1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// Argument and return value labels are passed through TLS variables 22 /// __dfsan_arg_tls and __dfsan_retval_tls. 23 /// 24 /// Each byte of application memory is backed by a shadow memory byte. The 25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then 26 /// laid out as follows: 27 /// 28 /// +--------------------+ 0x800000000000 (top of memory) 29 /// | application 3 | 30 /// +--------------------+ 0x700000000000 31 /// | invalid | 32 /// +--------------------+ 0x610000000000 33 /// | origin 1 | 34 /// +--------------------+ 0x600000000000 35 /// | application 2 | 36 /// +--------------------+ 0x510000000000 37 /// | shadow 1 | 38 /// +--------------------+ 0x500000000000 39 /// | invalid | 40 /// +--------------------+ 0x400000000000 41 /// | origin 3 | 42 /// +--------------------+ 0x300000000000 43 /// | shadow 3 | 44 /// +--------------------+ 0x200000000000 45 /// | origin 2 | 46 /// +--------------------+ 0x110000000000 47 /// | invalid | 48 /// +--------------------+ 0x100000000000 49 /// | shadow 2 | 50 /// +--------------------+ 0x010000000000 51 /// | application 1 | 52 /// +--------------------+ 0x000000000000 53 /// 54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 56 /// 57 /// For more information, please refer to the design document: 58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 59 // 60 //===----------------------------------------------------------------------===// 61 62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DenseSet.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/StringRef.h" 69 #include "llvm/ADT/StringSet.h" 70 #include "llvm/ADT/iterator.h" 71 #include "llvm/Analysis/DomTreeUpdater.h" 72 #include "llvm/Analysis/GlobalsModRef.h" 73 #include "llvm/Analysis/TargetLibraryInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/IR/Argument.h" 76 #include "llvm/IR/AttributeMask.h" 77 #include "llvm/IR/Attributes.h" 78 #include "llvm/IR/BasicBlock.h" 79 #include "llvm/IR/Constant.h" 80 #include "llvm/IR/Constants.h" 81 #include "llvm/IR/DataLayout.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/Function.h" 85 #include "llvm/IR/GlobalAlias.h" 86 #include "llvm/IR/GlobalValue.h" 87 #include "llvm/IR/GlobalVariable.h" 88 #include "llvm/IR/IRBuilder.h" 89 #include "llvm/IR/InstVisitor.h" 90 #include "llvm/IR/InstrTypes.h" 91 #include "llvm/IR/Instruction.h" 92 #include "llvm/IR/Instructions.h" 93 #include "llvm/IR/IntrinsicInst.h" 94 #include "llvm/IR/MDBuilder.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/PassManager.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/Support/Alignment.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/ErrorHandling.h" 104 #include "llvm/Support/SpecialCaseList.h" 105 #include "llvm/Support/VirtualFileSystem.h" 106 #include "llvm/TargetParser/Triple.h" 107 #include "llvm/Transforms/Instrumentation.h" 108 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 109 #include "llvm/Transforms/Utils/Local.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <memory> 115 #include <set> 116 #include <string> 117 #include <utility> 118 #include <vector> 119 120 using namespace llvm; 121 122 // This must be consistent with ShadowWidthBits. 123 static const Align ShadowTLSAlignment = Align(2); 124 125 static const Align MinOriginAlignment = Align(4); 126 127 // The size of TLS variables. These constants must be kept in sync with the ones 128 // in dfsan.cpp. 129 static const unsigned ArgTLSSize = 800; 130 static const unsigned RetvalTLSSize = 800; 131 132 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 133 // alignment requirements provided by the input IR are correct. For example, 134 // if the input IR contains a load with alignment 8, this flag will cause 135 // the shadow load to have alignment 16. This flag is disabled by default as 136 // we have unfortunately encountered too much code (including Clang itself; 137 // see PR14291) which performs misaligned access. 138 static cl::opt<bool> ClPreserveAlignment( 139 "dfsan-preserve-alignment", 140 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 141 cl::init(false)); 142 143 // The ABI list files control how shadow parameters are passed. The pass treats 144 // every function labelled "uninstrumented" in the ABI list file as conforming 145 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 146 // additional annotations for those functions, a call to one of those functions 147 // will produce a warning message, as the labelling behaviour of the function is 148 // unknown. The other supported annotations for uninstrumented functions are 149 // "functional" and "discard", which are described below under 150 // DataFlowSanitizer::WrapperKind. 151 // Functions will often be labelled with both "uninstrumented" and one of 152 // "functional" or "discard". This will leave the function unchanged by this 153 // pass, and create a wrapper function that will call the original. 154 // 155 // Instrumented functions can also be annotated as "force_zero_labels", which 156 // will make all shadow and return values set zero labels. 157 // Functions should never be labelled with both "force_zero_labels" and 158 // "uninstrumented" or any of the unistrumented wrapper kinds. 159 static cl::list<std::string> ClABIListFiles( 160 "dfsan-abilist", 161 cl::desc("File listing native ABI functions and how the pass treats them"), 162 cl::Hidden); 163 164 // Controls whether the pass includes or ignores the labels of pointers in load 165 // instructions. 166 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 167 "dfsan-combine-pointer-labels-on-load", 168 cl::desc("Combine the label of the pointer with the label of the data when " 169 "loading from memory."), 170 cl::Hidden, cl::init(true)); 171 172 // Controls whether the pass includes or ignores the labels of pointers in 173 // stores instructions. 174 static cl::opt<bool> ClCombinePointerLabelsOnStore( 175 "dfsan-combine-pointer-labels-on-store", 176 cl::desc("Combine the label of the pointer with the label of the data when " 177 "storing in memory."), 178 cl::Hidden, cl::init(false)); 179 180 // Controls whether the pass propagates labels of offsets in GEP instructions. 181 static cl::opt<bool> ClCombineOffsetLabelsOnGEP( 182 "dfsan-combine-offset-labels-on-gep", 183 cl::desc( 184 "Combine the label of the offset with the label of the pointer when " 185 "doing pointer arithmetic."), 186 cl::Hidden, cl::init(true)); 187 188 static cl::list<std::string> ClCombineTaintLookupTables( 189 "dfsan-combine-taint-lookup-table", 190 cl::desc( 191 "When dfsan-combine-offset-labels-on-gep and/or " 192 "dfsan-combine-pointer-labels-on-load are false, this flag can " 193 "be used to re-enable combining offset and/or pointer taint when " 194 "loading specific constant global variables (i.e. lookup tables)."), 195 cl::Hidden); 196 197 static cl::opt<bool> ClDebugNonzeroLabels( 198 "dfsan-debug-nonzero-labels", 199 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 200 "load or return with a nonzero label"), 201 cl::Hidden); 202 203 // Experimental feature that inserts callbacks for certain data events. 204 // Currently callbacks are only inserted for loads, stores, memory transfers 205 // (i.e. memcpy and memmove), and comparisons. 206 // 207 // If this flag is set to true, the user must provide definitions for the 208 // following callback functions: 209 // void __dfsan_load_callback(dfsan_label Label, void* addr); 210 // void __dfsan_store_callback(dfsan_label Label, void* addr); 211 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 212 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 213 static cl::opt<bool> ClEventCallbacks( 214 "dfsan-event-callbacks", 215 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 216 cl::Hidden, cl::init(false)); 217 218 // Experimental feature that inserts callbacks for conditionals, including: 219 // conditional branch, switch, select. 220 // This must be true for dfsan_set_conditional_callback() to have effect. 221 static cl::opt<bool> ClConditionalCallbacks( 222 "dfsan-conditional-callbacks", 223 cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden, 224 cl::init(false)); 225 226 // Experimental feature that inserts callbacks for data reaching a function, 227 // either via function arguments and loads. 228 // This must be true for dfsan_set_reaches_function_callback() to have effect. 229 static cl::opt<bool> ClReachesFunctionCallbacks( 230 "dfsan-reaches-function-callbacks", 231 cl::desc("Insert calls to callback functions on data reaching a function."), 232 cl::Hidden, cl::init(false)); 233 234 // Controls whether the pass tracks the control flow of select instructions. 235 static cl::opt<bool> ClTrackSelectControlFlow( 236 "dfsan-track-select-control-flow", 237 cl::desc("Propagate labels from condition values of select instructions " 238 "to results."), 239 cl::Hidden, cl::init(true)); 240 241 // TODO: This default value follows MSan. DFSan may use a different value. 242 static cl::opt<int> ClInstrumentWithCallThreshold( 243 "dfsan-instrument-with-call-threshold", 244 cl::desc("If the function being instrumented requires more than " 245 "this number of origin stores, use callbacks instead of " 246 "inline checks (-1 means never use callbacks)."), 247 cl::Hidden, cl::init(3500)); 248 249 // Controls how to track origins. 250 // * 0: do not track origins. 251 // * 1: track origins at memory store operations. 252 // * 2: track origins at memory load and store operations. 253 // TODO: track callsites. 254 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 255 cl::desc("Track origins of labels"), 256 cl::Hidden, cl::init(0)); 257 258 static cl::opt<bool> ClIgnorePersonalityRoutine( 259 "dfsan-ignore-personality-routine", 260 cl::desc("If a personality routine is marked uninstrumented from the ABI " 261 "list, do not create a wrapper for it."), 262 cl::Hidden, cl::init(false)); 263 264 static StringRef getGlobalTypeString(const GlobalValue &G) { 265 // Types of GlobalVariables are always pointer types. 266 Type *GType = G.getValueType(); 267 // For now we support excluding struct types only. 268 if (StructType *SGType = dyn_cast<StructType>(GType)) { 269 if (!SGType->isLiteral()) 270 return SGType->getName(); 271 } 272 return "<unknown type>"; 273 } 274 275 namespace { 276 277 // Memory map parameters used in application-to-shadow address calculation. 278 // Offset = (Addr & ~AndMask) ^ XorMask 279 // Shadow = ShadowBase + Offset 280 // Origin = (OriginBase + Offset) & ~3ULL 281 struct MemoryMapParams { 282 uint64_t AndMask; 283 uint64_t XorMask; 284 uint64_t ShadowBase; 285 uint64_t OriginBase; 286 }; 287 288 } // end anonymous namespace 289 290 // NOLINTBEGIN(readability-identifier-naming) 291 // aarch64 Linux 292 const MemoryMapParams Linux_AArch64_MemoryMapParams = { 293 0, // AndMask (not used) 294 0x0B00000000000, // XorMask 295 0, // ShadowBase (not used) 296 0x0200000000000, // OriginBase 297 }; 298 299 // x86_64 Linux 300 const MemoryMapParams Linux_X86_64_MemoryMapParams = { 301 0, // AndMask (not used) 302 0x500000000000, // XorMask 303 0, // ShadowBase (not used) 304 0x100000000000, // OriginBase 305 }; 306 // NOLINTEND(readability-identifier-naming) 307 308 // loongarch64 Linux 309 const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { 310 0, // AndMask (not used) 311 0x500000000000, // XorMask 312 0, // ShadowBase (not used) 313 0x100000000000, // OriginBase 314 }; 315 316 namespace { 317 318 class DFSanABIList { 319 std::unique_ptr<SpecialCaseList> SCL; 320 321 public: 322 DFSanABIList() = default; 323 324 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 325 326 /// Returns whether either this function or its source file are listed in the 327 /// given category. 328 bool isIn(const Function &F, StringRef Category) const { 329 return isIn(*F.getParent(), Category) || 330 SCL->inSection("dataflow", "fun", F.getName(), Category); 331 } 332 333 /// Returns whether this global alias is listed in the given category. 334 /// 335 /// If GA aliases a function, the alias's name is matched as a function name 336 /// would be. Similarly, aliases of globals are matched like globals. 337 bool isIn(const GlobalAlias &GA, StringRef Category) const { 338 if (isIn(*GA.getParent(), Category)) 339 return true; 340 341 if (isa<FunctionType>(GA.getValueType())) 342 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 343 344 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 345 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 346 Category); 347 } 348 349 /// Returns whether this module is listed in the given category. 350 bool isIn(const Module &M, StringRef Category) const { 351 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 352 } 353 }; 354 355 /// TransformedFunction is used to express the result of transforming one 356 /// function type into another. This struct is immutable. It holds metadata 357 /// useful for updating calls of the old function to the new type. 358 struct TransformedFunction { 359 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 360 const std::vector<unsigned> &ArgumentIndexMapping) 361 : OriginalType(OriginalType), TransformedType(TransformedType), 362 ArgumentIndexMapping(ArgumentIndexMapping) {} 363 364 // Disallow copies. 365 TransformedFunction(const TransformedFunction &) = delete; 366 TransformedFunction &operator=(const TransformedFunction &) = delete; 367 368 // Allow moves. 369 TransformedFunction(TransformedFunction &&) = default; 370 TransformedFunction &operator=(TransformedFunction &&) = default; 371 372 /// Type of the function before the transformation. 373 FunctionType *OriginalType; 374 375 /// Type of the function after the transformation. 376 FunctionType *TransformedType; 377 378 /// Transforming a function may change the position of arguments. This 379 /// member records the mapping from each argument's old position to its new 380 /// position. Argument positions are zero-indexed. If the transformation 381 /// from F to F' made the first argument of F into the third argument of F', 382 /// then ArgumentIndexMapping[0] will equal 2. 383 std::vector<unsigned> ArgumentIndexMapping; 384 }; 385 386 /// Given function attributes from a call site for the original function, 387 /// return function attributes appropriate for a call to the transformed 388 /// function. 389 AttributeList 390 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 391 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 392 393 // Construct a vector of AttributeSet for each function argument. 394 std::vector<llvm::AttributeSet> ArgumentAttributes( 395 TransformedFunction.TransformedType->getNumParams()); 396 397 // Copy attributes from the parameter of the original function to the 398 // transformed version. 'ArgumentIndexMapping' holds the mapping from 399 // old argument position to new. 400 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 401 I < IE; ++I) { 402 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 403 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I); 404 } 405 406 // Copy annotations on varargs arguments. 407 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 408 IE = CallSiteAttrs.getNumAttrSets(); 409 I < IE; ++I) { 410 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I)); 411 } 412 413 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(), 414 CallSiteAttrs.getRetAttrs(), 415 llvm::ArrayRef(ArgumentAttributes)); 416 } 417 418 class DataFlowSanitizer { 419 friend struct DFSanFunction; 420 friend class DFSanVisitor; 421 422 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; 423 424 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; 425 426 /// How should calls to uninstrumented functions be handled? 427 enum WrapperKind { 428 /// This function is present in an uninstrumented form but we don't know 429 /// how it should be handled. Print a warning and call the function anyway. 430 /// Don't label the return value. 431 WK_Warning, 432 433 /// This function does not write to (user-accessible) memory, and its return 434 /// value is unlabelled. 435 WK_Discard, 436 437 /// This function does not write to (user-accessible) memory, and the label 438 /// of its return value is the union of the label of its arguments. 439 WK_Functional, 440 441 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 442 /// where F is the name of the function. This function may wrap the 443 /// original function or provide its own implementation. WK_Custom uses an 444 /// extra pointer argument to return the shadow. This allows the wrapped 445 /// form of the function type to be expressed in C. 446 WK_Custom 447 }; 448 449 Module *Mod; 450 LLVMContext *Ctx; 451 Type *Int8Ptr; 452 IntegerType *OriginTy; 453 PointerType *OriginPtrTy; 454 ConstantInt *ZeroOrigin; 455 /// The shadow type for all primitive types and vector types. 456 IntegerType *PrimitiveShadowTy; 457 PointerType *PrimitiveShadowPtrTy; 458 IntegerType *IntptrTy; 459 ConstantInt *ZeroPrimitiveShadow; 460 Constant *ArgTLS; 461 ArrayType *ArgOriginTLSTy; 462 Constant *ArgOriginTLS; 463 Constant *RetvalTLS; 464 Constant *RetvalOriginTLS; 465 FunctionType *DFSanUnionLoadFnTy; 466 FunctionType *DFSanLoadLabelAndOriginFnTy; 467 FunctionType *DFSanUnimplementedFnTy; 468 FunctionType *DFSanWrapperExternWeakNullFnTy; 469 FunctionType *DFSanSetLabelFnTy; 470 FunctionType *DFSanNonzeroLabelFnTy; 471 FunctionType *DFSanVarargWrapperFnTy; 472 FunctionType *DFSanConditionalCallbackFnTy; 473 FunctionType *DFSanConditionalCallbackOriginFnTy; 474 FunctionType *DFSanReachesFunctionCallbackFnTy; 475 FunctionType *DFSanReachesFunctionCallbackOriginFnTy; 476 FunctionType *DFSanCmpCallbackFnTy; 477 FunctionType *DFSanLoadStoreCallbackFnTy; 478 FunctionType *DFSanMemTransferCallbackFnTy; 479 FunctionType *DFSanChainOriginFnTy; 480 FunctionType *DFSanChainOriginIfTaintedFnTy; 481 FunctionType *DFSanMemOriginTransferFnTy; 482 FunctionType *DFSanMemShadowOriginTransferFnTy; 483 FunctionType *DFSanMemShadowOriginConditionalExchangeFnTy; 484 FunctionType *DFSanMaybeStoreOriginFnTy; 485 FunctionCallee DFSanUnionLoadFn; 486 FunctionCallee DFSanLoadLabelAndOriginFn; 487 FunctionCallee DFSanUnimplementedFn; 488 FunctionCallee DFSanWrapperExternWeakNullFn; 489 FunctionCallee DFSanSetLabelFn; 490 FunctionCallee DFSanNonzeroLabelFn; 491 FunctionCallee DFSanVarargWrapperFn; 492 FunctionCallee DFSanLoadCallbackFn; 493 FunctionCallee DFSanStoreCallbackFn; 494 FunctionCallee DFSanMemTransferCallbackFn; 495 FunctionCallee DFSanConditionalCallbackFn; 496 FunctionCallee DFSanConditionalCallbackOriginFn; 497 FunctionCallee DFSanReachesFunctionCallbackFn; 498 FunctionCallee DFSanReachesFunctionCallbackOriginFn; 499 FunctionCallee DFSanCmpCallbackFn; 500 FunctionCallee DFSanChainOriginFn; 501 FunctionCallee DFSanChainOriginIfTaintedFn; 502 FunctionCallee DFSanMemOriginTransferFn; 503 FunctionCallee DFSanMemShadowOriginTransferFn; 504 FunctionCallee DFSanMemShadowOriginConditionalExchangeFn; 505 FunctionCallee DFSanMaybeStoreOriginFn; 506 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 507 MDNode *ColdCallWeights; 508 MDNode *OriginStoreWeights; 509 DFSanABIList ABIList; 510 DenseMap<Value *, Function *> UnwrappedFnMap; 511 AttributeMask ReadOnlyNoneAttrs; 512 StringSet<> CombineTaintLookupTableNames; 513 514 /// Memory map parameters used in calculation mapping application addresses 515 /// to shadow addresses and origin addresses. 516 const MemoryMapParams *MapParams; 517 518 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 519 Value *getShadowAddress(Value *Addr, BasicBlock::iterator Pos); 520 Value *getShadowAddress(Value *Addr, BasicBlock::iterator Pos, 521 Value *ShadowOffset); 522 std::pair<Value *, Value *> getShadowOriginAddress(Value *Addr, 523 Align InstAlignment, 524 BasicBlock::iterator Pos); 525 bool isInstrumented(const Function *F); 526 bool isInstrumented(const GlobalAlias *GA); 527 bool isForceZeroLabels(const Function *F); 528 TransformedFunction getCustomFunctionType(FunctionType *T); 529 WrapperKind getWrapperKind(Function *F); 530 void addGlobalNameSuffix(GlobalValue *GV); 531 void buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, Function *F); 532 Function *buildWrapperFunction(Function *F, StringRef NewFName, 533 GlobalValue::LinkageTypes NewFLink, 534 FunctionType *NewFT); 535 void initializeCallbackFunctions(Module &M); 536 void initializeRuntimeFunctions(Module &M); 537 bool initializeModule(Module &M); 538 539 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 540 /// from it. Returns the origin's loaded value. 541 Value *loadNextOrigin(BasicBlock::iterator Pos, Align OriginAlign, 542 Value **OriginAddr); 543 544 /// Returns whether the given load byte size is amenable to inlined 545 /// optimization patterns. 546 bool hasLoadSizeForFastPath(uint64_t Size); 547 548 /// Returns whether the pass tracks origins. Supports only TLS ABI mode. 549 bool shouldTrackOrigins(); 550 551 /// Returns a zero constant with the shadow type of OrigTy. 552 /// 553 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 554 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 555 /// getZeroShadow(other type) = i16(0) 556 Constant *getZeroShadow(Type *OrigTy); 557 /// Returns a zero constant with the shadow type of V's type. 558 Constant *getZeroShadow(Value *V); 559 560 /// Checks if V is a zero shadow. 561 bool isZeroShadow(Value *V); 562 563 /// Returns the shadow type of OrigTy. 564 /// 565 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 566 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 567 /// getShadowTy(other type) = i16 568 Type *getShadowTy(Type *OrigTy); 569 /// Returns the shadow type of V's type. 570 Type *getShadowTy(Value *V); 571 572 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 573 574 public: 575 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 576 577 bool runImpl(Module &M, 578 llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI); 579 }; 580 581 struct DFSanFunction { 582 DataFlowSanitizer &DFS; 583 Function *F; 584 DominatorTree DT; 585 bool IsNativeABI; 586 bool IsForceZeroLabels; 587 TargetLibraryInfo &TLI; 588 AllocaInst *LabelReturnAlloca = nullptr; 589 AllocaInst *OriginReturnAlloca = nullptr; 590 DenseMap<Value *, Value *> ValShadowMap; 591 DenseMap<Value *, Value *> ValOriginMap; 592 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 593 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 594 595 struct PHIFixupElement { 596 PHINode *Phi; 597 PHINode *ShadowPhi; 598 PHINode *OriginPhi; 599 }; 600 std::vector<PHIFixupElement> PHIFixups; 601 602 DenseSet<Instruction *> SkipInsts; 603 std::vector<Value *> NonZeroChecks; 604 605 struct CachedShadow { 606 BasicBlock *Block; // The block where Shadow is defined. 607 Value *Shadow; 608 }; 609 /// Maps a value to its latest shadow value in terms of domination tree. 610 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 611 /// Maps a value to its latest collapsed shadow value it was converted to in 612 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 613 /// used at a post process where CFG blocks are split. So it does not cache 614 /// BasicBlock like CachedShadows, but uses domination between values. 615 DenseMap<Value *, Value *> CachedCollapsedShadows; 616 DenseMap<Value *, std::set<Value *>> ShadowElements; 617 618 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, 619 bool IsForceZeroLabels, TargetLibraryInfo &TLI) 620 : DFS(DFS), F(F), IsNativeABI(IsNativeABI), 621 IsForceZeroLabels(IsForceZeroLabels), TLI(TLI) { 622 DT.recalculate(*F); 623 } 624 625 /// Computes the shadow address for a given function argument. 626 /// 627 /// Shadow = ArgTLS+ArgOffset. 628 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 629 630 /// Computes the shadow address for a return value. 631 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 632 633 /// Computes the origin address for a given function argument. 634 /// 635 /// Origin = ArgOriginTLS[ArgNo]. 636 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 637 638 /// Computes the origin address for a return value. 639 Value *getRetvalOriginTLS(); 640 641 Value *getOrigin(Value *V); 642 void setOrigin(Instruction *I, Value *Origin); 643 /// Generates IR to compute the origin of the last operand with a taint label. 644 Value *combineOperandOrigins(Instruction *Inst); 645 /// Before the instruction Pos, generates IR to compute the last origin with a 646 /// taint label. Labels and origins are from vectors Shadows and Origins 647 /// correspondingly. The generated IR is like 648 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 649 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 650 /// zeros with other bitwidths. 651 Value *combineOrigins(const std::vector<Value *> &Shadows, 652 const std::vector<Value *> &Origins, 653 BasicBlock::iterator Pos, ConstantInt *Zero = nullptr); 654 655 Value *getShadow(Value *V); 656 void setShadow(Instruction *I, Value *Shadow); 657 /// Generates IR to compute the union of the two given shadows, inserting it 658 /// before Pos. The combined value is with primitive type. 659 Value *combineShadows(Value *V1, Value *V2, BasicBlock::iterator Pos); 660 /// Combines the shadow values of V1 and V2, then converts the combined value 661 /// with primitive type into a shadow value with the original type T. 662 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 663 BasicBlock::iterator Pos); 664 Value *combineOperandShadows(Instruction *Inst); 665 666 /// Generates IR to load shadow and origin corresponding to bytes [\p 667 /// Addr, \p Addr + \p Size), where addr has alignment \p 668 /// InstAlignment, and take the union of each of those shadows. The returned 669 /// shadow always has primitive type. 670 /// 671 /// When tracking loads is enabled, the returned origin is a chain at the 672 /// current stack if the returned shadow is tainted. 673 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 674 Align InstAlignment, 675 BasicBlock::iterator Pos); 676 677 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 678 Align InstAlignment, Value *PrimitiveShadow, 679 Value *Origin, BasicBlock::iterator Pos); 680 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 681 /// the expanded shadow value. 682 /// 683 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 684 /// EFP([n x T], PS) = [n x EFP(T,PS)] 685 /// EFP(other types, PS) = PS 686 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 687 BasicBlock::iterator Pos); 688 /// Collapses Shadow into a single primitive shadow value, unioning all 689 /// primitive shadow values in the process. Returns the final primitive 690 /// shadow value. 691 /// 692 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 693 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 694 /// CTP(other types, PS) = PS 695 Value *collapseToPrimitiveShadow(Value *Shadow, BasicBlock::iterator Pos); 696 697 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 698 BasicBlock::iterator Pos); 699 700 Align getShadowAlign(Align InstAlignment); 701 702 // If ClConditionalCallbacks is enabled, insert a callback after a given 703 // branch instruction using the given conditional expression. 704 void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition); 705 706 // If ClReachesFunctionCallbacks is enabled, insert a callback for each 707 // argument and load instruction. 708 void addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, Instruction &I, 709 Value *Data); 710 711 bool isLookupTableConstant(Value *P); 712 713 private: 714 /// Collapses the shadow with aggregate type into a single primitive shadow 715 /// value. 716 template <class AggregateType> 717 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 718 IRBuilder<> &IRB); 719 720 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 721 722 /// Returns the shadow value of an argument A. 723 Value *getShadowForTLSArgument(Argument *A); 724 725 /// The fast path of loading shadows. 726 std::pair<Value *, Value *> 727 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 728 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 729 BasicBlock::iterator Pos); 730 731 Align getOriginAlign(Align InstAlignment); 732 733 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 734 /// is __dfsan_load_label_and_origin. This function returns the union of all 735 /// labels and the origin of the first taint label. However this is an 736 /// additional call with many instructions. To ensure common cases are fast, 737 /// checks if it is possible to load labels and origins without using the 738 /// callback function. 739 /// 740 /// When enabling tracking load instructions, we always use 741 /// __dfsan_load_label_and_origin to reduce code size. 742 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 743 744 /// Returns a chain at the current stack with previous origin V. 745 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 746 747 /// Returns a chain at the current stack with previous origin V if Shadow is 748 /// tainted. 749 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 750 751 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 752 /// Origin otherwise. 753 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 754 755 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 756 /// Size). 757 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 758 uint64_t StoreOriginSize, Align Alignment); 759 760 /// Stores Origin in terms of its Shadow value. 761 /// * Do not write origins for zero shadows because we do not trace origins 762 /// for untainted sinks. 763 /// * Use __dfsan_maybe_store_origin if there are too many origin store 764 /// instrumentations. 765 void storeOrigin(BasicBlock::iterator Pos, Value *Addr, uint64_t Size, 766 Value *Shadow, Value *Origin, Value *StoreOriginAddr, 767 Align InstAlignment); 768 769 /// Convert a scalar value to an i1 by comparing with 0. 770 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 771 772 bool shouldInstrumentWithCall(); 773 774 /// Generates IR to load shadow and origin corresponding to bytes [\p 775 /// Addr, \p Addr + \p Size), where addr has alignment \p 776 /// InstAlignment, and take the union of each of those shadows. The returned 777 /// shadow always has primitive type. 778 std::pair<Value *, Value *> 779 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 780 Align InstAlignment, 781 BasicBlock::iterator Pos); 782 int NumOriginStores = 0; 783 }; 784 785 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 786 public: 787 DFSanFunction &DFSF; 788 789 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 790 791 const DataLayout &getDataLayout() const { 792 return DFSF.F->getDataLayout(); 793 } 794 795 // Combines shadow values and origins for all of I's operands. 796 void visitInstOperands(Instruction &I); 797 798 void visitUnaryOperator(UnaryOperator &UO); 799 void visitBinaryOperator(BinaryOperator &BO); 800 void visitBitCastInst(BitCastInst &BCI); 801 void visitCastInst(CastInst &CI); 802 void visitCmpInst(CmpInst &CI); 803 void visitLandingPadInst(LandingPadInst &LPI); 804 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 805 void visitLoadInst(LoadInst &LI); 806 void visitStoreInst(StoreInst &SI); 807 void visitAtomicRMWInst(AtomicRMWInst &I); 808 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 809 void visitReturnInst(ReturnInst &RI); 810 void visitLibAtomicLoad(CallBase &CB); 811 void visitLibAtomicStore(CallBase &CB); 812 void visitLibAtomicExchange(CallBase &CB); 813 void visitLibAtomicCompareExchange(CallBase &CB); 814 void visitCallBase(CallBase &CB); 815 void visitPHINode(PHINode &PN); 816 void visitExtractElementInst(ExtractElementInst &I); 817 void visitInsertElementInst(InsertElementInst &I); 818 void visitShuffleVectorInst(ShuffleVectorInst &I); 819 void visitExtractValueInst(ExtractValueInst &I); 820 void visitInsertValueInst(InsertValueInst &I); 821 void visitAllocaInst(AllocaInst &I); 822 void visitSelectInst(SelectInst &I); 823 void visitMemSetInst(MemSetInst &I); 824 void visitMemTransferInst(MemTransferInst &I); 825 void visitBranchInst(BranchInst &BR); 826 void visitSwitchInst(SwitchInst &SW); 827 828 private: 829 void visitCASOrRMW(Align InstAlignment, Instruction &I); 830 831 // Returns false when this is an invoke of a custom function. 832 bool visitWrappedCallBase(Function &F, CallBase &CB); 833 834 // Combines origins for all of I's operands. 835 void visitInstOperandOrigins(Instruction &I); 836 837 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 838 IRBuilder<> &IRB); 839 840 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 841 IRBuilder<> &IRB); 842 843 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB); 844 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB); 845 }; 846 847 bool LibAtomicFunction(const Function &F) { 848 // This is a bit of a hack because TargetLibraryInfo is a function pass. 849 // The DFSan pass would need to be refactored to be function pass oriented 850 // (like MSan is) in order to fit together nicely with TargetLibraryInfo. 851 // We need this check to prevent them from being instrumented, or wrapped. 852 // Match on name and number of arguments. 853 if (!F.hasName() || F.isVarArg()) 854 return false; 855 switch (F.arg_size()) { 856 case 4: 857 return F.getName() == "__atomic_load" || F.getName() == "__atomic_store"; 858 case 5: 859 return F.getName() == "__atomic_exchange"; 860 case 6: 861 return F.getName() == "__atomic_compare_exchange"; 862 default: 863 return false; 864 } 865 } 866 867 } // end anonymous namespace 868 869 DataFlowSanitizer::DataFlowSanitizer( 870 const std::vector<std::string> &ABIListFiles) { 871 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 872 llvm::append_range(AllABIListFiles, ClABIListFiles); 873 // FIXME: should we propagate vfs::FileSystem to this constructor? 874 ABIList.set( 875 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 876 877 for (StringRef v : ClCombineTaintLookupTables) 878 CombineTaintLookupTableNames.insert(v); 879 } 880 881 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 882 SmallVector<Type *, 4> ArgTypes; 883 884 // Some parameters of the custom function being constructed are 885 // parameters of T. Record the mapping from parameters of T to 886 // parameters of the custom function, so that parameter attributes 887 // at call sites can be updated. 888 std::vector<unsigned> ArgumentIndexMapping; 889 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 890 Type *ParamType = T->getParamType(I); 891 ArgumentIndexMapping.push_back(ArgTypes.size()); 892 ArgTypes.push_back(ParamType); 893 } 894 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 895 ArgTypes.push_back(PrimitiveShadowTy); 896 if (T->isVarArg()) 897 ArgTypes.push_back(PrimitiveShadowPtrTy); 898 Type *RetType = T->getReturnType(); 899 if (!RetType->isVoidTy()) 900 ArgTypes.push_back(PrimitiveShadowPtrTy); 901 902 if (shouldTrackOrigins()) { 903 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 904 ArgTypes.push_back(OriginTy); 905 if (T->isVarArg()) 906 ArgTypes.push_back(OriginPtrTy); 907 if (!RetType->isVoidTy()) 908 ArgTypes.push_back(OriginPtrTy); 909 } 910 911 return TransformedFunction( 912 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 913 ArgumentIndexMapping); 914 } 915 916 bool DataFlowSanitizer::isZeroShadow(Value *V) { 917 Type *T = V->getType(); 918 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 919 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 920 return CI->isZero(); 921 return false; 922 } 923 924 return isa<ConstantAggregateZero>(V); 925 } 926 927 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 928 uint64_t ShadowSize = Size * ShadowWidthBytes; 929 return ShadowSize % 8 == 0 || ShadowSize == 4; 930 } 931 932 bool DataFlowSanitizer::shouldTrackOrigins() { 933 static const bool ShouldTrackOrigins = ClTrackOrigins; 934 return ShouldTrackOrigins; 935 } 936 937 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 938 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 939 return ZeroPrimitiveShadow; 940 Type *ShadowTy = getShadowTy(OrigTy); 941 return ConstantAggregateZero::get(ShadowTy); 942 } 943 944 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 945 return getZeroShadow(V->getType()); 946 } 947 948 static Value *expandFromPrimitiveShadowRecursive( 949 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 950 Value *PrimitiveShadow, IRBuilder<> &IRB) { 951 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 952 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 953 954 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 955 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 956 Indices.push_back(Idx); 957 Shadow = expandFromPrimitiveShadowRecursive( 958 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 959 Indices.pop_back(); 960 } 961 return Shadow; 962 } 963 964 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 965 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 966 Indices.push_back(Idx); 967 Shadow = expandFromPrimitiveShadowRecursive( 968 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 969 Indices.pop_back(); 970 } 971 return Shadow; 972 } 973 llvm_unreachable("Unexpected shadow type"); 974 } 975 976 bool DFSanFunction::shouldInstrumentWithCall() { 977 return ClInstrumentWithCallThreshold >= 0 && 978 NumOriginStores >= ClInstrumentWithCallThreshold; 979 } 980 981 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 982 BasicBlock::iterator Pos) { 983 Type *ShadowTy = DFS.getShadowTy(T); 984 985 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 986 return PrimitiveShadow; 987 988 if (DFS.isZeroShadow(PrimitiveShadow)) 989 return DFS.getZeroShadow(ShadowTy); 990 991 IRBuilder<> IRB(Pos->getParent(), Pos); 992 SmallVector<unsigned, 4> Indices; 993 Value *Shadow = UndefValue::get(ShadowTy); 994 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 995 PrimitiveShadow, IRB); 996 997 // Caches the primitive shadow value that built the shadow value. 998 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 999 return Shadow; 1000 } 1001 1002 template <class AggregateType> 1003 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 1004 IRBuilder<> &IRB) { 1005 if (!AT->getNumElements()) 1006 return DFS.ZeroPrimitiveShadow; 1007 1008 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1009 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 1010 1011 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 1012 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1013 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 1014 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1015 } 1016 return Aggregator; 1017 } 1018 1019 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 1020 IRBuilder<> &IRB) { 1021 Type *ShadowTy = Shadow->getType(); 1022 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 1023 return Shadow; 1024 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 1025 return collapseAggregateShadow<>(AT, Shadow, IRB); 1026 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 1027 return collapseAggregateShadow<>(ST, Shadow, IRB); 1028 llvm_unreachable("Unexpected shadow type"); 1029 } 1030 1031 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 1032 BasicBlock::iterator Pos) { 1033 Type *ShadowTy = Shadow->getType(); 1034 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 1035 return Shadow; 1036 1037 // Checks if the cached collapsed shadow value dominates Pos. 1038 Value *&CS = CachedCollapsedShadows[Shadow]; 1039 if (CS && DT.dominates(CS, Pos)) 1040 return CS; 1041 1042 IRBuilder<> IRB(Pos->getParent(), Pos); 1043 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 1044 // Caches the converted primitive shadow value. 1045 CS = PrimitiveShadow; 1046 return PrimitiveShadow; 1047 } 1048 1049 void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I, 1050 Value *Condition) { 1051 if (!ClConditionalCallbacks) { 1052 return; 1053 } 1054 IRBuilder<> IRB(&I); 1055 Value *CondShadow = getShadow(Condition); 1056 CallInst *CI; 1057 if (DFS.shouldTrackOrigins()) { 1058 Value *CondOrigin = getOrigin(Condition); 1059 CI = IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn, 1060 {CondShadow, CondOrigin}); 1061 } else { 1062 CI = IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow}); 1063 } 1064 CI->addParamAttr(0, Attribute::ZExt); 1065 } 1066 1067 void DFSanFunction::addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, 1068 Instruction &I, 1069 Value *Data) { 1070 if (!ClReachesFunctionCallbacks) { 1071 return; 1072 } 1073 const DebugLoc &dbgloc = I.getDebugLoc(); 1074 Value *DataShadow = collapseToPrimitiveShadow(getShadow(Data), IRB); 1075 ConstantInt *CILine; 1076 llvm::Value *FilePathPtr; 1077 1078 if (dbgloc.get() == nullptr) { 1079 CILine = llvm::ConstantInt::get(I.getContext(), llvm::APInt(32, 0)); 1080 FilePathPtr = IRB.CreateGlobalStringPtr( 1081 I.getFunction()->getParent()->getSourceFileName()); 1082 } else { 1083 CILine = llvm::ConstantInt::get(I.getContext(), 1084 llvm::APInt(32, dbgloc.getLine())); 1085 FilePathPtr = 1086 IRB.CreateGlobalStringPtr(dbgloc->getFilename()); 1087 } 1088 1089 llvm::Value *FunctionNamePtr = 1090 IRB.CreateGlobalStringPtr(I.getFunction()->getName()); 1091 1092 CallInst *CB; 1093 std::vector<Value *> args; 1094 1095 if (DFS.shouldTrackOrigins()) { 1096 Value *DataOrigin = getOrigin(Data); 1097 args = { DataShadow, DataOrigin, FilePathPtr, CILine, FunctionNamePtr }; 1098 CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackOriginFn, args); 1099 } else { 1100 args = { DataShadow, FilePathPtr, CILine, FunctionNamePtr }; 1101 CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackFn, args); 1102 } 1103 CB->addParamAttr(0, Attribute::ZExt); 1104 CB->setDebugLoc(dbgloc); 1105 } 1106 1107 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 1108 if (!OrigTy->isSized()) 1109 return PrimitiveShadowTy; 1110 if (isa<IntegerType>(OrigTy)) 1111 return PrimitiveShadowTy; 1112 if (isa<VectorType>(OrigTy)) 1113 return PrimitiveShadowTy; 1114 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 1115 return ArrayType::get(getShadowTy(AT->getElementType()), 1116 AT->getNumElements()); 1117 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1118 SmallVector<Type *, 4> Elements; 1119 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 1120 Elements.push_back(getShadowTy(ST->getElementType(I))); 1121 return StructType::get(*Ctx, Elements); 1122 } 1123 return PrimitiveShadowTy; 1124 } 1125 1126 Type *DataFlowSanitizer::getShadowTy(Value *V) { 1127 return getShadowTy(V->getType()); 1128 } 1129 1130 bool DataFlowSanitizer::initializeModule(Module &M) { 1131 Triple TargetTriple(M.getTargetTriple()); 1132 const DataLayout &DL = M.getDataLayout(); 1133 1134 if (TargetTriple.getOS() != Triple::Linux) 1135 report_fatal_error("unsupported operating system"); 1136 switch (TargetTriple.getArch()) { 1137 case Triple::aarch64: 1138 MapParams = &Linux_AArch64_MemoryMapParams; 1139 break; 1140 case Triple::x86_64: 1141 MapParams = &Linux_X86_64_MemoryMapParams; 1142 break; 1143 case Triple::loongarch64: 1144 MapParams = &Linux_LoongArch64_MemoryMapParams; 1145 break; 1146 default: 1147 report_fatal_error("unsupported architecture"); 1148 } 1149 1150 Mod = &M; 1151 Ctx = &M.getContext(); 1152 Int8Ptr = PointerType::getUnqual(*Ctx); 1153 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1154 OriginPtrTy = PointerType::getUnqual(OriginTy); 1155 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1156 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1157 IntptrTy = DL.getIntPtrType(*Ctx); 1158 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1159 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1160 1161 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1162 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1163 /*isVarArg=*/false); 1164 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1165 DFSanLoadLabelAndOriginFnTy = 1166 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1167 /*isVarArg=*/false); 1168 DFSanUnimplementedFnTy = FunctionType::get( 1169 Type::getVoidTy(*Ctx), PointerType::getUnqual(*Ctx), /*isVarArg=*/false); 1170 Type *DFSanWrapperExternWeakNullArgs[2] = {Int8Ptr, Int8Ptr}; 1171 DFSanWrapperExternWeakNullFnTy = 1172 FunctionType::get(Type::getVoidTy(*Ctx), DFSanWrapperExternWeakNullArgs, 1173 /*isVarArg=*/false); 1174 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1175 PointerType::getUnqual(*Ctx), IntptrTy}; 1176 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1177 DFSanSetLabelArgs, /*isVarArg=*/false); 1178 DFSanNonzeroLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), std::nullopt, 1179 /*isVarArg=*/false); 1180 DFSanVarargWrapperFnTy = FunctionType::get( 1181 Type::getVoidTy(*Ctx), PointerType::getUnqual(*Ctx), /*isVarArg=*/false); 1182 DFSanConditionalCallbackFnTy = 1183 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1184 /*isVarArg=*/false); 1185 Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy}; 1186 DFSanConditionalCallbackOriginFnTy = FunctionType::get( 1187 Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs, 1188 /*isVarArg=*/false); 1189 Type *DFSanReachesFunctionCallbackArgs[4] = {PrimitiveShadowTy, Int8Ptr, 1190 OriginTy, Int8Ptr}; 1191 DFSanReachesFunctionCallbackFnTy = 1192 FunctionType::get(Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackArgs, 1193 /*isVarArg=*/false); 1194 Type *DFSanReachesFunctionCallbackOriginArgs[5] = { 1195 PrimitiveShadowTy, OriginTy, Int8Ptr, OriginTy, Int8Ptr}; 1196 DFSanReachesFunctionCallbackOriginFnTy = FunctionType::get( 1197 Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackOriginArgs, 1198 /*isVarArg=*/false); 1199 DFSanCmpCallbackFnTy = 1200 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1201 /*isVarArg=*/false); 1202 DFSanChainOriginFnTy = 1203 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1204 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1205 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1206 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1207 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1208 Int8Ptr, IntptrTy, OriginTy}; 1209 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1210 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1211 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1212 DFSanMemOriginTransferFnTy = FunctionType::get( 1213 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1214 Type *DFSanMemShadowOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1215 DFSanMemShadowOriginTransferFnTy = 1216 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemShadowOriginTransferArgs, 1217 /*isVarArg=*/false); 1218 Type *DFSanMemShadowOriginConditionalExchangeArgs[5] = { 1219 IntegerType::get(*Ctx, 8), Int8Ptr, Int8Ptr, Int8Ptr, IntptrTy}; 1220 DFSanMemShadowOriginConditionalExchangeFnTy = FunctionType::get( 1221 Type::getVoidTy(*Ctx), DFSanMemShadowOriginConditionalExchangeArgs, 1222 /*isVarArg=*/false); 1223 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1224 DFSanLoadStoreCallbackFnTy = 1225 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1226 /*isVarArg=*/false); 1227 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1228 DFSanMemTransferCallbackFnTy = 1229 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1230 /*isVarArg=*/false); 1231 1232 ColdCallWeights = MDBuilder(*Ctx).createUnlikelyBranchWeights(); 1233 OriginStoreWeights = MDBuilder(*Ctx).createUnlikelyBranchWeights(); 1234 return true; 1235 } 1236 1237 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1238 return !ABIList.isIn(*F, "uninstrumented"); 1239 } 1240 1241 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1242 return !ABIList.isIn(*GA, "uninstrumented"); 1243 } 1244 1245 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { 1246 return ABIList.isIn(*F, "force_zero_labels"); 1247 } 1248 1249 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1250 if (ABIList.isIn(*F, "functional")) 1251 return WK_Functional; 1252 if (ABIList.isIn(*F, "discard")) 1253 return WK_Discard; 1254 if (ABIList.isIn(*F, "custom")) 1255 return WK_Custom; 1256 1257 return WK_Warning; 1258 } 1259 1260 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { 1261 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan"; 1262 GV->setName(GVName + Suffix); 1263 1264 // Try to change the name of the function in module inline asm. We only do 1265 // this for specific asm directives, currently only ".symver", to try to avoid 1266 // corrupting asm which happens to contain the symbol name as a substring. 1267 // Note that the substitution for .symver assumes that the versioned symbol 1268 // also has an instrumented name. 1269 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1270 std::string SearchStr = ".symver " + GVName + ","; 1271 size_t Pos = Asm.find(SearchStr); 1272 if (Pos != std::string::npos) { 1273 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ","); 1274 Pos = Asm.find('@'); 1275 1276 if (Pos == std::string::npos) 1277 report_fatal_error(Twine("unsupported .symver: ", Asm)); 1278 1279 Asm.replace(Pos, 1, Suffix + "@"); 1280 GV->getParent()->setModuleInlineAsm(Asm); 1281 } 1282 } 1283 1284 void DataFlowSanitizer::buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, 1285 Function *F) { 1286 // If the function we are wrapping was ExternWeak, it may be null. 1287 // The original code before calling this wrapper may have checked for null, 1288 // but replacing with a known-to-not-be-null wrapper can break this check. 1289 // When replacing uses of the extern weak function with the wrapper we try 1290 // to avoid replacing uses in conditionals, but this is not perfect. 1291 // In the case where we fail, and accidentally optimize out a null check 1292 // for a extern weak function, add a check here to help identify the issue. 1293 if (GlobalValue::isExternalWeakLinkage(F->getLinkage())) { 1294 std::vector<Value *> Args; 1295 Args.push_back(F); 1296 Args.push_back(IRB.CreateGlobalStringPtr(F->getName())); 1297 IRB.CreateCall(DFSanWrapperExternWeakNullFn, Args); 1298 } 1299 } 1300 1301 Function * 1302 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1303 GlobalValue::LinkageTypes NewFLink, 1304 FunctionType *NewFT) { 1305 FunctionType *FT = F->getFunctionType(); 1306 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1307 NewFName, F->getParent()); 1308 NewF->copyAttributesFrom(F); 1309 NewF->removeRetAttrs( 1310 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1311 1312 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1313 if (F->isVarArg()) { 1314 NewF->removeFnAttr("split-stack"); 1315 CallInst::Create(DFSanVarargWrapperFn, 1316 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1317 BB); 1318 new UnreachableInst(*Ctx, BB); 1319 } else { 1320 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1321 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1322 1323 CallInst *CI = CallInst::Create(F, Args, "", BB); 1324 if (FT->getReturnType()->isVoidTy()) 1325 ReturnInst::Create(*Ctx, BB); 1326 else 1327 ReturnInst::Create(*Ctx, CI, BB); 1328 } 1329 1330 return NewF; 1331 } 1332 1333 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1334 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1335 LLVMContext &C = M.getContext(); 1336 { 1337 AttributeList AL; 1338 AL = AL.addFnAttribute(C, Attribute::NoUnwind); 1339 AL = AL.addFnAttribute( 1340 C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly())); 1341 AL = AL.addRetAttribute(C, Attribute::ZExt); 1342 DFSanUnionLoadFn = 1343 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1344 } 1345 { 1346 AttributeList AL; 1347 AL = AL.addFnAttribute(C, Attribute::NoUnwind); 1348 AL = AL.addFnAttribute( 1349 C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly())); 1350 AL = AL.addRetAttribute(C, Attribute::ZExt); 1351 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1352 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1353 } 1354 DFSanUnimplementedFn = 1355 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1356 DFSanWrapperExternWeakNullFn = Mod->getOrInsertFunction( 1357 "__dfsan_wrapper_extern_weak_null", DFSanWrapperExternWeakNullFnTy); 1358 { 1359 AttributeList AL; 1360 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1361 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1362 DFSanSetLabelFn = 1363 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1364 } 1365 DFSanNonzeroLabelFn = 1366 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1367 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1368 DFSanVarargWrapperFnTy); 1369 { 1370 AttributeList AL; 1371 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1372 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1373 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1374 DFSanChainOriginFnTy, AL); 1375 } 1376 { 1377 AttributeList AL; 1378 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1379 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1380 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1381 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1382 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1383 } 1384 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1385 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1386 1387 DFSanMemShadowOriginTransferFn = Mod->getOrInsertFunction( 1388 "__dfsan_mem_shadow_origin_transfer", DFSanMemShadowOriginTransferFnTy); 1389 1390 DFSanMemShadowOriginConditionalExchangeFn = 1391 Mod->getOrInsertFunction("__dfsan_mem_shadow_origin_conditional_exchange", 1392 DFSanMemShadowOriginConditionalExchangeFnTy); 1393 1394 { 1395 AttributeList AL; 1396 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1397 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1398 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1399 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1400 } 1401 1402 DFSanRuntimeFunctions.insert( 1403 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1404 DFSanRuntimeFunctions.insert( 1405 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1406 DFSanRuntimeFunctions.insert( 1407 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1408 DFSanRuntimeFunctions.insert( 1409 DFSanWrapperExternWeakNullFn.getCallee()->stripPointerCasts()); 1410 DFSanRuntimeFunctions.insert( 1411 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1412 DFSanRuntimeFunctions.insert( 1413 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1414 DFSanRuntimeFunctions.insert( 1415 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1416 DFSanRuntimeFunctions.insert( 1417 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1418 DFSanRuntimeFunctions.insert( 1419 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1420 DFSanRuntimeFunctions.insert( 1421 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1422 DFSanRuntimeFunctions.insert( 1423 DFSanConditionalCallbackFn.getCallee()->stripPointerCasts()); 1424 DFSanRuntimeFunctions.insert( 1425 DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts()); 1426 DFSanRuntimeFunctions.insert( 1427 DFSanReachesFunctionCallbackFn.getCallee()->stripPointerCasts()); 1428 DFSanRuntimeFunctions.insert( 1429 DFSanReachesFunctionCallbackOriginFn.getCallee()->stripPointerCasts()); 1430 DFSanRuntimeFunctions.insert( 1431 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1432 DFSanRuntimeFunctions.insert( 1433 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1434 DFSanRuntimeFunctions.insert( 1435 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1436 DFSanRuntimeFunctions.insert( 1437 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1438 DFSanRuntimeFunctions.insert( 1439 DFSanMemShadowOriginTransferFn.getCallee()->stripPointerCasts()); 1440 DFSanRuntimeFunctions.insert( 1441 DFSanMemShadowOriginConditionalExchangeFn.getCallee() 1442 ->stripPointerCasts()); 1443 DFSanRuntimeFunctions.insert( 1444 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1445 } 1446 1447 // Initializes event callback functions and declare them in the module 1448 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1449 { 1450 AttributeList AL; 1451 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1452 DFSanLoadCallbackFn = Mod->getOrInsertFunction( 1453 "__dfsan_load_callback", DFSanLoadStoreCallbackFnTy, AL); 1454 } 1455 { 1456 AttributeList AL; 1457 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1458 DFSanStoreCallbackFn = Mod->getOrInsertFunction( 1459 "__dfsan_store_callback", DFSanLoadStoreCallbackFnTy, AL); 1460 } 1461 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1462 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1463 { 1464 AttributeList AL; 1465 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1466 DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback", 1467 DFSanCmpCallbackFnTy, AL); 1468 } 1469 { 1470 AttributeList AL; 1471 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1472 DFSanConditionalCallbackFn = Mod->getOrInsertFunction( 1473 "__dfsan_conditional_callback", DFSanConditionalCallbackFnTy, AL); 1474 } 1475 { 1476 AttributeList AL; 1477 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1478 DFSanConditionalCallbackOriginFn = 1479 Mod->getOrInsertFunction("__dfsan_conditional_callback_origin", 1480 DFSanConditionalCallbackOriginFnTy, AL); 1481 } 1482 { 1483 AttributeList AL; 1484 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1485 DFSanReachesFunctionCallbackFn = 1486 Mod->getOrInsertFunction("__dfsan_reaches_function_callback", 1487 DFSanReachesFunctionCallbackFnTy, AL); 1488 } 1489 { 1490 AttributeList AL; 1491 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1492 DFSanReachesFunctionCallbackOriginFn = 1493 Mod->getOrInsertFunction("__dfsan_reaches_function_callback_origin", 1494 DFSanReachesFunctionCallbackOriginFnTy, AL); 1495 } 1496 } 1497 1498 bool DataFlowSanitizer::runImpl( 1499 Module &M, llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1500 initializeModule(M); 1501 1502 if (ABIList.isIn(M, "skip")) 1503 return false; 1504 1505 const unsigned InitialGlobalSize = M.global_size(); 1506 const unsigned InitialModuleSize = M.size(); 1507 1508 bool Changed = false; 1509 1510 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1511 Type *Ty) -> Constant * { 1512 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1513 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1514 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1515 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1516 } 1517 return C; 1518 }; 1519 1520 // These globals must be kept in sync with the ones in dfsan.cpp. 1521 ArgTLS = 1522 GetOrInsertGlobal("__dfsan_arg_tls", 1523 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1524 RetvalTLS = GetOrInsertGlobal( 1525 "__dfsan_retval_tls", 1526 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1527 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1528 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1529 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1530 1531 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1532 Changed = true; 1533 return new GlobalVariable( 1534 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1535 ConstantInt::getSigned(OriginTy, 1536 shouldTrackOrigins() ? ClTrackOrigins : 0), 1537 "__dfsan_track_origins"); 1538 }); 1539 1540 initializeCallbackFunctions(M); 1541 initializeRuntimeFunctions(M); 1542 1543 std::vector<Function *> FnsToInstrument; 1544 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1545 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; 1546 SmallPtrSet<Constant *, 1> PersonalityFns; 1547 for (Function &F : M) 1548 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F) && 1549 !LibAtomicFunction(F) && 1550 !F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) { 1551 FnsToInstrument.push_back(&F); 1552 if (F.hasPersonalityFn()) 1553 PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts()); 1554 } 1555 1556 if (ClIgnorePersonalityRoutine) { 1557 for (auto *C : PersonalityFns) { 1558 assert(isa<Function>(C) && "Personality routine is not a function!"); 1559 Function *F = cast<Function>(C); 1560 if (!isInstrumented(F)) 1561 llvm::erase(FnsToInstrument, F); 1562 } 1563 } 1564 1565 // Give function aliases prefixes when necessary, and build wrappers where the 1566 // instrumentedness is inconsistent. 1567 for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) { 1568 // Don't stop on weak. We assume people aren't playing games with the 1569 // instrumentedness of overridden weak aliases. 1570 auto *F = dyn_cast<Function>(GA.getAliaseeObject()); 1571 if (!F) 1572 continue; 1573 1574 bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F); 1575 if (GAInst && FInst) { 1576 addGlobalNameSuffix(&GA); 1577 } else if (GAInst != FInst) { 1578 // Non-instrumented alias of an instrumented function, or vice versa. 1579 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1580 // below will take care of instrumenting it. 1581 Function *NewF = 1582 buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType()); 1583 GA.replaceAllUsesWith(NewF); 1584 NewF->takeName(&GA); 1585 GA.eraseFromParent(); 1586 FnsToInstrument.push_back(NewF); 1587 } 1588 } 1589 1590 // TODO: This could be more precise. 1591 ReadOnlyNoneAttrs.addAttribute(Attribute::Memory); 1592 1593 // First, change the ABI of every function in the module. ABI-listed 1594 // functions keep their original ABI and get a wrapper function. 1595 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1596 FE = FnsToInstrument.end(); 1597 FI != FE; ++FI) { 1598 Function &F = **FI; 1599 FunctionType *FT = F.getFunctionType(); 1600 1601 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1602 FT->getReturnType()->isVoidTy()); 1603 1604 if (isInstrumented(&F)) { 1605 if (isForceZeroLabels(&F)) 1606 FnsWithForceZeroLabel.insert(&F); 1607 1608 // Instrumented functions get a '.dfsan' suffix. This allows us to more 1609 // easily identify cases of mismatching ABIs. This naming scheme is 1610 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. 1611 addGlobalNameSuffix(&F); 1612 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1613 // Build a wrapper function for F. The wrapper simply calls F, and is 1614 // added to FnsToInstrument so that any instrumentation according to its 1615 // WrapperKind is done in the second pass below. 1616 1617 // If the function being wrapped has local linkage, then preserve the 1618 // function's linkage in the wrapper function. 1619 GlobalValue::LinkageTypes WrapperLinkage = 1620 F.hasLocalLinkage() ? F.getLinkage() 1621 : GlobalValue::LinkOnceODRLinkage; 1622 1623 Function *NewF = buildWrapperFunction( 1624 &F, 1625 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1626 std::string(F.getName()), 1627 WrapperLinkage, FT); 1628 NewF->removeFnAttrs(ReadOnlyNoneAttrs); 1629 1630 // Extern weak functions can sometimes be null at execution time. 1631 // Code will sometimes check if an extern weak function is null. 1632 // This could look something like: 1633 // declare extern_weak i8 @my_func(i8) 1634 // br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func, 1635 // label %avoid_my_func 1636 // The @"dfsw$my_func" wrapper is never null, so if we replace this use 1637 // in the comparison, the icmp will simplify to false and we have 1638 // accidentally optimized away a null check that is necessary. 1639 // This can lead to a crash when the null extern_weak my_func is called. 1640 // 1641 // To prevent (the most common pattern of) this problem, 1642 // do not replace uses in comparisons with the wrapper. 1643 // We definitely want to replace uses in call instructions. 1644 // Other uses (e.g. store the function address somewhere) might be 1645 // called or compared or both - this case may not be handled correctly. 1646 // We will default to replacing with wrapper in cases we are unsure. 1647 auto IsNotCmpUse = [](Use &U) -> bool { 1648 User *Usr = U.getUser(); 1649 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) { 1650 // This is the most common case for icmp ne null 1651 if (CE->getOpcode() == Instruction::ICmp) { 1652 return false; 1653 } 1654 } 1655 if (Instruction *I = dyn_cast<Instruction>(Usr)) { 1656 if (I->getOpcode() == Instruction::ICmp) { 1657 return false; 1658 } 1659 } 1660 return true; 1661 }; 1662 F.replaceUsesWithIf(NewF, IsNotCmpUse); 1663 1664 UnwrappedFnMap[NewF] = &F; 1665 *FI = NewF; 1666 1667 if (!F.isDeclaration()) { 1668 // This function is probably defining an interposition of an 1669 // uninstrumented function and hence needs to keep the original ABI. 1670 // But any functions it may call need to use the instrumented ABI, so 1671 // we instrument it in a mode which preserves the original ABI. 1672 FnsWithNativeABI.insert(&F); 1673 1674 // This code needs to rebuild the iterators, as they may be invalidated 1675 // by the push_back, taking care that the new range does not include 1676 // any functions added by this code. 1677 size_t N = FI - FnsToInstrument.begin(), 1678 Count = FE - FnsToInstrument.begin(); 1679 FnsToInstrument.push_back(&F); 1680 FI = FnsToInstrument.begin() + N; 1681 FE = FnsToInstrument.begin() + Count; 1682 } 1683 // Hopefully, nobody will try to indirectly call a vararg 1684 // function... yet. 1685 } else if (FT->isVarArg()) { 1686 UnwrappedFnMap[&F] = &F; 1687 *FI = nullptr; 1688 } 1689 } 1690 1691 for (Function *F : FnsToInstrument) { 1692 if (!F || F->isDeclaration()) 1693 continue; 1694 1695 removeUnreachableBlocks(*F); 1696 1697 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F), 1698 FnsWithForceZeroLabel.count(F), GetTLI(*F)); 1699 1700 if (ClReachesFunctionCallbacks) { 1701 // Add callback for arguments reaching this function. 1702 for (auto &FArg : F->args()) { 1703 Instruction *Next = &F->getEntryBlock().front(); 1704 Value *FArgShadow = DFSF.getShadow(&FArg); 1705 if (isZeroShadow(FArgShadow)) 1706 continue; 1707 if (Instruction *FArgShadowInst = dyn_cast<Instruction>(FArgShadow)) { 1708 Next = FArgShadowInst->getNextNode(); 1709 } 1710 if (shouldTrackOrigins()) { 1711 if (Instruction *Origin = 1712 dyn_cast<Instruction>(DFSF.getOrigin(&FArg))) { 1713 // Ensure IRB insertion point is after loads for shadow and origin. 1714 Instruction *OriginNext = Origin->getNextNode(); 1715 if (Next->comesBefore(OriginNext)) { 1716 Next = OriginNext; 1717 } 1718 } 1719 } 1720 IRBuilder<> IRB(Next); 1721 DFSF.addReachesFunctionCallbacksIfEnabled(IRB, *Next, &FArg); 1722 } 1723 } 1724 1725 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1726 // Build a copy of the list before iterating over it. 1727 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1728 1729 for (BasicBlock *BB : BBList) { 1730 Instruction *Inst = &BB->front(); 1731 while (true) { 1732 // DFSanVisitor may split the current basic block, changing the current 1733 // instruction's next pointer and moving the next instruction to the 1734 // tail block from which we should continue. 1735 Instruction *Next = Inst->getNextNode(); 1736 // DFSanVisitor may delete Inst, so keep track of whether it was a 1737 // terminator. 1738 bool IsTerminator = Inst->isTerminator(); 1739 if (!DFSF.SkipInsts.count(Inst)) 1740 DFSanVisitor(DFSF).visit(Inst); 1741 if (IsTerminator) 1742 break; 1743 Inst = Next; 1744 } 1745 } 1746 1747 // We will not necessarily be able to compute the shadow for every phi node 1748 // until we have visited every block. Therefore, the code that handles phi 1749 // nodes adds them to the PHIFixups list so that they can be properly 1750 // handled here. 1751 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1752 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1753 ++Val) { 1754 P.ShadowPhi->setIncomingValue( 1755 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1756 if (P.OriginPhi) 1757 P.OriginPhi->setIncomingValue( 1758 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1759 } 1760 } 1761 1762 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1763 // places (i.e. instructions in basic blocks we haven't even begun visiting 1764 // yet). To make our life easier, do this work in a pass after the main 1765 // instrumentation. 1766 if (ClDebugNonzeroLabels) { 1767 for (Value *V : DFSF.NonZeroChecks) { 1768 BasicBlock::iterator Pos; 1769 if (Instruction *I = dyn_cast<Instruction>(V)) 1770 Pos = std::next(I->getIterator()); 1771 else 1772 Pos = DFSF.F->getEntryBlock().begin(); 1773 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1774 Pos = std::next(Pos->getIterator()); 1775 IRBuilder<> IRB(Pos->getParent(), Pos); 1776 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1777 Value *Ne = 1778 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1779 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1780 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1781 IRBuilder<> ThenIRB(BI); 1782 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1783 } 1784 } 1785 } 1786 1787 return Changed || !FnsToInstrument.empty() || 1788 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1789 } 1790 1791 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1792 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1793 if (ArgOffset) 1794 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1795 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1796 "_dfsarg"); 1797 } 1798 1799 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1800 return IRB.CreatePointerCast( 1801 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1802 } 1803 1804 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1805 1806 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1807 return IRB.CreateConstInBoundsGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, 1808 ArgNo, "_dfsarg_o"); 1809 } 1810 1811 Value *DFSanFunction::getOrigin(Value *V) { 1812 assert(DFS.shouldTrackOrigins()); 1813 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1814 return DFS.ZeroOrigin; 1815 Value *&Origin = ValOriginMap[V]; 1816 if (!Origin) { 1817 if (Argument *A = dyn_cast<Argument>(V)) { 1818 if (IsNativeABI) 1819 return DFS.ZeroOrigin; 1820 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1821 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1822 IRBuilder<> IRB(ArgOriginTLSPos); 1823 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1824 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1825 } else { 1826 // Overflow 1827 Origin = DFS.ZeroOrigin; 1828 } 1829 } else { 1830 Origin = DFS.ZeroOrigin; 1831 } 1832 } 1833 return Origin; 1834 } 1835 1836 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1837 if (!DFS.shouldTrackOrigins()) 1838 return; 1839 assert(!ValOriginMap.count(I)); 1840 assert(Origin->getType() == DFS.OriginTy); 1841 ValOriginMap[I] = Origin; 1842 } 1843 1844 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1845 unsigned ArgOffset = 0; 1846 const DataLayout &DL = F->getDataLayout(); 1847 for (auto &FArg : F->args()) { 1848 if (!FArg.getType()->isSized()) { 1849 if (A == &FArg) 1850 break; 1851 continue; 1852 } 1853 1854 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1855 if (A != &FArg) { 1856 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1857 if (ArgOffset > ArgTLSSize) 1858 break; // ArgTLS overflows, uses a zero shadow. 1859 continue; 1860 } 1861 1862 if (ArgOffset + Size > ArgTLSSize) 1863 break; // ArgTLS overflows, uses a zero shadow. 1864 1865 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1866 IRBuilder<> IRB(ArgTLSPos); 1867 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1868 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1869 ShadowTLSAlignment); 1870 } 1871 1872 return DFS.getZeroShadow(A); 1873 } 1874 1875 Value *DFSanFunction::getShadow(Value *V) { 1876 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1877 return DFS.getZeroShadow(V); 1878 if (IsForceZeroLabels) 1879 return DFS.getZeroShadow(V); 1880 Value *&Shadow = ValShadowMap[V]; 1881 if (!Shadow) { 1882 if (Argument *A = dyn_cast<Argument>(V)) { 1883 if (IsNativeABI) 1884 return DFS.getZeroShadow(V); 1885 Shadow = getShadowForTLSArgument(A); 1886 NonZeroChecks.push_back(Shadow); 1887 } else { 1888 Shadow = DFS.getZeroShadow(V); 1889 } 1890 } 1891 return Shadow; 1892 } 1893 1894 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1895 assert(!ValShadowMap.count(I)); 1896 ValShadowMap[I] = Shadow; 1897 } 1898 1899 /// Compute the integer shadow offset that corresponds to a given 1900 /// application address. 1901 /// 1902 /// Offset = (Addr & ~AndMask) ^ XorMask 1903 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1904 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1905 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1906 1907 uint64_t AndMask = MapParams->AndMask; 1908 if (AndMask) 1909 OffsetLong = 1910 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask)); 1911 1912 uint64_t XorMask = MapParams->XorMask; 1913 if (XorMask) 1914 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask)); 1915 return OffsetLong; 1916 } 1917 1918 std::pair<Value *, Value *> 1919 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1920 BasicBlock::iterator Pos) { 1921 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL 1922 IRBuilder<> IRB(Pos->getParent(), Pos); 1923 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1924 Value *ShadowLong = ShadowOffset; 1925 uint64_t ShadowBase = MapParams->ShadowBase; 1926 if (ShadowBase != 0) { 1927 ShadowLong = 1928 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase)); 1929 } 1930 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1931 Value *ShadowPtr = 1932 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1933 Value *OriginPtr = nullptr; 1934 if (shouldTrackOrigins()) { 1935 Value *OriginLong = ShadowOffset; 1936 uint64_t OriginBase = MapParams->OriginBase; 1937 if (OriginBase != 0) 1938 OriginLong = 1939 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase)); 1940 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1941 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1942 // So Mask is unnecessary. 1943 if (Alignment < MinOriginAlignment) { 1944 uint64_t Mask = MinOriginAlignment.value() - 1; 1945 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1946 } 1947 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1948 } 1949 return std::make_pair(ShadowPtr, OriginPtr); 1950 } 1951 1952 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, 1953 BasicBlock::iterator Pos, 1954 Value *ShadowOffset) { 1955 IRBuilder<> IRB(Pos->getParent(), Pos); 1956 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1957 } 1958 1959 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, 1960 BasicBlock::iterator Pos) { 1961 IRBuilder<> IRB(Pos->getParent(), Pos); 1962 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1963 return getShadowAddress(Addr, Pos, ShadowOffset); 1964 } 1965 1966 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1967 BasicBlock::iterator Pos) { 1968 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1969 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1970 } 1971 1972 // Generates IR to compute the union of the two given shadows, inserting it 1973 // before Pos. The combined value is with primitive type. 1974 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, 1975 BasicBlock::iterator Pos) { 1976 if (DFS.isZeroShadow(V1)) 1977 return collapseToPrimitiveShadow(V2, Pos); 1978 if (DFS.isZeroShadow(V2)) 1979 return collapseToPrimitiveShadow(V1, Pos); 1980 if (V1 == V2) 1981 return collapseToPrimitiveShadow(V1, Pos); 1982 1983 auto V1Elems = ShadowElements.find(V1); 1984 auto V2Elems = ShadowElements.find(V2); 1985 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1986 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1987 V2Elems->second.begin(), V2Elems->second.end())) { 1988 return collapseToPrimitiveShadow(V1, Pos); 1989 } 1990 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1991 V1Elems->second.begin(), V1Elems->second.end())) { 1992 return collapseToPrimitiveShadow(V2, Pos); 1993 } 1994 } else if (V1Elems != ShadowElements.end()) { 1995 if (V1Elems->second.count(V2)) 1996 return collapseToPrimitiveShadow(V1, Pos); 1997 } else if (V2Elems != ShadowElements.end()) { 1998 if (V2Elems->second.count(V1)) 1999 return collapseToPrimitiveShadow(V2, Pos); 2000 } 2001 2002 auto Key = std::make_pair(V1, V2); 2003 if (V1 > V2) 2004 std::swap(Key.first, Key.second); 2005 CachedShadow &CCS = CachedShadows[Key]; 2006 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 2007 return CCS.Shadow; 2008 2009 // Converts inputs shadows to shadows with primitive types. 2010 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 2011 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 2012 2013 IRBuilder<> IRB(Pos->getParent(), Pos); 2014 CCS.Block = Pos->getParent(); 2015 CCS.Shadow = IRB.CreateOr(PV1, PV2); 2016 2017 std::set<Value *> UnionElems; 2018 if (V1Elems != ShadowElements.end()) { 2019 UnionElems = V1Elems->second; 2020 } else { 2021 UnionElems.insert(V1); 2022 } 2023 if (V2Elems != ShadowElements.end()) { 2024 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 2025 } else { 2026 UnionElems.insert(V2); 2027 } 2028 ShadowElements[CCS.Shadow] = std::move(UnionElems); 2029 2030 return CCS.Shadow; 2031 } 2032 2033 // A convenience function which folds the shadows of each of the operands 2034 // of the provided instruction Inst, inserting the IR before Inst. Returns 2035 // the computed union Value. 2036 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 2037 if (Inst->getNumOperands() == 0) 2038 return DFS.getZeroShadow(Inst); 2039 2040 Value *Shadow = getShadow(Inst->getOperand(0)); 2041 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 2042 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), 2043 Inst->getIterator()); 2044 2045 return expandFromPrimitiveShadow(Inst->getType(), Shadow, 2046 Inst->getIterator()); 2047 } 2048 2049 void DFSanVisitor::visitInstOperands(Instruction &I) { 2050 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 2051 DFSF.setShadow(&I, CombinedShadow); 2052 visitInstOperandOrigins(I); 2053 } 2054 2055 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 2056 const std::vector<Value *> &Origins, 2057 BasicBlock::iterator Pos, 2058 ConstantInt *Zero) { 2059 assert(Shadows.size() == Origins.size()); 2060 size_t Size = Origins.size(); 2061 if (Size == 0) 2062 return DFS.ZeroOrigin; 2063 Value *Origin = nullptr; 2064 if (!Zero) 2065 Zero = DFS.ZeroPrimitiveShadow; 2066 for (size_t I = 0; I != Size; ++I) { 2067 Value *OpOrigin = Origins[I]; 2068 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 2069 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 2070 continue; 2071 if (!Origin) { 2072 Origin = OpOrigin; 2073 continue; 2074 } 2075 Value *OpShadow = Shadows[I]; 2076 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 2077 IRBuilder<> IRB(Pos->getParent(), Pos); 2078 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 2079 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2080 } 2081 return Origin ? Origin : DFS.ZeroOrigin; 2082 } 2083 2084 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 2085 size_t Size = Inst->getNumOperands(); 2086 std::vector<Value *> Shadows(Size); 2087 std::vector<Value *> Origins(Size); 2088 for (unsigned I = 0; I != Size; ++I) { 2089 Shadows[I] = getShadow(Inst->getOperand(I)); 2090 Origins[I] = getOrigin(Inst->getOperand(I)); 2091 } 2092 return combineOrigins(Shadows, Origins, Inst->getIterator()); 2093 } 2094 2095 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 2096 if (!DFSF.DFS.shouldTrackOrigins()) 2097 return; 2098 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 2099 DFSF.setOrigin(&I, CombinedOrigin); 2100 } 2101 2102 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 2103 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 2104 return Align(Alignment.value() * DFS.ShadowWidthBytes); 2105 } 2106 2107 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 2108 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 2109 return Align(std::max(MinOriginAlignment, Alignment)); 2110 } 2111 2112 bool DFSanFunction::isLookupTableConstant(Value *P) { 2113 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts())) 2114 if (GV->isConstant() && GV->hasName()) 2115 return DFS.CombineTaintLookupTableNames.count(GV->getName()); 2116 2117 return false; 2118 } 2119 2120 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 2121 Align InstAlignment) { 2122 // When enabling tracking load instructions, we always use 2123 // __dfsan_load_label_and_origin to reduce code size. 2124 if (ClTrackOrigins == 2) 2125 return true; 2126 2127 assert(Size != 0); 2128 // * if Size == 1, it is sufficient to load its origin aligned at 4. 2129 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 2130 // load its origin aligned at 4. If not, although origins may be lost, it 2131 // should not happen very often. 2132 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 2133 // Size % 4 == 0, it is more efficient to load origins without callbacks. 2134 // * Otherwise we use __dfsan_load_label_and_origin. 2135 // This should ensure that common cases run efficiently. 2136 if (Size <= 2) 2137 return false; 2138 2139 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 2140 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 2141 } 2142 2143 Value *DataFlowSanitizer::loadNextOrigin(BasicBlock::iterator Pos, 2144 Align OriginAlign, 2145 Value **OriginAddr) { 2146 IRBuilder<> IRB(Pos->getParent(), Pos); 2147 *OriginAddr = 2148 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 2149 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 2150 } 2151 2152 std::pair<Value *, Value *> DFSanFunction::loadShadowFast( 2153 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 2154 Align OriginAlign, Value *FirstOrigin, BasicBlock::iterator Pos) { 2155 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2156 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 2157 2158 assert(Size >= 4 && "Not large enough load size for fast path!"); 2159 2160 // Used for origin tracking. 2161 std::vector<Value *> Shadows; 2162 std::vector<Value *> Origins; 2163 2164 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 2165 // but this function is only used in a subset of cases that make it possible 2166 // to optimize the instrumentation. 2167 // 2168 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 2169 // per byte) is either: 2170 // - a multiple of 8 (common) 2171 // - equal to 4 (only for load32) 2172 // 2173 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 2174 // other cases, we use a 64-bit integer to hold the wide shadow. 2175 Type *WideShadowTy = 2176 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 2177 2178 IRBuilder<> IRB(Pos->getParent(), Pos); 2179 Value *CombinedWideShadow = 2180 IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign); 2181 2182 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 2183 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 2184 2185 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 2186 if (BytesPerWideShadow > 4) { 2187 assert(BytesPerWideShadow == 8); 2188 // The wide shadow relates to two origin pointers: one for the first four 2189 // application bytes, and one for the latest four. We use a left shift to 2190 // get just the shadow bytes that correspond to the first origin pointer, 2191 // and then the entire shadow for the second origin pointer (which will be 2192 // chosen by combineOrigins() iff the least-significant half of the wide 2193 // shadow was empty but the other half was not). 2194 Value *WideShadowLo = IRB.CreateShl( 2195 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 2196 Shadows.push_back(WideShadow); 2197 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 2198 2199 Shadows.push_back(WideShadowLo); 2200 Origins.push_back(Origin); 2201 } else { 2202 Shadows.push_back(WideShadow); 2203 Origins.push_back(Origin); 2204 } 2205 }; 2206 2207 if (ShouldTrackOrigins) 2208 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 2209 2210 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 2211 // then OR individual shadows within the combined WideShadow by binary ORing. 2212 // This is fewer instructions than ORing shadows individually, since it 2213 // needs logN shift/or instructions (N being the bytes of the combined wide 2214 // shadow). 2215 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 2216 ByteOfs += BytesPerWideShadow) { 2217 ShadowAddr = IRB.CreateGEP(WideShadowTy, ShadowAddr, 2218 ConstantInt::get(DFS.IntptrTy, 1)); 2219 Value *NextWideShadow = 2220 IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign); 2221 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 2222 if (ShouldTrackOrigins) { 2223 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 2224 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 2225 } 2226 } 2227 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 2228 Width >>= 1) { 2229 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 2230 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 2231 } 2232 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 2233 ShouldTrackOrigins 2234 ? combineOrigins(Shadows, Origins, Pos, 2235 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 2236 : DFS.ZeroOrigin}; 2237 } 2238 2239 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 2240 Value *Addr, uint64_t Size, Align InstAlignment, BasicBlock::iterator Pos) { 2241 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2242 2243 // Non-escaped loads. 2244 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2245 const auto SI = AllocaShadowMap.find(AI); 2246 if (SI != AllocaShadowMap.end()) { 2247 IRBuilder<> IRB(Pos->getParent(), Pos); 2248 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 2249 const auto OI = AllocaOriginMap.find(AI); 2250 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 2251 return {ShadowLI, ShouldTrackOrigins 2252 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 2253 : nullptr}; 2254 } 2255 } 2256 2257 // Load from constant addresses. 2258 SmallVector<const Value *, 2> Objs; 2259 getUnderlyingObjects(Addr, Objs); 2260 bool AllConstants = true; 2261 for (const Value *Obj : Objs) { 2262 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2263 continue; 2264 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2265 continue; 2266 2267 AllConstants = false; 2268 break; 2269 } 2270 if (AllConstants) 2271 return {DFS.ZeroPrimitiveShadow, 2272 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2273 2274 if (Size == 0) 2275 return {DFS.ZeroPrimitiveShadow, 2276 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2277 2278 // Use callback to load if this is not an optimizable case for origin 2279 // tracking. 2280 if (ShouldTrackOrigins && 2281 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2282 IRBuilder<> IRB(Pos->getParent(), Pos); 2283 CallInst *Call = 2284 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2285 {Addr, ConstantInt::get(DFS.IntptrTy, Size)}); 2286 Call->addRetAttr(Attribute::ZExt); 2287 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2288 DFS.PrimitiveShadowTy), 2289 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2290 } 2291 2292 // Other cases that support loading shadows or origins in a fast way. 2293 Value *ShadowAddr, *OriginAddr; 2294 std::tie(ShadowAddr, OriginAddr) = 2295 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2296 2297 const Align ShadowAlign = getShadowAlign(InstAlignment); 2298 const Align OriginAlign = getOriginAlign(InstAlignment); 2299 Value *Origin = nullptr; 2300 if (ShouldTrackOrigins) { 2301 IRBuilder<> IRB(Pos->getParent(), Pos); 2302 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2303 } 2304 2305 // When the byte size is small enough, we can load the shadow directly with 2306 // just a few instructions. 2307 switch (Size) { 2308 case 1: { 2309 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2310 LI->setAlignment(ShadowAlign); 2311 return {LI, Origin}; 2312 } 2313 case 2: { 2314 IRBuilder<> IRB(Pos->getParent(), Pos); 2315 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2316 ConstantInt::get(DFS.IntptrTy, 1)); 2317 Value *Load = 2318 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2319 Value *Load1 = 2320 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2321 return {combineShadows(Load, Load1, Pos), Origin}; 2322 } 2323 } 2324 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2325 2326 if (HasSizeForFastPath) 2327 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2328 OriginAlign, Origin, Pos); 2329 2330 IRBuilder<> IRB(Pos->getParent(), Pos); 2331 CallInst *FallbackCall = IRB.CreateCall( 2332 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2333 FallbackCall->addRetAttr(Attribute::ZExt); 2334 return {FallbackCall, Origin}; 2335 } 2336 2337 std::pair<Value *, Value *> 2338 DFSanFunction::loadShadowOrigin(Value *Addr, uint64_t Size, Align InstAlignment, 2339 BasicBlock::iterator Pos) { 2340 Value *PrimitiveShadow, *Origin; 2341 std::tie(PrimitiveShadow, Origin) = 2342 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2343 if (DFS.shouldTrackOrigins()) { 2344 if (ClTrackOrigins == 2) { 2345 IRBuilder<> IRB(Pos->getParent(), Pos); 2346 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2347 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2348 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2349 } 2350 } 2351 return {PrimitiveShadow, Origin}; 2352 } 2353 2354 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2355 switch (AO) { 2356 case AtomicOrdering::NotAtomic: 2357 return AtomicOrdering::NotAtomic; 2358 case AtomicOrdering::Unordered: 2359 case AtomicOrdering::Monotonic: 2360 case AtomicOrdering::Acquire: 2361 return AtomicOrdering::Acquire; 2362 case AtomicOrdering::Release: 2363 case AtomicOrdering::AcquireRelease: 2364 return AtomicOrdering::AcquireRelease; 2365 case AtomicOrdering::SequentiallyConsistent: 2366 return AtomicOrdering::SequentiallyConsistent; 2367 } 2368 llvm_unreachable("Unknown ordering"); 2369 } 2370 2371 Value *StripPointerGEPsAndCasts(Value *V) { 2372 if (!V->getType()->isPointerTy()) 2373 return V; 2374 2375 // DFSan pass should be running on valid IR, but we'll 2376 // keep a seen set to ensure there are no issues. 2377 SmallPtrSet<const Value *, 4> Visited; 2378 Visited.insert(V); 2379 do { 2380 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 2381 V = GEP->getPointerOperand(); 2382 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2383 V = cast<Operator>(V)->getOperand(0); 2384 if (!V->getType()->isPointerTy()) 2385 return V; 2386 } else if (isa<GlobalAlias>(V)) { 2387 V = cast<GlobalAlias>(V)->getAliasee(); 2388 } 2389 } while (Visited.insert(V).second); 2390 2391 return V; 2392 } 2393 2394 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2395 auto &DL = LI.getDataLayout(); 2396 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2397 if (Size == 0) { 2398 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2399 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2400 return; 2401 } 2402 2403 // When an application load is atomic, increase atomic ordering between 2404 // atomic application loads and stores to ensure happen-before order; load 2405 // shadow data after application data; store zero shadow data before 2406 // application data. This ensure shadow loads return either labels of the 2407 // initial application data or zeros. 2408 if (LI.isAtomic()) 2409 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2410 2411 BasicBlock::iterator AfterLi = std::next(LI.getIterator()); 2412 BasicBlock::iterator Pos = LI.getIterator(); 2413 if (LI.isAtomic()) 2414 Pos = std::next(Pos); 2415 2416 std::vector<Value *> Shadows; 2417 std::vector<Value *> Origins; 2418 Value *PrimitiveShadow, *Origin; 2419 std::tie(PrimitiveShadow, Origin) = 2420 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2421 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2422 if (ShouldTrackOrigins) { 2423 Shadows.push_back(PrimitiveShadow); 2424 Origins.push_back(Origin); 2425 } 2426 if (ClCombinePointerLabelsOnLoad || 2427 DFSF.isLookupTableConstant( 2428 StripPointerGEPsAndCasts(LI.getPointerOperand()))) { 2429 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2430 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2431 if (ShouldTrackOrigins) { 2432 Shadows.push_back(PtrShadow); 2433 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2434 } 2435 } 2436 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2437 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2438 2439 Value *Shadow = 2440 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2441 DFSF.setShadow(&LI, Shadow); 2442 2443 if (ShouldTrackOrigins) { 2444 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2445 } 2446 2447 if (ClEventCallbacks) { 2448 IRBuilder<> IRB(Pos->getParent(), Pos); 2449 Value *Addr = LI.getPointerOperand(); 2450 CallInst *CI = 2451 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr}); 2452 CI->addParamAttr(0, Attribute::ZExt); 2453 } 2454 2455 IRBuilder<> IRB(AfterLi->getParent(), AfterLi); 2456 DFSF.addReachesFunctionCallbacksIfEnabled(IRB, LI, &LI); 2457 } 2458 2459 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2460 IRBuilder<> &IRB) { 2461 assert(DFS.shouldTrackOrigins()); 2462 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2463 } 2464 2465 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2466 if (!DFS.shouldTrackOrigins()) 2467 return V; 2468 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2469 } 2470 2471 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2472 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2473 const DataLayout &DL = F->getDataLayout(); 2474 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2475 if (IntptrSize == OriginSize) 2476 return Origin; 2477 assert(IntptrSize == OriginSize * 2); 2478 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2479 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2480 } 2481 2482 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2483 Value *StoreOriginAddr, 2484 uint64_t StoreOriginSize, Align Alignment) { 2485 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2486 const DataLayout &DL = F->getDataLayout(); 2487 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2488 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2489 assert(IntptrAlignment >= MinOriginAlignment); 2490 assert(IntptrSize >= OriginSize); 2491 2492 unsigned Ofs = 0; 2493 Align CurrentAlignment = Alignment; 2494 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2495 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2496 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2497 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2498 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2499 Value *Ptr = 2500 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2501 : IntptrStoreOriginPtr; 2502 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2503 Ofs += IntptrSize / OriginSize; 2504 CurrentAlignment = IntptrAlignment; 2505 } 2506 } 2507 2508 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2509 ++I) { 2510 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2511 : StoreOriginAddr; 2512 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2513 CurrentAlignment = MinOriginAlignment; 2514 } 2515 } 2516 2517 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2518 const Twine &Name) { 2519 Type *VTy = V->getType(); 2520 assert(VTy->isIntegerTy()); 2521 if (VTy->getIntegerBitWidth() == 1) 2522 // Just converting a bool to a bool, so do nothing. 2523 return V; 2524 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2525 } 2526 2527 void DFSanFunction::storeOrigin(BasicBlock::iterator Pos, Value *Addr, 2528 uint64_t Size, Value *Shadow, Value *Origin, 2529 Value *StoreOriginAddr, Align InstAlignment) { 2530 // Do not write origins for zero shadows because we do not trace origins for 2531 // untainted sinks. 2532 const Align OriginAlignment = getOriginAlign(InstAlignment); 2533 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2534 IRBuilder<> IRB(Pos->getParent(), Pos); 2535 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2536 if (!ConstantShadow->isZeroValue()) 2537 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2538 OriginAlignment); 2539 return; 2540 } 2541 2542 if (shouldInstrumentWithCall()) { 2543 IRB.CreateCall( 2544 DFS.DFSanMaybeStoreOriginFn, 2545 {CollapsedShadow, Addr, ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2546 } else { 2547 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2548 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2549 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2550 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DTU); 2551 IRBuilder<> IRBNew(CheckTerm); 2552 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2553 OriginAlignment); 2554 ++NumOriginStores; 2555 } 2556 } 2557 2558 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2559 Align ShadowAlign, 2560 BasicBlock::iterator Pos) { 2561 IRBuilder<> IRB(Pos->getParent(), Pos); 2562 IntegerType *ShadowTy = 2563 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2564 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2565 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2566 IRB.CreateAlignedStore(ExtZeroShadow, ShadowAddr, ShadowAlign); 2567 // Do not write origins for 0 shadows because we do not trace origins for 2568 // untainted sinks. 2569 } 2570 2571 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2572 Align InstAlignment, 2573 Value *PrimitiveShadow, 2574 Value *Origin, 2575 BasicBlock::iterator Pos) { 2576 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2577 2578 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2579 const auto SI = AllocaShadowMap.find(AI); 2580 if (SI != AllocaShadowMap.end()) { 2581 IRBuilder<> IRB(Pos->getParent(), Pos); 2582 IRB.CreateStore(PrimitiveShadow, SI->second); 2583 2584 // Do not write origins for 0 shadows because we do not trace origins for 2585 // untainted sinks. 2586 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2587 const auto OI = AllocaOriginMap.find(AI); 2588 assert(OI != AllocaOriginMap.end() && Origin); 2589 IRB.CreateStore(Origin, OI->second); 2590 } 2591 return; 2592 } 2593 } 2594 2595 const Align ShadowAlign = getShadowAlign(InstAlignment); 2596 if (DFS.isZeroShadow(PrimitiveShadow)) { 2597 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2598 return; 2599 } 2600 2601 IRBuilder<> IRB(Pos->getParent(), Pos); 2602 Value *ShadowAddr, *OriginAddr; 2603 std::tie(ShadowAddr, OriginAddr) = 2604 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2605 2606 const unsigned ShadowVecSize = 8; 2607 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2608 "Shadow vector is too large!"); 2609 2610 uint64_t Offset = 0; 2611 uint64_t LeftSize = Size; 2612 if (LeftSize >= ShadowVecSize) { 2613 auto *ShadowVecTy = 2614 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2615 Value *ShadowVec = PoisonValue::get(ShadowVecTy); 2616 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2617 ShadowVec = IRB.CreateInsertElement( 2618 ShadowVec, PrimitiveShadow, 2619 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2620 } 2621 do { 2622 Value *CurShadowVecAddr = 2623 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowAddr, Offset); 2624 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2625 LeftSize -= ShadowVecSize; 2626 ++Offset; 2627 } while (LeftSize >= ShadowVecSize); 2628 Offset *= ShadowVecSize; 2629 } 2630 while (LeftSize > 0) { 2631 Value *CurShadowAddr = 2632 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2633 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2634 --LeftSize; 2635 ++Offset; 2636 } 2637 2638 if (ShouldTrackOrigins) { 2639 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2640 InstAlignment); 2641 } 2642 } 2643 2644 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2645 switch (AO) { 2646 case AtomicOrdering::NotAtomic: 2647 return AtomicOrdering::NotAtomic; 2648 case AtomicOrdering::Unordered: 2649 case AtomicOrdering::Monotonic: 2650 case AtomicOrdering::Release: 2651 return AtomicOrdering::Release; 2652 case AtomicOrdering::Acquire: 2653 case AtomicOrdering::AcquireRelease: 2654 return AtomicOrdering::AcquireRelease; 2655 case AtomicOrdering::SequentiallyConsistent: 2656 return AtomicOrdering::SequentiallyConsistent; 2657 } 2658 llvm_unreachable("Unknown ordering"); 2659 } 2660 2661 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2662 auto &DL = SI.getDataLayout(); 2663 Value *Val = SI.getValueOperand(); 2664 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2665 if (Size == 0) 2666 return; 2667 2668 // When an application store is atomic, increase atomic ordering between 2669 // atomic application loads and stores to ensure happen-before order; load 2670 // shadow data after application data; store zero shadow data before 2671 // application data. This ensure shadow loads return either labels of the 2672 // initial application data or zeros. 2673 if (SI.isAtomic()) 2674 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2675 2676 const bool ShouldTrackOrigins = 2677 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2678 std::vector<Value *> Shadows; 2679 std::vector<Value *> Origins; 2680 2681 Value *Shadow = 2682 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2683 2684 if (ShouldTrackOrigins) { 2685 Shadows.push_back(Shadow); 2686 Origins.push_back(DFSF.getOrigin(Val)); 2687 } 2688 2689 Value *PrimitiveShadow; 2690 if (ClCombinePointerLabelsOnStore) { 2691 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2692 if (ShouldTrackOrigins) { 2693 Shadows.push_back(PtrShadow); 2694 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2695 } 2696 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, SI.getIterator()); 2697 } else { 2698 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, SI.getIterator()); 2699 } 2700 Value *Origin = nullptr; 2701 if (ShouldTrackOrigins) 2702 Origin = DFSF.combineOrigins(Shadows, Origins, SI.getIterator()); 2703 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2704 PrimitiveShadow, Origin, SI.getIterator()); 2705 if (ClEventCallbacks) { 2706 IRBuilder<> IRB(&SI); 2707 Value *Addr = SI.getPointerOperand(); 2708 CallInst *CI = 2709 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr}); 2710 CI->addParamAttr(0, Attribute::ZExt); 2711 } 2712 } 2713 2714 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2715 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2716 2717 Value *Val = I.getOperand(1); 2718 const auto &DL = I.getDataLayout(); 2719 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2720 if (Size == 0) 2721 return; 2722 2723 // Conservatively set data at stored addresses and return with zero shadow to 2724 // prevent shadow data races. 2725 IRBuilder<> IRB(&I); 2726 Value *Addr = I.getOperand(0); 2727 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2728 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, I.getIterator()); 2729 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2730 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2731 } 2732 2733 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2734 visitCASOrRMW(I.getAlign(), I); 2735 // TODO: The ordering change follows MSan. It is possible not to change 2736 // ordering because we always set and use 0 shadows. 2737 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2738 } 2739 2740 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2741 visitCASOrRMW(I.getAlign(), I); 2742 // TODO: The ordering change follows MSan. It is possible not to change 2743 // ordering because we always set and use 0 shadows. 2744 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2745 } 2746 2747 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2748 visitInstOperands(UO); 2749 } 2750 2751 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2752 visitInstOperands(BO); 2753 } 2754 2755 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { 2756 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2757 // a musttail call and a ret, don't instrument. New instructions are not 2758 // allowed after a musttail call. 2759 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) 2760 if (CI->isMustTailCall()) 2761 return; 2762 visitInstOperands(BCI); 2763 } 2764 2765 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2766 2767 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2768 visitInstOperands(CI); 2769 if (ClEventCallbacks) { 2770 IRBuilder<> IRB(&CI); 2771 Value *CombinedShadow = DFSF.getShadow(&CI); 2772 CallInst *CallI = 2773 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2774 CallI->addParamAttr(0, Attribute::ZExt); 2775 } 2776 } 2777 2778 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { 2779 // We do not need to track data through LandingPadInst. 2780 // 2781 // For the C++ exceptions, if a value is thrown, this value will be stored 2782 // in a memory location provided by __cxa_allocate_exception(...) (on the 2783 // throw side) or __cxa_begin_catch(...) (on the catch side). 2784 // This memory will have a shadow, so with the loads and stores we will be 2785 // able to propagate labels on data thrown through exceptions, without any 2786 // special handling of the LandingPadInst. 2787 // 2788 // The second element in the pair result of the LandingPadInst is a 2789 // register value, but it is for a type ID and should never be tainted. 2790 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI)); 2791 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin); 2792 } 2793 2794 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2795 if (ClCombineOffsetLabelsOnGEP || 2796 DFSF.isLookupTableConstant( 2797 StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) { 2798 visitInstOperands(GEPI); 2799 return; 2800 } 2801 2802 // Only propagate shadow/origin of base pointer value but ignore those of 2803 // offset operands. 2804 Value *BasePointer = GEPI.getPointerOperand(); 2805 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); 2806 if (DFSF.DFS.shouldTrackOrigins()) 2807 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); 2808 } 2809 2810 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2811 visitInstOperands(I); 2812 } 2813 2814 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2815 visitInstOperands(I); 2816 } 2817 2818 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2819 visitInstOperands(I); 2820 } 2821 2822 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2823 IRBuilder<> IRB(&I); 2824 Value *Agg = I.getAggregateOperand(); 2825 Value *AggShadow = DFSF.getShadow(Agg); 2826 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2827 DFSF.setShadow(&I, ResShadow); 2828 visitInstOperandOrigins(I); 2829 } 2830 2831 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2832 IRBuilder<> IRB(&I); 2833 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2834 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2835 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2836 DFSF.setShadow(&I, Res); 2837 visitInstOperandOrigins(I); 2838 } 2839 2840 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2841 bool AllLoadsStores = true; 2842 for (User *U : I.users()) { 2843 if (isa<LoadInst>(U)) 2844 continue; 2845 2846 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2847 if (SI->getPointerOperand() == &I) 2848 continue; 2849 } 2850 2851 AllLoadsStores = false; 2852 break; 2853 } 2854 if (AllLoadsStores) { 2855 IRBuilder<> IRB(&I); 2856 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2857 if (DFSF.DFS.shouldTrackOrigins()) { 2858 DFSF.AllocaOriginMap[&I] = 2859 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2860 } 2861 } 2862 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2863 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2864 } 2865 2866 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2867 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2868 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2869 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2870 Value *ShadowSel = nullptr; 2871 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2872 std::vector<Value *> Shadows; 2873 std::vector<Value *> Origins; 2874 Value *TrueOrigin = 2875 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2876 Value *FalseOrigin = 2877 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2878 2879 DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition()); 2880 2881 if (isa<VectorType>(I.getCondition()->getType())) { 2882 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2883 FalseShadow, I.getIterator()); 2884 if (ShouldTrackOrigins) { 2885 Shadows.push_back(TrueShadow); 2886 Shadows.push_back(FalseShadow); 2887 Origins.push_back(TrueOrigin); 2888 Origins.push_back(FalseOrigin); 2889 } 2890 } else { 2891 if (TrueShadow == FalseShadow) { 2892 ShadowSel = TrueShadow; 2893 if (ShouldTrackOrigins) { 2894 Shadows.push_back(TrueShadow); 2895 Origins.push_back(TrueOrigin); 2896 } 2897 } else { 2898 ShadowSel = SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, 2899 "", I.getIterator()); 2900 if (ShouldTrackOrigins) { 2901 Shadows.push_back(ShadowSel); 2902 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2903 FalseOrigin, "", I.getIterator())); 2904 } 2905 } 2906 } 2907 DFSF.setShadow(&I, ClTrackSelectControlFlow ? DFSF.combineShadowsThenConvert( 2908 I.getType(), CondShadow, 2909 ShadowSel, I.getIterator()) 2910 : ShadowSel); 2911 if (ShouldTrackOrigins) { 2912 if (ClTrackSelectControlFlow) { 2913 Shadows.push_back(CondShadow); 2914 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2915 } 2916 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, I.getIterator())); 2917 } 2918 } 2919 2920 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2921 IRBuilder<> IRB(&I); 2922 Value *ValShadow = DFSF.getShadow(I.getValue()); 2923 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2924 ? DFSF.getOrigin(I.getValue()) 2925 : DFSF.DFS.ZeroOrigin; 2926 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 2927 {ValShadow, ValOrigin, I.getDest(), 2928 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2929 } 2930 2931 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2932 IRBuilder<> IRB(&I); 2933 2934 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2935 // need to move origins before moving shadows. 2936 if (DFSF.DFS.shouldTrackOrigins()) { 2937 IRB.CreateCall( 2938 DFSF.DFS.DFSanMemOriginTransferFn, 2939 {I.getArgOperand(0), I.getArgOperand(1), 2940 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2941 } 2942 2943 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), I.getIterator()); 2944 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), I.getIterator()); 2945 Value *LenShadow = 2946 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2947 DFSF.DFS.ShadowWidthBytes)); 2948 auto *MTI = cast<MemTransferInst>( 2949 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2950 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2951 MTI->setDestAlignment(DFSF.getShadowAlign(I.getDestAlign().valueOrOne())); 2952 MTI->setSourceAlignment(DFSF.getShadowAlign(I.getSourceAlign().valueOrOne())); 2953 if (ClEventCallbacks) { 2954 IRB.CreateCall( 2955 DFSF.DFS.DFSanMemTransferCallbackFn, 2956 {DestShadow, IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2957 } 2958 } 2959 2960 void DFSanVisitor::visitBranchInst(BranchInst &BR) { 2961 if (!BR.isConditional()) 2962 return; 2963 2964 DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition()); 2965 } 2966 2967 void DFSanVisitor::visitSwitchInst(SwitchInst &SW) { 2968 DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition()); 2969 } 2970 2971 static bool isAMustTailRetVal(Value *RetVal) { 2972 // Tail call may have a bitcast between return. 2973 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2974 RetVal = I->getOperand(0); 2975 } 2976 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2977 return I->isMustTailCall(); 2978 } 2979 return false; 2980 } 2981 2982 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2983 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2984 // Don't emit the instrumentation for musttail call returns. 2985 if (isAMustTailRetVal(RI.getReturnValue())) 2986 return; 2987 2988 Value *S = DFSF.getShadow(RI.getReturnValue()); 2989 IRBuilder<> IRB(&RI); 2990 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2991 unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2992 if (Size <= RetvalTLSSize) { 2993 // If the size overflows, stores nothing. At callsite, oversized return 2994 // shadows are set to zero. 2995 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment); 2996 } 2997 if (DFSF.DFS.shouldTrackOrigins()) { 2998 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2999 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 3000 } 3001 } 3002 } 3003 3004 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 3005 std::vector<Value *> &Args, 3006 IRBuilder<> &IRB) { 3007 FunctionType *FT = F.getFunctionType(); 3008 3009 auto *I = CB.arg_begin(); 3010 3011 // Adds non-variable argument shadows. 3012 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 3013 Args.push_back( 3014 DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), CB.getIterator())); 3015 3016 // Adds variable argument shadows. 3017 if (FT->isVarArg()) { 3018 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 3019 CB.arg_size() - FT->getNumParams()); 3020 auto *LabelVAAlloca = 3021 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 3022 "labelva", DFSF.F->getEntryBlock().begin()); 3023 3024 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 3025 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 3026 IRB.CreateStore( 3027 DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), CB.getIterator()), 3028 LabelVAPtr); 3029 } 3030 3031 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 3032 } 3033 3034 // Adds the return value shadow. 3035 if (!FT->getReturnType()->isVoidTy()) { 3036 if (!DFSF.LabelReturnAlloca) { 3037 DFSF.LabelReturnAlloca = new AllocaInst( 3038 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 3039 "labelreturn", DFSF.F->getEntryBlock().begin()); 3040 } 3041 Args.push_back(DFSF.LabelReturnAlloca); 3042 } 3043 } 3044 3045 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 3046 std::vector<Value *> &Args, 3047 IRBuilder<> &IRB) { 3048 FunctionType *FT = F.getFunctionType(); 3049 3050 auto *I = CB.arg_begin(); 3051 3052 // Add non-variable argument origins. 3053 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 3054 Args.push_back(DFSF.getOrigin(*I)); 3055 3056 // Add variable argument origins. 3057 if (FT->isVarArg()) { 3058 auto *OriginVATy = 3059 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 3060 auto *OriginVAAlloca = 3061 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 3062 "originva", DFSF.F->getEntryBlock().begin()); 3063 3064 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 3065 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 3066 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 3067 } 3068 3069 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 3070 } 3071 3072 // Add the return value origin. 3073 if (!FT->getReturnType()->isVoidTy()) { 3074 if (!DFSF.OriginReturnAlloca) { 3075 DFSF.OriginReturnAlloca = new AllocaInst( 3076 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 3077 "originreturn", DFSF.F->getEntryBlock().begin()); 3078 } 3079 Args.push_back(DFSF.OriginReturnAlloca); 3080 } 3081 } 3082 3083 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 3084 IRBuilder<> IRB(&CB); 3085 switch (DFSF.DFS.getWrapperKind(&F)) { 3086 case DataFlowSanitizer::WK_Warning: 3087 CB.setCalledFunction(&F); 3088 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 3089 IRB.CreateGlobalStringPtr(F.getName())); 3090 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F); 3091 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3092 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 3093 return true; 3094 case DataFlowSanitizer::WK_Discard: 3095 CB.setCalledFunction(&F); 3096 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F); 3097 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3098 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 3099 return true; 3100 case DataFlowSanitizer::WK_Functional: 3101 CB.setCalledFunction(&F); 3102 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F); 3103 visitInstOperands(CB); 3104 return true; 3105 case DataFlowSanitizer::WK_Custom: 3106 // Don't try to handle invokes of custom functions, it's too complicated. 3107 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 3108 // wrapper. 3109 CallInst *CI = dyn_cast<CallInst>(&CB); 3110 if (!CI) 3111 return false; 3112 3113 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3114 FunctionType *FT = F.getFunctionType(); 3115 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 3116 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 3117 CustomFName += F.getName(); 3118 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 3119 CustomFName, CustomFn.TransformedType); 3120 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 3121 CustomFn->copyAttributesFrom(&F); 3122 3123 // Custom functions returning non-void will write to the return label. 3124 if (!FT->getReturnType()->isVoidTy()) { 3125 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs); 3126 } 3127 } 3128 3129 std::vector<Value *> Args; 3130 3131 // Adds non-variable arguments. 3132 auto *I = CB.arg_begin(); 3133 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 3134 Args.push_back(*I); 3135 } 3136 3137 // Adds shadow arguments. 3138 const unsigned ShadowArgStart = Args.size(); 3139 addShadowArguments(F, CB, Args, IRB); 3140 3141 // Adds origin arguments. 3142 const unsigned OriginArgStart = Args.size(); 3143 if (ShouldTrackOrigins) 3144 addOriginArguments(F, CB, Args, IRB); 3145 3146 // Adds variable arguments. 3147 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 3148 3149 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 3150 CustomCI->setCallingConv(CI->getCallingConv()); 3151 CustomCI->setAttributes(transformFunctionAttributes( 3152 CustomFn, CI->getContext(), CI->getAttributes())); 3153 3154 // Update the parameter attributes of the custom call instruction to 3155 // zero extend the shadow parameters. This is required for targets 3156 // which consider PrimitiveShadowTy an illegal type. 3157 for (unsigned N = 0; N < FT->getNumParams(); N++) { 3158 const unsigned ArgNo = ShadowArgStart + N; 3159 if (CustomCI->getArgOperand(ArgNo)->getType() == 3160 DFSF.DFS.PrimitiveShadowTy) 3161 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 3162 if (ShouldTrackOrigins) { 3163 const unsigned OriginArgNo = OriginArgStart + N; 3164 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 3165 DFSF.DFS.OriginTy) 3166 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 3167 } 3168 } 3169 3170 // Loads the return value shadow and origin. 3171 if (!FT->getReturnType()->isVoidTy()) { 3172 LoadInst *LabelLoad = 3173 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 3174 DFSF.setShadow(CustomCI, 3175 DFSF.expandFromPrimitiveShadow( 3176 FT->getReturnType(), LabelLoad, CB.getIterator())); 3177 if (ShouldTrackOrigins) { 3178 LoadInst *OriginLoad = 3179 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 3180 DFSF.setOrigin(CustomCI, OriginLoad); 3181 } 3182 } 3183 3184 CI->replaceAllUsesWith(CustomCI); 3185 CI->eraseFromParent(); 3186 return true; 3187 } 3188 return false; 3189 } 3190 3191 Value *DFSanVisitor::makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 3192 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 3193 uint32_t OrderingTable[NumOrderings] = {}; 3194 3195 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 3196 OrderingTable[(int)AtomicOrderingCABI::acquire] = 3197 OrderingTable[(int)AtomicOrderingCABI::consume] = 3198 (int)AtomicOrderingCABI::acquire; 3199 OrderingTable[(int)AtomicOrderingCABI::release] = 3200 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 3201 (int)AtomicOrderingCABI::acq_rel; 3202 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 3203 (int)AtomicOrderingCABI::seq_cst; 3204 3205 return ConstantDataVector::get(IRB.getContext(), OrderingTable); 3206 } 3207 3208 void DFSanVisitor::visitLibAtomicLoad(CallBase &CB) { 3209 // Since we use getNextNode here, we can't have CB terminate the BB. 3210 assert(isa<CallInst>(CB)); 3211 3212 IRBuilder<> IRB(&CB); 3213 Value *Size = CB.getArgOperand(0); 3214 Value *SrcPtr = CB.getArgOperand(1); 3215 Value *DstPtr = CB.getArgOperand(2); 3216 Value *Ordering = CB.getArgOperand(3); 3217 // Convert the call to have at least Acquire ordering to make sure 3218 // the shadow operations aren't reordered before it. 3219 Value *NewOrdering = 3220 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3221 CB.setArgOperand(3, NewOrdering); 3222 3223 IRBuilder<> NextIRB(CB.getNextNode()); 3224 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3225 3226 // TODO: Support ClCombinePointerLabelsOnLoad 3227 // TODO: Support ClEventCallbacks 3228 3229 NextIRB.CreateCall( 3230 DFSF.DFS.DFSanMemShadowOriginTransferFn, 3231 {DstPtr, SrcPtr, NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3232 } 3233 3234 Value *DFSanVisitor::makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 3235 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 3236 uint32_t OrderingTable[NumOrderings] = {}; 3237 3238 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 3239 OrderingTable[(int)AtomicOrderingCABI::release] = 3240 (int)AtomicOrderingCABI::release; 3241 OrderingTable[(int)AtomicOrderingCABI::consume] = 3242 OrderingTable[(int)AtomicOrderingCABI::acquire] = 3243 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 3244 (int)AtomicOrderingCABI::acq_rel; 3245 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 3246 (int)AtomicOrderingCABI::seq_cst; 3247 3248 return ConstantDataVector::get(IRB.getContext(), OrderingTable); 3249 } 3250 3251 void DFSanVisitor::visitLibAtomicStore(CallBase &CB) { 3252 IRBuilder<> IRB(&CB); 3253 Value *Size = CB.getArgOperand(0); 3254 Value *SrcPtr = CB.getArgOperand(1); 3255 Value *DstPtr = CB.getArgOperand(2); 3256 Value *Ordering = CB.getArgOperand(3); 3257 // Convert the call to have at least Release ordering to make sure 3258 // the shadow operations aren't reordered after it. 3259 Value *NewOrdering = 3260 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3261 CB.setArgOperand(3, NewOrdering); 3262 3263 // TODO: Support ClCombinePointerLabelsOnStore 3264 // TODO: Support ClEventCallbacks 3265 3266 IRB.CreateCall( 3267 DFSF.DFS.DFSanMemShadowOriginTransferFn, 3268 {DstPtr, SrcPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3269 } 3270 3271 void DFSanVisitor::visitLibAtomicExchange(CallBase &CB) { 3272 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int 3273 // ordering) 3274 IRBuilder<> IRB(&CB); 3275 Value *Size = CB.getArgOperand(0); 3276 Value *TargetPtr = CB.getArgOperand(1); 3277 Value *SrcPtr = CB.getArgOperand(2); 3278 Value *DstPtr = CB.getArgOperand(3); 3279 3280 // This operation is not atomic for the shadow and origin memory. 3281 // This could result in DFSan false positives or false negatives. 3282 // For now we will assume these operations are rare, and 3283 // the additional complexity to address this is not warrented. 3284 3285 // Current Target to Dest 3286 IRB.CreateCall( 3287 DFSF.DFS.DFSanMemShadowOriginTransferFn, 3288 {DstPtr, TargetPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3289 3290 // Current Src to Target (overriding) 3291 IRB.CreateCall( 3292 DFSF.DFS.DFSanMemShadowOriginTransferFn, 3293 {TargetPtr, SrcPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3294 } 3295 3296 void DFSanVisitor::visitLibAtomicCompareExchange(CallBase &CB) { 3297 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void 3298 // *desired, int success_order, int failure_order) 3299 Value *Size = CB.getArgOperand(0); 3300 Value *TargetPtr = CB.getArgOperand(1); 3301 Value *ExpectedPtr = CB.getArgOperand(2); 3302 Value *DesiredPtr = CB.getArgOperand(3); 3303 3304 // This operation is not atomic for the shadow and origin memory. 3305 // This could result in DFSan false positives or false negatives. 3306 // For now we will assume these operations are rare, and 3307 // the additional complexity to address this is not warrented. 3308 3309 IRBuilder<> NextIRB(CB.getNextNode()); 3310 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3311 3312 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3313 3314 // If original call returned true, copy Desired to Target. 3315 // If original call returned false, copy Target to Expected. 3316 NextIRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginConditionalExchangeFn, 3317 {NextIRB.CreateIntCast(&CB, NextIRB.getInt8Ty(), false), 3318 TargetPtr, ExpectedPtr, DesiredPtr, 3319 NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3320 } 3321 3322 void DFSanVisitor::visitCallBase(CallBase &CB) { 3323 Function *F = CB.getCalledFunction(); 3324 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 3325 visitInstOperands(CB); 3326 return; 3327 } 3328 3329 // Calls to this function are synthesized in wrappers, and we shouldn't 3330 // instrument them. 3331 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 3332 return; 3333 3334 LibFunc LF; 3335 if (DFSF.TLI.getLibFunc(CB, LF)) { 3336 // libatomic.a functions need to have special handling because there isn't 3337 // a good way to intercept them or compile the library with 3338 // instrumentation. 3339 switch (LF) { 3340 case LibFunc_atomic_load: 3341 if (!isa<CallInst>(CB)) { 3342 llvm::errs() << "DFSAN -- cannot instrument invoke of libatomic load. " 3343 "Ignoring!\n"; 3344 break; 3345 } 3346 visitLibAtomicLoad(CB); 3347 return; 3348 case LibFunc_atomic_store: 3349 visitLibAtomicStore(CB); 3350 return; 3351 default: 3352 break; 3353 } 3354 } 3355 3356 // TODO: These are not supported by TLI? They are not in the enum. 3357 if (F && F->hasName() && !F->isVarArg()) { 3358 if (F->getName() == "__atomic_exchange") { 3359 visitLibAtomicExchange(CB); 3360 return; 3361 } 3362 if (F->getName() == "__atomic_compare_exchange") { 3363 visitLibAtomicCompareExchange(CB); 3364 return; 3365 } 3366 } 3367 3368 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 3369 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 3370 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 3371 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 3372 return; 3373 3374 IRBuilder<> IRB(&CB); 3375 3376 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3377 FunctionType *FT = CB.getFunctionType(); 3378 const DataLayout &DL = getDataLayout(); 3379 3380 // Stores argument shadows. 3381 unsigned ArgOffset = 0; 3382 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 3383 if (ShouldTrackOrigins) { 3384 // Ignore overflowed origins 3385 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 3386 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 3387 !DFSF.DFS.isZeroShadow(ArgShadow)) 3388 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 3389 DFSF.getArgOriginTLS(I, IRB)); 3390 } 3391 3392 unsigned Size = 3393 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 3394 // Stop storing if arguments' size overflows. Inside a function, arguments 3395 // after overflow have zero shadow values. 3396 if (ArgOffset + Size > ArgTLSSize) 3397 break; 3398 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)), 3399 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 3400 ShadowTLSAlignment); 3401 ArgOffset += alignTo(Size, ShadowTLSAlignment); 3402 } 3403 3404 Instruction *Next = nullptr; 3405 if (!CB.getType()->isVoidTy()) { 3406 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3407 if (II->getNormalDest()->getSinglePredecessor()) { 3408 Next = &II->getNormalDest()->front(); 3409 } else { 3410 BasicBlock *NewBB = 3411 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 3412 Next = &NewBB->front(); 3413 } 3414 } else { 3415 assert(CB.getIterator() != CB.getParent()->end()); 3416 Next = CB.getNextNode(); 3417 } 3418 3419 // Don't emit the epilogue for musttail call returns. 3420 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3421 return; 3422 3423 // Loads the return value shadow. 3424 IRBuilder<> NextIRB(Next); 3425 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 3426 if (Size > RetvalTLSSize) { 3427 // Set overflowed return shadow to be zero. 3428 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3429 } else { 3430 LoadInst *LI = NextIRB.CreateAlignedLoad( 3431 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 3432 ShadowTLSAlignment, "_dfsret"); 3433 DFSF.SkipInsts.insert(LI); 3434 DFSF.setShadow(&CB, LI); 3435 DFSF.NonZeroChecks.push_back(LI); 3436 } 3437 3438 if (ShouldTrackOrigins) { 3439 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy, 3440 DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3441 DFSF.SkipInsts.insert(LI); 3442 DFSF.setOrigin(&CB, LI); 3443 } 3444 3445 DFSF.addReachesFunctionCallbacksIfEnabled(NextIRB, CB, &CB); 3446 } 3447 } 3448 3449 void DFSanVisitor::visitPHINode(PHINode &PN) { 3450 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3451 PHINode *ShadowPN = PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", 3452 PN.getIterator()); 3453 3454 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3455 Value *UndefShadow = UndefValue::get(ShadowTy); 3456 for (BasicBlock *BB : PN.blocks()) 3457 ShadowPN->addIncoming(UndefShadow, BB); 3458 3459 DFSF.setShadow(&PN, ShadowPN); 3460 3461 PHINode *OriginPN = nullptr; 3462 if (DFSF.DFS.shouldTrackOrigins()) { 3463 OriginPN = PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", 3464 PN.getIterator()); 3465 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3466 for (BasicBlock *BB : PN.blocks()) 3467 OriginPN->addIncoming(UndefOrigin, BB); 3468 DFSF.setOrigin(&PN, OriginPN); 3469 } 3470 3471 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3472 } 3473 3474 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3475 ModuleAnalysisManager &AM) { 3476 auto GetTLI = [&](Function &F) -> TargetLibraryInfo & { 3477 auto &FAM = 3478 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3479 return FAM.getResult<TargetLibraryAnalysis>(F); 3480 }; 3481 if (!DataFlowSanitizer(ABIListFiles).runImpl(M, GetTLI)) 3482 return PreservedAnalyses::all(); 3483 3484 PreservedAnalyses PA = PreservedAnalyses::none(); 3485 // GlobalsAA is considered stateless and does not get invalidated unless 3486 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 3487 // make changes that require GlobalsAA to be invalidated. 3488 PA.abandon<GlobalsAA>(); 3489 return PA; 3490 } 3491