1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. Each 20 /// byte of application memory is backed by two bytes of shadow memory which 21 /// hold the label. On Linux/x86_64, memory is laid out as follows: 22 /// 23 /// +--------------------+ 0x800000000000 (top of memory) 24 /// | application memory | 25 /// +--------------------+ 0x700000008000 (kAppAddr) 26 /// | | 27 /// | unused | 28 /// | | 29 /// +--------------------+ 0x200200000000 (kUnusedAddr) 30 /// | union table | 31 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 32 /// | shadow memory | 33 /// +--------------------+ 0x000000010000 (kShadowAddr) 34 /// | reserved by kernel | 35 /// +--------------------+ 0x000000000000 36 /// 37 /// To derive a shadow memory address from an application memory address, 38 /// bits 44-46 are cleared to bring the address into the range 39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 40 /// account for the double byte representation of shadow labels and move the 41 /// address into the shadow memory range. See the function 42 /// DataFlowSanitizer::getShadowAddress below. 43 /// 44 /// For more information, please refer to the design document: 45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/DenseSet.h" 52 #include "llvm/ADT/DepthFirstIterator.h" 53 #include "llvm/ADT/None.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/ADT/StringRef.h" 58 #include "llvm/ADT/Triple.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/IR/Argument.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalValue.h" 71 #include "llvm/IR/GlobalVariable.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstVisitor.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/MDBuilder.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/InitializePasses.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/ErrorHandling.h" 91 #include "llvm/Support/SpecialCaseList.h" 92 #include "llvm/Support/VirtualFileSystem.h" 93 #include "llvm/Transforms/Instrumentation.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstddef> 99 #include <cstdint> 100 #include <iterator> 101 #include <memory> 102 #include <set> 103 #include <string> 104 #include <utility> 105 #include <vector> 106 107 using namespace llvm; 108 109 // This must be consistent with ShadowWidthBits. 110 static const Align kShadowTLSAlignment = Align(2); 111 112 // The size of TLS variables. These constants must be kept in sync with the ones 113 // in dfsan.cpp. 114 static const unsigned kArgTLSSize = 800; 115 static const unsigned kRetvalTLSSize = 800; 116 117 // External symbol to be used when generating the shadow address for 118 // architectures with multiple VMAs. Instead of using a constant integer 119 // the runtime will set the external mask based on the VMA range. 120 const char kDFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask"; 121 122 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 123 // alignment requirements provided by the input IR are correct. For example, 124 // if the input IR contains a load with alignment 8, this flag will cause 125 // the shadow load to have alignment 16. This flag is disabled by default as 126 // we have unfortunately encountered too much code (including Clang itself; 127 // see PR14291) which performs misaligned access. 128 static cl::opt<bool> ClPreserveAlignment( 129 "dfsan-preserve-alignment", 130 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 131 cl::init(false)); 132 133 // The ABI list files control how shadow parameters are passed. The pass treats 134 // every function labelled "uninstrumented" in the ABI list file as conforming 135 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 136 // additional annotations for those functions, a call to one of those functions 137 // will produce a warning message, as the labelling behaviour of the function is 138 // unknown. The other supported annotations are "functional" and "discard", 139 // which are described below under DataFlowSanitizer::WrapperKind. 140 static cl::list<std::string> ClABIListFiles( 141 "dfsan-abilist", 142 cl::desc("File listing native ABI functions and how the pass treats them"), 143 cl::Hidden); 144 145 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 146 // functions (see DataFlowSanitizer::InstrumentedABI below). 147 static cl::opt<bool> ClArgsABI( 148 "dfsan-args-abi", 149 cl::desc("Use the argument ABI rather than the TLS ABI"), 150 cl::Hidden); 151 152 // Controls whether the pass includes or ignores the labels of pointers in load 153 // instructions. 154 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 155 "dfsan-combine-pointer-labels-on-load", 156 cl::desc("Combine the label of the pointer with the label of the data when " 157 "loading from memory."), 158 cl::Hidden, cl::init(true)); 159 160 // Controls whether the pass includes or ignores the labels of pointers in 161 // stores instructions. 162 static cl::opt<bool> ClCombinePointerLabelsOnStore( 163 "dfsan-combine-pointer-labels-on-store", 164 cl::desc("Combine the label of the pointer with the label of the data when " 165 "storing in memory."), 166 cl::Hidden, cl::init(false)); 167 168 static cl::opt<bool> ClDebugNonzeroLabels( 169 "dfsan-debug-nonzero-labels", 170 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 171 "load or return with a nonzero label"), 172 cl::Hidden); 173 174 // Experimental feature that inserts callbacks for certain data events. 175 // Currently callbacks are only inserted for loads, stores, memory transfers 176 // (i.e. memcpy and memmove), and comparisons. 177 // 178 // If this flag is set to true, the user must provide definitions for the 179 // following callback functions: 180 // void __dfsan_load_callback(dfsan_label Label, void* addr); 181 // void __dfsan_store_callback(dfsan_label Label, void* addr); 182 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 183 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 184 static cl::opt<bool> ClEventCallbacks( 185 "dfsan-event-callbacks", 186 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 187 cl::Hidden, cl::init(false)); 188 189 // Use a distinct bit for each base label, enabling faster unions with less 190 // instrumentation. Limits the max number of base labels to 16. 191 static cl::opt<bool> ClFast16Labels( 192 "dfsan-fast-16-labels", 193 cl::desc("Use more efficient instrumentation, limiting the number of " 194 "labels to 16."), 195 cl::Hidden, cl::init(false)); 196 197 // Controls whether the pass tracks the control flow of select instructions. 198 static cl::opt<bool> ClTrackSelectControlFlow( 199 "dfsan-track-select-control-flow", 200 cl::desc("Propagate labels from condition values of select instructions " 201 "to results."), 202 cl::Hidden, cl::init(true)); 203 204 static StringRef GetGlobalTypeString(const GlobalValue &G) { 205 // Types of GlobalVariables are always pointer types. 206 Type *GType = G.getValueType(); 207 // For now we support excluding struct types only. 208 if (StructType *SGType = dyn_cast<StructType>(GType)) { 209 if (!SGType->isLiteral()) 210 return SGType->getName(); 211 } 212 return "<unknown type>"; 213 } 214 215 namespace { 216 217 class DFSanABIList { 218 std::unique_ptr<SpecialCaseList> SCL; 219 220 public: 221 DFSanABIList() = default; 222 223 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 224 225 /// Returns whether either this function or its source file are listed in the 226 /// given category. 227 bool isIn(const Function &F, StringRef Category) const { 228 return isIn(*F.getParent(), Category) || 229 SCL->inSection("dataflow", "fun", F.getName(), Category); 230 } 231 232 /// Returns whether this global alias is listed in the given category. 233 /// 234 /// If GA aliases a function, the alias's name is matched as a function name 235 /// would be. Similarly, aliases of globals are matched like globals. 236 bool isIn(const GlobalAlias &GA, StringRef Category) const { 237 if (isIn(*GA.getParent(), Category)) 238 return true; 239 240 if (isa<FunctionType>(GA.getValueType())) 241 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 242 243 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 244 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), 245 Category); 246 } 247 248 /// Returns whether this module is listed in the given category. 249 bool isIn(const Module &M, StringRef Category) const { 250 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 251 } 252 }; 253 254 /// TransformedFunction is used to express the result of transforming one 255 /// function type into another. This struct is immutable. It holds metadata 256 /// useful for updating calls of the old function to the new type. 257 struct TransformedFunction { 258 TransformedFunction(FunctionType* OriginalType, 259 FunctionType* TransformedType, 260 std::vector<unsigned> ArgumentIndexMapping) 261 : OriginalType(OriginalType), 262 TransformedType(TransformedType), 263 ArgumentIndexMapping(ArgumentIndexMapping) {} 264 265 // Disallow copies. 266 TransformedFunction(const TransformedFunction&) = delete; 267 TransformedFunction& operator=(const TransformedFunction&) = delete; 268 269 // Allow moves. 270 TransformedFunction(TransformedFunction&&) = default; 271 TransformedFunction& operator=(TransformedFunction&&) = default; 272 273 /// Type of the function before the transformation. 274 FunctionType *OriginalType; 275 276 /// Type of the function after the transformation. 277 FunctionType *TransformedType; 278 279 /// Transforming a function may change the position of arguments. This 280 /// member records the mapping from each argument's old position to its new 281 /// position. Argument positions are zero-indexed. If the transformation 282 /// from F to F' made the first argument of F into the third argument of F', 283 /// then ArgumentIndexMapping[0] will equal 2. 284 std::vector<unsigned> ArgumentIndexMapping; 285 }; 286 287 /// Given function attributes from a call site for the original function, 288 /// return function attributes appropriate for a call to the transformed 289 /// function. 290 AttributeList TransformFunctionAttributes( 291 const TransformedFunction& TransformedFunction, 292 LLVMContext& Ctx, AttributeList CallSiteAttrs) { 293 294 // Construct a vector of AttributeSet for each function argument. 295 std::vector<llvm::AttributeSet> ArgumentAttributes( 296 TransformedFunction.TransformedType->getNumParams()); 297 298 // Copy attributes from the parameter of the original function to the 299 // transformed version. 'ArgumentIndexMapping' holds the mapping from 300 // old argument position to new. 301 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); 302 i < ie; ++i) { 303 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; 304 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); 305 } 306 307 // Copy annotations on varargs arguments. 308 for (unsigned i = TransformedFunction.OriginalType->getNumParams(), 309 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { 310 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); 311 } 312 313 return AttributeList::get( 314 Ctx, 315 CallSiteAttrs.getFnAttributes(), 316 CallSiteAttrs.getRetAttributes(), 317 llvm::makeArrayRef(ArgumentAttributes)); 318 } 319 320 class DataFlowSanitizer { 321 friend struct DFSanFunction; 322 friend class DFSanVisitor; 323 324 enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 }; 325 326 /// Which ABI should be used for instrumented functions? 327 enum InstrumentedABI { 328 /// Argument and return value labels are passed through additional 329 /// arguments and by modifying the return type. 330 IA_Args, 331 332 /// Argument and return value labels are passed through TLS variables 333 /// __dfsan_arg_tls and __dfsan_retval_tls. 334 IA_TLS 335 }; 336 337 /// How should calls to uninstrumented functions be handled? 338 enum WrapperKind { 339 /// This function is present in an uninstrumented form but we don't know 340 /// how it should be handled. Print a warning and call the function anyway. 341 /// Don't label the return value. 342 WK_Warning, 343 344 /// This function does not write to (user-accessible) memory, and its return 345 /// value is unlabelled. 346 WK_Discard, 347 348 /// This function does not write to (user-accessible) memory, and the label 349 /// of its return value is the union of the label of its arguments. 350 WK_Functional, 351 352 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 353 /// where F is the name of the function. This function may wrap the 354 /// original function or provide its own implementation. This is similar to 355 /// the IA_Args ABI, except that IA_Args uses a struct return type to 356 /// pass the return value shadow in a register, while WK_Custom uses an 357 /// extra pointer argument to return the shadow. This allows the wrapped 358 /// form of the function type to be expressed in C. 359 WK_Custom 360 }; 361 362 Module *Mod; 363 LLVMContext *Ctx; 364 Type *Int8Ptr; 365 /// The shadow type for all primitive types and vector types. 366 IntegerType *PrimitiveShadowTy; 367 PointerType *PrimitiveShadowPtrTy; 368 IntegerType *IntptrTy; 369 ConstantInt *ZeroPrimitiveShadow; 370 ConstantInt *ShadowPtrMask; 371 ConstantInt *ShadowPtrMul; 372 Constant *ArgTLS; 373 Constant *RetvalTLS; 374 Constant *ExternalShadowMask; 375 FunctionType *DFSanUnionFnTy; 376 FunctionType *DFSanUnionLoadFnTy; 377 FunctionType *DFSanUnimplementedFnTy; 378 FunctionType *DFSanSetLabelFnTy; 379 FunctionType *DFSanNonzeroLabelFnTy; 380 FunctionType *DFSanVarargWrapperFnTy; 381 FunctionType *DFSanCmpCallbackFnTy; 382 FunctionType *DFSanLoadStoreCallbackFnTy; 383 FunctionType *DFSanMemTransferCallbackFnTy; 384 FunctionCallee DFSanUnionFn; 385 FunctionCallee DFSanCheckedUnionFn; 386 FunctionCallee DFSanUnionLoadFn; 387 FunctionCallee DFSanUnionLoadFast16LabelsFn; 388 FunctionCallee DFSanUnimplementedFn; 389 FunctionCallee DFSanSetLabelFn; 390 FunctionCallee DFSanNonzeroLabelFn; 391 FunctionCallee DFSanVarargWrapperFn; 392 FunctionCallee DFSanLoadCallbackFn; 393 FunctionCallee DFSanStoreCallbackFn; 394 FunctionCallee DFSanMemTransferCallbackFn; 395 FunctionCallee DFSanCmpCallbackFn; 396 MDNode *ColdCallWeights; 397 DFSanABIList ABIList; 398 DenseMap<Value *, Function *> UnwrappedFnMap; 399 AttrBuilder ReadOnlyNoneAttrs; 400 bool DFSanRuntimeShadowMask = false; 401 402 Value *getShadowAddress(Value *Addr, Instruction *Pos); 403 bool isInstrumented(const Function *F); 404 bool isInstrumented(const GlobalAlias *GA); 405 FunctionType *getArgsFunctionType(FunctionType *T); 406 FunctionType *getTrampolineFunctionType(FunctionType *T); 407 TransformedFunction getCustomFunctionType(FunctionType *T); 408 InstrumentedABI getInstrumentedABI(); 409 WrapperKind getWrapperKind(Function *F); 410 void addGlobalNamePrefix(GlobalValue *GV); 411 Function *buildWrapperFunction(Function *F, StringRef NewFName, 412 GlobalValue::LinkageTypes NewFLink, 413 FunctionType *NewFT); 414 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 415 void initializeCallbackFunctions(Module &M); 416 void initializeRuntimeFunctions(Module &M); 417 418 bool init(Module &M); 419 420 /// Returns whether the pass tracks labels for struct fields and array 421 /// indices. Support only fast16 mode in TLS ABI mode. 422 bool shouldTrackFieldsAndIndices(); 423 424 /// Returns a zero constant with the shadow type of OrigTy. 425 /// 426 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 427 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 428 /// getZeroShadow(other type) = i16(0) 429 /// 430 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices 431 /// returns false. 432 Constant *getZeroShadow(Type *OrigTy); 433 /// Returns a zero constant with the shadow type of V's type. 434 Constant *getZeroShadow(Value *V); 435 436 /// Checks if V is a zero shadow. 437 bool isZeroShadow(Value *V); 438 439 /// Returns the shadow type of OrigTy. 440 /// 441 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 442 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 443 /// getShadowTy(other type) = i16 444 /// 445 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices 446 /// returns false. 447 Type *getShadowTy(Type *OrigTy); 448 /// Returns the shadow type of of V's type. 449 Type *getShadowTy(Value *V); 450 451 public: 452 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 453 454 bool runImpl(Module &M); 455 }; 456 457 struct DFSanFunction { 458 DataFlowSanitizer &DFS; 459 Function *F; 460 DominatorTree DT; 461 DataFlowSanitizer::InstrumentedABI IA; 462 bool IsNativeABI; 463 AllocaInst *LabelReturnAlloca = nullptr; 464 DenseMap<Value *, Value *> ValShadowMap; 465 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 466 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 467 DenseSet<Instruction *> SkipInsts; 468 std::vector<Value *> NonZeroChecks; 469 bool AvoidNewBlocks; 470 471 struct CachedShadow { 472 BasicBlock *Block; // The block where Shadow is defined. 473 Value *Shadow; 474 }; 475 /// Maps a value to its latest shadow value in terms of domination tree. 476 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 477 /// Maps a value to its latest collapsed shadow value it was converted to in 478 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 479 /// used at a post process where CFG blocks are split. So it does not cache 480 /// BasicBlock like CachedShadows, but uses domination between values. 481 DenseMap<Value *, Value *> CachedCollapsedShadows; 482 DenseMap<Value *, std::set<Value *>> ShadowElements; 483 484 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 485 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 486 DT.recalculate(*F); 487 // FIXME: Need to track down the register allocator issue which causes poor 488 // performance in pathological cases with large numbers of basic blocks. 489 AvoidNewBlocks = F->size() > 1000; 490 } 491 492 /// Computes the shadow address for a given function argument. 493 /// 494 /// Shadow = ArgTLS+ArgOffset. 495 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 496 497 /// Computes the shadow address for a retval. 498 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 499 500 Value *getShadow(Value *V); 501 void setShadow(Instruction *I, Value *Shadow); 502 /// Generates IR to compute the union of the two given shadows, inserting it 503 /// before Pos. The combined value is with primitive type. 504 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 505 /// Combines the shadow values of V1 and V2, then converts the combined value 506 /// with primitive type into a shadow value with the original type T. 507 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 508 Instruction *Pos); 509 Value *combineOperandShadows(Instruction *Inst); 510 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 511 Instruction *Pos); 512 void storePrimitiveShadow(Value *Addr, uint64_t Size, Align Alignment, 513 Value *PrimitiveShadow, Instruction *Pos); 514 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 515 /// the expanded shadow value. 516 /// 517 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 518 /// EFP([n x T], PS) = [n x EFP(T,PS)] 519 /// EFP(other types, PS) = PS 520 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 521 Instruction *Pos); 522 /// Collapses Shadow into a single primitive shadow value, unioning all 523 /// primitive shadow values in the process. Returns the final primitive 524 /// shadow value. 525 /// 526 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 527 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 528 /// CTP(other types, PS) = PS 529 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 530 531 private: 532 /// Collapses the shadow with aggregate type into a single primitive shadow 533 /// value. 534 template <class AggregateType> 535 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 536 IRBuilder<> &IRB); 537 538 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 539 540 /// Returns the shadow value of an argument A. 541 Value *getShadowForTLSArgument(Argument *A); 542 }; 543 544 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 545 public: 546 DFSanFunction &DFSF; 547 548 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 549 550 const DataLayout &getDataLayout() const { 551 return DFSF.F->getParent()->getDataLayout(); 552 } 553 554 // Combines shadow values for all of I's operands. Returns the combined shadow 555 // value. 556 Value *visitOperandShadowInst(Instruction &I); 557 558 void visitUnaryOperator(UnaryOperator &UO); 559 void visitBinaryOperator(BinaryOperator &BO); 560 void visitCastInst(CastInst &CI); 561 void visitCmpInst(CmpInst &CI); 562 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 563 void visitLoadInst(LoadInst &LI); 564 void visitStoreInst(StoreInst &SI); 565 void visitReturnInst(ReturnInst &RI); 566 void visitCallBase(CallBase &CB); 567 void visitPHINode(PHINode &PN); 568 void visitExtractElementInst(ExtractElementInst &I); 569 void visitInsertElementInst(InsertElementInst &I); 570 void visitShuffleVectorInst(ShuffleVectorInst &I); 571 void visitExtractValueInst(ExtractValueInst &I); 572 void visitInsertValueInst(InsertValueInst &I); 573 void visitAllocaInst(AllocaInst &I); 574 void visitSelectInst(SelectInst &I); 575 void visitMemSetInst(MemSetInst &I); 576 void visitMemTransferInst(MemTransferInst &I); 577 }; 578 579 } // end anonymous namespace 580 581 DataFlowSanitizer::DataFlowSanitizer( 582 const std::vector<std::string> &ABIListFiles) { 583 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 584 llvm::append_range(AllABIListFiles, ClABIListFiles); 585 // FIXME: should we propagate vfs::FileSystem to this constructor? 586 ABIList.set( 587 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 588 } 589 590 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 591 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 592 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 593 if (T->isVarArg()) 594 ArgTypes.push_back(PrimitiveShadowPtrTy); 595 Type *RetType = T->getReturnType(); 596 if (!RetType->isVoidTy()) 597 RetType = StructType::get(RetType, PrimitiveShadowTy); 598 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 599 } 600 601 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 602 assert(!T->isVarArg()); 603 SmallVector<Type *, 4> ArgTypes; 604 ArgTypes.push_back(T->getPointerTo()); 605 ArgTypes.append(T->param_begin(), T->param_end()); 606 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 607 Type *RetType = T->getReturnType(); 608 if (!RetType->isVoidTy()) 609 ArgTypes.push_back(PrimitiveShadowPtrTy); 610 return FunctionType::get(T->getReturnType(), ArgTypes, false); 611 } 612 613 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 614 SmallVector<Type *, 4> ArgTypes; 615 616 // Some parameters of the custom function being constructed are 617 // parameters of T. Record the mapping from parameters of T to 618 // parameters of the custom function, so that parameter attributes 619 // at call sites can be updated. 620 std::vector<unsigned> ArgumentIndexMapping; 621 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { 622 Type* param_type = T->getParamType(i); 623 FunctionType *FT; 624 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( 625 cast<PointerType>(param_type)->getElementType()))) { 626 ArgumentIndexMapping.push_back(ArgTypes.size()); 627 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 628 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 629 } else { 630 ArgumentIndexMapping.push_back(ArgTypes.size()); 631 ArgTypes.push_back(param_type); 632 } 633 } 634 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 635 ArgTypes.push_back(PrimitiveShadowTy); 636 if (T->isVarArg()) 637 ArgTypes.push_back(PrimitiveShadowPtrTy); 638 Type *RetType = T->getReturnType(); 639 if (!RetType->isVoidTy()) 640 ArgTypes.push_back(PrimitiveShadowPtrTy); 641 return TransformedFunction( 642 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 643 ArgumentIndexMapping); 644 } 645 646 bool DataFlowSanitizer::isZeroShadow(Value *V) { 647 if (!shouldTrackFieldsAndIndices()) 648 return ZeroPrimitiveShadow == V; 649 650 Type *T = V->getType(); 651 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 652 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 653 return CI->isZero(); 654 return false; 655 } 656 657 return isa<ConstantAggregateZero>(V); 658 } 659 660 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() { 661 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS && ClFast16Labels; 662 } 663 664 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 665 if (!shouldTrackFieldsAndIndices()) 666 return ZeroPrimitiveShadow; 667 668 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 669 return ZeroPrimitiveShadow; 670 Type *ShadowTy = getShadowTy(OrigTy); 671 return ConstantAggregateZero::get(ShadowTy); 672 } 673 674 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 675 return getZeroShadow(V->getType()); 676 } 677 678 static Value *expandFromPrimitiveShadowRecursive( 679 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 680 Value *PrimitiveShadow, IRBuilder<> &IRB) { 681 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 682 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 683 684 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 685 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 686 Indices.push_back(Idx); 687 Shadow = expandFromPrimitiveShadowRecursive( 688 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 689 Indices.pop_back(); 690 } 691 return Shadow; 692 } 693 694 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 695 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 696 Indices.push_back(Idx); 697 Shadow = expandFromPrimitiveShadowRecursive( 698 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 699 Indices.pop_back(); 700 } 701 return Shadow; 702 } 703 llvm_unreachable("Unexpected shadow type"); 704 } 705 706 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 707 Instruction *Pos) { 708 Type *ShadowTy = DFS.getShadowTy(T); 709 710 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 711 return PrimitiveShadow; 712 713 if (DFS.isZeroShadow(PrimitiveShadow)) 714 return DFS.getZeroShadow(ShadowTy); 715 716 IRBuilder<> IRB(Pos); 717 SmallVector<unsigned, 4> Indices; 718 Value *Shadow = UndefValue::get(ShadowTy); 719 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 720 PrimitiveShadow, IRB); 721 722 // Caches the primitive shadow value that built the shadow value. 723 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 724 return Shadow; 725 } 726 727 template <class AggregateType> 728 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 729 IRBuilder<> &IRB) { 730 if (!AT->getNumElements()) 731 return DFS.ZeroPrimitiveShadow; 732 733 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 734 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 735 736 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 737 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 738 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 739 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 740 } 741 return Aggregator; 742 } 743 744 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 745 IRBuilder<> &IRB) { 746 Type *ShadowTy = Shadow->getType(); 747 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 748 return Shadow; 749 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 750 return collapseAggregateShadow<>(AT, Shadow, IRB); 751 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 752 return collapseAggregateShadow<>(ST, Shadow, IRB); 753 llvm_unreachable("Unexpected shadow type"); 754 } 755 756 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 757 Instruction *Pos) { 758 Type *ShadowTy = Shadow->getType(); 759 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 760 return Shadow; 761 762 assert(DFS.shouldTrackFieldsAndIndices()); 763 764 // Checks if the cached collapsed shadow value dominates Pos. 765 Value *&CS = CachedCollapsedShadows[Shadow]; 766 if (CS && DT.dominates(CS, Pos)) 767 return CS; 768 769 IRBuilder<> IRB(Pos); 770 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 771 // Caches the converted primitive shadow value. 772 CS = PrimitiveShadow; 773 return PrimitiveShadow; 774 } 775 776 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 777 if (!shouldTrackFieldsAndIndices()) 778 return PrimitiveShadowTy; 779 780 if (!OrigTy->isSized()) 781 return PrimitiveShadowTy; 782 if (isa<IntegerType>(OrigTy)) 783 return PrimitiveShadowTy; 784 if (isa<VectorType>(OrigTy)) 785 return PrimitiveShadowTy; 786 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 787 return ArrayType::get(getShadowTy(AT->getElementType()), 788 AT->getNumElements()); 789 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 790 SmallVector<Type *, 4> Elements; 791 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 792 Elements.push_back(getShadowTy(ST->getElementType(I))); 793 return StructType::get(*Ctx, Elements); 794 } 795 return PrimitiveShadowTy; 796 } 797 798 Type *DataFlowSanitizer::getShadowTy(Value *V) { 799 return getShadowTy(V->getType()); 800 } 801 802 bool DataFlowSanitizer::init(Module &M) { 803 Triple TargetTriple(M.getTargetTriple()); 804 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 805 bool IsMIPS64 = TargetTriple.isMIPS64(); 806 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 807 TargetTriple.getArch() == Triple::aarch64_be; 808 809 const DataLayout &DL = M.getDataLayout(); 810 811 Mod = &M; 812 Ctx = &M.getContext(); 813 Int8Ptr = Type::getInt8PtrTy(*Ctx); 814 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 815 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 816 IntptrTy = DL.getIntPtrType(*Ctx); 817 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 818 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); 819 if (IsX86_64) 820 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 821 else if (IsMIPS64) 822 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 823 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 824 else if (IsAArch64) 825 DFSanRuntimeShadowMask = true; 826 else 827 report_fatal_error("unsupported triple"); 828 829 Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy}; 830 DFSanUnionFnTy = 831 FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false); 832 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 833 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 834 /*isVarArg=*/false); 835 DFSanUnimplementedFnTy = FunctionType::get( 836 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 837 Type *DFSanSetLabelArgs[3] = {PrimitiveShadowTy, Type::getInt8PtrTy(*Ctx), 838 IntptrTy}; 839 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 840 DFSanSetLabelArgs, /*isVarArg=*/false); 841 DFSanNonzeroLabelFnTy = 842 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 843 DFSanVarargWrapperFnTy = FunctionType::get( 844 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 845 DFSanCmpCallbackFnTy = 846 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 847 /*isVarArg=*/false); 848 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 849 DFSanLoadStoreCallbackFnTy = 850 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 851 /*isVarArg=*/false); 852 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 853 DFSanMemTransferCallbackFnTy = 854 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 855 /*isVarArg=*/false); 856 857 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 858 return true; 859 } 860 861 bool DataFlowSanitizer::isInstrumented(const Function *F) { 862 return !ABIList.isIn(*F, "uninstrumented"); 863 } 864 865 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 866 return !ABIList.isIn(*GA, "uninstrumented"); 867 } 868 869 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 870 return ClArgsABI ? IA_Args : IA_TLS; 871 } 872 873 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 874 if (ABIList.isIn(*F, "functional")) 875 return WK_Functional; 876 if (ABIList.isIn(*F, "discard")) 877 return WK_Discard; 878 if (ABIList.isIn(*F, "custom")) 879 return WK_Custom; 880 881 return WK_Warning; 882 } 883 884 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 885 std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; 886 GV->setName(Prefix + GVName); 887 888 // Try to change the name of the function in module inline asm. We only do 889 // this for specific asm directives, currently only ".symver", to try to avoid 890 // corrupting asm which happens to contain the symbol name as a substring. 891 // Note that the substitution for .symver assumes that the versioned symbol 892 // also has an instrumented name. 893 std::string Asm = GV->getParent()->getModuleInlineAsm(); 894 std::string SearchStr = ".symver " + GVName + ","; 895 size_t Pos = Asm.find(SearchStr); 896 if (Pos != std::string::npos) { 897 Asm.replace(Pos, SearchStr.size(), 898 ".symver " + Prefix + GVName + "," + Prefix); 899 GV->getParent()->setModuleInlineAsm(Asm); 900 } 901 } 902 903 Function * 904 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 905 GlobalValue::LinkageTypes NewFLink, 906 FunctionType *NewFT) { 907 FunctionType *FT = F->getFunctionType(); 908 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 909 NewFName, F->getParent()); 910 NewF->copyAttributesFrom(F); 911 NewF->removeAttributes( 912 AttributeList::ReturnIndex, 913 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 914 915 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 916 if (F->isVarArg()) { 917 NewF->removeAttributes(AttributeList::FunctionIndex, 918 AttrBuilder().addAttribute("split-stack")); 919 CallInst::Create(DFSanVarargWrapperFn, 920 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 921 BB); 922 new UnreachableInst(*Ctx, BB); 923 } else { 924 std::vector<Value *> Args; 925 unsigned n = FT->getNumParams(); 926 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 927 Args.push_back(&*ai); 928 CallInst *CI = CallInst::Create(F, Args, "", BB); 929 if (FT->getReturnType()->isVoidTy()) 930 ReturnInst::Create(*Ctx, BB); 931 else 932 ReturnInst::Create(*Ctx, CI, BB); 933 } 934 935 return NewF; 936 } 937 938 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 939 StringRef FName) { 940 FunctionType *FTT = getTrampolineFunctionType(FT); 941 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 942 Function *F = dyn_cast<Function>(C.getCallee()); 943 if (F && F->isDeclaration()) { 944 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 945 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 946 std::vector<Value *> Args; 947 Function::arg_iterator AI = F->arg_begin(); ++AI; 948 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 949 Args.push_back(&*AI); 950 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 951 ReturnInst *RI; 952 if (FT->getReturnType()->isVoidTy()) 953 RI = ReturnInst::Create(*Ctx, BB); 954 else 955 RI = ReturnInst::Create(*Ctx, CI, BB); 956 957 // F is called by a wrapped custom function with primitive shadows. So 958 // its arguments and return value need conversion. 959 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 960 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 961 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 962 Value *Shadow = 963 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 964 DFSF.ValShadowMap[&*ValAI] = Shadow; 965 } 966 DFSanVisitor(DFSF).visitCallInst(*CI); 967 if (!FT->getReturnType()->isVoidTy()) { 968 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 969 DFSF.getShadow(RI->getReturnValue()), RI); 970 new StoreInst(PrimitiveShadow, &*std::prev(F->arg_end()), RI); 971 } 972 } 973 974 return cast<Constant>(C.getCallee()); 975 } 976 977 // Initialize DataFlowSanitizer runtime functions and declare them in the module 978 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 979 { 980 AttributeList AL; 981 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 982 Attribute::NoUnwind); 983 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 984 Attribute::ReadNone); 985 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 986 Attribute::ZExt); 987 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 988 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 989 DFSanUnionFn = 990 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); 991 } 992 { 993 AttributeList AL; 994 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 995 Attribute::NoUnwind); 996 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 997 Attribute::ReadNone); 998 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 999 Attribute::ZExt); 1000 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1001 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1002 DFSanCheckedUnionFn = 1003 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); 1004 } 1005 { 1006 AttributeList AL; 1007 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1008 Attribute::NoUnwind); 1009 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1010 Attribute::ReadOnly); 1011 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1012 Attribute::ZExt); 1013 DFSanUnionLoadFn = 1014 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1015 } 1016 { 1017 AttributeList AL; 1018 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1019 Attribute::NoUnwind); 1020 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, 1021 Attribute::ReadOnly); 1022 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, 1023 Attribute::ZExt); 1024 DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction( 1025 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL); 1026 } 1027 DFSanUnimplementedFn = 1028 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1029 { 1030 AttributeList AL; 1031 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1032 DFSanSetLabelFn = 1033 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1034 } 1035 DFSanNonzeroLabelFn = 1036 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1037 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1038 DFSanVarargWrapperFnTy); 1039 } 1040 1041 // Initializes event callback functions and declare them in the module 1042 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1043 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1044 DFSanLoadStoreCallbackFnTy); 1045 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1046 DFSanLoadStoreCallbackFnTy); 1047 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1048 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1049 DFSanCmpCallbackFn = 1050 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1051 } 1052 1053 bool DataFlowSanitizer::runImpl(Module &M) { 1054 init(M); 1055 1056 if (ABIList.isIn(M, "skip")) 1057 return false; 1058 1059 const unsigned InitialGlobalSize = M.global_size(); 1060 const unsigned InitialModuleSize = M.size(); 1061 1062 bool Changed = false; 1063 1064 Type *ArgTLSTy = ArrayType::get(Type::getInt64Ty(*Ctx), kArgTLSSize / 8); 1065 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 1066 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) { 1067 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1068 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1069 } 1070 Type *RetvalTLSTy = 1071 ArrayType::get(Type::getInt64Ty(*Ctx), kRetvalTLSSize / 8); 1072 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", RetvalTLSTy); 1073 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) { 1074 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1075 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1076 } 1077 1078 ExternalShadowMask = 1079 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 1080 1081 initializeCallbackFunctions(M); 1082 initializeRuntimeFunctions(M); 1083 1084 std::vector<Function *> FnsToInstrument; 1085 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1086 for (Function &i : M) { 1087 if (!i.isIntrinsic() && 1088 &i != DFSanUnionFn.getCallee()->stripPointerCasts() && 1089 &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && 1090 &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && 1091 &i != DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts() && 1092 &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && 1093 &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && 1094 &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && 1095 &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() && 1096 &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() && 1097 &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() && 1098 &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() && 1099 &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts()) 1100 FnsToInstrument.push_back(&i); 1101 } 1102 1103 // Give function aliases prefixes when necessary, and build wrappers where the 1104 // instrumentedness is inconsistent. 1105 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 1106 GlobalAlias *GA = &*i; 1107 ++i; 1108 // Don't stop on weak. We assume people aren't playing games with the 1109 // instrumentedness of overridden weak aliases. 1110 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 1111 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 1112 if (GAInst && FInst) { 1113 addGlobalNamePrefix(GA); 1114 } else if (GAInst != FInst) { 1115 // Non-instrumented alias of an instrumented function, or vice versa. 1116 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1117 // below will take care of instrumenting it. 1118 Function *NewF = 1119 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 1120 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 1121 NewF->takeName(GA); 1122 GA->eraseFromParent(); 1123 FnsToInstrument.push_back(NewF); 1124 } 1125 } 1126 } 1127 1128 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1129 .addAttribute(Attribute::ReadNone); 1130 1131 // First, change the ABI of every function in the module. ABI-listed 1132 // functions keep their original ABI and get a wrapper function. 1133 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 1134 e = FnsToInstrument.end(); 1135 i != e; ++i) { 1136 Function &F = **i; 1137 FunctionType *FT = F.getFunctionType(); 1138 1139 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1140 FT->getReturnType()->isVoidTy()); 1141 1142 if (isInstrumented(&F)) { 1143 // Instrumented functions get a 'dfs$' prefix. This allows us to more 1144 // easily identify cases of mismatching ABIs. 1145 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 1146 FunctionType *NewFT = getArgsFunctionType(FT); 1147 Function *NewF = Function::Create(NewFT, F.getLinkage(), 1148 F.getAddressSpace(), "", &M); 1149 NewF->copyAttributesFrom(&F); 1150 NewF->removeAttributes( 1151 AttributeList::ReturnIndex, 1152 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1153 for (Function::arg_iterator FArg = F.arg_begin(), 1154 NewFArg = NewF->arg_begin(), 1155 FArgEnd = F.arg_end(); 1156 FArg != FArgEnd; ++FArg, ++NewFArg) { 1157 FArg->replaceAllUsesWith(&*NewFArg); 1158 } 1159 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 1160 1161 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 1162 UI != UE;) { 1163 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 1164 ++UI; 1165 if (BA) { 1166 BA->replaceAllUsesWith( 1167 BlockAddress::get(NewF, BA->getBasicBlock())); 1168 delete BA; 1169 } 1170 } 1171 F.replaceAllUsesWith( 1172 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 1173 NewF->takeName(&F); 1174 F.eraseFromParent(); 1175 *i = NewF; 1176 addGlobalNamePrefix(NewF); 1177 } else { 1178 addGlobalNamePrefix(&F); 1179 } 1180 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1181 // Build a wrapper function for F. The wrapper simply calls F, and is 1182 // added to FnsToInstrument so that any instrumentation according to its 1183 // WrapperKind is done in the second pass below. 1184 FunctionType *NewFT = getInstrumentedABI() == IA_Args 1185 ? getArgsFunctionType(FT) 1186 : FT; 1187 1188 // If the function being wrapped has local linkage, then preserve the 1189 // function's linkage in the wrapper function. 1190 GlobalValue::LinkageTypes wrapperLinkage = 1191 F.hasLocalLinkage() 1192 ? F.getLinkage() 1193 : GlobalValue::LinkOnceODRLinkage; 1194 1195 Function *NewF = buildWrapperFunction( 1196 &F, std::string("dfsw$") + std::string(F.getName()), 1197 wrapperLinkage, NewFT); 1198 if (getInstrumentedABI() == IA_TLS) 1199 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 1200 1201 Value *WrappedFnCst = 1202 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1203 F.replaceAllUsesWith(WrappedFnCst); 1204 1205 UnwrappedFnMap[WrappedFnCst] = &F; 1206 *i = NewF; 1207 1208 if (!F.isDeclaration()) { 1209 // This function is probably defining an interposition of an 1210 // uninstrumented function and hence needs to keep the original ABI. 1211 // But any functions it may call need to use the instrumented ABI, so 1212 // we instrument it in a mode which preserves the original ABI. 1213 FnsWithNativeABI.insert(&F); 1214 1215 // This code needs to rebuild the iterators, as they may be invalidated 1216 // by the push_back, taking care that the new range does not include 1217 // any functions added by this code. 1218 size_t N = i - FnsToInstrument.begin(), 1219 Count = e - FnsToInstrument.begin(); 1220 FnsToInstrument.push_back(&F); 1221 i = FnsToInstrument.begin() + N; 1222 e = FnsToInstrument.begin() + Count; 1223 } 1224 // Hopefully, nobody will try to indirectly call a vararg 1225 // function... yet. 1226 } else if (FT->isVarArg()) { 1227 UnwrappedFnMap[&F] = &F; 1228 *i = nullptr; 1229 } 1230 } 1231 1232 for (Function *i : FnsToInstrument) { 1233 if (!i || i->isDeclaration()) 1234 continue; 1235 1236 removeUnreachableBlocks(*i); 1237 1238 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 1239 1240 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1241 // Build a copy of the list before iterating over it. 1242 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 1243 1244 for (BasicBlock *i : BBList) { 1245 Instruction *Inst = &i->front(); 1246 while (true) { 1247 // DFSanVisitor may split the current basic block, changing the current 1248 // instruction's next pointer and moving the next instruction to the 1249 // tail block from which we should continue. 1250 Instruction *Next = Inst->getNextNode(); 1251 // DFSanVisitor may delete Inst, so keep track of whether it was a 1252 // terminator. 1253 bool IsTerminator = Inst->isTerminator(); 1254 if (!DFSF.SkipInsts.count(Inst)) 1255 DFSanVisitor(DFSF).visit(Inst); 1256 if (IsTerminator) 1257 break; 1258 Inst = Next; 1259 } 1260 } 1261 1262 // We will not necessarily be able to compute the shadow for every phi node 1263 // until we have visited every block. Therefore, the code that handles phi 1264 // nodes adds them to the PHIFixups list so that they can be properly 1265 // handled here. 1266 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator 1267 i = DFSF.PHIFixups.begin(), 1268 e = DFSF.PHIFixups.end(); 1269 i != e; ++i) { 1270 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 1271 ++val) { 1272 i->second->setIncomingValue( 1273 val, DFSF.getShadow(i->first->getIncomingValue(val))); 1274 } 1275 } 1276 1277 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1278 // places (i.e. instructions in basic blocks we haven't even begun visiting 1279 // yet). To make our life easier, do this work in a pass after the main 1280 // instrumentation. 1281 if (ClDebugNonzeroLabels) { 1282 for (Value *V : DFSF.NonZeroChecks) { 1283 Instruction *Pos; 1284 if (Instruction *I = dyn_cast<Instruction>(V)) 1285 Pos = I->getNextNode(); 1286 else 1287 Pos = &DFSF.F->getEntryBlock().front(); 1288 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1289 Pos = Pos->getNextNode(); 1290 IRBuilder<> IRB(Pos); 1291 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1292 Value *Ne = 1293 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1294 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1295 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1296 IRBuilder<> ThenIRB(BI); 1297 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1298 } 1299 } 1300 } 1301 1302 return Changed || !FnsToInstrument.empty() || 1303 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1304 } 1305 1306 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1307 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1308 if (ArgOffset) 1309 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1310 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1311 "_dfsarg"); 1312 } 1313 1314 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1315 return IRB.CreatePointerCast( 1316 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1317 } 1318 1319 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1320 unsigned ArgOffset = 0; 1321 const DataLayout &DL = F->getParent()->getDataLayout(); 1322 for (auto &FArg : F->args()) { 1323 if (!FArg.getType()->isSized()) { 1324 if (A == &FArg) 1325 break; 1326 continue; 1327 } 1328 1329 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1330 if (A != &FArg) { 1331 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1332 if (ArgOffset > kArgTLSSize) 1333 break; // ArgTLS overflows, uses a zero shadow. 1334 continue; 1335 } 1336 1337 if (ArgOffset + Size > kArgTLSSize) 1338 break; // ArgTLS overflows, uses a zero shadow. 1339 1340 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1341 IRBuilder<> IRB(ArgTLSPos); 1342 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1343 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1344 kShadowTLSAlignment); 1345 } 1346 1347 return DFS.getZeroShadow(A); 1348 } 1349 1350 Value *DFSanFunction::getShadow(Value *V) { 1351 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1352 return DFS.getZeroShadow(V); 1353 Value *&Shadow = ValShadowMap[V]; 1354 if (!Shadow) { 1355 if (Argument *A = dyn_cast<Argument>(V)) { 1356 if (IsNativeABI) 1357 return DFS.getZeroShadow(V); 1358 switch (IA) { 1359 case DataFlowSanitizer::IA_TLS: { 1360 Shadow = getShadowForTLSArgument(A); 1361 break; 1362 } 1363 case DataFlowSanitizer::IA_Args: { 1364 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1365 Function::arg_iterator i = F->arg_begin(); 1366 while (ArgIdx--) 1367 ++i; 1368 Shadow = &*i; 1369 assert(Shadow->getType() == DFS.PrimitiveShadowTy); 1370 break; 1371 } 1372 } 1373 NonZeroChecks.push_back(Shadow); 1374 } else { 1375 Shadow = DFS.getZeroShadow(V); 1376 } 1377 } 1378 return Shadow; 1379 } 1380 1381 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1382 assert(!ValShadowMap.count(I)); 1383 assert(DFS.shouldTrackFieldsAndIndices() || 1384 Shadow->getType() == DFS.PrimitiveShadowTy); 1385 ValShadowMap[I] = Shadow; 1386 } 1387 1388 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1389 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1390 IRBuilder<> IRB(Pos); 1391 Value *ShadowPtrMaskValue; 1392 if (DFSanRuntimeShadowMask) 1393 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1394 else 1395 ShadowPtrMaskValue = ShadowPtrMask; 1396 return IRB.CreateIntToPtr( 1397 IRB.CreateMul( 1398 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1399 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), 1400 ShadowPtrMul), 1401 PrimitiveShadowPtrTy); 1402 } 1403 1404 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1405 Instruction *Pos) { 1406 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1407 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1408 } 1409 1410 // Generates IR to compute the union of the two given shadows, inserting it 1411 // before Pos. The combined value is with primitive type. 1412 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1413 if (DFS.isZeroShadow(V1)) 1414 return collapseToPrimitiveShadow(V2, Pos); 1415 if (DFS.isZeroShadow(V2)) 1416 return collapseToPrimitiveShadow(V1, Pos); 1417 if (V1 == V2) 1418 return collapseToPrimitiveShadow(V1, Pos); 1419 1420 auto V1Elems = ShadowElements.find(V1); 1421 auto V2Elems = ShadowElements.find(V2); 1422 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1423 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1424 V2Elems->second.begin(), V2Elems->second.end())) { 1425 return collapseToPrimitiveShadow(V1, Pos); 1426 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1427 V1Elems->second.begin(), V1Elems->second.end())) { 1428 return collapseToPrimitiveShadow(V2, Pos); 1429 } 1430 } else if (V1Elems != ShadowElements.end()) { 1431 if (V1Elems->second.count(V2)) 1432 return collapseToPrimitiveShadow(V1, Pos); 1433 } else if (V2Elems != ShadowElements.end()) { 1434 if (V2Elems->second.count(V1)) 1435 return collapseToPrimitiveShadow(V2, Pos); 1436 } 1437 1438 auto Key = std::make_pair(V1, V2); 1439 if (V1 > V2) 1440 std::swap(Key.first, Key.second); 1441 CachedShadow &CCS = CachedShadows[Key]; 1442 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1443 return CCS.Shadow; 1444 1445 // Converts inputs shadows to shadows with primitive types. 1446 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1447 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1448 1449 IRBuilder<> IRB(Pos); 1450 if (ClFast16Labels) { 1451 CCS.Block = Pos->getParent(); 1452 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1453 } else if (AvoidNewBlocks) { 1454 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2}); 1455 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1456 Call->addParamAttr(0, Attribute::ZExt); 1457 Call->addParamAttr(1, Attribute::ZExt); 1458 1459 CCS.Block = Pos->getParent(); 1460 CCS.Shadow = Call; 1461 } else { 1462 BasicBlock *Head = Pos->getParent(); 1463 Value *Ne = IRB.CreateICmpNE(PV1, PV2); 1464 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1465 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1466 IRBuilder<> ThenIRB(BI); 1467 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2}); 1468 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1469 Call->addParamAttr(0, Attribute::ZExt); 1470 Call->addParamAttr(1, Attribute::ZExt); 1471 1472 BasicBlock *Tail = BI->getSuccessor(0); 1473 PHINode *Phi = 1474 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1475 Phi->addIncoming(Call, Call->getParent()); 1476 Phi->addIncoming(PV1, Head); 1477 1478 CCS.Block = Tail; 1479 CCS.Shadow = Phi; 1480 } 1481 1482 std::set<Value *> UnionElems; 1483 if (V1Elems != ShadowElements.end()) { 1484 UnionElems = V1Elems->second; 1485 } else { 1486 UnionElems.insert(V1); 1487 } 1488 if (V2Elems != ShadowElements.end()) { 1489 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1490 } else { 1491 UnionElems.insert(V2); 1492 } 1493 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1494 1495 return CCS.Shadow; 1496 } 1497 1498 // A convenience function which folds the shadows of each of the operands 1499 // of the provided instruction Inst, inserting the IR before Inst. Returns 1500 // the computed union Value. 1501 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1502 if (Inst->getNumOperands() == 0) 1503 return DFS.getZeroShadow(Inst); 1504 1505 Value *Shadow = getShadow(Inst->getOperand(0)); 1506 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1507 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1508 } 1509 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1510 } 1511 1512 Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1513 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1514 DFSF.setShadow(&I, CombinedShadow); 1515 return CombinedShadow; 1516 } 1517 1518 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1519 // Addr has alignment Align, and take the union of each of those shadows. The 1520 // returned shadow always has primitive type. 1521 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1522 Instruction *Pos) { 1523 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1524 const auto i = AllocaShadowMap.find(AI); 1525 if (i != AllocaShadowMap.end()) { 1526 IRBuilder<> IRB(Pos); 1527 return IRB.CreateLoad(DFS.PrimitiveShadowTy, i->second); 1528 } 1529 } 1530 1531 const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes); 1532 SmallVector<const Value *, 2> Objs; 1533 getUnderlyingObjects(Addr, Objs); 1534 bool AllConstants = true; 1535 for (const Value *Obj : Objs) { 1536 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1537 continue; 1538 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1539 continue; 1540 1541 AllConstants = false; 1542 break; 1543 } 1544 if (AllConstants) 1545 return DFS.ZeroPrimitiveShadow; 1546 1547 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1548 switch (Size) { 1549 case 0: 1550 return DFS.ZeroPrimitiveShadow; 1551 case 1: { 1552 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 1553 LI->setAlignment(ShadowAlign); 1554 return LI; 1555 } 1556 case 2: { 1557 IRBuilder<> IRB(Pos); 1558 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 1559 ConstantInt::get(DFS.IntptrTy, 1)); 1560 return combineShadows( 1561 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign), 1562 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign), 1563 Pos); 1564 } 1565 } 1566 1567 if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) { 1568 // First OR all the WideShadows, then OR individual shadows within the 1569 // combined WideShadow. This is fewer instructions than ORing shadows 1570 // individually. 1571 IRBuilder<> IRB(Pos); 1572 Value *WideAddr = 1573 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1574 Value *CombinedWideShadow = 1575 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1576 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1577 Ofs += 64 / DFS.ShadowWidthBits) { 1578 WideAddr = IRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1579 ConstantInt::get(DFS.IntptrTy, 1)); 1580 Value *NextWideShadow = 1581 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1582 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1583 } 1584 for (unsigned Width = 32; Width >= DFS.ShadowWidthBits; Width >>= 1) { 1585 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 1586 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 1587 } 1588 return IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy); 1589 } 1590 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) { 1591 // Fast path for the common case where each byte has identical shadow: load 1592 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1593 // shadow is non-equal. 1594 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1595 IRBuilder<> FallbackIRB(FallbackBB); 1596 CallInst *FallbackCall = FallbackIRB.CreateCall( 1597 DFS.DFSanUnionLoadFn, 1598 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1599 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1600 1601 // Compare each of the shadows stored in the loaded 64 bits to each other, 1602 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. 1603 IRBuilder<> IRB(Pos); 1604 Value *WideAddr = 1605 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1606 Value *WideShadow = 1607 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); 1608 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy); 1609 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); 1610 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); 1611 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1612 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1613 1614 BasicBlock *Head = Pos->getParent(); 1615 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1616 1617 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1618 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1619 1620 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1621 for (auto Child : Children) 1622 DT.changeImmediateDominator(Child, NewNode); 1623 } 1624 1625 // In the following code LastBr will refer to the previous basic block's 1626 // conditional branch instruction, whose true successor is fixed up to point 1627 // to the next block during the loop below or to the tail after the final 1628 // iteration. 1629 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1630 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1631 DT.addNewBlock(FallbackBB, Head); 1632 1633 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; 1634 Ofs += 64 / DFS.ShadowWidthBits) { 1635 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1636 DT.addNewBlock(NextBB, LastBr->getParent()); 1637 IRBuilder<> NextIRB(NextBB); 1638 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1639 ConstantInt::get(DFS.IntptrTy, 1)); 1640 Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), 1641 WideAddr, ShadowAlign); 1642 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1643 LastBr->setSuccessor(0, NextBB); 1644 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1645 } 1646 1647 LastBr->setSuccessor(0, Tail); 1648 FallbackIRB.CreateBr(Tail); 1649 PHINode *Shadow = 1650 PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); 1651 Shadow->addIncoming(FallbackCall, FallbackBB); 1652 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1653 return Shadow; 1654 } 1655 1656 IRBuilder<> IRB(Pos); 1657 FunctionCallee &UnionLoadFn = 1658 ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn; 1659 CallInst *FallbackCall = IRB.CreateCall( 1660 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1661 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1662 return FallbackCall; 1663 } 1664 1665 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1666 auto &DL = LI.getModule()->getDataLayout(); 1667 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1668 if (Size == 0) { 1669 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 1670 return; 1671 } 1672 1673 Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1); 1674 Value *PrimitiveShadow = 1675 DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI); 1676 if (ClCombinePointerLabelsOnLoad) { 1677 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1678 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, &LI); 1679 } 1680 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 1681 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 1682 1683 Value *Shadow = 1684 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, &LI); 1685 DFSF.setShadow(&LI, Shadow); 1686 if (ClEventCallbacks) { 1687 IRBuilder<> IRB(&LI); 1688 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1689 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 1690 } 1691 } 1692 1693 void DFSanFunction::storePrimitiveShadow(Value *Addr, uint64_t Size, 1694 Align Alignment, 1695 Value *PrimitiveShadow, 1696 Instruction *Pos) { 1697 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1698 const auto i = AllocaShadowMap.find(AI); 1699 if (i != AllocaShadowMap.end()) { 1700 IRBuilder<> IRB(Pos); 1701 IRB.CreateStore(PrimitiveShadow, i->second); 1702 return; 1703 } 1704 } 1705 1706 const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes); 1707 IRBuilder<> IRB(Pos); 1708 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1709 if (DFS.isZeroShadow(PrimitiveShadow)) { 1710 IntegerType *ShadowTy = 1711 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 1712 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1713 Value *ExtShadowAddr = 1714 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1715 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1716 return; 1717 } 1718 1719 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; 1720 uint64_t Offset = 0; 1721 if (Size >= ShadowVecSize) { 1722 auto *ShadowVecTy = 1723 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 1724 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1725 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1726 ShadowVec = IRB.CreateInsertElement( 1727 ShadowVec, PrimitiveShadow, 1728 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1729 } 1730 Value *ShadowVecAddr = 1731 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1732 do { 1733 Value *CurShadowVecAddr = 1734 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 1735 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1736 Size -= ShadowVecSize; 1737 ++Offset; 1738 } while (Size >= ShadowVecSize); 1739 Offset *= ShadowVecSize; 1740 } 1741 while (Size > 0) { 1742 Value *CurShadowAddr = 1743 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 1744 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 1745 --Size; 1746 ++Offset; 1747 } 1748 } 1749 1750 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1751 auto &DL = SI.getModule()->getDataLayout(); 1752 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 1753 if (Size == 0) 1754 return; 1755 1756 const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1); 1757 1758 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1759 Value *PrimitiveShadow; 1760 if (ClCombinePointerLabelsOnStore) { 1761 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1762 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1763 } else { 1764 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 1765 } 1766 DFSF.storePrimitiveShadow(SI.getPointerOperand(), Size, Alignment, 1767 PrimitiveShadow, &SI); 1768 if (ClEventCallbacks) { 1769 IRBuilder<> IRB(&SI); 1770 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 1771 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 1772 } 1773 } 1774 1775 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 1776 visitOperandShadowInst(UO); 1777 } 1778 1779 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1780 visitOperandShadowInst(BO); 1781 } 1782 1783 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1784 1785 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 1786 Value *CombinedShadow = visitOperandShadowInst(CI); 1787 if (ClEventCallbacks) { 1788 IRBuilder<> IRB(&CI); 1789 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 1790 } 1791 } 1792 1793 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1794 visitOperandShadowInst(GEPI); 1795 } 1796 1797 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1798 visitOperandShadowInst(I); 1799 } 1800 1801 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1802 visitOperandShadowInst(I); 1803 } 1804 1805 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1806 visitOperandShadowInst(I); 1807 } 1808 1809 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1810 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 1811 visitOperandShadowInst(I); 1812 return; 1813 } 1814 1815 IRBuilder<> IRB(&I); 1816 Value *Agg = I.getAggregateOperand(); 1817 Value *AggShadow = DFSF.getShadow(Agg); 1818 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 1819 DFSF.setShadow(&I, ResShadow); 1820 } 1821 1822 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1823 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { 1824 visitOperandShadowInst(I); 1825 return; 1826 } 1827 1828 IRBuilder<> IRB(&I); 1829 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 1830 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 1831 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 1832 DFSF.setShadow(&I, Res); 1833 } 1834 1835 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1836 bool AllLoadsStores = true; 1837 for (User *U : I.users()) { 1838 if (isa<LoadInst>(U)) 1839 continue; 1840 1841 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1842 if (SI->getPointerOperand() == &I) 1843 continue; 1844 } 1845 1846 AllLoadsStores = false; 1847 break; 1848 } 1849 if (AllLoadsStores) { 1850 IRBuilder<> IRB(&I); 1851 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 1852 } 1853 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 1854 } 1855 1856 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1857 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1858 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1859 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1860 Value *ShadowSel = nullptr; 1861 1862 if (isa<VectorType>(I.getCondition()->getType())) { 1863 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 1864 FalseShadow, &I); 1865 } else { 1866 if (TrueShadow == FalseShadow) { 1867 ShadowSel = TrueShadow; 1868 } else { 1869 ShadowSel = 1870 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1871 } 1872 } 1873 DFSF.setShadow(&I, ClTrackSelectControlFlow 1874 ? DFSF.combineShadowsThenConvert( 1875 I.getType(), CondShadow, ShadowSel, &I) 1876 : ShadowSel); 1877 } 1878 1879 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1880 IRBuilder<> IRB(&I); 1881 Value *ValShadow = DFSF.getShadow(I.getValue()); 1882 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 1883 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 1884 *DFSF.DFS.Ctx)), 1885 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 1886 } 1887 1888 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1889 IRBuilder<> IRB(&I); 1890 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1891 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1892 Value *LenShadow = 1893 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 1894 DFSF.DFS.ShadowWidthBytes)); 1895 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1896 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 1897 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1898 auto *MTI = cast<MemTransferInst>( 1899 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 1900 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 1901 if (ClPreserveAlignment) { 1902 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 1903 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 1904 } else { 1905 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1906 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 1907 } 1908 if (ClEventCallbacks) { 1909 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 1910 {RawDestShadow, I.getLength()}); 1911 } 1912 } 1913 1914 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1915 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1916 switch (DFSF.IA) { 1917 case DataFlowSanitizer::IA_TLS: { 1918 Value *S = DFSF.getShadow(RI.getReturnValue()); 1919 IRBuilder<> IRB(&RI); 1920 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1921 unsigned Size = 1922 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 1923 if (Size <= kRetvalTLSSize) { 1924 // If the size overflows, stores nothing. At callsite, oversized return 1925 // shadows are set to zero. 1926 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), 1927 kShadowTLSAlignment); 1928 } 1929 break; 1930 } 1931 case DataFlowSanitizer::IA_Args: { 1932 IRBuilder<> IRB(&RI); 1933 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1934 Value *InsVal = 1935 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1936 Value *InsShadow = 1937 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1938 RI.setOperand(0, InsShadow); 1939 break; 1940 } 1941 } 1942 } 1943 } 1944 1945 void DFSanVisitor::visitCallBase(CallBase &CB) { 1946 Function *F = CB.getCalledFunction(); 1947 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 1948 visitOperandShadowInst(CB); 1949 return; 1950 } 1951 1952 // Calls to this function are synthesized in wrappers, and we shouldn't 1953 // instrument them. 1954 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 1955 return; 1956 1957 IRBuilder<> IRB(&CB); 1958 1959 DenseMap<Value *, Function *>::iterator i = 1960 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 1961 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1962 Function *F = i->second; 1963 switch (DFSF.DFS.getWrapperKind(F)) { 1964 case DataFlowSanitizer::WK_Warning: 1965 CB.setCalledFunction(F); 1966 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1967 IRB.CreateGlobalStringPtr(F->getName())); 1968 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 1969 return; 1970 case DataFlowSanitizer::WK_Discard: 1971 CB.setCalledFunction(F); 1972 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 1973 return; 1974 case DataFlowSanitizer::WK_Functional: 1975 CB.setCalledFunction(F); 1976 visitOperandShadowInst(CB); 1977 return; 1978 case DataFlowSanitizer::WK_Custom: 1979 // Don't try to handle invokes of custom functions, it's too complicated. 1980 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1981 // wrapper. 1982 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1983 FunctionType *FT = F->getFunctionType(); 1984 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 1985 std::string CustomFName = "__dfsw_"; 1986 CustomFName += F->getName(); 1987 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 1988 CustomFName, CustomFn.TransformedType); 1989 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 1990 CustomFn->copyAttributesFrom(F); 1991 1992 // Custom functions returning non-void will write to the return label. 1993 if (!FT->getReturnType()->isVoidTy()) { 1994 CustomFn->removeAttributes(AttributeList::FunctionIndex, 1995 DFSF.DFS.ReadOnlyNoneAttrs); 1996 } 1997 } 1998 1999 std::vector<Value *> Args; 2000 2001 auto i = CB.arg_begin(); 2002 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 2003 Type *T = (*i)->getType(); 2004 FunctionType *ParamFT; 2005 if (isa<PointerType>(T) && 2006 (ParamFT = dyn_cast<FunctionType>( 2007 cast<PointerType>(T)->getElementType()))) { 2008 std::string TName = "dfst"; 2009 TName += utostr(FT->getNumParams() - n); 2010 TName += "$"; 2011 TName += F->getName(); 2012 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 2013 Args.push_back(T); 2014 Args.push_back( 2015 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 2016 } else { 2017 Args.push_back(*i); 2018 } 2019 } 2020 2021 i = CB.arg_begin(); 2022 const unsigned ShadowArgStart = Args.size(); 2023 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 2024 Args.push_back( 2025 DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*i), &CB)); 2026 2027 if (FT->isVarArg()) { 2028 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2029 CB.arg_size() - FT->getNumParams()); 2030 auto *LabelVAAlloca = new AllocaInst( 2031 LabelVATy, getDataLayout().getAllocaAddrSpace(), 2032 "labelva", &DFSF.F->getEntryBlock().front()); 2033 2034 for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) { 2035 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); 2036 IRB.CreateStore( 2037 DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*i), &CB), 2038 LabelVAPtr); 2039 } 2040 2041 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2042 } 2043 2044 if (!FT->getReturnType()->isVoidTy()) { 2045 if (!DFSF.LabelReturnAlloca) { 2046 DFSF.LabelReturnAlloca = 2047 new AllocaInst(DFSF.DFS.PrimitiveShadowTy, 2048 getDataLayout().getAllocaAddrSpace(), 2049 "labelreturn", &DFSF.F->getEntryBlock().front()); 2050 } 2051 Args.push_back(DFSF.LabelReturnAlloca); 2052 } 2053 2054 for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i) 2055 Args.push_back(*i); 2056 2057 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2058 CustomCI->setCallingConv(CI->getCallingConv()); 2059 CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, 2060 CI->getContext(), CI->getAttributes())); 2061 2062 // Update the parameter attributes of the custom call instruction to 2063 // zero extend the shadow parameters. This is required for targets 2064 // which consider PrimitiveShadowTy an illegal type. 2065 for (unsigned n = 0; n < FT->getNumParams(); n++) { 2066 const unsigned ArgNo = ShadowArgStart + n; 2067 if (CustomCI->getArgOperand(ArgNo)->getType() == 2068 DFSF.DFS.PrimitiveShadowTy) 2069 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 2070 } 2071 2072 if (!FT->getReturnType()->isVoidTy()) { 2073 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, 2074 DFSF.LabelReturnAlloca); 2075 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 2076 FT->getReturnType(), LabelLoad, &CB)); 2077 } 2078 2079 CI->replaceAllUsesWith(CustomCI); 2080 CI->eraseFromParent(); 2081 return; 2082 } 2083 break; 2084 } 2085 } 2086 2087 FunctionType *FT = CB.getFunctionType(); 2088 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2089 unsigned ArgOffset = 0; 2090 const DataLayout &DL = getDataLayout(); 2091 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 2092 unsigned Size = 2093 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 2094 // Stop storing if arguments' size overflows. Inside a function, arguments 2095 // after overflow have zero shadow values. 2096 if (ArgOffset + Size > kArgTLSSize) 2097 break; 2098 IRB.CreateAlignedStore( 2099 DFSF.getShadow(CB.getArgOperand(I)), 2100 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 2101 kShadowTLSAlignment); 2102 ArgOffset += alignTo(Size, kShadowTLSAlignment); 2103 } 2104 } 2105 2106 Instruction *Next = nullptr; 2107 if (!CB.getType()->isVoidTy()) { 2108 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2109 if (II->getNormalDest()->getSinglePredecessor()) { 2110 Next = &II->getNormalDest()->front(); 2111 } else { 2112 BasicBlock *NewBB = 2113 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 2114 Next = &NewBB->front(); 2115 } 2116 } else { 2117 assert(CB.getIterator() != CB.getParent()->end()); 2118 Next = CB.getNextNode(); 2119 } 2120 2121 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 2122 IRBuilder<> NextIRB(Next); 2123 const DataLayout &DL = getDataLayout(); 2124 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 2125 if (Size > kRetvalTLSSize) { 2126 // Set overflowed return shadow to be zero. 2127 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2128 } else { 2129 LoadInst *LI = NextIRB.CreateAlignedLoad( 2130 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 2131 kShadowTLSAlignment, "_dfsret"); 2132 DFSF.SkipInsts.insert(LI); 2133 DFSF.setShadow(&CB, LI); 2134 DFSF.NonZeroChecks.push_back(LI); 2135 } 2136 } 2137 } 2138 2139 // Do all instrumentation for IA_Args down here to defer tampering with the 2140 // CFG in a way that SplitEdge may be able to detect. 2141 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 2142 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 2143 Value *Func = 2144 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); 2145 std::vector<Value *> Args; 2146 2147 auto i = CB.arg_begin(), E = CB.arg_end(); 2148 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 2149 Args.push_back(*i); 2150 2151 i = CB.arg_begin(); 2152 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 2153 Args.push_back(DFSF.getShadow(*i)); 2154 2155 if (FT->isVarArg()) { 2156 unsigned VarArgSize = CB.arg_size() - FT->getNumParams(); 2157 ArrayType *VarArgArrayTy = 2158 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); 2159 AllocaInst *VarArgShadow = 2160 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 2161 "", &DFSF.F->getEntryBlock().front()); 2162 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 2163 for (unsigned n = 0; i != E; ++i, ++n) { 2164 IRB.CreateStore( 2165 DFSF.getShadow(*i), 2166 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 2167 Args.push_back(*i); 2168 } 2169 } 2170 2171 CallBase *NewCB; 2172 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2173 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), 2174 II->getUnwindDest(), Args); 2175 } else { 2176 NewCB = IRB.CreateCall(NewFT, Func, Args); 2177 } 2178 NewCB->setCallingConv(CB.getCallingConv()); 2179 NewCB->setAttributes(CB.getAttributes().removeAttributes( 2180 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 2181 AttributeFuncs::typeIncompatible(NewCB->getType()))); 2182 2183 if (Next) { 2184 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); 2185 DFSF.SkipInsts.insert(ExVal); 2186 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); 2187 DFSF.SkipInsts.insert(ExShadow); 2188 DFSF.setShadow(ExVal, ExShadow); 2189 DFSF.NonZeroChecks.push_back(ExShadow); 2190 2191 CB.replaceAllUsesWith(ExVal); 2192 } 2193 2194 CB.eraseFromParent(); 2195 } 2196 } 2197 2198 void DFSanVisitor::visitPHINode(PHINode &PN) { 2199 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 2200 PHINode *ShadowPN = 2201 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 2202 2203 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 2204 Value *UndefShadow = UndefValue::get(ShadowTy); 2205 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 2206 ++i) { 2207 ShadowPN->addIncoming(UndefShadow, *i); 2208 } 2209 2210 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 2211 DFSF.setShadow(&PN, ShadowPN); 2212 } 2213 2214 namespace { 2215 class DataFlowSanitizerLegacyPass : public ModulePass { 2216 private: 2217 std::vector<std::string> ABIListFiles; 2218 2219 public: 2220 static char ID; 2221 2222 DataFlowSanitizerLegacyPass( 2223 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 2224 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 2225 2226 bool runOnModule(Module &M) override { 2227 return DataFlowSanitizer(ABIListFiles).runImpl(M); 2228 } 2229 }; 2230 } // namespace 2231 2232 char DataFlowSanitizerLegacyPass::ID; 2233 2234 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 2235 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 2236 2237 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 2238 const std::vector<std::string> &ABIListFiles) { 2239 return new DataFlowSanitizerLegacyPass(ABIListFiles); 2240 } 2241 2242 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 2243 ModuleAnalysisManager &AM) { 2244 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 2245 return PreservedAnalyses::none(); 2246 } 2247 return PreservedAnalyses::all(); 2248 } 2249