1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// Argument and return value labels are passed through TLS variables 22 /// __dfsan_arg_tls and __dfsan_retval_tls. 23 /// 24 /// Each byte of application memory is backed by a shadow memory byte. The 25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then 26 /// laid out as follows: 27 /// 28 /// +--------------------+ 0x800000000000 (top of memory) 29 /// | application 3 | 30 /// +--------------------+ 0x700000000000 31 /// | invalid | 32 /// +--------------------+ 0x610000000000 33 /// | origin 1 | 34 /// +--------------------+ 0x600000000000 35 /// | application 2 | 36 /// +--------------------+ 0x510000000000 37 /// | shadow 1 | 38 /// +--------------------+ 0x500000000000 39 /// | invalid | 40 /// +--------------------+ 0x400000000000 41 /// | origin 3 | 42 /// +--------------------+ 0x300000000000 43 /// | shadow 3 | 44 /// +--------------------+ 0x200000000000 45 /// | origin 2 | 46 /// +--------------------+ 0x110000000000 47 /// | invalid | 48 /// +--------------------+ 0x100000000000 49 /// | shadow 2 | 50 /// +--------------------+ 0x010000000000 51 /// | application 1 | 52 /// +--------------------+ 0x000000000000 53 /// 54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 56 /// 57 /// For more information, please refer to the design document: 58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 59 // 60 //===----------------------------------------------------------------------===// 61 62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DenseSet.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/StringRef.h" 69 #include "llvm/ADT/StringSet.h" 70 #include "llvm/ADT/iterator.h" 71 #include "llvm/Analysis/DomTreeUpdater.h" 72 #include "llvm/Analysis/GlobalsModRef.h" 73 #include "llvm/Analysis/TargetLibraryInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/IR/Argument.h" 76 #include "llvm/IR/AttributeMask.h" 77 #include "llvm/IR/Attributes.h" 78 #include "llvm/IR/BasicBlock.h" 79 #include "llvm/IR/Constant.h" 80 #include "llvm/IR/Constants.h" 81 #include "llvm/IR/DataLayout.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/Function.h" 85 #include "llvm/IR/GlobalAlias.h" 86 #include "llvm/IR/GlobalValue.h" 87 #include "llvm/IR/GlobalVariable.h" 88 #include "llvm/IR/IRBuilder.h" 89 #include "llvm/IR/InstVisitor.h" 90 #include "llvm/IR/InstrTypes.h" 91 #include "llvm/IR/Instruction.h" 92 #include "llvm/IR/Instructions.h" 93 #include "llvm/IR/IntrinsicInst.h" 94 #include "llvm/IR/MDBuilder.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/PassManager.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/Support/Alignment.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/ErrorHandling.h" 104 #include "llvm/Support/SpecialCaseList.h" 105 #include "llvm/Support/VirtualFileSystem.h" 106 #include "llvm/TargetParser/Triple.h" 107 #include "llvm/Transforms/Instrumentation.h" 108 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 109 #include "llvm/Transforms/Utils/Local.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <memory> 115 #include <set> 116 #include <string> 117 #include <utility> 118 #include <vector> 119 120 using namespace llvm; 121 122 // This must be consistent with ShadowWidthBits. 123 static const Align ShadowTLSAlignment = Align(2); 124 125 static const Align MinOriginAlignment = Align(4); 126 127 // The size of TLS variables. These constants must be kept in sync with the ones 128 // in dfsan.cpp. 129 static const unsigned ArgTLSSize = 800; 130 static const unsigned RetvalTLSSize = 800; 131 132 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 133 // alignment requirements provided by the input IR are correct. For example, 134 // if the input IR contains a load with alignment 8, this flag will cause 135 // the shadow load to have alignment 16. This flag is disabled by default as 136 // we have unfortunately encountered too much code (including Clang itself; 137 // see PR14291) which performs misaligned access. 138 static cl::opt<bool> ClPreserveAlignment( 139 "dfsan-preserve-alignment", 140 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 141 cl::init(false)); 142 143 // The ABI list files control how shadow parameters are passed. The pass treats 144 // every function labelled "uninstrumented" in the ABI list file as conforming 145 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 146 // additional annotations for those functions, a call to one of those functions 147 // will produce a warning message, as the labelling behaviour of the function is 148 // unknown. The other supported annotations for uninstrumented functions are 149 // "functional" and "discard", which are described below under 150 // DataFlowSanitizer::WrapperKind. 151 // Functions will often be labelled with both "uninstrumented" and one of 152 // "functional" or "discard". This will leave the function unchanged by this 153 // pass, and create a wrapper function that will call the original. 154 // 155 // Instrumented functions can also be annotated as "force_zero_labels", which 156 // will make all shadow and return values set zero labels. 157 // Functions should never be labelled with both "force_zero_labels" and 158 // "uninstrumented" or any of the unistrumented wrapper kinds. 159 static cl::list<std::string> ClABIListFiles( 160 "dfsan-abilist", 161 cl::desc("File listing native ABI functions and how the pass treats them"), 162 cl::Hidden); 163 164 // Controls whether the pass includes or ignores the labels of pointers in load 165 // instructions. 166 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 167 "dfsan-combine-pointer-labels-on-load", 168 cl::desc("Combine the label of the pointer with the label of the data when " 169 "loading from memory."), 170 cl::Hidden, cl::init(true)); 171 172 // Controls whether the pass includes or ignores the labels of pointers in 173 // stores instructions. 174 static cl::opt<bool> ClCombinePointerLabelsOnStore( 175 "dfsan-combine-pointer-labels-on-store", 176 cl::desc("Combine the label of the pointer with the label of the data when " 177 "storing in memory."), 178 cl::Hidden, cl::init(false)); 179 180 // Controls whether the pass propagates labels of offsets in GEP instructions. 181 static cl::opt<bool> ClCombineOffsetLabelsOnGEP( 182 "dfsan-combine-offset-labels-on-gep", 183 cl::desc( 184 "Combine the label of the offset with the label of the pointer when " 185 "doing pointer arithmetic."), 186 cl::Hidden, cl::init(true)); 187 188 static cl::list<std::string> ClCombineTaintLookupTables( 189 "dfsan-combine-taint-lookup-table", 190 cl::desc( 191 "When dfsan-combine-offset-labels-on-gep and/or " 192 "dfsan-combine-pointer-labels-on-load are false, this flag can " 193 "be used to re-enable combining offset and/or pointer taint when " 194 "loading specific constant global variables (i.e. lookup tables)."), 195 cl::Hidden); 196 197 static cl::opt<bool> ClDebugNonzeroLabels( 198 "dfsan-debug-nonzero-labels", 199 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 200 "load or return with a nonzero label"), 201 cl::Hidden); 202 203 // Experimental feature that inserts callbacks for certain data events. 204 // Currently callbacks are only inserted for loads, stores, memory transfers 205 // (i.e. memcpy and memmove), and comparisons. 206 // 207 // If this flag is set to true, the user must provide definitions for the 208 // following callback functions: 209 // void __dfsan_load_callback(dfsan_label Label, void* addr); 210 // void __dfsan_store_callback(dfsan_label Label, void* addr); 211 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 212 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 213 static cl::opt<bool> ClEventCallbacks( 214 "dfsan-event-callbacks", 215 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 216 cl::Hidden, cl::init(false)); 217 218 // Experimental feature that inserts callbacks for conditionals, including: 219 // conditional branch, switch, select. 220 // This must be true for dfsan_set_conditional_callback() to have effect. 221 static cl::opt<bool> ClConditionalCallbacks( 222 "dfsan-conditional-callbacks", 223 cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden, 224 cl::init(false)); 225 226 // Experimental feature that inserts callbacks for data reaching a function, 227 // either via function arguments and loads. 228 // This must be true for dfsan_set_reaches_function_callback() to have effect. 229 static cl::opt<bool> ClReachesFunctionCallbacks( 230 "dfsan-reaches-function-callbacks", 231 cl::desc("Insert calls to callback functions on data reaching a function."), 232 cl::Hidden, cl::init(false)); 233 234 // Controls whether the pass tracks the control flow of select instructions. 235 static cl::opt<bool> ClTrackSelectControlFlow( 236 "dfsan-track-select-control-flow", 237 cl::desc("Propagate labels from condition values of select instructions " 238 "to results."), 239 cl::Hidden, cl::init(true)); 240 241 // TODO: This default value follows MSan. DFSan may use a different value. 242 static cl::opt<int> ClInstrumentWithCallThreshold( 243 "dfsan-instrument-with-call-threshold", 244 cl::desc("If the function being instrumented requires more than " 245 "this number of origin stores, use callbacks instead of " 246 "inline checks (-1 means never use callbacks)."), 247 cl::Hidden, cl::init(3500)); 248 249 // Controls how to track origins. 250 // * 0: do not track origins. 251 // * 1: track origins at memory store operations. 252 // * 2: track origins at memory load and store operations. 253 // TODO: track callsites. 254 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 255 cl::desc("Track origins of labels"), 256 cl::Hidden, cl::init(0)); 257 258 static cl::opt<bool> ClIgnorePersonalityRoutine( 259 "dfsan-ignore-personality-routine", 260 cl::desc("If a personality routine is marked uninstrumented from the ABI " 261 "list, do not create a wrapper for it."), 262 cl::Hidden, cl::init(false)); 263 264 static StringRef getGlobalTypeString(const GlobalValue &G) { 265 // Types of GlobalVariables are always pointer types. 266 Type *GType = G.getValueType(); 267 // For now we support excluding struct types only. 268 if (StructType *SGType = dyn_cast<StructType>(GType)) { 269 if (!SGType->isLiteral()) 270 return SGType->getName(); 271 } 272 return "<unknown type>"; 273 } 274 275 namespace { 276 277 // Memory map parameters used in application-to-shadow address calculation. 278 // Offset = (Addr & ~AndMask) ^ XorMask 279 // Shadow = ShadowBase + Offset 280 // Origin = (OriginBase + Offset) & ~3ULL 281 struct MemoryMapParams { 282 uint64_t AndMask; 283 uint64_t XorMask; 284 uint64_t ShadowBase; 285 uint64_t OriginBase; 286 }; 287 288 } // end anonymous namespace 289 290 // NOLINTBEGIN(readability-identifier-naming) 291 // aarch64 Linux 292 const MemoryMapParams Linux_AArch64_MemoryMapParams = { 293 0, // AndMask (not used) 294 0x0B00000000000, // XorMask 295 0, // ShadowBase (not used) 296 0x0200000000000, // OriginBase 297 }; 298 299 // x86_64 Linux 300 const MemoryMapParams Linux_X86_64_MemoryMapParams = { 301 0, // AndMask (not used) 302 0x500000000000, // XorMask 303 0, // ShadowBase (not used) 304 0x100000000000, // OriginBase 305 }; 306 // NOLINTEND(readability-identifier-naming) 307 308 // loongarch64 Linux 309 const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { 310 0, // AndMask (not used) 311 0x500000000000, // XorMask 312 0, // ShadowBase (not used) 313 0x100000000000, // OriginBase 314 }; 315 316 namespace { 317 318 class DFSanABIList { 319 std::unique_ptr<SpecialCaseList> SCL; 320 321 public: 322 DFSanABIList() = default; 323 324 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 325 326 /// Returns whether either this function or its source file are listed in the 327 /// given category. 328 bool isIn(const Function &F, StringRef Category) const { 329 return isIn(*F.getParent(), Category) || 330 SCL->inSection("dataflow", "fun", F.getName(), Category); 331 } 332 333 /// Returns whether this global alias is listed in the given category. 334 /// 335 /// If GA aliases a function, the alias's name is matched as a function name 336 /// would be. Similarly, aliases of globals are matched like globals. 337 bool isIn(const GlobalAlias &GA, StringRef Category) const { 338 if (isIn(*GA.getParent(), Category)) 339 return true; 340 341 if (isa<FunctionType>(GA.getValueType())) 342 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 343 344 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 345 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 346 Category); 347 } 348 349 /// Returns whether this module is listed in the given category. 350 bool isIn(const Module &M, StringRef Category) const { 351 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 352 } 353 }; 354 355 /// TransformedFunction is used to express the result of transforming one 356 /// function type into another. This struct is immutable. It holds metadata 357 /// useful for updating calls of the old function to the new type. 358 struct TransformedFunction { 359 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 360 std::vector<unsigned> ArgumentIndexMapping) 361 : OriginalType(OriginalType), TransformedType(TransformedType), 362 ArgumentIndexMapping(ArgumentIndexMapping) {} 363 364 // Disallow copies. 365 TransformedFunction(const TransformedFunction &) = delete; 366 TransformedFunction &operator=(const TransformedFunction &) = delete; 367 368 // Allow moves. 369 TransformedFunction(TransformedFunction &&) = default; 370 TransformedFunction &operator=(TransformedFunction &&) = default; 371 372 /// Type of the function before the transformation. 373 FunctionType *OriginalType; 374 375 /// Type of the function after the transformation. 376 FunctionType *TransformedType; 377 378 /// Transforming a function may change the position of arguments. This 379 /// member records the mapping from each argument's old position to its new 380 /// position. Argument positions are zero-indexed. If the transformation 381 /// from F to F' made the first argument of F into the third argument of F', 382 /// then ArgumentIndexMapping[0] will equal 2. 383 std::vector<unsigned> ArgumentIndexMapping; 384 }; 385 386 /// Given function attributes from a call site for the original function, 387 /// return function attributes appropriate for a call to the transformed 388 /// function. 389 AttributeList 390 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 391 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 392 393 // Construct a vector of AttributeSet for each function argument. 394 std::vector<llvm::AttributeSet> ArgumentAttributes( 395 TransformedFunction.TransformedType->getNumParams()); 396 397 // Copy attributes from the parameter of the original function to the 398 // transformed version. 'ArgumentIndexMapping' holds the mapping from 399 // old argument position to new. 400 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 401 I < IE; ++I) { 402 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 403 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I); 404 } 405 406 // Copy annotations on varargs arguments. 407 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 408 IE = CallSiteAttrs.getNumAttrSets(); 409 I < IE; ++I) { 410 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I)); 411 } 412 413 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(), 414 CallSiteAttrs.getRetAttrs(), 415 llvm::ArrayRef(ArgumentAttributes)); 416 } 417 418 class DataFlowSanitizer { 419 friend struct DFSanFunction; 420 friend class DFSanVisitor; 421 422 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; 423 424 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; 425 426 /// How should calls to uninstrumented functions be handled? 427 enum WrapperKind { 428 /// This function is present in an uninstrumented form but we don't know 429 /// how it should be handled. Print a warning and call the function anyway. 430 /// Don't label the return value. 431 WK_Warning, 432 433 /// This function does not write to (user-accessible) memory, and its return 434 /// value is unlabelled. 435 WK_Discard, 436 437 /// This function does not write to (user-accessible) memory, and the label 438 /// of its return value is the union of the label of its arguments. 439 WK_Functional, 440 441 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 442 /// where F is the name of the function. This function may wrap the 443 /// original function or provide its own implementation. WK_Custom uses an 444 /// extra pointer argument to return the shadow. This allows the wrapped 445 /// form of the function type to be expressed in C. 446 WK_Custom 447 }; 448 449 Module *Mod; 450 LLVMContext *Ctx; 451 Type *Int8Ptr; 452 IntegerType *OriginTy; 453 PointerType *OriginPtrTy; 454 ConstantInt *ZeroOrigin; 455 /// The shadow type for all primitive types and vector types. 456 IntegerType *PrimitiveShadowTy; 457 PointerType *PrimitiveShadowPtrTy; 458 IntegerType *IntptrTy; 459 ConstantInt *ZeroPrimitiveShadow; 460 Constant *ArgTLS; 461 ArrayType *ArgOriginTLSTy; 462 Constant *ArgOriginTLS; 463 Constant *RetvalTLS; 464 Constant *RetvalOriginTLS; 465 FunctionType *DFSanUnionLoadFnTy; 466 FunctionType *DFSanLoadLabelAndOriginFnTy; 467 FunctionType *DFSanUnimplementedFnTy; 468 FunctionType *DFSanWrapperExternWeakNullFnTy; 469 FunctionType *DFSanSetLabelFnTy; 470 FunctionType *DFSanNonzeroLabelFnTy; 471 FunctionType *DFSanVarargWrapperFnTy; 472 FunctionType *DFSanConditionalCallbackFnTy; 473 FunctionType *DFSanConditionalCallbackOriginFnTy; 474 FunctionType *DFSanReachesFunctionCallbackFnTy; 475 FunctionType *DFSanReachesFunctionCallbackOriginFnTy; 476 FunctionType *DFSanCmpCallbackFnTy; 477 FunctionType *DFSanLoadStoreCallbackFnTy; 478 FunctionType *DFSanMemTransferCallbackFnTy; 479 FunctionType *DFSanChainOriginFnTy; 480 FunctionType *DFSanChainOriginIfTaintedFnTy; 481 FunctionType *DFSanMemOriginTransferFnTy; 482 FunctionType *DFSanMemShadowOriginTransferFnTy; 483 FunctionType *DFSanMemShadowOriginConditionalExchangeFnTy; 484 FunctionType *DFSanMaybeStoreOriginFnTy; 485 FunctionCallee DFSanUnionLoadFn; 486 FunctionCallee DFSanLoadLabelAndOriginFn; 487 FunctionCallee DFSanUnimplementedFn; 488 FunctionCallee DFSanWrapperExternWeakNullFn; 489 FunctionCallee DFSanSetLabelFn; 490 FunctionCallee DFSanNonzeroLabelFn; 491 FunctionCallee DFSanVarargWrapperFn; 492 FunctionCallee DFSanLoadCallbackFn; 493 FunctionCallee DFSanStoreCallbackFn; 494 FunctionCallee DFSanMemTransferCallbackFn; 495 FunctionCallee DFSanConditionalCallbackFn; 496 FunctionCallee DFSanConditionalCallbackOriginFn; 497 FunctionCallee DFSanReachesFunctionCallbackFn; 498 FunctionCallee DFSanReachesFunctionCallbackOriginFn; 499 FunctionCallee DFSanCmpCallbackFn; 500 FunctionCallee DFSanChainOriginFn; 501 FunctionCallee DFSanChainOriginIfTaintedFn; 502 FunctionCallee DFSanMemOriginTransferFn; 503 FunctionCallee DFSanMemShadowOriginTransferFn; 504 FunctionCallee DFSanMemShadowOriginConditionalExchangeFn; 505 FunctionCallee DFSanMaybeStoreOriginFn; 506 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 507 MDNode *ColdCallWeights; 508 MDNode *OriginStoreWeights; 509 DFSanABIList ABIList; 510 DenseMap<Value *, Function *> UnwrappedFnMap; 511 AttributeMask ReadOnlyNoneAttrs; 512 StringSet<> CombineTaintLookupTableNames; 513 514 /// Memory map parameters used in calculation mapping application addresses 515 /// to shadow addresses and origin addresses. 516 const MemoryMapParams *MapParams; 517 518 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 519 Value *getShadowAddress(Value *Addr, Instruction *Pos); 520 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); 521 std::pair<Value *, Value *> 522 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 523 bool isInstrumented(const Function *F); 524 bool isInstrumented(const GlobalAlias *GA); 525 bool isForceZeroLabels(const Function *F); 526 TransformedFunction getCustomFunctionType(FunctionType *T); 527 WrapperKind getWrapperKind(Function *F); 528 void addGlobalNameSuffix(GlobalValue *GV); 529 void buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, Function *F); 530 Function *buildWrapperFunction(Function *F, StringRef NewFName, 531 GlobalValue::LinkageTypes NewFLink, 532 FunctionType *NewFT); 533 void initializeCallbackFunctions(Module &M); 534 void initializeRuntimeFunctions(Module &M); 535 bool initializeModule(Module &M); 536 537 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 538 /// from it. Returns the origin's loaded value. 539 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign, 540 Value **OriginAddr); 541 542 /// Returns whether the given load byte size is amenable to inlined 543 /// optimization patterns. 544 bool hasLoadSizeForFastPath(uint64_t Size); 545 546 /// Returns whether the pass tracks origins. Supports only TLS ABI mode. 547 bool shouldTrackOrigins(); 548 549 /// Returns a zero constant with the shadow type of OrigTy. 550 /// 551 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 552 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 553 /// getZeroShadow(other type) = i16(0) 554 Constant *getZeroShadow(Type *OrigTy); 555 /// Returns a zero constant with the shadow type of V's type. 556 Constant *getZeroShadow(Value *V); 557 558 /// Checks if V is a zero shadow. 559 bool isZeroShadow(Value *V); 560 561 /// Returns the shadow type of OrigTy. 562 /// 563 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 564 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 565 /// getShadowTy(other type) = i16 566 Type *getShadowTy(Type *OrigTy); 567 /// Returns the shadow type of V's type. 568 Type *getShadowTy(Value *V); 569 570 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 571 572 public: 573 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 574 575 bool runImpl(Module &M, 576 llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI); 577 }; 578 579 struct DFSanFunction { 580 DataFlowSanitizer &DFS; 581 Function *F; 582 DominatorTree DT; 583 bool IsNativeABI; 584 bool IsForceZeroLabels; 585 TargetLibraryInfo &TLI; 586 AllocaInst *LabelReturnAlloca = nullptr; 587 AllocaInst *OriginReturnAlloca = nullptr; 588 DenseMap<Value *, Value *> ValShadowMap; 589 DenseMap<Value *, Value *> ValOriginMap; 590 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 591 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 592 593 struct PHIFixupElement { 594 PHINode *Phi; 595 PHINode *ShadowPhi; 596 PHINode *OriginPhi; 597 }; 598 std::vector<PHIFixupElement> PHIFixups; 599 600 DenseSet<Instruction *> SkipInsts; 601 std::vector<Value *> NonZeroChecks; 602 603 struct CachedShadow { 604 BasicBlock *Block; // The block where Shadow is defined. 605 Value *Shadow; 606 }; 607 /// Maps a value to its latest shadow value in terms of domination tree. 608 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 609 /// Maps a value to its latest collapsed shadow value it was converted to in 610 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 611 /// used at a post process where CFG blocks are split. So it does not cache 612 /// BasicBlock like CachedShadows, but uses domination between values. 613 DenseMap<Value *, Value *> CachedCollapsedShadows; 614 DenseMap<Value *, std::set<Value *>> ShadowElements; 615 616 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, 617 bool IsForceZeroLabels, TargetLibraryInfo &TLI) 618 : DFS(DFS), F(F), IsNativeABI(IsNativeABI), 619 IsForceZeroLabels(IsForceZeroLabels), TLI(TLI) { 620 DT.recalculate(*F); 621 } 622 623 /// Computes the shadow address for a given function argument. 624 /// 625 /// Shadow = ArgTLS+ArgOffset. 626 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 627 628 /// Computes the shadow address for a return value. 629 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 630 631 /// Computes the origin address for a given function argument. 632 /// 633 /// Origin = ArgOriginTLS[ArgNo]. 634 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 635 636 /// Computes the origin address for a return value. 637 Value *getRetvalOriginTLS(); 638 639 Value *getOrigin(Value *V); 640 void setOrigin(Instruction *I, Value *Origin); 641 /// Generates IR to compute the origin of the last operand with a taint label. 642 Value *combineOperandOrigins(Instruction *Inst); 643 /// Before the instruction Pos, generates IR to compute the last origin with a 644 /// taint label. Labels and origins are from vectors Shadows and Origins 645 /// correspondingly. The generated IR is like 646 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 647 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 648 /// zeros with other bitwidths. 649 Value *combineOrigins(const std::vector<Value *> &Shadows, 650 const std::vector<Value *> &Origins, Instruction *Pos, 651 ConstantInt *Zero = nullptr); 652 653 Value *getShadow(Value *V); 654 void setShadow(Instruction *I, Value *Shadow); 655 /// Generates IR to compute the union of the two given shadows, inserting it 656 /// before Pos. The combined value is with primitive type. 657 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 658 /// Combines the shadow values of V1 and V2, then converts the combined value 659 /// with primitive type into a shadow value with the original type T. 660 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 661 Instruction *Pos); 662 Value *combineOperandShadows(Instruction *Inst); 663 664 /// Generates IR to load shadow and origin corresponding to bytes [\p 665 /// Addr, \p Addr + \p Size), where addr has alignment \p 666 /// InstAlignment, and take the union of each of those shadows. The returned 667 /// shadow always has primitive type. 668 /// 669 /// When tracking loads is enabled, the returned origin is a chain at the 670 /// current stack if the returned shadow is tainted. 671 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 672 Align InstAlignment, 673 Instruction *Pos); 674 675 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 676 Align InstAlignment, Value *PrimitiveShadow, 677 Value *Origin, Instruction *Pos); 678 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 679 /// the expanded shadow value. 680 /// 681 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 682 /// EFP([n x T], PS) = [n x EFP(T,PS)] 683 /// EFP(other types, PS) = PS 684 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 685 Instruction *Pos); 686 /// Collapses Shadow into a single primitive shadow value, unioning all 687 /// primitive shadow values in the process. Returns the final primitive 688 /// shadow value. 689 /// 690 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 691 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 692 /// CTP(other types, PS) = PS 693 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 694 695 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 696 Instruction *Pos); 697 698 Align getShadowAlign(Align InstAlignment); 699 700 // If ClConditionalCallbacks is enabled, insert a callback after a given 701 // branch instruction using the given conditional expression. 702 void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition); 703 704 // If ClReachesFunctionCallbacks is enabled, insert a callback for each 705 // argument and load instruction. 706 void addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, Instruction &I, 707 Value *Data); 708 709 bool isLookupTableConstant(Value *P); 710 711 private: 712 /// Collapses the shadow with aggregate type into a single primitive shadow 713 /// value. 714 template <class AggregateType> 715 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 716 IRBuilder<> &IRB); 717 718 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 719 720 /// Returns the shadow value of an argument A. 721 Value *getShadowForTLSArgument(Argument *A); 722 723 /// The fast path of loading shadows. 724 std::pair<Value *, Value *> 725 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 726 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 727 Instruction *Pos); 728 729 Align getOriginAlign(Align InstAlignment); 730 731 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 732 /// is __dfsan_load_label_and_origin. This function returns the union of all 733 /// labels and the origin of the first taint label. However this is an 734 /// additional call with many instructions. To ensure common cases are fast, 735 /// checks if it is possible to load labels and origins without using the 736 /// callback function. 737 /// 738 /// When enabling tracking load instructions, we always use 739 /// __dfsan_load_label_and_origin to reduce code size. 740 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 741 742 /// Returns a chain at the current stack with previous origin V. 743 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 744 745 /// Returns a chain at the current stack with previous origin V if Shadow is 746 /// tainted. 747 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 748 749 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 750 /// Origin otherwise. 751 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 752 753 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 754 /// Size). 755 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 756 uint64_t StoreOriginSize, Align Alignment); 757 758 /// Stores Origin in terms of its Shadow value. 759 /// * Do not write origins for zero shadows because we do not trace origins 760 /// for untainted sinks. 761 /// * Use __dfsan_maybe_store_origin if there are too many origin store 762 /// instrumentations. 763 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 764 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 765 766 /// Convert a scalar value to an i1 by comparing with 0. 767 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 768 769 bool shouldInstrumentWithCall(); 770 771 /// Generates IR to load shadow and origin corresponding to bytes [\p 772 /// Addr, \p Addr + \p Size), where addr has alignment \p 773 /// InstAlignment, and take the union of each of those shadows. The returned 774 /// shadow always has primitive type. 775 std::pair<Value *, Value *> 776 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 777 Align InstAlignment, Instruction *Pos); 778 int NumOriginStores = 0; 779 }; 780 781 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 782 public: 783 DFSanFunction &DFSF; 784 785 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 786 787 const DataLayout &getDataLayout() const { 788 return DFSF.F->getParent()->getDataLayout(); 789 } 790 791 // Combines shadow values and origins for all of I's operands. 792 void visitInstOperands(Instruction &I); 793 794 void visitUnaryOperator(UnaryOperator &UO); 795 void visitBinaryOperator(BinaryOperator &BO); 796 void visitBitCastInst(BitCastInst &BCI); 797 void visitCastInst(CastInst &CI); 798 void visitCmpInst(CmpInst &CI); 799 void visitLandingPadInst(LandingPadInst &LPI); 800 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 801 void visitLoadInst(LoadInst &LI); 802 void visitStoreInst(StoreInst &SI); 803 void visitAtomicRMWInst(AtomicRMWInst &I); 804 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 805 void visitReturnInst(ReturnInst &RI); 806 void visitLibAtomicLoad(CallBase &CB); 807 void visitLibAtomicStore(CallBase &CB); 808 void visitLibAtomicExchange(CallBase &CB); 809 void visitLibAtomicCompareExchange(CallBase &CB); 810 void visitCallBase(CallBase &CB); 811 void visitPHINode(PHINode &PN); 812 void visitExtractElementInst(ExtractElementInst &I); 813 void visitInsertElementInst(InsertElementInst &I); 814 void visitShuffleVectorInst(ShuffleVectorInst &I); 815 void visitExtractValueInst(ExtractValueInst &I); 816 void visitInsertValueInst(InsertValueInst &I); 817 void visitAllocaInst(AllocaInst &I); 818 void visitSelectInst(SelectInst &I); 819 void visitMemSetInst(MemSetInst &I); 820 void visitMemTransferInst(MemTransferInst &I); 821 void visitBranchInst(BranchInst &BR); 822 void visitSwitchInst(SwitchInst &SW); 823 824 private: 825 void visitCASOrRMW(Align InstAlignment, Instruction &I); 826 827 // Returns false when this is an invoke of a custom function. 828 bool visitWrappedCallBase(Function &F, CallBase &CB); 829 830 // Combines origins for all of I's operands. 831 void visitInstOperandOrigins(Instruction &I); 832 833 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 834 IRBuilder<> &IRB); 835 836 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 837 IRBuilder<> &IRB); 838 839 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB); 840 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB); 841 }; 842 843 bool LibAtomicFunction(const Function &F) { 844 // This is a bit of a hack because TargetLibraryInfo is a function pass. 845 // The DFSan pass would need to be refactored to be function pass oriented 846 // (like MSan is) in order to fit together nicely with TargetLibraryInfo. 847 // We need this check to prevent them from being instrumented, or wrapped. 848 // Match on name and number of arguments. 849 if (!F.hasName() || F.isVarArg()) 850 return false; 851 switch (F.arg_size()) { 852 case 4: 853 return F.getName() == "__atomic_load" || F.getName() == "__atomic_store"; 854 case 5: 855 return F.getName() == "__atomic_exchange"; 856 case 6: 857 return F.getName() == "__atomic_compare_exchange"; 858 default: 859 return false; 860 } 861 } 862 863 } // end anonymous namespace 864 865 DataFlowSanitizer::DataFlowSanitizer( 866 const std::vector<std::string> &ABIListFiles) { 867 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 868 llvm::append_range(AllABIListFiles, ClABIListFiles); 869 // FIXME: should we propagate vfs::FileSystem to this constructor? 870 ABIList.set( 871 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 872 873 for (StringRef v : ClCombineTaintLookupTables) 874 CombineTaintLookupTableNames.insert(v); 875 } 876 877 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 878 SmallVector<Type *, 4> ArgTypes; 879 880 // Some parameters of the custom function being constructed are 881 // parameters of T. Record the mapping from parameters of T to 882 // parameters of the custom function, so that parameter attributes 883 // at call sites can be updated. 884 std::vector<unsigned> ArgumentIndexMapping; 885 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 886 Type *ParamType = T->getParamType(I); 887 ArgumentIndexMapping.push_back(ArgTypes.size()); 888 ArgTypes.push_back(ParamType); 889 } 890 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 891 ArgTypes.push_back(PrimitiveShadowTy); 892 if (T->isVarArg()) 893 ArgTypes.push_back(PrimitiveShadowPtrTy); 894 Type *RetType = T->getReturnType(); 895 if (!RetType->isVoidTy()) 896 ArgTypes.push_back(PrimitiveShadowPtrTy); 897 898 if (shouldTrackOrigins()) { 899 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 900 ArgTypes.push_back(OriginTy); 901 if (T->isVarArg()) 902 ArgTypes.push_back(OriginPtrTy); 903 if (!RetType->isVoidTy()) 904 ArgTypes.push_back(OriginPtrTy); 905 } 906 907 return TransformedFunction( 908 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 909 ArgumentIndexMapping); 910 } 911 912 bool DataFlowSanitizer::isZeroShadow(Value *V) { 913 Type *T = V->getType(); 914 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 915 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 916 return CI->isZero(); 917 return false; 918 } 919 920 return isa<ConstantAggregateZero>(V); 921 } 922 923 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 924 uint64_t ShadowSize = Size * ShadowWidthBytes; 925 return ShadowSize % 8 == 0 || ShadowSize == 4; 926 } 927 928 bool DataFlowSanitizer::shouldTrackOrigins() { 929 static const bool ShouldTrackOrigins = ClTrackOrigins; 930 return ShouldTrackOrigins; 931 } 932 933 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 934 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 935 return ZeroPrimitiveShadow; 936 Type *ShadowTy = getShadowTy(OrigTy); 937 return ConstantAggregateZero::get(ShadowTy); 938 } 939 940 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 941 return getZeroShadow(V->getType()); 942 } 943 944 static Value *expandFromPrimitiveShadowRecursive( 945 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 946 Value *PrimitiveShadow, IRBuilder<> &IRB) { 947 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 948 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 949 950 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 951 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 952 Indices.push_back(Idx); 953 Shadow = expandFromPrimitiveShadowRecursive( 954 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 955 Indices.pop_back(); 956 } 957 return Shadow; 958 } 959 960 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 961 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 962 Indices.push_back(Idx); 963 Shadow = expandFromPrimitiveShadowRecursive( 964 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 965 Indices.pop_back(); 966 } 967 return Shadow; 968 } 969 llvm_unreachable("Unexpected shadow type"); 970 } 971 972 bool DFSanFunction::shouldInstrumentWithCall() { 973 return ClInstrumentWithCallThreshold >= 0 && 974 NumOriginStores >= ClInstrumentWithCallThreshold; 975 } 976 977 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 978 Instruction *Pos) { 979 Type *ShadowTy = DFS.getShadowTy(T); 980 981 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 982 return PrimitiveShadow; 983 984 if (DFS.isZeroShadow(PrimitiveShadow)) 985 return DFS.getZeroShadow(ShadowTy); 986 987 IRBuilder<> IRB(Pos); 988 SmallVector<unsigned, 4> Indices; 989 Value *Shadow = UndefValue::get(ShadowTy); 990 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 991 PrimitiveShadow, IRB); 992 993 // Caches the primitive shadow value that built the shadow value. 994 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 995 return Shadow; 996 } 997 998 template <class AggregateType> 999 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 1000 IRBuilder<> &IRB) { 1001 if (!AT->getNumElements()) 1002 return DFS.ZeroPrimitiveShadow; 1003 1004 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1005 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 1006 1007 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 1008 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1009 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 1010 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1011 } 1012 return Aggregator; 1013 } 1014 1015 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 1016 IRBuilder<> &IRB) { 1017 Type *ShadowTy = Shadow->getType(); 1018 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 1019 return Shadow; 1020 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 1021 return collapseAggregateShadow<>(AT, Shadow, IRB); 1022 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 1023 return collapseAggregateShadow<>(ST, Shadow, IRB); 1024 llvm_unreachable("Unexpected shadow type"); 1025 } 1026 1027 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 1028 Instruction *Pos) { 1029 Type *ShadowTy = Shadow->getType(); 1030 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 1031 return Shadow; 1032 1033 // Checks if the cached collapsed shadow value dominates Pos. 1034 Value *&CS = CachedCollapsedShadows[Shadow]; 1035 if (CS && DT.dominates(CS, Pos)) 1036 return CS; 1037 1038 IRBuilder<> IRB(Pos); 1039 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 1040 // Caches the converted primitive shadow value. 1041 CS = PrimitiveShadow; 1042 return PrimitiveShadow; 1043 } 1044 1045 void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I, 1046 Value *Condition) { 1047 if (!ClConditionalCallbacks) { 1048 return; 1049 } 1050 IRBuilder<> IRB(&I); 1051 Value *CondShadow = getShadow(Condition); 1052 CallInst *CI; 1053 if (DFS.shouldTrackOrigins()) { 1054 Value *CondOrigin = getOrigin(Condition); 1055 CI = IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn, 1056 {CondShadow, CondOrigin}); 1057 } else { 1058 CI = IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow}); 1059 } 1060 CI->addParamAttr(0, Attribute::ZExt); 1061 } 1062 1063 void DFSanFunction::addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, 1064 Instruction &I, 1065 Value *Data) { 1066 if (!ClReachesFunctionCallbacks) { 1067 return; 1068 } 1069 const DebugLoc &dbgloc = I.getDebugLoc(); 1070 Value *DataShadow = collapseToPrimitiveShadow(getShadow(Data), IRB); 1071 ConstantInt *CILine; 1072 llvm::Value *FilePathPtr; 1073 1074 if (dbgloc.get() == nullptr) { 1075 CILine = llvm::ConstantInt::get(I.getContext(), llvm::APInt(32, 0)); 1076 FilePathPtr = IRB.CreateGlobalStringPtr( 1077 I.getFunction()->getParent()->getSourceFileName()); 1078 } else { 1079 CILine = llvm::ConstantInt::get(I.getContext(), 1080 llvm::APInt(32, dbgloc.getLine())); 1081 FilePathPtr = 1082 IRB.CreateGlobalStringPtr(dbgloc->getFilename()); 1083 } 1084 1085 llvm::Value *FunctionNamePtr = 1086 IRB.CreateGlobalStringPtr(I.getFunction()->getName()); 1087 1088 CallInst *CB; 1089 std::vector<Value *> args; 1090 1091 if (DFS.shouldTrackOrigins()) { 1092 Value *DataOrigin = getOrigin(Data); 1093 args = { DataShadow, DataOrigin, FilePathPtr, CILine, FunctionNamePtr }; 1094 CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackOriginFn, args); 1095 } else { 1096 args = { DataShadow, FilePathPtr, CILine, FunctionNamePtr }; 1097 CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackFn, args); 1098 } 1099 CB->addParamAttr(0, Attribute::ZExt); 1100 CB->setDebugLoc(dbgloc); 1101 } 1102 1103 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 1104 if (!OrigTy->isSized()) 1105 return PrimitiveShadowTy; 1106 if (isa<IntegerType>(OrigTy)) 1107 return PrimitiveShadowTy; 1108 if (isa<VectorType>(OrigTy)) 1109 return PrimitiveShadowTy; 1110 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 1111 return ArrayType::get(getShadowTy(AT->getElementType()), 1112 AT->getNumElements()); 1113 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1114 SmallVector<Type *, 4> Elements; 1115 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 1116 Elements.push_back(getShadowTy(ST->getElementType(I))); 1117 return StructType::get(*Ctx, Elements); 1118 } 1119 return PrimitiveShadowTy; 1120 } 1121 1122 Type *DataFlowSanitizer::getShadowTy(Value *V) { 1123 return getShadowTy(V->getType()); 1124 } 1125 1126 bool DataFlowSanitizer::initializeModule(Module &M) { 1127 Triple TargetTriple(M.getTargetTriple()); 1128 const DataLayout &DL = M.getDataLayout(); 1129 1130 if (TargetTriple.getOS() != Triple::Linux) 1131 report_fatal_error("unsupported operating system"); 1132 switch (TargetTriple.getArch()) { 1133 case Triple::aarch64: 1134 MapParams = &Linux_AArch64_MemoryMapParams; 1135 break; 1136 case Triple::x86_64: 1137 MapParams = &Linux_X86_64_MemoryMapParams; 1138 break; 1139 case Triple::loongarch64: 1140 MapParams = &Linux_LoongArch64_MemoryMapParams; 1141 break; 1142 default: 1143 report_fatal_error("unsupported architecture"); 1144 } 1145 1146 Mod = &M; 1147 Ctx = &M.getContext(); 1148 Int8Ptr = PointerType::getUnqual(*Ctx); 1149 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1150 OriginPtrTy = PointerType::getUnqual(OriginTy); 1151 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1152 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1153 IntptrTy = DL.getIntPtrType(*Ctx); 1154 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1155 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1156 1157 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1158 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1159 /*isVarArg=*/false); 1160 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1161 DFSanLoadLabelAndOriginFnTy = 1162 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1163 /*isVarArg=*/false); 1164 DFSanUnimplementedFnTy = FunctionType::get( 1165 Type::getVoidTy(*Ctx), PointerType::getUnqual(*Ctx), /*isVarArg=*/false); 1166 Type *DFSanWrapperExternWeakNullArgs[2] = {Int8Ptr, Int8Ptr}; 1167 DFSanWrapperExternWeakNullFnTy = 1168 FunctionType::get(Type::getVoidTy(*Ctx), DFSanWrapperExternWeakNullArgs, 1169 /*isVarArg=*/false); 1170 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1171 PointerType::getUnqual(*Ctx), IntptrTy}; 1172 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1173 DFSanSetLabelArgs, /*isVarArg=*/false); 1174 DFSanNonzeroLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), std::nullopt, 1175 /*isVarArg=*/false); 1176 DFSanVarargWrapperFnTy = FunctionType::get( 1177 Type::getVoidTy(*Ctx), PointerType::getUnqual(*Ctx), /*isVarArg=*/false); 1178 DFSanConditionalCallbackFnTy = 1179 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1180 /*isVarArg=*/false); 1181 Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy}; 1182 DFSanConditionalCallbackOriginFnTy = FunctionType::get( 1183 Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs, 1184 /*isVarArg=*/false); 1185 Type *DFSanReachesFunctionCallbackArgs[4] = {PrimitiveShadowTy, Int8Ptr, 1186 OriginTy, Int8Ptr}; 1187 DFSanReachesFunctionCallbackFnTy = 1188 FunctionType::get(Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackArgs, 1189 /*isVarArg=*/false); 1190 Type *DFSanReachesFunctionCallbackOriginArgs[5] = { 1191 PrimitiveShadowTy, OriginTy, Int8Ptr, OriginTy, Int8Ptr}; 1192 DFSanReachesFunctionCallbackOriginFnTy = FunctionType::get( 1193 Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackOriginArgs, 1194 /*isVarArg=*/false); 1195 DFSanCmpCallbackFnTy = 1196 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1197 /*isVarArg=*/false); 1198 DFSanChainOriginFnTy = 1199 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1200 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1201 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1202 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1203 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1204 Int8Ptr, IntptrTy, OriginTy}; 1205 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1206 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1207 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1208 DFSanMemOriginTransferFnTy = FunctionType::get( 1209 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1210 Type *DFSanMemShadowOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1211 DFSanMemShadowOriginTransferFnTy = 1212 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemShadowOriginTransferArgs, 1213 /*isVarArg=*/false); 1214 Type *DFSanMemShadowOriginConditionalExchangeArgs[5] = { 1215 IntegerType::get(*Ctx, 8), Int8Ptr, Int8Ptr, Int8Ptr, IntptrTy}; 1216 DFSanMemShadowOriginConditionalExchangeFnTy = FunctionType::get( 1217 Type::getVoidTy(*Ctx), DFSanMemShadowOriginConditionalExchangeArgs, 1218 /*isVarArg=*/false); 1219 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1220 DFSanLoadStoreCallbackFnTy = 1221 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1222 /*isVarArg=*/false); 1223 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1224 DFSanMemTransferCallbackFnTy = 1225 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1226 /*isVarArg=*/false); 1227 1228 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1229 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1230 return true; 1231 } 1232 1233 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1234 return !ABIList.isIn(*F, "uninstrumented"); 1235 } 1236 1237 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1238 return !ABIList.isIn(*GA, "uninstrumented"); 1239 } 1240 1241 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { 1242 return ABIList.isIn(*F, "force_zero_labels"); 1243 } 1244 1245 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1246 if (ABIList.isIn(*F, "functional")) 1247 return WK_Functional; 1248 if (ABIList.isIn(*F, "discard")) 1249 return WK_Discard; 1250 if (ABIList.isIn(*F, "custom")) 1251 return WK_Custom; 1252 1253 return WK_Warning; 1254 } 1255 1256 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { 1257 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan"; 1258 GV->setName(GVName + Suffix); 1259 1260 // Try to change the name of the function in module inline asm. We only do 1261 // this for specific asm directives, currently only ".symver", to try to avoid 1262 // corrupting asm which happens to contain the symbol name as a substring. 1263 // Note that the substitution for .symver assumes that the versioned symbol 1264 // also has an instrumented name. 1265 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1266 std::string SearchStr = ".symver " + GVName + ","; 1267 size_t Pos = Asm.find(SearchStr); 1268 if (Pos != std::string::npos) { 1269 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ","); 1270 Pos = Asm.find('@'); 1271 1272 if (Pos == std::string::npos) 1273 report_fatal_error(Twine("unsupported .symver: ", Asm)); 1274 1275 Asm.replace(Pos, 1, Suffix + "@"); 1276 GV->getParent()->setModuleInlineAsm(Asm); 1277 } 1278 } 1279 1280 void DataFlowSanitizer::buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, 1281 Function *F) { 1282 // If the function we are wrapping was ExternWeak, it may be null. 1283 // The original code before calling this wrapper may have checked for null, 1284 // but replacing with a known-to-not-be-null wrapper can break this check. 1285 // When replacing uses of the extern weak function with the wrapper we try 1286 // to avoid replacing uses in conditionals, but this is not perfect. 1287 // In the case where we fail, and accidentally optimize out a null check 1288 // for a extern weak function, add a check here to help identify the issue. 1289 if (GlobalValue::isExternalWeakLinkage(F->getLinkage())) { 1290 std::vector<Value *> Args; 1291 Args.push_back(F); 1292 Args.push_back(IRB.CreateGlobalStringPtr(F->getName())); 1293 IRB.CreateCall(DFSanWrapperExternWeakNullFn, Args); 1294 } 1295 } 1296 1297 Function * 1298 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1299 GlobalValue::LinkageTypes NewFLink, 1300 FunctionType *NewFT) { 1301 FunctionType *FT = F->getFunctionType(); 1302 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1303 NewFName, F->getParent()); 1304 NewF->copyAttributesFrom(F); 1305 NewF->removeRetAttrs( 1306 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1307 1308 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1309 if (F->isVarArg()) { 1310 NewF->removeFnAttr("split-stack"); 1311 CallInst::Create(DFSanVarargWrapperFn, 1312 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1313 BB); 1314 new UnreachableInst(*Ctx, BB); 1315 } else { 1316 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1317 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1318 1319 CallInst *CI = CallInst::Create(F, Args, "", BB); 1320 if (FT->getReturnType()->isVoidTy()) 1321 ReturnInst::Create(*Ctx, BB); 1322 else 1323 ReturnInst::Create(*Ctx, CI, BB); 1324 } 1325 1326 return NewF; 1327 } 1328 1329 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1330 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1331 LLVMContext &C = M.getContext(); 1332 { 1333 AttributeList AL; 1334 AL = AL.addFnAttribute(C, Attribute::NoUnwind); 1335 AL = AL.addFnAttribute( 1336 C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly())); 1337 AL = AL.addRetAttribute(C, Attribute::ZExt); 1338 DFSanUnionLoadFn = 1339 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1340 } 1341 { 1342 AttributeList AL; 1343 AL = AL.addFnAttribute(C, Attribute::NoUnwind); 1344 AL = AL.addFnAttribute( 1345 C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly())); 1346 AL = AL.addRetAttribute(C, Attribute::ZExt); 1347 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1348 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1349 } 1350 DFSanUnimplementedFn = 1351 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1352 DFSanWrapperExternWeakNullFn = Mod->getOrInsertFunction( 1353 "__dfsan_wrapper_extern_weak_null", DFSanWrapperExternWeakNullFnTy); 1354 { 1355 AttributeList AL; 1356 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1357 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1358 DFSanSetLabelFn = 1359 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1360 } 1361 DFSanNonzeroLabelFn = 1362 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1363 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1364 DFSanVarargWrapperFnTy); 1365 { 1366 AttributeList AL; 1367 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1368 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1369 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1370 DFSanChainOriginFnTy, AL); 1371 } 1372 { 1373 AttributeList AL; 1374 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1375 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1376 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1377 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1378 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1379 } 1380 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1381 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1382 1383 DFSanMemShadowOriginTransferFn = Mod->getOrInsertFunction( 1384 "__dfsan_mem_shadow_origin_transfer", DFSanMemShadowOriginTransferFnTy); 1385 1386 DFSanMemShadowOriginConditionalExchangeFn = 1387 Mod->getOrInsertFunction("__dfsan_mem_shadow_origin_conditional_exchange", 1388 DFSanMemShadowOriginConditionalExchangeFnTy); 1389 1390 { 1391 AttributeList AL; 1392 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1393 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1394 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1395 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1396 } 1397 1398 DFSanRuntimeFunctions.insert( 1399 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1400 DFSanRuntimeFunctions.insert( 1401 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1402 DFSanRuntimeFunctions.insert( 1403 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1404 DFSanRuntimeFunctions.insert( 1405 DFSanWrapperExternWeakNullFn.getCallee()->stripPointerCasts()); 1406 DFSanRuntimeFunctions.insert( 1407 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1408 DFSanRuntimeFunctions.insert( 1409 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1410 DFSanRuntimeFunctions.insert( 1411 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1412 DFSanRuntimeFunctions.insert( 1413 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1414 DFSanRuntimeFunctions.insert( 1415 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1416 DFSanRuntimeFunctions.insert( 1417 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1418 DFSanRuntimeFunctions.insert( 1419 DFSanConditionalCallbackFn.getCallee()->stripPointerCasts()); 1420 DFSanRuntimeFunctions.insert( 1421 DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts()); 1422 DFSanRuntimeFunctions.insert( 1423 DFSanReachesFunctionCallbackFn.getCallee()->stripPointerCasts()); 1424 DFSanRuntimeFunctions.insert( 1425 DFSanReachesFunctionCallbackOriginFn.getCallee()->stripPointerCasts()); 1426 DFSanRuntimeFunctions.insert( 1427 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1428 DFSanRuntimeFunctions.insert( 1429 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1430 DFSanRuntimeFunctions.insert( 1431 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1432 DFSanRuntimeFunctions.insert( 1433 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1434 DFSanRuntimeFunctions.insert( 1435 DFSanMemShadowOriginTransferFn.getCallee()->stripPointerCasts()); 1436 DFSanRuntimeFunctions.insert( 1437 DFSanMemShadowOriginConditionalExchangeFn.getCallee() 1438 ->stripPointerCasts()); 1439 DFSanRuntimeFunctions.insert( 1440 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1441 } 1442 1443 // Initializes event callback functions and declare them in the module 1444 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1445 { 1446 AttributeList AL; 1447 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1448 DFSanLoadCallbackFn = Mod->getOrInsertFunction( 1449 "__dfsan_load_callback", DFSanLoadStoreCallbackFnTy, AL); 1450 } 1451 { 1452 AttributeList AL; 1453 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1454 DFSanStoreCallbackFn = Mod->getOrInsertFunction( 1455 "__dfsan_store_callback", DFSanLoadStoreCallbackFnTy, AL); 1456 } 1457 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1458 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1459 { 1460 AttributeList AL; 1461 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1462 DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback", 1463 DFSanCmpCallbackFnTy, AL); 1464 } 1465 { 1466 AttributeList AL; 1467 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1468 DFSanConditionalCallbackFn = Mod->getOrInsertFunction( 1469 "__dfsan_conditional_callback", DFSanConditionalCallbackFnTy, AL); 1470 } 1471 { 1472 AttributeList AL; 1473 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1474 DFSanConditionalCallbackOriginFn = 1475 Mod->getOrInsertFunction("__dfsan_conditional_callback_origin", 1476 DFSanConditionalCallbackOriginFnTy, AL); 1477 } 1478 { 1479 AttributeList AL; 1480 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1481 DFSanReachesFunctionCallbackFn = 1482 Mod->getOrInsertFunction("__dfsan_reaches_function_callback", 1483 DFSanReachesFunctionCallbackFnTy, AL); 1484 } 1485 { 1486 AttributeList AL; 1487 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1488 DFSanReachesFunctionCallbackOriginFn = 1489 Mod->getOrInsertFunction("__dfsan_reaches_function_callback_origin", 1490 DFSanReachesFunctionCallbackOriginFnTy, AL); 1491 } 1492 } 1493 1494 bool DataFlowSanitizer::runImpl( 1495 Module &M, llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1496 initializeModule(M); 1497 1498 if (ABIList.isIn(M, "skip")) 1499 return false; 1500 1501 const unsigned InitialGlobalSize = M.global_size(); 1502 const unsigned InitialModuleSize = M.size(); 1503 1504 bool Changed = false; 1505 1506 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1507 Type *Ty) -> Constant * { 1508 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1509 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1510 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1511 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1512 } 1513 return C; 1514 }; 1515 1516 // These globals must be kept in sync with the ones in dfsan.cpp. 1517 ArgTLS = 1518 GetOrInsertGlobal("__dfsan_arg_tls", 1519 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1520 RetvalTLS = GetOrInsertGlobal( 1521 "__dfsan_retval_tls", 1522 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1523 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1524 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1525 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1526 1527 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1528 Changed = true; 1529 return new GlobalVariable( 1530 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1531 ConstantInt::getSigned(OriginTy, 1532 shouldTrackOrigins() ? ClTrackOrigins : 0), 1533 "__dfsan_track_origins"); 1534 }); 1535 1536 initializeCallbackFunctions(M); 1537 initializeRuntimeFunctions(M); 1538 1539 std::vector<Function *> FnsToInstrument; 1540 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1541 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; 1542 SmallPtrSet<Constant *, 1> PersonalityFns; 1543 for (Function &F : M) 1544 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F) && 1545 !LibAtomicFunction(F)) { 1546 FnsToInstrument.push_back(&F); 1547 if (F.hasPersonalityFn()) 1548 PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts()); 1549 } 1550 1551 if (ClIgnorePersonalityRoutine) { 1552 for (auto *C : PersonalityFns) { 1553 assert(isa<Function>(C) && "Personality routine is not a function!"); 1554 Function *F = cast<Function>(C); 1555 if (!isInstrumented(F)) 1556 llvm::erase(FnsToInstrument, F); 1557 } 1558 } 1559 1560 // Give function aliases prefixes when necessary, and build wrappers where the 1561 // instrumentedness is inconsistent. 1562 for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) { 1563 // Don't stop on weak. We assume people aren't playing games with the 1564 // instrumentedness of overridden weak aliases. 1565 auto *F = dyn_cast<Function>(GA.getAliaseeObject()); 1566 if (!F) 1567 continue; 1568 1569 bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F); 1570 if (GAInst && FInst) { 1571 addGlobalNameSuffix(&GA); 1572 } else if (GAInst != FInst) { 1573 // Non-instrumented alias of an instrumented function, or vice versa. 1574 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1575 // below will take care of instrumenting it. 1576 Function *NewF = 1577 buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType()); 1578 GA.replaceAllUsesWith(NewF); 1579 NewF->takeName(&GA); 1580 GA.eraseFromParent(); 1581 FnsToInstrument.push_back(NewF); 1582 } 1583 } 1584 1585 // TODO: This could be more precise. 1586 ReadOnlyNoneAttrs.addAttribute(Attribute::Memory); 1587 1588 // First, change the ABI of every function in the module. ABI-listed 1589 // functions keep their original ABI and get a wrapper function. 1590 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1591 FE = FnsToInstrument.end(); 1592 FI != FE; ++FI) { 1593 Function &F = **FI; 1594 FunctionType *FT = F.getFunctionType(); 1595 1596 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1597 FT->getReturnType()->isVoidTy()); 1598 1599 if (isInstrumented(&F)) { 1600 if (isForceZeroLabels(&F)) 1601 FnsWithForceZeroLabel.insert(&F); 1602 1603 // Instrumented functions get a '.dfsan' suffix. This allows us to more 1604 // easily identify cases of mismatching ABIs. This naming scheme is 1605 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. 1606 addGlobalNameSuffix(&F); 1607 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1608 // Build a wrapper function for F. The wrapper simply calls F, and is 1609 // added to FnsToInstrument so that any instrumentation according to its 1610 // WrapperKind is done in the second pass below. 1611 1612 // If the function being wrapped has local linkage, then preserve the 1613 // function's linkage in the wrapper function. 1614 GlobalValue::LinkageTypes WrapperLinkage = 1615 F.hasLocalLinkage() ? F.getLinkage() 1616 : GlobalValue::LinkOnceODRLinkage; 1617 1618 Function *NewF = buildWrapperFunction( 1619 &F, 1620 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1621 std::string(F.getName()), 1622 WrapperLinkage, FT); 1623 NewF->removeFnAttrs(ReadOnlyNoneAttrs); 1624 1625 // Extern weak functions can sometimes be null at execution time. 1626 // Code will sometimes check if an extern weak function is null. 1627 // This could look something like: 1628 // declare extern_weak i8 @my_func(i8) 1629 // br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func, 1630 // label %avoid_my_func 1631 // The @"dfsw$my_func" wrapper is never null, so if we replace this use 1632 // in the comparison, the icmp will simplify to false and we have 1633 // accidentally optimized away a null check that is necessary. 1634 // This can lead to a crash when the null extern_weak my_func is called. 1635 // 1636 // To prevent (the most common pattern of) this problem, 1637 // do not replace uses in comparisons with the wrapper. 1638 // We definitely want to replace uses in call instructions. 1639 // Other uses (e.g. store the function address somewhere) might be 1640 // called or compared or both - this case may not be handled correctly. 1641 // We will default to replacing with wrapper in cases we are unsure. 1642 auto IsNotCmpUse = [](Use &U) -> bool { 1643 User *Usr = U.getUser(); 1644 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) { 1645 // This is the most common case for icmp ne null 1646 if (CE->getOpcode() == Instruction::ICmp) { 1647 return false; 1648 } 1649 } 1650 if (Instruction *I = dyn_cast<Instruction>(Usr)) { 1651 if (I->getOpcode() == Instruction::ICmp) { 1652 return false; 1653 } 1654 } 1655 return true; 1656 }; 1657 F.replaceUsesWithIf(NewF, IsNotCmpUse); 1658 1659 UnwrappedFnMap[NewF] = &F; 1660 *FI = NewF; 1661 1662 if (!F.isDeclaration()) { 1663 // This function is probably defining an interposition of an 1664 // uninstrumented function and hence needs to keep the original ABI. 1665 // But any functions it may call need to use the instrumented ABI, so 1666 // we instrument it in a mode which preserves the original ABI. 1667 FnsWithNativeABI.insert(&F); 1668 1669 // This code needs to rebuild the iterators, as they may be invalidated 1670 // by the push_back, taking care that the new range does not include 1671 // any functions added by this code. 1672 size_t N = FI - FnsToInstrument.begin(), 1673 Count = FE - FnsToInstrument.begin(); 1674 FnsToInstrument.push_back(&F); 1675 FI = FnsToInstrument.begin() + N; 1676 FE = FnsToInstrument.begin() + Count; 1677 } 1678 // Hopefully, nobody will try to indirectly call a vararg 1679 // function... yet. 1680 } else if (FT->isVarArg()) { 1681 UnwrappedFnMap[&F] = &F; 1682 *FI = nullptr; 1683 } 1684 } 1685 1686 for (Function *F : FnsToInstrument) { 1687 if (!F || F->isDeclaration()) 1688 continue; 1689 1690 removeUnreachableBlocks(*F); 1691 1692 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F), 1693 FnsWithForceZeroLabel.count(F), GetTLI(*F)); 1694 1695 if (ClReachesFunctionCallbacks) { 1696 // Add callback for arguments reaching this function. 1697 for (auto &FArg : F->args()) { 1698 Instruction *Next = &F->getEntryBlock().front(); 1699 Value *FArgShadow = DFSF.getShadow(&FArg); 1700 if (isZeroShadow(FArgShadow)) 1701 continue; 1702 if (Instruction *FArgShadowInst = dyn_cast<Instruction>(FArgShadow)) { 1703 Next = FArgShadowInst->getNextNode(); 1704 } 1705 if (shouldTrackOrigins()) { 1706 if (Instruction *Origin = 1707 dyn_cast<Instruction>(DFSF.getOrigin(&FArg))) { 1708 // Ensure IRB insertion point is after loads for shadow and origin. 1709 Instruction *OriginNext = Origin->getNextNode(); 1710 if (Next->comesBefore(OriginNext)) { 1711 Next = OriginNext; 1712 } 1713 } 1714 } 1715 IRBuilder<> IRB(Next); 1716 DFSF.addReachesFunctionCallbacksIfEnabled(IRB, *Next, &FArg); 1717 } 1718 } 1719 1720 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1721 // Build a copy of the list before iterating over it. 1722 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1723 1724 for (BasicBlock *BB : BBList) { 1725 Instruction *Inst = &BB->front(); 1726 while (true) { 1727 // DFSanVisitor may split the current basic block, changing the current 1728 // instruction's next pointer and moving the next instruction to the 1729 // tail block from which we should continue. 1730 Instruction *Next = Inst->getNextNode(); 1731 // DFSanVisitor may delete Inst, so keep track of whether it was a 1732 // terminator. 1733 bool IsTerminator = Inst->isTerminator(); 1734 if (!DFSF.SkipInsts.count(Inst)) 1735 DFSanVisitor(DFSF).visit(Inst); 1736 if (IsTerminator) 1737 break; 1738 Inst = Next; 1739 } 1740 } 1741 1742 // We will not necessarily be able to compute the shadow for every phi node 1743 // until we have visited every block. Therefore, the code that handles phi 1744 // nodes adds them to the PHIFixups list so that they can be properly 1745 // handled here. 1746 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1747 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1748 ++Val) { 1749 P.ShadowPhi->setIncomingValue( 1750 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1751 if (P.OriginPhi) 1752 P.OriginPhi->setIncomingValue( 1753 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1754 } 1755 } 1756 1757 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1758 // places (i.e. instructions in basic blocks we haven't even begun visiting 1759 // yet). To make our life easier, do this work in a pass after the main 1760 // instrumentation. 1761 if (ClDebugNonzeroLabels) { 1762 for (Value *V : DFSF.NonZeroChecks) { 1763 Instruction *Pos; 1764 if (Instruction *I = dyn_cast<Instruction>(V)) 1765 Pos = I->getNextNode(); 1766 else 1767 Pos = &DFSF.F->getEntryBlock().front(); 1768 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1769 Pos = Pos->getNextNode(); 1770 IRBuilder<> IRB(Pos); 1771 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1772 Value *Ne = 1773 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1774 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1775 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1776 IRBuilder<> ThenIRB(BI); 1777 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1778 } 1779 } 1780 } 1781 1782 return Changed || !FnsToInstrument.empty() || 1783 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1784 } 1785 1786 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1787 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1788 if (ArgOffset) 1789 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1790 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1791 "_dfsarg"); 1792 } 1793 1794 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1795 return IRB.CreatePointerCast( 1796 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1797 } 1798 1799 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1800 1801 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1802 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1803 "_dfsarg_o"); 1804 } 1805 1806 Value *DFSanFunction::getOrigin(Value *V) { 1807 assert(DFS.shouldTrackOrigins()); 1808 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1809 return DFS.ZeroOrigin; 1810 Value *&Origin = ValOriginMap[V]; 1811 if (!Origin) { 1812 if (Argument *A = dyn_cast<Argument>(V)) { 1813 if (IsNativeABI) 1814 return DFS.ZeroOrigin; 1815 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1816 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1817 IRBuilder<> IRB(ArgOriginTLSPos); 1818 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1819 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1820 } else { 1821 // Overflow 1822 Origin = DFS.ZeroOrigin; 1823 } 1824 } else { 1825 Origin = DFS.ZeroOrigin; 1826 } 1827 } 1828 return Origin; 1829 } 1830 1831 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1832 if (!DFS.shouldTrackOrigins()) 1833 return; 1834 assert(!ValOriginMap.count(I)); 1835 assert(Origin->getType() == DFS.OriginTy); 1836 ValOriginMap[I] = Origin; 1837 } 1838 1839 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1840 unsigned ArgOffset = 0; 1841 const DataLayout &DL = F->getParent()->getDataLayout(); 1842 for (auto &FArg : F->args()) { 1843 if (!FArg.getType()->isSized()) { 1844 if (A == &FArg) 1845 break; 1846 continue; 1847 } 1848 1849 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1850 if (A != &FArg) { 1851 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1852 if (ArgOffset > ArgTLSSize) 1853 break; // ArgTLS overflows, uses a zero shadow. 1854 continue; 1855 } 1856 1857 if (ArgOffset + Size > ArgTLSSize) 1858 break; // ArgTLS overflows, uses a zero shadow. 1859 1860 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1861 IRBuilder<> IRB(ArgTLSPos); 1862 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1863 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1864 ShadowTLSAlignment); 1865 } 1866 1867 return DFS.getZeroShadow(A); 1868 } 1869 1870 Value *DFSanFunction::getShadow(Value *V) { 1871 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1872 return DFS.getZeroShadow(V); 1873 if (IsForceZeroLabels) 1874 return DFS.getZeroShadow(V); 1875 Value *&Shadow = ValShadowMap[V]; 1876 if (!Shadow) { 1877 if (Argument *A = dyn_cast<Argument>(V)) { 1878 if (IsNativeABI) 1879 return DFS.getZeroShadow(V); 1880 Shadow = getShadowForTLSArgument(A); 1881 NonZeroChecks.push_back(Shadow); 1882 } else { 1883 Shadow = DFS.getZeroShadow(V); 1884 } 1885 } 1886 return Shadow; 1887 } 1888 1889 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1890 assert(!ValShadowMap.count(I)); 1891 ValShadowMap[I] = Shadow; 1892 } 1893 1894 /// Compute the integer shadow offset that corresponds to a given 1895 /// application address. 1896 /// 1897 /// Offset = (Addr & ~AndMask) ^ XorMask 1898 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1899 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1900 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1901 1902 uint64_t AndMask = MapParams->AndMask; 1903 if (AndMask) 1904 OffsetLong = 1905 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask)); 1906 1907 uint64_t XorMask = MapParams->XorMask; 1908 if (XorMask) 1909 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask)); 1910 return OffsetLong; 1911 } 1912 1913 std::pair<Value *, Value *> 1914 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1915 Instruction *Pos) { 1916 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL 1917 IRBuilder<> IRB(Pos); 1918 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1919 Value *ShadowLong = ShadowOffset; 1920 uint64_t ShadowBase = MapParams->ShadowBase; 1921 if (ShadowBase != 0) { 1922 ShadowLong = 1923 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase)); 1924 } 1925 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1926 Value *ShadowPtr = 1927 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1928 Value *OriginPtr = nullptr; 1929 if (shouldTrackOrigins()) { 1930 Value *OriginLong = ShadowOffset; 1931 uint64_t OriginBase = MapParams->OriginBase; 1932 if (OriginBase != 0) 1933 OriginLong = 1934 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase)); 1935 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1936 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1937 // So Mask is unnecessary. 1938 if (Alignment < MinOriginAlignment) { 1939 uint64_t Mask = MinOriginAlignment.value() - 1; 1940 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1941 } 1942 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1943 } 1944 return std::make_pair(ShadowPtr, OriginPtr); 1945 } 1946 1947 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, 1948 Value *ShadowOffset) { 1949 IRBuilder<> IRB(Pos); 1950 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1951 } 1952 1953 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1954 IRBuilder<> IRB(Pos); 1955 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1956 return getShadowAddress(Addr, Pos, ShadowOffset); 1957 } 1958 1959 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1960 Instruction *Pos) { 1961 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1962 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1963 } 1964 1965 // Generates IR to compute the union of the two given shadows, inserting it 1966 // before Pos. The combined value is with primitive type. 1967 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1968 if (DFS.isZeroShadow(V1)) 1969 return collapseToPrimitiveShadow(V2, Pos); 1970 if (DFS.isZeroShadow(V2)) 1971 return collapseToPrimitiveShadow(V1, Pos); 1972 if (V1 == V2) 1973 return collapseToPrimitiveShadow(V1, Pos); 1974 1975 auto V1Elems = ShadowElements.find(V1); 1976 auto V2Elems = ShadowElements.find(V2); 1977 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1978 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1979 V2Elems->second.begin(), V2Elems->second.end())) { 1980 return collapseToPrimitiveShadow(V1, Pos); 1981 } 1982 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1983 V1Elems->second.begin(), V1Elems->second.end())) { 1984 return collapseToPrimitiveShadow(V2, Pos); 1985 } 1986 } else if (V1Elems != ShadowElements.end()) { 1987 if (V1Elems->second.count(V2)) 1988 return collapseToPrimitiveShadow(V1, Pos); 1989 } else if (V2Elems != ShadowElements.end()) { 1990 if (V2Elems->second.count(V1)) 1991 return collapseToPrimitiveShadow(V2, Pos); 1992 } 1993 1994 auto Key = std::make_pair(V1, V2); 1995 if (V1 > V2) 1996 std::swap(Key.first, Key.second); 1997 CachedShadow &CCS = CachedShadows[Key]; 1998 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1999 return CCS.Shadow; 2000 2001 // Converts inputs shadows to shadows with primitive types. 2002 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 2003 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 2004 2005 IRBuilder<> IRB(Pos); 2006 CCS.Block = Pos->getParent(); 2007 CCS.Shadow = IRB.CreateOr(PV1, PV2); 2008 2009 std::set<Value *> UnionElems; 2010 if (V1Elems != ShadowElements.end()) { 2011 UnionElems = V1Elems->second; 2012 } else { 2013 UnionElems.insert(V1); 2014 } 2015 if (V2Elems != ShadowElements.end()) { 2016 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 2017 } else { 2018 UnionElems.insert(V2); 2019 } 2020 ShadowElements[CCS.Shadow] = std::move(UnionElems); 2021 2022 return CCS.Shadow; 2023 } 2024 2025 // A convenience function which folds the shadows of each of the operands 2026 // of the provided instruction Inst, inserting the IR before Inst. Returns 2027 // the computed union Value. 2028 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 2029 if (Inst->getNumOperands() == 0) 2030 return DFS.getZeroShadow(Inst); 2031 2032 Value *Shadow = getShadow(Inst->getOperand(0)); 2033 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 2034 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 2035 2036 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 2037 } 2038 2039 void DFSanVisitor::visitInstOperands(Instruction &I) { 2040 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 2041 DFSF.setShadow(&I, CombinedShadow); 2042 visitInstOperandOrigins(I); 2043 } 2044 2045 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 2046 const std::vector<Value *> &Origins, 2047 Instruction *Pos, ConstantInt *Zero) { 2048 assert(Shadows.size() == Origins.size()); 2049 size_t Size = Origins.size(); 2050 if (Size == 0) 2051 return DFS.ZeroOrigin; 2052 Value *Origin = nullptr; 2053 if (!Zero) 2054 Zero = DFS.ZeroPrimitiveShadow; 2055 for (size_t I = 0; I != Size; ++I) { 2056 Value *OpOrigin = Origins[I]; 2057 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 2058 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 2059 continue; 2060 if (!Origin) { 2061 Origin = OpOrigin; 2062 continue; 2063 } 2064 Value *OpShadow = Shadows[I]; 2065 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 2066 IRBuilder<> IRB(Pos); 2067 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 2068 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2069 } 2070 return Origin ? Origin : DFS.ZeroOrigin; 2071 } 2072 2073 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 2074 size_t Size = Inst->getNumOperands(); 2075 std::vector<Value *> Shadows(Size); 2076 std::vector<Value *> Origins(Size); 2077 for (unsigned I = 0; I != Size; ++I) { 2078 Shadows[I] = getShadow(Inst->getOperand(I)); 2079 Origins[I] = getOrigin(Inst->getOperand(I)); 2080 } 2081 return combineOrigins(Shadows, Origins, Inst); 2082 } 2083 2084 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 2085 if (!DFSF.DFS.shouldTrackOrigins()) 2086 return; 2087 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 2088 DFSF.setOrigin(&I, CombinedOrigin); 2089 } 2090 2091 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 2092 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 2093 return Align(Alignment.value() * DFS.ShadowWidthBytes); 2094 } 2095 2096 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 2097 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 2098 return Align(std::max(MinOriginAlignment, Alignment)); 2099 } 2100 2101 bool DFSanFunction::isLookupTableConstant(Value *P) { 2102 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts())) 2103 if (GV->isConstant() && GV->hasName()) 2104 return DFS.CombineTaintLookupTableNames.count(GV->getName()); 2105 2106 return false; 2107 } 2108 2109 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 2110 Align InstAlignment) { 2111 // When enabling tracking load instructions, we always use 2112 // __dfsan_load_label_and_origin to reduce code size. 2113 if (ClTrackOrigins == 2) 2114 return true; 2115 2116 assert(Size != 0); 2117 // * if Size == 1, it is sufficient to load its origin aligned at 4. 2118 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 2119 // load its origin aligned at 4. If not, although origins may be lost, it 2120 // should not happen very often. 2121 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 2122 // Size % 4 == 0, it is more efficient to load origins without callbacks. 2123 // * Otherwise we use __dfsan_load_label_and_origin. 2124 // This should ensure that common cases run efficiently. 2125 if (Size <= 2) 2126 return false; 2127 2128 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 2129 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 2130 } 2131 2132 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign, 2133 Value **OriginAddr) { 2134 IRBuilder<> IRB(Pos); 2135 *OriginAddr = 2136 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 2137 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 2138 } 2139 2140 std::pair<Value *, Value *> DFSanFunction::loadShadowFast( 2141 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 2142 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 2143 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2144 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 2145 2146 assert(Size >= 4 && "Not large enough load size for fast path!"); 2147 2148 // Used for origin tracking. 2149 std::vector<Value *> Shadows; 2150 std::vector<Value *> Origins; 2151 2152 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 2153 // but this function is only used in a subset of cases that make it possible 2154 // to optimize the instrumentation. 2155 // 2156 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 2157 // per byte) is either: 2158 // - a multiple of 8 (common) 2159 // - equal to 4 (only for load32) 2160 // 2161 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 2162 // other cases, we use a 64-bit integer to hold the wide shadow. 2163 Type *WideShadowTy = 2164 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 2165 2166 IRBuilder<> IRB(Pos); 2167 Value *CombinedWideShadow = 2168 IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign); 2169 2170 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 2171 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 2172 2173 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 2174 if (BytesPerWideShadow > 4) { 2175 assert(BytesPerWideShadow == 8); 2176 // The wide shadow relates to two origin pointers: one for the first four 2177 // application bytes, and one for the latest four. We use a left shift to 2178 // get just the shadow bytes that correspond to the first origin pointer, 2179 // and then the entire shadow for the second origin pointer (which will be 2180 // chosen by combineOrigins() iff the least-significant half of the wide 2181 // shadow was empty but the other half was not). 2182 Value *WideShadowLo = IRB.CreateShl( 2183 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 2184 Shadows.push_back(WideShadow); 2185 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 2186 2187 Shadows.push_back(WideShadowLo); 2188 Origins.push_back(Origin); 2189 } else { 2190 Shadows.push_back(WideShadow); 2191 Origins.push_back(Origin); 2192 } 2193 }; 2194 2195 if (ShouldTrackOrigins) 2196 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 2197 2198 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 2199 // then OR individual shadows within the combined WideShadow by binary ORing. 2200 // This is fewer instructions than ORing shadows individually, since it 2201 // needs logN shift/or instructions (N being the bytes of the combined wide 2202 // shadow). 2203 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 2204 ByteOfs += BytesPerWideShadow) { 2205 ShadowAddr = IRB.CreateGEP(WideShadowTy, ShadowAddr, 2206 ConstantInt::get(DFS.IntptrTy, 1)); 2207 Value *NextWideShadow = 2208 IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign); 2209 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 2210 if (ShouldTrackOrigins) { 2211 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 2212 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 2213 } 2214 } 2215 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 2216 Width >>= 1) { 2217 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 2218 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 2219 } 2220 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 2221 ShouldTrackOrigins 2222 ? combineOrigins(Shadows, Origins, Pos, 2223 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 2224 : DFS.ZeroOrigin}; 2225 } 2226 2227 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 2228 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) { 2229 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2230 2231 // Non-escaped loads. 2232 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2233 const auto SI = AllocaShadowMap.find(AI); 2234 if (SI != AllocaShadowMap.end()) { 2235 IRBuilder<> IRB(Pos); 2236 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 2237 const auto OI = AllocaOriginMap.find(AI); 2238 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 2239 return {ShadowLI, ShouldTrackOrigins 2240 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 2241 : nullptr}; 2242 } 2243 } 2244 2245 // Load from constant addresses. 2246 SmallVector<const Value *, 2> Objs; 2247 getUnderlyingObjects(Addr, Objs); 2248 bool AllConstants = true; 2249 for (const Value *Obj : Objs) { 2250 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2251 continue; 2252 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2253 continue; 2254 2255 AllConstants = false; 2256 break; 2257 } 2258 if (AllConstants) 2259 return {DFS.ZeroPrimitiveShadow, 2260 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2261 2262 if (Size == 0) 2263 return {DFS.ZeroPrimitiveShadow, 2264 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2265 2266 // Use callback to load if this is not an optimizable case for origin 2267 // tracking. 2268 if (ShouldTrackOrigins && 2269 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2270 IRBuilder<> IRB(Pos); 2271 CallInst *Call = 2272 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2273 {Addr, ConstantInt::get(DFS.IntptrTy, Size)}); 2274 Call->addRetAttr(Attribute::ZExt); 2275 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2276 DFS.PrimitiveShadowTy), 2277 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2278 } 2279 2280 // Other cases that support loading shadows or origins in a fast way. 2281 Value *ShadowAddr, *OriginAddr; 2282 std::tie(ShadowAddr, OriginAddr) = 2283 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2284 2285 const Align ShadowAlign = getShadowAlign(InstAlignment); 2286 const Align OriginAlign = getOriginAlign(InstAlignment); 2287 Value *Origin = nullptr; 2288 if (ShouldTrackOrigins) { 2289 IRBuilder<> IRB(Pos); 2290 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2291 } 2292 2293 // When the byte size is small enough, we can load the shadow directly with 2294 // just a few instructions. 2295 switch (Size) { 2296 case 1: { 2297 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2298 LI->setAlignment(ShadowAlign); 2299 return {LI, Origin}; 2300 } 2301 case 2: { 2302 IRBuilder<> IRB(Pos); 2303 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2304 ConstantInt::get(DFS.IntptrTy, 1)); 2305 Value *Load = 2306 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2307 Value *Load1 = 2308 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2309 return {combineShadows(Load, Load1, Pos), Origin}; 2310 } 2311 } 2312 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2313 2314 if (HasSizeForFastPath) 2315 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2316 OriginAlign, Origin, Pos); 2317 2318 IRBuilder<> IRB(Pos); 2319 CallInst *FallbackCall = IRB.CreateCall( 2320 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2321 FallbackCall->addRetAttr(Attribute::ZExt); 2322 return {FallbackCall, Origin}; 2323 } 2324 2325 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2326 uint64_t Size, 2327 Align InstAlignment, 2328 Instruction *Pos) { 2329 Value *PrimitiveShadow, *Origin; 2330 std::tie(PrimitiveShadow, Origin) = 2331 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2332 if (DFS.shouldTrackOrigins()) { 2333 if (ClTrackOrigins == 2) { 2334 IRBuilder<> IRB(Pos); 2335 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2336 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2337 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2338 } 2339 } 2340 return {PrimitiveShadow, Origin}; 2341 } 2342 2343 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2344 switch (AO) { 2345 case AtomicOrdering::NotAtomic: 2346 return AtomicOrdering::NotAtomic; 2347 case AtomicOrdering::Unordered: 2348 case AtomicOrdering::Monotonic: 2349 case AtomicOrdering::Acquire: 2350 return AtomicOrdering::Acquire; 2351 case AtomicOrdering::Release: 2352 case AtomicOrdering::AcquireRelease: 2353 return AtomicOrdering::AcquireRelease; 2354 case AtomicOrdering::SequentiallyConsistent: 2355 return AtomicOrdering::SequentiallyConsistent; 2356 } 2357 llvm_unreachable("Unknown ordering"); 2358 } 2359 2360 Value *StripPointerGEPsAndCasts(Value *V) { 2361 if (!V->getType()->isPointerTy()) 2362 return V; 2363 2364 // DFSan pass should be running on valid IR, but we'll 2365 // keep a seen set to ensure there are no issues. 2366 SmallPtrSet<const Value *, 4> Visited; 2367 Visited.insert(V); 2368 do { 2369 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 2370 V = GEP->getPointerOperand(); 2371 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2372 V = cast<Operator>(V)->getOperand(0); 2373 if (!V->getType()->isPointerTy()) 2374 return V; 2375 } else if (isa<GlobalAlias>(V)) { 2376 V = cast<GlobalAlias>(V)->getAliasee(); 2377 } 2378 } while (Visited.insert(V).second); 2379 2380 return V; 2381 } 2382 2383 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2384 auto &DL = LI.getModule()->getDataLayout(); 2385 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2386 if (Size == 0) { 2387 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2388 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2389 return; 2390 } 2391 2392 // When an application load is atomic, increase atomic ordering between 2393 // atomic application loads and stores to ensure happen-before order; load 2394 // shadow data after application data; store zero shadow data before 2395 // application data. This ensure shadow loads return either labels of the 2396 // initial application data or zeros. 2397 if (LI.isAtomic()) 2398 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2399 2400 Instruction *AfterLi = LI.getNextNode(); 2401 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2402 std::vector<Value *> Shadows; 2403 std::vector<Value *> Origins; 2404 Value *PrimitiveShadow, *Origin; 2405 std::tie(PrimitiveShadow, Origin) = 2406 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2407 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2408 if (ShouldTrackOrigins) { 2409 Shadows.push_back(PrimitiveShadow); 2410 Origins.push_back(Origin); 2411 } 2412 if (ClCombinePointerLabelsOnLoad || 2413 DFSF.isLookupTableConstant( 2414 StripPointerGEPsAndCasts(LI.getPointerOperand()))) { 2415 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2416 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2417 if (ShouldTrackOrigins) { 2418 Shadows.push_back(PtrShadow); 2419 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2420 } 2421 } 2422 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2423 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2424 2425 Value *Shadow = 2426 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2427 DFSF.setShadow(&LI, Shadow); 2428 2429 if (ShouldTrackOrigins) { 2430 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2431 } 2432 2433 if (ClEventCallbacks) { 2434 IRBuilder<> IRB(Pos); 2435 Value *Addr = LI.getPointerOperand(); 2436 CallInst *CI = 2437 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr}); 2438 CI->addParamAttr(0, Attribute::ZExt); 2439 } 2440 2441 IRBuilder<> IRB(AfterLi); 2442 DFSF.addReachesFunctionCallbacksIfEnabled(IRB, LI, &LI); 2443 } 2444 2445 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2446 IRBuilder<> &IRB) { 2447 assert(DFS.shouldTrackOrigins()); 2448 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2449 } 2450 2451 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2452 if (!DFS.shouldTrackOrigins()) 2453 return V; 2454 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2455 } 2456 2457 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2458 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2459 const DataLayout &DL = F->getParent()->getDataLayout(); 2460 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2461 if (IntptrSize == OriginSize) 2462 return Origin; 2463 assert(IntptrSize == OriginSize * 2); 2464 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2465 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2466 } 2467 2468 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2469 Value *StoreOriginAddr, 2470 uint64_t StoreOriginSize, Align Alignment) { 2471 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2472 const DataLayout &DL = F->getParent()->getDataLayout(); 2473 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2474 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2475 assert(IntptrAlignment >= MinOriginAlignment); 2476 assert(IntptrSize >= OriginSize); 2477 2478 unsigned Ofs = 0; 2479 Align CurrentAlignment = Alignment; 2480 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2481 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2482 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2483 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2484 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2485 Value *Ptr = 2486 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2487 : IntptrStoreOriginPtr; 2488 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2489 Ofs += IntptrSize / OriginSize; 2490 CurrentAlignment = IntptrAlignment; 2491 } 2492 } 2493 2494 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2495 ++I) { 2496 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2497 : StoreOriginAddr; 2498 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2499 CurrentAlignment = MinOriginAlignment; 2500 } 2501 } 2502 2503 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2504 const Twine &Name) { 2505 Type *VTy = V->getType(); 2506 assert(VTy->isIntegerTy()); 2507 if (VTy->getIntegerBitWidth() == 1) 2508 // Just converting a bool to a bool, so do nothing. 2509 return V; 2510 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2511 } 2512 2513 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2514 Value *Shadow, Value *Origin, 2515 Value *StoreOriginAddr, Align InstAlignment) { 2516 // Do not write origins for zero shadows because we do not trace origins for 2517 // untainted sinks. 2518 const Align OriginAlignment = getOriginAlign(InstAlignment); 2519 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2520 IRBuilder<> IRB(Pos); 2521 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2522 if (!ConstantShadow->isZeroValue()) 2523 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2524 OriginAlignment); 2525 return; 2526 } 2527 2528 if (shouldInstrumentWithCall()) { 2529 IRB.CreateCall( 2530 DFS.DFSanMaybeStoreOriginFn, 2531 {CollapsedShadow, Addr, ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2532 } else { 2533 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2534 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2535 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2536 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DTU); 2537 IRBuilder<> IRBNew(CheckTerm); 2538 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2539 OriginAlignment); 2540 ++NumOriginStores; 2541 } 2542 } 2543 2544 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2545 Align ShadowAlign, 2546 Instruction *Pos) { 2547 IRBuilder<> IRB(Pos); 2548 IntegerType *ShadowTy = 2549 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2550 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2551 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2552 IRB.CreateAlignedStore(ExtZeroShadow, ShadowAddr, ShadowAlign); 2553 // Do not write origins for 0 shadows because we do not trace origins for 2554 // untainted sinks. 2555 } 2556 2557 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2558 Align InstAlignment, 2559 Value *PrimitiveShadow, 2560 Value *Origin, 2561 Instruction *Pos) { 2562 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2563 2564 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2565 const auto SI = AllocaShadowMap.find(AI); 2566 if (SI != AllocaShadowMap.end()) { 2567 IRBuilder<> IRB(Pos); 2568 IRB.CreateStore(PrimitiveShadow, SI->second); 2569 2570 // Do not write origins for 0 shadows because we do not trace origins for 2571 // untainted sinks. 2572 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2573 const auto OI = AllocaOriginMap.find(AI); 2574 assert(OI != AllocaOriginMap.end() && Origin); 2575 IRB.CreateStore(Origin, OI->second); 2576 } 2577 return; 2578 } 2579 } 2580 2581 const Align ShadowAlign = getShadowAlign(InstAlignment); 2582 if (DFS.isZeroShadow(PrimitiveShadow)) { 2583 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2584 return; 2585 } 2586 2587 IRBuilder<> IRB(Pos); 2588 Value *ShadowAddr, *OriginAddr; 2589 std::tie(ShadowAddr, OriginAddr) = 2590 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2591 2592 const unsigned ShadowVecSize = 8; 2593 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2594 "Shadow vector is too large!"); 2595 2596 uint64_t Offset = 0; 2597 uint64_t LeftSize = Size; 2598 if (LeftSize >= ShadowVecSize) { 2599 auto *ShadowVecTy = 2600 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2601 Value *ShadowVec = PoisonValue::get(ShadowVecTy); 2602 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2603 ShadowVec = IRB.CreateInsertElement( 2604 ShadowVec, PrimitiveShadow, 2605 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2606 } 2607 do { 2608 Value *CurShadowVecAddr = 2609 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowAddr, Offset); 2610 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2611 LeftSize -= ShadowVecSize; 2612 ++Offset; 2613 } while (LeftSize >= ShadowVecSize); 2614 Offset *= ShadowVecSize; 2615 } 2616 while (LeftSize > 0) { 2617 Value *CurShadowAddr = 2618 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2619 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2620 --LeftSize; 2621 ++Offset; 2622 } 2623 2624 if (ShouldTrackOrigins) { 2625 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2626 InstAlignment); 2627 } 2628 } 2629 2630 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2631 switch (AO) { 2632 case AtomicOrdering::NotAtomic: 2633 return AtomicOrdering::NotAtomic; 2634 case AtomicOrdering::Unordered: 2635 case AtomicOrdering::Monotonic: 2636 case AtomicOrdering::Release: 2637 return AtomicOrdering::Release; 2638 case AtomicOrdering::Acquire: 2639 case AtomicOrdering::AcquireRelease: 2640 return AtomicOrdering::AcquireRelease; 2641 case AtomicOrdering::SequentiallyConsistent: 2642 return AtomicOrdering::SequentiallyConsistent; 2643 } 2644 llvm_unreachable("Unknown ordering"); 2645 } 2646 2647 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2648 auto &DL = SI.getModule()->getDataLayout(); 2649 Value *Val = SI.getValueOperand(); 2650 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2651 if (Size == 0) 2652 return; 2653 2654 // When an application store is atomic, increase atomic ordering between 2655 // atomic application loads and stores to ensure happen-before order; load 2656 // shadow data after application data; store zero shadow data before 2657 // application data. This ensure shadow loads return either labels of the 2658 // initial application data or zeros. 2659 if (SI.isAtomic()) 2660 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2661 2662 const bool ShouldTrackOrigins = 2663 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2664 std::vector<Value *> Shadows; 2665 std::vector<Value *> Origins; 2666 2667 Value *Shadow = 2668 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2669 2670 if (ShouldTrackOrigins) { 2671 Shadows.push_back(Shadow); 2672 Origins.push_back(DFSF.getOrigin(Val)); 2673 } 2674 2675 Value *PrimitiveShadow; 2676 if (ClCombinePointerLabelsOnStore) { 2677 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2678 if (ShouldTrackOrigins) { 2679 Shadows.push_back(PtrShadow); 2680 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2681 } 2682 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2683 } else { 2684 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2685 } 2686 Value *Origin = nullptr; 2687 if (ShouldTrackOrigins) 2688 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2689 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2690 PrimitiveShadow, Origin, &SI); 2691 if (ClEventCallbacks) { 2692 IRBuilder<> IRB(&SI); 2693 Value *Addr = SI.getPointerOperand(); 2694 CallInst *CI = 2695 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr}); 2696 CI->addParamAttr(0, Attribute::ZExt); 2697 } 2698 } 2699 2700 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2701 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2702 2703 Value *Val = I.getOperand(1); 2704 const auto &DL = I.getModule()->getDataLayout(); 2705 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2706 if (Size == 0) 2707 return; 2708 2709 // Conservatively set data at stored addresses and return with zero shadow to 2710 // prevent shadow data races. 2711 IRBuilder<> IRB(&I); 2712 Value *Addr = I.getOperand(0); 2713 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2714 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2715 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2716 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2717 } 2718 2719 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2720 visitCASOrRMW(I.getAlign(), I); 2721 // TODO: The ordering change follows MSan. It is possible not to change 2722 // ordering because we always set and use 0 shadows. 2723 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2724 } 2725 2726 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2727 visitCASOrRMW(I.getAlign(), I); 2728 // TODO: The ordering change follows MSan. It is possible not to change 2729 // ordering because we always set and use 0 shadows. 2730 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2731 } 2732 2733 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2734 visitInstOperands(UO); 2735 } 2736 2737 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2738 visitInstOperands(BO); 2739 } 2740 2741 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { 2742 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2743 // a musttail call and a ret, don't instrument. New instructions are not 2744 // allowed after a musttail call. 2745 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) 2746 if (CI->isMustTailCall()) 2747 return; 2748 visitInstOperands(BCI); 2749 } 2750 2751 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2752 2753 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2754 visitInstOperands(CI); 2755 if (ClEventCallbacks) { 2756 IRBuilder<> IRB(&CI); 2757 Value *CombinedShadow = DFSF.getShadow(&CI); 2758 CallInst *CallI = 2759 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2760 CallI->addParamAttr(0, Attribute::ZExt); 2761 } 2762 } 2763 2764 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { 2765 // We do not need to track data through LandingPadInst. 2766 // 2767 // For the C++ exceptions, if a value is thrown, this value will be stored 2768 // in a memory location provided by __cxa_allocate_exception(...) (on the 2769 // throw side) or __cxa_begin_catch(...) (on the catch side). 2770 // This memory will have a shadow, so with the loads and stores we will be 2771 // able to propagate labels on data thrown through exceptions, without any 2772 // special handling of the LandingPadInst. 2773 // 2774 // The second element in the pair result of the LandingPadInst is a 2775 // register value, but it is for a type ID and should never be tainted. 2776 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI)); 2777 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin); 2778 } 2779 2780 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2781 if (ClCombineOffsetLabelsOnGEP || 2782 DFSF.isLookupTableConstant( 2783 StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) { 2784 visitInstOperands(GEPI); 2785 return; 2786 } 2787 2788 // Only propagate shadow/origin of base pointer value but ignore those of 2789 // offset operands. 2790 Value *BasePointer = GEPI.getPointerOperand(); 2791 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); 2792 if (DFSF.DFS.shouldTrackOrigins()) 2793 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); 2794 } 2795 2796 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2797 visitInstOperands(I); 2798 } 2799 2800 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2801 visitInstOperands(I); 2802 } 2803 2804 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2805 visitInstOperands(I); 2806 } 2807 2808 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2809 IRBuilder<> IRB(&I); 2810 Value *Agg = I.getAggregateOperand(); 2811 Value *AggShadow = DFSF.getShadow(Agg); 2812 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2813 DFSF.setShadow(&I, ResShadow); 2814 visitInstOperandOrigins(I); 2815 } 2816 2817 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2818 IRBuilder<> IRB(&I); 2819 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2820 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2821 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2822 DFSF.setShadow(&I, Res); 2823 visitInstOperandOrigins(I); 2824 } 2825 2826 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2827 bool AllLoadsStores = true; 2828 for (User *U : I.users()) { 2829 if (isa<LoadInst>(U)) 2830 continue; 2831 2832 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2833 if (SI->getPointerOperand() == &I) 2834 continue; 2835 } 2836 2837 AllLoadsStores = false; 2838 break; 2839 } 2840 if (AllLoadsStores) { 2841 IRBuilder<> IRB(&I); 2842 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2843 if (DFSF.DFS.shouldTrackOrigins()) { 2844 DFSF.AllocaOriginMap[&I] = 2845 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2846 } 2847 } 2848 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2849 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2850 } 2851 2852 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2853 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2854 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2855 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2856 Value *ShadowSel = nullptr; 2857 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2858 std::vector<Value *> Shadows; 2859 std::vector<Value *> Origins; 2860 Value *TrueOrigin = 2861 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2862 Value *FalseOrigin = 2863 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2864 2865 DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition()); 2866 2867 if (isa<VectorType>(I.getCondition()->getType())) { 2868 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2869 FalseShadow, &I); 2870 if (ShouldTrackOrigins) { 2871 Shadows.push_back(TrueShadow); 2872 Shadows.push_back(FalseShadow); 2873 Origins.push_back(TrueOrigin); 2874 Origins.push_back(FalseOrigin); 2875 } 2876 } else { 2877 if (TrueShadow == FalseShadow) { 2878 ShadowSel = TrueShadow; 2879 if (ShouldTrackOrigins) { 2880 Shadows.push_back(TrueShadow); 2881 Origins.push_back(TrueOrigin); 2882 } 2883 } else { 2884 ShadowSel = 2885 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2886 if (ShouldTrackOrigins) { 2887 Shadows.push_back(ShadowSel); 2888 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2889 FalseOrigin, "", &I)); 2890 } 2891 } 2892 } 2893 DFSF.setShadow(&I, ClTrackSelectControlFlow 2894 ? DFSF.combineShadowsThenConvert( 2895 I.getType(), CondShadow, ShadowSel, &I) 2896 : ShadowSel); 2897 if (ShouldTrackOrigins) { 2898 if (ClTrackSelectControlFlow) { 2899 Shadows.push_back(CondShadow); 2900 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2901 } 2902 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2903 } 2904 } 2905 2906 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2907 IRBuilder<> IRB(&I); 2908 Value *ValShadow = DFSF.getShadow(I.getValue()); 2909 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2910 ? DFSF.getOrigin(I.getValue()) 2911 : DFSF.DFS.ZeroOrigin; 2912 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 2913 {ValShadow, ValOrigin, I.getDest(), 2914 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2915 } 2916 2917 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2918 IRBuilder<> IRB(&I); 2919 2920 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2921 // need to move origins before moving shadows. 2922 if (DFSF.DFS.shouldTrackOrigins()) { 2923 IRB.CreateCall( 2924 DFSF.DFS.DFSanMemOriginTransferFn, 2925 {I.getArgOperand(0), I.getArgOperand(1), 2926 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2927 } 2928 2929 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2930 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2931 Value *LenShadow = 2932 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2933 DFSF.DFS.ShadowWidthBytes)); 2934 auto *MTI = cast<MemTransferInst>( 2935 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2936 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2937 MTI->setDestAlignment(DFSF.getShadowAlign(I.getDestAlign().valueOrOne())); 2938 MTI->setSourceAlignment(DFSF.getShadowAlign(I.getSourceAlign().valueOrOne())); 2939 if (ClEventCallbacks) { 2940 IRB.CreateCall( 2941 DFSF.DFS.DFSanMemTransferCallbackFn, 2942 {DestShadow, IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2943 } 2944 } 2945 2946 void DFSanVisitor::visitBranchInst(BranchInst &BR) { 2947 if (!BR.isConditional()) 2948 return; 2949 2950 DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition()); 2951 } 2952 2953 void DFSanVisitor::visitSwitchInst(SwitchInst &SW) { 2954 DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition()); 2955 } 2956 2957 static bool isAMustTailRetVal(Value *RetVal) { 2958 // Tail call may have a bitcast between return. 2959 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2960 RetVal = I->getOperand(0); 2961 } 2962 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2963 return I->isMustTailCall(); 2964 } 2965 return false; 2966 } 2967 2968 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2969 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2970 // Don't emit the instrumentation for musttail call returns. 2971 if (isAMustTailRetVal(RI.getReturnValue())) 2972 return; 2973 2974 Value *S = DFSF.getShadow(RI.getReturnValue()); 2975 IRBuilder<> IRB(&RI); 2976 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2977 unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2978 if (Size <= RetvalTLSSize) { 2979 // If the size overflows, stores nothing. At callsite, oversized return 2980 // shadows are set to zero. 2981 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment); 2982 } 2983 if (DFSF.DFS.shouldTrackOrigins()) { 2984 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2985 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2986 } 2987 } 2988 } 2989 2990 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2991 std::vector<Value *> &Args, 2992 IRBuilder<> &IRB) { 2993 FunctionType *FT = F.getFunctionType(); 2994 2995 auto *I = CB.arg_begin(); 2996 2997 // Adds non-variable argument shadows. 2998 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2999 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 3000 3001 // Adds variable argument shadows. 3002 if (FT->isVarArg()) { 3003 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 3004 CB.arg_size() - FT->getNumParams()); 3005 auto *LabelVAAlloca = 3006 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 3007 "labelva", &DFSF.F->getEntryBlock().front()); 3008 3009 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 3010 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 3011 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 3012 LabelVAPtr); 3013 } 3014 3015 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 3016 } 3017 3018 // Adds the return value shadow. 3019 if (!FT->getReturnType()->isVoidTy()) { 3020 if (!DFSF.LabelReturnAlloca) { 3021 DFSF.LabelReturnAlloca = new AllocaInst( 3022 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 3023 "labelreturn", &DFSF.F->getEntryBlock().front()); 3024 } 3025 Args.push_back(DFSF.LabelReturnAlloca); 3026 } 3027 } 3028 3029 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 3030 std::vector<Value *> &Args, 3031 IRBuilder<> &IRB) { 3032 FunctionType *FT = F.getFunctionType(); 3033 3034 auto *I = CB.arg_begin(); 3035 3036 // Add non-variable argument origins. 3037 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 3038 Args.push_back(DFSF.getOrigin(*I)); 3039 3040 // Add variable argument origins. 3041 if (FT->isVarArg()) { 3042 auto *OriginVATy = 3043 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 3044 auto *OriginVAAlloca = 3045 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 3046 "originva", &DFSF.F->getEntryBlock().front()); 3047 3048 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 3049 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 3050 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 3051 } 3052 3053 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 3054 } 3055 3056 // Add the return value origin. 3057 if (!FT->getReturnType()->isVoidTy()) { 3058 if (!DFSF.OriginReturnAlloca) { 3059 DFSF.OriginReturnAlloca = new AllocaInst( 3060 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 3061 "originreturn", &DFSF.F->getEntryBlock().front()); 3062 } 3063 Args.push_back(DFSF.OriginReturnAlloca); 3064 } 3065 } 3066 3067 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 3068 IRBuilder<> IRB(&CB); 3069 switch (DFSF.DFS.getWrapperKind(&F)) { 3070 case DataFlowSanitizer::WK_Warning: 3071 CB.setCalledFunction(&F); 3072 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 3073 IRB.CreateGlobalStringPtr(F.getName())); 3074 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F); 3075 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3076 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 3077 return true; 3078 case DataFlowSanitizer::WK_Discard: 3079 CB.setCalledFunction(&F); 3080 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F); 3081 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3082 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 3083 return true; 3084 case DataFlowSanitizer::WK_Functional: 3085 CB.setCalledFunction(&F); 3086 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F); 3087 visitInstOperands(CB); 3088 return true; 3089 case DataFlowSanitizer::WK_Custom: 3090 // Don't try to handle invokes of custom functions, it's too complicated. 3091 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 3092 // wrapper. 3093 CallInst *CI = dyn_cast<CallInst>(&CB); 3094 if (!CI) 3095 return false; 3096 3097 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3098 FunctionType *FT = F.getFunctionType(); 3099 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 3100 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 3101 CustomFName += F.getName(); 3102 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 3103 CustomFName, CustomFn.TransformedType); 3104 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 3105 CustomFn->copyAttributesFrom(&F); 3106 3107 // Custom functions returning non-void will write to the return label. 3108 if (!FT->getReturnType()->isVoidTy()) { 3109 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs); 3110 } 3111 } 3112 3113 std::vector<Value *> Args; 3114 3115 // Adds non-variable arguments. 3116 auto *I = CB.arg_begin(); 3117 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 3118 Args.push_back(*I); 3119 } 3120 3121 // Adds shadow arguments. 3122 const unsigned ShadowArgStart = Args.size(); 3123 addShadowArguments(F, CB, Args, IRB); 3124 3125 // Adds origin arguments. 3126 const unsigned OriginArgStart = Args.size(); 3127 if (ShouldTrackOrigins) 3128 addOriginArguments(F, CB, Args, IRB); 3129 3130 // Adds variable arguments. 3131 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 3132 3133 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 3134 CustomCI->setCallingConv(CI->getCallingConv()); 3135 CustomCI->setAttributes(transformFunctionAttributes( 3136 CustomFn, CI->getContext(), CI->getAttributes())); 3137 3138 // Update the parameter attributes of the custom call instruction to 3139 // zero extend the shadow parameters. This is required for targets 3140 // which consider PrimitiveShadowTy an illegal type. 3141 for (unsigned N = 0; N < FT->getNumParams(); N++) { 3142 const unsigned ArgNo = ShadowArgStart + N; 3143 if (CustomCI->getArgOperand(ArgNo)->getType() == 3144 DFSF.DFS.PrimitiveShadowTy) 3145 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 3146 if (ShouldTrackOrigins) { 3147 const unsigned OriginArgNo = OriginArgStart + N; 3148 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 3149 DFSF.DFS.OriginTy) 3150 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 3151 } 3152 } 3153 3154 // Loads the return value shadow and origin. 3155 if (!FT->getReturnType()->isVoidTy()) { 3156 LoadInst *LabelLoad = 3157 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 3158 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 3159 FT->getReturnType(), LabelLoad, &CB)); 3160 if (ShouldTrackOrigins) { 3161 LoadInst *OriginLoad = 3162 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 3163 DFSF.setOrigin(CustomCI, OriginLoad); 3164 } 3165 } 3166 3167 CI->replaceAllUsesWith(CustomCI); 3168 CI->eraseFromParent(); 3169 return true; 3170 } 3171 return false; 3172 } 3173 3174 Value *DFSanVisitor::makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 3175 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 3176 uint32_t OrderingTable[NumOrderings] = {}; 3177 3178 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 3179 OrderingTable[(int)AtomicOrderingCABI::acquire] = 3180 OrderingTable[(int)AtomicOrderingCABI::consume] = 3181 (int)AtomicOrderingCABI::acquire; 3182 OrderingTable[(int)AtomicOrderingCABI::release] = 3183 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 3184 (int)AtomicOrderingCABI::acq_rel; 3185 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 3186 (int)AtomicOrderingCABI::seq_cst; 3187 3188 return ConstantDataVector::get(IRB.getContext(), 3189 ArrayRef(OrderingTable, NumOrderings)); 3190 } 3191 3192 void DFSanVisitor::visitLibAtomicLoad(CallBase &CB) { 3193 // Since we use getNextNode here, we can't have CB terminate the BB. 3194 assert(isa<CallInst>(CB)); 3195 3196 IRBuilder<> IRB(&CB); 3197 Value *Size = CB.getArgOperand(0); 3198 Value *SrcPtr = CB.getArgOperand(1); 3199 Value *DstPtr = CB.getArgOperand(2); 3200 Value *Ordering = CB.getArgOperand(3); 3201 // Convert the call to have at least Acquire ordering to make sure 3202 // the shadow operations aren't reordered before it. 3203 Value *NewOrdering = 3204 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3205 CB.setArgOperand(3, NewOrdering); 3206 3207 IRBuilder<> NextIRB(CB.getNextNode()); 3208 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3209 3210 // TODO: Support ClCombinePointerLabelsOnLoad 3211 // TODO: Support ClEventCallbacks 3212 3213 NextIRB.CreateCall( 3214 DFSF.DFS.DFSanMemShadowOriginTransferFn, 3215 {DstPtr, SrcPtr, NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3216 } 3217 3218 Value *DFSanVisitor::makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 3219 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 3220 uint32_t OrderingTable[NumOrderings] = {}; 3221 3222 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 3223 OrderingTable[(int)AtomicOrderingCABI::release] = 3224 (int)AtomicOrderingCABI::release; 3225 OrderingTable[(int)AtomicOrderingCABI::consume] = 3226 OrderingTable[(int)AtomicOrderingCABI::acquire] = 3227 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 3228 (int)AtomicOrderingCABI::acq_rel; 3229 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 3230 (int)AtomicOrderingCABI::seq_cst; 3231 3232 return ConstantDataVector::get(IRB.getContext(), 3233 ArrayRef(OrderingTable, NumOrderings)); 3234 } 3235 3236 void DFSanVisitor::visitLibAtomicStore(CallBase &CB) { 3237 IRBuilder<> IRB(&CB); 3238 Value *Size = CB.getArgOperand(0); 3239 Value *SrcPtr = CB.getArgOperand(1); 3240 Value *DstPtr = CB.getArgOperand(2); 3241 Value *Ordering = CB.getArgOperand(3); 3242 // Convert the call to have at least Release ordering to make sure 3243 // the shadow operations aren't reordered after it. 3244 Value *NewOrdering = 3245 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3246 CB.setArgOperand(3, NewOrdering); 3247 3248 // TODO: Support ClCombinePointerLabelsOnStore 3249 // TODO: Support ClEventCallbacks 3250 3251 IRB.CreateCall( 3252 DFSF.DFS.DFSanMemShadowOriginTransferFn, 3253 {DstPtr, SrcPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3254 } 3255 3256 void DFSanVisitor::visitLibAtomicExchange(CallBase &CB) { 3257 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int 3258 // ordering) 3259 IRBuilder<> IRB(&CB); 3260 Value *Size = CB.getArgOperand(0); 3261 Value *TargetPtr = CB.getArgOperand(1); 3262 Value *SrcPtr = CB.getArgOperand(2); 3263 Value *DstPtr = CB.getArgOperand(3); 3264 3265 // This operation is not atomic for the shadow and origin memory. 3266 // This could result in DFSan false positives or false negatives. 3267 // For now we will assume these operations are rare, and 3268 // the additional complexity to address this is not warrented. 3269 3270 // Current Target to Dest 3271 IRB.CreateCall( 3272 DFSF.DFS.DFSanMemShadowOriginTransferFn, 3273 {DstPtr, TargetPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3274 3275 // Current Src to Target (overriding) 3276 IRB.CreateCall( 3277 DFSF.DFS.DFSanMemShadowOriginTransferFn, 3278 {TargetPtr, SrcPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3279 } 3280 3281 void DFSanVisitor::visitLibAtomicCompareExchange(CallBase &CB) { 3282 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void 3283 // *desired, int success_order, int failure_order) 3284 Value *Size = CB.getArgOperand(0); 3285 Value *TargetPtr = CB.getArgOperand(1); 3286 Value *ExpectedPtr = CB.getArgOperand(2); 3287 Value *DesiredPtr = CB.getArgOperand(3); 3288 3289 // This operation is not atomic for the shadow and origin memory. 3290 // This could result in DFSan false positives or false negatives. 3291 // For now we will assume these operations are rare, and 3292 // the additional complexity to address this is not warrented. 3293 3294 IRBuilder<> NextIRB(CB.getNextNode()); 3295 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3296 3297 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3298 3299 // If original call returned true, copy Desired to Target. 3300 // If original call returned false, copy Target to Expected. 3301 NextIRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginConditionalExchangeFn, 3302 {NextIRB.CreateIntCast(&CB, NextIRB.getInt8Ty(), false), 3303 TargetPtr, ExpectedPtr, DesiredPtr, 3304 NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3305 } 3306 3307 void DFSanVisitor::visitCallBase(CallBase &CB) { 3308 Function *F = CB.getCalledFunction(); 3309 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 3310 visitInstOperands(CB); 3311 return; 3312 } 3313 3314 // Calls to this function are synthesized in wrappers, and we shouldn't 3315 // instrument them. 3316 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 3317 return; 3318 3319 LibFunc LF; 3320 if (DFSF.TLI.getLibFunc(CB, LF)) { 3321 // libatomic.a functions need to have special handling because there isn't 3322 // a good way to intercept them or compile the library with 3323 // instrumentation. 3324 switch (LF) { 3325 case LibFunc_atomic_load: 3326 if (!isa<CallInst>(CB)) { 3327 llvm::errs() << "DFSAN -- cannot instrument invoke of libatomic load. " 3328 "Ignoring!\n"; 3329 break; 3330 } 3331 visitLibAtomicLoad(CB); 3332 return; 3333 case LibFunc_atomic_store: 3334 visitLibAtomicStore(CB); 3335 return; 3336 default: 3337 break; 3338 } 3339 } 3340 3341 // TODO: These are not supported by TLI? They are not in the enum. 3342 if (F && F->hasName() && !F->isVarArg()) { 3343 if (F->getName() == "__atomic_exchange") { 3344 visitLibAtomicExchange(CB); 3345 return; 3346 } 3347 if (F->getName() == "__atomic_compare_exchange") { 3348 visitLibAtomicCompareExchange(CB); 3349 return; 3350 } 3351 } 3352 3353 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 3354 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 3355 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 3356 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 3357 return; 3358 3359 IRBuilder<> IRB(&CB); 3360 3361 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3362 FunctionType *FT = CB.getFunctionType(); 3363 const DataLayout &DL = getDataLayout(); 3364 3365 // Stores argument shadows. 3366 unsigned ArgOffset = 0; 3367 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 3368 if (ShouldTrackOrigins) { 3369 // Ignore overflowed origins 3370 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 3371 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 3372 !DFSF.DFS.isZeroShadow(ArgShadow)) 3373 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 3374 DFSF.getArgOriginTLS(I, IRB)); 3375 } 3376 3377 unsigned Size = 3378 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 3379 // Stop storing if arguments' size overflows. Inside a function, arguments 3380 // after overflow have zero shadow values. 3381 if (ArgOffset + Size > ArgTLSSize) 3382 break; 3383 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)), 3384 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 3385 ShadowTLSAlignment); 3386 ArgOffset += alignTo(Size, ShadowTLSAlignment); 3387 } 3388 3389 Instruction *Next = nullptr; 3390 if (!CB.getType()->isVoidTy()) { 3391 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3392 if (II->getNormalDest()->getSinglePredecessor()) { 3393 Next = &II->getNormalDest()->front(); 3394 } else { 3395 BasicBlock *NewBB = 3396 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 3397 Next = &NewBB->front(); 3398 } 3399 } else { 3400 assert(CB.getIterator() != CB.getParent()->end()); 3401 Next = CB.getNextNode(); 3402 } 3403 3404 // Don't emit the epilogue for musttail call returns. 3405 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3406 return; 3407 3408 // Loads the return value shadow. 3409 IRBuilder<> NextIRB(Next); 3410 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 3411 if (Size > RetvalTLSSize) { 3412 // Set overflowed return shadow to be zero. 3413 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3414 } else { 3415 LoadInst *LI = NextIRB.CreateAlignedLoad( 3416 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 3417 ShadowTLSAlignment, "_dfsret"); 3418 DFSF.SkipInsts.insert(LI); 3419 DFSF.setShadow(&CB, LI); 3420 DFSF.NonZeroChecks.push_back(LI); 3421 } 3422 3423 if (ShouldTrackOrigins) { 3424 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy, 3425 DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3426 DFSF.SkipInsts.insert(LI); 3427 DFSF.setOrigin(&CB, LI); 3428 } 3429 3430 DFSF.addReachesFunctionCallbacksIfEnabled(NextIRB, CB, &CB); 3431 } 3432 } 3433 3434 void DFSanVisitor::visitPHINode(PHINode &PN) { 3435 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3436 PHINode *ShadowPN = 3437 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 3438 3439 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3440 Value *UndefShadow = UndefValue::get(ShadowTy); 3441 for (BasicBlock *BB : PN.blocks()) 3442 ShadowPN->addIncoming(UndefShadow, BB); 3443 3444 DFSF.setShadow(&PN, ShadowPN); 3445 3446 PHINode *OriginPN = nullptr; 3447 if (DFSF.DFS.shouldTrackOrigins()) { 3448 OriginPN = 3449 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 3450 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3451 for (BasicBlock *BB : PN.blocks()) 3452 OriginPN->addIncoming(UndefOrigin, BB); 3453 DFSF.setOrigin(&PN, OriginPN); 3454 } 3455 3456 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3457 } 3458 3459 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3460 ModuleAnalysisManager &AM) { 3461 auto GetTLI = [&](Function &F) -> TargetLibraryInfo & { 3462 auto &FAM = 3463 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3464 return FAM.getResult<TargetLibraryAnalysis>(F); 3465 }; 3466 if (!DataFlowSanitizer(ABIListFiles).runImpl(M, GetTLI)) 3467 return PreservedAnalyses::all(); 3468 3469 PreservedAnalyses PA = PreservedAnalyses::none(); 3470 // GlobalsAA is considered stateless and does not get invalidated unless 3471 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 3472 // make changes that require GlobalsAA to be invalidated. 3473 PA.abandon<GlobalsAA>(); 3474 return PA; 3475 } 3476