1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// Each byte of application memory is backed by a shadow memory byte. The 22 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then 23 /// laid out as follows: 24 /// 25 /// +--------------------+ 0x800000000000 (top of memory) 26 /// | application 3 | 27 /// +--------------------+ 0x700000000000 28 /// | invalid | 29 /// +--------------------+ 0x610000000000 30 /// | origin 1 | 31 /// +--------------------+ 0x600000000000 32 /// | application 2 | 33 /// +--------------------+ 0x510000000000 34 /// | shadow 1 | 35 /// +--------------------+ 0x500000000000 36 /// | invalid | 37 /// +--------------------+ 0x400000000000 38 /// | origin 3 | 39 /// +--------------------+ 0x300000000000 40 /// | shadow 3 | 41 /// +--------------------+ 0x200000000000 42 /// | origin 2 | 43 /// +--------------------+ 0x110000000000 44 /// | invalid | 45 /// +--------------------+ 0x100000000000 46 /// | shadow 2 | 47 /// +--------------------+ 0x010000000000 48 /// | application 1 | 49 /// +--------------------+ 0x000000000000 50 /// 51 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 52 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 53 /// 54 /// For more information, please refer to the design document: 55 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 56 // 57 //===----------------------------------------------------------------------===// 58 59 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 60 #include "llvm/ADT/DenseMap.h" 61 #include "llvm/ADT/DenseSet.h" 62 #include "llvm/ADT/DepthFirstIterator.h" 63 #include "llvm/ADT/None.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallVector.h" 66 #include "llvm/ADT/StringExtras.h" 67 #include "llvm/ADT/StringRef.h" 68 #include "llvm/ADT/Triple.h" 69 #include "llvm/ADT/iterator.h" 70 #include "llvm/Analysis/ValueTracking.h" 71 #include "llvm/IR/Argument.h" 72 #include "llvm/IR/Attributes.h" 73 #include "llvm/IR/BasicBlock.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Dominators.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GlobalAlias.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/IRBuilder.h" 84 #include "llvm/IR/InlineAsm.h" 85 #include "llvm/IR/InstVisitor.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/MDBuilder.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Type.h" 95 #include "llvm/IR/User.h" 96 #include "llvm/IR/Value.h" 97 #include "llvm/InitializePasses.h" 98 #include "llvm/Pass.h" 99 #include "llvm/Support/Alignment.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/ErrorHandling.h" 103 #include "llvm/Support/SpecialCaseList.h" 104 #include "llvm/Support/VirtualFileSystem.h" 105 #include "llvm/Transforms/Instrumentation.h" 106 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 107 #include "llvm/Transforms/Utils/Local.h" 108 #include <algorithm> 109 #include <cassert> 110 #include <cstddef> 111 #include <cstdint> 112 #include <iterator> 113 #include <memory> 114 #include <set> 115 #include <string> 116 #include <utility> 117 #include <vector> 118 119 using namespace llvm; 120 121 // This must be consistent with ShadowWidthBits. 122 static const Align ShadowTLSAlignment = Align(2); 123 124 static const Align MinOriginAlignment = Align(4); 125 126 // The size of TLS variables. These constants must be kept in sync with the ones 127 // in dfsan.cpp. 128 static const unsigned ArgTLSSize = 800; 129 static const unsigned RetvalTLSSize = 800; 130 131 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 132 // alignment requirements provided by the input IR are correct. For example, 133 // if the input IR contains a load with alignment 8, this flag will cause 134 // the shadow load to have alignment 16. This flag is disabled by default as 135 // we have unfortunately encountered too much code (including Clang itself; 136 // see PR14291) which performs misaligned access. 137 static cl::opt<bool> ClPreserveAlignment( 138 "dfsan-preserve-alignment", 139 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 140 cl::init(false)); 141 142 // The ABI list files control how shadow parameters are passed. The pass treats 143 // every function labelled "uninstrumented" in the ABI list file as conforming 144 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 145 // additional annotations for those functions, a call to one of those functions 146 // will produce a warning message, as the labelling behaviour of the function is 147 // unknown. The other supported annotations are "functional" and "discard", 148 // which are described below under DataFlowSanitizer::WrapperKind. 149 static cl::list<std::string> ClABIListFiles( 150 "dfsan-abilist", 151 cl::desc("File listing native ABI functions and how the pass treats them"), 152 cl::Hidden); 153 154 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 155 // functions (see DataFlowSanitizer::InstrumentedABI below). 156 static cl::opt<bool> 157 ClArgsABI("dfsan-args-abi", 158 cl::desc("Use the argument ABI rather than the TLS ABI"), 159 cl::Hidden); 160 161 // Controls whether the pass includes or ignores the labels of pointers in load 162 // instructions. 163 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 164 "dfsan-combine-pointer-labels-on-load", 165 cl::desc("Combine the label of the pointer with the label of the data when " 166 "loading from memory."), 167 cl::Hidden, cl::init(true)); 168 169 // Controls whether the pass includes or ignores the labels of pointers in 170 // stores instructions. 171 static cl::opt<bool> ClCombinePointerLabelsOnStore( 172 "dfsan-combine-pointer-labels-on-store", 173 cl::desc("Combine the label of the pointer with the label of the data when " 174 "storing in memory."), 175 cl::Hidden, cl::init(false)); 176 177 // Controls whether the pass propagates labels of offsets in GEP instructions. 178 static cl::opt<bool> ClCombineOffsetLabelsOnGEP( 179 "dfsan-combine-offset-labels-on-gep", 180 cl::desc( 181 "Combine the label of the offset with the label of the pointer when " 182 "doing pointer arithmetic."), 183 cl::Hidden, cl::init(true)); 184 185 static cl::opt<bool> ClDebugNonzeroLabels( 186 "dfsan-debug-nonzero-labels", 187 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 188 "load or return with a nonzero label"), 189 cl::Hidden); 190 191 // Experimental feature that inserts callbacks for certain data events. 192 // Currently callbacks are only inserted for loads, stores, memory transfers 193 // (i.e. memcpy and memmove), and comparisons. 194 // 195 // If this flag is set to true, the user must provide definitions for the 196 // following callback functions: 197 // void __dfsan_load_callback(dfsan_label Label, void* addr); 198 // void __dfsan_store_callback(dfsan_label Label, void* addr); 199 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 200 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 201 static cl::opt<bool> ClEventCallbacks( 202 "dfsan-event-callbacks", 203 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 204 cl::Hidden, cl::init(false)); 205 206 // Controls whether the pass tracks the control flow of select instructions. 207 static cl::opt<bool> ClTrackSelectControlFlow( 208 "dfsan-track-select-control-flow", 209 cl::desc("Propagate labels from condition values of select instructions " 210 "to results."), 211 cl::Hidden, cl::init(true)); 212 213 // TODO: This default value follows MSan. DFSan may use a different value. 214 static cl::opt<int> ClInstrumentWithCallThreshold( 215 "dfsan-instrument-with-call-threshold", 216 cl::desc("If the function being instrumented requires more than " 217 "this number of origin stores, use callbacks instead of " 218 "inline checks (-1 means never use callbacks)."), 219 cl::Hidden, cl::init(3500)); 220 221 // Controls how to track origins. 222 // * 0: do not track origins. 223 // * 1: track origins at memory store operations. 224 // * 2: track origins at memory load and store operations. 225 // TODO: track callsites. 226 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 227 cl::desc("Track origins of labels"), 228 cl::Hidden, cl::init(0)); 229 230 static StringRef getGlobalTypeString(const GlobalValue &G) { 231 // Types of GlobalVariables are always pointer types. 232 Type *GType = G.getValueType(); 233 // For now we support excluding struct types only. 234 if (StructType *SGType = dyn_cast<StructType>(GType)) { 235 if (!SGType->isLiteral()) 236 return SGType->getName(); 237 } 238 return "<unknown type>"; 239 } 240 241 namespace { 242 243 // Memory map parameters used in application-to-shadow address calculation. 244 // Offset = (Addr & ~AndMask) ^ XorMask 245 // Shadow = ShadowBase + Offset 246 // Origin = (OriginBase + Offset) & ~3ULL 247 struct MemoryMapParams { 248 uint64_t AndMask; 249 uint64_t XorMask; 250 uint64_t ShadowBase; 251 uint64_t OriginBase; 252 }; 253 254 } // end anonymous namespace 255 256 // x86_64 Linux 257 // NOLINTNEXTLINE(readability-identifier-naming) 258 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 259 0, // AndMask (not used) 260 0x500000000000, // XorMask 261 0, // ShadowBase (not used) 262 0x100000000000, // OriginBase 263 }; 264 265 namespace { 266 267 class DFSanABIList { 268 std::unique_ptr<SpecialCaseList> SCL; 269 270 public: 271 DFSanABIList() = default; 272 273 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 274 275 /// Returns whether either this function or its source file are listed in the 276 /// given category. 277 bool isIn(const Function &F, StringRef Category) const { 278 return isIn(*F.getParent(), Category) || 279 SCL->inSection("dataflow", "fun", F.getName(), Category); 280 } 281 282 /// Returns whether this global alias is listed in the given category. 283 /// 284 /// If GA aliases a function, the alias's name is matched as a function name 285 /// would be. Similarly, aliases of globals are matched like globals. 286 bool isIn(const GlobalAlias &GA, StringRef Category) const { 287 if (isIn(*GA.getParent(), Category)) 288 return true; 289 290 if (isa<FunctionType>(GA.getValueType())) 291 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 292 293 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 294 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 295 Category); 296 } 297 298 /// Returns whether this module is listed in the given category. 299 bool isIn(const Module &M, StringRef Category) const { 300 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 301 } 302 }; 303 304 /// TransformedFunction is used to express the result of transforming one 305 /// function type into another. This struct is immutable. It holds metadata 306 /// useful for updating calls of the old function to the new type. 307 struct TransformedFunction { 308 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 309 std::vector<unsigned> ArgumentIndexMapping) 310 : OriginalType(OriginalType), TransformedType(TransformedType), 311 ArgumentIndexMapping(ArgumentIndexMapping) {} 312 313 // Disallow copies. 314 TransformedFunction(const TransformedFunction &) = delete; 315 TransformedFunction &operator=(const TransformedFunction &) = delete; 316 317 // Allow moves. 318 TransformedFunction(TransformedFunction &&) = default; 319 TransformedFunction &operator=(TransformedFunction &&) = default; 320 321 /// Type of the function before the transformation. 322 FunctionType *OriginalType; 323 324 /// Type of the function after the transformation. 325 FunctionType *TransformedType; 326 327 /// Transforming a function may change the position of arguments. This 328 /// member records the mapping from each argument's old position to its new 329 /// position. Argument positions are zero-indexed. If the transformation 330 /// from F to F' made the first argument of F into the third argument of F', 331 /// then ArgumentIndexMapping[0] will equal 2. 332 std::vector<unsigned> ArgumentIndexMapping; 333 }; 334 335 /// Given function attributes from a call site for the original function, 336 /// return function attributes appropriate for a call to the transformed 337 /// function. 338 AttributeList 339 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 340 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 341 342 // Construct a vector of AttributeSet for each function argument. 343 std::vector<llvm::AttributeSet> ArgumentAttributes( 344 TransformedFunction.TransformedType->getNumParams()); 345 346 // Copy attributes from the parameter of the original function to the 347 // transformed version. 'ArgumentIndexMapping' holds the mapping from 348 // old argument position to new. 349 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 350 I < IE; ++I) { 351 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 352 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(I); 353 } 354 355 // Copy annotations on varargs arguments. 356 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 357 IE = CallSiteAttrs.getNumAttrSets(); 358 I < IE; ++I) { 359 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(I)); 360 } 361 362 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttributes(), 363 CallSiteAttrs.getRetAttributes(), 364 llvm::makeArrayRef(ArgumentAttributes)); 365 } 366 367 class DataFlowSanitizer { 368 friend struct DFSanFunction; 369 friend class DFSanVisitor; 370 371 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; 372 373 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; 374 375 /// Which ABI should be used for instrumented functions? 376 enum InstrumentedABI { 377 /// Argument and return value labels are passed through additional 378 /// arguments and by modifying the return type. 379 IA_Args, 380 381 /// Argument and return value labels are passed through TLS variables 382 /// __dfsan_arg_tls and __dfsan_retval_tls. 383 IA_TLS 384 }; 385 386 /// How should calls to uninstrumented functions be handled? 387 enum WrapperKind { 388 /// This function is present in an uninstrumented form but we don't know 389 /// how it should be handled. Print a warning and call the function anyway. 390 /// Don't label the return value. 391 WK_Warning, 392 393 /// This function does not write to (user-accessible) memory, and its return 394 /// value is unlabelled. 395 WK_Discard, 396 397 /// This function does not write to (user-accessible) memory, and the label 398 /// of its return value is the union of the label of its arguments. 399 WK_Functional, 400 401 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 402 /// where F is the name of the function. This function may wrap the 403 /// original function or provide its own implementation. This is similar to 404 /// the IA_Args ABI, except that IA_Args uses a struct return type to 405 /// pass the return value shadow in a register, while WK_Custom uses an 406 /// extra pointer argument to return the shadow. This allows the wrapped 407 /// form of the function type to be expressed in C. 408 WK_Custom 409 }; 410 411 Module *Mod; 412 LLVMContext *Ctx; 413 Type *Int8Ptr; 414 IntegerType *OriginTy; 415 PointerType *OriginPtrTy; 416 ConstantInt *ZeroOrigin; 417 /// The shadow type for all primitive types and vector types. 418 IntegerType *PrimitiveShadowTy; 419 PointerType *PrimitiveShadowPtrTy; 420 IntegerType *IntptrTy; 421 ConstantInt *ZeroPrimitiveShadow; 422 Constant *ArgTLS; 423 ArrayType *ArgOriginTLSTy; 424 Constant *ArgOriginTLS; 425 Constant *RetvalTLS; 426 Constant *RetvalOriginTLS; 427 FunctionType *DFSanUnionLoadFnTy; 428 FunctionType *DFSanLoadLabelAndOriginFnTy; 429 FunctionType *DFSanUnimplementedFnTy; 430 FunctionType *DFSanSetLabelFnTy; 431 FunctionType *DFSanNonzeroLabelFnTy; 432 FunctionType *DFSanVarargWrapperFnTy; 433 FunctionType *DFSanCmpCallbackFnTy; 434 FunctionType *DFSanLoadStoreCallbackFnTy; 435 FunctionType *DFSanMemTransferCallbackFnTy; 436 FunctionType *DFSanChainOriginFnTy; 437 FunctionType *DFSanChainOriginIfTaintedFnTy; 438 FunctionType *DFSanMemOriginTransferFnTy; 439 FunctionType *DFSanMaybeStoreOriginFnTy; 440 FunctionCallee DFSanUnionLoadFn; 441 FunctionCallee DFSanLoadLabelAndOriginFn; 442 FunctionCallee DFSanUnimplementedFn; 443 FunctionCallee DFSanSetLabelFn; 444 FunctionCallee DFSanNonzeroLabelFn; 445 FunctionCallee DFSanVarargWrapperFn; 446 FunctionCallee DFSanLoadCallbackFn; 447 FunctionCallee DFSanStoreCallbackFn; 448 FunctionCallee DFSanMemTransferCallbackFn; 449 FunctionCallee DFSanCmpCallbackFn; 450 FunctionCallee DFSanChainOriginFn; 451 FunctionCallee DFSanChainOriginIfTaintedFn; 452 FunctionCallee DFSanMemOriginTransferFn; 453 FunctionCallee DFSanMaybeStoreOriginFn; 454 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 455 MDNode *ColdCallWeights; 456 MDNode *OriginStoreWeights; 457 DFSanABIList ABIList; 458 DenseMap<Value *, Function *> UnwrappedFnMap; 459 AttrBuilder ReadOnlyNoneAttrs; 460 461 /// Memory map parameters used in calculation mapping application addresses 462 /// to shadow addresses and origin addresses. 463 const MemoryMapParams *MapParams; 464 465 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 466 Value *getShadowAddress(Value *Addr, Instruction *Pos); 467 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); 468 std::pair<Value *, Value *> 469 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 470 bool isInstrumented(const Function *F); 471 bool isInstrumented(const GlobalAlias *GA); 472 FunctionType *getArgsFunctionType(FunctionType *T); 473 FunctionType *getTrampolineFunctionType(FunctionType *T); 474 TransformedFunction getCustomFunctionType(FunctionType *T); 475 InstrumentedABI getInstrumentedABI(); 476 WrapperKind getWrapperKind(Function *F); 477 void addGlobalNameSuffix(GlobalValue *GV); 478 Function *buildWrapperFunction(Function *F, StringRef NewFName, 479 GlobalValue::LinkageTypes NewFLink, 480 FunctionType *NewFT); 481 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 482 void initializeCallbackFunctions(Module &M); 483 void initializeRuntimeFunctions(Module &M); 484 void injectMetadataGlobals(Module &M); 485 bool initializeModule(Module &M); 486 487 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 488 /// from it. Returns the origin's loaded value. 489 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign, 490 Value **OriginAddr); 491 492 /// Returns whether the given load byte size is amenable to inlined 493 /// optimization patterns. 494 bool hasLoadSizeForFastPath(uint64_t Size); 495 496 /// Returns whether the pass tracks origins. Supports only TLS ABI mode. 497 bool shouldTrackOrigins(); 498 499 /// Returns whether the pass tracks labels for struct fields and array 500 /// indices. Supports only TLS ABI mode. 501 bool shouldTrackFieldsAndIndices(); 502 503 /// Returns a zero constant with the shadow type of OrigTy. 504 /// 505 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 506 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 507 /// getZeroShadow(other type) = i16(0) 508 /// 509 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices 510 /// returns false. 511 Constant *getZeroShadow(Type *OrigTy); 512 /// Returns a zero constant with the shadow type of V's type. 513 Constant *getZeroShadow(Value *V); 514 515 /// Checks if V is a zero shadow. 516 bool isZeroShadow(Value *V); 517 518 /// Returns the shadow type of OrigTy. 519 /// 520 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 521 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 522 /// getShadowTy(other type) = i16 523 /// 524 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices 525 /// returns false. 526 Type *getShadowTy(Type *OrigTy); 527 /// Returns the shadow type of of V's type. 528 Type *getShadowTy(Value *V); 529 530 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 531 532 public: 533 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 534 535 bool runImpl(Module &M); 536 }; 537 538 struct DFSanFunction { 539 DataFlowSanitizer &DFS; 540 Function *F; 541 DominatorTree DT; 542 DataFlowSanitizer::InstrumentedABI IA; 543 bool IsNativeABI; 544 AllocaInst *LabelReturnAlloca = nullptr; 545 AllocaInst *OriginReturnAlloca = nullptr; 546 DenseMap<Value *, Value *> ValShadowMap; 547 DenseMap<Value *, Value *> ValOriginMap; 548 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 549 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 550 551 struct PHIFixupElement { 552 PHINode *Phi; 553 PHINode *ShadowPhi; 554 PHINode *OriginPhi; 555 }; 556 std::vector<PHIFixupElement> PHIFixups; 557 558 DenseSet<Instruction *> SkipInsts; 559 std::vector<Value *> NonZeroChecks; 560 561 struct CachedShadow { 562 BasicBlock *Block; // The block where Shadow is defined. 563 Value *Shadow; 564 }; 565 /// Maps a value to its latest shadow value in terms of domination tree. 566 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 567 /// Maps a value to its latest collapsed shadow value it was converted to in 568 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 569 /// used at a post process where CFG blocks are split. So it does not cache 570 /// BasicBlock like CachedShadows, but uses domination between values. 571 DenseMap<Value *, Value *> CachedCollapsedShadows; 572 DenseMap<Value *, std::set<Value *>> ShadowElements; 573 574 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 575 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 576 DT.recalculate(*F); 577 } 578 579 /// Computes the shadow address for a given function argument. 580 /// 581 /// Shadow = ArgTLS+ArgOffset. 582 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 583 584 /// Computes the shadow address for a return value. 585 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 586 587 /// Computes the origin address for a given function argument. 588 /// 589 /// Origin = ArgOriginTLS[ArgNo]. 590 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 591 592 /// Computes the origin address for a return value. 593 Value *getRetvalOriginTLS(); 594 595 Value *getOrigin(Value *V); 596 void setOrigin(Instruction *I, Value *Origin); 597 /// Generates IR to compute the origin of the last operand with a taint label. 598 Value *combineOperandOrigins(Instruction *Inst); 599 /// Before the instruction Pos, generates IR to compute the last origin with a 600 /// taint label. Labels and origins are from vectors Shadows and Origins 601 /// correspondingly. The generated IR is like 602 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 603 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 604 /// zeros with other bitwidths. 605 Value *combineOrigins(const std::vector<Value *> &Shadows, 606 const std::vector<Value *> &Origins, Instruction *Pos, 607 ConstantInt *Zero = nullptr); 608 609 Value *getShadow(Value *V); 610 void setShadow(Instruction *I, Value *Shadow); 611 /// Generates IR to compute the union of the two given shadows, inserting it 612 /// before Pos. The combined value is with primitive type. 613 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 614 /// Combines the shadow values of V1 and V2, then converts the combined value 615 /// with primitive type into a shadow value with the original type T. 616 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 617 Instruction *Pos); 618 Value *combineOperandShadows(Instruction *Inst); 619 620 /// Generates IR to load shadow and origin corresponding to bytes [\p 621 /// Addr, \p Addr + \p Size), where addr has alignment \p 622 /// InstAlignment, and take the union of each of those shadows. The returned 623 /// shadow always has primitive type. 624 /// 625 /// When tracking loads is enabled, the returned origin is a chain at the 626 /// current stack if the returned shadow is tainted. 627 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 628 Align InstAlignment, 629 Instruction *Pos); 630 631 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 632 Align InstAlignment, Value *PrimitiveShadow, 633 Value *Origin, Instruction *Pos); 634 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 635 /// the expanded shadow value. 636 /// 637 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 638 /// EFP([n x T], PS) = [n x EFP(T,PS)] 639 /// EFP(other types, PS) = PS 640 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 641 Instruction *Pos); 642 /// Collapses Shadow into a single primitive shadow value, unioning all 643 /// primitive shadow values in the process. Returns the final primitive 644 /// shadow value. 645 /// 646 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 647 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 648 /// CTP(other types, PS) = PS 649 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 650 651 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 652 Instruction *Pos); 653 654 Align getShadowAlign(Align InstAlignment); 655 656 private: 657 /// Collapses the shadow with aggregate type into a single primitive shadow 658 /// value. 659 template <class AggregateType> 660 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 661 IRBuilder<> &IRB); 662 663 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 664 665 /// Returns the shadow value of an argument A. 666 Value *getShadowForTLSArgument(Argument *A); 667 668 /// The fast path of loading shadows. 669 std::pair<Value *, Value *> 670 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 671 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 672 Instruction *Pos); 673 674 Align getOriginAlign(Align InstAlignment); 675 676 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 677 /// is __dfsan_load_label_and_origin. This function returns the union of all 678 /// labels and the origin of the first taint label. However this is an 679 /// additional call with many instructions. To ensure common cases are fast, 680 /// checks if it is possible to load labels and origins without using the 681 /// callback function. 682 /// 683 /// When enabling tracking load instructions, we always use 684 /// __dfsan_load_label_and_origin to reduce code size. 685 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 686 687 /// Returns a chain at the current stack with previous origin V. 688 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 689 690 /// Returns a chain at the current stack with previous origin V if Shadow is 691 /// tainted. 692 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 693 694 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 695 /// Origin otherwise. 696 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 697 698 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 699 /// Size). 700 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 701 uint64_t StoreOriginSize, Align Alignment); 702 703 /// Stores Origin in terms of its Shadow value. 704 /// * Do not write origins for zero shadows because we do not trace origins 705 /// for untainted sinks. 706 /// * Use __dfsan_maybe_store_origin if there are too many origin store 707 /// instrumentations. 708 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 709 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 710 711 /// Convert a scalar value to an i1 by comparing with 0. 712 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 713 714 bool shouldInstrumentWithCall(); 715 716 /// Generates IR to load shadow and origin corresponding to bytes [\p 717 /// Addr, \p Addr + \p Size), where addr has alignment \p 718 /// InstAlignment, and take the union of each of those shadows. The returned 719 /// shadow always has primitive type. 720 std::pair<Value *, Value *> 721 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 722 Align InstAlignment, Instruction *Pos); 723 int NumOriginStores = 0; 724 }; 725 726 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 727 public: 728 DFSanFunction &DFSF; 729 730 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 731 732 const DataLayout &getDataLayout() const { 733 return DFSF.F->getParent()->getDataLayout(); 734 } 735 736 // Combines shadow values and origins for all of I's operands. 737 void visitInstOperands(Instruction &I); 738 739 void visitUnaryOperator(UnaryOperator &UO); 740 void visitBinaryOperator(BinaryOperator &BO); 741 void visitBitCastInst(BitCastInst &BCI); 742 void visitCastInst(CastInst &CI); 743 void visitCmpInst(CmpInst &CI); 744 void visitLandingPadInst(LandingPadInst &LPI); 745 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 746 void visitLoadInst(LoadInst &LI); 747 void visitStoreInst(StoreInst &SI); 748 void visitAtomicRMWInst(AtomicRMWInst &I); 749 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 750 void visitReturnInst(ReturnInst &RI); 751 void visitCallBase(CallBase &CB); 752 void visitPHINode(PHINode &PN); 753 void visitExtractElementInst(ExtractElementInst &I); 754 void visitInsertElementInst(InsertElementInst &I); 755 void visitShuffleVectorInst(ShuffleVectorInst &I); 756 void visitExtractValueInst(ExtractValueInst &I); 757 void visitInsertValueInst(InsertValueInst &I); 758 void visitAllocaInst(AllocaInst &I); 759 void visitSelectInst(SelectInst &I); 760 void visitMemSetInst(MemSetInst &I); 761 void visitMemTransferInst(MemTransferInst &I); 762 763 private: 764 void visitCASOrRMW(Align InstAlignment, Instruction &I); 765 766 // Returns false when this is an invoke of a custom function. 767 bool visitWrappedCallBase(Function &F, CallBase &CB); 768 769 // Combines origins for all of I's operands. 770 void visitInstOperandOrigins(Instruction &I); 771 772 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 773 IRBuilder<> &IRB); 774 775 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 776 IRBuilder<> &IRB); 777 }; 778 779 } // end anonymous namespace 780 781 DataFlowSanitizer::DataFlowSanitizer( 782 const std::vector<std::string> &ABIListFiles) { 783 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 784 llvm::append_range(AllABIListFiles, ClABIListFiles); 785 // FIXME: should we propagate vfs::FileSystem to this constructor? 786 ABIList.set( 787 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 788 } 789 790 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 791 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 792 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 793 if (T->isVarArg()) 794 ArgTypes.push_back(PrimitiveShadowPtrTy); 795 Type *RetType = T->getReturnType(); 796 if (!RetType->isVoidTy()) 797 RetType = StructType::get(RetType, PrimitiveShadowTy); 798 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 799 } 800 801 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 802 assert(!T->isVarArg()); 803 SmallVector<Type *, 4> ArgTypes; 804 ArgTypes.push_back(T->getPointerTo()); 805 ArgTypes.append(T->param_begin(), T->param_end()); 806 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 807 Type *RetType = T->getReturnType(); 808 if (!RetType->isVoidTy()) 809 ArgTypes.push_back(PrimitiveShadowPtrTy); 810 811 if (shouldTrackOrigins()) { 812 ArgTypes.append(T->getNumParams(), OriginTy); 813 if (!RetType->isVoidTy()) 814 ArgTypes.push_back(OriginPtrTy); 815 } 816 817 return FunctionType::get(T->getReturnType(), ArgTypes, false); 818 } 819 820 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 821 SmallVector<Type *, 4> ArgTypes; 822 823 // Some parameters of the custom function being constructed are 824 // parameters of T. Record the mapping from parameters of T to 825 // parameters of the custom function, so that parameter attributes 826 // at call sites can be updated. 827 std::vector<unsigned> ArgumentIndexMapping; 828 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 829 Type *ParamType = T->getParamType(I); 830 FunctionType *FT; 831 if (isa<PointerType>(ParamType) && 832 (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) { 833 ArgumentIndexMapping.push_back(ArgTypes.size()); 834 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 835 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 836 } else { 837 ArgumentIndexMapping.push_back(ArgTypes.size()); 838 ArgTypes.push_back(ParamType); 839 } 840 } 841 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 842 ArgTypes.push_back(PrimitiveShadowTy); 843 if (T->isVarArg()) 844 ArgTypes.push_back(PrimitiveShadowPtrTy); 845 Type *RetType = T->getReturnType(); 846 if (!RetType->isVoidTy()) 847 ArgTypes.push_back(PrimitiveShadowPtrTy); 848 849 if (shouldTrackOrigins()) { 850 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 851 ArgTypes.push_back(OriginTy); 852 if (T->isVarArg()) 853 ArgTypes.push_back(OriginPtrTy); 854 if (!RetType->isVoidTy()) 855 ArgTypes.push_back(OriginPtrTy); 856 } 857 858 return TransformedFunction( 859 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 860 ArgumentIndexMapping); 861 } 862 863 bool DataFlowSanitizer::isZeroShadow(Value *V) { 864 if (!shouldTrackFieldsAndIndices()) 865 return ZeroPrimitiveShadow == V; 866 867 Type *T = V->getType(); 868 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 869 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 870 return CI->isZero(); 871 return false; 872 } 873 874 return isa<ConstantAggregateZero>(V); 875 } 876 877 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 878 uint64_t ShadowSize = Size * ShadowWidthBytes; 879 return ShadowSize % 8 == 0 || ShadowSize == 4; 880 } 881 882 bool DataFlowSanitizer::shouldTrackOrigins() { 883 static const bool ShouldTrackOrigins = 884 ClTrackOrigins && getInstrumentedABI() == DataFlowSanitizer::IA_TLS; 885 return ShouldTrackOrigins; 886 } 887 888 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() { 889 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS; 890 } 891 892 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 893 if (!shouldTrackFieldsAndIndices()) 894 return ZeroPrimitiveShadow; 895 896 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 897 return ZeroPrimitiveShadow; 898 Type *ShadowTy = getShadowTy(OrigTy); 899 return ConstantAggregateZero::get(ShadowTy); 900 } 901 902 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 903 return getZeroShadow(V->getType()); 904 } 905 906 static Value *expandFromPrimitiveShadowRecursive( 907 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 908 Value *PrimitiveShadow, IRBuilder<> &IRB) { 909 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 910 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 911 912 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 913 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 914 Indices.push_back(Idx); 915 Shadow = expandFromPrimitiveShadowRecursive( 916 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 917 Indices.pop_back(); 918 } 919 return Shadow; 920 } 921 922 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 923 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 924 Indices.push_back(Idx); 925 Shadow = expandFromPrimitiveShadowRecursive( 926 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 927 Indices.pop_back(); 928 } 929 return Shadow; 930 } 931 llvm_unreachable("Unexpected shadow type"); 932 } 933 934 bool DFSanFunction::shouldInstrumentWithCall() { 935 return ClInstrumentWithCallThreshold >= 0 && 936 NumOriginStores >= ClInstrumentWithCallThreshold; 937 } 938 939 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 940 Instruction *Pos) { 941 Type *ShadowTy = DFS.getShadowTy(T); 942 943 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 944 return PrimitiveShadow; 945 946 if (DFS.isZeroShadow(PrimitiveShadow)) 947 return DFS.getZeroShadow(ShadowTy); 948 949 IRBuilder<> IRB(Pos); 950 SmallVector<unsigned, 4> Indices; 951 Value *Shadow = UndefValue::get(ShadowTy); 952 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 953 PrimitiveShadow, IRB); 954 955 // Caches the primitive shadow value that built the shadow value. 956 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 957 return Shadow; 958 } 959 960 template <class AggregateType> 961 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 962 IRBuilder<> &IRB) { 963 if (!AT->getNumElements()) 964 return DFS.ZeroPrimitiveShadow; 965 966 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 967 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 968 969 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 970 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 971 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 972 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 973 } 974 return Aggregator; 975 } 976 977 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 978 IRBuilder<> &IRB) { 979 Type *ShadowTy = Shadow->getType(); 980 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 981 return Shadow; 982 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 983 return collapseAggregateShadow<>(AT, Shadow, IRB); 984 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 985 return collapseAggregateShadow<>(ST, Shadow, IRB); 986 llvm_unreachable("Unexpected shadow type"); 987 } 988 989 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 990 Instruction *Pos) { 991 Type *ShadowTy = Shadow->getType(); 992 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 993 return Shadow; 994 995 assert(DFS.shouldTrackFieldsAndIndices()); 996 997 // Checks if the cached collapsed shadow value dominates Pos. 998 Value *&CS = CachedCollapsedShadows[Shadow]; 999 if (CS && DT.dominates(CS, Pos)) 1000 return CS; 1001 1002 IRBuilder<> IRB(Pos); 1003 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 1004 // Caches the converted primitive shadow value. 1005 CS = PrimitiveShadow; 1006 return PrimitiveShadow; 1007 } 1008 1009 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 1010 if (!shouldTrackFieldsAndIndices()) 1011 return PrimitiveShadowTy; 1012 1013 if (!OrigTy->isSized()) 1014 return PrimitiveShadowTy; 1015 if (isa<IntegerType>(OrigTy)) 1016 return PrimitiveShadowTy; 1017 if (isa<VectorType>(OrigTy)) 1018 return PrimitiveShadowTy; 1019 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 1020 return ArrayType::get(getShadowTy(AT->getElementType()), 1021 AT->getNumElements()); 1022 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1023 SmallVector<Type *, 4> Elements; 1024 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 1025 Elements.push_back(getShadowTy(ST->getElementType(I))); 1026 return StructType::get(*Ctx, Elements); 1027 } 1028 return PrimitiveShadowTy; 1029 } 1030 1031 Type *DataFlowSanitizer::getShadowTy(Value *V) { 1032 return getShadowTy(V->getType()); 1033 } 1034 1035 bool DataFlowSanitizer::initializeModule(Module &M) { 1036 Triple TargetTriple(M.getTargetTriple()); 1037 const DataLayout &DL = M.getDataLayout(); 1038 1039 if (TargetTriple.getOS() != Triple::Linux) 1040 report_fatal_error("unsupported operating system"); 1041 if (TargetTriple.getArch() != Triple::x86_64) 1042 report_fatal_error("unsupported architecture"); 1043 MapParams = &Linux_X86_64_MemoryMapParams; 1044 1045 Mod = &M; 1046 Ctx = &M.getContext(); 1047 Int8Ptr = Type::getInt8PtrTy(*Ctx); 1048 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1049 OriginPtrTy = PointerType::getUnqual(OriginTy); 1050 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1051 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1052 IntptrTy = DL.getIntPtrType(*Ctx); 1053 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1054 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1055 1056 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1057 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1058 /*isVarArg=*/false); 1059 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1060 DFSanLoadLabelAndOriginFnTy = 1061 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1062 /*isVarArg=*/false); 1063 DFSanUnimplementedFnTy = FunctionType::get( 1064 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1065 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1066 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1067 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1068 DFSanSetLabelArgs, /*isVarArg=*/false); 1069 DFSanNonzeroLabelFnTy = 1070 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 1071 DFSanVarargWrapperFnTy = FunctionType::get( 1072 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1073 DFSanCmpCallbackFnTy = 1074 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1075 /*isVarArg=*/false); 1076 DFSanChainOriginFnTy = 1077 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1078 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1079 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1080 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1081 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1082 Int8Ptr, IntptrTy, OriginTy}; 1083 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1084 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1085 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1086 DFSanMemOriginTransferFnTy = FunctionType::get( 1087 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1088 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1089 DFSanLoadStoreCallbackFnTy = 1090 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1091 /*isVarArg=*/false); 1092 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1093 DFSanMemTransferCallbackFnTy = 1094 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1095 /*isVarArg=*/false); 1096 1097 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1098 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1099 return true; 1100 } 1101 1102 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1103 return !ABIList.isIn(*F, "uninstrumented"); 1104 } 1105 1106 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1107 return !ABIList.isIn(*GA, "uninstrumented"); 1108 } 1109 1110 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 1111 return ClArgsABI ? IA_Args : IA_TLS; 1112 } 1113 1114 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1115 if (ABIList.isIn(*F, "functional")) 1116 return WK_Functional; 1117 if (ABIList.isIn(*F, "discard")) 1118 return WK_Discard; 1119 if (ABIList.isIn(*F, "custom")) 1120 return WK_Custom; 1121 1122 return WK_Warning; 1123 } 1124 1125 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { 1126 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan"; 1127 GV->setName(GVName + Suffix); 1128 1129 // Try to change the name of the function in module inline asm. We only do 1130 // this for specific asm directives, currently only ".symver", to try to avoid 1131 // corrupting asm which happens to contain the symbol name as a substring. 1132 // Note that the substitution for .symver assumes that the versioned symbol 1133 // also has an instrumented name. 1134 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1135 std::string SearchStr = ".symver " + GVName + ","; 1136 size_t Pos = Asm.find(SearchStr); 1137 if (Pos != std::string::npos) { 1138 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ","); 1139 Pos = Asm.find("@"); 1140 1141 if (Pos == std::string::npos) 1142 report_fatal_error("unsupported .symver: " + Asm); 1143 1144 Asm.replace(Pos, 1, Suffix + "@"); 1145 GV->getParent()->setModuleInlineAsm(Asm); 1146 } 1147 } 1148 1149 Function * 1150 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1151 GlobalValue::LinkageTypes NewFLink, 1152 FunctionType *NewFT) { 1153 FunctionType *FT = F->getFunctionType(); 1154 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1155 NewFName, F->getParent()); 1156 NewF->copyAttributesFrom(F); 1157 NewF->removeAttributes( 1158 AttributeList::ReturnIndex, 1159 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1160 1161 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1162 if (F->isVarArg()) { 1163 NewF->removeAttributes(AttributeList::FunctionIndex, 1164 AttrBuilder().addAttribute("split-stack")); 1165 CallInst::Create(DFSanVarargWrapperFn, 1166 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1167 BB); 1168 new UnreachableInst(*Ctx, BB); 1169 } else { 1170 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1171 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1172 1173 CallInst *CI = CallInst::Create(F, Args, "", BB); 1174 if (FT->getReturnType()->isVoidTy()) 1175 ReturnInst::Create(*Ctx, BB); 1176 else 1177 ReturnInst::Create(*Ctx, CI, BB); 1178 } 1179 1180 return NewF; 1181 } 1182 1183 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 1184 StringRef FName) { 1185 FunctionType *FTT = getTrampolineFunctionType(FT); 1186 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 1187 Function *F = dyn_cast<Function>(C.getCallee()); 1188 if (F && F->isDeclaration()) { 1189 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 1190 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 1191 std::vector<Value *> Args; 1192 Function::arg_iterator AI = F->arg_begin() + 1; 1193 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 1194 Args.push_back(&*AI); 1195 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 1196 Type *RetType = FT->getReturnType(); 1197 ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB) 1198 : ReturnInst::Create(*Ctx, CI, BB); 1199 1200 // F is called by a wrapped custom function with primitive shadows. So 1201 // its arguments and return value need conversion. 1202 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 1203 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; 1204 ++ValAI; 1205 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 1206 Value *Shadow = 1207 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 1208 DFSF.ValShadowMap[&*ValAI] = Shadow; 1209 } 1210 Function::arg_iterator RetShadowAI = ShadowAI; 1211 const bool ShouldTrackOrigins = shouldTrackOrigins(); 1212 if (ShouldTrackOrigins) { 1213 ValAI = F->arg_begin(); 1214 ++ValAI; 1215 Function::arg_iterator OriginAI = ShadowAI; 1216 if (!RetType->isVoidTy()) 1217 ++OriginAI; 1218 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) { 1219 DFSF.ValOriginMap[&*ValAI] = &*OriginAI; 1220 } 1221 } 1222 DFSanVisitor(DFSF).visitCallInst(*CI); 1223 if (!RetType->isVoidTy()) { 1224 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 1225 DFSF.getShadow(RI->getReturnValue()), RI); 1226 new StoreInst(PrimitiveShadow, &*RetShadowAI, RI); 1227 if (ShouldTrackOrigins) { 1228 Value *Origin = DFSF.getOrigin(RI->getReturnValue()); 1229 new StoreInst(Origin, &*std::prev(F->arg_end()), RI); 1230 } 1231 } 1232 } 1233 1234 return cast<Constant>(C.getCallee()); 1235 } 1236 1237 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1238 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1239 { 1240 AttributeList AL; 1241 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1242 Attribute::NoUnwind); 1243 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1244 Attribute::ReadOnly); 1245 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1246 Attribute::ZExt); 1247 DFSanUnionLoadFn = 1248 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1249 } 1250 { 1251 AttributeList AL; 1252 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1253 Attribute::NoUnwind); 1254 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1255 Attribute::ReadOnly); 1256 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1257 Attribute::ZExt); 1258 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1259 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1260 } 1261 DFSanUnimplementedFn = 1262 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1263 { 1264 AttributeList AL; 1265 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1266 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1267 DFSanSetLabelFn = 1268 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1269 } 1270 DFSanNonzeroLabelFn = 1271 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1272 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1273 DFSanVarargWrapperFnTy); 1274 { 1275 AttributeList AL; 1276 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1277 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1278 Attribute::ZExt); 1279 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1280 DFSanChainOriginFnTy, AL); 1281 } 1282 { 1283 AttributeList AL; 1284 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1285 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1286 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1287 Attribute::ZExt); 1288 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1289 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1290 } 1291 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1292 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1293 1294 { 1295 AttributeList AL; 1296 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1297 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1298 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1299 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1300 } 1301 1302 DFSanRuntimeFunctions.insert( 1303 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1304 DFSanRuntimeFunctions.insert( 1305 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1306 DFSanRuntimeFunctions.insert( 1307 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1308 DFSanRuntimeFunctions.insert( 1309 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1310 DFSanRuntimeFunctions.insert( 1311 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1312 DFSanRuntimeFunctions.insert( 1313 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1314 DFSanRuntimeFunctions.insert( 1315 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1316 DFSanRuntimeFunctions.insert( 1317 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1318 DFSanRuntimeFunctions.insert( 1319 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1320 DFSanRuntimeFunctions.insert( 1321 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1322 DFSanRuntimeFunctions.insert( 1323 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1324 DFSanRuntimeFunctions.insert( 1325 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1326 DFSanRuntimeFunctions.insert( 1327 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1328 DFSanRuntimeFunctions.insert( 1329 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1330 } 1331 1332 // Initializes event callback functions and declare them in the module 1333 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1334 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1335 DFSanLoadStoreCallbackFnTy); 1336 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1337 DFSanLoadStoreCallbackFnTy); 1338 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1339 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1340 DFSanCmpCallbackFn = 1341 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1342 } 1343 1344 void DataFlowSanitizer::injectMetadataGlobals(Module &M) { 1345 // These variables can be used: 1346 // - by the runtime (to discover what the shadow width was, during 1347 // compilation) 1348 // - in testing (to avoid hardcoding the shadow width and type but instead 1349 // extract them by pattern matching) 1350 Type *IntTy = Type::getInt32Ty(*Ctx); 1351 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { 1352 return new GlobalVariable( 1353 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, 1354 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); 1355 }); 1356 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { 1357 return new GlobalVariable(M, IntTy, /*isConstant=*/true, 1358 GlobalValue::WeakODRLinkage, 1359 ConstantInt::get(IntTy, ShadowWidthBytes), 1360 "__dfsan_shadow_width_bytes"); 1361 }); 1362 } 1363 1364 bool DataFlowSanitizer::runImpl(Module &M) { 1365 initializeModule(M); 1366 1367 if (ABIList.isIn(M, "skip")) 1368 return false; 1369 1370 const unsigned InitialGlobalSize = M.global_size(); 1371 const unsigned InitialModuleSize = M.size(); 1372 1373 bool Changed = false; 1374 1375 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1376 Type *Ty) -> Constant * { 1377 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1378 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1379 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1380 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1381 } 1382 return C; 1383 }; 1384 1385 // These globals must be kept in sync with the ones in dfsan.cpp. 1386 ArgTLS = 1387 GetOrInsertGlobal("__dfsan_arg_tls", 1388 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1389 RetvalTLS = GetOrInsertGlobal( 1390 "__dfsan_retval_tls", 1391 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1392 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1393 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1394 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1395 1396 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1397 Changed = true; 1398 return new GlobalVariable( 1399 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1400 ConstantInt::getSigned(OriginTy, 1401 shouldTrackOrigins() ? ClTrackOrigins : 0), 1402 "__dfsan_track_origins"); 1403 }); 1404 1405 injectMetadataGlobals(M); 1406 1407 initializeCallbackFunctions(M); 1408 initializeRuntimeFunctions(M); 1409 1410 std::vector<Function *> FnsToInstrument; 1411 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1412 for (Function &F : M) 1413 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) 1414 FnsToInstrument.push_back(&F); 1415 1416 // Give function aliases prefixes when necessary, and build wrappers where the 1417 // instrumentedness is inconsistent. 1418 for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end(); 1419 AI != AE;) { 1420 GlobalAlias *GA = &*AI; 1421 ++AI; 1422 // Don't stop on weak. We assume people aren't playing games with the 1423 // instrumentedness of overridden weak aliases. 1424 auto *F = dyn_cast<Function>(GA->getBaseObject()); 1425 if (!F) 1426 continue; 1427 1428 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 1429 if (GAInst && FInst) { 1430 addGlobalNameSuffix(GA); 1431 } else if (GAInst != FInst) { 1432 // Non-instrumented alias of an instrumented function, or vice versa. 1433 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1434 // below will take care of instrumenting it. 1435 Function *NewF = 1436 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 1437 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 1438 NewF->takeName(GA); 1439 GA->eraseFromParent(); 1440 FnsToInstrument.push_back(NewF); 1441 } 1442 } 1443 1444 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1445 .addAttribute(Attribute::ReadNone); 1446 1447 // First, change the ABI of every function in the module. ABI-listed 1448 // functions keep their original ABI and get a wrapper function. 1449 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1450 FE = FnsToInstrument.end(); 1451 FI != FE; ++FI) { 1452 Function &F = **FI; 1453 FunctionType *FT = F.getFunctionType(); 1454 1455 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1456 FT->getReturnType()->isVoidTy()); 1457 1458 if (isInstrumented(&F)) { 1459 // Instrumented functions get a '.dfsan' suffix. This allows us to more 1460 // easily identify cases of mismatching ABIs. This naming scheme is 1461 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. 1462 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 1463 FunctionType *NewFT = getArgsFunctionType(FT); 1464 Function *NewF = Function::Create(NewFT, F.getLinkage(), 1465 F.getAddressSpace(), "", &M); 1466 NewF->copyAttributesFrom(&F); 1467 NewF->removeAttributes( 1468 AttributeList::ReturnIndex, 1469 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1470 for (Function::arg_iterator FArg = F.arg_begin(), 1471 NewFArg = NewF->arg_begin(), 1472 FArgEnd = F.arg_end(); 1473 FArg != FArgEnd; ++FArg, ++NewFArg) { 1474 FArg->replaceAllUsesWith(&*NewFArg); 1475 } 1476 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 1477 1478 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 1479 UI != UE;) { 1480 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 1481 ++UI; 1482 if (BA) { 1483 BA->replaceAllUsesWith( 1484 BlockAddress::get(NewF, BA->getBasicBlock())); 1485 delete BA; 1486 } 1487 } 1488 F.replaceAllUsesWith( 1489 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 1490 NewF->takeName(&F); 1491 F.eraseFromParent(); 1492 *FI = NewF; 1493 addGlobalNameSuffix(NewF); 1494 } else { 1495 addGlobalNameSuffix(&F); 1496 } 1497 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1498 // Build a wrapper function for F. The wrapper simply calls F, and is 1499 // added to FnsToInstrument so that any instrumentation according to its 1500 // WrapperKind is done in the second pass below. 1501 FunctionType *NewFT = 1502 getInstrumentedABI() == IA_Args ? getArgsFunctionType(FT) : FT; 1503 1504 // If the function being wrapped has local linkage, then preserve the 1505 // function's linkage in the wrapper function. 1506 GlobalValue::LinkageTypes WrapperLinkage = 1507 F.hasLocalLinkage() ? F.getLinkage() 1508 : GlobalValue::LinkOnceODRLinkage; 1509 1510 Function *NewF = buildWrapperFunction( 1511 &F, 1512 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1513 std::string(F.getName()), 1514 WrapperLinkage, NewFT); 1515 if (getInstrumentedABI() == IA_TLS) 1516 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 1517 1518 Value *WrappedFnCst = 1519 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1520 F.replaceAllUsesWith(WrappedFnCst); 1521 1522 UnwrappedFnMap[WrappedFnCst] = &F; 1523 *FI = NewF; 1524 1525 if (!F.isDeclaration()) { 1526 // This function is probably defining an interposition of an 1527 // uninstrumented function and hence needs to keep the original ABI. 1528 // But any functions it may call need to use the instrumented ABI, so 1529 // we instrument it in a mode which preserves the original ABI. 1530 FnsWithNativeABI.insert(&F); 1531 1532 // This code needs to rebuild the iterators, as they may be invalidated 1533 // by the push_back, taking care that the new range does not include 1534 // any functions added by this code. 1535 size_t N = FI - FnsToInstrument.begin(), 1536 Count = FE - FnsToInstrument.begin(); 1537 FnsToInstrument.push_back(&F); 1538 FI = FnsToInstrument.begin() + N; 1539 FE = FnsToInstrument.begin() + Count; 1540 } 1541 // Hopefully, nobody will try to indirectly call a vararg 1542 // function... yet. 1543 } else if (FT->isVarArg()) { 1544 UnwrappedFnMap[&F] = &F; 1545 *FI = nullptr; 1546 } 1547 } 1548 1549 for (Function *F : FnsToInstrument) { 1550 if (!F || F->isDeclaration()) 1551 continue; 1552 1553 removeUnreachableBlocks(*F); 1554 1555 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F)); 1556 1557 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1558 // Build a copy of the list before iterating over it. 1559 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1560 1561 for (BasicBlock *BB : BBList) { 1562 Instruction *Inst = &BB->front(); 1563 while (true) { 1564 // DFSanVisitor may split the current basic block, changing the current 1565 // instruction's next pointer and moving the next instruction to the 1566 // tail block from which we should continue. 1567 Instruction *Next = Inst->getNextNode(); 1568 // DFSanVisitor may delete Inst, so keep track of whether it was a 1569 // terminator. 1570 bool IsTerminator = Inst->isTerminator(); 1571 if (!DFSF.SkipInsts.count(Inst)) 1572 DFSanVisitor(DFSF).visit(Inst); 1573 if (IsTerminator) 1574 break; 1575 Inst = Next; 1576 } 1577 } 1578 1579 // We will not necessarily be able to compute the shadow for every phi node 1580 // until we have visited every block. Therefore, the code that handles phi 1581 // nodes adds them to the PHIFixups list so that they can be properly 1582 // handled here. 1583 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1584 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1585 ++Val) { 1586 P.ShadowPhi->setIncomingValue( 1587 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1588 if (P.OriginPhi) 1589 P.OriginPhi->setIncomingValue( 1590 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1591 } 1592 } 1593 1594 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1595 // places (i.e. instructions in basic blocks we haven't even begun visiting 1596 // yet). To make our life easier, do this work in a pass after the main 1597 // instrumentation. 1598 if (ClDebugNonzeroLabels) { 1599 for (Value *V : DFSF.NonZeroChecks) { 1600 Instruction *Pos; 1601 if (Instruction *I = dyn_cast<Instruction>(V)) 1602 Pos = I->getNextNode(); 1603 else 1604 Pos = &DFSF.F->getEntryBlock().front(); 1605 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1606 Pos = Pos->getNextNode(); 1607 IRBuilder<> IRB(Pos); 1608 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1609 Value *Ne = 1610 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1611 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1612 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1613 IRBuilder<> ThenIRB(BI); 1614 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1615 } 1616 } 1617 } 1618 1619 return Changed || !FnsToInstrument.empty() || 1620 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1621 } 1622 1623 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1624 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1625 if (ArgOffset) 1626 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1627 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1628 "_dfsarg"); 1629 } 1630 1631 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1632 return IRB.CreatePointerCast( 1633 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1634 } 1635 1636 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1637 1638 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1639 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1640 "_dfsarg_o"); 1641 } 1642 1643 Value *DFSanFunction::getOrigin(Value *V) { 1644 assert(DFS.shouldTrackOrigins()); 1645 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1646 return DFS.ZeroOrigin; 1647 Value *&Origin = ValOriginMap[V]; 1648 if (!Origin) { 1649 if (Argument *A = dyn_cast<Argument>(V)) { 1650 if (IsNativeABI) 1651 return DFS.ZeroOrigin; 1652 switch (IA) { 1653 case DataFlowSanitizer::IA_TLS: { 1654 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1655 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1656 IRBuilder<> IRB(ArgOriginTLSPos); 1657 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1658 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1659 } else { 1660 // Overflow 1661 Origin = DFS.ZeroOrigin; 1662 } 1663 break; 1664 } 1665 case DataFlowSanitizer::IA_Args: { 1666 Origin = DFS.ZeroOrigin; 1667 break; 1668 } 1669 } 1670 } else { 1671 Origin = DFS.ZeroOrigin; 1672 } 1673 } 1674 return Origin; 1675 } 1676 1677 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1678 if (!DFS.shouldTrackOrigins()) 1679 return; 1680 assert(!ValOriginMap.count(I)); 1681 assert(Origin->getType() == DFS.OriginTy); 1682 ValOriginMap[I] = Origin; 1683 } 1684 1685 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1686 unsigned ArgOffset = 0; 1687 const DataLayout &DL = F->getParent()->getDataLayout(); 1688 for (auto &FArg : F->args()) { 1689 if (!FArg.getType()->isSized()) { 1690 if (A == &FArg) 1691 break; 1692 continue; 1693 } 1694 1695 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1696 if (A != &FArg) { 1697 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1698 if (ArgOffset > ArgTLSSize) 1699 break; // ArgTLS overflows, uses a zero shadow. 1700 continue; 1701 } 1702 1703 if (ArgOffset + Size > ArgTLSSize) 1704 break; // ArgTLS overflows, uses a zero shadow. 1705 1706 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1707 IRBuilder<> IRB(ArgTLSPos); 1708 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1709 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1710 ShadowTLSAlignment); 1711 } 1712 1713 return DFS.getZeroShadow(A); 1714 } 1715 1716 Value *DFSanFunction::getShadow(Value *V) { 1717 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1718 return DFS.getZeroShadow(V); 1719 Value *&Shadow = ValShadowMap[V]; 1720 if (!Shadow) { 1721 if (Argument *A = dyn_cast<Argument>(V)) { 1722 if (IsNativeABI) 1723 return DFS.getZeroShadow(V); 1724 switch (IA) { 1725 case DataFlowSanitizer::IA_TLS: { 1726 Shadow = getShadowForTLSArgument(A); 1727 break; 1728 } 1729 case DataFlowSanitizer::IA_Args: { 1730 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1731 Function::arg_iterator Arg = F->arg_begin(); 1732 std::advance(Arg, ArgIdx); 1733 Shadow = &*Arg; 1734 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1735 break; 1736 } 1737 } 1738 NonZeroChecks.push_back(Shadow); 1739 } else { 1740 Shadow = DFS.getZeroShadow(V); 1741 } 1742 } 1743 return Shadow; 1744 } 1745 1746 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1747 assert(!ValShadowMap.count(I)); 1748 assert(DFS.shouldTrackFieldsAndIndices() || 1749 Shadow->getType() == DFS.PrimitiveShadowTy); 1750 ValShadowMap[I] = Shadow; 1751 } 1752 1753 /// Compute the integer shadow offset that corresponds to a given 1754 /// application address. 1755 /// 1756 /// Offset = (Addr & ~AndMask) ^ XorMask 1757 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1758 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1759 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1760 1761 uint64_t AndMask = MapParams->AndMask; 1762 if (AndMask) 1763 OffsetLong = 1764 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask)); 1765 1766 uint64_t XorMask = MapParams->XorMask; 1767 if (XorMask) 1768 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask)); 1769 return OffsetLong; 1770 } 1771 1772 std::pair<Value *, Value *> 1773 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1774 Instruction *Pos) { 1775 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL 1776 IRBuilder<> IRB(Pos); 1777 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1778 Value *ShadowLong = ShadowOffset; 1779 uint64_t ShadowBase = MapParams->ShadowBase; 1780 if (ShadowBase != 0) { 1781 ShadowLong = 1782 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase)); 1783 } 1784 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1785 Value *ShadowPtr = 1786 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1787 Value *OriginPtr = nullptr; 1788 if (shouldTrackOrigins()) { 1789 Value *OriginLong = ShadowOffset; 1790 uint64_t OriginBase = MapParams->OriginBase; 1791 if (OriginBase != 0) 1792 OriginLong = 1793 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase)); 1794 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1795 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1796 // So Mask is unnecessary. 1797 if (Alignment < MinOriginAlignment) { 1798 uint64_t Mask = MinOriginAlignment.value() - 1; 1799 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1800 } 1801 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1802 } 1803 return std::make_pair(ShadowPtr, OriginPtr); 1804 } 1805 1806 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, 1807 Value *ShadowOffset) { 1808 IRBuilder<> IRB(Pos); 1809 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1810 } 1811 1812 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1813 IRBuilder<> IRB(Pos); 1814 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1815 return getShadowAddress(Addr, Pos, ShadowOffset); 1816 } 1817 1818 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1819 Instruction *Pos) { 1820 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1821 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1822 } 1823 1824 // Generates IR to compute the union of the two given shadows, inserting it 1825 // before Pos. The combined value is with primitive type. 1826 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1827 if (DFS.isZeroShadow(V1)) 1828 return collapseToPrimitiveShadow(V2, Pos); 1829 if (DFS.isZeroShadow(V2)) 1830 return collapseToPrimitiveShadow(V1, Pos); 1831 if (V1 == V2) 1832 return collapseToPrimitiveShadow(V1, Pos); 1833 1834 auto V1Elems = ShadowElements.find(V1); 1835 auto V2Elems = ShadowElements.find(V2); 1836 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1837 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1838 V2Elems->second.begin(), V2Elems->second.end())) { 1839 return collapseToPrimitiveShadow(V1, Pos); 1840 } 1841 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1842 V1Elems->second.begin(), V1Elems->second.end())) { 1843 return collapseToPrimitiveShadow(V2, Pos); 1844 } 1845 } else if (V1Elems != ShadowElements.end()) { 1846 if (V1Elems->second.count(V2)) 1847 return collapseToPrimitiveShadow(V1, Pos); 1848 } else if (V2Elems != ShadowElements.end()) { 1849 if (V2Elems->second.count(V1)) 1850 return collapseToPrimitiveShadow(V2, Pos); 1851 } 1852 1853 auto Key = std::make_pair(V1, V2); 1854 if (V1 > V2) 1855 std::swap(Key.first, Key.second); 1856 CachedShadow &CCS = CachedShadows[Key]; 1857 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1858 return CCS.Shadow; 1859 1860 // Converts inputs shadows to shadows with primitive types. 1861 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1862 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1863 1864 IRBuilder<> IRB(Pos); 1865 CCS.Block = Pos->getParent(); 1866 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1867 1868 std::set<Value *> UnionElems; 1869 if (V1Elems != ShadowElements.end()) { 1870 UnionElems = V1Elems->second; 1871 } else { 1872 UnionElems.insert(V1); 1873 } 1874 if (V2Elems != ShadowElements.end()) { 1875 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1876 } else { 1877 UnionElems.insert(V2); 1878 } 1879 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1880 1881 return CCS.Shadow; 1882 } 1883 1884 // A convenience function which folds the shadows of each of the operands 1885 // of the provided instruction Inst, inserting the IR before Inst. Returns 1886 // the computed union Value. 1887 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1888 if (Inst->getNumOperands() == 0) 1889 return DFS.getZeroShadow(Inst); 1890 1891 Value *Shadow = getShadow(Inst->getOperand(0)); 1892 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 1893 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 1894 1895 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1896 } 1897 1898 void DFSanVisitor::visitInstOperands(Instruction &I) { 1899 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1900 DFSF.setShadow(&I, CombinedShadow); 1901 visitInstOperandOrigins(I); 1902 } 1903 1904 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 1905 const std::vector<Value *> &Origins, 1906 Instruction *Pos, ConstantInt *Zero) { 1907 assert(Shadows.size() == Origins.size()); 1908 size_t Size = Origins.size(); 1909 if (Size == 0) 1910 return DFS.ZeroOrigin; 1911 Value *Origin = nullptr; 1912 if (!Zero) 1913 Zero = DFS.ZeroPrimitiveShadow; 1914 for (size_t I = 0; I != Size; ++I) { 1915 Value *OpOrigin = Origins[I]; 1916 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 1917 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 1918 continue; 1919 if (!Origin) { 1920 Origin = OpOrigin; 1921 continue; 1922 } 1923 Value *OpShadow = Shadows[I]; 1924 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 1925 IRBuilder<> IRB(Pos); 1926 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 1927 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1928 } 1929 return Origin ? Origin : DFS.ZeroOrigin; 1930 } 1931 1932 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 1933 size_t Size = Inst->getNumOperands(); 1934 std::vector<Value *> Shadows(Size); 1935 std::vector<Value *> Origins(Size); 1936 for (unsigned I = 0; I != Size; ++I) { 1937 Shadows[I] = getShadow(Inst->getOperand(I)); 1938 Origins[I] = getOrigin(Inst->getOperand(I)); 1939 } 1940 return combineOrigins(Shadows, Origins, Inst); 1941 } 1942 1943 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 1944 if (!DFSF.DFS.shouldTrackOrigins()) 1945 return; 1946 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 1947 DFSF.setOrigin(&I, CombinedOrigin); 1948 } 1949 1950 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 1951 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 1952 return Align(Alignment.value() * DFS.ShadowWidthBytes); 1953 } 1954 1955 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 1956 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1957 return Align(std::max(MinOriginAlignment, Alignment)); 1958 } 1959 1960 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 1961 Align InstAlignment) { 1962 // When enabling tracking load instructions, we always use 1963 // __dfsan_load_label_and_origin to reduce code size. 1964 if (ClTrackOrigins == 2) 1965 return true; 1966 1967 assert(Size != 0); 1968 // * if Size == 1, it is sufficient to load its origin aligned at 4. 1969 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 1970 // load its origin aligned at 4. If not, although origins may be lost, it 1971 // should not happen very often. 1972 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 1973 // Size % 4 == 0, it is more efficient to load origins without callbacks. 1974 // * Otherwise we use __dfsan_load_label_and_origin. 1975 // This should ensure that common cases run efficiently. 1976 if (Size <= 2) 1977 return false; 1978 1979 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1980 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 1981 } 1982 1983 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign, 1984 Value **OriginAddr) { 1985 IRBuilder<> IRB(Pos); 1986 *OriginAddr = 1987 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 1988 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 1989 } 1990 1991 std::pair<Value *, Value *> DFSanFunction::loadShadowFast( 1992 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 1993 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 1994 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1995 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 1996 1997 assert(Size >= 4 && "Not large enough load size for fast path!"); 1998 1999 // Used for origin tracking. 2000 std::vector<Value *> Shadows; 2001 std::vector<Value *> Origins; 2002 2003 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 2004 // but this function is only used in a subset of cases that make it possible 2005 // to optimize the instrumentation. 2006 // 2007 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 2008 // per byte) is either: 2009 // - a multiple of 8 (common) 2010 // - equal to 4 (only for load32) 2011 // 2012 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 2013 // other cases, we use a 64-bit integer to hold the wide shadow. 2014 Type *WideShadowTy = 2015 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 2016 2017 IRBuilder<> IRB(Pos); 2018 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); 2019 Value *CombinedWideShadow = 2020 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2021 2022 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 2023 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 2024 2025 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 2026 if (BytesPerWideShadow > 4) { 2027 assert(BytesPerWideShadow == 8); 2028 // The wide shadow relates to two origin pointers: one for the first four 2029 // application bytes, and one for the latest four. We use a left shift to 2030 // get just the shadow bytes that correspond to the first origin pointer, 2031 // and then the entire shadow for the second origin pointer (which will be 2032 // chosen by combineOrigins() iff the least-significant half of the wide 2033 // shadow was empty but the other half was not). 2034 Value *WideShadowLo = IRB.CreateShl( 2035 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 2036 Shadows.push_back(WideShadow); 2037 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 2038 2039 Shadows.push_back(WideShadowLo); 2040 Origins.push_back(Origin); 2041 } else { 2042 Shadows.push_back(WideShadow); 2043 Origins.push_back(Origin); 2044 } 2045 }; 2046 2047 if (ShouldTrackOrigins) 2048 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 2049 2050 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 2051 // then OR individual shadows within the combined WideShadow by binary ORing. 2052 // This is fewer instructions than ORing shadows individually, since it 2053 // needs logN shift/or instructions (N being the bytes of the combined wide 2054 // shadow). 2055 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 2056 ByteOfs += BytesPerWideShadow) { 2057 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr, 2058 ConstantInt::get(DFS.IntptrTy, 1)); 2059 Value *NextWideShadow = 2060 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 2061 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 2062 if (ShouldTrackOrigins) { 2063 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 2064 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 2065 } 2066 } 2067 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 2068 Width >>= 1) { 2069 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 2070 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 2071 } 2072 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 2073 ShouldTrackOrigins 2074 ? combineOrigins(Shadows, Origins, Pos, 2075 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 2076 : DFS.ZeroOrigin}; 2077 } 2078 2079 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 2080 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) { 2081 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2082 2083 // Non-escaped loads. 2084 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2085 const auto SI = AllocaShadowMap.find(AI); 2086 if (SI != AllocaShadowMap.end()) { 2087 IRBuilder<> IRB(Pos); 2088 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 2089 const auto OI = AllocaOriginMap.find(AI); 2090 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 2091 return {ShadowLI, ShouldTrackOrigins 2092 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 2093 : nullptr}; 2094 } 2095 } 2096 2097 // Load from constant addresses. 2098 SmallVector<const Value *, 2> Objs; 2099 getUnderlyingObjects(Addr, Objs); 2100 bool AllConstants = true; 2101 for (const Value *Obj : Objs) { 2102 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2103 continue; 2104 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2105 continue; 2106 2107 AllConstants = false; 2108 break; 2109 } 2110 if (AllConstants) 2111 return {DFS.ZeroPrimitiveShadow, 2112 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2113 2114 if (Size == 0) 2115 return {DFS.ZeroPrimitiveShadow, 2116 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2117 2118 // Use callback to load if this is not an optimizable case for origin 2119 // tracking. 2120 if (ShouldTrackOrigins && 2121 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2122 IRBuilder<> IRB(Pos); 2123 CallInst *Call = 2124 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2125 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2126 ConstantInt::get(DFS.IntptrTy, Size)}); 2127 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2128 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2129 DFS.PrimitiveShadowTy), 2130 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2131 } 2132 2133 // Other cases that support loading shadows or origins in a fast way. 2134 Value *ShadowAddr, *OriginAddr; 2135 std::tie(ShadowAddr, OriginAddr) = 2136 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2137 2138 const Align ShadowAlign = getShadowAlign(InstAlignment); 2139 const Align OriginAlign = getOriginAlign(InstAlignment); 2140 Value *Origin = nullptr; 2141 if (ShouldTrackOrigins) { 2142 IRBuilder<> IRB(Pos); 2143 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2144 } 2145 2146 // When the byte size is small enough, we can load the shadow directly with 2147 // just a few instructions. 2148 switch (Size) { 2149 case 1: { 2150 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2151 LI->setAlignment(ShadowAlign); 2152 return {LI, Origin}; 2153 } 2154 case 2: { 2155 IRBuilder<> IRB(Pos); 2156 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2157 ConstantInt::get(DFS.IntptrTy, 1)); 2158 Value *Load = 2159 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2160 Value *Load1 = 2161 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2162 return {combineShadows(Load, Load1, Pos), Origin}; 2163 } 2164 } 2165 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2166 2167 if (HasSizeForFastPath) 2168 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2169 OriginAlign, Origin, Pos); 2170 2171 IRBuilder<> IRB(Pos); 2172 CallInst *FallbackCall = IRB.CreateCall( 2173 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2174 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 2175 return {FallbackCall, Origin}; 2176 } 2177 2178 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2179 uint64_t Size, 2180 Align InstAlignment, 2181 Instruction *Pos) { 2182 Value *PrimitiveShadow, *Origin; 2183 std::tie(PrimitiveShadow, Origin) = 2184 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2185 if (DFS.shouldTrackOrigins()) { 2186 if (ClTrackOrigins == 2) { 2187 IRBuilder<> IRB(Pos); 2188 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2189 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2190 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2191 } 2192 } 2193 return {PrimitiveShadow, Origin}; 2194 } 2195 2196 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2197 switch (AO) { 2198 case AtomicOrdering::NotAtomic: 2199 return AtomicOrdering::NotAtomic; 2200 case AtomicOrdering::Unordered: 2201 case AtomicOrdering::Monotonic: 2202 case AtomicOrdering::Acquire: 2203 return AtomicOrdering::Acquire; 2204 case AtomicOrdering::Release: 2205 case AtomicOrdering::AcquireRelease: 2206 return AtomicOrdering::AcquireRelease; 2207 case AtomicOrdering::SequentiallyConsistent: 2208 return AtomicOrdering::SequentiallyConsistent; 2209 } 2210 llvm_unreachable("Unknown ordering"); 2211 } 2212 2213 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2214 auto &DL = LI.getModule()->getDataLayout(); 2215 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2216 if (Size == 0) { 2217 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2218 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2219 return; 2220 } 2221 2222 // When an application load is atomic, increase atomic ordering between 2223 // atomic application loads and stores to ensure happen-before order; load 2224 // shadow data after application data; store zero shadow data before 2225 // application data. This ensure shadow loads return either labels of the 2226 // initial application data or zeros. 2227 if (LI.isAtomic()) 2228 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2229 2230 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2231 std::vector<Value *> Shadows; 2232 std::vector<Value *> Origins; 2233 Value *PrimitiveShadow, *Origin; 2234 std::tie(PrimitiveShadow, Origin) = 2235 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2236 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2237 if (ShouldTrackOrigins) { 2238 Shadows.push_back(PrimitiveShadow); 2239 Origins.push_back(Origin); 2240 } 2241 if (ClCombinePointerLabelsOnLoad) { 2242 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2243 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2244 if (ShouldTrackOrigins) { 2245 Shadows.push_back(PtrShadow); 2246 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2247 } 2248 } 2249 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2250 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2251 2252 Value *Shadow = 2253 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2254 DFSF.setShadow(&LI, Shadow); 2255 2256 if (ShouldTrackOrigins) { 2257 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2258 } 2259 2260 if (ClEventCallbacks) { 2261 IRBuilder<> IRB(Pos); 2262 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2263 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2264 } 2265 } 2266 2267 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2268 IRBuilder<> &IRB) { 2269 assert(DFS.shouldTrackOrigins()); 2270 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2271 } 2272 2273 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2274 if (!DFS.shouldTrackOrigins()) 2275 return V; 2276 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2277 } 2278 2279 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2280 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2281 const DataLayout &DL = F->getParent()->getDataLayout(); 2282 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2283 if (IntptrSize == OriginSize) 2284 return Origin; 2285 assert(IntptrSize == OriginSize * 2); 2286 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2287 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2288 } 2289 2290 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2291 Value *StoreOriginAddr, 2292 uint64_t StoreOriginSize, Align Alignment) { 2293 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2294 const DataLayout &DL = F->getParent()->getDataLayout(); 2295 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2296 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2297 assert(IntptrAlignment >= MinOriginAlignment); 2298 assert(IntptrSize >= OriginSize); 2299 2300 unsigned Ofs = 0; 2301 Align CurrentAlignment = Alignment; 2302 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2303 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2304 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2305 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2306 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2307 Value *Ptr = 2308 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2309 : IntptrStoreOriginPtr; 2310 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2311 Ofs += IntptrSize / OriginSize; 2312 CurrentAlignment = IntptrAlignment; 2313 } 2314 } 2315 2316 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2317 ++I) { 2318 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2319 : StoreOriginAddr; 2320 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2321 CurrentAlignment = MinOriginAlignment; 2322 } 2323 } 2324 2325 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2326 const Twine &Name) { 2327 Type *VTy = V->getType(); 2328 assert(VTy->isIntegerTy()); 2329 if (VTy->getIntegerBitWidth() == 1) 2330 // Just converting a bool to a bool, so do nothing. 2331 return V; 2332 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2333 } 2334 2335 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2336 Value *Shadow, Value *Origin, 2337 Value *StoreOriginAddr, Align InstAlignment) { 2338 // Do not write origins for zero shadows because we do not trace origins for 2339 // untainted sinks. 2340 const Align OriginAlignment = getOriginAlign(InstAlignment); 2341 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2342 IRBuilder<> IRB(Pos); 2343 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2344 if (!ConstantShadow->isZeroValue()) 2345 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2346 OriginAlignment); 2347 return; 2348 } 2349 2350 if (shouldInstrumentWithCall()) { 2351 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2352 {CollapsedShadow, 2353 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2354 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2355 } else { 2356 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2357 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2358 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); 2359 IRBuilder<> IRBNew(CheckTerm); 2360 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2361 OriginAlignment); 2362 ++NumOriginStores; 2363 } 2364 } 2365 2366 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2367 Align ShadowAlign, 2368 Instruction *Pos) { 2369 IRBuilder<> IRB(Pos); 2370 IntegerType *ShadowTy = 2371 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2372 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2373 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2374 Value *ExtShadowAddr = 2375 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2376 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2377 // Do not write origins for 0 shadows because we do not trace origins for 2378 // untainted sinks. 2379 } 2380 2381 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2382 Align InstAlignment, 2383 Value *PrimitiveShadow, 2384 Value *Origin, 2385 Instruction *Pos) { 2386 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2387 2388 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2389 const auto SI = AllocaShadowMap.find(AI); 2390 if (SI != AllocaShadowMap.end()) { 2391 IRBuilder<> IRB(Pos); 2392 IRB.CreateStore(PrimitiveShadow, SI->second); 2393 2394 // Do not write origins for 0 shadows because we do not trace origins for 2395 // untainted sinks. 2396 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2397 const auto OI = AllocaOriginMap.find(AI); 2398 assert(OI != AllocaOriginMap.end() && Origin); 2399 IRB.CreateStore(Origin, OI->second); 2400 } 2401 return; 2402 } 2403 } 2404 2405 const Align ShadowAlign = getShadowAlign(InstAlignment); 2406 if (DFS.isZeroShadow(PrimitiveShadow)) { 2407 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2408 return; 2409 } 2410 2411 IRBuilder<> IRB(Pos); 2412 Value *ShadowAddr, *OriginAddr; 2413 std::tie(ShadowAddr, OriginAddr) = 2414 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2415 2416 const unsigned ShadowVecSize = 8; 2417 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2418 "Shadow vector is too large!"); 2419 2420 uint64_t Offset = 0; 2421 uint64_t LeftSize = Size; 2422 if (LeftSize >= ShadowVecSize) { 2423 auto *ShadowVecTy = 2424 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2425 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2426 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2427 ShadowVec = IRB.CreateInsertElement( 2428 ShadowVec, PrimitiveShadow, 2429 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2430 } 2431 Value *ShadowVecAddr = 2432 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2433 do { 2434 Value *CurShadowVecAddr = 2435 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2436 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2437 LeftSize -= ShadowVecSize; 2438 ++Offset; 2439 } while (LeftSize >= ShadowVecSize); 2440 Offset *= ShadowVecSize; 2441 } 2442 while (LeftSize > 0) { 2443 Value *CurShadowAddr = 2444 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2445 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2446 --LeftSize; 2447 ++Offset; 2448 } 2449 2450 if (ShouldTrackOrigins) { 2451 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2452 InstAlignment); 2453 } 2454 } 2455 2456 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2457 switch (AO) { 2458 case AtomicOrdering::NotAtomic: 2459 return AtomicOrdering::NotAtomic; 2460 case AtomicOrdering::Unordered: 2461 case AtomicOrdering::Monotonic: 2462 case AtomicOrdering::Release: 2463 return AtomicOrdering::Release; 2464 case AtomicOrdering::Acquire: 2465 case AtomicOrdering::AcquireRelease: 2466 return AtomicOrdering::AcquireRelease; 2467 case AtomicOrdering::SequentiallyConsistent: 2468 return AtomicOrdering::SequentiallyConsistent; 2469 } 2470 llvm_unreachable("Unknown ordering"); 2471 } 2472 2473 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2474 auto &DL = SI.getModule()->getDataLayout(); 2475 Value *Val = SI.getValueOperand(); 2476 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2477 if (Size == 0) 2478 return; 2479 2480 // When an application store is atomic, increase atomic ordering between 2481 // atomic application loads and stores to ensure happen-before order; load 2482 // shadow data after application data; store zero shadow data before 2483 // application data. This ensure shadow loads return either labels of the 2484 // initial application data or zeros. 2485 if (SI.isAtomic()) 2486 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2487 2488 const bool ShouldTrackOrigins = 2489 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2490 std::vector<Value *> Shadows; 2491 std::vector<Value *> Origins; 2492 2493 Value *Shadow = 2494 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2495 2496 if (ShouldTrackOrigins) { 2497 Shadows.push_back(Shadow); 2498 Origins.push_back(DFSF.getOrigin(Val)); 2499 } 2500 2501 Value *PrimitiveShadow; 2502 if (ClCombinePointerLabelsOnStore) { 2503 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2504 if (ShouldTrackOrigins) { 2505 Shadows.push_back(PtrShadow); 2506 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2507 } 2508 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2509 } else { 2510 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2511 } 2512 Value *Origin = nullptr; 2513 if (ShouldTrackOrigins) 2514 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2515 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2516 PrimitiveShadow, Origin, &SI); 2517 if (ClEventCallbacks) { 2518 IRBuilder<> IRB(&SI); 2519 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2520 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2521 } 2522 } 2523 2524 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2525 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2526 2527 Value *Val = I.getOperand(1); 2528 const auto &DL = I.getModule()->getDataLayout(); 2529 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2530 if (Size == 0) 2531 return; 2532 2533 // Conservatively set data at stored addresses and return with zero shadow to 2534 // prevent shadow data races. 2535 IRBuilder<> IRB(&I); 2536 Value *Addr = I.getOperand(0); 2537 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2538 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2539 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2540 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2541 } 2542 2543 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2544 visitCASOrRMW(I.getAlign(), I); 2545 // TODO: The ordering change follows MSan. It is possible not to change 2546 // ordering because we always set and use 0 shadows. 2547 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2548 } 2549 2550 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2551 visitCASOrRMW(I.getAlign(), I); 2552 // TODO: The ordering change follows MSan. It is possible not to change 2553 // ordering because we always set and use 0 shadows. 2554 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2555 } 2556 2557 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2558 visitInstOperands(UO); 2559 } 2560 2561 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2562 visitInstOperands(BO); 2563 } 2564 2565 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { 2566 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2567 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2568 // a musttail call and a ret, don't instrument. New instructions are not 2569 // allowed after a musttail call. 2570 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) 2571 if (CI->isMustTailCall()) 2572 return; 2573 } 2574 // TODO: handle musttail call returns for IA_Args. 2575 visitInstOperands(BCI); 2576 } 2577 2578 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2579 2580 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2581 visitInstOperands(CI); 2582 if (ClEventCallbacks) { 2583 IRBuilder<> IRB(&CI); 2584 Value *CombinedShadow = DFSF.getShadow(&CI); 2585 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2586 } 2587 } 2588 2589 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { 2590 // We do not need to track data through LandingPadInst. 2591 // 2592 // For the C++ exceptions, if a value is thrown, this value will be stored 2593 // in a memory location provided by __cxa_allocate_exception(...) (on the 2594 // throw side) or __cxa_begin_catch(...) (on the catch side). 2595 // This memory will have a shadow, so with the loads and stores we will be 2596 // able to propagate labels on data thrown through exceptions, without any 2597 // special handling of the LandingPadInst. 2598 // 2599 // The second element in the pair result of the LandingPadInst is a 2600 // register value, but it is for a type ID and should never be tainted. 2601 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI)); 2602 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin); 2603 } 2604 2605 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2606 if (ClCombineOffsetLabelsOnGEP) { 2607 visitInstOperands(GEPI); 2608 return; 2609 } 2610 2611 // Only propagate shadow/origin of base pointer value but ignore those of 2612 // offset operands. 2613 Value *BasePointer = GEPI.getPointerOperand(); 2614 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); 2615 if (DFSF.DFS.shouldTrackOrigins()) 2616 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); 2617 } 2618 2619 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2620 visitInstOperands(I); 2621 } 2622 2623 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2624 visitInstOperands(I); 2625 } 2626 2627 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2628 visitInstOperands(I); 2629 } 2630 2631 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2632 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2633 visitInstOperands(I); 2634 return; 2635 } 2636 2637 IRBuilder<> IRB(&I); 2638 Value *Agg = I.getAggregateOperand(); 2639 Value *AggShadow = DFSF.getShadow(Agg); 2640 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2641 DFSF.setShadow(&I, ResShadow); 2642 visitInstOperandOrigins(I); 2643 } 2644 2645 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2646 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 2647 visitInstOperands(I); 2648 return; 2649 } 2650 2651 IRBuilder<> IRB(&I); 2652 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2653 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2654 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2655 DFSF.setShadow(&I, Res); 2656 visitInstOperandOrigins(I); 2657 } 2658 2659 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2660 bool AllLoadsStores = true; 2661 for (User *U : I.users()) { 2662 if (isa<LoadInst>(U)) 2663 continue; 2664 2665 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2666 if (SI->getPointerOperand() == &I) 2667 continue; 2668 } 2669 2670 AllLoadsStores = false; 2671 break; 2672 } 2673 if (AllLoadsStores) { 2674 IRBuilder<> IRB(&I); 2675 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2676 if (DFSF.DFS.shouldTrackOrigins()) { 2677 DFSF.AllocaOriginMap[&I] = 2678 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2679 } 2680 } 2681 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2682 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2683 } 2684 2685 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2686 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2687 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2688 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2689 Value *ShadowSel = nullptr; 2690 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2691 std::vector<Value *> Shadows; 2692 std::vector<Value *> Origins; 2693 Value *TrueOrigin = 2694 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2695 Value *FalseOrigin = 2696 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2697 2698 if (isa<VectorType>(I.getCondition()->getType())) { 2699 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2700 FalseShadow, &I); 2701 if (ShouldTrackOrigins) { 2702 Shadows.push_back(TrueShadow); 2703 Shadows.push_back(FalseShadow); 2704 Origins.push_back(TrueOrigin); 2705 Origins.push_back(FalseOrigin); 2706 } 2707 } else { 2708 if (TrueShadow == FalseShadow) { 2709 ShadowSel = TrueShadow; 2710 if (ShouldTrackOrigins) { 2711 Shadows.push_back(TrueShadow); 2712 Origins.push_back(TrueOrigin); 2713 } 2714 } else { 2715 ShadowSel = 2716 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2717 if (ShouldTrackOrigins) { 2718 Shadows.push_back(ShadowSel); 2719 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2720 FalseOrigin, "", &I)); 2721 } 2722 } 2723 } 2724 DFSF.setShadow(&I, ClTrackSelectControlFlow 2725 ? DFSF.combineShadowsThenConvert( 2726 I.getType(), CondShadow, ShadowSel, &I) 2727 : ShadowSel); 2728 if (ShouldTrackOrigins) { 2729 if (ClTrackSelectControlFlow) { 2730 Shadows.push_back(CondShadow); 2731 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2732 } 2733 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2734 } 2735 } 2736 2737 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2738 IRBuilder<> IRB(&I); 2739 Value *ValShadow = DFSF.getShadow(I.getValue()); 2740 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2741 ? DFSF.getOrigin(I.getValue()) 2742 : DFSF.DFS.ZeroOrigin; 2743 IRB.CreateCall( 2744 DFSF.DFS.DFSanSetLabelFn, 2745 {ValShadow, ValOrigin, 2746 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2747 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2748 } 2749 2750 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2751 IRBuilder<> IRB(&I); 2752 2753 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2754 // need to move origins before moving shadows. 2755 if (DFSF.DFS.shouldTrackOrigins()) { 2756 IRB.CreateCall( 2757 DFSF.DFS.DFSanMemOriginTransferFn, 2758 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2759 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2760 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2761 } 2762 2763 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2764 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2765 Value *LenShadow = 2766 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2767 DFSF.DFS.ShadowWidthBytes)); 2768 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2769 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2770 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2771 auto *MTI = cast<MemTransferInst>( 2772 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2773 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2774 if (ClPreserveAlignment) { 2775 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2776 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2777 } else { 2778 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2779 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2780 } 2781 if (ClEventCallbacks) { 2782 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2783 {RawDestShadow, 2784 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2785 } 2786 } 2787 2788 static bool isAMustTailRetVal(Value *RetVal) { 2789 // Tail call may have a bitcast between return. 2790 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2791 RetVal = I->getOperand(0); 2792 } 2793 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2794 return I->isMustTailCall(); 2795 } 2796 return false; 2797 } 2798 2799 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2800 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2801 switch (DFSF.IA) { 2802 case DataFlowSanitizer::IA_TLS: { 2803 // Don't emit the instrumentation for musttail call returns. 2804 if (isAMustTailRetVal(RI.getReturnValue())) 2805 return; 2806 2807 Value *S = DFSF.getShadow(RI.getReturnValue()); 2808 IRBuilder<> IRB(&RI); 2809 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2810 unsigned Size = 2811 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2812 if (Size <= RetvalTLSSize) { 2813 // If the size overflows, stores nothing. At callsite, oversized return 2814 // shadows are set to zero. 2815 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), 2816 ShadowTLSAlignment); 2817 } 2818 if (DFSF.DFS.shouldTrackOrigins()) { 2819 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2820 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2821 } 2822 break; 2823 } 2824 case DataFlowSanitizer::IA_Args: { 2825 // TODO: handle musttail call returns for IA_Args. 2826 2827 IRBuilder<> IRB(&RI); 2828 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2829 Value *InsVal = 2830 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 2831 Value *InsShadow = 2832 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 2833 RI.setOperand(0, InsShadow); 2834 break; 2835 } 2836 } 2837 } 2838 } 2839 2840 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2841 std::vector<Value *> &Args, 2842 IRBuilder<> &IRB) { 2843 FunctionType *FT = F.getFunctionType(); 2844 2845 auto *I = CB.arg_begin(); 2846 2847 // Adds non-variable argument shadows. 2848 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2849 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2850 2851 // Adds variable argument shadows. 2852 if (FT->isVarArg()) { 2853 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2854 CB.arg_size() - FT->getNumParams()); 2855 auto *LabelVAAlloca = 2856 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2857 "labelva", &DFSF.F->getEntryBlock().front()); 2858 2859 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2860 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2861 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2862 LabelVAPtr); 2863 } 2864 2865 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2866 } 2867 2868 // Adds the return value shadow. 2869 if (!FT->getReturnType()->isVoidTy()) { 2870 if (!DFSF.LabelReturnAlloca) { 2871 DFSF.LabelReturnAlloca = new AllocaInst( 2872 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2873 "labelreturn", &DFSF.F->getEntryBlock().front()); 2874 } 2875 Args.push_back(DFSF.LabelReturnAlloca); 2876 } 2877 } 2878 2879 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 2880 std::vector<Value *> &Args, 2881 IRBuilder<> &IRB) { 2882 FunctionType *FT = F.getFunctionType(); 2883 2884 auto *I = CB.arg_begin(); 2885 2886 // Add non-variable argument origins. 2887 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2888 Args.push_back(DFSF.getOrigin(*I)); 2889 2890 // Add variable argument origins. 2891 if (FT->isVarArg()) { 2892 auto *OriginVATy = 2893 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 2894 auto *OriginVAAlloca = 2895 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 2896 "originva", &DFSF.F->getEntryBlock().front()); 2897 2898 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2899 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 2900 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 2901 } 2902 2903 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 2904 } 2905 2906 // Add the return value origin. 2907 if (!FT->getReturnType()->isVoidTy()) { 2908 if (!DFSF.OriginReturnAlloca) { 2909 DFSF.OriginReturnAlloca = new AllocaInst( 2910 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 2911 "originreturn", &DFSF.F->getEntryBlock().front()); 2912 } 2913 Args.push_back(DFSF.OriginReturnAlloca); 2914 } 2915 } 2916 2917 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 2918 IRBuilder<> IRB(&CB); 2919 switch (DFSF.DFS.getWrapperKind(&F)) { 2920 case DataFlowSanitizer::WK_Warning: 2921 CB.setCalledFunction(&F); 2922 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 2923 IRB.CreateGlobalStringPtr(F.getName())); 2924 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2925 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2926 return true; 2927 case DataFlowSanitizer::WK_Discard: 2928 CB.setCalledFunction(&F); 2929 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2930 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2931 return true; 2932 case DataFlowSanitizer::WK_Functional: 2933 CB.setCalledFunction(&F); 2934 visitInstOperands(CB); 2935 return true; 2936 case DataFlowSanitizer::WK_Custom: 2937 // Don't try to handle invokes of custom functions, it's too complicated. 2938 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 2939 // wrapper. 2940 CallInst *CI = dyn_cast<CallInst>(&CB); 2941 if (!CI) 2942 return false; 2943 2944 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2945 FunctionType *FT = F.getFunctionType(); 2946 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 2947 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 2948 CustomFName += F.getName(); 2949 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 2950 CustomFName, CustomFn.TransformedType); 2951 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 2952 CustomFn->copyAttributesFrom(&F); 2953 2954 // Custom functions returning non-void will write to the return label. 2955 if (!FT->getReturnType()->isVoidTy()) { 2956 CustomFn->removeAttributes(AttributeList::FunctionIndex, 2957 DFSF.DFS.ReadOnlyNoneAttrs); 2958 } 2959 } 2960 2961 std::vector<Value *> Args; 2962 2963 // Adds non-variable arguments. 2964 auto *I = CB.arg_begin(); 2965 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 2966 Type *T = (*I)->getType(); 2967 FunctionType *ParamFT; 2968 if (isa<PointerType>(T) && 2969 (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) { 2970 std::string TName = "dfst"; 2971 TName += utostr(FT->getNumParams() - N); 2972 TName += "$"; 2973 TName += F.getName(); 2974 Constant *Trampoline = 2975 DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 2976 Args.push_back(Trampoline); 2977 Args.push_back( 2978 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 2979 } else { 2980 Args.push_back(*I); 2981 } 2982 } 2983 2984 // Adds shadow arguments. 2985 const unsigned ShadowArgStart = Args.size(); 2986 addShadowArguments(F, CB, Args, IRB); 2987 2988 // Adds origin arguments. 2989 const unsigned OriginArgStart = Args.size(); 2990 if (ShouldTrackOrigins) 2991 addOriginArguments(F, CB, Args, IRB); 2992 2993 // Adds variable arguments. 2994 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 2995 2996 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2997 CustomCI->setCallingConv(CI->getCallingConv()); 2998 CustomCI->setAttributes(transformFunctionAttributes( 2999 CustomFn, CI->getContext(), CI->getAttributes())); 3000 3001 // Update the parameter attributes of the custom call instruction to 3002 // zero extend the shadow parameters. This is required for targets 3003 // which consider PrimitiveShadowTy an illegal type. 3004 for (unsigned N = 0; N < FT->getNumParams(); N++) { 3005 const unsigned ArgNo = ShadowArgStart + N; 3006 if (CustomCI->getArgOperand(ArgNo)->getType() == 3007 DFSF.DFS.PrimitiveShadowTy) 3008 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 3009 if (ShouldTrackOrigins) { 3010 const unsigned OriginArgNo = OriginArgStart + N; 3011 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 3012 DFSF.DFS.OriginTy) 3013 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 3014 } 3015 } 3016 3017 // Loads the return value shadow and origin. 3018 if (!FT->getReturnType()->isVoidTy()) { 3019 LoadInst *LabelLoad = 3020 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 3021 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 3022 FT->getReturnType(), LabelLoad, &CB)); 3023 if (ShouldTrackOrigins) { 3024 LoadInst *OriginLoad = 3025 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 3026 DFSF.setOrigin(CustomCI, OriginLoad); 3027 } 3028 } 3029 3030 CI->replaceAllUsesWith(CustomCI); 3031 CI->eraseFromParent(); 3032 return true; 3033 } 3034 return false; 3035 } 3036 3037 void DFSanVisitor::visitCallBase(CallBase &CB) { 3038 Function *F = CB.getCalledFunction(); 3039 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 3040 visitInstOperands(CB); 3041 return; 3042 } 3043 3044 // Calls to this function are synthesized in wrappers, and we shouldn't 3045 // instrument them. 3046 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 3047 return; 3048 3049 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 3050 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 3051 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 3052 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 3053 return; 3054 3055 IRBuilder<> IRB(&CB); 3056 3057 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3058 FunctionType *FT = CB.getFunctionType(); 3059 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 3060 // Stores argument shadows. 3061 unsigned ArgOffset = 0; 3062 const DataLayout &DL = getDataLayout(); 3063 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 3064 if (ShouldTrackOrigins) { 3065 // Ignore overflowed origins 3066 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 3067 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 3068 !DFSF.DFS.isZeroShadow(ArgShadow)) 3069 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 3070 DFSF.getArgOriginTLS(I, IRB)); 3071 } 3072 3073 unsigned Size = 3074 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 3075 // Stop storing if arguments' size overflows. Inside a function, arguments 3076 // after overflow have zero shadow values. 3077 if (ArgOffset + Size > ArgTLSSize) 3078 break; 3079 IRB.CreateAlignedStore( 3080 DFSF.getShadow(CB.getArgOperand(I)), 3081 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 3082 ShadowTLSAlignment); 3083 ArgOffset += alignTo(Size, ShadowTLSAlignment); 3084 } 3085 } 3086 3087 Instruction *Next = nullptr; 3088 if (!CB.getType()->isVoidTy()) { 3089 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3090 if (II->getNormalDest()->getSinglePredecessor()) { 3091 Next = &II->getNormalDest()->front(); 3092 } else { 3093 BasicBlock *NewBB = 3094 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 3095 Next = &NewBB->front(); 3096 } 3097 } else { 3098 assert(CB.getIterator() != CB.getParent()->end()); 3099 Next = CB.getNextNode(); 3100 } 3101 3102 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 3103 // Don't emit the epilogue for musttail call returns. 3104 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3105 return; 3106 3107 // Loads the return value shadow. 3108 IRBuilder<> NextIRB(Next); 3109 const DataLayout &DL = getDataLayout(); 3110 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 3111 if (Size > RetvalTLSSize) { 3112 // Set overflowed return shadow to be zero. 3113 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3114 } else { 3115 LoadInst *LI = NextIRB.CreateAlignedLoad( 3116 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 3117 ShadowTLSAlignment, "_dfsret"); 3118 DFSF.SkipInsts.insert(LI); 3119 DFSF.setShadow(&CB, LI); 3120 DFSF.NonZeroChecks.push_back(LI); 3121 } 3122 3123 if (ShouldTrackOrigins) { 3124 LoadInst *LI = NextIRB.CreateLoad( 3125 DFSF.DFS.OriginTy, DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3126 DFSF.SkipInsts.insert(LI); 3127 DFSF.setOrigin(&CB, LI); 3128 } 3129 } 3130 } 3131 3132 // Do all instrumentation for IA_Args down here to defer tampering with the 3133 // CFG in a way that SplitEdge may be able to detect. 3134 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 3135 // TODO: handle musttail call returns for IA_Args. 3136 3137 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 3138 Value *Func = 3139 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 3140 3141 const unsigned NumParams = FT->getNumParams(); 3142 3143 // Copy original arguments. 3144 auto *ArgIt = CB.arg_begin(), *ArgEnd = CB.arg_end(); 3145 std::vector<Value *> Args(NumParams); 3146 std::copy_n(ArgIt, NumParams, Args.begin()); 3147 3148 // Add shadow arguments by transforming original arguments. 3149 std::generate_n(std::back_inserter(Args), NumParams, 3150 [&]() { return DFSF.getShadow(*ArgIt++); }); 3151 3152 if (FT->isVarArg()) { 3153 unsigned VarArgSize = CB.arg_size() - NumParams; 3154 ArrayType *VarArgArrayTy = 3155 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 3156 AllocaInst *VarArgShadow = 3157 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 3158 "", &DFSF.F->getEntryBlock().front()); 3159 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 3160 3161 // Copy remaining var args. 3162 unsigned GepIndex = 0; 3163 std::for_each(ArgIt, ArgEnd, [&](Value *Arg) { 3164 IRB.CreateStore( 3165 DFSF.getShadow(Arg), 3166 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, GepIndex++)); 3167 Args.push_back(Arg); 3168 }); 3169 } 3170 3171 CallBase *NewCB; 3172 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3173 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 3174 II->getUnwindDest(), Args); 3175 } else { 3176 NewCB = IRB.CreateCall(NewFT, Func, Args); 3177 } 3178 NewCB->setCallingConv(CB.getCallingConv()); 3179 NewCB->setAttributes(CB.getAttributes().removeAttributes( 3180 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 3181 AttributeFuncs::typeIncompatible(NewCB->getType()))); 3182 3183 if (Next) { 3184 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 3185 DFSF.SkipInsts.insert(ExVal); 3186 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 3187 DFSF.SkipInsts.insert(ExShadow); 3188 DFSF.setShadow(ExVal, ExShadow); 3189 DFSF.NonZeroChecks.push_back(ExShadow); 3190 3191 CB.replaceAllUsesWith(ExVal); 3192 } 3193 3194 CB.eraseFromParent(); 3195 } 3196 } 3197 3198 void DFSanVisitor::visitPHINode(PHINode &PN) { 3199 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3200 PHINode *ShadowPN = 3201 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 3202 3203 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3204 Value *UndefShadow = UndefValue::get(ShadowTy); 3205 for (BasicBlock *BB : PN.blocks()) 3206 ShadowPN->addIncoming(UndefShadow, BB); 3207 3208 DFSF.setShadow(&PN, ShadowPN); 3209 3210 PHINode *OriginPN = nullptr; 3211 if (DFSF.DFS.shouldTrackOrigins()) { 3212 OriginPN = 3213 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 3214 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3215 for (BasicBlock *BB : PN.blocks()) 3216 OriginPN->addIncoming(UndefOrigin, BB); 3217 DFSF.setOrigin(&PN, OriginPN); 3218 } 3219 3220 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3221 } 3222 3223 namespace { 3224 class DataFlowSanitizerLegacyPass : public ModulePass { 3225 private: 3226 std::vector<std::string> ABIListFiles; 3227 3228 public: 3229 static char ID; 3230 3231 DataFlowSanitizerLegacyPass( 3232 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 3233 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 3234 3235 bool runOnModule(Module &M) override { 3236 return DataFlowSanitizer(ABIListFiles).runImpl(M); 3237 } 3238 }; 3239 } // namespace 3240 3241 char DataFlowSanitizerLegacyPass::ID; 3242 3243 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 3244 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 3245 3246 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 3247 const std::vector<std::string> &ABIListFiles) { 3248 return new DataFlowSanitizerLegacyPass(ABIListFiles); 3249 } 3250 3251 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3252 ModuleAnalysisManager &AM) { 3253 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 3254 return PreservedAnalyses::none(); 3255 } 3256 return PreservedAnalyses::all(); 3257 } 3258