xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own.  Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation.
20 ///
21 /// Argument and return value labels are passed through TLS variables
22 /// __dfsan_arg_tls and __dfsan_retval_tls.
23 ///
24 /// Each byte of application memory is backed by a shadow memory byte. The
25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then
26 /// laid out as follows:
27 ///
28 /// +--------------------+ 0x800000000000 (top of memory)
29 /// |    application 3   |
30 /// +--------------------+ 0x700000000000
31 /// |      invalid       |
32 /// +--------------------+ 0x610000000000
33 /// |      origin 1      |
34 /// +--------------------+ 0x600000000000
35 /// |    application 2   |
36 /// +--------------------+ 0x510000000000
37 /// |      shadow 1      |
38 /// +--------------------+ 0x500000000000
39 /// |      invalid       |
40 /// +--------------------+ 0x400000000000
41 /// |      origin 3      |
42 /// +--------------------+ 0x300000000000
43 /// |      shadow 3      |
44 /// +--------------------+ 0x200000000000
45 /// |      origin 2      |
46 /// +--------------------+ 0x110000000000
47 /// |      invalid       |
48 /// +--------------------+ 0x100000000000
49 /// |      shadow 2      |
50 /// +--------------------+ 0x010000000000
51 /// |    application 1   |
52 /// +--------------------+ 0x000000000000
53 ///
54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000
55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000
56 ///
57 /// For more information, please refer to the design document:
58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
59 //
60 //===----------------------------------------------------------------------===//
61 
62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DenseSet.h"
65 #include "llvm/ADT/DepthFirstIterator.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/StringRef.h"
69 #include "llvm/ADT/StringSet.h"
70 #include "llvm/ADT/iterator.h"
71 #include "llvm/Analysis/DomTreeUpdater.h"
72 #include "llvm/Analysis/GlobalsModRef.h"
73 #include "llvm/Analysis/TargetLibraryInfo.h"
74 #include "llvm/Analysis/ValueTracking.h"
75 #include "llvm/IR/Argument.h"
76 #include "llvm/IR/AttributeMask.h"
77 #include "llvm/IR/Attributes.h"
78 #include "llvm/IR/BasicBlock.h"
79 #include "llvm/IR/Constant.h"
80 #include "llvm/IR/Constants.h"
81 #include "llvm/IR/DataLayout.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/Function.h"
85 #include "llvm/IR/GlobalAlias.h"
86 #include "llvm/IR/GlobalValue.h"
87 #include "llvm/IR/GlobalVariable.h"
88 #include "llvm/IR/IRBuilder.h"
89 #include "llvm/IR/InstVisitor.h"
90 #include "llvm/IR/InstrTypes.h"
91 #include "llvm/IR/Instruction.h"
92 #include "llvm/IR/Instructions.h"
93 #include "llvm/IR/IntrinsicInst.h"
94 #include "llvm/IR/MDBuilder.h"
95 #include "llvm/IR/Module.h"
96 #include "llvm/IR/PassManager.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/Support/Alignment.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/ErrorHandling.h"
104 #include "llvm/Support/SpecialCaseList.h"
105 #include "llvm/Support/VirtualFileSystem.h"
106 #include "llvm/TargetParser/Triple.h"
107 #include "llvm/Transforms/Instrumentation.h"
108 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstddef>
113 #include <cstdint>
114 #include <memory>
115 #include <set>
116 #include <string>
117 #include <utility>
118 #include <vector>
119 
120 using namespace llvm;
121 
122 // This must be consistent with ShadowWidthBits.
123 static const Align ShadowTLSAlignment = Align(2);
124 
125 static const Align MinOriginAlignment = Align(4);
126 
127 // The size of TLS variables. These constants must be kept in sync with the ones
128 // in dfsan.cpp.
129 static const unsigned ArgTLSSize = 800;
130 static const unsigned RetvalTLSSize = 800;
131 
132 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
133 // alignment requirements provided by the input IR are correct.  For example,
134 // if the input IR contains a load with alignment 8, this flag will cause
135 // the shadow load to have alignment 16.  This flag is disabled by default as
136 // we have unfortunately encountered too much code (including Clang itself;
137 // see PR14291) which performs misaligned access.
138 static cl::opt<bool> ClPreserveAlignment(
139     "dfsan-preserve-alignment",
140     cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
141     cl::init(false));
142 
143 // The ABI list files control how shadow parameters are passed. The pass treats
144 // every function labelled "uninstrumented" in the ABI list file as conforming
145 // to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains
146 // additional annotations for those functions, a call to one of those functions
147 // will produce a warning message, as the labelling behaviour of the function is
148 // unknown. The other supported annotations for uninstrumented functions are
149 // "functional" and "discard", which are described below under
150 // DataFlowSanitizer::WrapperKind.
151 // Functions will often be labelled with both "uninstrumented" and one of
152 // "functional" or "discard". This will leave the function unchanged by this
153 // pass, and create a wrapper function that will call the original.
154 //
155 // Instrumented functions can also be annotated as "force_zero_labels", which
156 // will make all shadow and return values set zero labels.
157 // Functions should never be labelled with both "force_zero_labels" and
158 // "uninstrumented" or any of the unistrumented wrapper kinds.
159 static cl::list<std::string> ClABIListFiles(
160     "dfsan-abilist",
161     cl::desc("File listing native ABI functions and how the pass treats them"),
162     cl::Hidden);
163 
164 // Controls whether the pass includes or ignores the labels of pointers in load
165 // instructions.
166 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
167     "dfsan-combine-pointer-labels-on-load",
168     cl::desc("Combine the label of the pointer with the label of the data when "
169              "loading from memory."),
170     cl::Hidden, cl::init(true));
171 
172 // Controls whether the pass includes or ignores the labels of pointers in
173 // stores instructions.
174 static cl::opt<bool> ClCombinePointerLabelsOnStore(
175     "dfsan-combine-pointer-labels-on-store",
176     cl::desc("Combine the label of the pointer with the label of the data when "
177              "storing in memory."),
178     cl::Hidden, cl::init(false));
179 
180 // Controls whether the pass propagates labels of offsets in GEP instructions.
181 static cl::opt<bool> ClCombineOffsetLabelsOnGEP(
182     "dfsan-combine-offset-labels-on-gep",
183     cl::desc(
184         "Combine the label of the offset with the label of the pointer when "
185         "doing pointer arithmetic."),
186     cl::Hidden, cl::init(true));
187 
188 static cl::list<std::string> ClCombineTaintLookupTables(
189     "dfsan-combine-taint-lookup-table",
190     cl::desc(
191         "When dfsan-combine-offset-labels-on-gep and/or "
192         "dfsan-combine-pointer-labels-on-load are false, this flag can "
193         "be used to re-enable combining offset and/or pointer taint when "
194         "loading specific constant global variables (i.e. lookup tables)."),
195     cl::Hidden);
196 
197 static cl::opt<bool> ClDebugNonzeroLabels(
198     "dfsan-debug-nonzero-labels",
199     cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
200              "load or return with a nonzero label"),
201     cl::Hidden);
202 
203 // Experimental feature that inserts callbacks for certain data events.
204 // Currently callbacks are only inserted for loads, stores, memory transfers
205 // (i.e. memcpy and memmove), and comparisons.
206 //
207 // If this flag is set to true, the user must provide definitions for the
208 // following callback functions:
209 //   void __dfsan_load_callback(dfsan_label Label, void* addr);
210 //   void __dfsan_store_callback(dfsan_label Label, void* addr);
211 //   void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
212 //   void __dfsan_cmp_callback(dfsan_label CombinedLabel);
213 static cl::opt<bool> ClEventCallbacks(
214     "dfsan-event-callbacks",
215     cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
216     cl::Hidden, cl::init(false));
217 
218 // Experimental feature that inserts callbacks for conditionals, including:
219 // conditional branch, switch, select.
220 // This must be true for dfsan_set_conditional_callback() to have effect.
221 static cl::opt<bool> ClConditionalCallbacks(
222     "dfsan-conditional-callbacks",
223     cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden,
224     cl::init(false));
225 
226 // Experimental feature that inserts callbacks for data reaching a function,
227 // either via function arguments and loads.
228 // This must be true for dfsan_set_reaches_function_callback() to have effect.
229 static cl::opt<bool> ClReachesFunctionCallbacks(
230     "dfsan-reaches-function-callbacks",
231     cl::desc("Insert calls to callback functions on data reaching a function."),
232     cl::Hidden, cl::init(false));
233 
234 // Controls whether the pass tracks the control flow of select instructions.
235 static cl::opt<bool> ClTrackSelectControlFlow(
236     "dfsan-track-select-control-flow",
237     cl::desc("Propagate labels from condition values of select instructions "
238              "to results."),
239     cl::Hidden, cl::init(true));
240 
241 // TODO: This default value follows MSan. DFSan may use a different value.
242 static cl::opt<int> ClInstrumentWithCallThreshold(
243     "dfsan-instrument-with-call-threshold",
244     cl::desc("If the function being instrumented requires more than "
245              "this number of origin stores, use callbacks instead of "
246              "inline checks (-1 means never use callbacks)."),
247     cl::Hidden, cl::init(3500));
248 
249 // Controls how to track origins.
250 // * 0: do not track origins.
251 // * 1: track origins at memory store operations.
252 // * 2: track origins at memory load and store operations.
253 //      TODO: track callsites.
254 static cl::opt<int> ClTrackOrigins("dfsan-track-origins",
255                                    cl::desc("Track origins of labels"),
256                                    cl::Hidden, cl::init(0));
257 
258 static cl::opt<bool> ClIgnorePersonalityRoutine(
259     "dfsan-ignore-personality-routine",
260     cl::desc("If a personality routine is marked uninstrumented from the ABI "
261              "list, do not create a wrapper for it."),
262     cl::Hidden, cl::init(false));
263 
264 static StringRef getGlobalTypeString(const GlobalValue &G) {
265   // Types of GlobalVariables are always pointer types.
266   Type *GType = G.getValueType();
267   // For now we support excluding struct types only.
268   if (StructType *SGType = dyn_cast<StructType>(GType)) {
269     if (!SGType->isLiteral())
270       return SGType->getName();
271   }
272   return "<unknown type>";
273 }
274 
275 namespace {
276 
277 // Memory map parameters used in application-to-shadow address calculation.
278 // Offset = (Addr & ~AndMask) ^ XorMask
279 // Shadow = ShadowBase + Offset
280 // Origin = (OriginBase + Offset) & ~3ULL
281 struct MemoryMapParams {
282   uint64_t AndMask;
283   uint64_t XorMask;
284   uint64_t ShadowBase;
285   uint64_t OriginBase;
286 };
287 
288 } // end anonymous namespace
289 
290 // NOLINTBEGIN(readability-identifier-naming)
291 // aarch64 Linux
292 const MemoryMapParams Linux_AArch64_MemoryMapParams = {
293     0,               // AndMask (not used)
294     0x0B00000000000, // XorMask
295     0,               // ShadowBase (not used)
296     0x0200000000000, // OriginBase
297 };
298 
299 // x86_64 Linux
300 const MemoryMapParams Linux_X86_64_MemoryMapParams = {
301     0,              // AndMask (not used)
302     0x500000000000, // XorMask
303     0,              // ShadowBase (not used)
304     0x100000000000, // OriginBase
305 };
306 // NOLINTEND(readability-identifier-naming)
307 
308 // loongarch64 Linux
309 const MemoryMapParams Linux_LoongArch64_MemoryMapParams = {
310     0,              // AndMask (not used)
311     0x500000000000, // XorMask
312     0,              // ShadowBase (not used)
313     0x100000000000, // OriginBase
314 };
315 
316 namespace {
317 
318 class DFSanABIList {
319   std::unique_ptr<SpecialCaseList> SCL;
320 
321 public:
322   DFSanABIList() = default;
323 
324   void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
325 
326   /// Returns whether either this function or its source file are listed in the
327   /// given category.
328   bool isIn(const Function &F, StringRef Category) const {
329     return isIn(*F.getParent(), Category) ||
330            SCL->inSection("dataflow", "fun", F.getName(), Category);
331   }
332 
333   /// Returns whether this global alias is listed in the given category.
334   ///
335   /// If GA aliases a function, the alias's name is matched as a function name
336   /// would be.  Similarly, aliases of globals are matched like globals.
337   bool isIn(const GlobalAlias &GA, StringRef Category) const {
338     if (isIn(*GA.getParent(), Category))
339       return true;
340 
341     if (isa<FunctionType>(GA.getValueType()))
342       return SCL->inSection("dataflow", "fun", GA.getName(), Category);
343 
344     return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
345            SCL->inSection("dataflow", "type", getGlobalTypeString(GA),
346                           Category);
347   }
348 
349   /// Returns whether this module is listed in the given category.
350   bool isIn(const Module &M, StringRef Category) const {
351     return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
352   }
353 };
354 
355 /// TransformedFunction is used to express the result of transforming one
356 /// function type into another.  This struct is immutable.  It holds metadata
357 /// useful for updating calls of the old function to the new type.
358 struct TransformedFunction {
359   TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType,
360                       std::vector<unsigned> ArgumentIndexMapping)
361       : OriginalType(OriginalType), TransformedType(TransformedType),
362         ArgumentIndexMapping(ArgumentIndexMapping) {}
363 
364   // Disallow copies.
365   TransformedFunction(const TransformedFunction &) = delete;
366   TransformedFunction &operator=(const TransformedFunction &) = delete;
367 
368   // Allow moves.
369   TransformedFunction(TransformedFunction &&) = default;
370   TransformedFunction &operator=(TransformedFunction &&) = default;
371 
372   /// Type of the function before the transformation.
373   FunctionType *OriginalType;
374 
375   /// Type of the function after the transformation.
376   FunctionType *TransformedType;
377 
378   /// Transforming a function may change the position of arguments.  This
379   /// member records the mapping from each argument's old position to its new
380   /// position.  Argument positions are zero-indexed.  If the transformation
381   /// from F to F' made the first argument of F into the third argument of F',
382   /// then ArgumentIndexMapping[0] will equal 2.
383   std::vector<unsigned> ArgumentIndexMapping;
384 };
385 
386 /// Given function attributes from a call site for the original function,
387 /// return function attributes appropriate for a call to the transformed
388 /// function.
389 AttributeList
390 transformFunctionAttributes(const TransformedFunction &TransformedFunction,
391                             LLVMContext &Ctx, AttributeList CallSiteAttrs) {
392 
393   // Construct a vector of AttributeSet for each function argument.
394   std::vector<llvm::AttributeSet> ArgumentAttributes(
395       TransformedFunction.TransformedType->getNumParams());
396 
397   // Copy attributes from the parameter of the original function to the
398   // transformed version.  'ArgumentIndexMapping' holds the mapping from
399   // old argument position to new.
400   for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size();
401        I < IE; ++I) {
402     unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I];
403     ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I);
404   }
405 
406   // Copy annotations on varargs arguments.
407   for (unsigned I = TransformedFunction.OriginalType->getNumParams(),
408                 IE = CallSiteAttrs.getNumAttrSets();
409        I < IE; ++I) {
410     ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I));
411   }
412 
413   return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(),
414                             CallSiteAttrs.getRetAttrs(),
415                             llvm::ArrayRef(ArgumentAttributes));
416 }
417 
418 class DataFlowSanitizer {
419   friend struct DFSanFunction;
420   friend class DFSanVisitor;
421 
422   enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 };
423 
424   enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 };
425 
426   /// How should calls to uninstrumented functions be handled?
427   enum WrapperKind {
428     /// This function is present in an uninstrumented form but we don't know
429     /// how it should be handled.  Print a warning and call the function anyway.
430     /// Don't label the return value.
431     WK_Warning,
432 
433     /// This function does not write to (user-accessible) memory, and its return
434     /// value is unlabelled.
435     WK_Discard,
436 
437     /// This function does not write to (user-accessible) memory, and the label
438     /// of its return value is the union of the label of its arguments.
439     WK_Functional,
440 
441     /// Instead of calling the function, a custom wrapper __dfsw_F is called,
442     /// where F is the name of the function.  This function may wrap the
443     /// original function or provide its own implementation. WK_Custom uses an
444     /// extra pointer argument to return the shadow.  This allows the wrapped
445     /// form of the function type to be expressed in C.
446     WK_Custom
447   };
448 
449   Module *Mod;
450   LLVMContext *Ctx;
451   Type *Int8Ptr;
452   IntegerType *OriginTy;
453   PointerType *OriginPtrTy;
454   ConstantInt *ZeroOrigin;
455   /// The shadow type for all primitive types and vector types.
456   IntegerType *PrimitiveShadowTy;
457   PointerType *PrimitiveShadowPtrTy;
458   IntegerType *IntptrTy;
459   ConstantInt *ZeroPrimitiveShadow;
460   Constant *ArgTLS;
461   ArrayType *ArgOriginTLSTy;
462   Constant *ArgOriginTLS;
463   Constant *RetvalTLS;
464   Constant *RetvalOriginTLS;
465   FunctionType *DFSanUnionLoadFnTy;
466   FunctionType *DFSanLoadLabelAndOriginFnTy;
467   FunctionType *DFSanUnimplementedFnTy;
468   FunctionType *DFSanWrapperExternWeakNullFnTy;
469   FunctionType *DFSanSetLabelFnTy;
470   FunctionType *DFSanNonzeroLabelFnTy;
471   FunctionType *DFSanVarargWrapperFnTy;
472   FunctionType *DFSanConditionalCallbackFnTy;
473   FunctionType *DFSanConditionalCallbackOriginFnTy;
474   FunctionType *DFSanReachesFunctionCallbackFnTy;
475   FunctionType *DFSanReachesFunctionCallbackOriginFnTy;
476   FunctionType *DFSanCmpCallbackFnTy;
477   FunctionType *DFSanLoadStoreCallbackFnTy;
478   FunctionType *DFSanMemTransferCallbackFnTy;
479   FunctionType *DFSanChainOriginFnTy;
480   FunctionType *DFSanChainOriginIfTaintedFnTy;
481   FunctionType *DFSanMemOriginTransferFnTy;
482   FunctionType *DFSanMemShadowOriginTransferFnTy;
483   FunctionType *DFSanMemShadowOriginConditionalExchangeFnTy;
484   FunctionType *DFSanMaybeStoreOriginFnTy;
485   FunctionCallee DFSanUnionLoadFn;
486   FunctionCallee DFSanLoadLabelAndOriginFn;
487   FunctionCallee DFSanUnimplementedFn;
488   FunctionCallee DFSanWrapperExternWeakNullFn;
489   FunctionCallee DFSanSetLabelFn;
490   FunctionCallee DFSanNonzeroLabelFn;
491   FunctionCallee DFSanVarargWrapperFn;
492   FunctionCallee DFSanLoadCallbackFn;
493   FunctionCallee DFSanStoreCallbackFn;
494   FunctionCallee DFSanMemTransferCallbackFn;
495   FunctionCallee DFSanConditionalCallbackFn;
496   FunctionCallee DFSanConditionalCallbackOriginFn;
497   FunctionCallee DFSanReachesFunctionCallbackFn;
498   FunctionCallee DFSanReachesFunctionCallbackOriginFn;
499   FunctionCallee DFSanCmpCallbackFn;
500   FunctionCallee DFSanChainOriginFn;
501   FunctionCallee DFSanChainOriginIfTaintedFn;
502   FunctionCallee DFSanMemOriginTransferFn;
503   FunctionCallee DFSanMemShadowOriginTransferFn;
504   FunctionCallee DFSanMemShadowOriginConditionalExchangeFn;
505   FunctionCallee DFSanMaybeStoreOriginFn;
506   SmallPtrSet<Value *, 16> DFSanRuntimeFunctions;
507   MDNode *ColdCallWeights;
508   MDNode *OriginStoreWeights;
509   DFSanABIList ABIList;
510   DenseMap<Value *, Function *> UnwrappedFnMap;
511   AttributeMask ReadOnlyNoneAttrs;
512   StringSet<> CombineTaintLookupTableNames;
513 
514   /// Memory map parameters used in calculation mapping application addresses
515   /// to shadow addresses and origin addresses.
516   const MemoryMapParams *MapParams;
517 
518   Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB);
519   Value *getShadowAddress(Value *Addr, Instruction *Pos);
520   Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset);
521   std::pair<Value *, Value *>
522   getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos);
523   bool isInstrumented(const Function *F);
524   bool isInstrumented(const GlobalAlias *GA);
525   bool isForceZeroLabels(const Function *F);
526   TransformedFunction getCustomFunctionType(FunctionType *T);
527   WrapperKind getWrapperKind(Function *F);
528   void addGlobalNameSuffix(GlobalValue *GV);
529   void buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, Function *F);
530   Function *buildWrapperFunction(Function *F, StringRef NewFName,
531                                  GlobalValue::LinkageTypes NewFLink,
532                                  FunctionType *NewFT);
533   void initializeCallbackFunctions(Module &M);
534   void initializeRuntimeFunctions(Module &M);
535   bool initializeModule(Module &M);
536 
537   /// Advances \p OriginAddr to point to the next 32-bit origin and then loads
538   /// from it. Returns the origin's loaded value.
539   Value *loadNextOrigin(Instruction *Pos, Align OriginAlign,
540                         Value **OriginAddr);
541 
542   /// Returns whether the given load byte size is amenable to inlined
543   /// optimization patterns.
544   bool hasLoadSizeForFastPath(uint64_t Size);
545 
546   /// Returns whether the pass tracks origins. Supports only TLS ABI mode.
547   bool shouldTrackOrigins();
548 
549   /// Returns a zero constant with the shadow type of OrigTy.
550   ///
551   /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
552   /// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
553   /// getZeroShadow(other type) = i16(0)
554   Constant *getZeroShadow(Type *OrigTy);
555   /// Returns a zero constant with the shadow type of V's type.
556   Constant *getZeroShadow(Value *V);
557 
558   /// Checks if V is a zero shadow.
559   bool isZeroShadow(Value *V);
560 
561   /// Returns the shadow type of OrigTy.
562   ///
563   /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
564   /// getShadowTy([n x T]) = [n x getShadowTy(T)]
565   /// getShadowTy(other type) = i16
566   Type *getShadowTy(Type *OrigTy);
567   /// Returns the shadow type of V's type.
568   Type *getShadowTy(Value *V);
569 
570   const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes;
571 
572 public:
573   DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
574 
575   bool runImpl(Module &M,
576                llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI);
577 };
578 
579 struct DFSanFunction {
580   DataFlowSanitizer &DFS;
581   Function *F;
582   DominatorTree DT;
583   bool IsNativeABI;
584   bool IsForceZeroLabels;
585   TargetLibraryInfo &TLI;
586   AllocaInst *LabelReturnAlloca = nullptr;
587   AllocaInst *OriginReturnAlloca = nullptr;
588   DenseMap<Value *, Value *> ValShadowMap;
589   DenseMap<Value *, Value *> ValOriginMap;
590   DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
591   DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap;
592 
593   struct PHIFixupElement {
594     PHINode *Phi;
595     PHINode *ShadowPhi;
596     PHINode *OriginPhi;
597   };
598   std::vector<PHIFixupElement> PHIFixups;
599 
600   DenseSet<Instruction *> SkipInsts;
601   std::vector<Value *> NonZeroChecks;
602 
603   struct CachedShadow {
604     BasicBlock *Block; // The block where Shadow is defined.
605     Value *Shadow;
606   };
607   /// Maps a value to its latest shadow value in terms of domination tree.
608   DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
609   /// Maps a value to its latest collapsed shadow value it was converted to in
610   /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
611   /// used at a post process where CFG blocks are split. So it does not cache
612   /// BasicBlock like CachedShadows, but uses domination between values.
613   DenseMap<Value *, Value *> CachedCollapsedShadows;
614   DenseMap<Value *, std::set<Value *>> ShadowElements;
615 
616   DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI,
617                 bool IsForceZeroLabels, TargetLibraryInfo &TLI)
618       : DFS(DFS), F(F), IsNativeABI(IsNativeABI),
619         IsForceZeroLabels(IsForceZeroLabels), TLI(TLI) {
620     DT.recalculate(*F);
621   }
622 
623   /// Computes the shadow address for a given function argument.
624   ///
625   /// Shadow = ArgTLS+ArgOffset.
626   Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
627 
628   /// Computes the shadow address for a return value.
629   Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
630 
631   /// Computes the origin address for a given function argument.
632   ///
633   /// Origin = ArgOriginTLS[ArgNo].
634   Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB);
635 
636   /// Computes the origin address for a return value.
637   Value *getRetvalOriginTLS();
638 
639   Value *getOrigin(Value *V);
640   void setOrigin(Instruction *I, Value *Origin);
641   /// Generates IR to compute the origin of the last operand with a taint label.
642   Value *combineOperandOrigins(Instruction *Inst);
643   /// Before the instruction Pos, generates IR to compute the last origin with a
644   /// taint label. Labels and origins are from vectors Shadows and Origins
645   /// correspondingly. The generated IR is like
646   ///   Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0
647   /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be
648   /// zeros with other bitwidths.
649   Value *combineOrigins(const std::vector<Value *> &Shadows,
650                         const std::vector<Value *> &Origins, Instruction *Pos,
651                         ConstantInt *Zero = nullptr);
652 
653   Value *getShadow(Value *V);
654   void setShadow(Instruction *I, Value *Shadow);
655   /// Generates IR to compute the union of the two given shadows, inserting it
656   /// before Pos. The combined value is with primitive type.
657   Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
658   /// Combines the shadow values of V1 and V2, then converts the combined value
659   /// with primitive type into a shadow value with the original type T.
660   Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
661                                    Instruction *Pos);
662   Value *combineOperandShadows(Instruction *Inst);
663 
664   /// Generates IR to load shadow and origin corresponding to bytes [\p
665   /// Addr, \p Addr + \p Size), where addr has alignment \p
666   /// InstAlignment, and take the union of each of those shadows. The returned
667   /// shadow always has primitive type.
668   ///
669   /// When tracking loads is enabled, the returned origin is a chain at the
670   /// current stack if the returned shadow is tainted.
671   std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size,
672                                                Align InstAlignment,
673                                                Instruction *Pos);
674 
675   void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
676                                   Align InstAlignment, Value *PrimitiveShadow,
677                                   Value *Origin, Instruction *Pos);
678   /// Applies PrimitiveShadow to all primitive subtypes of T, returning
679   /// the expanded shadow value.
680   ///
681   /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
682   /// EFP([n x T], PS) = [n x EFP(T,PS)]
683   /// EFP(other types, PS) = PS
684   Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
685                                    Instruction *Pos);
686   /// Collapses Shadow into a single primitive shadow value, unioning all
687   /// primitive shadow values in the process. Returns the final primitive
688   /// shadow value.
689   ///
690   /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
691   /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
692   /// CTP(other types, PS) = PS
693   Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
694 
695   void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign,
696                                 Instruction *Pos);
697 
698   Align getShadowAlign(Align InstAlignment);
699 
700   // If ClConditionalCallbacks is enabled, insert a callback after a given
701   // branch instruction using the given conditional expression.
702   void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition);
703 
704   // If ClReachesFunctionCallbacks is enabled, insert a callback for each
705   // argument and load instruction.
706   void addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, Instruction &I,
707                                             Value *Data);
708 
709   bool isLookupTableConstant(Value *P);
710 
711 private:
712   /// Collapses the shadow with aggregate type into a single primitive shadow
713   /// value.
714   template <class AggregateType>
715   Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
716                                  IRBuilder<> &IRB);
717 
718   Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
719 
720   /// Returns the shadow value of an argument A.
721   Value *getShadowForTLSArgument(Argument *A);
722 
723   /// The fast path of loading shadows.
724   std::pair<Value *, Value *>
725   loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size,
726                  Align ShadowAlign, Align OriginAlign, Value *FirstOrigin,
727                  Instruction *Pos);
728 
729   Align getOriginAlign(Align InstAlignment);
730 
731   /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load
732   /// is __dfsan_load_label_and_origin. This function returns the union of all
733   /// labels and the origin of the first taint label. However this is an
734   /// additional call with many instructions. To ensure common cases are fast,
735   /// checks if it is possible to load labels and origins without using the
736   /// callback function.
737   ///
738   /// When enabling tracking load instructions, we always use
739   /// __dfsan_load_label_and_origin to reduce code size.
740   bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment);
741 
742   /// Returns a chain at the current stack with previous origin V.
743   Value *updateOrigin(Value *V, IRBuilder<> &IRB);
744 
745   /// Returns a chain at the current stack with previous origin V if Shadow is
746   /// tainted.
747   Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB);
748 
749   /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns
750   /// Origin otherwise.
751   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin);
752 
753   /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr +
754   /// Size).
755   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr,
756                    uint64_t StoreOriginSize, Align Alignment);
757 
758   /// Stores Origin in terms of its Shadow value.
759   /// * Do not write origins for zero shadows because we do not trace origins
760   ///   for untainted sinks.
761   /// * Use __dfsan_maybe_store_origin if there are too many origin store
762   ///   instrumentations.
763   void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow,
764                    Value *Origin, Value *StoreOriginAddr, Align InstAlignment);
765 
766   /// Convert a scalar value to an i1 by comparing with 0.
767   Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "");
768 
769   bool shouldInstrumentWithCall();
770 
771   /// Generates IR to load shadow and origin corresponding to bytes [\p
772   /// Addr, \p Addr + \p Size), where addr has alignment \p
773   /// InstAlignment, and take the union of each of those shadows. The returned
774   /// shadow always has primitive type.
775   std::pair<Value *, Value *>
776   loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size,
777                                    Align InstAlignment, Instruction *Pos);
778   int NumOriginStores = 0;
779 };
780 
781 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
782 public:
783   DFSanFunction &DFSF;
784 
785   DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
786 
787   const DataLayout &getDataLayout() const {
788     return DFSF.F->getParent()->getDataLayout();
789   }
790 
791   // Combines shadow values and origins for all of I's operands.
792   void visitInstOperands(Instruction &I);
793 
794   void visitUnaryOperator(UnaryOperator &UO);
795   void visitBinaryOperator(BinaryOperator &BO);
796   void visitBitCastInst(BitCastInst &BCI);
797   void visitCastInst(CastInst &CI);
798   void visitCmpInst(CmpInst &CI);
799   void visitLandingPadInst(LandingPadInst &LPI);
800   void visitGetElementPtrInst(GetElementPtrInst &GEPI);
801   void visitLoadInst(LoadInst &LI);
802   void visitStoreInst(StoreInst &SI);
803   void visitAtomicRMWInst(AtomicRMWInst &I);
804   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
805   void visitReturnInst(ReturnInst &RI);
806   void visitLibAtomicLoad(CallBase &CB);
807   void visitLibAtomicStore(CallBase &CB);
808   void visitLibAtomicExchange(CallBase &CB);
809   void visitLibAtomicCompareExchange(CallBase &CB);
810   void visitCallBase(CallBase &CB);
811   void visitPHINode(PHINode &PN);
812   void visitExtractElementInst(ExtractElementInst &I);
813   void visitInsertElementInst(InsertElementInst &I);
814   void visitShuffleVectorInst(ShuffleVectorInst &I);
815   void visitExtractValueInst(ExtractValueInst &I);
816   void visitInsertValueInst(InsertValueInst &I);
817   void visitAllocaInst(AllocaInst &I);
818   void visitSelectInst(SelectInst &I);
819   void visitMemSetInst(MemSetInst &I);
820   void visitMemTransferInst(MemTransferInst &I);
821   void visitBranchInst(BranchInst &BR);
822   void visitSwitchInst(SwitchInst &SW);
823 
824 private:
825   void visitCASOrRMW(Align InstAlignment, Instruction &I);
826 
827   // Returns false when this is an invoke of a custom function.
828   bool visitWrappedCallBase(Function &F, CallBase &CB);
829 
830   // Combines origins for all of I's operands.
831   void visitInstOperandOrigins(Instruction &I);
832 
833   void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
834                           IRBuilder<> &IRB);
835 
836   void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
837                           IRBuilder<> &IRB);
838 
839   Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB);
840   Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB);
841 };
842 
843 bool LibAtomicFunction(const Function &F) {
844   // This is a bit of a hack because TargetLibraryInfo is a function pass.
845   // The DFSan pass would need to be refactored to be function pass oriented
846   // (like MSan is) in order to fit together nicely with TargetLibraryInfo.
847   // We need this check to prevent them from being instrumented, or wrapped.
848   // Match on name and number of arguments.
849   if (!F.hasName() || F.isVarArg())
850     return false;
851   switch (F.arg_size()) {
852   case 4:
853     return F.getName() == "__atomic_load" || F.getName() == "__atomic_store";
854   case 5:
855     return F.getName() == "__atomic_exchange";
856   case 6:
857     return F.getName() == "__atomic_compare_exchange";
858   default:
859     return false;
860   }
861 }
862 
863 } // end anonymous namespace
864 
865 DataFlowSanitizer::DataFlowSanitizer(
866     const std::vector<std::string> &ABIListFiles) {
867   std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
868   llvm::append_range(AllABIListFiles, ClABIListFiles);
869   // FIXME: should we propagate vfs::FileSystem to this constructor?
870   ABIList.set(
871       SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
872 
873   for (StringRef v : ClCombineTaintLookupTables)
874     CombineTaintLookupTableNames.insert(v);
875 }
876 
877 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
878   SmallVector<Type *, 4> ArgTypes;
879 
880   // Some parameters of the custom function being constructed are
881   // parameters of T.  Record the mapping from parameters of T to
882   // parameters of the custom function, so that parameter attributes
883   // at call sites can be updated.
884   std::vector<unsigned> ArgumentIndexMapping;
885   for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) {
886     Type *ParamType = T->getParamType(I);
887     ArgumentIndexMapping.push_back(ArgTypes.size());
888     ArgTypes.push_back(ParamType);
889   }
890   for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
891     ArgTypes.push_back(PrimitiveShadowTy);
892   if (T->isVarArg())
893     ArgTypes.push_back(PrimitiveShadowPtrTy);
894   Type *RetType = T->getReturnType();
895   if (!RetType->isVoidTy())
896     ArgTypes.push_back(PrimitiveShadowPtrTy);
897 
898   if (shouldTrackOrigins()) {
899     for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
900       ArgTypes.push_back(OriginTy);
901     if (T->isVarArg())
902       ArgTypes.push_back(OriginPtrTy);
903     if (!RetType->isVoidTy())
904       ArgTypes.push_back(OriginPtrTy);
905   }
906 
907   return TransformedFunction(
908       T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
909       ArgumentIndexMapping);
910 }
911 
912 bool DataFlowSanitizer::isZeroShadow(Value *V) {
913   Type *T = V->getType();
914   if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
915     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
916       return CI->isZero();
917     return false;
918   }
919 
920   return isa<ConstantAggregateZero>(V);
921 }
922 
923 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) {
924   uint64_t ShadowSize = Size * ShadowWidthBytes;
925   return ShadowSize % 8 == 0 || ShadowSize == 4;
926 }
927 
928 bool DataFlowSanitizer::shouldTrackOrigins() {
929   static const bool ShouldTrackOrigins = ClTrackOrigins;
930   return ShouldTrackOrigins;
931 }
932 
933 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
934   if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
935     return ZeroPrimitiveShadow;
936   Type *ShadowTy = getShadowTy(OrigTy);
937   return ConstantAggregateZero::get(ShadowTy);
938 }
939 
940 Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
941   return getZeroShadow(V->getType());
942 }
943 
944 static Value *expandFromPrimitiveShadowRecursive(
945     Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
946     Value *PrimitiveShadow, IRBuilder<> &IRB) {
947   if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
948     return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
949 
950   if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
951     for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
952       Indices.push_back(Idx);
953       Shadow = expandFromPrimitiveShadowRecursive(
954           Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
955       Indices.pop_back();
956     }
957     return Shadow;
958   }
959 
960   if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
961     for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
962       Indices.push_back(Idx);
963       Shadow = expandFromPrimitiveShadowRecursive(
964           Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
965       Indices.pop_back();
966     }
967     return Shadow;
968   }
969   llvm_unreachable("Unexpected shadow type");
970 }
971 
972 bool DFSanFunction::shouldInstrumentWithCall() {
973   return ClInstrumentWithCallThreshold >= 0 &&
974          NumOriginStores >= ClInstrumentWithCallThreshold;
975 }
976 
977 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
978                                                 Instruction *Pos) {
979   Type *ShadowTy = DFS.getShadowTy(T);
980 
981   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
982     return PrimitiveShadow;
983 
984   if (DFS.isZeroShadow(PrimitiveShadow))
985     return DFS.getZeroShadow(ShadowTy);
986 
987   IRBuilder<> IRB(Pos);
988   SmallVector<unsigned, 4> Indices;
989   Value *Shadow = UndefValue::get(ShadowTy);
990   Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
991                                               PrimitiveShadow, IRB);
992 
993   // Caches the primitive shadow value that built the shadow value.
994   CachedCollapsedShadows[Shadow] = PrimitiveShadow;
995   return Shadow;
996 }
997 
998 template <class AggregateType>
999 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
1000                                               IRBuilder<> &IRB) {
1001   if (!AT->getNumElements())
1002     return DFS.ZeroPrimitiveShadow;
1003 
1004   Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
1005   Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
1006 
1007   for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
1008     Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1009     Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
1010     Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1011   }
1012   return Aggregator;
1013 }
1014 
1015 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
1016                                                 IRBuilder<> &IRB) {
1017   Type *ShadowTy = Shadow->getType();
1018   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
1019     return Shadow;
1020   if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
1021     return collapseAggregateShadow<>(AT, Shadow, IRB);
1022   if (StructType *ST = dyn_cast<StructType>(ShadowTy))
1023     return collapseAggregateShadow<>(ST, Shadow, IRB);
1024   llvm_unreachable("Unexpected shadow type");
1025 }
1026 
1027 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
1028                                                 Instruction *Pos) {
1029   Type *ShadowTy = Shadow->getType();
1030   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
1031     return Shadow;
1032 
1033   // Checks if the cached collapsed shadow value dominates Pos.
1034   Value *&CS = CachedCollapsedShadows[Shadow];
1035   if (CS && DT.dominates(CS, Pos))
1036     return CS;
1037 
1038   IRBuilder<> IRB(Pos);
1039   Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
1040   // Caches the converted primitive shadow value.
1041   CS = PrimitiveShadow;
1042   return PrimitiveShadow;
1043 }
1044 
1045 void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I,
1046                                                      Value *Condition) {
1047   if (!ClConditionalCallbacks) {
1048     return;
1049   }
1050   IRBuilder<> IRB(&I);
1051   Value *CondShadow = getShadow(Condition);
1052   CallInst *CI;
1053   if (DFS.shouldTrackOrigins()) {
1054     Value *CondOrigin = getOrigin(Condition);
1055     CI = IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn,
1056                         {CondShadow, CondOrigin});
1057   } else {
1058     CI = IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow});
1059   }
1060   CI->addParamAttr(0, Attribute::ZExt);
1061 }
1062 
1063 void DFSanFunction::addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB,
1064                                                          Instruction &I,
1065                                                          Value *Data) {
1066   if (!ClReachesFunctionCallbacks) {
1067     return;
1068   }
1069   const DebugLoc &dbgloc = I.getDebugLoc();
1070   Value *DataShadow = collapseToPrimitiveShadow(getShadow(Data), IRB);
1071   ConstantInt *CILine;
1072   llvm::Value *FilePathPtr;
1073 
1074   if (dbgloc.get() == nullptr) {
1075     CILine = llvm::ConstantInt::get(I.getContext(), llvm::APInt(32, 0));
1076     FilePathPtr = IRB.CreateGlobalStringPtr(
1077         I.getFunction()->getParent()->getSourceFileName());
1078   } else {
1079     CILine = llvm::ConstantInt::get(I.getContext(),
1080                                     llvm::APInt(32, dbgloc.getLine()));
1081     FilePathPtr =
1082         IRB.CreateGlobalStringPtr(dbgloc->getFilename());
1083   }
1084 
1085   llvm::Value *FunctionNamePtr =
1086       IRB.CreateGlobalStringPtr(I.getFunction()->getName());
1087 
1088   CallInst *CB;
1089   std::vector<Value *> args;
1090 
1091   if (DFS.shouldTrackOrigins()) {
1092     Value *DataOrigin = getOrigin(Data);
1093     args = { DataShadow, DataOrigin, FilePathPtr, CILine, FunctionNamePtr };
1094     CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackOriginFn, args);
1095   } else {
1096     args = { DataShadow, FilePathPtr, CILine, FunctionNamePtr };
1097     CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackFn, args);
1098   }
1099   CB->addParamAttr(0, Attribute::ZExt);
1100   CB->setDebugLoc(dbgloc);
1101 }
1102 
1103 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
1104   if (!OrigTy->isSized())
1105     return PrimitiveShadowTy;
1106   if (isa<IntegerType>(OrigTy))
1107     return PrimitiveShadowTy;
1108   if (isa<VectorType>(OrigTy))
1109     return PrimitiveShadowTy;
1110   if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
1111     return ArrayType::get(getShadowTy(AT->getElementType()),
1112                           AT->getNumElements());
1113   if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1114     SmallVector<Type *, 4> Elements;
1115     for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
1116       Elements.push_back(getShadowTy(ST->getElementType(I)));
1117     return StructType::get(*Ctx, Elements);
1118   }
1119   return PrimitiveShadowTy;
1120 }
1121 
1122 Type *DataFlowSanitizer::getShadowTy(Value *V) {
1123   return getShadowTy(V->getType());
1124 }
1125 
1126 bool DataFlowSanitizer::initializeModule(Module &M) {
1127   Triple TargetTriple(M.getTargetTriple());
1128   const DataLayout &DL = M.getDataLayout();
1129 
1130   if (TargetTriple.getOS() != Triple::Linux)
1131     report_fatal_error("unsupported operating system");
1132   switch (TargetTriple.getArch()) {
1133   case Triple::aarch64:
1134     MapParams = &Linux_AArch64_MemoryMapParams;
1135     break;
1136   case Triple::x86_64:
1137     MapParams = &Linux_X86_64_MemoryMapParams;
1138     break;
1139   case Triple::loongarch64:
1140     MapParams = &Linux_LoongArch64_MemoryMapParams;
1141     break;
1142   default:
1143     report_fatal_error("unsupported architecture");
1144   }
1145 
1146   Mod = &M;
1147   Ctx = &M.getContext();
1148   Int8Ptr = PointerType::getUnqual(*Ctx);
1149   OriginTy = IntegerType::get(*Ctx, OriginWidthBits);
1150   OriginPtrTy = PointerType::getUnqual(OriginTy);
1151   PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1152   PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
1153   IntptrTy = DL.getIntPtrType(*Ctx);
1154   ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
1155   ZeroOrigin = ConstantInt::getSigned(OriginTy, 0);
1156 
1157   Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1158   DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
1159                                          /*isVarArg=*/false);
1160   Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy};
1161   DFSanLoadLabelAndOriginFnTy =
1162       FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs,
1163                         /*isVarArg=*/false);
1164   DFSanUnimplementedFnTy = FunctionType::get(
1165       Type::getVoidTy(*Ctx), PointerType::getUnqual(*Ctx), /*isVarArg=*/false);
1166   Type *DFSanWrapperExternWeakNullArgs[2] = {Int8Ptr, Int8Ptr};
1167   DFSanWrapperExternWeakNullFnTy =
1168       FunctionType::get(Type::getVoidTy(*Ctx), DFSanWrapperExternWeakNullArgs,
1169                         /*isVarArg=*/false);
1170   Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy,
1171                                 PointerType::getUnqual(*Ctx), IntptrTy};
1172   DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
1173                                         DFSanSetLabelArgs, /*isVarArg=*/false);
1174   DFSanNonzeroLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), std::nullopt,
1175                                             /*isVarArg=*/false);
1176   DFSanVarargWrapperFnTy = FunctionType::get(
1177       Type::getVoidTy(*Ctx), PointerType::getUnqual(*Ctx), /*isVarArg=*/false);
1178   DFSanConditionalCallbackFnTy =
1179       FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1180                         /*isVarArg=*/false);
1181   Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy};
1182   DFSanConditionalCallbackOriginFnTy = FunctionType::get(
1183       Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs,
1184       /*isVarArg=*/false);
1185   Type *DFSanReachesFunctionCallbackArgs[4] = {PrimitiveShadowTy, Int8Ptr,
1186                                                OriginTy, Int8Ptr};
1187   DFSanReachesFunctionCallbackFnTy =
1188       FunctionType::get(Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackArgs,
1189                         /*isVarArg=*/false);
1190   Type *DFSanReachesFunctionCallbackOriginArgs[5] = {
1191       PrimitiveShadowTy, OriginTy, Int8Ptr, OriginTy, Int8Ptr};
1192   DFSanReachesFunctionCallbackOriginFnTy = FunctionType::get(
1193       Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackOriginArgs,
1194       /*isVarArg=*/false);
1195   DFSanCmpCallbackFnTy =
1196       FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1197                         /*isVarArg=*/false);
1198   DFSanChainOriginFnTy =
1199       FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false);
1200   Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy};
1201   DFSanChainOriginIfTaintedFnTy = FunctionType::get(
1202       OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false);
1203   Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits),
1204                                         Int8Ptr, IntptrTy, OriginTy};
1205   DFSanMaybeStoreOriginFnTy = FunctionType::get(
1206       Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false);
1207   Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1208   DFSanMemOriginTransferFnTy = FunctionType::get(
1209       Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false);
1210   Type *DFSanMemShadowOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1211   DFSanMemShadowOriginTransferFnTy =
1212       FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemShadowOriginTransferArgs,
1213                         /*isVarArg=*/false);
1214   Type *DFSanMemShadowOriginConditionalExchangeArgs[5] = {
1215       IntegerType::get(*Ctx, 8), Int8Ptr, Int8Ptr, Int8Ptr, IntptrTy};
1216   DFSanMemShadowOriginConditionalExchangeFnTy = FunctionType::get(
1217       Type::getVoidTy(*Ctx), DFSanMemShadowOriginConditionalExchangeArgs,
1218       /*isVarArg=*/false);
1219   Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
1220   DFSanLoadStoreCallbackFnTy =
1221       FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
1222                         /*isVarArg=*/false);
1223   Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1224   DFSanMemTransferCallbackFnTy =
1225       FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
1226                         /*isVarArg=*/false);
1227 
1228   ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1229   OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1230   return true;
1231 }
1232 
1233 bool DataFlowSanitizer::isInstrumented(const Function *F) {
1234   return !ABIList.isIn(*F, "uninstrumented");
1235 }
1236 
1237 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
1238   return !ABIList.isIn(*GA, "uninstrumented");
1239 }
1240 
1241 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) {
1242   return ABIList.isIn(*F, "force_zero_labels");
1243 }
1244 
1245 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
1246   if (ABIList.isIn(*F, "functional"))
1247     return WK_Functional;
1248   if (ABIList.isIn(*F, "discard"))
1249     return WK_Discard;
1250   if (ABIList.isIn(*F, "custom"))
1251     return WK_Custom;
1252 
1253   return WK_Warning;
1254 }
1255 
1256 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) {
1257   std::string GVName = std::string(GV->getName()), Suffix = ".dfsan";
1258   GV->setName(GVName + Suffix);
1259 
1260   // Try to change the name of the function in module inline asm.  We only do
1261   // this for specific asm directives, currently only ".symver", to try to avoid
1262   // corrupting asm which happens to contain the symbol name as a substring.
1263   // Note that the substitution for .symver assumes that the versioned symbol
1264   // also has an instrumented name.
1265   std::string Asm = GV->getParent()->getModuleInlineAsm();
1266   std::string SearchStr = ".symver " + GVName + ",";
1267   size_t Pos = Asm.find(SearchStr);
1268   if (Pos != std::string::npos) {
1269     Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ",");
1270     Pos = Asm.find('@');
1271 
1272     if (Pos == std::string::npos)
1273       report_fatal_error(Twine("unsupported .symver: ", Asm));
1274 
1275     Asm.replace(Pos, 1, Suffix + "@");
1276     GV->getParent()->setModuleInlineAsm(Asm);
1277   }
1278 }
1279 
1280 void DataFlowSanitizer::buildExternWeakCheckIfNeeded(IRBuilder<> &IRB,
1281                                                      Function *F) {
1282   // If the function we are wrapping was ExternWeak, it may be null.
1283   // The original code before calling this wrapper may have checked for null,
1284   // but replacing with a known-to-not-be-null wrapper can break this check.
1285   // When replacing uses of the extern weak function with the wrapper we try
1286   // to avoid replacing uses in conditionals, but this is not perfect.
1287   // In the case where we fail, and accidentally optimize out a null check
1288   // for a extern weak function, add a check here to help identify the issue.
1289   if (GlobalValue::isExternalWeakLinkage(F->getLinkage())) {
1290     std::vector<Value *> Args;
1291     Args.push_back(F);
1292     Args.push_back(IRB.CreateGlobalStringPtr(F->getName()));
1293     IRB.CreateCall(DFSanWrapperExternWeakNullFn, Args);
1294   }
1295 }
1296 
1297 Function *
1298 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
1299                                         GlobalValue::LinkageTypes NewFLink,
1300                                         FunctionType *NewFT) {
1301   FunctionType *FT = F->getFunctionType();
1302   Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
1303                                     NewFName, F->getParent());
1304   NewF->copyAttributesFrom(F);
1305   NewF->removeRetAttrs(
1306       AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
1307 
1308   BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
1309   if (F->isVarArg()) {
1310     NewF->removeFnAttr("split-stack");
1311     CallInst::Create(DFSanVarargWrapperFn,
1312                      IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
1313                      BB);
1314     new UnreachableInst(*Ctx, BB);
1315   } else {
1316     auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin());
1317     std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams());
1318 
1319     CallInst *CI = CallInst::Create(F, Args, "", BB);
1320     if (FT->getReturnType()->isVoidTy())
1321       ReturnInst::Create(*Ctx, BB);
1322     else
1323       ReturnInst::Create(*Ctx, CI, BB);
1324   }
1325 
1326   return NewF;
1327 }
1328 
1329 // Initialize DataFlowSanitizer runtime functions and declare them in the module
1330 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
1331   LLVMContext &C = M.getContext();
1332   {
1333     AttributeList AL;
1334     AL = AL.addFnAttribute(C, Attribute::NoUnwind);
1335     AL = AL.addFnAttribute(
1336         C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly()));
1337     AL = AL.addRetAttribute(C, Attribute::ZExt);
1338     DFSanUnionLoadFn =
1339         Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
1340   }
1341   {
1342     AttributeList AL;
1343     AL = AL.addFnAttribute(C, Attribute::NoUnwind);
1344     AL = AL.addFnAttribute(
1345         C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly()));
1346     AL = AL.addRetAttribute(C, Attribute::ZExt);
1347     DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction(
1348         "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL);
1349   }
1350   DFSanUnimplementedFn =
1351       Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
1352   DFSanWrapperExternWeakNullFn = Mod->getOrInsertFunction(
1353       "__dfsan_wrapper_extern_weak_null", DFSanWrapperExternWeakNullFnTy);
1354   {
1355     AttributeList AL;
1356     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1357     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1358     DFSanSetLabelFn =
1359         Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
1360   }
1361   DFSanNonzeroLabelFn =
1362       Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
1363   DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
1364                                                   DFSanVarargWrapperFnTy);
1365   {
1366     AttributeList AL;
1367     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1368     AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1369     DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin",
1370                                                   DFSanChainOriginFnTy, AL);
1371   }
1372   {
1373     AttributeList AL;
1374     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1375     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1376     AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1377     DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction(
1378         "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL);
1379   }
1380   DFSanMemOriginTransferFn = Mod->getOrInsertFunction(
1381       "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy);
1382 
1383   DFSanMemShadowOriginTransferFn = Mod->getOrInsertFunction(
1384       "__dfsan_mem_shadow_origin_transfer", DFSanMemShadowOriginTransferFnTy);
1385 
1386   DFSanMemShadowOriginConditionalExchangeFn =
1387       Mod->getOrInsertFunction("__dfsan_mem_shadow_origin_conditional_exchange",
1388                                DFSanMemShadowOriginConditionalExchangeFnTy);
1389 
1390   {
1391     AttributeList AL;
1392     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1393     AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
1394     DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction(
1395         "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL);
1396   }
1397 
1398   DFSanRuntimeFunctions.insert(
1399       DFSanUnionLoadFn.getCallee()->stripPointerCasts());
1400   DFSanRuntimeFunctions.insert(
1401       DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts());
1402   DFSanRuntimeFunctions.insert(
1403       DFSanUnimplementedFn.getCallee()->stripPointerCasts());
1404   DFSanRuntimeFunctions.insert(
1405       DFSanWrapperExternWeakNullFn.getCallee()->stripPointerCasts());
1406   DFSanRuntimeFunctions.insert(
1407       DFSanSetLabelFn.getCallee()->stripPointerCasts());
1408   DFSanRuntimeFunctions.insert(
1409       DFSanNonzeroLabelFn.getCallee()->stripPointerCasts());
1410   DFSanRuntimeFunctions.insert(
1411       DFSanVarargWrapperFn.getCallee()->stripPointerCasts());
1412   DFSanRuntimeFunctions.insert(
1413       DFSanLoadCallbackFn.getCallee()->stripPointerCasts());
1414   DFSanRuntimeFunctions.insert(
1415       DFSanStoreCallbackFn.getCallee()->stripPointerCasts());
1416   DFSanRuntimeFunctions.insert(
1417       DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts());
1418   DFSanRuntimeFunctions.insert(
1419       DFSanConditionalCallbackFn.getCallee()->stripPointerCasts());
1420   DFSanRuntimeFunctions.insert(
1421       DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts());
1422   DFSanRuntimeFunctions.insert(
1423       DFSanReachesFunctionCallbackFn.getCallee()->stripPointerCasts());
1424   DFSanRuntimeFunctions.insert(
1425       DFSanReachesFunctionCallbackOriginFn.getCallee()->stripPointerCasts());
1426   DFSanRuntimeFunctions.insert(
1427       DFSanCmpCallbackFn.getCallee()->stripPointerCasts());
1428   DFSanRuntimeFunctions.insert(
1429       DFSanChainOriginFn.getCallee()->stripPointerCasts());
1430   DFSanRuntimeFunctions.insert(
1431       DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts());
1432   DFSanRuntimeFunctions.insert(
1433       DFSanMemOriginTransferFn.getCallee()->stripPointerCasts());
1434   DFSanRuntimeFunctions.insert(
1435       DFSanMemShadowOriginTransferFn.getCallee()->stripPointerCasts());
1436   DFSanRuntimeFunctions.insert(
1437       DFSanMemShadowOriginConditionalExchangeFn.getCallee()
1438           ->stripPointerCasts());
1439   DFSanRuntimeFunctions.insert(
1440       DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts());
1441 }
1442 
1443 // Initializes event callback functions and declare them in the module
1444 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
1445   {
1446     AttributeList AL;
1447     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1448     DFSanLoadCallbackFn = Mod->getOrInsertFunction(
1449         "__dfsan_load_callback", DFSanLoadStoreCallbackFnTy, AL);
1450   }
1451   {
1452     AttributeList AL;
1453     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1454     DFSanStoreCallbackFn = Mod->getOrInsertFunction(
1455         "__dfsan_store_callback", DFSanLoadStoreCallbackFnTy, AL);
1456   }
1457   DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
1458       "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
1459   {
1460     AttributeList AL;
1461     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1462     DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback",
1463                                                   DFSanCmpCallbackFnTy, AL);
1464   }
1465   {
1466     AttributeList AL;
1467     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1468     DFSanConditionalCallbackFn = Mod->getOrInsertFunction(
1469         "__dfsan_conditional_callback", DFSanConditionalCallbackFnTy, AL);
1470   }
1471   {
1472     AttributeList AL;
1473     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1474     DFSanConditionalCallbackOriginFn =
1475         Mod->getOrInsertFunction("__dfsan_conditional_callback_origin",
1476                                  DFSanConditionalCallbackOriginFnTy, AL);
1477   }
1478   {
1479     AttributeList AL;
1480     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1481     DFSanReachesFunctionCallbackFn =
1482         Mod->getOrInsertFunction("__dfsan_reaches_function_callback",
1483                                  DFSanReachesFunctionCallbackFnTy, AL);
1484   }
1485   {
1486     AttributeList AL;
1487     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1488     DFSanReachesFunctionCallbackOriginFn =
1489         Mod->getOrInsertFunction("__dfsan_reaches_function_callback_origin",
1490                                  DFSanReachesFunctionCallbackOriginFnTy, AL);
1491   }
1492 }
1493 
1494 bool DataFlowSanitizer::runImpl(
1495     Module &M, llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1496   initializeModule(M);
1497 
1498   if (ABIList.isIn(M, "skip"))
1499     return false;
1500 
1501   const unsigned InitialGlobalSize = M.global_size();
1502   const unsigned InitialModuleSize = M.size();
1503 
1504   bool Changed = false;
1505 
1506   auto GetOrInsertGlobal = [this, &Changed](StringRef Name,
1507                                             Type *Ty) -> Constant * {
1508     Constant *C = Mod->getOrInsertGlobal(Name, Ty);
1509     if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
1510       Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
1511       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
1512     }
1513     return C;
1514   };
1515 
1516   // These globals must be kept in sync with the ones in dfsan.cpp.
1517   ArgTLS =
1518       GetOrInsertGlobal("__dfsan_arg_tls",
1519                         ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8));
1520   RetvalTLS = GetOrInsertGlobal(
1521       "__dfsan_retval_tls",
1522       ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8));
1523   ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS);
1524   ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy);
1525   RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy);
1526 
1527   (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] {
1528     Changed = true;
1529     return new GlobalVariable(
1530         M, OriginTy, true, GlobalValue::WeakODRLinkage,
1531         ConstantInt::getSigned(OriginTy,
1532                                shouldTrackOrigins() ? ClTrackOrigins : 0),
1533         "__dfsan_track_origins");
1534   });
1535 
1536   initializeCallbackFunctions(M);
1537   initializeRuntimeFunctions(M);
1538 
1539   std::vector<Function *> FnsToInstrument;
1540   SmallPtrSet<Function *, 2> FnsWithNativeABI;
1541   SmallPtrSet<Function *, 2> FnsWithForceZeroLabel;
1542   SmallPtrSet<Constant *, 1> PersonalityFns;
1543   for (Function &F : M)
1544     if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F) &&
1545         !LibAtomicFunction(F)) {
1546       FnsToInstrument.push_back(&F);
1547       if (F.hasPersonalityFn())
1548         PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts());
1549     }
1550 
1551   if (ClIgnorePersonalityRoutine) {
1552     for (auto *C : PersonalityFns) {
1553       assert(isa<Function>(C) && "Personality routine is not a function!");
1554       Function *F = cast<Function>(C);
1555       if (!isInstrumented(F))
1556         llvm::erase(FnsToInstrument, F);
1557     }
1558   }
1559 
1560   // Give function aliases prefixes when necessary, and build wrappers where the
1561   // instrumentedness is inconsistent.
1562   for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) {
1563     // Don't stop on weak.  We assume people aren't playing games with the
1564     // instrumentedness of overridden weak aliases.
1565     auto *F = dyn_cast<Function>(GA.getAliaseeObject());
1566     if (!F)
1567       continue;
1568 
1569     bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F);
1570     if (GAInst && FInst) {
1571       addGlobalNameSuffix(&GA);
1572     } else if (GAInst != FInst) {
1573       // Non-instrumented alias of an instrumented function, or vice versa.
1574       // Replace the alias with a native-ABI wrapper of the aliasee.  The pass
1575       // below will take care of instrumenting it.
1576       Function *NewF =
1577           buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType());
1578       GA.replaceAllUsesWith(NewF);
1579       NewF->takeName(&GA);
1580       GA.eraseFromParent();
1581       FnsToInstrument.push_back(NewF);
1582     }
1583   }
1584 
1585   // TODO: This could be more precise.
1586   ReadOnlyNoneAttrs.addAttribute(Attribute::Memory);
1587 
1588   // First, change the ABI of every function in the module.  ABI-listed
1589   // functions keep their original ABI and get a wrapper function.
1590   for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(),
1591                                          FE = FnsToInstrument.end();
1592        FI != FE; ++FI) {
1593     Function &F = **FI;
1594     FunctionType *FT = F.getFunctionType();
1595 
1596     bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
1597                               FT->getReturnType()->isVoidTy());
1598 
1599     if (isInstrumented(&F)) {
1600       if (isForceZeroLabels(&F))
1601         FnsWithForceZeroLabel.insert(&F);
1602 
1603       // Instrumented functions get a '.dfsan' suffix.  This allows us to more
1604       // easily identify cases of mismatching ABIs. This naming scheme is
1605       // mangling-compatible (see Itanium ABI), using a vendor-specific suffix.
1606       addGlobalNameSuffix(&F);
1607     } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
1608       // Build a wrapper function for F.  The wrapper simply calls F, and is
1609       // added to FnsToInstrument so that any instrumentation according to its
1610       // WrapperKind is done in the second pass below.
1611 
1612       // If the function being wrapped has local linkage, then preserve the
1613       // function's linkage in the wrapper function.
1614       GlobalValue::LinkageTypes WrapperLinkage =
1615           F.hasLocalLinkage() ? F.getLinkage()
1616                               : GlobalValue::LinkOnceODRLinkage;
1617 
1618       Function *NewF = buildWrapperFunction(
1619           &F,
1620           (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) +
1621               std::string(F.getName()),
1622           WrapperLinkage, FT);
1623       NewF->removeFnAttrs(ReadOnlyNoneAttrs);
1624 
1625       // Extern weak functions can sometimes be null at execution time.
1626       // Code will sometimes check if an extern weak function is null.
1627       // This could look something like:
1628       //   declare extern_weak i8 @my_func(i8)
1629       //   br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func,
1630       //   label %avoid_my_func
1631       // The @"dfsw$my_func" wrapper is never null, so if we replace this use
1632       // in the comparison, the icmp will simplify to false and we have
1633       // accidentally optimized away a null check that is necessary.
1634       // This can lead to a crash when the null extern_weak my_func is called.
1635       //
1636       // To prevent (the most common pattern of) this problem,
1637       // do not replace uses in comparisons with the wrapper.
1638       // We definitely want to replace uses in call instructions.
1639       // Other uses (e.g. store the function address somewhere) might be
1640       // called or compared or both - this case may not be handled correctly.
1641       // We will default to replacing with wrapper in cases we are unsure.
1642       auto IsNotCmpUse = [](Use &U) -> bool {
1643         User *Usr = U.getUser();
1644         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1645           // This is the most common case for icmp ne null
1646           if (CE->getOpcode() == Instruction::ICmp) {
1647             return false;
1648           }
1649         }
1650         if (Instruction *I = dyn_cast<Instruction>(Usr)) {
1651           if (I->getOpcode() == Instruction::ICmp) {
1652             return false;
1653           }
1654         }
1655         return true;
1656       };
1657       F.replaceUsesWithIf(NewF, IsNotCmpUse);
1658 
1659       UnwrappedFnMap[NewF] = &F;
1660       *FI = NewF;
1661 
1662       if (!F.isDeclaration()) {
1663         // This function is probably defining an interposition of an
1664         // uninstrumented function and hence needs to keep the original ABI.
1665         // But any functions it may call need to use the instrumented ABI, so
1666         // we instrument it in a mode which preserves the original ABI.
1667         FnsWithNativeABI.insert(&F);
1668 
1669         // This code needs to rebuild the iterators, as they may be invalidated
1670         // by the push_back, taking care that the new range does not include
1671         // any functions added by this code.
1672         size_t N = FI - FnsToInstrument.begin(),
1673                Count = FE - FnsToInstrument.begin();
1674         FnsToInstrument.push_back(&F);
1675         FI = FnsToInstrument.begin() + N;
1676         FE = FnsToInstrument.begin() + Count;
1677       }
1678       // Hopefully, nobody will try to indirectly call a vararg
1679       // function... yet.
1680     } else if (FT->isVarArg()) {
1681       UnwrappedFnMap[&F] = &F;
1682       *FI = nullptr;
1683     }
1684   }
1685 
1686   for (Function *F : FnsToInstrument) {
1687     if (!F || F->isDeclaration())
1688       continue;
1689 
1690     removeUnreachableBlocks(*F);
1691 
1692     DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F),
1693                        FnsWithForceZeroLabel.count(F), GetTLI(*F));
1694 
1695     if (ClReachesFunctionCallbacks) {
1696       // Add callback for arguments reaching this function.
1697       for (auto &FArg : F->args()) {
1698         Instruction *Next = &F->getEntryBlock().front();
1699         Value *FArgShadow = DFSF.getShadow(&FArg);
1700         if (isZeroShadow(FArgShadow))
1701           continue;
1702         if (Instruction *FArgShadowInst = dyn_cast<Instruction>(FArgShadow)) {
1703           Next = FArgShadowInst->getNextNode();
1704         }
1705         if (shouldTrackOrigins()) {
1706           if (Instruction *Origin =
1707                   dyn_cast<Instruction>(DFSF.getOrigin(&FArg))) {
1708             // Ensure IRB insertion point is after loads for shadow and origin.
1709             Instruction *OriginNext = Origin->getNextNode();
1710             if (Next->comesBefore(OriginNext)) {
1711               Next = OriginNext;
1712             }
1713           }
1714         }
1715         IRBuilder<> IRB(Next);
1716         DFSF.addReachesFunctionCallbacksIfEnabled(IRB, *Next, &FArg);
1717       }
1718     }
1719 
1720     // DFSanVisitor may create new basic blocks, which confuses df_iterator.
1721     // Build a copy of the list before iterating over it.
1722     SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock()));
1723 
1724     for (BasicBlock *BB : BBList) {
1725       Instruction *Inst = &BB->front();
1726       while (true) {
1727         // DFSanVisitor may split the current basic block, changing the current
1728         // instruction's next pointer and moving the next instruction to the
1729         // tail block from which we should continue.
1730         Instruction *Next = Inst->getNextNode();
1731         // DFSanVisitor may delete Inst, so keep track of whether it was a
1732         // terminator.
1733         bool IsTerminator = Inst->isTerminator();
1734         if (!DFSF.SkipInsts.count(Inst))
1735           DFSanVisitor(DFSF).visit(Inst);
1736         if (IsTerminator)
1737           break;
1738         Inst = Next;
1739       }
1740     }
1741 
1742     // We will not necessarily be able to compute the shadow for every phi node
1743     // until we have visited every block.  Therefore, the code that handles phi
1744     // nodes adds them to the PHIFixups list so that they can be properly
1745     // handled here.
1746     for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) {
1747       for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N;
1748            ++Val) {
1749         P.ShadowPhi->setIncomingValue(
1750             Val, DFSF.getShadow(P.Phi->getIncomingValue(Val)));
1751         if (P.OriginPhi)
1752           P.OriginPhi->setIncomingValue(
1753               Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val)));
1754       }
1755     }
1756 
1757     // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
1758     // places (i.e. instructions in basic blocks we haven't even begun visiting
1759     // yet).  To make our life easier, do this work in a pass after the main
1760     // instrumentation.
1761     if (ClDebugNonzeroLabels) {
1762       for (Value *V : DFSF.NonZeroChecks) {
1763         Instruction *Pos;
1764         if (Instruction *I = dyn_cast<Instruction>(V))
1765           Pos = I->getNextNode();
1766         else
1767           Pos = &DFSF.F->getEntryBlock().front();
1768         while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
1769           Pos = Pos->getNextNode();
1770         IRBuilder<> IRB(Pos);
1771         Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
1772         Value *Ne =
1773             IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
1774         BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1775             Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
1776         IRBuilder<> ThenIRB(BI);
1777         ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
1778       }
1779     }
1780   }
1781 
1782   return Changed || !FnsToInstrument.empty() ||
1783          M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
1784 }
1785 
1786 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
1787   Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
1788   if (ArgOffset)
1789     Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
1790   return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
1791                             "_dfsarg");
1792 }
1793 
1794 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
1795   return IRB.CreatePointerCast(
1796       DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
1797 }
1798 
1799 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; }
1800 
1801 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) {
1802   return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo,
1803                                 "_dfsarg_o");
1804 }
1805 
1806 Value *DFSanFunction::getOrigin(Value *V) {
1807   assert(DFS.shouldTrackOrigins());
1808   if (!isa<Argument>(V) && !isa<Instruction>(V))
1809     return DFS.ZeroOrigin;
1810   Value *&Origin = ValOriginMap[V];
1811   if (!Origin) {
1812     if (Argument *A = dyn_cast<Argument>(V)) {
1813       if (IsNativeABI)
1814         return DFS.ZeroOrigin;
1815       if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) {
1816         Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin();
1817         IRBuilder<> IRB(ArgOriginTLSPos);
1818         Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB);
1819         Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr);
1820       } else {
1821         // Overflow
1822         Origin = DFS.ZeroOrigin;
1823       }
1824     } else {
1825       Origin = DFS.ZeroOrigin;
1826     }
1827   }
1828   return Origin;
1829 }
1830 
1831 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) {
1832   if (!DFS.shouldTrackOrigins())
1833     return;
1834   assert(!ValOriginMap.count(I));
1835   assert(Origin->getType() == DFS.OriginTy);
1836   ValOriginMap[I] = Origin;
1837 }
1838 
1839 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
1840   unsigned ArgOffset = 0;
1841   const DataLayout &DL = F->getParent()->getDataLayout();
1842   for (auto &FArg : F->args()) {
1843     if (!FArg.getType()->isSized()) {
1844       if (A == &FArg)
1845         break;
1846       continue;
1847     }
1848 
1849     unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
1850     if (A != &FArg) {
1851       ArgOffset += alignTo(Size, ShadowTLSAlignment);
1852       if (ArgOffset > ArgTLSSize)
1853         break; // ArgTLS overflows, uses a zero shadow.
1854       continue;
1855     }
1856 
1857     if (ArgOffset + Size > ArgTLSSize)
1858       break; // ArgTLS overflows, uses a zero shadow.
1859 
1860     Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
1861     IRBuilder<> IRB(ArgTLSPos);
1862     Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
1863     return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
1864                                  ShadowTLSAlignment);
1865   }
1866 
1867   return DFS.getZeroShadow(A);
1868 }
1869 
1870 Value *DFSanFunction::getShadow(Value *V) {
1871   if (!isa<Argument>(V) && !isa<Instruction>(V))
1872     return DFS.getZeroShadow(V);
1873   if (IsForceZeroLabels)
1874     return DFS.getZeroShadow(V);
1875   Value *&Shadow = ValShadowMap[V];
1876   if (!Shadow) {
1877     if (Argument *A = dyn_cast<Argument>(V)) {
1878       if (IsNativeABI)
1879         return DFS.getZeroShadow(V);
1880       Shadow = getShadowForTLSArgument(A);
1881       NonZeroChecks.push_back(Shadow);
1882     } else {
1883       Shadow = DFS.getZeroShadow(V);
1884     }
1885   }
1886   return Shadow;
1887 }
1888 
1889 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1890   assert(!ValShadowMap.count(I));
1891   ValShadowMap[I] = Shadow;
1892 }
1893 
1894 /// Compute the integer shadow offset that corresponds to a given
1895 /// application address.
1896 ///
1897 /// Offset = (Addr & ~AndMask) ^ XorMask
1898 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) {
1899   assert(Addr != RetvalTLS && "Reinstrumenting?");
1900   Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
1901 
1902   uint64_t AndMask = MapParams->AndMask;
1903   if (AndMask)
1904     OffsetLong =
1905         IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask));
1906 
1907   uint64_t XorMask = MapParams->XorMask;
1908   if (XorMask)
1909     OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask));
1910   return OffsetLong;
1911 }
1912 
1913 std::pair<Value *, Value *>
1914 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment,
1915                                           Instruction *Pos) {
1916   // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL
1917   IRBuilder<> IRB(Pos);
1918   Value *ShadowOffset = getShadowOffset(Addr, IRB);
1919   Value *ShadowLong = ShadowOffset;
1920   uint64_t ShadowBase = MapParams->ShadowBase;
1921   if (ShadowBase != 0) {
1922     ShadowLong =
1923         IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase));
1924   }
1925   IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1926   Value *ShadowPtr =
1927       IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1928   Value *OriginPtr = nullptr;
1929   if (shouldTrackOrigins()) {
1930     Value *OriginLong = ShadowOffset;
1931     uint64_t OriginBase = MapParams->OriginBase;
1932     if (OriginBase != 0)
1933       OriginLong =
1934           IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase));
1935     const Align Alignment = llvm::assumeAligned(InstAlignment.value());
1936     // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB.
1937     // So Mask is unnecessary.
1938     if (Alignment < MinOriginAlignment) {
1939       uint64_t Mask = MinOriginAlignment.value() - 1;
1940       OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask));
1941     }
1942     OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy);
1943   }
1944   return std::make_pair(ShadowPtr, OriginPtr);
1945 }
1946 
1947 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos,
1948                                            Value *ShadowOffset) {
1949   IRBuilder<> IRB(Pos);
1950   return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy);
1951 }
1952 
1953 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1954   IRBuilder<> IRB(Pos);
1955   Value *ShadowOffset = getShadowOffset(Addr, IRB);
1956   return getShadowAddress(Addr, Pos, ShadowOffset);
1957 }
1958 
1959 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
1960                                                 Instruction *Pos) {
1961   Value *PrimitiveValue = combineShadows(V1, V2, Pos);
1962   return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
1963 }
1964 
1965 // Generates IR to compute the union of the two given shadows, inserting it
1966 // before Pos. The combined value is with primitive type.
1967 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1968   if (DFS.isZeroShadow(V1))
1969     return collapseToPrimitiveShadow(V2, Pos);
1970   if (DFS.isZeroShadow(V2))
1971     return collapseToPrimitiveShadow(V1, Pos);
1972   if (V1 == V2)
1973     return collapseToPrimitiveShadow(V1, Pos);
1974 
1975   auto V1Elems = ShadowElements.find(V1);
1976   auto V2Elems = ShadowElements.find(V2);
1977   if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1978     if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1979                       V2Elems->second.begin(), V2Elems->second.end())) {
1980       return collapseToPrimitiveShadow(V1, Pos);
1981     }
1982     if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1983                       V1Elems->second.begin(), V1Elems->second.end())) {
1984       return collapseToPrimitiveShadow(V2, Pos);
1985     }
1986   } else if (V1Elems != ShadowElements.end()) {
1987     if (V1Elems->second.count(V2))
1988       return collapseToPrimitiveShadow(V1, Pos);
1989   } else if (V2Elems != ShadowElements.end()) {
1990     if (V2Elems->second.count(V1))
1991       return collapseToPrimitiveShadow(V2, Pos);
1992   }
1993 
1994   auto Key = std::make_pair(V1, V2);
1995   if (V1 > V2)
1996     std::swap(Key.first, Key.second);
1997   CachedShadow &CCS = CachedShadows[Key];
1998   if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1999     return CCS.Shadow;
2000 
2001   // Converts inputs shadows to shadows with primitive types.
2002   Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
2003   Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
2004 
2005   IRBuilder<> IRB(Pos);
2006   CCS.Block = Pos->getParent();
2007   CCS.Shadow = IRB.CreateOr(PV1, PV2);
2008 
2009   std::set<Value *> UnionElems;
2010   if (V1Elems != ShadowElements.end()) {
2011     UnionElems = V1Elems->second;
2012   } else {
2013     UnionElems.insert(V1);
2014   }
2015   if (V2Elems != ShadowElements.end()) {
2016     UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
2017   } else {
2018     UnionElems.insert(V2);
2019   }
2020   ShadowElements[CCS.Shadow] = std::move(UnionElems);
2021 
2022   return CCS.Shadow;
2023 }
2024 
2025 // A convenience function which folds the shadows of each of the operands
2026 // of the provided instruction Inst, inserting the IR before Inst.  Returns
2027 // the computed union Value.
2028 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
2029   if (Inst->getNumOperands() == 0)
2030     return DFS.getZeroShadow(Inst);
2031 
2032   Value *Shadow = getShadow(Inst->getOperand(0));
2033   for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I)
2034     Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst);
2035 
2036   return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
2037 }
2038 
2039 void DFSanVisitor::visitInstOperands(Instruction &I) {
2040   Value *CombinedShadow = DFSF.combineOperandShadows(&I);
2041   DFSF.setShadow(&I, CombinedShadow);
2042   visitInstOperandOrigins(I);
2043 }
2044 
2045 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows,
2046                                      const std::vector<Value *> &Origins,
2047                                      Instruction *Pos, ConstantInt *Zero) {
2048   assert(Shadows.size() == Origins.size());
2049   size_t Size = Origins.size();
2050   if (Size == 0)
2051     return DFS.ZeroOrigin;
2052   Value *Origin = nullptr;
2053   if (!Zero)
2054     Zero = DFS.ZeroPrimitiveShadow;
2055   for (size_t I = 0; I != Size; ++I) {
2056     Value *OpOrigin = Origins[I];
2057     Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin);
2058     if (ConstOpOrigin && ConstOpOrigin->isNullValue())
2059       continue;
2060     if (!Origin) {
2061       Origin = OpOrigin;
2062       continue;
2063     }
2064     Value *OpShadow = Shadows[I];
2065     Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos);
2066     IRBuilder<> IRB(Pos);
2067     Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero);
2068     Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2069   }
2070   return Origin ? Origin : DFS.ZeroOrigin;
2071 }
2072 
2073 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) {
2074   size_t Size = Inst->getNumOperands();
2075   std::vector<Value *> Shadows(Size);
2076   std::vector<Value *> Origins(Size);
2077   for (unsigned I = 0; I != Size; ++I) {
2078     Shadows[I] = getShadow(Inst->getOperand(I));
2079     Origins[I] = getOrigin(Inst->getOperand(I));
2080   }
2081   return combineOrigins(Shadows, Origins, Inst);
2082 }
2083 
2084 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) {
2085   if (!DFSF.DFS.shouldTrackOrigins())
2086     return;
2087   Value *CombinedOrigin = DFSF.combineOperandOrigins(&I);
2088   DFSF.setOrigin(&I, CombinedOrigin);
2089 }
2090 
2091 Align DFSanFunction::getShadowAlign(Align InstAlignment) {
2092   const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1);
2093   return Align(Alignment.value() * DFS.ShadowWidthBytes);
2094 }
2095 
2096 Align DFSanFunction::getOriginAlign(Align InstAlignment) {
2097   const Align Alignment = llvm::assumeAligned(InstAlignment.value());
2098   return Align(std::max(MinOriginAlignment, Alignment));
2099 }
2100 
2101 bool DFSanFunction::isLookupTableConstant(Value *P) {
2102   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts()))
2103     if (GV->isConstant() && GV->hasName())
2104       return DFS.CombineTaintLookupTableNames.count(GV->getName());
2105 
2106   return false;
2107 }
2108 
2109 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size,
2110                                                   Align InstAlignment) {
2111   // When enabling tracking load instructions, we always use
2112   // __dfsan_load_label_and_origin to reduce code size.
2113   if (ClTrackOrigins == 2)
2114     return true;
2115 
2116   assert(Size != 0);
2117   // * if Size == 1, it is sufficient to load its origin aligned at 4.
2118   // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to
2119   //   load its origin aligned at 4. If not, although origins may be lost, it
2120   //   should not happen very often.
2121   // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When
2122   //   Size % 4 == 0, it is more efficient to load origins without callbacks.
2123   // * Otherwise we use __dfsan_load_label_and_origin.
2124   // This should ensure that common cases run efficiently.
2125   if (Size <= 2)
2126     return false;
2127 
2128   const Align Alignment = llvm::assumeAligned(InstAlignment.value());
2129   return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size);
2130 }
2131 
2132 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign,
2133                                          Value **OriginAddr) {
2134   IRBuilder<> IRB(Pos);
2135   *OriginAddr =
2136       IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1));
2137   return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign);
2138 }
2139 
2140 std::pair<Value *, Value *> DFSanFunction::loadShadowFast(
2141     Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign,
2142     Align OriginAlign, Value *FirstOrigin, Instruction *Pos) {
2143   const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2144   const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
2145 
2146   assert(Size >= 4 && "Not large enough load size for fast path!");
2147 
2148   // Used for origin tracking.
2149   std::vector<Value *> Shadows;
2150   std::vector<Value *> Origins;
2151 
2152   // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20)
2153   // but this function is only used in a subset of cases that make it possible
2154   // to optimize the instrumentation.
2155   //
2156   // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow
2157   // per byte) is either:
2158   // - a multiple of 8  (common)
2159   // - equal to 4       (only for load32)
2160   //
2161   // For the second case, we can fit the wide shadow in a 32-bit integer. In all
2162   // other cases, we use a 64-bit integer to hold the wide shadow.
2163   Type *WideShadowTy =
2164       ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
2165 
2166   IRBuilder<> IRB(Pos);
2167   Value *CombinedWideShadow =
2168       IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign);
2169 
2170   unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
2171   const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
2172 
2173   auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) {
2174     if (BytesPerWideShadow > 4) {
2175       assert(BytesPerWideShadow == 8);
2176       // The wide shadow relates to two origin pointers: one for the first four
2177       // application bytes, and one for the latest four. We use a left shift to
2178       // get just the shadow bytes that correspond to the first origin pointer,
2179       // and then the entire shadow for the second origin pointer (which will be
2180       // chosen by combineOrigins() iff the least-significant half of the wide
2181       // shadow was empty but the other half was not).
2182       Value *WideShadowLo = IRB.CreateShl(
2183           WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2));
2184       Shadows.push_back(WideShadow);
2185       Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr));
2186 
2187       Shadows.push_back(WideShadowLo);
2188       Origins.push_back(Origin);
2189     } else {
2190       Shadows.push_back(WideShadow);
2191       Origins.push_back(Origin);
2192     }
2193   };
2194 
2195   if (ShouldTrackOrigins)
2196     AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin);
2197 
2198   // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly;
2199   // then OR individual shadows within the combined WideShadow by binary ORing.
2200   // This is fewer instructions than ORing shadows individually, since it
2201   // needs logN shift/or instructions (N being the bytes of the combined wide
2202   // shadow).
2203   for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
2204        ByteOfs += BytesPerWideShadow) {
2205     ShadowAddr = IRB.CreateGEP(WideShadowTy, ShadowAddr,
2206                                ConstantInt::get(DFS.IntptrTy, 1));
2207     Value *NextWideShadow =
2208         IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign);
2209     CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
2210     if (ShouldTrackOrigins) {
2211       Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr);
2212       AppendWideShadowAndOrigin(NextWideShadow, NextOrigin);
2213     }
2214   }
2215   for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits;
2216        Width >>= 1) {
2217     Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
2218     CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
2219   }
2220   return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy),
2221           ShouldTrackOrigins
2222               ? combineOrigins(Shadows, Origins, Pos,
2223                                ConstantInt::getSigned(IRB.getInt64Ty(), 0))
2224               : DFS.ZeroOrigin};
2225 }
2226 
2227 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking(
2228     Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) {
2229   const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2230 
2231   // Non-escaped loads.
2232   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2233     const auto SI = AllocaShadowMap.find(AI);
2234     if (SI != AllocaShadowMap.end()) {
2235       IRBuilder<> IRB(Pos);
2236       Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second);
2237       const auto OI = AllocaOriginMap.find(AI);
2238       assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end());
2239       return {ShadowLI, ShouldTrackOrigins
2240                             ? IRB.CreateLoad(DFS.OriginTy, OI->second)
2241                             : nullptr};
2242     }
2243   }
2244 
2245   // Load from constant addresses.
2246   SmallVector<const Value *, 2> Objs;
2247   getUnderlyingObjects(Addr, Objs);
2248   bool AllConstants = true;
2249   for (const Value *Obj : Objs) {
2250     if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
2251       continue;
2252     if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
2253       continue;
2254 
2255     AllConstants = false;
2256     break;
2257   }
2258   if (AllConstants)
2259     return {DFS.ZeroPrimitiveShadow,
2260             ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2261 
2262   if (Size == 0)
2263     return {DFS.ZeroPrimitiveShadow,
2264             ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2265 
2266   // Use callback to load if this is not an optimizable case for origin
2267   // tracking.
2268   if (ShouldTrackOrigins &&
2269       useCallbackLoadLabelAndOrigin(Size, InstAlignment)) {
2270     IRBuilder<> IRB(Pos);
2271     CallInst *Call =
2272         IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn,
2273                        {Addr, ConstantInt::get(DFS.IntptrTy, Size)});
2274     Call->addRetAttr(Attribute::ZExt);
2275     return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits),
2276                             DFS.PrimitiveShadowTy),
2277             IRB.CreateTrunc(Call, DFS.OriginTy)};
2278   }
2279 
2280   // Other cases that support loading shadows or origins in a fast way.
2281   Value *ShadowAddr, *OriginAddr;
2282   std::tie(ShadowAddr, OriginAddr) =
2283       DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2284 
2285   const Align ShadowAlign = getShadowAlign(InstAlignment);
2286   const Align OriginAlign = getOriginAlign(InstAlignment);
2287   Value *Origin = nullptr;
2288   if (ShouldTrackOrigins) {
2289     IRBuilder<> IRB(Pos);
2290     Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign);
2291   }
2292 
2293   // When the byte size is small enough, we can load the shadow directly with
2294   // just a few instructions.
2295   switch (Size) {
2296   case 1: {
2297     LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
2298     LI->setAlignment(ShadowAlign);
2299     return {LI, Origin};
2300   }
2301   case 2: {
2302     IRBuilder<> IRB(Pos);
2303     Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
2304                                        ConstantInt::get(DFS.IntptrTy, 1));
2305     Value *Load =
2306         IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign);
2307     Value *Load1 =
2308         IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign);
2309     return {combineShadows(Load, Load1, Pos), Origin};
2310   }
2311   }
2312   bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size);
2313 
2314   if (HasSizeForFastPath)
2315     return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign,
2316                           OriginAlign, Origin, Pos);
2317 
2318   IRBuilder<> IRB(Pos);
2319   CallInst *FallbackCall = IRB.CreateCall(
2320       DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
2321   FallbackCall->addRetAttr(Attribute::ZExt);
2322   return {FallbackCall, Origin};
2323 }
2324 
2325 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr,
2326                                                             uint64_t Size,
2327                                                             Align InstAlignment,
2328                                                             Instruction *Pos) {
2329   Value *PrimitiveShadow, *Origin;
2330   std::tie(PrimitiveShadow, Origin) =
2331       loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos);
2332   if (DFS.shouldTrackOrigins()) {
2333     if (ClTrackOrigins == 2) {
2334       IRBuilder<> IRB(Pos);
2335       auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow);
2336       if (!ConstantShadow || !ConstantShadow->isZeroValue())
2337         Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB);
2338     }
2339   }
2340   return {PrimitiveShadow, Origin};
2341 }
2342 
2343 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) {
2344   switch (AO) {
2345   case AtomicOrdering::NotAtomic:
2346     return AtomicOrdering::NotAtomic;
2347   case AtomicOrdering::Unordered:
2348   case AtomicOrdering::Monotonic:
2349   case AtomicOrdering::Acquire:
2350     return AtomicOrdering::Acquire;
2351   case AtomicOrdering::Release:
2352   case AtomicOrdering::AcquireRelease:
2353     return AtomicOrdering::AcquireRelease;
2354   case AtomicOrdering::SequentiallyConsistent:
2355     return AtomicOrdering::SequentiallyConsistent;
2356   }
2357   llvm_unreachable("Unknown ordering");
2358 }
2359 
2360 Value *StripPointerGEPsAndCasts(Value *V) {
2361   if (!V->getType()->isPointerTy())
2362     return V;
2363 
2364   // DFSan pass should be running on valid IR, but we'll
2365   // keep a seen set to ensure there are no issues.
2366   SmallPtrSet<const Value *, 4> Visited;
2367   Visited.insert(V);
2368   do {
2369     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
2370       V = GEP->getPointerOperand();
2371     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
2372       V = cast<Operator>(V)->getOperand(0);
2373       if (!V->getType()->isPointerTy())
2374         return V;
2375     } else if (isa<GlobalAlias>(V)) {
2376       V = cast<GlobalAlias>(V)->getAliasee();
2377     }
2378   } while (Visited.insert(V).second);
2379 
2380   return V;
2381 }
2382 
2383 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
2384   auto &DL = LI.getModule()->getDataLayout();
2385   uint64_t Size = DL.getTypeStoreSize(LI.getType());
2386   if (Size == 0) {
2387     DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
2388     DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin);
2389     return;
2390   }
2391 
2392   // When an application load is atomic, increase atomic ordering between
2393   // atomic application loads and stores to ensure happen-before order; load
2394   // shadow data after application data; store zero shadow data before
2395   // application data. This ensure shadow loads return either labels of the
2396   // initial application data or zeros.
2397   if (LI.isAtomic())
2398     LI.setOrdering(addAcquireOrdering(LI.getOrdering()));
2399 
2400   Instruction *AfterLi = LI.getNextNode();
2401   Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI;
2402   std::vector<Value *> Shadows;
2403   std::vector<Value *> Origins;
2404   Value *PrimitiveShadow, *Origin;
2405   std::tie(PrimitiveShadow, Origin) =
2406       DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos);
2407   const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2408   if (ShouldTrackOrigins) {
2409     Shadows.push_back(PrimitiveShadow);
2410     Origins.push_back(Origin);
2411   }
2412   if (ClCombinePointerLabelsOnLoad ||
2413       DFSF.isLookupTableConstant(
2414           StripPointerGEPsAndCasts(LI.getPointerOperand()))) {
2415     Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
2416     PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos);
2417     if (ShouldTrackOrigins) {
2418       Shadows.push_back(PtrShadow);
2419       Origins.push_back(DFSF.getOrigin(LI.getPointerOperand()));
2420     }
2421   }
2422   if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
2423     DFSF.NonZeroChecks.push_back(PrimitiveShadow);
2424 
2425   Value *Shadow =
2426       DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos);
2427   DFSF.setShadow(&LI, Shadow);
2428 
2429   if (ShouldTrackOrigins) {
2430     DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos));
2431   }
2432 
2433   if (ClEventCallbacks) {
2434     IRBuilder<> IRB(Pos);
2435     Value *Addr = LI.getPointerOperand();
2436     CallInst *CI =
2437         IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr});
2438     CI->addParamAttr(0, Attribute::ZExt);
2439   }
2440 
2441   IRBuilder<> IRB(AfterLi);
2442   DFSF.addReachesFunctionCallbacksIfEnabled(IRB, LI, &LI);
2443 }
2444 
2445 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin,
2446                                             IRBuilder<> &IRB) {
2447   assert(DFS.shouldTrackOrigins());
2448   return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin});
2449 }
2450 
2451 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) {
2452   if (!DFS.shouldTrackOrigins())
2453     return V;
2454   return IRB.CreateCall(DFS.DFSanChainOriginFn, V);
2455 }
2456 
2457 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) {
2458   const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2459   const DataLayout &DL = F->getParent()->getDataLayout();
2460   unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2461   if (IntptrSize == OriginSize)
2462     return Origin;
2463   assert(IntptrSize == OriginSize * 2);
2464   Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false);
2465   return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8));
2466 }
2467 
2468 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin,
2469                                 Value *StoreOriginAddr,
2470                                 uint64_t StoreOriginSize, Align Alignment) {
2471   const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2472   const DataLayout &DL = F->getParent()->getDataLayout();
2473   const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy);
2474   unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2475   assert(IntptrAlignment >= MinOriginAlignment);
2476   assert(IntptrSize >= OriginSize);
2477 
2478   unsigned Ofs = 0;
2479   Align CurrentAlignment = Alignment;
2480   if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) {
2481     Value *IntptrOrigin = originToIntptr(IRB, Origin);
2482     Value *IntptrStoreOriginPtr = IRB.CreatePointerCast(
2483         StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0));
2484     for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) {
2485       Value *Ptr =
2486           I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I)
2487             : IntptrStoreOriginPtr;
2488       IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
2489       Ofs += IntptrSize / OriginSize;
2490       CurrentAlignment = IntptrAlignment;
2491     }
2492   }
2493 
2494   for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize;
2495        ++I) {
2496     Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I)
2497                    : StoreOriginAddr;
2498     IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
2499     CurrentAlignment = MinOriginAlignment;
2500   }
2501 }
2502 
2503 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB,
2504                                     const Twine &Name) {
2505   Type *VTy = V->getType();
2506   assert(VTy->isIntegerTy());
2507   if (VTy->getIntegerBitWidth() == 1)
2508     // Just converting a bool to a bool, so do nothing.
2509     return V;
2510   return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name);
2511 }
2512 
2513 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size,
2514                                 Value *Shadow, Value *Origin,
2515                                 Value *StoreOriginAddr, Align InstAlignment) {
2516   // Do not write origins for zero shadows because we do not trace origins for
2517   // untainted sinks.
2518   const Align OriginAlignment = getOriginAlign(InstAlignment);
2519   Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos);
2520   IRBuilder<> IRB(Pos);
2521   if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) {
2522     if (!ConstantShadow->isZeroValue())
2523       paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size,
2524                   OriginAlignment);
2525     return;
2526   }
2527 
2528   if (shouldInstrumentWithCall()) {
2529     IRB.CreateCall(
2530         DFS.DFSanMaybeStoreOriginFn,
2531         {CollapsedShadow, Addr, ConstantInt::get(DFS.IntptrTy, Size), Origin});
2532   } else {
2533     Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp");
2534     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2535     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
2536         Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DTU);
2537     IRBuilder<> IRBNew(CheckTerm);
2538     paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size,
2539                 OriginAlignment);
2540     ++NumOriginStores;
2541   }
2542 }
2543 
2544 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size,
2545                                              Align ShadowAlign,
2546                                              Instruction *Pos) {
2547   IRBuilder<> IRB(Pos);
2548   IntegerType *ShadowTy =
2549       IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
2550   Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
2551   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
2552   IRB.CreateAlignedStore(ExtZeroShadow, ShadowAddr, ShadowAlign);
2553   // Do not write origins for 0 shadows because we do not trace origins for
2554   // untainted sinks.
2555 }
2556 
2557 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
2558                                                Align InstAlignment,
2559                                                Value *PrimitiveShadow,
2560                                                Value *Origin,
2561                                                Instruction *Pos) {
2562   const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin;
2563 
2564   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2565     const auto SI = AllocaShadowMap.find(AI);
2566     if (SI != AllocaShadowMap.end()) {
2567       IRBuilder<> IRB(Pos);
2568       IRB.CreateStore(PrimitiveShadow, SI->second);
2569 
2570       // Do not write origins for 0 shadows because we do not trace origins for
2571       // untainted sinks.
2572       if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) {
2573         const auto OI = AllocaOriginMap.find(AI);
2574         assert(OI != AllocaOriginMap.end() && Origin);
2575         IRB.CreateStore(Origin, OI->second);
2576       }
2577       return;
2578     }
2579   }
2580 
2581   const Align ShadowAlign = getShadowAlign(InstAlignment);
2582   if (DFS.isZeroShadow(PrimitiveShadow)) {
2583     storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos);
2584     return;
2585   }
2586 
2587   IRBuilder<> IRB(Pos);
2588   Value *ShadowAddr, *OriginAddr;
2589   std::tie(ShadowAddr, OriginAddr) =
2590       DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2591 
2592   const unsigned ShadowVecSize = 8;
2593   assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 &&
2594          "Shadow vector is too large!");
2595 
2596   uint64_t Offset = 0;
2597   uint64_t LeftSize = Size;
2598   if (LeftSize >= ShadowVecSize) {
2599     auto *ShadowVecTy =
2600         FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
2601     Value *ShadowVec = PoisonValue::get(ShadowVecTy);
2602     for (unsigned I = 0; I != ShadowVecSize; ++I) {
2603       ShadowVec = IRB.CreateInsertElement(
2604           ShadowVec, PrimitiveShadow,
2605           ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I));
2606     }
2607     do {
2608       Value *CurShadowVecAddr =
2609           IRB.CreateConstGEP1_32(ShadowVecTy, ShadowAddr, Offset);
2610       IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
2611       LeftSize -= ShadowVecSize;
2612       ++Offset;
2613     } while (LeftSize >= ShadowVecSize);
2614     Offset *= ShadowVecSize;
2615   }
2616   while (LeftSize > 0) {
2617     Value *CurShadowAddr =
2618         IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
2619     IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
2620     --LeftSize;
2621     ++Offset;
2622   }
2623 
2624   if (ShouldTrackOrigins) {
2625     storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr,
2626                 InstAlignment);
2627   }
2628 }
2629 
2630 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) {
2631   switch (AO) {
2632   case AtomicOrdering::NotAtomic:
2633     return AtomicOrdering::NotAtomic;
2634   case AtomicOrdering::Unordered:
2635   case AtomicOrdering::Monotonic:
2636   case AtomicOrdering::Release:
2637     return AtomicOrdering::Release;
2638   case AtomicOrdering::Acquire:
2639   case AtomicOrdering::AcquireRelease:
2640     return AtomicOrdering::AcquireRelease;
2641   case AtomicOrdering::SequentiallyConsistent:
2642     return AtomicOrdering::SequentiallyConsistent;
2643   }
2644   llvm_unreachable("Unknown ordering");
2645 }
2646 
2647 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
2648   auto &DL = SI.getModule()->getDataLayout();
2649   Value *Val = SI.getValueOperand();
2650   uint64_t Size = DL.getTypeStoreSize(Val->getType());
2651   if (Size == 0)
2652     return;
2653 
2654   // When an application store is atomic, increase atomic ordering between
2655   // atomic application loads and stores to ensure happen-before order; load
2656   // shadow data after application data; store zero shadow data before
2657   // application data. This ensure shadow loads return either labels of the
2658   // initial application data or zeros.
2659   if (SI.isAtomic())
2660     SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
2661 
2662   const bool ShouldTrackOrigins =
2663       DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic();
2664   std::vector<Value *> Shadows;
2665   std::vector<Value *> Origins;
2666 
2667   Value *Shadow =
2668       SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val);
2669 
2670   if (ShouldTrackOrigins) {
2671     Shadows.push_back(Shadow);
2672     Origins.push_back(DFSF.getOrigin(Val));
2673   }
2674 
2675   Value *PrimitiveShadow;
2676   if (ClCombinePointerLabelsOnStore) {
2677     Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
2678     if (ShouldTrackOrigins) {
2679       Shadows.push_back(PtrShadow);
2680       Origins.push_back(DFSF.getOrigin(SI.getPointerOperand()));
2681     }
2682     PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
2683   } else {
2684     PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI);
2685   }
2686   Value *Origin = nullptr;
2687   if (ShouldTrackOrigins)
2688     Origin = DFSF.combineOrigins(Shadows, Origins, &SI);
2689   DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(),
2690                                   PrimitiveShadow, Origin, &SI);
2691   if (ClEventCallbacks) {
2692     IRBuilder<> IRB(&SI);
2693     Value *Addr = SI.getPointerOperand();
2694     CallInst *CI =
2695         IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr});
2696     CI->addParamAttr(0, Attribute::ZExt);
2697   }
2698 }
2699 
2700 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) {
2701   assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
2702 
2703   Value *Val = I.getOperand(1);
2704   const auto &DL = I.getModule()->getDataLayout();
2705   uint64_t Size = DL.getTypeStoreSize(Val->getType());
2706   if (Size == 0)
2707     return;
2708 
2709   // Conservatively set data at stored addresses and return with zero shadow to
2710   // prevent shadow data races.
2711   IRBuilder<> IRB(&I);
2712   Value *Addr = I.getOperand(0);
2713   const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment);
2714   DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I);
2715   DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I));
2716   DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2717 }
2718 
2719 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) {
2720   visitCASOrRMW(I.getAlign(), I);
2721   // TODO: The ordering change follows MSan. It is possible not to change
2722   // ordering because we always set and use 0 shadows.
2723   I.setOrdering(addReleaseOrdering(I.getOrdering()));
2724 }
2725 
2726 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2727   visitCASOrRMW(I.getAlign(), I);
2728   // TODO: The ordering change follows MSan. It is possible not to change
2729   // ordering because we always set and use 0 shadows.
2730   I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2731 }
2732 
2733 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
2734   visitInstOperands(UO);
2735 }
2736 
2737 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
2738   visitInstOperands(BO);
2739 }
2740 
2741 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) {
2742   // Special case: if this is the bitcast (there is exactly 1 allowed) between
2743   // a musttail call and a ret, don't instrument. New instructions are not
2744   // allowed after a musttail call.
2745   if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0)))
2746     if (CI->isMustTailCall())
2747       return;
2748   visitInstOperands(BCI);
2749 }
2750 
2751 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); }
2752 
2753 void DFSanVisitor::visitCmpInst(CmpInst &CI) {
2754   visitInstOperands(CI);
2755   if (ClEventCallbacks) {
2756     IRBuilder<> IRB(&CI);
2757     Value *CombinedShadow = DFSF.getShadow(&CI);
2758     CallInst *CallI =
2759         IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
2760     CallI->addParamAttr(0, Attribute::ZExt);
2761   }
2762 }
2763 
2764 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) {
2765   // We do not need to track data through LandingPadInst.
2766   //
2767   // For the C++ exceptions, if a value is thrown, this value will be stored
2768   // in a memory location provided by __cxa_allocate_exception(...) (on the
2769   // throw side) or  __cxa_begin_catch(...) (on the catch side).
2770   // This memory will have a shadow, so with the loads and stores we will be
2771   // able to propagate labels on data thrown through exceptions, without any
2772   // special handling of the LandingPadInst.
2773   //
2774   // The second element in the pair result of the LandingPadInst is a
2775   // register value, but it is for a type ID and should never be tainted.
2776   DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI));
2777   DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin);
2778 }
2779 
2780 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2781   if (ClCombineOffsetLabelsOnGEP ||
2782       DFSF.isLookupTableConstant(
2783           StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) {
2784     visitInstOperands(GEPI);
2785     return;
2786   }
2787 
2788   // Only propagate shadow/origin of base pointer value but ignore those of
2789   // offset operands.
2790   Value *BasePointer = GEPI.getPointerOperand();
2791   DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer));
2792   if (DFSF.DFS.shouldTrackOrigins())
2793     DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer));
2794 }
2795 
2796 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
2797   visitInstOperands(I);
2798 }
2799 
2800 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
2801   visitInstOperands(I);
2802 }
2803 
2804 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
2805   visitInstOperands(I);
2806 }
2807 
2808 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
2809   IRBuilder<> IRB(&I);
2810   Value *Agg = I.getAggregateOperand();
2811   Value *AggShadow = DFSF.getShadow(Agg);
2812   Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2813   DFSF.setShadow(&I, ResShadow);
2814   visitInstOperandOrigins(I);
2815 }
2816 
2817 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
2818   IRBuilder<> IRB(&I);
2819   Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
2820   Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
2821   Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2822   DFSF.setShadow(&I, Res);
2823   visitInstOperandOrigins(I);
2824 }
2825 
2826 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
2827   bool AllLoadsStores = true;
2828   for (User *U : I.users()) {
2829     if (isa<LoadInst>(U))
2830       continue;
2831 
2832     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
2833       if (SI->getPointerOperand() == &I)
2834         continue;
2835     }
2836 
2837     AllLoadsStores = false;
2838     break;
2839   }
2840   if (AllLoadsStores) {
2841     IRBuilder<> IRB(&I);
2842     DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
2843     if (DFSF.DFS.shouldTrackOrigins()) {
2844       DFSF.AllocaOriginMap[&I] =
2845           IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa");
2846     }
2847   }
2848   DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
2849   DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2850 }
2851 
2852 void DFSanVisitor::visitSelectInst(SelectInst &I) {
2853   Value *CondShadow = DFSF.getShadow(I.getCondition());
2854   Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
2855   Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
2856   Value *ShadowSel = nullptr;
2857   const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2858   std::vector<Value *> Shadows;
2859   std::vector<Value *> Origins;
2860   Value *TrueOrigin =
2861       ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr;
2862   Value *FalseOrigin =
2863       ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr;
2864 
2865   DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition());
2866 
2867   if (isa<VectorType>(I.getCondition()->getType())) {
2868     ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
2869                                                FalseShadow, &I);
2870     if (ShouldTrackOrigins) {
2871       Shadows.push_back(TrueShadow);
2872       Shadows.push_back(FalseShadow);
2873       Origins.push_back(TrueOrigin);
2874       Origins.push_back(FalseOrigin);
2875     }
2876   } else {
2877     if (TrueShadow == FalseShadow) {
2878       ShadowSel = TrueShadow;
2879       if (ShouldTrackOrigins) {
2880         Shadows.push_back(TrueShadow);
2881         Origins.push_back(TrueOrigin);
2882       }
2883     } else {
2884       ShadowSel =
2885           SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
2886       if (ShouldTrackOrigins) {
2887         Shadows.push_back(ShadowSel);
2888         Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin,
2889                                              FalseOrigin, "", &I));
2890       }
2891     }
2892   }
2893   DFSF.setShadow(&I, ClTrackSelectControlFlow
2894                          ? DFSF.combineShadowsThenConvert(
2895                                I.getType(), CondShadow, ShadowSel, &I)
2896                          : ShadowSel);
2897   if (ShouldTrackOrigins) {
2898     if (ClTrackSelectControlFlow) {
2899       Shadows.push_back(CondShadow);
2900       Origins.push_back(DFSF.getOrigin(I.getCondition()));
2901     }
2902     DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I));
2903   }
2904 }
2905 
2906 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
2907   IRBuilder<> IRB(&I);
2908   Value *ValShadow = DFSF.getShadow(I.getValue());
2909   Value *ValOrigin = DFSF.DFS.shouldTrackOrigins()
2910                          ? DFSF.getOrigin(I.getValue())
2911                          : DFSF.DFS.ZeroOrigin;
2912   IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
2913                  {ValShadow, ValOrigin, I.getDest(),
2914                   IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2915 }
2916 
2917 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
2918   IRBuilder<> IRB(&I);
2919 
2920   // CopyOrMoveOrigin transfers origins by refering to their shadows. So we
2921   // need to move origins before moving shadows.
2922   if (DFSF.DFS.shouldTrackOrigins()) {
2923     IRB.CreateCall(
2924         DFSF.DFS.DFSanMemOriginTransferFn,
2925         {I.getArgOperand(0), I.getArgOperand(1),
2926          IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)});
2927   }
2928 
2929   Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
2930   Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
2931   Value *LenShadow =
2932       IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
2933                                                     DFSF.DFS.ShadowWidthBytes));
2934   auto *MTI = cast<MemTransferInst>(
2935       IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
2936                      {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
2937   MTI->setDestAlignment(DFSF.getShadowAlign(I.getDestAlign().valueOrOne()));
2938   MTI->setSourceAlignment(DFSF.getShadowAlign(I.getSourceAlign().valueOrOne()));
2939   if (ClEventCallbacks) {
2940     IRB.CreateCall(
2941         DFSF.DFS.DFSanMemTransferCallbackFn,
2942         {DestShadow, IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2943   }
2944 }
2945 
2946 void DFSanVisitor::visitBranchInst(BranchInst &BR) {
2947   if (!BR.isConditional())
2948     return;
2949 
2950   DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition());
2951 }
2952 
2953 void DFSanVisitor::visitSwitchInst(SwitchInst &SW) {
2954   DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition());
2955 }
2956 
2957 static bool isAMustTailRetVal(Value *RetVal) {
2958   // Tail call may have a bitcast between return.
2959   if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
2960     RetVal = I->getOperand(0);
2961   }
2962   if (auto *I = dyn_cast<CallInst>(RetVal)) {
2963     return I->isMustTailCall();
2964   }
2965   return false;
2966 }
2967 
2968 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
2969   if (!DFSF.IsNativeABI && RI.getReturnValue()) {
2970     // Don't emit the instrumentation for musttail call returns.
2971     if (isAMustTailRetVal(RI.getReturnValue()))
2972       return;
2973 
2974     Value *S = DFSF.getShadow(RI.getReturnValue());
2975     IRBuilder<> IRB(&RI);
2976     Type *RT = DFSF.F->getFunctionType()->getReturnType();
2977     unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
2978     if (Size <= RetvalTLSSize) {
2979       // If the size overflows, stores nothing. At callsite, oversized return
2980       // shadows are set to zero.
2981       IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment);
2982     }
2983     if (DFSF.DFS.shouldTrackOrigins()) {
2984       Value *O = DFSF.getOrigin(RI.getReturnValue());
2985       IRB.CreateStore(O, DFSF.getRetvalOriginTLS());
2986     }
2987   }
2988 }
2989 
2990 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB,
2991                                       std::vector<Value *> &Args,
2992                                       IRBuilder<> &IRB) {
2993   FunctionType *FT = F.getFunctionType();
2994 
2995   auto *I = CB.arg_begin();
2996 
2997   // Adds non-variable argument shadows.
2998   for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
2999     Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB));
3000 
3001   // Adds variable argument shadows.
3002   if (FT->isVarArg()) {
3003     auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
3004                                      CB.arg_size() - FT->getNumParams());
3005     auto *LabelVAAlloca =
3006         new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(),
3007                        "labelva", &DFSF.F->getEntryBlock().front());
3008 
3009     for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
3010       auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N);
3011       IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB),
3012                       LabelVAPtr);
3013     }
3014 
3015     Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
3016   }
3017 
3018   // Adds the return value shadow.
3019   if (!FT->getReturnType()->isVoidTy()) {
3020     if (!DFSF.LabelReturnAlloca) {
3021       DFSF.LabelReturnAlloca = new AllocaInst(
3022           DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(),
3023           "labelreturn", &DFSF.F->getEntryBlock().front());
3024     }
3025     Args.push_back(DFSF.LabelReturnAlloca);
3026   }
3027 }
3028 
3029 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB,
3030                                       std::vector<Value *> &Args,
3031                                       IRBuilder<> &IRB) {
3032   FunctionType *FT = F.getFunctionType();
3033 
3034   auto *I = CB.arg_begin();
3035 
3036   // Add non-variable argument origins.
3037   for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
3038     Args.push_back(DFSF.getOrigin(*I));
3039 
3040   // Add variable argument origins.
3041   if (FT->isVarArg()) {
3042     auto *OriginVATy =
3043         ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams());
3044     auto *OriginVAAlloca =
3045         new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(),
3046                        "originva", &DFSF.F->getEntryBlock().front());
3047 
3048     for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
3049       auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N);
3050       IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr);
3051     }
3052 
3053     Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0));
3054   }
3055 
3056   // Add the return value origin.
3057   if (!FT->getReturnType()->isVoidTy()) {
3058     if (!DFSF.OriginReturnAlloca) {
3059       DFSF.OriginReturnAlloca = new AllocaInst(
3060           DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(),
3061           "originreturn", &DFSF.F->getEntryBlock().front());
3062     }
3063     Args.push_back(DFSF.OriginReturnAlloca);
3064   }
3065 }
3066 
3067 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) {
3068   IRBuilder<> IRB(&CB);
3069   switch (DFSF.DFS.getWrapperKind(&F)) {
3070   case DataFlowSanitizer::WK_Warning:
3071     CB.setCalledFunction(&F);
3072     IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
3073                    IRB.CreateGlobalStringPtr(F.getName()));
3074     DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3075     DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3076     DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
3077     return true;
3078   case DataFlowSanitizer::WK_Discard:
3079     CB.setCalledFunction(&F);
3080     DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3081     DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3082     DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
3083     return true;
3084   case DataFlowSanitizer::WK_Functional:
3085     CB.setCalledFunction(&F);
3086     DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3087     visitInstOperands(CB);
3088     return true;
3089   case DataFlowSanitizer::WK_Custom:
3090     // Don't try to handle invokes of custom functions, it's too complicated.
3091     // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
3092     // wrapper.
3093     CallInst *CI = dyn_cast<CallInst>(&CB);
3094     if (!CI)
3095       return false;
3096 
3097     const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3098     FunctionType *FT = F.getFunctionType();
3099     TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
3100     std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_";
3101     CustomFName += F.getName();
3102     FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
3103         CustomFName, CustomFn.TransformedType);
3104     if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
3105       CustomFn->copyAttributesFrom(&F);
3106 
3107       // Custom functions returning non-void will write to the return label.
3108       if (!FT->getReturnType()->isVoidTy()) {
3109         CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs);
3110       }
3111     }
3112 
3113     std::vector<Value *> Args;
3114 
3115     // Adds non-variable arguments.
3116     auto *I = CB.arg_begin();
3117     for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) {
3118       Args.push_back(*I);
3119     }
3120 
3121     // Adds shadow arguments.
3122     const unsigned ShadowArgStart = Args.size();
3123     addShadowArguments(F, CB, Args, IRB);
3124 
3125     // Adds origin arguments.
3126     const unsigned OriginArgStart = Args.size();
3127     if (ShouldTrackOrigins)
3128       addOriginArguments(F, CB, Args, IRB);
3129 
3130     // Adds variable arguments.
3131     append_range(Args, drop_begin(CB.args(), FT->getNumParams()));
3132 
3133     CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
3134     CustomCI->setCallingConv(CI->getCallingConv());
3135     CustomCI->setAttributes(transformFunctionAttributes(
3136         CustomFn, CI->getContext(), CI->getAttributes()));
3137 
3138     // Update the parameter attributes of the custom call instruction to
3139     // zero extend the shadow parameters. This is required for targets
3140     // which consider PrimitiveShadowTy an illegal type.
3141     for (unsigned N = 0; N < FT->getNumParams(); N++) {
3142       const unsigned ArgNo = ShadowArgStart + N;
3143       if (CustomCI->getArgOperand(ArgNo)->getType() ==
3144           DFSF.DFS.PrimitiveShadowTy)
3145         CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
3146       if (ShouldTrackOrigins) {
3147         const unsigned OriginArgNo = OriginArgStart + N;
3148         if (CustomCI->getArgOperand(OriginArgNo)->getType() ==
3149             DFSF.DFS.OriginTy)
3150           CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt);
3151       }
3152     }
3153 
3154     // Loads the return value shadow and origin.
3155     if (!FT->getReturnType()->isVoidTy()) {
3156       LoadInst *LabelLoad =
3157           IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca);
3158       DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow(
3159                                    FT->getReturnType(), LabelLoad, &CB));
3160       if (ShouldTrackOrigins) {
3161         LoadInst *OriginLoad =
3162             IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca);
3163         DFSF.setOrigin(CustomCI, OriginLoad);
3164       }
3165     }
3166 
3167     CI->replaceAllUsesWith(CustomCI);
3168     CI->eraseFromParent();
3169     return true;
3170   }
3171   return false;
3172 }
3173 
3174 Value *DFSanVisitor::makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
3175   constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
3176   uint32_t OrderingTable[NumOrderings] = {};
3177 
3178   OrderingTable[(int)AtomicOrderingCABI::relaxed] =
3179       OrderingTable[(int)AtomicOrderingCABI::acquire] =
3180           OrderingTable[(int)AtomicOrderingCABI::consume] =
3181               (int)AtomicOrderingCABI::acquire;
3182   OrderingTable[(int)AtomicOrderingCABI::release] =
3183       OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
3184           (int)AtomicOrderingCABI::acq_rel;
3185   OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
3186       (int)AtomicOrderingCABI::seq_cst;
3187 
3188   return ConstantDataVector::get(IRB.getContext(),
3189                                  ArrayRef(OrderingTable, NumOrderings));
3190 }
3191 
3192 void DFSanVisitor::visitLibAtomicLoad(CallBase &CB) {
3193   // Since we use getNextNode here, we can't have CB terminate the BB.
3194   assert(isa<CallInst>(CB));
3195 
3196   IRBuilder<> IRB(&CB);
3197   Value *Size = CB.getArgOperand(0);
3198   Value *SrcPtr = CB.getArgOperand(1);
3199   Value *DstPtr = CB.getArgOperand(2);
3200   Value *Ordering = CB.getArgOperand(3);
3201   // Convert the call to have at least Acquire ordering to make sure
3202   // the shadow operations aren't reordered before it.
3203   Value *NewOrdering =
3204       IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
3205   CB.setArgOperand(3, NewOrdering);
3206 
3207   IRBuilder<> NextIRB(CB.getNextNode());
3208   NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3209 
3210   // TODO: Support ClCombinePointerLabelsOnLoad
3211   // TODO: Support ClEventCallbacks
3212 
3213   NextIRB.CreateCall(
3214       DFSF.DFS.DFSanMemShadowOriginTransferFn,
3215       {DstPtr, SrcPtr, NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3216 }
3217 
3218 Value *DFSanVisitor::makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
3219   constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
3220   uint32_t OrderingTable[NumOrderings] = {};
3221 
3222   OrderingTable[(int)AtomicOrderingCABI::relaxed] =
3223       OrderingTable[(int)AtomicOrderingCABI::release] =
3224           (int)AtomicOrderingCABI::release;
3225   OrderingTable[(int)AtomicOrderingCABI::consume] =
3226       OrderingTable[(int)AtomicOrderingCABI::acquire] =
3227           OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
3228               (int)AtomicOrderingCABI::acq_rel;
3229   OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
3230       (int)AtomicOrderingCABI::seq_cst;
3231 
3232   return ConstantDataVector::get(IRB.getContext(),
3233                                  ArrayRef(OrderingTable, NumOrderings));
3234 }
3235 
3236 void DFSanVisitor::visitLibAtomicStore(CallBase &CB) {
3237   IRBuilder<> IRB(&CB);
3238   Value *Size = CB.getArgOperand(0);
3239   Value *SrcPtr = CB.getArgOperand(1);
3240   Value *DstPtr = CB.getArgOperand(2);
3241   Value *Ordering = CB.getArgOperand(3);
3242   // Convert the call to have at least Release ordering to make sure
3243   // the shadow operations aren't reordered after it.
3244   Value *NewOrdering =
3245       IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
3246   CB.setArgOperand(3, NewOrdering);
3247 
3248   // TODO: Support ClCombinePointerLabelsOnStore
3249   // TODO: Support ClEventCallbacks
3250 
3251   IRB.CreateCall(
3252       DFSF.DFS.DFSanMemShadowOriginTransferFn,
3253       {DstPtr, SrcPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3254 }
3255 
3256 void DFSanVisitor::visitLibAtomicExchange(CallBase &CB) {
3257   // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int
3258   // ordering)
3259   IRBuilder<> IRB(&CB);
3260   Value *Size = CB.getArgOperand(0);
3261   Value *TargetPtr = CB.getArgOperand(1);
3262   Value *SrcPtr = CB.getArgOperand(2);
3263   Value *DstPtr = CB.getArgOperand(3);
3264 
3265   // This operation is not atomic for the shadow and origin memory.
3266   // This could result in DFSan false positives or false negatives.
3267   // For now we will assume these operations are rare, and
3268   // the additional complexity to address this is not warrented.
3269 
3270   // Current Target to Dest
3271   IRB.CreateCall(
3272       DFSF.DFS.DFSanMemShadowOriginTransferFn,
3273       {DstPtr, TargetPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3274 
3275   // Current Src to Target (overriding)
3276   IRB.CreateCall(
3277       DFSF.DFS.DFSanMemShadowOriginTransferFn,
3278       {TargetPtr, SrcPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3279 }
3280 
3281 void DFSanVisitor::visitLibAtomicCompareExchange(CallBase &CB) {
3282   // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void
3283   // *desired, int success_order, int failure_order)
3284   Value *Size = CB.getArgOperand(0);
3285   Value *TargetPtr = CB.getArgOperand(1);
3286   Value *ExpectedPtr = CB.getArgOperand(2);
3287   Value *DesiredPtr = CB.getArgOperand(3);
3288 
3289   // This operation is not atomic for the shadow and origin memory.
3290   // This could result in DFSan false positives or false negatives.
3291   // For now we will assume these operations are rare, and
3292   // the additional complexity to address this is not warrented.
3293 
3294   IRBuilder<> NextIRB(CB.getNextNode());
3295   NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3296 
3297   DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3298 
3299   // If original call returned true, copy Desired to Target.
3300   // If original call returned false, copy Target to Expected.
3301   NextIRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginConditionalExchangeFn,
3302                      {NextIRB.CreateIntCast(&CB, NextIRB.getInt8Ty(), false),
3303                       TargetPtr, ExpectedPtr, DesiredPtr,
3304                       NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3305 }
3306 
3307 void DFSanVisitor::visitCallBase(CallBase &CB) {
3308   Function *F = CB.getCalledFunction();
3309   if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
3310     visitInstOperands(CB);
3311     return;
3312   }
3313 
3314   // Calls to this function are synthesized in wrappers, and we shouldn't
3315   // instrument them.
3316   if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
3317     return;
3318 
3319   LibFunc LF;
3320   if (DFSF.TLI.getLibFunc(CB, LF)) {
3321     // libatomic.a functions need to have special handling because there isn't
3322     // a good way to intercept them or compile the library with
3323     // instrumentation.
3324     switch (LF) {
3325     case LibFunc_atomic_load:
3326       if (!isa<CallInst>(CB)) {
3327         llvm::errs() << "DFSAN -- cannot instrument invoke of libatomic load. "
3328                         "Ignoring!\n";
3329         break;
3330       }
3331       visitLibAtomicLoad(CB);
3332       return;
3333     case LibFunc_atomic_store:
3334       visitLibAtomicStore(CB);
3335       return;
3336     default:
3337       break;
3338     }
3339   }
3340 
3341   // TODO: These are not supported by TLI? They are not in the enum.
3342   if (F && F->hasName() && !F->isVarArg()) {
3343     if (F->getName() == "__atomic_exchange") {
3344       visitLibAtomicExchange(CB);
3345       return;
3346     }
3347     if (F->getName() == "__atomic_compare_exchange") {
3348       visitLibAtomicCompareExchange(CB);
3349       return;
3350     }
3351   }
3352 
3353   DenseMap<Value *, Function *>::iterator UnwrappedFnIt =
3354       DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
3355   if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end())
3356     if (visitWrappedCallBase(*UnwrappedFnIt->second, CB))
3357       return;
3358 
3359   IRBuilder<> IRB(&CB);
3360 
3361   const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3362   FunctionType *FT = CB.getFunctionType();
3363   const DataLayout &DL = getDataLayout();
3364 
3365   // Stores argument shadows.
3366   unsigned ArgOffset = 0;
3367   for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
3368     if (ShouldTrackOrigins) {
3369       // Ignore overflowed origins
3370       Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I));
3371       if (I < DFSF.DFS.NumOfElementsInArgOrgTLS &&
3372           !DFSF.DFS.isZeroShadow(ArgShadow))
3373         IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)),
3374                         DFSF.getArgOriginTLS(I, IRB));
3375     }
3376 
3377     unsigned Size =
3378         DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
3379     // Stop storing if arguments' size overflows. Inside a function, arguments
3380     // after overflow have zero shadow values.
3381     if (ArgOffset + Size > ArgTLSSize)
3382       break;
3383     IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)),
3384                            DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
3385                            ShadowTLSAlignment);
3386     ArgOffset += alignTo(Size, ShadowTLSAlignment);
3387   }
3388 
3389   Instruction *Next = nullptr;
3390   if (!CB.getType()->isVoidTy()) {
3391     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
3392       if (II->getNormalDest()->getSinglePredecessor()) {
3393         Next = &II->getNormalDest()->front();
3394       } else {
3395         BasicBlock *NewBB =
3396             SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
3397         Next = &NewBB->front();
3398       }
3399     } else {
3400       assert(CB.getIterator() != CB.getParent()->end());
3401       Next = CB.getNextNode();
3402     }
3403 
3404     // Don't emit the epilogue for musttail call returns.
3405     if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
3406       return;
3407 
3408     // Loads the return value shadow.
3409     IRBuilder<> NextIRB(Next);
3410     unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
3411     if (Size > RetvalTLSSize) {
3412       // Set overflowed return shadow to be zero.
3413       DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3414     } else {
3415       LoadInst *LI = NextIRB.CreateAlignedLoad(
3416           DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
3417           ShadowTLSAlignment, "_dfsret");
3418       DFSF.SkipInsts.insert(LI);
3419       DFSF.setShadow(&CB, LI);
3420       DFSF.NonZeroChecks.push_back(LI);
3421     }
3422 
3423     if (ShouldTrackOrigins) {
3424       LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy,
3425                                         DFSF.getRetvalOriginTLS(), "_dfsret_o");
3426       DFSF.SkipInsts.insert(LI);
3427       DFSF.setOrigin(&CB, LI);
3428     }
3429 
3430     DFSF.addReachesFunctionCallbacksIfEnabled(NextIRB, CB, &CB);
3431   }
3432 }
3433 
3434 void DFSanVisitor::visitPHINode(PHINode &PN) {
3435   Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
3436   PHINode *ShadowPN =
3437       PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN);
3438 
3439   // Give the shadow phi node valid predecessors to fool SplitEdge into working.
3440   Value *UndefShadow = UndefValue::get(ShadowTy);
3441   for (BasicBlock *BB : PN.blocks())
3442     ShadowPN->addIncoming(UndefShadow, BB);
3443 
3444   DFSF.setShadow(&PN, ShadowPN);
3445 
3446   PHINode *OriginPN = nullptr;
3447   if (DFSF.DFS.shouldTrackOrigins()) {
3448     OriginPN =
3449         PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN);
3450     Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy);
3451     for (BasicBlock *BB : PN.blocks())
3452       OriginPN->addIncoming(UndefOrigin, BB);
3453     DFSF.setOrigin(&PN, OriginPN);
3454   }
3455 
3456   DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN});
3457 }
3458 
3459 PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
3460                                              ModuleAnalysisManager &AM) {
3461   auto GetTLI = [&](Function &F) -> TargetLibraryInfo & {
3462     auto &FAM =
3463         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3464     return FAM.getResult<TargetLibraryAnalysis>(F);
3465   };
3466   if (!DataFlowSanitizer(ABIListFiles).runImpl(M, GetTLI))
3467     return PreservedAnalyses::all();
3468 
3469   PreservedAnalyses PA = PreservedAnalyses::none();
3470   // GlobalsAA is considered stateless and does not get invalidated unless
3471   // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
3472   // make changes that require GlobalsAA to be invalidated.
3473   PA.abandon<GlobalsAA>();
3474   return PA;
3475 }
3476