     /// original function or provide its own implementation. WK_Custom uses an
444     /// extra pointer argument to return the shadow.  This allows the wrapped
445     /// form of the function type to be expressed in C.
446     WK_Custom
447   };
448 
449   Module *Mod;
450   LLVMContext *Ctx;
451   Type *Int8Ptr;
452   IntegerType *OriginTy;
453   PointerType *OriginPtrTy;
454   ConstantInt *ZeroOrigin;
455   /// The shadow type for all primitive types and vector types.
456   IntegerType *PrimitiveShadowTy;
457   PointerType *PrimitiveShadowPtrTy;
458   IntegerType *IntptrTy;
459   ConstantInt *ZeroPrimitiveShadow;
460   Constant *ArgTLS;
461   ArrayType *ArgOriginTLSTy;
462   Constant *ArgOriginTLS;
463   Constant *RetvalTLS;
464   Constant *RetvalOriginTLS;
465   FunctionType *DFSanUnionLoadFnTy;
466   FunctionType *DFSanLoadLabelAndOriginFnTy;
467   FunctionType *DFSanUnimplementedFnTy;
468   FunctionType *DFSanWrapperExternWeakNullFnTy;
469   FunctionType *DFSanSetLabelFnTy;
470   FunctionType *DFSanNonzeroLabelFnTy;
471   FunctionType *DFSanVarargWrapperFnTy;
472   FunctionType *DFSanConditionalCallbackFnTy;
473   FunctionType *DFSanConditionalCallbackOriginFnTy;
474   FunctionType *DFSanReachesFunctionCallbackFnTy;
475   FunctionType *DFSanReachesFunctionCallbackOriginFnTy;
476   FunctionType *DFSanCmpCallbackFnTy;
477   FunctionType *DFSanLoadStoreCallbackFnTy;
478   FunctionType *DFSanMemTransferCallbackFnTy;
479   FunctionType *DFSanChainOriginFnTy;
480   FunctionType *DFSanChainOriginIfTaintedFnTy;
481   FunctionType *DFSanMemOriginTransferFnTy;
482   FunctionType *DFSanMemShadowOriginTransferFnTy;
483   FunctionType *DFSanMemShadowOriginConditionalExchangeFnTy;
484   FunctionType *DFSanMaybeStoreOriginFnTy;
485   FunctionCallee DFSanUnionLoadFn;
486   FunctionCallee DFSanLoadLabelAndOriginFn;
487   FunctionCallee DFSanUnimplementedFn;
488   FunctionCallee DFSanWrapperExternWeakNullFn;
489   FunctionCallee DFSanSetLabelFn;
490   FunctionCallee DFSanNonzeroLabelFn;
491   FunctionCallee DFSanVarargWrapperFn;
492   FunctionCallee DFSanLoadCallbackFn;
493   FunctionCallee DFSanStoreCallbackFn;
494   FunctionCallee DFSanMemTransferCallbackFn;
495   FunctionCallee DFSanConditionalCallbackFn;
496   FunctionCallee DFSanConditionalCallbackOriginFn;
497   FunctionCallee DFSanReachesFunctionCallbackFn;
498   FunctionCallee DFSanReachesFunctionCallbackOriginFn;
499   FunctionCallee DFSanCmpCallbackFn;
500   FunctionCallee DFSanChainOriginFn;
501   FunctionCallee DFSanChainOriginIfTaintedFn;
502   FunctionCallee DFSanMemOriginTransferFn;
503   FunctionCallee DFSanMemShadowOriginTransferFn;
504   FunctionCallee DFSanMemShadowOriginConditionalExchangeFn;
505   FunctionCallee DFSanMaybeStoreOriginFn;
506   SmallPtrSet<Value *, 16> DFSanRuntimeFunctions;
507   MDNode *ColdCallWeights;
508   MDNode *OriginStoreWeights;
509   DFSanABIList ABIList;
510   DenseMap<Value *, Function *> UnwrappedFnMap;
511   AttributeMask ReadOnlyNoneAttrs;
512   StringSet<> CombineTaintLookupTableNames;
513 
514   /// Memory map parameters used in calculation mapping application addresses
515   /// to shadow addresses and origin addresses.
516   const MemoryMapParams *MapParams;
517 
518   Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB);
519   Value *getShadowAddress(Value *Addr, BasicBlock::iterator Pos);
520   Value *getShadowAddress(Value *Addr, BasicBlock::iterator Pos,
521                           Value *ShadowOffset);
522   std::pair<Value *, Value *> getShadowOriginAddress(Value *Addr,
523                                                      Align InstAlignment,
524                                                      BasicBlock::iterator Pos);
525   bool isInstrumented(const Function *F);
526   bool isInstrumented(const GlobalAlias *GA);
527   bool isForceZeroLabels(const Function *F);
528   TransformedFunction getCustomFunctionType(FunctionType *T);
529   WrapperKind getWrapperKind(Function *F);
530   void addGlobalNameSuffix(GlobalValue *GV);
531   void buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, Function *F);
532   Function *buildWrapperFunction(Function *F, StringRef NewFName,
533                                  GlobalValue::LinkageTypes NewFLink,
534                                  FunctionType *NewFT);
535   void initializeCallbackFunctions(Module &M);
536   void initializeRuntimeFunctions(Module &M);
537   bool initializeModule(Module &M);
538 
539   /// Advances \p OriginAddr to point to the next 32-bit origin and then loads
540   /// from it. Returns the origin's loaded value.
541   Value *loadNextOrigin(BasicBlock::iterator Pos, Align OriginAlign,
542                         Value **OriginAddr);
543 
544   /// Returns whether the given load byte size is amenable to inlined
545   /// optimization patterns.
546   bool hasLoadSizeForFastPath(uint64_t Size);
547 
548   /// Returns whether the pass tracks origins. Supports only TLS ABI mode.
549   bool shouldTrackOrigins();
550 
551   /// Returns a zero constant with the shadow type of OrigTy.
552   ///
553   /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
554   /// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
555   /// getZeroShadow(other type) = i16(0)
556   Constant *getZeroShadow(Type *OrigTy);
557   /// Returns a zero constant with the shadow type of V's type.
558   Constant *getZeroShadow(Value *V);
559 
560   /// Checks if V is a zero shadow.
561   bool isZeroShadow(Value *V);
562 
563   /// Returns the shadow type of OrigTy.
564   ///
565   /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
566   /// getShadowTy([n x T]) = [n x getShadowTy(T)]
567   /// getShadowTy(other type) = i16
568   Type *getShadowTy(Type *OrigTy);
569   /// Returns the shadow type of V's type.
570   Type *getShadowTy(Value *V);
571 
572   const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes;
573 
574 public:
575   DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
576 
577   bool runImpl(Module &M,
578                llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI);
579 };
580 
581 struct DFSanFunction {
582   DataFlowSanitizer &DFS;
583   Function *F;
584   DominatorTree DT;
585   bool IsNativeABI;
586   bool IsForceZeroLabels;
587   TargetLibraryInfo &TLI;
588   AllocaInst *LabelReturnAlloca = nullptr;
589   AllocaInst *OriginReturnAlloca = nullptr;
590   DenseMap<Value *, Value *> ValShadowMap;
591   DenseMap<Value *, Value *> ValOriginMap;
592   DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
593   DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap;
594 
595   struct PHIFixupElement {
596     PHINode *Phi;
597     PHINode *ShadowPhi;
598     PHINode *OriginPhi;
599   };
600   std::vector<PHIFixupElement> PHIFixups;
601 
602   DenseSet<Instruction *> SkipInsts;
603   std::vector<Value *> NonZeroChecks;
604 
605   struct CachedShadow {
606     BasicBlock *Block; // The block where Shadow is defined.
607     Value *Shadow;
608   };
609   /// Maps a value to its latest shadow value in terms of domination tree.
610   DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
611   /// Maps a value to its latest collapsed shadow value it was converted to in
612   /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
613   /// used at a post process where CFG blocks are split. So it does not cache
614   /// BasicBlock like CachedShadows, but uses domination between values.
615   DenseMap<Value *, Value *> CachedCollapsedShadows;
616   DenseMap<Value *, std::set<Value *>> ShadowElements;
617 
618   DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI,
619                 bool IsForceZeroLabels, TargetLibraryInfo &TLI)
620       : DFS(DFS), F(F), IsNativeABI(IsNativeABI),
621         IsForceZeroLabels(IsForceZeroLabels), TLI(TLI) {
622     DT.recalculate(*F);
623   }
624 
625   /// Computes the shadow address for a given function argument.
626   ///
627   /// Shadow = ArgTLS+ArgOffset.
628   Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
629 
630   /// Computes the shadow address for a return value.
631   Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
632 
633   /// Computes the origin address for a given function argument.
634   ///
635   /// Origin = ArgOriginTLS[ArgNo].
636   Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB);
637 
638   /// Computes the origin address for a return value.
639   Value *getRetvalOriginTLS();
640 
641   Value *getOrigin(Value *V);
642   void setOrigin(Instruction *I, Value *Origin);
643   /// Generates IR to compute the origin of the last operand with a taint label.
644   Value *combineOperandOrigins(Instruction *Inst);
645   /// Before the instruction Pos, generates IR to compute the last origin with a
646   /// taint label. Labels and origins are from vectors Shadows and Origins
647   /// correspondingly. The generated IR is like
648   ///   Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0
649   /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be
650   /// zeros with other bitwidths.
651   Value *combineOrigins(const std::vector<Value *> &Shadows,
652                         const std::vector<Value *> &Origins,
653                         BasicBlock::iterator Pos, ConstantInt *Zero = nullptr);
654 
655   Value *getShadow(Value *V);
656   void setShadow(Instruction *I, Value *Shadow);
657   /// Generates IR to compute the union of the two given shadows, inserting it
658   /// before Pos. The combined value is with primitive type.
659   Value *combineShadows(Value *V1, Value *V2, BasicBlock::iterator Pos);
660   /// Combines the shadow values of V1 and V2, then converts the combined value
661   /// with primitive type into a shadow value with the original type T.
662   Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
663                                    BasicBlock::iterator Pos);
664   Value *combineOperandShadows(Instruction *Inst);
665 
666   /// Generates IR to load shadow and origin corresponding to bytes [\p
667   /// Addr, \p Addr + \p Size), where addr has alignment \p
668   /// InstAlignment, and take the union of each of those shadows. The returned
669   /// shadow always has primitive type.
670   ///
671   /// When tracking loads is enabled, the returned origin is a chain at the
672   /// current stack if the returned shadow is tainted.
673   std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size,
674                                                Align InstAlignment,
675                                                BasicBlock::iterator Pos);
676 
677   void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
678                                   Align InstAlignment, Value *PrimitiveShadow,
679                                   Value *Origin, BasicBlock::iterator Pos);
680   /// Applies PrimitiveShadow to all primitive subtypes of T, returning
681   /// the expanded shadow value.
682   ///
683   /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
684   /// EFP([n x T], PS) = [n x EFP(T,PS)]
685   /// EFP(other types, PS) = PS
686   Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
687                                    BasicBlock::iterator Pos);
688   /// Collapses Shadow into a single primitive shadow value, unioning all
689   /// primitive shadow values in the process. Returns the final primitive
690   /// shadow value.
691   ///
692   /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
693   /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
694   /// CTP(other types, PS) = PS
695   Value *collapseToPrimitiveShadow(Value *Shadow, BasicBlock::iterator Pos);
696 
697   void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign,
698                                 BasicBlock::iterator Pos);
699 
700   Align getShadowAlign(Align InstAlignment);
701 
702   // If ClConditionalCallbacks is enabled, insert a callback after a given
703   // branch instruction using the given conditional expression.
704   void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition);
705 
706   // If ClReachesFunctionCallbacks is enabled, insert a callback for each
707   // argument and load instruction.
708   void addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, Instruction &I,
709                                             Value *Data);
710 
711   bool isLookupTableConstant(Value *P);
712 
713 private:
714   /// Collapses the shadow with aggregate type into a single primitive shadow
715   /// value.
716   template <class AggregateType>
717   Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
718                                  IRBuilder<> &IRB);
719 
720   Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
721 
722   /// Returns the shadow value of an argument A.
723   Value *getShadowForTLSArgument(Argument *A);
724 
725   /// The fast path of loading shadows.
726   std::pair<Value *, Value *>
727   loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size,
728                  Align ShadowAlign, Align OriginAlign, Value *FirstOrigin,
729                  BasicBlock::iterator Pos);
730 
731   Align getOriginAlign(Align InstAlignment);
732 
733   /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load
734   /// is __dfsan_load_label_and_origin. This function returns the union of all
735   /// labels and the origin of the first taint label. However this is an
736   /// additional call with many instructions. To ensure common cases are fast,
737   /// checks if it is possible to load labels and origins without using the
738   /// callback function.
739   ///
740   /// When enabling tracking load instructions, we always use
741   /// __dfsan_load_label_and_origin to reduce code size.
742   bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment);
743 
744   /// Returns a chain at the current stack with previous origin V.
745   Value *updateOrigin(Value *V, IRBuilder<> &IRB);
746 
747   /// Returns a chain at the current stack with previous origin V if Shadow is
748   /// tainted.
749   Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB);
750 
751   /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns
752   /// Origin otherwise.
753   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin);
754 
755   /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr +
756   /// Size).
757   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr,
758                    uint64_t StoreOriginSize, Align Alignment);
759 
760   /// Stores Origin in terms of its Shadow value.
761   /// * Do not write origins for zero shadows because we do not trace origins
762   ///   for untainted sinks.
763   /// * Use __dfsan_maybe_store_origin if there are too many origin store
764   ///   instrumentations.
765   void storeOrigin(BasicBlock::iterator Pos, Value *Addr, uint64_t Size,
766                    Value *Shadow, Value *Origin, Value *StoreOriginAddr,
767                    Align InstAlignment);
768 
769   /// Convert a scalar value to an i1 by comparing with 0.
770   Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "");
771 
772   bool shouldInstrumentWithCall();
773 
774   /// Generates IR to load shadow and origin corresponding to bytes [\p
775   /// Addr, \p Addr + \p Size), where addr has alignment \p
776   /// InstAlignment, and take the union of each of those shadows. The returned
777   /// shadow always has primitive type.
778   std::pair<Value *, Value *>
779   loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size,
780                                    Align InstAlignment,
781                                    BasicBlock::iterator Pos);
782   int NumOriginStores = 0;
783 };
784 
785 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
786 public:
787   DFSanFunction &DFSF;
788 
789   DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
790 
791   const DataLayout &getDataLayout() const {
792     return DFSF.F->getDataLayout();
793   }
794 
795   // Combines shadow values and origins for all of I's operands.
796   void visitInstOperands(Instruction &I);
797 
798   void visitUnaryOperator(UnaryOperator &UO);
799   void visitBinaryOperator(BinaryOperator &BO);
800   void visitBitCastInst(BitCastInst &BCI);
801   void visitCastInst(CastInst &CI);
802   void visitCmpInst(CmpInst &CI);
803   void visitLandingPadInst(LandingPadInst &LPI);
804   void visitGetElementPtrInst(GetElementPtrInst &GEPI);
805   void visitLoadInst(LoadInst &LI);
806   void visitStoreInst(StoreInst &SI);
807   void visitAtomicRMWInst(AtomicRMWInst &I);
808   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
809   void visitReturnInst(ReturnInst &RI);
810   void visitLibAtomicLoad(CallBase &CB);
811   void visitLibAtomicStore(CallBase &CB);
812   void visitLibAtomicExchange(CallBase &CB);
813   void visitLibAtomicCompareExchange(CallBase &CB);
814   void visitCallBase(CallBase &CB);
815   void visitPHINode(PHINode &PN);
816   void visitExtractElementInst(ExtractElementInst &I);
817   void visitInsertElementInst(InsertElementInst &I);
818   void visitShuffleVectorInst(ShuffleVectorInst &I);
819   void visitExtractValueInst(ExtractValueInst &I);
820   void visitInsertValueInst(InsertValueInst &I);
821   void visitAllocaInst(AllocaInst &I);
822   void visitSelectInst(SelectInst &I);
823   void visitMemSetInst(MemSetInst &I);
824   void visitMemTransferInst(MemTransferInst &I);
825   void visitBranchInst(BranchInst &BR);
826   void visitSwitchInst(SwitchInst &SW);
827 
828 private:
829   void visitCASOrRMW(Align InstAlignment, Instruction &I);
830 
831   // Returns false when this is an invoke of a custom function.
832   bool visitWrappedCallBase(Function &F, CallBase &CB);
833 
834   // Combines origins for all of I's operands.
835   void visitInstOperandOrigins(Instruction &I);
836 
837   void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
838                           IRBuilder<> &IRB);
839 
840   void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
841                           IRBuilder<> &IRB);
842 
843   Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB);
844   Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB);
845 };
846 
847 bool LibAtomicFunction(const Function &F) {
848   // This is a bit of a hack because TargetLibraryInfo is a function pass.
849   // The DFSan pass would need to be refactored to be function pass oriented
850   // (like MSan is) in order to fit together nicely with TargetLibraryInfo.
851   // We need this check to prevent them from being instrumented, or wrapped.
852   // Match on name and number of arguments.
853   if (!F.hasName() || F.isVarArg())
854     return false;
855   switch (F.arg_size()) {
856   case 4:
857     return F.getName() == "__atomic_load" || F.getName() == "__atomic_store";
858   case 5:
859     return F.getName() == "__atomic_exchange";
860   case 6:
861     return F.getName() == "__atomic_compare_exchange";
862   default:
863     return false;
864   }
865 }
866 
867 } // end anonymous namespace
868 
869 DataFlowSanitizer::DataFlowSanitizer(
870     const std::vector<std::string> &ABIListFiles) {
871   std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
872   llvm::append_range(AllABIListFiles, ClABIListFiles);
873   // FIXME: should we propagate vfs::FileSystem to this constructor?
874   ABIList.set(
875       SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
876 
877   for (StringRef v : ClCombineTaintLookupTables)
878     CombineTaintLookupTableNames.insert(v);
879 }
880 
881 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
882   SmallVector<Type *, 4> ArgTypes;
883 
884   // Some parameters of the custom function being constructed are
885   // parameters of T.  Record the mapping from parameters of T to
886   // parameters of the custom function, so that parameter attributes
887   // at call sites can be updated.
888   std::vector<unsigned> ArgumentIndexMapping;
889   for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) {
890     Type *ParamType = T->getParamType(I);
891     ArgumentIndexMapping.push_back(ArgTypes.size());
892     ArgTypes.push_back(ParamType);
893   }
894   for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
895     ArgTypes.push_back(PrimitiveShadowTy);
896   if (T->isVarArg())
897     ArgTypes.push_back(PrimitiveShadowPtrTy);
898   Type *RetType = T->getReturnType();
899   if (!RetType->isVoidTy())
900     ArgTypes.push_back(PrimitiveShadowPtrTy);
901 
902   if (shouldTrackOrigins()) {
903     for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
904       ArgTypes.push_back(OriginTy);
905     if (T->isVarArg())
906       ArgTypes.push_back(OriginPtrTy);
907     if (!RetType->isVoidTy())
908       ArgTypes.push_back(OriginPtrTy);
909   }
910 
911   return TransformedFunction(
912       T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
913       ArgumentIndexMapping);
914 }
915 
916 bool DataFlowSanitizer::isZeroShadow(Value *V) {
917   Type *T = V->getType();
918   if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
919     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
920       return CI->isZero();
921     return false;
922   }
923 
924   return isa<ConstantAggregateZero>(V);
925 }
926 
927 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) {
928   uint64_t ShadowSize = Size * ShadowWidthBytes;
929   return ShadowSize % 8 == 0 || ShadowSize == 4;
930 }
931 
932 bool DataFlowSanitizer::shouldTrackOrigins() {
933   static const bool ShouldTrackOrigins = ClTrackOrigins;
934   return ShouldTrackOrigins;
935 }
936 
937 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
938   if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
939     return ZeroPrimitiveShadow;
940   Type *ShadowTy = getShadowTy(OrigTy);
941   return ConstantAggregateZero::get(ShadowTy);
942 }
943 
944 Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
945   return getZeroShadow(V->getType());
946 }
947 
948 static Value *expandFromPrimitiveShadowRecursive(
949     Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
950     Value *PrimitiveShadow, IRBuilder<> &IRB) {
951   if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
952     return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
953 
954   if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
955     for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
956       Indices.push_back(Idx);
957       Shadow = expandFromPrimitiveShadowRecursive(
958           Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
959       Indices.pop_back();
960     }
961     return Shadow;
962   }
963 
964   if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
965     for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
966       Indices.push_back(Idx);
967       Shadow = expandFromPrimitiveShadowRecursive(
968           Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
969       Indices.pop_back();
970     }
971     return Shadow;
972   }
973   llvm_unreachable("Unexpected shadow type");
974 }
975 
976 bool DFSanFunction::shouldInstrumentWithCall() {
977   return ClInstrumentWithCallThreshold >= 0 &&
978          NumOriginStores >= ClInstrumentWithCallThreshold;
979 }
980 
981 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
982                                                 BasicBlock::iterator Pos) {
983   Type *ShadowTy = DFS.getShadowTy(T);
984 
985   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
986     return PrimitiveShadow;
987 
988   if (DFS.isZeroShadow(PrimitiveShadow))
989     return DFS.getZeroShadow(ShadowTy);
990 
991   IRBuilder<> IRB(Pos->getParent(), Pos);
992   SmallVector<unsigned, 4> Indices;
993   Value *Shadow = UndefValue::get(ShadowTy);
994   Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
995                                               PrimitiveShadow, IRB);
996 
997   // Caches the primitive shadow value that built the shadow value.
998   CachedCollapsedShadows[Shadow] = PrimitiveShadow;
999   return Shadow;
1000 }
1001 
1002 template <class AggregateType>
1003 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
1004                                               IRBuilder<> &IRB) {
1005   if (!AT->getNumElements())
1006     return DFS.ZeroPrimitiveShadow;
1007 
1008   Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
1009   Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
1010 
1011   for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
1012     Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1013     Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
1014     Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1015   }
1016   return Aggregator;
1017 }
1018 
1019 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
1020                                                 IRBuilder<> &IRB) {
1021   Type *ShadowTy = Shadow->getType();
1022   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
1023     return Shadow;
1024   if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
1025     return collapseAggregateShadow<>(AT, Shadow, IRB);
1026   if (StructType *ST = dyn_cast<StructType>(ShadowTy))
1027     return collapseAggregateShadow<>(ST, Shadow, IRB);
1028   llvm_unreachable("Unexpected shadow type");
1029 }
1030 
1031 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
1032                                                 BasicBlock::iterator Pos) {
1033   Type *ShadowTy = Shadow->getType();
1034   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
1035     return Shadow;
1036 
1037   // Checks if the cached collapsed shadow value dominates Pos.
1038   Value *&CS = CachedCollapsedShadows[Shadow];
1039   if (CS && DT.dominates(CS, Pos))
1040     return CS;
1041 
1042   IRBuilder<> IRB(Pos->getParent(), Pos);
1043   Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
1044   // Caches the converted primitive shadow value.
1045   CS = PrimitiveShadow;
1046   return PrimitiveShadow;
1047 }
1048 
1049 void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I,
1050                                                      Value *Condition) {
1051   if (!ClConditionalCallbacks) {
1052     return;
1053   }
1054   IRBuilder<> IRB(&I);
1055   Value *CondShadow = getShadow(Condition);
1056   CallInst *CI;
1057   if (DFS.shouldTrackOrigins()) {
1058     Value *CondOrigin = getOrigin(Condition);
1059     CI = IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn,
1060                         {CondShadow, CondOrigin});
1061   } else {
1062     CI = IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow});
1063   }
1064   CI->addParamAttr(0, Attribute::ZExt);
1065 }
1066 
1067 void DFSanFunction::addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB,
1068                                                          Instruction &I,
1069                                                          Value *Data) {
1070   if (!ClReachesFunctionCallbacks) {
1071     return;
1072   }
1073   const DebugLoc &dbgloc = I.getDebugLoc();
1074   Value *DataShadow = collapseToPrimitiveShadow(getShadow(Data), IRB);
1075   ConstantInt *CILine;
1076   llvm::Value *FilePathPtr;
1077 
1078   if (dbgloc.get() == nullptr) {
1079     CILine = llvm::ConstantInt::get(I.getContext(), llvm::APInt(32, 0));
1080     FilePathPtr = IRB.CreateGlobalStringPtr(
1081         I.getFunction()->getParent()->getSourceFileName());
1082   } else {
1083     CILine = llvm::ConstantInt::get(I.getContext(),
1084                                     llvm::APInt(32, dbgloc.getLine()));
1085     FilePathPtr =
1086         IRB.CreateGlobalStringPtr(dbgloc->getFilename());
1087   }
1088 
1089   llvm::Value *FunctionNamePtr =
1090       IRB.CreateGlobalStringPtr(I.getFunction()->getName());
1091 
1092   CallInst *CB;
1093   std::vector<Value *> args;
1094 
1095   if (DFS.shouldTrackOrigins()) {
1096     Value *DataOrigin = getOrigin(Data);
1097     args = { DataShadow, DataOrigin, FilePathPtr, CILine, FunctionNamePtr };
1098     CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackOriginFn, args);
1099   } else {
1100     args = { DataShadow, FilePathPtr, CILine, FunctionNamePtr };
1101     CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackFn, args);
1102   }
1103   CB->addParamAttr(0, Attribute::ZExt);
1104   CB->setDebugLoc(dbgloc);
1105 }
1106 
1107 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
1108   if (!OrigTy->isSized())
1109     return PrimitiveShadowTy;
1110   if (isa<IntegerType>(OrigTy))
1111     return PrimitiveShadowTy;
1112   if (isa<VectorType>(OrigTy))
1113     return PrimitiveShadowTy;
1114   if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
1115     return ArrayType::get(getShadowTy(AT->getElementType()),
1116                           AT->getNumElements());
1117   if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1118     SmallVector<Type *, 4> Elements;
1119     for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
1120       Elements.push_back(getShadowTy(ST->getElementType(I)));
1121     return StructType::get(*Ctx, Elements);
1122   }
1123   return PrimitiveShadowTy;
1124 }
1125 
1126 Type *DataFlowSanitizer::getShadowTy(Value *V) {
1127   return getShadowTy(V->getType());
1128 }
1129 
1130 bool DataFlowSanitizer::initializeModule(Module &M) {
1131   Triple TargetTriple(M.getTargetTriple());
1132   const DataLayout &DL = M.getDataLayout();
1133 
1134   if (TargetTriple.getOS() != Triple::Linux)
1135     report_fatal_error("unsupported operating system");
1136   switch (TargetTriple.getArch()) {
1137   case Triple::aarch64:
1138     MapParams = &Linux_AArch64_MemoryMapParams;
1139     break;
1140   case Triple::x86_64:
1141     MapParams = &Linux_X86_64_MemoryMapParams;
1142     break;
1143   case Triple::loongarch64:
1144     MapParams = &Linux_LoongArch64_MemoryMapParams;
1145     break;
1146   default:
1147     report_fatal_error("unsupported architecture");
1148   }
1149 
1150   Mod = &M;
1151   Ctx = &M.getContext();
1152   Int8Ptr = PointerType::getUnqual(*Ctx);
1153   OriginTy = IntegerType::get(*Ctx, OriginWidthBits);
1154   OriginPtrTy = PointerType::getUnqual(OriginTy);
1155   PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1156   PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
1157   IntptrTy = DL.getIntPtrType(*Ctx);
1158   ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
1159   ZeroOrigin = ConstantInt::getSigned(OriginTy, 0);
1160 
1161   Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1162   DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
1163                                          /*isVarArg=*/false);
1164   Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy};
1165   DFSanLoadLabelAndOriginFnTy =
1166       FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs,
1167                         /*isVarArg=*/false);
1168   DFSanUnimplementedFnTy = FunctionType::get(
1169       Type::getVoidTy(*Ctx), PointerType::getUnqual(*Ctx), /*isVarArg=*/false);
1170   Type *DFSanWrapperExternWeakNullArgs[2] = {Int8Ptr, Int8Ptr};
1171   DFSanWrapperExternWeakNullFnTy =
1172       FunctionType::get(Type::getVoidTy(*Ctx), DFSanWrapperExternWeakNullArgs,
1173                         /*isVarArg=*/false);
1174   Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy,
1175                                 PointerType::getUnqual(*Ctx), IntptrTy};
1176   DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
1177                                         DFSanSetLabelArgs, /*isVarArg=*/false);
1178   DFSanNonzeroLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), std::nullopt,
1179                                             /*isVarArg=*/false);
1180   DFSanVarargWrapperFnTy = FunctionType::get(
1181       Type::getVoidTy(*Ctx), PointerType::getUnqual(*Ctx), /*isVarArg=*/false);
1182   DFSanConditionalCallbackFnTy =
1183       FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1184                         /*isVarArg=*/false);
1185   Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy};
1186   DFSanConditionalCallbackOriginFnTy = FunctionType::get(
1187       Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs,
1188       /*isVarArg=*/false);
1189   Type *DFSanReachesFunctionCallbackArgs[4] = {PrimitiveShadowTy, Int8Ptr,
1190                                                OriginTy, Int8Ptr};
1191   DFSanReachesFunctionCallbackFnTy =
1192       FunctionType::get(Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackArgs,
1193                         /*isVarArg=*/false);
1194   Type *DFSanReachesFunctionCallbackOriginArgs[5] = {
1195       PrimitiveShadowTy, OriginTy, Int8Ptr, OriginTy, Int8Ptr};
1196   DFSanReachesFunctionCallbackOriginFnTy = FunctionType::get(
1197       Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackOriginArgs,
1198       /*isVarArg=*/false);
1199   DFSanCmpCallbackFnTy =
1200       FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1201                         /*isVarArg=*/false);
1202   DFSanChainOriginFnTy =
1203       FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false);
1204   Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy};
1205   DFSanChainOriginIfTaintedFnTy = FunctionType::get(
1206       OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false);
1207   Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits),
1208                                         Int8Ptr, IntptrTy, OriginTy};
1209   DFSanMaybeStoreOriginFnTy = FunctionType::get(
1210       Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false);
1211   Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1212   DFSanMemOriginTransferFnTy = FunctionType::get(
1213       Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false);
1214   Type *DFSanMemShadowOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1215   DFSanMemShadowOriginTransferFnTy =
1216       FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemShadowOriginTransferArgs,
1217                         /*isVarArg=*/false);
1218   Type *DFSanMemShadowOriginConditionalExchangeArgs[5] = {
1219       IntegerType::get(*Ctx, 8), Int8Ptr, Int8Ptr, Int8Ptr, IntptrTy};
1220   DFSanMemShadowOriginConditionalExchangeFnTy = FunctionType::get(
1221       Type::getVoidTy(*Ctx), DFSanMemShadowOriginConditionalExchangeArgs,
1222       /*isVarArg=*/false);
1223   Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
1224   DFSanLoadStoreCallbackFnTy =
1225       FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
1226                         /*isVarArg=*/false);
1227   Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1228   DFSanMemTransferCallbackFnTy =
1229       FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
1230                         /*isVarArg=*/false);
1231 
1232   ColdCallWeights = MDBuilder(*Ctx).createUnlikelyBranchWeights();
1233   OriginStoreWeights = MDBuilder(*Ctx).createUnlikelyBranchWeights();
1234   return true;
1235 }
1236 
1237 bool DataFlowSanitizer::isInstrumented(const Function *F) {
1238   return !ABIList.isIn(*F, "uninstrumented");
1239 }
1240 
1241 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
1242   return !ABIList.isIn(*GA, "uninstrumented");
1243 }
1244 
1245 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) {
1246   return ABIList.isIn(*F, "force_zero_labels");
1247 }
1248 
1249 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
1250   if (ABIList.isIn(*F, "functional"))
1251     return WK_Functional;
1252   if (ABIList.isIn(*F, "discard"))
1253     return WK_Discard;
1254   if (ABIList.isIn(*F, "custom"))
1255     return WK_Custom;
1256 
1257   return WK_Warning;
1258 }
1259 
1260 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) {
1261   std::string GVName = std::string(GV->getName()), Suffix = ".dfsan";
1262   GV->setName(GVName + Suffix);
1263 
1264   // Try to change the name of the function in module inline asm.  We only do
1265   // this for specific asm directives, currently only ".symver", to try to avoid
1266   // corrupting asm which happens to contain the symbol name as a substring.
1267   // Note that the substitution for .symver assumes that the versioned symbol
1268   // also has an instrumented name.
1269   std::string Asm = GV->getParent()->getModuleInlineAsm();
1270   std::string SearchStr = ".symver " + GVName + ",";
1271   size_t Pos = Asm.find(SearchStr);
1272   if (Pos != std::string::npos) {
1273     Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ",");
1274     Pos = Asm.find('@');
1275 
1276     if (Pos == std::string::npos)
1277       report_fatal_error(Twine("unsupported .symver: ", Asm));
1278 
1279     Asm.replace(Pos, 1, Suffix + "@");
1280     GV->getParent()->setModuleInlineAsm(Asm);
1281   }
1282 }
1283 
1284 void DataFlowSanitizer::buildExternWeakCheckIfNeeded(IRBuilder<> &IRB,
1285                                                      Function *F) {
1286   // If the function we are wrapping was ExternWeak, it may be null.
1287   // The original code before calling this wrapper may have checked for null,
1288   // but replacing with a known-to-not-be-null wrapper can break this check.
1289   // When replacing uses of the extern weak function with the wrapper we try
1290   // to avoid replacing uses in conditionals, but this is not perfect.
1291   // In the case where we fail, and accidentally optimize out a null check
1292   // for a extern weak function, add a check here to help identify the issue.
1293   if (GlobalValue::isExternalWeakLinkage(F->getLinkage())) {
1294     std::vector<Value *> Args;
1295     Args.push_back(F);
1296     Args.push_back(IRB.CreateGlobalStringPtr(F->getName()));
1297     IRB.CreateCall(DFSanWrapperExternWeakNullFn, Args);
1298   }
1299 }
1300 
1301 Function *
1302 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
1303                                         GlobalValue::LinkageTypes NewFLink,
1304                                         FunctionType *NewFT) {
1305   FunctionType *FT = F->getFunctionType();
1306   Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
1307                                     NewFName, F->getParent());
1308   NewF->copyAttributesFrom(F);
1309   NewF->removeRetAttrs(
1310       AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
1311 
1312   BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
1313   if (F->isVarArg()) {
1314     NewF->removeFnAttr("split-stack");
1315     CallInst::Create(DFSanVarargWrapperFn,
1316                      IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
1317                      BB);
1318     new UnreachableInst(*Ctx, BB);
1319   } else {
1320     auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin());
1321     std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams());
1322 
1323     CallInst *CI = CallInst::Create(F, Args, "", BB);
1324     if (FT->getReturnType()->isVoidTy())
1325       ReturnInst::Create(*Ctx, BB);
1326     else
1327       ReturnInst::Create(*Ctx, CI, BB);
1328   }
1329 
1330   return NewF;
1331 }
1332 
1333 // Initialize DataFlowSanitizer runtime functions and declare them in the module
1334 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
1335   LLVMContext &C = M.getContext();
1336   {
1337     AttributeList AL;
1338     AL = AL.addFnAttribute(C, Attribute::NoUnwind);
1339     AL = AL.addFnAttribute(
1340         C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly()));
1341     AL = AL.addRetAttribute(C, Attribute::ZExt);
1342     DFSanUnionLoadFn =
1343         Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
1344   }
1345   {
1346     AttributeList AL;
1347     AL = AL.addFnAttribute(C, Attribute::NoUnwind);
1348     AL = AL.addFnAttribute(
1349         C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly()));
1350     AL = AL.addRetAttribute(C, Attribute::ZExt);
1351     DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction(
1352         "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL);
1353   }
1354   DFSanUnimplementedFn =
1355       Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
1356   DFSanWrapperExternWeakNullFn = Mod->getOrInsertFunction(
1357       "__dfsan_wrapper_extern_weak_null", DFSanWrapperExternWeakNullFnTy);
1358   {
1359     AttributeList AL;
1360     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1361     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1362     DFSanSetLabelFn =
1363         Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
1364   }
1365   DFSanNonzeroLabelFn =
1366       Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
1367   DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
1368                                                   DFSanVarargWrapperFnTy);
1369   {
1370     AttributeList AL;
1371     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1372     AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1373     DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin",
1374                                                   DFSanChainOriginFnTy, AL);
1375   }
1376   {
1377     AttributeList AL;
1378     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1379     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1380     AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1381     DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction(
1382         "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL);
1383   }
1384   DFSanMemOriginTransferFn = Mod->getOrInsertFunction(
1385       "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy);
1386 
1387   DFSanMemShadowOriginTransferFn = Mod->getOrInsertFunction(
1388       "__dfsan_mem_shadow_origin_transfer", DFSanMemShadowOriginTransferFnTy);
1389 
1390   DFSanMemShadowOriginConditionalExchangeFn =
1391       Mod->getOrInsertFunction("__dfsan_mem_shadow_origin_conditional_exchange",
1392                                DFSanMemShadowOriginConditionalExchangeFnTy);
1393 
1394   {
1395     AttributeList AL;
1396     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1397     AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
1398     DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction(
1399         "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL);
1400   }
1401 
1402   DFSanRuntimeFunctions.insert(
1403       DFSanUnionLoadFn.getCallee()->stripPointerCasts());
1404   DFSanRuntimeFunctions.insert(
1405       DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts());
1406   DFSanRuntimeFunctions.insert(
1407       DFSanUnimplementedFn.getCallee()->stripPointerCasts());
1408   DFSanRuntimeFunctions.insert(
1409       DFSanWrapperExternWeakNullFn.getCallee()->stripPointerCasts());
1410   DFSanRuntimeFunctions.insert(
1411       DFSanSetLabelFn.getCallee()->stripPointerCasts());
1412   DFSanRuntimeFunctions.insert(
1413       DFSanNonzeroLabelFn.getCallee()->stripPointerCasts());
1414   DFSanRuntimeFunctions.insert(
1415       DFSanVarargWrapperFn.getCallee()->stripPointerCasts());
1416   DFSanRuntimeFunctions.insert(
1417       DFSanLoadCallbackFn.getCallee()->stripPointerCasts());
1418   DFSanRuntimeFunctions.insert(
1419       DFSanStoreCallbackFn.getCallee()->stripPointerCasts());
1420   DFSanRuntimeFunctions.insert(
1421       DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts());
1422   DFSanRuntimeFunctions.insert(
1423       DFSanConditionalCallbackFn.getCallee()->stripPointerCasts());
1424   DFSanRuntimeFunctions.insert(
1425       DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts());
1426   DFSanRuntimeFunctions.insert(
1427       DFSanReachesFunctionCallbackFn.getCallee()->stripPointerCasts());
1428   DFSanRuntimeFunctions.insert(
1429       DFSanReachesFunctionCallbackOriginFn.getCallee()->stripPointerCasts());
1430   DFSanRuntimeFunctions.insert(
1431       DFSanCmpCallbackFn.getCallee()->stripPointerCasts());
1432   DFSanRuntimeFunctions.insert(
1433       DFSanChainOriginFn.getCallee()->stripPointerCasts());
1434   DFSanRuntimeFunctions.insert(
1435       DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts());
1436   DFSanRuntimeFunctions.insert(
1437       DFSanMemOriginTransferFn.getCallee()->stripPointerCasts());
1438   DFSanRuntimeFunctions.insert(
1439       DFSanMemShadowOriginTransferFn.getCallee()->stripPointerCasts());
1440   DFSanRuntimeFunctions.insert(
1441       DFSanMemShadowOriginConditionalExchangeFn.getCallee()
1442           ->stripPointerCasts());
1443   DFSanRuntimeFunctions.insert(
1444       DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts());
1445 }
1446 
1447 // Initializes event callback functions and declare them in the module
1448 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
1449   {
1450     AttributeList AL;
1451     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1452     DFSanLoadCallbackFn = Mod->getOrInsertFunction(
1453         "__dfsan_load_callback", DFSanLoadStoreCallbackFnTy, AL);
1454   }
1455   {
1456     AttributeList AL;
1457     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1458     DFSanStoreCallbackFn = Mod->getOrInsertFunction(
1459         "__dfsan_store_callback", DFSanLoadStoreCallbackFnTy, AL);
1460   }
1461   DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
1462       "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
1463   {
1464     AttributeList AL;
1465     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1466     DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback",
1467                                                   DFSanCmpCallbackFnTy, AL);
1468   }
1469   {
1470     AttributeList AL;
1471     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1472     DFSanConditionalCallbackFn = Mod->getOrInsertFunction(
1473         "__dfsan_conditional_callback", DFSanConditionalCallbackFnTy, AL);
1474   }
1475   {
1476     AttributeList AL;
1477     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1478     DFSanConditionalCallbackOriginFn =
1479         Mod->getOrInsertFunction("__dfsan_conditional_callback_origin",
1480                                  DFSanConditionalCallbackOriginFnTy, AL);
1481   }
1482   {
1483     AttributeList AL;
1484     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1485     DFSanReachesFunctionCallbackFn =
1486         Mod->getOrInsertFunction("__dfsan_reaches_function_callback",
1487                                  DFSanReachesFunctionCallbackFnTy, AL);
1488   }
1489   {
1490     AttributeList AL;
1491     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1492     DFSanReachesFunctionCallbackOriginFn =
1493         Mod->getOrInsertFunction("__dfsan_reaches_function_callback_origin",
1494                                  DFSanReachesFunctionCallbackOriginFnTy, AL);
1495   }
1496 }
1497 
1498 bool DataFlowSanitizer::runImpl(
1499     Module &M, llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1500   initializeModule(M);
1501 
1502   if (ABIList.isIn(M, "skip"))
1503     return false;
1504 
1505   const unsigned InitialGlobalSize = M.global_size();
1506   const unsigned InitialModuleSize = M.size();
1507 
1508   bool Changed = false;
1509 
1510   auto GetOrInsertGlobal = [this, &Changed](StringRef Name,
1511                                             Type *Ty) -> Constant * {
1512     Constant *C = Mod->getOrInsertGlobal(Name, Ty);
1513     if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
1514       Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
1515       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
1516     }
1517     return C;
1518   };
1519 
1520   // These globals must be kept in sync with the ones in dfsan.cpp.
1521   ArgTLS =
1522       GetOrInsertGlobal("__dfsan_arg_tls",
1523                         ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8));
1524   RetvalTLS = GetOrInsertGlobal(
1525       "__dfsan_retval_tls",
1526       ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8));
1527   ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS);
1528   ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy);
1529   RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy);
1530 
1531   (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] {
1532     Changed = true;
1533     return new GlobalVariable(
1534         M, OriginTy, true, GlobalValue::WeakODRLinkage,
1535         ConstantInt::getSigned(OriginTy,
1536                                shouldTrackOrigins() ? ClTrackOrigins : 0),
1537         "__dfsan_track_origins");
1538   });
1539 
1540   initializeCallbackFunctions(M);
1541   initializeRuntimeFunctions(M);
1542 
1543   std::vector<Function *> FnsToInstrument;
1544   SmallPtrSet<Function *, 2> FnsWithNativeABI;
1545   SmallPtrSet<Function *, 2> FnsWithForceZeroLabel;
1546   SmallPtrSet<Constant *, 1> PersonalityFns;
1547   for (Function &F : M)
1548     if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F) &&
1549         !LibAtomicFunction(F) &&
1550         !F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) {
1551       FnsToInstrument.push_back(&F);
1552       if (F.hasPersonalityFn())
1553         PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts());
1554     }
1555 
1556   if (ClIgnorePersonalityRoutine) {
1557     for (auto *C : PersonalityFns) {
1558       assert(isa<Function>(C) && "Personality routine is not a function!");
1559       Function *F = cast<Function>(C);
1560       if (!isInstrumented(F))
1561         llvm::erase(FnsToInstrument, F);
1562     }
1563   }
1564 
1565   // Give function aliases prefixes when necessary, and build wrappers where the
1566   // instrumentedness is inconsistent.
1567   for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) {
1568     // Don't stop on weak.  We assume people aren't playing games with the
1569     // instrumentedness of overridden weak aliases.
1570     auto *F = dyn_cast<Function>(GA.getAliaseeObject());
1571     if (!F)
1572       continue;
1573 
1574     bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F);
1575     if (GAInst && FInst) {
1576       addGlobalNameSuffix(&GA);
1577     } else if (GAInst != FInst) {
1578       // Non-instrumented alias of an instrumented function, or vice versa.
1579       // Replace the alias with a native-ABI wrapper of the aliasee.  The pass
1580       // below will take care of instrumenting it.
1581       Function *NewF =
1582           buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType());
1583       GA.replaceAllUsesWith(NewF);
1584       NewF->takeName(&GA);
1585       GA.eraseFromParent();
1586       FnsToInstrument.push_back(NewF);
1587     }
1588   }
1589 
1590   // TODO: This could be more precise.
1591   ReadOnlyNoneAttrs.addAttribute(Attribute::Memory);
1592 
1593   // First, change the ABI of every function in the module.  ABI-listed
1594   // functions keep their original ABI and get a wrapper function.
1595   for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(),
1596                                          FE = FnsToInstrument.end();
1597        FI != FE; ++FI) {
1598     Function &F = **FI;
1599     FunctionType *FT = F.getFunctionType();
1600 
1601     bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
1602                               FT->getReturnType()->isVoidTy());
1603 
1604     if (isInstrumented(&F)) {
1605       if (isForceZeroLabels(&F))
1606         FnsWithForceZeroLabel.insert(&F);
1607 
1608       // Instrumented functions get a '.dfsan' suffix.  This allows us to more
1609       // easily identify cases of mismatching ABIs. This naming scheme is
1610       // mangling-compatible (see Itanium ABI), using a vendor-specific suffix.
1611       addGlobalNameSuffix(&F);
1612     } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
1613       // Build a wrapper function for F.  The wrapper simply calls F, and is
1614       // added to FnsToInstrument so that any instrumentation according to its
1615       // WrapperKind is done in the second pass below.
1616 
1617       // If the function being wrapped has local linkage, then preserve the
1618       // function's linkage in the wrapper function.
1619       GlobalValue::LinkageTypes WrapperLinkage =
1620           F.hasLocalLinkage() ? F.getLinkage()
1621                               : GlobalValue::LinkOnceODRLinkage;
1622 
1623       Function *NewF = buildWrapperFunction(
1624           &F,
1625           (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) +
1626               std::string(F.getName()),
1627           WrapperLinkage, FT);
1628       NewF->removeFnAttrs(ReadOnlyNoneAttrs);
1629 
1630       // Extern weak functions can sometimes be null at execution time.
1631       // Code will sometimes check if an extern weak function is null.
1632       // This could look something like:
1633       //   declare extern_weak i8 @my_func(i8)
1634       //   br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func,
1635       //   label %avoid_my_func
1636       // The @"dfsw$my_func" wrapper is never null, so if we replace this use
1637       // in the comparison, the icmp will simplify to false and we have
1638       // accidentally optimized away a null check that is necessary.
1639       // This can lead to a crash when the null extern_weak my_func is called.
1640       //
1641       // To prevent (the most common pattern of) this problem,
1642       // do not replace uses in comparisons with the wrapper.
1643       // We definitely want to replace uses in call instructions.
1644       // Other uses (e.g. store the function address somewhere) might be
1645       // called or compared or both - this case may not be handled correctly.
1646       // We will default to replacing with wrapper in cases we are unsure.
1647       auto IsNotCmpUse = [](Use &U) -> bool {
1648         User *Usr = U.getUser();
1649         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1650           // This is the most common case for icmp ne null
1651           if (CE->getOpcode() == Instruction::ICmp) {
1652             return false;
1653           }
1654         }
1655         if (Instruction *I = dyn_cast<Instruction>(Usr)) {
1656           if (I->getOpcode() == Instruction::ICmp) {
1657             return false;
1658           }
1659         }
1660         return true;
1661       };
1662       F.replaceUsesWithIf(NewF, IsNotCmpUse);
1663 
1664       UnwrappedFnMap[NewF] = &F;
1665       *FI = NewF;
1666 
1667       if (!F.isDeclaration()) {
1668         // This function is probably defining an interposition of an
1669         // uninstrumented function and hence needs to keep the original ABI.
1670         // But any functions it may call need to use the instrumented ABI, so
1671         // we instrument it in a mode which preserves the original ABI.
1672         FnsWithNativeABI.insert(&F);
1673 
1674         // This code needs to rebuild the iterators, as they may be invalidated
1675         // by the push_back, taking care that the new range does not include
1676         // any functions added by this code.
1677         size_t N = FI - FnsToInstrument.begin(),
1678                Count = FE - FnsToInstrument.begin();
1679         FnsToInstrument.push_back(&F);
1680         FI = FnsToInstrument.begin() + N;
1681         FE = FnsToInstrument.begin() + Count;
1682       }
1683       // Hopefully, nobody will try to indirectly call a vararg
1684       // function... yet.
1685     } else if (FT->isVarArg()) {
1686       UnwrappedFnMap[&F] = &F;
1687       *FI = nullptr;
1688     }
1689   }
1690 
1691   for (Function *F : FnsToInstrument) {
1692     if (!F || F->isDeclaration())
1693       continue;
1694 
1695     removeUnreachableBlocks(*F);
1696 
1697     DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F),
1698                        FnsWithForceZeroLabel.count(F), GetTLI(*F));
1699 
1700     if (ClReachesFunctionCallbacks) {
1701       // Add callback for arguments reaching this function.
1702       for (auto &FArg : F->args()) {
1703         Instruction *Next = &F->getEntryBlock().front();
1704         Value *FArgShadow = DFSF.getShadow(&FArg);
1705         if (isZeroShadow(FArgShadow))
1706           continue;
1707         if (Instruction *FArgShadowInst = dyn_cast<Instruction>(FArgShadow)) {
1708           Next = FArgShadowInst->getNextNode();
1709         }
1710         if (shouldTrackOrigins()) {
1711           if (Instruction *Origin =
1712                   dyn_cast<Instruction>(DFSF.getOrigin(&FArg))) {
1713             // Ensure IRB insertion point is after loads for shadow and origin.
1714             Instruction *OriginNext = Origin->getNextNode();
1715             if (Next->comesBefore(OriginNext)) {
1716               Next = OriginNext;
1717             }
1718           }
1719         }
1720         IRBuilder<> IRB(Next);
1721         DFSF.addReachesFunctionCallbacksIfEnabled(IRB, *Next, &FArg);
1722       }
1723     }
1724 
1725     // DFSanVisitor may create new basic blocks, which confuses df_iterator.
1726     // Build a copy of the list before iterating over it.
1727     SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock()));
1728 
1729     for (BasicBlock *BB : BBList) {
1730       Instruction *Inst = &BB->front();
1731       while (true) {
1732         // DFSanVisitor may split the current basic block, changing the current
1733         // instruction's next pointer and moving the next instruction to the
1734         // tail block from which we should continue.
1735         Instruction *Next = Inst->getNextNode();
1736         // DFSanVisitor may delete Inst, so keep track of whether it was a
1737         // terminator.
1738         bool IsTerminator = Inst->isTerminator();
1739         if (!DFSF.SkipInsts.count(Inst))
1740           DFSanVisitor(DFSF).visit(Inst);
1741         if (IsTerminator)
1742           break;
1743         Inst = Next;
1744       }
1745     }
1746 
1747     // We will not necessarily be able to compute the shadow for every phi node
1748     // until we have visited every block.  Therefore, the code that handles phi
1749     // nodes adds them to the PHIFixups list so that they can be properly
1750     // handled here.
1751     for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) {
1752       for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N;
1753            ++Val) {
1754         P.ShadowPhi->setIncomingValue(
1755             Val, DFSF.getShadow(P.Phi->getIncomingValue(Val)));
1756         if (P.OriginPhi)
1757           P.OriginPhi->setIncomingValue(
1758               Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val)));
1759       }
1760     }
1761 
1762     // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
1763     // places (i.e. instructions in basic blocks we haven't even begun visiting
1764     // yet).  To make our life easier, do this work in a pass after the main
1765     // instrumentation.
1766     if (ClDebugNonzeroLabels) {
1767       for (Value *V : DFSF.NonZeroChecks) {
1768         BasicBlock::iterator Pos;
1769         if (Instruction *I = dyn_cast<Instruction>(V))
1770           Pos = std::next(I->getIterator());
1771         else
1772           Pos = DFSF.F->getEntryBlock().begin();
1773         while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
1774           Pos = std::next(Pos->getIterator());
1775         IRBuilder<> IRB(Pos->getParent(), Pos);
1776         Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
1777         Value *Ne =
1778             IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
1779         BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1780             Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
1781         IRBuilder<> ThenIRB(BI);
1782         ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
1783       }
1784     }
1785   }
1786 
1787   return Changed || !FnsToInstrument.empty() ||
1788          M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
1789 }
1790 
1791 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
1792   Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
1793   if (ArgOffset)
1794     Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
1795   return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
1796                             "_dfsarg");
1797 }
1798 
1799 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
1800   return IRB.CreatePointerCast(
1801       DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
1802 }
1803 
1804 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; }
1805 
1806 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) {
1807   return IRB.CreateConstInBoundsGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0,
1808                                         ArgNo, "_dfsarg_o");
1809 }
1810 
1811 Value *DFSanFunction::getOrigin(Value *V) {
1812   assert(DFS.shouldTrackOrigins());
1813   if (!isa<Argument>(V) && !isa<Instruction>(V))
1814     return DFS.ZeroOrigin;
1815   Value *&Origin = ValOriginMap[V];
1816   if (!Origin) {
1817     if (Argument *A = dyn_cast<Argument>(V)) {
1818       if (IsNativeABI)
1819         return DFS.ZeroOrigin;
1820       if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) {
1821         Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin();
1822         IRBuilder<> IRB(ArgOriginTLSPos);
1823         Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB);
1824         Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr);
1825       } else {
1826         // Overflow
1827         Origin = DFS.ZeroOrigin;
1828       }
1829     } else {
1830       Origin = DFS.ZeroOrigin;
1831     }
1832   }
1833   return Origin;
1834 }
1835 
1836 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) {
1837   if (!DFS.shouldTrackOrigins())
1838     return;
1839   assert(!ValOriginMap.count(I));
1840   assert(Origin->getType() == DFS.OriginTy);
1841   ValOriginMap[I] = Origin;
1842 }
1843 
1844 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
1845   unsigned ArgOffset = 0;
1846   const DataLayout &DL = F->getDataLayout();
1847   for (auto &FArg : F->args()) {
1848     if (!FArg.getType()->isSized()) {
1849       if (A == &FArg)
1850         break;
1851       continue;
1852     }
1853 
1854     unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
1855     if (A != &FArg) {
1856       ArgOffset += alignTo(Size, ShadowTLSAlignment);
1857       if (ArgOffset > ArgTLSSize)
1858         break; // ArgTLS overflows, uses a zero shadow.
1859       continue;
1860     }
1861 
1862     if (ArgOffset + Size > ArgTLSSize)
1863       break; // ArgTLS overflows, uses a zero shadow.
1864 
1865     Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
1866     IRBuilder<> IRB(ArgTLSPos);
1867     Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
1868     return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
1869                                  ShadowTLSAlignment);
1870   }
1871 
1872   return DFS.getZeroShadow(A);
1873 }
1874 
1875 Value *DFSanFunction::getShadow(Value *V) {
1876   if (!isa<Argument>(V) && !isa<Instruction>(V))
1877     return DFS.getZeroShadow(V);
1878   if (IsForceZeroLabels)
1879     return DFS.getZeroShadow(V);
1880   Value *&Shadow = ValShadowMap[V];
1881   if (!Shadow) {
1882     if (Argument *A = dyn_cast<Argument>(V)) {
1883       if (IsNativeABI)
1884         return DFS.getZeroShadow(V);
1885       Shadow = getShadowForTLSArgument(A);
1886       NonZeroChecks.push_back(Shadow);
1887     } else {
1888       Shadow = DFS.getZeroShadow(V);
1889     }
1890   }
1891   return Shadow;
1892 }
1893 
1894 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1895   assert(!ValShadowMap.count(I));
1896   ValShadowMap[I] = Shadow;
1897 }
1898 
1899 /// Compute the integer shadow offset that corresponds to a given
1900 /// application address.
1901 ///
1902 /// Offset = (Addr & ~AndMask) ^ XorMask
1903 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) {
1904   assert(Addr != RetvalTLS && "Reinstrumenting?");
1905   Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
1906 
1907   uint64_t AndMask = MapParams->AndMask;
1908   if (AndMask)
1909     OffsetLong =
1910         IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask));
1911 
1912   uint64_t XorMask = MapParams->XorMask;
1913   if (XorMask)
1914     OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask));
1915   return OffsetLong;
1916 }
1917 
1918 std::pair<Value *, Value *>
1919 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment,
1920                                           BasicBlock::iterator Pos) {
1921   // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL
1922   IRBuilder<> IRB(Pos->getParent(), Pos);
1923   Value *ShadowOffset = getShadowOffset(Addr, IRB);
1924   Value *ShadowLong = ShadowOffset;
1925   uint64_t ShadowBase = MapParams->ShadowBase;
1926   if (ShadowBase != 0) {
1927     ShadowLong =
1928         IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase));
1929   }
1930   IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1931   Value *ShadowPtr =
1932       IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1933   Value *OriginPtr = nullptr;
1934   if (shouldTrackOrigins()) {
1935     Value *OriginLong = ShadowOffset;
1936     uint64_t OriginBase = MapParams->OriginBase;
1937     if (OriginBase != 0)
1938       OriginLong =
1939           IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase));
1940     const Align Alignment = llvm::assumeAligned(InstAlignment.value());
1941     // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB.
1942     // So Mask is unnecessary.
1943     if (Alignment < MinOriginAlignment) {
1944       uint64_t Mask = MinOriginAlignment.value() - 1;
1945       OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask));
1946     }
1947     OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy);
1948   }
1949   return std::make_pair(ShadowPtr, OriginPtr);
1950 }
1951 
1952 Value *DataFlowSanitizer::getShadowAddress(Value *Addr,
1953                                            BasicBlock::iterator Pos,
1954                                            Value *ShadowOffset) {
1955   IRBuilder<> IRB(Pos->getParent(), Pos);
1956   return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy);
1957 }
1958 
1959 Value *DataFlowSanitizer::getShadowAddress(Value *Addr,
1960                                            BasicBlock::iterator Pos) {
1961   IRBuilder<> IRB(Pos->getParent(), Pos);
1962   Value *ShadowOffset = getShadowOffset(Addr, IRB);
1963   return getShadowAddress(Addr, Pos, ShadowOffset);
1964 }
1965 
1966 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
1967                                                 BasicBlock::iterator Pos) {
1968   Value *PrimitiveValue = combineShadows(V1, V2, Pos);
1969   return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
1970 }
1971 
1972 // Generates IR to compute the union of the two given shadows, inserting it
1973 // before Pos. The combined value is with primitive type.
1974 Value *DFSanFunction::combineShadows(Value *V1, Value *V2,
1975                                      BasicBlock::iterator Pos) {
1976   if (DFS.isZeroShadow(V1))
1977     return collapseToPrimitiveShadow(V2, Pos);
1978   if (DFS.isZeroShadow(V2))
1979     return collapseToPrimitiveShadow(V1, Pos);
1980   if (V1 == V2)
1981     return collapseToPrimitiveShadow(V1, Pos);
1982 
1983   auto V1Elems = ShadowElements.find(V1);
1984   auto V2Elems = ShadowElements.find(V2);
1985   if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1986     if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1987                       V2Elems->second.begin(), V2Elems->second.end())) {
1988       return collapseToPrimitiveShadow(V1, Pos);
1989     }
1990     if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1991                       V1Elems->second.begin(), V1Elems->second.end())) {
1992       return collapseToPrimitiveShadow(V2, Pos);
1993     }
1994   } else if (V1Elems != ShadowElements.end()) {
1995     if (V1Elems->second.count(V2))
1996       return collapseToPrimitiveShadow(V1, Pos);
1997   } else if (V2Elems != ShadowElements.end()) {
1998     if (V2Elems->second.count(V1))
1999       return collapseToPrimitiveShadow(V2, Pos);
2000   }
2001 
2002   auto Key = std::make_pair(V1, V2);
2003   if (V1 > V2)
2004     std::swap(Key.first, Key.second);
2005   CachedShadow &CCS = CachedShadows[Key];
2006   if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
2007     return CCS.Shadow;
2008 
2009   // Converts inputs shadows to shadows with primitive types.
2010   Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
2011   Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
2012 
2013   IRBuilder<> IRB(Pos->getParent(), Pos);
2014   CCS.Block = Pos->getParent();
2015   CCS.Shadow = IRB.CreateOr(PV1, PV2);
2016 
2017   std::set<Value *> UnionElems;
2018   if (V1Elems != ShadowElements.end()) {
2019     UnionElems = V1Elems->second;
2020   } else {
2021     UnionElems.insert(V1);
2022   }
2023   if (V2Elems != ShadowElements.end()) {
2024     UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
2025   } else {
2026     UnionElems.insert(V2);
2027   }
2028   ShadowElements[CCS.Shadow] = std::move(UnionElems);
2029 
2030   return CCS.Shadow;
2031 }
2032 
2033 // A convenience function which folds the shadows of each of the operands
2034 // of the provided instruction Inst, inserting the IR before Inst.  Returns
2035 // the computed union Value.
2036 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
2037   if (Inst->getNumOperands() == 0)
2038     return DFS.getZeroShadow(Inst);
2039 
2040   Value *Shadow = getShadow(Inst->getOperand(0));
2041   for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I)
2042     Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)),
2043                             Inst->getIterator());
2044 
2045   return expandFromPrimitiveShadow(Inst->getType(), Shadow,
2046                                    Inst->getIterator());
2047 }
2048 
2049 void DFSanVisitor::visitInstOperands(Instruction &I) {
2050   Value *CombinedShadow = DFSF.combineOperandShadows(&I);
2051   DFSF.setShadow(&I, CombinedShadow);
2052   visitInstOperandOrigins(I);
2053 }
2054 
2055 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows,
2056                                      const std::vector<Value *> &Origins,
2057                                      BasicBlock::iterator Pos,
2058                                      ConstantInt *Zero) {
2059   assert(Shadows.size() == Origins.size());
2060   size_t Size = Origins.size();
2061   if (Size == 0)
2062     return DFS.ZeroOrigin;
2063   Value *Origin = nullptr;
2064   if (!Zero)
2065     Zero = DFS.ZeroPrimitiveShadow;
2066   for (size_t I = 0; I != Size; ++I) {
2067     Value *OpOrigin = Origins[I];
2068     Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin);
2069     if (ConstOpOrigin && ConstOpOrigin->isNullValue())
2070       continue;
2071     if (!Origin) {
2072       Origin = OpOrigin;
2073       continue;
2074     }
2075     Value *OpShadow = Shadows[I];
2076     Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos);
2077     IRBuilder<> IRB(Pos->getParent(), Pos);
2078     Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero);
2079     Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2080   }
2081   return Origin ? Origin : DFS.ZeroOrigin;
2082 }
2083 
2084 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) {
2085   size_t Size = Inst->getNumOperands();
2086   std::vector<Value *> Shadows(Size);
2087   std::vector<Value *> Origins(Size);
2088   for (unsigned I = 0; I != Size; ++I) {
2089     Shadows[I] = getShadow(Inst->getOperand(I));
2090     Origins[I] = getOrigin(Inst->getOperand(I));
2091   }
2092   return combineOrigins(Shadows, Origins, Inst->getIterator());
2093 }
2094 
2095 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) {
2096   if (!DFSF.DFS.shouldTrackOrigins())
2097     return;
2098   Value *CombinedOrigin = DFSF.combineOperandOrigins(&I);
2099   DFSF.setOrigin(&I, CombinedOrigin);
2100 }
2101 
2102 Align DFSanFunction::getShadowAlign(Align InstAlignment) {
2103   const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1);
2104   return Align(Alignment.value() * DFS.ShadowWidthBytes);
2105 }
2106 
2107 Align DFSanFunction::getOriginAlign(Align InstAlignment) {
2108   const Align Alignment = llvm::assumeAligned(InstAlignment.value());
2109   return Align(std::max(MinOriginAlignment, Alignment));
2110 }
2111 
2112 bool DFSanFunction::isLookupTableConstant(Value *P) {
2113   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts()))
2114     if (GV->isConstant() && GV->hasName())
2115       return DFS.CombineTaintLookupTableNames.count(GV->getName());
2116 
2117   return false;
2118 }
2119 
2120 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size,
2121                                                   Align InstAlignment) {
2122   // When enabling tracking load instructions, we always use
2123   // __dfsan_load_label_and_origin to reduce code size.
2124   if (ClTrackOrigins == 2)
2125     return true;
2126 
2127   assert(Size != 0);
2128   // * if Size == 1, it is sufficient to load its origin aligned at 4.
2129   // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to
2130   //   load its origin aligned at 4. If not, although origins may be lost, it
2131   //   should not happen very often.
2132   // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When
2133   //   Size % 4 == 0, it is more efficient to load origins without callbacks.
2134   // * Otherwise we use __dfsan_load_label_and_origin.
2135   // This should ensure that common cases run efficiently.
2136   if (Size <= 2)
2137     return false;
2138 
2139   const Align Alignment = llvm::assumeAligned(InstAlignment.value());
2140   return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size);
2141 }
2142 
2143 Value *DataFlowSanitizer::loadNextOrigin(BasicBlock::iterator Pos,
2144                                          Align OriginAlign,
2145                                          Value **OriginAddr) {
2146   IRBuilder<> IRB(Pos->getParent(), Pos);
2147   *OriginAddr =
2148       IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1));
2149   return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign);
2150 }
2151 
2152 std::pair<Value *, Value *> DFSanFunction::loadShadowFast(
2153     Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign,
2154     Align OriginAlign, Value *FirstOrigin, BasicBlock::iterator Pos) {
2155   const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2156   const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
2157 
2158   assert(Size >= 4 && "Not large enough load size for fast path!");
2159 
2160   // Used for origin tracking.
2161   std::vector<Value *> Shadows;
2162   std::vector<Value *> Origins;
2163 
2164   // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20)
2165   // but this function is only used in a subset of cases that make it possible
2166   // to optimize the instrumentation.
2167   //
2168   // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow
2169   // per byte) is either:
2170   // - a multiple of 8  (common)
2171   // - equal to 4       (only for load32)
2172   //
2173   // For the second case, we can fit the wide shadow in a 32-bit integer. In all
2174   // other cases, we use a 64-bit integer to hold the wide shadow.
2175   Type *WideShadowTy =
2176       ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
2177 
2178   IRBuilder<> IRB(Pos->getParent(), Pos);
2179   Value *CombinedWideShadow =
2180       IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign);
2181 
2182   unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
2183   const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
2184 
2185   auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) {
2186     if (BytesPerWideShadow > 4) {
2187       assert(BytesPerWideShadow == 8);
2188       // The wide shadow relates to two origin pointers: one for the first four
2189       // application bytes, and one for the latest four. We use a left shift to
2190       // get just the shadow bytes that correspond to the first origin pointer,
2191       // and then the entire shadow for the second origin pointer (which will be
2192       // chosen by combineOrigins() iff the least-significant half of the wide
2193       // shadow was empty but the other half was not).
2194       Value *WideShadowLo = IRB.CreateShl(
2195           WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2));
2196       Shadows.push_back(WideShadow);
2197       Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr));
2198 
2199       Shadows.push_back(WideShadowLo);
2200       Origins.push_back(Origin);
2201     } else {
2202       Shadows.push_back(WideShadow);
2203       Origins.push_back(Origin);
2204     }
2205   };
2206 
2207   if (ShouldTrackOrigins)
2208     AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin);
2209 
2210   // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly;
2211   // then OR individual shadows within the combined WideShadow by binary ORing.
2212   // This is fewer instructions than ORing shadows individually, since it
2213   // needs logN shift/or instructions (N being the bytes of the combined wide
2214   // shadow).
2215   for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
2216        ByteOfs += BytesPerWideShadow) {
2217     ShadowAddr = IRB.CreateGEP(WideShadowTy, ShadowAddr,
2218                                ConstantInt::get(DFS.IntptrTy, 1));
2219     Value *NextWideShadow =
2220         IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign);
2221     CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
2222     if (ShouldTrackOrigins) {
2223       Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr);
2224       AppendWideShadowAndOrigin(NextWideShadow, NextOrigin);
2225     }
2226   }
2227   for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits;
2228        Width >>= 1) {
2229     Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
2230     CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
2231   }
2232   return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy),
2233           ShouldTrackOrigins
2234               ? combineOrigins(Shadows, Origins, Pos,
2235                                ConstantInt::getSigned(IRB.getInt64Ty(), 0))
2236               : DFS.ZeroOrigin};
2237 }
2238 
2239 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking(
2240     Value *Addr, uint64_t Size, Align InstAlignment, BasicBlock::iterator Pos) {
2241   const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2242 
2243   // Non-escaped loads.
2244   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2245     const auto SI = AllocaShadowMap.find(AI);
2246     if (SI != AllocaShadowMap.end()) {
2247       IRBuilder<> IRB(Pos->getParent(), Pos);
2248       Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second);
2249       const auto OI = AllocaOriginMap.find(AI);
2250       assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end());
2251       return {ShadowLI, ShouldTrackOrigins
2252                             ? IRB.CreateLoad(DFS.OriginTy, OI->second)
2253                             : nullptr};
2254     }
2255   }
2256 
2257   // Load from constant addresses.
2258   SmallVector<const Value *, 2> Objs;
2259   getUnderlyingObjects(Addr, Objs);
2260   bool AllConstants = true;
2261   for (const Value *Obj : Objs) {
2262     if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
2263       continue;
2264     if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
2265       continue;
2266 
2267     AllConstants = false;
2268     break;
2269   }
2270   if (AllConstants)
2271     return {DFS.ZeroPrimitiveShadow,
2272             ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2273 
2274   if (Size == 0)
2275     return {DFS.ZeroPrimitiveShadow,
2276             ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2277 
2278   // Use callback to load if this is not an optimizable case for origin
2279   // tracking.
2280   if (ShouldTrackOrigins &&
2281       useCallbackLoadLabelAndOrigin(Size, InstAlignment)) {
2282     IRBuilder<> IRB(Pos->getParent(), Pos);
2283     CallInst *Call =
2284         IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn,
2285                        {Addr, ConstantInt::get(DFS.IntptrTy, Size)});
2286     Call->addRetAttr(Attribute::ZExt);
2287     return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits),
2288                             DFS.PrimitiveShadowTy),
2289             IRB.CreateTrunc(Call, DFS.OriginTy)};
2290   }
2291 
2292   // Other cases that support loading shadows or origins in a fast way.
2293   Value *ShadowAddr, *OriginAddr;
2294   std::tie(ShadowAddr, OriginAddr) =
2295       DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2296 
2297   const Align ShadowAlign = getShadowAlign(InstAlignment);
2298   const Align OriginAlign = getOriginAlign(InstAlignment);
2299   Value *Origin = nullptr;
2300   if (ShouldTrackOrigins) {
2301     IRBuilder<> IRB(Pos->getParent(), Pos);
2302     Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign);
2303   }
2304 
2305   // When the byte size is small enough, we can load the shadow directly with
2306   // just a few instructions.
2307   switch (Size) {
2308   case 1: {
2309     LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
2310     LI->setAlignment(ShadowAlign);
2311     return {LI, Origin};
2312   }
2313   case 2: {
2314     IRBuilder<> IRB(Pos->getParent(), Pos);
2315     Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
2316                                        ConstantInt::get(DFS.IntptrTy, 1));
2317     Value *Load =
2318         IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign);
2319     Value *Load1 =
2320         IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign);
2321     return {combineShadows(Load, Load1, Pos), Origin};
2322   }
2323   }
2324   bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size);
2325 
2326   if (HasSizeForFastPath)
2327     return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign,
2328                           OriginAlign, Origin, Pos);
2329 
2330   IRBuilder<> IRB(Pos->getParent(), Pos);
2331   CallInst *FallbackCall = IRB.CreateCall(
2332       DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
2333   FallbackCall->addRetAttr(Attribute::ZExt);
2334   return {FallbackCall, Origin};
2335 }
2336 
2337 std::pair<Value *, Value *>
2338 DFSanFunction::loadShadowOrigin(Value *Addr, uint64_t Size, Align InstAlignment,
2339                                 BasicBlock::iterator Pos) {
2340   Value *PrimitiveShadow, *Origin;
2341   std::tie(PrimitiveShadow, Origin) =
2342       loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos);
2343   if (DFS.shouldTrackOrigins()) {
2344     if (ClTrackOrigins == 2) {
2345       IRBuilder<> IRB(Pos->getParent(), Pos);
2346       auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow);
2347       if (!ConstantShadow || !ConstantShadow->isZeroValue())
2348         Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB);
2349     }
2350   }
2351   return {PrimitiveShadow, Origin};
2352 }
2353 
2354 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) {
2355   switch (AO) {
2356   case AtomicOrdering::NotAtomic:
2357     return AtomicOrdering::NotAtomic;
2358   case AtomicOrdering::Unordered:
2359   case AtomicOrdering::Monotonic:
2360   case AtomicOrdering::Acquire:
2361     return AtomicOrdering::Acquire;
2362   case AtomicOrdering::Release:
2363   case AtomicOrdering::AcquireRelease:
2364     return AtomicOrdering::AcquireRelease;
2365   case AtomicOrdering::SequentiallyConsistent:
2366     return AtomicOrdering::SequentiallyConsistent;
2367   }
2368   llvm_unreachable("Unknown ordering");
2369 }
2370 
2371 Value *StripPointerGEPsAndCasts(Value *V) {
2372   if (!V->getType()->isPointerTy())
2373     return V;
2374 
2375   // DFSan pass should be running on valid IR, but we'll
2376   // keep a seen set to ensure there are no issues.
2377   SmallPtrSet<const Value *, 4> Visited;
2378   Visited.insert(V);
2379   do {
2380     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
2381       V = GEP->getPointerOperand();
2382     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
2383       V = cast<Operator>(V)->getOperand(0);
2384       if (!V->getType()->isPointerTy())
2385         return V;
2386     } else if (isa<GlobalAlias>(V)) {
2387       V = cast<GlobalAlias>(V)->getAliasee();
2388     }
2389   } while (Visited.insert(V).second);
2390 
2391   return V;
2392 }
2393 
2394 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
2395   auto &DL = LI.getDataLayout();
2396   uint64_t Size = DL.getTypeStoreSize(LI.getType());
2397   if (Size == 0) {
2398     DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
2399     DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin);
2400     return;
2401   }
2402 
2403   // When an application load is atomic, increase atomic ordering between
2404   // atomic application loads and stores to ensure happen-before order; load
2405   // shadow data after application data; store zero shadow data before
2406   // application data. This ensure shadow loads return either labels of the
2407   // initial application data or zeros.
2408   if (LI.isAtomic())
2409     LI.setOrdering(addAcquireOrdering(LI.getOrdering()));
2410 
2411   BasicBlock::iterator AfterLi = std::next(LI.getIterator());
2412   BasicBlock::iterator Pos = LI.getIterator();
2413   if (LI.isAtomic())
2414     Pos = std::next(Pos);
2415 
2416   std::vector<Value *> Shadows;
2417   std::vector<Value *> Origins;
2418   Value *PrimitiveShadow, *Origin;
2419   std::tie(PrimitiveShadow, Origin) =
2420       DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos);
2421   const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2422   if (ShouldTrackOrigins) {
2423     Shadows.push_back(PrimitiveShadow);
2424     Origins.push_back(Origin);
2425   }
2426   if (ClCombinePointerLabelsOnLoad ||
2427       DFSF.isLookupTableConstant(
2428           StripPointerGEPsAndCasts(LI.getPointerOperand()))) {
2429     Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
2430     PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos);
2431     if (ShouldTrackOrigins) {
2432       Shadows.push_back(PtrShadow);
2433       Origins.push_back(DFSF.getOrigin(LI.getPointerOperand()));
2434     }
2435   }
2436   if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
2437     DFSF.NonZeroChecks.push_back(PrimitiveShadow);
2438 
2439   Value *Shadow =
2440       DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos);
2441   DFSF.setShadow(&LI, Shadow);
2442 
2443   if (ShouldTrackOrigins) {
2444     DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos));
2445   }
2446 
2447   if (ClEventCallbacks) {
2448     IRBuilder<> IRB(Pos->getParent(), Pos);
2449     Value *Addr = LI.getPointerOperand();
2450     CallInst *CI =
2451         IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr});
2452     CI->addParamAttr(0, Attribute::ZExt);
2453   }
2454 
2455   IRBuilder<> IRB(AfterLi->getParent(), AfterLi);
2456   DFSF.addReachesFunctionCallbacksIfEnabled(IRB, LI, &LI);
2457 }
2458 
2459 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin,
2460                                             IRBuilder<> &IRB) {
2461   assert(DFS.shouldTrackOrigins());
2462   return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin});
2463 }
2464 
2465 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) {
2466   if (!DFS.shouldTrackOrigins())
2467     return V;
2468   return IRB.CreateCall(DFS.DFSanChainOriginFn, V);
2469 }
2470 
2471 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) {
2472   const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2473   const DataLayout &DL = F->getDataLayout();
2474   unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2475   if (IntptrSize == OriginSize)
2476     return Origin;
2477   assert(IntptrSize == OriginSize * 2);
2478   Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false);
2479   return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8));
2480 }
2481 
2482 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin,
2483                                 Value *StoreOriginAddr,
2484                                 uint64_t StoreOriginSize, Align Alignment) {
2485   const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2486   const DataLayout &DL = F->getDataLayout();
2487   const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy);
2488   unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2489   assert(IntptrAlignment >= MinOriginAlignment);
2490   assert(IntptrSize >= OriginSize);
2491 
2492   unsigned Ofs = 0;
2493   Align CurrentAlignment = Alignment;
2494   if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) {
2495     Value *IntptrOrigin = originToIntptr(IRB, Origin);
2496     Value *IntptrStoreOriginPtr = IRB.CreatePointerCast(
2497         StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0));
2498     for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) {
2499       Value *Ptr =
2500           I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I)
2501             : IntptrStoreOriginPtr;
2502       IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
2503       Ofs += IntptrSize / OriginSize;
2504       CurrentAlignment = IntptrAlignment;
2505     }
2506   }
2507 
2508   for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize;
2509        ++I) {
2510     Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I)
2511                    : StoreOriginAddr;
2512     IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
2513     CurrentAlignment = MinOriginAlignment;
2514   }
2515 }
2516 
2517 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB,
2518                                     const Twine &Name) {
2519   Type *VTy = V->getType();
2520   assert(VTy->isIntegerTy());
2521   if (VTy->getIntegerBitWidth() == 1)
2522     // Just converting a bool to a bool, so do nothing.
2523     return V;
2524   return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name);
2525 }
2526 
2527 void DFSanFunction::storeOrigin(BasicBlock::iterator Pos, Value *Addr,
2528                                 uint64_t Size, Value *Shadow, Value *Origin,
2529                                 Value *StoreOriginAddr, Align InstAlignment) {
2530   // Do not write origins for zero shadows because we do not trace origins for
2531   // untainted sinks.
2532   const Align OriginAlignment = getOriginAlign(InstAlignment);
2533   Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos);
2534   IRBuilder<> IRB(Pos->getParent(), Pos);
2535   if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) {
2536     if (!ConstantShadow->isZeroValue())
2537       paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size,
2538                   OriginAlignment);
2539     return;
2540   }
2541 
2542   if (shouldInstrumentWithCall()) {
2543     IRB.CreateCall(
2544         DFS.DFSanMaybeStoreOriginFn,
2545         {CollapsedShadow, Addr, ConstantInt::get(DFS.IntptrTy, Size), Origin});
2546   } else {
2547     Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp");
2548     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2549     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
2550         Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DTU);
2551     IRBuilder<> IRBNew(CheckTerm);
2552     paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size,
2553                 OriginAlignment);
2554     ++NumOriginStores;
2555   }
2556 }
2557 
2558 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size,
2559                                              Align ShadowAlign,
2560                                              BasicBlock::iterator Pos) {
2561   IRBuilder<> IRB(Pos->getParent(), Pos);
2562   IntegerType *ShadowTy =
2563       IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
2564   Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
2565   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
2566   IRB.CreateAlignedStore(ExtZeroShadow, ShadowAddr, ShadowAlign);
2567   // Do not write origins for 0 shadows because we do not trace origins for
2568   // untainted sinks.
2569 }
2570 
2571 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
2572                                                Align InstAlignment,
2573                                                Value *PrimitiveShadow,
2574                                                Value *Origin,
2575                                                BasicBlock::iterator Pos) {
2576   const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin;
2577 
2578   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2579     const auto SI = AllocaShadowMap.find(AI);
2580     if (SI != AllocaShadowMap.end()) {
2581       IRBuilder<> IRB(Pos->getParent(), Pos);
2582       IRB.CreateStore(PrimitiveShadow, SI->second);
2583 
2584       // Do not write origins for 0 shadows because we do not trace origins for
2585       // untainted sinks.
2586       if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) {
2587         const auto OI = AllocaOriginMap.find(AI);
2588         assert(OI != AllocaOriginMap.end() && Origin);
2589         IRB.CreateStore(Origin, OI->second);
2590       }
2591       return;
2592     }
2593   }
2594 
2595   const Align ShadowAlign = getShadowAlign(InstAlignment);
2596   if (DFS.isZeroShadow(PrimitiveShadow)) {
2597     storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos);
2598     return;
2599   }
2600 
2601   IRBuilder<> IRB(Pos->getParent(), Pos);
2602   Value *ShadowAddr, *OriginAddr;
2603   std::tie(ShadowAddr, OriginAddr) =
2604       DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2605 
2606   const unsigned ShadowVecSize = 8;
2607   assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 &&
2608          "Shadow vector is too large!");
2609 
2610   uint64_t Offset = 0;
2611   uint64_t LeftSize = Size;
2612   if (LeftSize >= ShadowVecSize) {
2613     auto *ShadowVecTy =
2614         FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
2615     Value *ShadowVec = PoisonValue::get(ShadowVecTy);
2616     for (unsigned I = 0; I != ShadowVecSize; ++I) {
2617       ShadowVec = IRB.CreateInsertElement(
2618           ShadowVec, PrimitiveShadow,
2619           ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I));
2620     }
2621     do {
2622       Value *CurShadowVecAddr =
2623           IRB.CreateConstGEP1_32(ShadowVecTy, ShadowAddr, Offset);
2624       IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
2625       LeftSize -= ShadowVecSize;
2626       ++Offset;
2627     } while (LeftSize >= ShadowVecSize);
2628     Offset *= ShadowVecSize;
2629   }
2630   while (LeftSize > 0) {
2631     Value *CurShadowAddr =
2632         IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
2633     IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
2634     --LeftSize;
2635     ++Offset;
2636   }
2637 
2638   if (ShouldTrackOrigins) {
2639     storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr,
2640                 InstAlignment);
2641   }
2642 }
2643 
2644 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) {
2645   switch (AO) {
2646   case AtomicOrdering::NotAtomic:
2647     return AtomicOrdering::NotAtomic;
2648   case AtomicOrdering::Unordered:
2649   case AtomicOrdering::Monotonic:
2650   case AtomicOrdering::Release:
2651     return AtomicOrdering::Release;
2652   case AtomicOrdering::Acquire:
2653   case AtomicOrdering::AcquireRelease:
2654     return AtomicOrdering::AcquireRelease;
2655   case AtomicOrdering::SequentiallyConsistent:
2656     return AtomicOrdering::SequentiallyConsistent;
2657   }
2658   llvm_unreachable("Unknown ordering");
2659 }
2660 
2661 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
2662   auto &DL = SI.getDataLayout();
2663   Value *Val = SI.getValueOperand();
2664   uint64_t Size = DL.getTypeStoreSize(Val->getType());
2665   if (Size == 0)
2666     return;
2667 
2668   // When an application store is atomic, increase atomic ordering between
2669   // atomic application loads and stores to ensure happen-before order; load
2670   // shadow data after application data; store zero shadow data before
2671   // application data. This ensure shadow loads return either labels of the
2672   // initial application data or zeros.
2673   if (SI.isAtomic())
2674     SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
2675 
2676   const bool ShouldTrackOrigins =
2677       DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic();
2678   std::vector<Value *> Shadows;
2679   std::vector<Value *> Origins;
2680 
2681   Value *Shadow =
2682       SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val);
2683 
2684   if (ShouldTrackOrigins) {
2685     Shadows.push_back(Shadow);
2686     Origins.push_back(DFSF.getOrigin(Val));
2687   }
2688 
2689   Value *PrimitiveShadow;
2690   if (ClCombinePointerLabelsOnStore) {
2691     Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
2692     if (ShouldTrackOrigins) {
2693       Shadows.push_back(PtrShadow);
2694       Origins.push_back(DFSF.getOrigin(SI.getPointerOperand()));
2695     }
2696     PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, SI.getIterator());
2697   } else {
2698     PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, SI.getIterator());
2699   }
2700   Value *Origin = nullptr;
2701   if (ShouldTrackOrigins)
2702     Origin = DFSF.combineOrigins(Shadows, Origins, SI.getIterator());
2703   DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(),
2704                                   PrimitiveShadow, Origin, SI.getIterator());
2705   if (ClEventCallbacks) {
2706     IRBuilder<> IRB(&SI);
2707     Value *Addr = SI.getPointerOperand();
2708     CallInst *CI =
2709         IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr});
2710     CI->addParamAttr(0, Attribute::ZExt);
2711   }
2712 }
2713 
2714 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) {
2715   assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
2716 
2717   Value *Val = I.getOperand(1);
2718   const auto &DL = I.getDataLayout();
2719   uint64_t Size = DL.getTypeStoreSize(Val->getType());
2720   if (Size == 0)
2721     return;
2722 
2723   // Conservatively set data at stored addresses and return with zero shadow to
2724   // prevent shadow data races.
2725   IRBuilder<> IRB(&I);
2726   Value *Addr = I.getOperand(0);
2727   const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment);
2728   DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, I.getIterator());
2729   DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I));
2730   DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2731 }
2732 
2733 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) {
2734   visitCASOrRMW(I.getAlign(), I);
2735   // TODO: The ordering change follows MSan. It is possible not to change
2736   // ordering because we always set and use 0 shadows.
2737   I.setOrdering(addReleaseOrdering(I.getOrdering()));
2738 }
2739 
2740 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2741   visitCASOrRMW(I.getAlign(), I);
2742   // TODO: The ordering change follows MSan. It is possible not to change
2743   // ordering because we always set and use 0 shadows.
2744   I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2745 }
2746 
2747 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
2748   visitInstOperands(UO);
2749 }
2750 
2751 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
2752   visitInstOperands(BO);
2753 }
2754 
2755 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) {
2756   // Special case: if this is the bitcast (there is exactly 1 allowed) between
2757   // a musttail call and a ret, don't instrument. New instructions are not
2758   // allowed after a musttail call.
2759   if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0)))
2760     if (CI->isMustTailCall())
2761       return;
2762   visitInstOperands(BCI);
2763 }
2764 
2765 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); }
2766 
2767 void DFSanVisitor::visitCmpInst(CmpInst &CI) {
2768   visitInstOperands(CI);
2769   if (ClEventCallbacks) {
2770     IRBuilder<> IRB(&CI);
2771     Value *CombinedShadow = DFSF.getShadow(&CI);
2772     CallInst *CallI =
2773         IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
2774     CallI->addParamAttr(0, Attribute::ZExt);
2775   }
2776 }
2777 
2778 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) {
2779   // We do not need to track data through LandingPadInst.
2780   //
2781   // For the C++ exceptions, if a value is thrown, this value will be stored
2782   // in a memory location provided by __cxa_allocate_exception(...) (on the
2783   // throw side) or  __cxa_begin_catch(...) (on the catch side).
2784   // This memory will have a shadow, so with the loads and stores we will be
2785   // able to propagate labels on data thrown through exceptions, without any
2786   // special handling of the LandingPadInst.
2787   //
2788   // The second element in the pair result of the LandingPadInst is a
2789   // register value, but it is for a type ID and should never be tainted.
2790   DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI));
2791   DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin);
2792 }
2793 
2794 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2795   if (ClCombineOffsetLabelsOnGEP ||
2796       DFSF.isLookupTableConstant(
2797           StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) {
2798     visitInstOperands(GEPI);
2799     return;
2800   }
2801 
2802   // Only propagate shadow/origin of base pointer value but ignore those of
2803   // offset operands.
2804   Value *BasePointer = GEPI.getPointerOperand();
2805   DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer));
2806   if (DFSF.DFS.shouldTrackOrigins())
2807     DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer));
2808 }
2809 
2810 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
2811   visitInstOperands(I);
2812 }
2813 
2814 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
2815   visitInstOperands(I);
2816 }
2817 
2818 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
2819   visitInstOperands(I);
2820 }
2821 
2822 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
2823   IRBuilder<> IRB(&I);
2824   Value *Agg = I.getAggregateOperand();
2825   Value *AggShadow = DFSF.getShadow(Agg);
2826   Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2827   DFSF.setShadow(&I, ResShadow);
2828   visitInstOperandOrigins(I);
2829 }
2830 
2831 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
2832   IRBuilder<> IRB(&I);
2833   Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
2834   Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
2835   Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2836   DFSF.setShadow(&I, Res);
2837   visitInstOperandOrigins(I);
2838 }
2839 
2840 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
2841   bool AllLoadsStores = true;
2842   for (User *U : I.users()) {
2843     if (isa<LoadInst>(U))
2844       continue;
2845 
2846     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
2847       if (SI->getPointerOperand() == &I)
2848         continue;
2849     }
2850 
2851     AllLoadsStores = false;
2852     break;
2853   }
2854   if (AllLoadsStores) {
2855     IRBuilder<> IRB(&I);
2856     DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
2857     if (DFSF.DFS.shouldTrackOrigins()) {
2858       DFSF.AllocaOriginMap[&I] =
2859           IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa");
2860     }
2861   }
2862   DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
2863   DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2864 }
2865 
2866 void DFSanVisitor::visitSelectInst(SelectInst &I) {
2867   Value *CondShadow = DFSF.getShadow(I.getCondition());
2868   Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
2869   Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
2870   Value *ShadowSel = nullptr;
2871   const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2872   std::vector<Value *> Shadows;
2873   std::vector<Value *> Origins;
2874   Value *TrueOrigin =
2875       ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr;
2876   Value *FalseOrigin =
2877       ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr;
2878 
2879   DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition());
2880 
2881   if (isa<VectorType>(I.getCondition()->getType())) {
2882     ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
2883                                                FalseShadow, I.getIterator());
2884     if (ShouldTrackOrigins) {
2885       Shadows.push_back(TrueShadow);
2886       Shadows.push_back(FalseShadow);
2887       Origins.push_back(TrueOrigin);
2888       Origins.push_back(FalseOrigin);
2889     }
2890   } else {
2891     if (TrueShadow == FalseShadow) {
2892       ShadowSel = TrueShadow;
2893       if (ShouldTrackOrigins) {
2894         Shadows.push_back(TrueShadow);
2895         Origins.push_back(TrueOrigin);
2896       }
2897     } else {
2898       ShadowSel = SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow,
2899                                      "", I.getIterator());
2900       if (ShouldTrackOrigins) {
2901         Shadows.push_back(ShadowSel);
2902         Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin,
2903                                              FalseOrigin, "", I.getIterator()));
2904       }
2905     }
2906   }
2907   DFSF.setShadow(&I, ClTrackSelectControlFlow ? DFSF.combineShadowsThenConvert(
2908                                                     I.getType(), CondShadow,
2909                                                     ShadowSel, I.getIterator())
2910                                               : ShadowSel);
2911   if (ShouldTrackOrigins) {
2912     if (ClTrackSelectControlFlow) {
2913       Shadows.push_back(CondShadow);
2914       Origins.push_back(DFSF.getOrigin(I.getCondition()));
2915     }
2916     DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, I.getIterator()));
2917   }
2918 }
2919 
2920 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
2921   IRBuilder<> IRB(&I);
2922   Value *ValShadow = DFSF.getShadow(I.getValue());
2923   Value *ValOrigin = DFSF.DFS.shouldTrackOrigins()
2924                          ? DFSF.getOrigin(I.getValue())
2925                          : DFSF.DFS.ZeroOrigin;
2926   IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
2927                  {ValShadow, ValOrigin, I.getDest(),
2928                   IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2929 }
2930 
2931 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
2932   IRBuilder<> IRB(&I);
2933 
2934   // CopyOrMoveOrigin transfers origins by refering to their shadows. So we
2935   // need to move origins before moving shadows.
2936   if (DFSF.DFS.shouldTrackOrigins()) {
2937     IRB.CreateCall(
2938         DFSF.DFS.DFSanMemOriginTransferFn,
2939         {I.getArgOperand(0), I.getArgOperand(1),
2940          IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)});
2941   }
2942 
2943   Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), I.getIterator());
2944   Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), I.getIterator());
2945   Value *LenShadow =
2946       IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
2947                                                     DFSF.DFS.ShadowWidthBytes));
2948   auto *MTI = cast<MemTransferInst>(
2949       IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
2950                      {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
2951   MTI->setDestAlignment(DFSF.getShadowAlign(I.getDestAlign().valueOrOne()));
2952   MTI->setSourceAlignment(DFSF.getShadowAlign(I.getSourceAlign().valueOrOne()));
2953   if (ClEventCallbacks) {
2954     IRB.CreateCall(
2955         DFSF.DFS.DFSanMemTransferCallbackFn,
2956         {DestShadow, IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2957   }
2958 }
2959 
2960 void DFSanVisitor::visitBranchInst(BranchInst &BR) {
2961   if (!BR.isConditional())
2962     return;
2963 
2964   DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition());
2965 }
2966 
2967 void DFSanVisitor::visitSwitchInst(SwitchInst &SW) {
2968   DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition());
2969 }
2970 
2971 static bool isAMustTailRetVal(Value *RetVal) {
2972   // Tail call may have a bitcast between return.
2973   if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
2974     RetVal = I->getOperand(0);
2975   }
2976   if (auto *I = dyn_cast<CallInst>(RetVal)) {
2977     return I->isMustTailCall();
2978   }
2979   return false;
2980 }
2981 
2982 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
2983   if (!DFSF.IsNativeABI && RI.getReturnValue()) {
2984     // Don't emit the instrumentation for musttail call returns.
2985     if (isAMustTailRetVal(RI.getReturnValue()))
2986       return;
2987 
2988     Value *S = DFSF.getShadow(RI.getReturnValue());
2989     IRBuilder<> IRB(&RI);
2990     Type *RT = DFSF.F->getFunctionType()->getReturnType();
2991     unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
2992     if (Size <= RetvalTLSSize) {
2993       // If the size overflows, stores nothing. At callsite, oversized return
2994       // shadows are set to zero.
2995       IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment);
2996     }
2997     if (DFSF.DFS.shouldTrackOrigins()) {
2998       Value *O = DFSF.getOrigin(RI.getReturnValue());
2999       IRB.CreateStore(O, DFSF.getRetvalOriginTLS());
3000     }
3001   }
3002 }
3003 
3004 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB,
3005                                       std::vector<Value *> &Args,
3006                                       IRBuilder<> &IRB) {
3007   FunctionType *FT = F.getFunctionType();
3008 
3009   auto *I = CB.arg_begin();
3010 
3011   // Adds non-variable argument shadows.
3012   for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
3013     Args.push_back(
3014         DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), CB.getIterator()));
3015 
3016   // Adds variable argument shadows.
3017   if (FT->isVarArg()) {
3018     auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
3019                                      CB.arg_size() - FT->getNumParams());
3020     auto *LabelVAAlloca =
3021         new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(),
3022                        "labelva", DFSF.F->getEntryBlock().begin());
3023 
3024     for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
3025       auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N);
3026       IRB.CreateStore(
3027           DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), CB.getIterator()),
3028           LabelVAPtr);
3029     }
3030 
3031     Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
3032   }
3033 
3034   // Adds the return value shadow.
3035   if (!FT->getReturnType()->isVoidTy()) {
3036     if (!DFSF.LabelReturnAlloca) {
3037       DFSF.LabelReturnAlloca = new AllocaInst(
3038           DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(),
3039           "labelreturn", DFSF.F->getEntryBlock().begin());
3040     }
3041     Args.push_back(DFSF.LabelReturnAlloca);
3042   }
3043 }
3044 
3045 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB,
3046                                       std::vector<Value *> &Args,
3047                                       IRBuilder<> &IRB) {
3048   FunctionType *FT = F.getFunctionType();
3049 
3050   auto *I = CB.arg_begin();
3051 
3052   // Add non-variable argument origins.
3053   for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
3054     Args.push_back(DFSF.getOrigin(*I));
3055 
3056   // Add variable argument origins.
3057   if (FT->isVarArg()) {
3058     auto *OriginVATy =
3059         ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams());
3060     auto *OriginVAAlloca =
3061         new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(),
3062                        "originva", DFSF.F->getEntryBlock().begin());
3063 
3064     for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
3065       auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N);
3066       IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr);
3067     }
3068 
3069     Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0));
3070   }
3071 
3072   // Add the return value origin.
3073   if (!FT->getReturnType()->isVoidTy()) {
3074     if (!DFSF.OriginReturnAlloca) {
3075       DFSF.OriginReturnAlloca = new AllocaInst(
3076           DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(),
3077           "originreturn", DFSF.F->getEntryBlock().begin());
3078     }
3079     Args.push_back(DFSF.OriginReturnAlloca);
3080   }
3081 }
3082 
3083 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) {
3084   IRBuilder<> IRB(&CB);
3085   switch (DFSF.DFS.getWrapperKind(&F)) {
3086   case DataFlowSanitizer::WK_Warning:
3087     CB.setCalledFunction(&F);
3088     IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
3089                    IRB.CreateGlobalStringPtr(F.getName()));
3090     DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3091     DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3092     DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
3093     return true;
3094   case DataFlowSanitizer::WK_Discard:
3095     CB.setCalledFunction(&F);
3096     DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3097     DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3098     DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
3099     return true;
3100   case DataFlowSanitizer::WK_Functional:
3101     CB.setCalledFunction(&F);
3102     DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3103     visitInstOperands(CB);
3104     return true;
3105   case DataFlowSanitizer::WK_Custom:
3106     // Don't try to handle invokes of custom functions, it's too complicated.
3107     // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
3108     // wrapper.
3109     CallInst *CI = dyn_cast<CallInst>(&CB);
3110     if (!CI)
3111       return false;
3112 
3113     const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3114     FunctionType *FT = F.getFunctionType();
3115     TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
3116     std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_";
3117     CustomFName += F.getName();
3118     FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
3119         CustomFName, CustomFn.TransformedType);
3120     if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
3121       CustomFn->copyAttributesFrom(&F);
3122 
3123       // Custom functions returning non-void will write to the return label.
3124       if (!FT->getReturnType()->isVoidTy()) {
3125         CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs);
3126       }
3127     }
3128 
3129     std::vector<Value *> Args;
3130 
3131     // Adds non-variable arguments.
3132     auto *I = CB.arg_begin();
3133     for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) {
3134       Args.push_back(*I);
3135     }
3136 
3137     // Adds shadow arguments.
3138     const unsigned ShadowArgStart = Args.size();
3139     addShadowArguments(F, CB, Args, IRB);
3140 
3141     // Adds origin arguments.
3142     const unsigned OriginArgStart = Args.size();
3143     if (ShouldTrackOrigins)
3144       addOriginArguments(F, CB, Args, IRB);
3145 
3146     // Adds variable arguments.
3147     append_range(Args, drop_begin(CB.args(), FT->getNumParams()));
3148 
3149     CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
3150     CustomCI->setCallingConv(CI->getCallingConv());
3151     CustomCI->setAttributes(transformFunctionAttributes(
3152         CustomFn, CI->getContext(), CI->getAttributes()));
3153 
3154     // Update the parameter attributes of the custom call instruction to
3155     // zero extend the shadow parameters. This is required for targets
3156     // which consider PrimitiveShadowTy an illegal type.
3157     for (unsigned N = 0; N < FT->getNumParams(); N++) {
3158       const unsigned ArgNo = ShadowArgStart + N;
3159       if (CustomCI->getArgOperand(ArgNo)->getType() ==
3160           DFSF.DFS.PrimitiveShadowTy)
3161         CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
3162       if (ShouldTrackOrigins) {
3163         const unsigned OriginArgNo = OriginArgStart + N;
3164         if (CustomCI->getArgOperand(OriginArgNo)->getType() ==
3165             DFSF.DFS.OriginTy)
3166           CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt);
3167       }
3168     }
3169 
3170     // Loads the return value shadow and origin.
3171     if (!FT->getReturnType()->isVoidTy()) {
3172       LoadInst *LabelLoad =
3173           IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca);
3174       DFSF.setShadow(CustomCI,
3175                      DFSF.expandFromPrimitiveShadow(
3176                          FT->getReturnType(), LabelLoad, CB.getIterator()));
3177       if (ShouldTrackOrigins) {
3178         LoadInst *OriginLoad =
3179             IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca);
3180         DFSF.setOrigin(CustomCI, OriginLoad);
3181       }
3182     }
3183 
3184     CI->replaceAllUsesWith(CustomCI);
3185     CI->eraseFromParent();
3186     return true;
3187   }
3188   return false;
3189 }
3190 
3191 Value *DFSanVisitor::makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
3192   constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
3193   uint32_t OrderingTable[NumOrderings] = {};
3194 
3195   OrderingTable[(int)AtomicOrderingCABI::relaxed] =
3196       OrderingTable[(int)AtomicOrderingCABI::acquire] =
3197           OrderingTable[(int)AtomicOrderingCABI::consume] =
3198               (int)AtomicOrderingCABI::acquire;
3199   OrderingTable[(int)AtomicOrderingCABI::release] =
3200       OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
3201           (int)AtomicOrderingCABI::acq_rel;
3202   OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
3203       (int)AtomicOrderingCABI::seq_cst;
3204 
3205   return ConstantDataVector::get(IRB.getContext(), OrderingTable);
3206 }
3207 
3208 void DFSanVisitor::visitLibAtomicLoad(CallBase &CB) {
3209   // Since we use getNextNode here, we can't have CB terminate the BB.
3210   assert(isa<CallInst>(CB));
3211 
3212   IRBuilder<> IRB(&CB);
3213   Value *Size = CB.getArgOperand(0);
3214   Value *SrcPtr = CB.getArgOperand(1);
3215   Value *DstPtr = CB.getArgOperand(2);
3216   Value *Ordering = CB.getArgOperand(3);
3217   // Convert the call to have at least Acquire ordering to make sure
3218   // the shadow operations aren't reordered before it.
3219   Value *NewOrdering =
3220       IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
3221   CB.setArgOperand(3, NewOrdering);
3222 
3223   IRBuilder<> NextIRB(CB.getNextNode());
3224   NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3225 
3226   // TODO: Support ClCombinePointerLabelsOnLoad
3227   // TODO: Support ClEventCallbacks
3228 
3229   NextIRB.CreateCall(
3230       DFSF.DFS.DFSanMemShadowOriginTransferFn,
3231       {DstPtr, SrcPtr, NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3232 }
3233 
3234 Value *DFSanVisitor::makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
3235   constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
3236   uint32_t OrderingTable[NumOrderings] = {};
3237 
3238   OrderingTable[(int)AtomicOrderingCABI::relaxed] =
3239       OrderingTable[(int)AtomicOrderingCABI::release] =
3240           (int)AtomicOrderingCABI::release;
3241   OrderingTable[(int)AtomicOrderingCABI::consume] =
3242       OrderingTable[(int)AtomicOrderingCABI::acquire] =
3243           OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
3244               (int)AtomicOrderingCABI::acq_rel;
3245   OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
3246       (int)AtomicOrderingCABI::seq_cst;
3247 
3248   return ConstantDataVector::get(IRB.getContext(), OrderingTable);
3249 }
3250 
3251 void DFSanVisitor::visitLibAtomicStore(CallBase &CB) {
3252   IRBuilder<> IRB(&CB);
3253   Value *Size = CB.getArgOperand(0);
3254   Value *SrcPtr = CB.getArgOperand(1);
3255   Value *DstPtr = CB.getArgOperand(2);
3256   Value *Ordering = CB.getArgOperand(3);
3257   // Convert the call to have at least Release ordering to make sure
3258   // the shadow operations aren't reordered after it.
3259   Value *NewOrdering =
3260       IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
3261   CB.setArgOperand(3, NewOrdering);
3262 
3263   // TODO: Support ClCombinePointerLabelsOnStore
3264   // TODO: Support ClEventCallbacks
3265 
3266   IRB.CreateCall(
3267       DFSF.DFS.DFSanMemShadowOriginTransferFn,
3268       {DstPtr, SrcPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3269 }
3270 
3271 void DFSanVisitor::visitLibAtomicExchange(CallBase &CB) {
3272   // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int
3273   // ordering)
3274   IRBuilder<> IRB(&CB);
3275   Value *Size = CB.getArgOperand(0);
3276   Value *TargetPtr = CB.getArgOperand(1);
3277   Value *SrcPtr = CB.getArgOperand(2);
3278   Value *DstPtr = CB.getArgOperand(3);
3279 
3280   // This operation is not atomic for the shadow and origin memory.
3281   // This could result in DFSan false positives or false negatives.
3282   // For now we will assume these operations are rare, and
3283   // the additional complexity to address this is not warrented.
3284 
3285   // Current Target to Dest
3286   IRB.CreateCall(
3287       DFSF.DFS.DFSanMemShadowOriginTransferFn,
3288       {DstPtr, TargetPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3289 
3290   // Current Src to Target (overriding)
3291   IRB.CreateCall(
3292       DFSF.DFS.DFSanMemShadowOriginTransferFn,
3293       {TargetPtr, SrcPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3294 }
3295 
3296 void DFSanVisitor::visitLibAtomicCompareExchange(CallBase &CB) {
3297   // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void
3298   // *desired, int success_order, int failure_order)
3299   Value *Size = CB.getArgOperand(0);
3300   Value *TargetPtr = CB.getArgOperand(1);
3301   Value *ExpectedPtr = CB.getArgOperand(2);
3302   Value *DesiredPtr = CB.getArgOperand(3);
3303 
3304   // This operation is not atomic for the shadow and origin memory.
3305   // This could result in DFSan false positives or false negatives.
3306   // For now we will assume these operations are rare, and
3307   // the additional complexity to address this is not warrented.
3308 
3309   IRBuilder<> NextIRB(CB.getNextNode());
3310   NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3311 
3312   DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3313 
3314   // If original call returned true, copy Desired to Target.
3315   // If original call returned false, copy Target to Expected.
3316   NextIRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginConditionalExchangeFn,
3317                      {NextIRB.CreateIntCast(&CB, NextIRB.getInt8Ty(), false),
3318                       TargetPtr, ExpectedPtr, DesiredPtr,
3319                       NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3320 }
3321 
3322 void DFSanVisitor::visitCallBase(CallBase &CB) {
3323   Function *F = CB.getCalledFunction();
3324   if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
3325     visitInstOperands(CB);
3326     return;
3327   }
3328 
3329   // Calls to this function are synthesized in wrappers, and we shouldn't
3330   // instrument them.
3331   if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
3332     return;
3333 
3334   LibFunc LF;
3335   if (DFSF.TLI.getLibFunc(CB, LF)) {
3336     // libatomic.a functions need to have special handling because there isn't
3337     // a good way to intercept them or compile the library with
3338     // instrumentation.
3339     switch (LF) {
3340     case LibFunc_atomic_load:
3341       if (!isa<CallInst>(CB)) {
3342         llvm::errs() << "DFSAN -- cannot instrument invoke of libatomic load. "
3343                         "Ignoring!\n";
3344         break;
3345       }
3346       visitLibAtomicLoad(CB);
3347       return;
3348     case LibFunc_atomic_store:
3349       visitLibAtomicStore(CB);
3350       return;
3351     default:
3352       break;
3353     }
3354   }
3355 
3356   // TODO: These are not supported by TLI? They are not in the enum.
3357   if (F && F->hasName() && !F->isVarArg()) {
3358     if (F->getName() == "__atomic_exchange") {
3359       visitLibAtomicExchange(CB);
3360       return;
3361     }
3362     if (F->getName() == "__atomic_compare_exchange") {
3363       visitLibAtomicCompareExchange(CB);
3364       return;
3365     }
3366   }
3367 
3368   DenseMap<Value *, Function *>::iterator UnwrappedFnIt =
3369       DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
3370   if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end())
3371     if (visitWrappedCallBase(*UnwrappedFnIt->second, CB))
3372       return;
3373 
3374   IRBuilder<> IRB(&CB);
3375 
3376   const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3377   FunctionType *FT = CB.getFunctionType();
3378   const DataLayout &DL = getDataLayout();
3379 
3380   // Stores argument shadows.
3381   unsigned ArgOffset = 0;
3382   for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
3383     if (ShouldTrackOrigins) {
3384       // Ignore overflowed origins
3385       Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I));
3386       if (I < DFSF.DFS.NumOfElementsInArgOrgTLS &&
3387           !DFSF.DFS.isZeroShadow(ArgShadow))
3388         IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)),
3389                         DFSF.getArgOriginTLS(I, IRB));
3390     }
3391 
3392     unsigned Size =
3393         DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
3394     // Stop storing if arguments' size overflows. Inside a function, arguments
3395     // after overflow have zero shadow values.
3396     if (ArgOffset + Size > ArgTLSSize)
3397       break;
3398     IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)),
3399                            DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
3400                            ShadowTLSAlignment);
3401     ArgOffset += alignTo(Size, ShadowTLSAlignment);
3402   }
3403 
3404   Instruction *Next = nullptr;
3405   if (!CB.getType()->isVoidTy()) {
3406     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
3407       if (II->getNormalDest()->getSinglePredecessor()) {
3408         Next = &II->getNormalDest()->front();
3409       } else {
3410         BasicBlock *NewBB =
3411             SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
3412         Next = &NewBB->front();
3413       }
3414     } else {
3415       assert(CB.getIterator() != CB.getParent()->end());
3416       Next = CB.getNextNode();
3417     }
3418 
3419     // Don't emit the epilogue for musttail call returns.
3420     if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
3421       return;
3422 
3423     // Loads the return value shadow.
3424     IRBuilder<> NextIRB(Next);
3425     unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
3426     if (Size > RetvalTLSSize) {
3427       // Set overflowed return shadow to be zero.
3428       DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3429     } else {
3430       LoadInst *LI = NextIRB.CreateAlignedLoad(
3431           DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
3432           ShadowTLSAlignment, "_dfsret");
3433       DFSF.SkipInsts.insert(LI);
3434       DFSF.setShadow(&CB, LI);
3435       DFSF.NonZeroChecks.push_back(LI);
3436     }
3437 
3438     if (ShouldTrackOrigins) {
3439       LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy,
3440                                         DFSF.getRetvalOriginTLS(), "_dfsret_o");
3441       DFSF.SkipInsts.insert(LI);
3442       DFSF.setOrigin(&CB, LI);
3443     }
3444 
3445     DFSF.addReachesFunctionCallbacksIfEnabled(NextIRB, CB, &CB);
3446   }
3447 }
3448 
3449 void DFSanVisitor::visitPHINode(PHINode &PN) {
3450   Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
3451   PHINode *ShadowPN = PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "",
3452                                       PN.getIterator());
3453 
3454   // Give the shadow phi node valid predecessors to fool SplitEdge into working.
3455   Value *UndefShadow = UndefValue::get(ShadowTy);
3456   for (BasicBlock *BB : PN.blocks())
3457     ShadowPN->addIncoming(UndefShadow, BB);
3458 
3459   DFSF.setShadow(&PN, ShadowPN);
3460 
3461   PHINode *OriginPN = nullptr;
3462   if (DFSF.DFS.shouldTrackOrigins()) {
3463     OriginPN = PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "",
3464                                PN.getIterator());
3465     Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy);
3466     for (BasicBlock *BB : PN.blocks())
3467       OriginPN->addIncoming(UndefOrigin, BB);
3468     DFSF.setOrigin(&PN, OriginPN);
3469   }
3470 
3471   DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN});
3472 }
3473 
3474 PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
3475                                              ModuleAnalysisManager &AM) {
3476   auto GetTLI = [&](Function &F) -> TargetLibraryInfo & {
3477     auto &FAM =
3478         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3479     return FAM.getResult<TargetLibraryAnalysis>(F);
3480   };
3481   if (!DataFlowSanitizer(ABIListFiles).runImpl(M, GetTLI))
3482     return PreservedAnalyses::all();
3483 
3484   PreservedAnalyses PA = PreservedAnalyses::none();
3485   // GlobalsAA is considered stateless and does not get invalidated unless
3486   // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
3487   // make changes that require GlobalsAA to be invalidated.
3488   PA.abandon<GlobalsAA>();
3489   return PA;
3490 }
3491