1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// Argument and return value labels are passed through TLS variables 22 /// __dfsan_arg_tls and __dfsan_retval_tls. 23 /// 24 /// Each byte of application memory is backed by a shadow memory byte. The 25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then 26 /// laid out as follows: 27 /// 28 /// +--------------------+ 0x800000000000 (top of memory) 29 /// | application 3 | 30 /// +--------------------+ 0x700000000000 31 /// | invalid | 32 /// +--------------------+ 0x610000000000 33 /// | origin 1 | 34 /// +--------------------+ 0x600000000000 35 /// | application 2 | 36 /// +--------------------+ 0x510000000000 37 /// | shadow 1 | 38 /// +--------------------+ 0x500000000000 39 /// | invalid | 40 /// +--------------------+ 0x400000000000 41 /// | origin 3 | 42 /// +--------------------+ 0x300000000000 43 /// | shadow 3 | 44 /// +--------------------+ 0x200000000000 45 /// | origin 2 | 46 /// +--------------------+ 0x110000000000 47 /// | invalid | 48 /// +--------------------+ 0x100000000000 49 /// | shadow 2 | 50 /// +--------------------+ 0x010000000000 51 /// | application 1 | 52 /// +--------------------+ 0x000000000000 53 /// 54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 56 /// 57 /// For more information, please refer to the design document: 58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 59 // 60 //===----------------------------------------------------------------------===// 61 62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DenseSet.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/StringRef.h" 69 #include "llvm/ADT/StringSet.h" 70 #include "llvm/ADT/iterator.h" 71 #include "llvm/Analysis/DomTreeUpdater.h" 72 #include "llvm/Analysis/GlobalsModRef.h" 73 #include "llvm/Analysis/TargetLibraryInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/IR/Argument.h" 76 #include "llvm/IR/AttributeMask.h" 77 #include "llvm/IR/Attributes.h" 78 #include "llvm/IR/BasicBlock.h" 79 #include "llvm/IR/Constant.h" 80 #include "llvm/IR/Constants.h" 81 #include "llvm/IR/DataLayout.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/Function.h" 85 #include "llvm/IR/GlobalAlias.h" 86 #include "llvm/IR/GlobalValue.h" 87 #include "llvm/IR/GlobalVariable.h" 88 #include "llvm/IR/IRBuilder.h" 89 #include "llvm/IR/InstVisitor.h" 90 #include "llvm/IR/InstrTypes.h" 91 #include "llvm/IR/Instruction.h" 92 #include "llvm/IR/Instructions.h" 93 #include "llvm/IR/IntrinsicInst.h" 94 #include "llvm/IR/MDBuilder.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/PassManager.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/Support/Alignment.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/ErrorHandling.h" 104 #include "llvm/Support/SpecialCaseList.h" 105 #include "llvm/Support/VirtualFileSystem.h" 106 #include "llvm/TargetParser/Triple.h" 107 #include "llvm/Transforms/Instrumentation.h" 108 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 109 #include "llvm/Transforms/Utils/Local.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <memory> 115 #include <set> 116 #include <string> 117 #include <utility> 118 #include <vector> 119 120 using namespace llvm; 121 122 // This must be consistent with ShadowWidthBits. 123 static const Align ShadowTLSAlignment = Align(2); 124 125 static const Align MinOriginAlignment = Align(4); 126 127 // The size of TLS variables. These constants must be kept in sync with the ones 128 // in dfsan.cpp. 129 static const unsigned ArgTLSSize = 800; 130 static const unsigned RetvalTLSSize = 800; 131 132 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 133 // alignment requirements provided by the input IR are correct. For example, 134 // if the input IR contains a load with alignment 8, this flag will cause 135 // the shadow load to have alignment 16. This flag is disabled by default as 136 // we have unfortunately encountered too much code (including Clang itself; 137 // see PR14291) which performs misaligned access. 138 static cl::opt<bool> ClPreserveAlignment( 139 "dfsan-preserve-alignment", 140 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 141 cl::init(false)); 142 143 // The ABI list files control how shadow parameters are passed. The pass treats 144 // every function labelled "uninstrumented" in the ABI list file as conforming 145 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 146 // additional annotations for those functions, a call to one of those functions 147 // will produce a warning message, as the labelling behaviour of the function is 148 // unknown. The other supported annotations for uninstrumented functions are 149 // "functional" and "discard", which are described below under 150 // DataFlowSanitizer::WrapperKind. 151 // Functions will often be labelled with both "uninstrumented" and one of 152 // "functional" or "discard". This will leave the function unchanged by this 153 // pass, and create a wrapper function that will call the original. 154 // 155 // Instrumented functions can also be annotated as "force_zero_labels", which 156 // will make all shadow and return values set zero labels. 157 // Functions should never be labelled with both "force_zero_labels" and 158 // "uninstrumented" or any of the unistrumented wrapper kinds. 159 static cl::list<std::string> ClABIListFiles( 160 "dfsan-abilist", 161 cl::desc("File listing native ABI functions and how the pass treats them"), 162 cl::Hidden); 163 164 // Controls whether the pass includes or ignores the labels of pointers in load 165 // instructions. 166 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 167 "dfsan-combine-pointer-labels-on-load", 168 cl::desc("Combine the label of the pointer with the label of the data when " 169 "loading from memory."), 170 cl::Hidden, cl::init(true)); 171 172 // Controls whether the pass includes or ignores the labels of pointers in 173 // stores instructions. 174 static cl::opt<bool> ClCombinePointerLabelsOnStore( 175 "dfsan-combine-pointer-labels-on-store", 176 cl::desc("Combine the label of the pointer with the label of the data when " 177 "storing in memory."), 178 cl::Hidden, cl::init(false)); 179 180 // Controls whether the pass propagates labels of offsets in GEP instructions. 181 static cl::opt<bool> ClCombineOffsetLabelsOnGEP( 182 "dfsan-combine-offset-labels-on-gep", 183 cl::desc( 184 "Combine the label of the offset with the label of the pointer when " 185 "doing pointer arithmetic."), 186 cl::Hidden, cl::init(true)); 187 188 static cl::list<std::string> ClCombineTaintLookupTables( 189 "dfsan-combine-taint-lookup-table", 190 cl::desc( 191 "When dfsan-combine-offset-labels-on-gep and/or " 192 "dfsan-combine-pointer-labels-on-load are false, this flag can " 193 "be used to re-enable combining offset and/or pointer taint when " 194 "loading specific constant global variables (i.e. lookup tables)."), 195 cl::Hidden); 196 197 static cl::opt<bool> ClDebugNonzeroLabels( 198 "dfsan-debug-nonzero-labels", 199 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 200 "load or return with a nonzero label"), 201 cl::Hidden); 202 203 // Experimental feature that inserts callbacks for certain data events. 204 // Currently callbacks are only inserted for loads, stores, memory transfers 205 // (i.e. memcpy and memmove), and comparisons. 206 // 207 // If this flag is set to true, the user must provide definitions for the 208 // following callback functions: 209 // void __dfsan_load_callback(dfsan_label Label, void* addr); 210 // void __dfsan_store_callback(dfsan_label Label, void* addr); 211 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 212 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 213 static cl::opt<bool> ClEventCallbacks( 214 "dfsan-event-callbacks", 215 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 216 cl::Hidden, cl::init(false)); 217 218 // Experimental feature that inserts callbacks for conditionals, including: 219 // conditional branch, switch, select. 220 // This must be true for dfsan_set_conditional_callback() to have effect. 221 static cl::opt<bool> ClConditionalCallbacks( 222 "dfsan-conditional-callbacks", 223 cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden, 224 cl::init(false)); 225 226 // Experimental feature that inserts callbacks for data reaching a function, 227 // either via function arguments and loads. 228 // This must be true for dfsan_set_reaches_function_callback() to have effect. 229 static cl::opt<bool> ClReachesFunctionCallbacks( 230 "dfsan-reaches-function-callbacks", 231 cl::desc("Insert calls to callback functions on data reaching a function."), 232 cl::Hidden, cl::init(false)); 233 234 // Controls whether the pass tracks the control flow of select instructions. 235 static cl::opt<bool> ClTrackSelectControlFlow( 236 "dfsan-track-select-control-flow", 237 cl::desc("Propagate labels from condition values of select instructions " 238 "to results."), 239 cl::Hidden, cl::init(true)); 240 241 // TODO: This default value follows MSan. DFSan may use a different value. 242 static cl::opt<int> ClInstrumentWithCallThreshold( 243 "dfsan-instrument-with-call-threshold", 244 cl::desc("If the function being instrumented requires more than " 245 "this number of origin stores, use callbacks instead of " 246 "inline checks (-1 means never use callbacks)."), 247 cl::Hidden, cl::init(3500)); 248 249 // Controls how to track origins. 250 // * 0: do not track origins. 251 // * 1: track origins at memory store operations. 252 // * 2: track origins at memory load and store operations. 253 // TODO: track callsites. 254 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 255 cl::desc("Track origins of labels"), 256 cl::Hidden, cl::init(0)); 257 258 static cl::opt<bool> ClIgnorePersonalityRoutine( 259 "dfsan-ignore-personality-routine", 260 cl::desc("If a personality routine is marked uninstrumented from the ABI " 261 "list, do not create a wrapper for it."), 262 cl::Hidden, cl::init(false)); 263 264 static StringRef getGlobalTypeString(const GlobalValue &G) { 265 // Types of GlobalVariables are always pointer types. 266 Type *GType = G.getValueType(); 267 // For now we support excluding struct types only. 268 if (StructType *SGType = dyn_cast<StructType>(GType)) { 269 if (!SGType->isLiteral()) 270 return SGType->getName(); 271 } 272 return "<unknown type>"; 273 } 274 275 namespace { 276 277 // Memory map parameters used in application-to-shadow address calculation. 278 // Offset = (Addr & ~AndMask) ^ XorMask 279 // Shadow = ShadowBase + Offset 280 // Origin = (OriginBase + Offset) & ~3ULL 281 struct MemoryMapParams { 282 uint64_t AndMask; 283 uint64_t XorMask; 284 uint64_t ShadowBase; 285 uint64_t OriginBase; 286 }; 287 288 } // end anonymous namespace 289 290 // NOLINTBEGIN(readability-identifier-naming) 291 // aarch64 Linux 292 const MemoryMapParams Linux_AArch64_MemoryMapParams = { 293 0, // AndMask (not used) 294 0x0B00000000000, // XorMask 295 0, // ShadowBase (not used) 296 0x0200000000000, // OriginBase 297 }; 298 299 // x86_64 Linux 300 const MemoryMapParams Linux_X86_64_MemoryMapParams = { 301 0, // AndMask (not used) 302 0x500000000000, // XorMask 303 0, // ShadowBase (not used) 304 0x100000000000, // OriginBase 305 }; 306 // NOLINTEND(readability-identifier-naming) 307 308 // loongarch64 Linux 309 const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { 310 0, // AndMask (not used) 311 0x500000000000, // XorMask 312 0, // ShadowBase (not used) 313 0x100000000000, // OriginBase 314 }; 315 316 namespace { 317 318 class DFSanABIList { 319 std::unique_ptr<SpecialCaseList> SCL; 320 321 public: 322 DFSanABIList() = default; 323 324 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 325 326 /// Returns whether either this function or its source file are listed in the 327 /// given category. 328 bool isIn(const Function &F, StringRef Category) const { 329 return isIn(*F.getParent(), Category) || 330 SCL->inSection("dataflow", "fun", F.getName(), Category); 331 } 332 333 /// Returns whether this global alias is listed in the given category. 334 /// 335 /// If GA aliases a function, the alias's name is matched as a function name 336 /// would be. Similarly, aliases of globals are matched like globals. 337 bool isIn(const GlobalAlias &GA, StringRef Category) const { 338 if (isIn(*GA.getParent(), Category)) 339 return true; 340 341 if (isa<FunctionType>(GA.getValueType())) 342 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 343 344 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 345 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 346 Category); 347 } 348 349 /// Returns whether this module is listed in the given category. 350 bool isIn(const Module &M, StringRef Category) const { 351 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 352 } 353 }; 354 355 /// TransformedFunction is used to express the result of transforming one 356 /// function type into another. This struct is immutable. It holds metadata 357 /// useful for updating calls of the old function to the new type. 358 struct TransformedFunction { 359 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 360 std::vector<unsigned> ArgumentIndexMapping) 361 : OriginalType(OriginalType), TransformedType(TransformedType), 362 ArgumentIndexMapping(ArgumentIndexMapping) {} 363 364 // Disallow copies. 365 TransformedFunction(const TransformedFunction &) = delete; 366 TransformedFunction &operator=(const TransformedFunction &) = delete; 367 368 // Allow moves. 369 TransformedFunction(TransformedFunction &&) = default; 370 TransformedFunction &operator=(TransformedFunction &&) = default; 371 372 /// Type of the function before the transformation. 373 FunctionType *OriginalType; 374 375 /// Type of the function after the transformation. 376 FunctionType *TransformedType; 377 378 /// Transforming a function may change the position of arguments. This 379 /// member records the mapping from each argument's old position to its new 380 /// position. Argument positions are zero-indexed. If the transformation 381 /// from F to F' made the first argument of F into the third argument of F', 382 /// then ArgumentIndexMapping[0] will equal 2. 383 std::vector<unsigned> ArgumentIndexMapping; 384 }; 385 386 /// Given function attributes from a call site for the original function, 387 /// return function attributes appropriate for a call to the transformed 388 /// function. 389 AttributeList 390 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 391 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 392 393 // Construct a vector of AttributeSet for each function argument. 394 std::vector<llvm::AttributeSet> ArgumentAttributes( 395 TransformedFunction.TransformedType->getNumParams()); 396 397 // Copy attributes from the parameter of the original function to the 398 // transformed version. 'ArgumentIndexMapping' holds the mapping from 399 // old argument position to new. 400 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 401 I < IE; ++I) { 402 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 403 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I); 404 } 405 406 // Copy annotations on varargs arguments. 407 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 408 IE = CallSiteAttrs.getNumAttrSets(); 409 I < IE; ++I) { 410 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I)); 411 } 412 413 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(), 414 CallSiteAttrs.getRetAttrs(), 415 llvm::ArrayRef(ArgumentAttributes)); 416 } 417 418 class DataFlowSanitizer { 419 friend struct DFSanFunction; 420 friend class DFSanVisitor; 421 422 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; 423 424 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; 425 426 /// How should calls to uninstrumented functions be handled? 427 enum WrapperKind { 428 /// This function is present in an uninstrumented form but we don't know 429 /// how it should be handled. Print a warning and call the function anyway. 430 /// Don't label the return value. 431 WK_Warning, 432 433 /// This function does not write to (user-accessible) memory, and its return 434 /// value is unlabelled. 435 WK_Discard, 436 437 /// This function does not write to (user-accessible) memory, and the label 438 /// of its return value is the union of the label of its arguments. 439 WK_Functional, 440 441 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 442 /// where F is the name of the function. This function may wrap the 443 /// original function or provide its own implementation. WK_Custom uses an 444 /// extra pointer argument to return the shadow. This allows the wrapped 445 /// form of the function type to be expressed in C. 446 WK_Custom 447 }; 448 449 Module *Mod; 450 LLVMContext *Ctx; 451 Type *Int8Ptr; 452 IntegerType *OriginTy; 453 PointerType *OriginPtrTy; 454 ConstantInt *ZeroOrigin; 455 /// The shadow type for all primitive types and vector types. 456 IntegerType *PrimitiveShadowTy; 457 PointerType *PrimitiveShadowPtrTy; 458 IntegerType *IntptrTy; 459 ConstantInt *ZeroPrimitiveShadow; 460 Constant *ArgTLS; 461 ArrayType *ArgOriginTLSTy; 462 Constant *ArgOriginTLS; 463 Constant *RetvalTLS; 464 Constant *RetvalOriginTLS; 465 FunctionType *DFSanUnionLoadFnTy; 466 FunctionType *DFSanLoadLabelAndOriginFnTy; 467 FunctionType *DFSanUnimplementedFnTy; 468 FunctionType *DFSanWrapperExternWeakNullFnTy; 469 FunctionType *DFSanSetLabelFnTy; 470 FunctionType *DFSanNonzeroLabelFnTy; 471 FunctionType *DFSanVarargWrapperFnTy; 472 FunctionType *DFSanConditionalCallbackFnTy; 473 FunctionType *DFSanConditionalCallbackOriginFnTy; 474 FunctionType *DFSanReachesFunctionCallbackFnTy; 475 FunctionType *DFSanReachesFunctionCallbackOriginFnTy; 476 FunctionType *DFSanCmpCallbackFnTy; 477 FunctionType *DFSanLoadStoreCallbackFnTy; 478 FunctionType *DFSanMemTransferCallbackFnTy; 479 FunctionType *DFSanChainOriginFnTy; 480 FunctionType *DFSanChainOriginIfTaintedFnTy; 481 FunctionType *DFSanMemOriginTransferFnTy; 482 FunctionType *DFSanMemShadowOriginTransferFnTy; 483 FunctionType *DFSanMemShadowOriginConditionalExchangeFnTy; 484 FunctionType *DFSanMaybeStoreOriginFnTy; 485 FunctionCallee DFSanUnionLoadFn; 486 FunctionCallee DFSanLoadLabelAndOriginFn; 487 FunctionCallee DFSanUnimplementedFn; 488 FunctionCallee DFSanWrapperExternWeakNullFn; 489 FunctionCallee DFSanSetLabelFn; 490 FunctionCallee DFSanNonzeroLabelFn; 491 FunctionCallee DFSanVarargWrapperFn; 492 FunctionCallee DFSanLoadCallbackFn; 493 FunctionCallee DFSanStoreCallbackFn; 494 FunctionCallee DFSanMemTransferCallbackFn; 495 FunctionCallee DFSanConditionalCallbackFn; 496 FunctionCallee DFSanConditionalCallbackOriginFn; 497 FunctionCallee DFSanReachesFunctionCallbackFn; 498 FunctionCallee DFSanReachesFunctionCallbackOriginFn; 499 FunctionCallee DFSanCmpCallbackFn; 500 FunctionCallee DFSanChainOriginFn; 501 FunctionCallee DFSanChainOriginIfTaintedFn; 502 FunctionCallee DFSanMemOriginTransferFn; 503 FunctionCallee DFSanMemShadowOriginTransferFn; 504 FunctionCallee DFSanMemShadowOriginConditionalExchangeFn; 505 FunctionCallee DFSanMaybeStoreOriginFn; 506 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 507 MDNode *ColdCallWeights; 508 MDNode *OriginStoreWeights; 509 DFSanABIList ABIList; 510 DenseMap<Value *, Function *> UnwrappedFnMap; 511 AttributeMask ReadOnlyNoneAttrs; 512 StringSet<> CombineTaintLookupTableNames; 513 514 /// Memory map parameters used in calculation mapping application addresses 515 /// to shadow addresses and origin addresses. 516 const MemoryMapParams *MapParams; 517 518 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 519 Value *getShadowAddress(Value *Addr, Instruction *Pos); 520 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); 521 std::pair<Value *, Value *> 522 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 523 bool isInstrumented(const Function *F); 524 bool isInstrumented(const GlobalAlias *GA); 525 bool isForceZeroLabels(const Function *F); 526 TransformedFunction getCustomFunctionType(FunctionType *T); 527 WrapperKind getWrapperKind(Function *F); 528 void addGlobalNameSuffix(GlobalValue *GV); 529 void buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, Function *F); 530 Function *buildWrapperFunction(Function *F, StringRef NewFName, 531 GlobalValue::LinkageTypes NewFLink, 532 FunctionType *NewFT); 533 void initializeCallbackFunctions(Module &M); 534 void initializeRuntimeFunctions(Module &M); 535 bool initializeModule(Module &M); 536 537 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 538 /// from it. Returns the origin's loaded value. 539 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign, 540 Value **OriginAddr); 541 542 /// Returns whether the given load byte size is amenable to inlined 543 /// optimization patterns. 544 bool hasLoadSizeForFastPath(uint64_t Size); 545 546 /// Returns whether the pass tracks origins. Supports only TLS ABI mode. 547 bool shouldTrackOrigins(); 548 549 /// Returns a zero constant with the shadow type of OrigTy. 550 /// 551 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 552 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 553 /// getZeroShadow(other type) = i16(0) 554 Constant *getZeroShadow(Type *OrigTy); 555 /// Returns a zero constant with the shadow type of V's type. 556 Constant *getZeroShadow(Value *V); 557 558 /// Checks if V is a zero shadow. 559 bool isZeroShadow(Value *V); 560 561 /// Returns the shadow type of OrigTy. 562 /// 563 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 564 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 565 /// getShadowTy(other type) = i16 566 Type *getShadowTy(Type *OrigTy); 567 /// Returns the shadow type of of V's type. 568 Type *getShadowTy(Value *V); 569 570 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 571 572 public: 573 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 574 575 bool runImpl(Module &M, 576 llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI); 577 }; 578 579 struct DFSanFunction { 580 DataFlowSanitizer &DFS; 581 Function *F; 582 DominatorTree DT; 583 bool IsNativeABI; 584 bool IsForceZeroLabels; 585 TargetLibraryInfo &TLI; 586 AllocaInst *LabelReturnAlloca = nullptr; 587 AllocaInst *OriginReturnAlloca = nullptr; 588 DenseMap<Value *, Value *> ValShadowMap; 589 DenseMap<Value *, Value *> ValOriginMap; 590 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 591 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 592 593 struct PHIFixupElement { 594 PHINode *Phi; 595 PHINode *ShadowPhi; 596 PHINode *OriginPhi; 597 }; 598 std::vector<PHIFixupElement> PHIFixups; 599 600 DenseSet<Instruction *> SkipInsts; 601 std::vector<Value *> NonZeroChecks; 602 603 struct CachedShadow { 604 BasicBlock *Block; // The block where Shadow is defined. 605 Value *Shadow; 606 }; 607 /// Maps a value to its latest shadow value in terms of domination tree. 608 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 609 /// Maps a value to its latest collapsed shadow value it was converted to in 610 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 611 /// used at a post process where CFG blocks are split. So it does not cache 612 /// BasicBlock like CachedShadows, but uses domination between values. 613 DenseMap<Value *, Value *> CachedCollapsedShadows; 614 DenseMap<Value *, std::set<Value *>> ShadowElements; 615 616 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, 617 bool IsForceZeroLabels, TargetLibraryInfo &TLI) 618 : DFS(DFS), F(F), IsNativeABI(IsNativeABI), 619 IsForceZeroLabels(IsForceZeroLabels), TLI(TLI) { 620 DT.recalculate(*F); 621 } 622 623 /// Computes the shadow address for a given function argument. 624 /// 625 /// Shadow = ArgTLS+ArgOffset. 626 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 627 628 /// Computes the shadow address for a return value. 629 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 630 631 /// Computes the origin address for a given function argument. 632 /// 633 /// Origin = ArgOriginTLS[ArgNo]. 634 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 635 636 /// Computes the origin address for a return value. 637 Value *getRetvalOriginTLS(); 638 639 Value *getOrigin(Value *V); 640 void setOrigin(Instruction *I, Value *Origin); 641 /// Generates IR to compute the origin of the last operand with a taint label. 642 Value *combineOperandOrigins(Instruction *Inst); 643 /// Before the instruction Pos, generates IR to compute the last origin with a 644 /// taint label. Labels and origins are from vectors Shadows and Origins 645 /// correspondingly. The generated IR is like 646 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 647 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 648 /// zeros with other bitwidths. 649 Value *combineOrigins(const std::vector<Value *> &Shadows, 650 const std::vector<Value *> &Origins, Instruction *Pos, 651 ConstantInt *Zero = nullptr); 652 653 Value *getShadow(Value *V); 654 void setShadow(Instruction *I, Value *Shadow); 655 /// Generates IR to compute the union of the two given shadows, inserting it 656 /// before Pos. The combined value is with primitive type. 657 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 658 /// Combines the shadow values of V1 and V2, then converts the combined value 659 /// with primitive type into a shadow value with the original type T. 660 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 661 Instruction *Pos); 662 Value *combineOperandShadows(Instruction *Inst); 663 664 /// Generates IR to load shadow and origin corresponding to bytes [\p 665 /// Addr, \p Addr + \p Size), where addr has alignment \p 666 /// InstAlignment, and take the union of each of those shadows. The returned 667 /// shadow always has primitive type. 668 /// 669 /// When tracking loads is enabled, the returned origin is a chain at the 670 /// current stack if the returned shadow is tainted. 671 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 672 Align InstAlignment, 673 Instruction *Pos); 674 675 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 676 Align InstAlignment, Value *PrimitiveShadow, 677 Value *Origin, Instruction *Pos); 678 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 679 /// the expanded shadow value. 680 /// 681 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 682 /// EFP([n x T], PS) = [n x EFP(T,PS)] 683 /// EFP(other types, PS) = PS 684 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 685 Instruction *Pos); 686 /// Collapses Shadow into a single primitive shadow value, unioning all 687 /// primitive shadow values in the process. Returns the final primitive 688 /// shadow value. 689 /// 690 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 691 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 692 /// CTP(other types, PS) = PS 693 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 694 695 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 696 Instruction *Pos); 697 698 Align getShadowAlign(Align InstAlignment); 699 700 // If ClConditionalCallbacks is enabled, insert a callback after a given 701 // branch instruction using the given conditional expression. 702 void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition); 703 704 // If ClReachesFunctionCallbacks is enabled, insert a callback for each 705 // argument and load instruction. 706 void addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, Instruction &I, 707 Value *Data); 708 709 bool isLookupTableConstant(Value *P); 710 711 private: 712 /// Collapses the shadow with aggregate type into a single primitive shadow 713 /// value. 714 template <class AggregateType> 715 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 716 IRBuilder<> &IRB); 717 718 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 719 720 /// Returns the shadow value of an argument A. 721 Value *getShadowForTLSArgument(Argument *A); 722 723 /// The fast path of loading shadows. 724 std::pair<Value *, Value *> 725 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 726 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 727 Instruction *Pos); 728 729 Align getOriginAlign(Align InstAlignment); 730 731 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 732 /// is __dfsan_load_label_and_origin. This function returns the union of all 733 /// labels and the origin of the first taint label. However this is an 734 /// additional call with many instructions. To ensure common cases are fast, 735 /// checks if it is possible to load labels and origins without using the 736 /// callback function. 737 /// 738 /// When enabling tracking load instructions, we always use 739 /// __dfsan_load_label_and_origin to reduce code size. 740 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 741 742 /// Returns a chain at the current stack with previous origin V. 743 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 744 745 /// Returns a chain at the current stack with previous origin V if Shadow is 746 /// tainted. 747 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 748 749 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 750 /// Origin otherwise. 751 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 752 753 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 754 /// Size). 755 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 756 uint64_t StoreOriginSize, Align Alignment); 757 758 /// Stores Origin in terms of its Shadow value. 759 /// * Do not write origins for zero shadows because we do not trace origins 760 /// for untainted sinks. 761 /// * Use __dfsan_maybe_store_origin if there are too many origin store 762 /// instrumentations. 763 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 764 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 765 766 /// Convert a scalar value to an i1 by comparing with 0. 767 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 768 769 bool shouldInstrumentWithCall(); 770 771 /// Generates IR to load shadow and origin corresponding to bytes [\p 772 /// Addr, \p Addr + \p Size), where addr has alignment \p 773 /// InstAlignment, and take the union of each of those shadows. The returned 774 /// shadow always has primitive type. 775 std::pair<Value *, Value *> 776 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 777 Align InstAlignment, Instruction *Pos); 778 int NumOriginStores = 0; 779 }; 780 781 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 782 public: 783 DFSanFunction &DFSF; 784 785 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 786 787 const DataLayout &getDataLayout() const { 788 return DFSF.F->getParent()->getDataLayout(); 789 } 790 791 // Combines shadow values and origins for all of I's operands. 792 void visitInstOperands(Instruction &I); 793 794 void visitUnaryOperator(UnaryOperator &UO); 795 void visitBinaryOperator(BinaryOperator &BO); 796 void visitBitCastInst(BitCastInst &BCI); 797 void visitCastInst(CastInst &CI); 798 void visitCmpInst(CmpInst &CI); 799 void visitLandingPadInst(LandingPadInst &LPI); 800 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 801 void visitLoadInst(LoadInst &LI); 802 void visitStoreInst(StoreInst &SI); 803 void visitAtomicRMWInst(AtomicRMWInst &I); 804 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 805 void visitReturnInst(ReturnInst &RI); 806 void visitLibAtomicLoad(CallBase &CB); 807 void visitLibAtomicStore(CallBase &CB); 808 void visitLibAtomicExchange(CallBase &CB); 809 void visitLibAtomicCompareExchange(CallBase &CB); 810 void visitCallBase(CallBase &CB); 811 void visitPHINode(PHINode &PN); 812 void visitExtractElementInst(ExtractElementInst &I); 813 void visitInsertElementInst(InsertElementInst &I); 814 void visitShuffleVectorInst(ShuffleVectorInst &I); 815 void visitExtractValueInst(ExtractValueInst &I); 816 void visitInsertValueInst(InsertValueInst &I); 817 void visitAllocaInst(AllocaInst &I); 818 void visitSelectInst(SelectInst &I); 819 void visitMemSetInst(MemSetInst &I); 820 void visitMemTransferInst(MemTransferInst &I); 821 void visitBranchInst(BranchInst &BR); 822 void visitSwitchInst(SwitchInst &SW); 823 824 private: 825 void visitCASOrRMW(Align InstAlignment, Instruction &I); 826 827 // Returns false when this is an invoke of a custom function. 828 bool visitWrappedCallBase(Function &F, CallBase &CB); 829 830 // Combines origins for all of I's operands. 831 void visitInstOperandOrigins(Instruction &I); 832 833 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 834 IRBuilder<> &IRB); 835 836 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 837 IRBuilder<> &IRB); 838 839 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB); 840 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB); 841 }; 842 843 bool LibAtomicFunction(const Function &F) { 844 // This is a bit of a hack because TargetLibraryInfo is a function pass. 845 // The DFSan pass would need to be refactored to be function pass oriented 846 // (like MSan is) in order to fit together nicely with TargetLibraryInfo. 847 // We need this check to prevent them from being instrumented, or wrapped. 848 // Match on name and number of arguments. 849 if (!F.hasName() || F.isVarArg()) 850 return false; 851 switch (F.arg_size()) { 852 case 4: 853 return F.getName() == "__atomic_load" || F.getName() == "__atomic_store"; 854 case 5: 855 return F.getName() == "__atomic_exchange"; 856 case 6: 857 return F.getName() == "__atomic_compare_exchange"; 858 default: 859 return false; 860 } 861 } 862 863 } // end anonymous namespace 864 865 DataFlowSanitizer::DataFlowSanitizer( 866 const std::vector<std::string> &ABIListFiles) { 867 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 868 llvm::append_range(AllABIListFiles, ClABIListFiles); 869 // FIXME: should we propagate vfs::FileSystem to this constructor? 870 ABIList.set( 871 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 872 873 for (StringRef v : ClCombineTaintLookupTables) 874 CombineTaintLookupTableNames.insert(v); 875 } 876 877 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 878 SmallVector<Type *, 4> ArgTypes; 879 880 // Some parameters of the custom function being constructed are 881 // parameters of T. Record the mapping from parameters of T to 882 // parameters of the custom function, so that parameter attributes 883 // at call sites can be updated. 884 std::vector<unsigned> ArgumentIndexMapping; 885 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 886 Type *ParamType = T->getParamType(I); 887 ArgumentIndexMapping.push_back(ArgTypes.size()); 888 ArgTypes.push_back(ParamType); 889 } 890 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 891 ArgTypes.push_back(PrimitiveShadowTy); 892 if (T->isVarArg()) 893 ArgTypes.push_back(PrimitiveShadowPtrTy); 894 Type *RetType = T->getReturnType(); 895 if (!RetType->isVoidTy()) 896 ArgTypes.push_back(PrimitiveShadowPtrTy); 897 898 if (shouldTrackOrigins()) { 899 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 900 ArgTypes.push_back(OriginTy); 901 if (T->isVarArg()) 902 ArgTypes.push_back(OriginPtrTy); 903 if (!RetType->isVoidTy()) 904 ArgTypes.push_back(OriginPtrTy); 905 } 906 907 return TransformedFunction( 908 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 909 ArgumentIndexMapping); 910 } 911 912 bool DataFlowSanitizer::isZeroShadow(Value *V) { 913 Type *T = V->getType(); 914 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 915 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 916 return CI->isZero(); 917 return false; 918 } 919 920 return isa<ConstantAggregateZero>(V); 921 } 922 923 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 924 uint64_t ShadowSize = Size * ShadowWidthBytes; 925 return ShadowSize % 8 == 0 || ShadowSize == 4; 926 } 927 928 bool DataFlowSanitizer::shouldTrackOrigins() { 929 static const bool ShouldTrackOrigins = ClTrackOrigins; 930 return ShouldTrackOrigins; 931 } 932 933 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 934 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 935 return ZeroPrimitiveShadow; 936 Type *ShadowTy = getShadowTy(OrigTy); 937 return ConstantAggregateZero::get(ShadowTy); 938 } 939 940 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 941 return getZeroShadow(V->getType()); 942 } 943 944 static Value *expandFromPrimitiveShadowRecursive( 945 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 946 Value *PrimitiveShadow, IRBuilder<> &IRB) { 947 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 948 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 949 950 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 951 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 952 Indices.push_back(Idx); 953 Shadow = expandFromPrimitiveShadowRecursive( 954 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 955 Indices.pop_back(); 956 } 957 return Shadow; 958 } 959 960 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 961 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 962 Indices.push_back(Idx); 963 Shadow = expandFromPrimitiveShadowRecursive( 964 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 965 Indices.pop_back(); 966 } 967 return Shadow; 968 } 969 llvm_unreachable("Unexpected shadow type"); 970 } 971 972 bool DFSanFunction::shouldInstrumentWithCall() { 973 return ClInstrumentWithCallThreshold >= 0 && 974 NumOriginStores >= ClInstrumentWithCallThreshold; 975 } 976 977 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 978 Instruction *Pos) { 979 Type *ShadowTy = DFS.getShadowTy(T); 980 981 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 982 return PrimitiveShadow; 983 984 if (DFS.isZeroShadow(PrimitiveShadow)) 985 return DFS.getZeroShadow(ShadowTy); 986 987 IRBuilder<> IRB(Pos); 988 SmallVector<unsigned, 4> Indices; 989 Value *Shadow = UndefValue::get(ShadowTy); 990 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 991 PrimitiveShadow, IRB); 992 993 // Caches the primitive shadow value that built the shadow value. 994 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 995 return Shadow; 996 } 997 998 template <class AggregateType> 999 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 1000 IRBuilder<> &IRB) { 1001 if (!AT->getNumElements()) 1002 return DFS.ZeroPrimitiveShadow; 1003 1004 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1005 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 1006 1007 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 1008 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1009 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 1010 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1011 } 1012 return Aggregator; 1013 } 1014 1015 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 1016 IRBuilder<> &IRB) { 1017 Type *ShadowTy = Shadow->getType(); 1018 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 1019 return Shadow; 1020 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 1021 return collapseAggregateShadow<>(AT, Shadow, IRB); 1022 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 1023 return collapseAggregateShadow<>(ST, Shadow, IRB); 1024 llvm_unreachable("Unexpected shadow type"); 1025 } 1026 1027 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 1028 Instruction *Pos) { 1029 Type *ShadowTy = Shadow->getType(); 1030 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 1031 return Shadow; 1032 1033 // Checks if the cached collapsed shadow value dominates Pos. 1034 Value *&CS = CachedCollapsedShadows[Shadow]; 1035 if (CS && DT.dominates(CS, Pos)) 1036 return CS; 1037 1038 IRBuilder<> IRB(Pos); 1039 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 1040 // Caches the converted primitive shadow value. 1041 CS = PrimitiveShadow; 1042 return PrimitiveShadow; 1043 } 1044 1045 void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I, 1046 Value *Condition) { 1047 if (!ClConditionalCallbacks) { 1048 return; 1049 } 1050 IRBuilder<> IRB(&I); 1051 Value *CondShadow = getShadow(Condition); 1052 CallInst *CI; 1053 if (DFS.shouldTrackOrigins()) { 1054 Value *CondOrigin = getOrigin(Condition); 1055 CI = IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn, 1056 {CondShadow, CondOrigin}); 1057 } else { 1058 CI = IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow}); 1059 } 1060 CI->addParamAttr(0, Attribute::ZExt); 1061 } 1062 1063 void DFSanFunction::addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, 1064 Instruction &I, 1065 Value *Data) { 1066 if (!ClReachesFunctionCallbacks) { 1067 return; 1068 } 1069 const DebugLoc &dbgloc = I.getDebugLoc(); 1070 Value *DataShadow = collapseToPrimitiveShadow(getShadow(Data), IRB); 1071 ConstantInt *CILine; 1072 llvm::Value *FilePathPtr; 1073 1074 if (dbgloc.get() == nullptr) { 1075 CILine = llvm::ConstantInt::get(I.getContext(), llvm::APInt(32, 0)); 1076 FilePathPtr = IRB.CreateGlobalStringPtr( 1077 I.getFunction()->getParent()->getSourceFileName()); 1078 } else { 1079 CILine = llvm::ConstantInt::get(I.getContext(), 1080 llvm::APInt(32, dbgloc.getLine())); 1081 FilePathPtr = 1082 IRB.CreateGlobalStringPtr(dbgloc->getFilename()); 1083 } 1084 1085 llvm::Value *FunctionNamePtr = 1086 IRB.CreateGlobalStringPtr(I.getFunction()->getName()); 1087 1088 CallInst *CB; 1089 std::vector<Value *> args; 1090 1091 if (DFS.shouldTrackOrigins()) { 1092 Value *DataOrigin = getOrigin(Data); 1093 args = { DataShadow, DataOrigin, FilePathPtr, CILine, FunctionNamePtr }; 1094 CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackOriginFn, args); 1095 } else { 1096 args = { DataShadow, FilePathPtr, CILine, FunctionNamePtr }; 1097 CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackFn, args); 1098 } 1099 CB->addParamAttr(0, Attribute::ZExt); 1100 CB->setDebugLoc(dbgloc); 1101 } 1102 1103 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 1104 if (!OrigTy->isSized()) 1105 return PrimitiveShadowTy; 1106 if (isa<IntegerType>(OrigTy)) 1107 return PrimitiveShadowTy; 1108 if (isa<VectorType>(OrigTy)) 1109 return PrimitiveShadowTy; 1110 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 1111 return ArrayType::get(getShadowTy(AT->getElementType()), 1112 AT->getNumElements()); 1113 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1114 SmallVector<Type *, 4> Elements; 1115 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 1116 Elements.push_back(getShadowTy(ST->getElementType(I))); 1117 return StructType::get(*Ctx, Elements); 1118 } 1119 return PrimitiveShadowTy; 1120 } 1121 1122 Type *DataFlowSanitizer::getShadowTy(Value *V) { 1123 return getShadowTy(V->getType()); 1124 } 1125 1126 bool DataFlowSanitizer::initializeModule(Module &M) { 1127 Triple TargetTriple(M.getTargetTriple()); 1128 const DataLayout &DL = M.getDataLayout(); 1129 1130 if (TargetTriple.getOS() != Triple::Linux) 1131 report_fatal_error("unsupported operating system"); 1132 switch (TargetTriple.getArch()) { 1133 case Triple::aarch64: 1134 MapParams = &Linux_AArch64_MemoryMapParams; 1135 break; 1136 case Triple::x86_64: 1137 MapParams = &Linux_X86_64_MemoryMapParams; 1138 break; 1139 case Triple::loongarch64: 1140 MapParams = &Linux_LoongArch64_MemoryMapParams; 1141 break; 1142 default: 1143 report_fatal_error("unsupported architecture"); 1144 } 1145 1146 Mod = &M; 1147 Ctx = &M.getContext(); 1148 Int8Ptr = Type::getInt8PtrTy(*Ctx); 1149 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1150 OriginPtrTy = PointerType::getUnqual(OriginTy); 1151 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1152 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1153 IntptrTy = DL.getIntPtrType(*Ctx); 1154 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1155 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1156 1157 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1158 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1159 /*isVarArg=*/false); 1160 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1161 DFSanLoadLabelAndOriginFnTy = 1162 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1163 /*isVarArg=*/false); 1164 DFSanUnimplementedFnTy = FunctionType::get( 1165 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1166 Type *DFSanWrapperExternWeakNullArgs[2] = {Int8Ptr, Int8Ptr}; 1167 DFSanWrapperExternWeakNullFnTy = 1168 FunctionType::get(Type::getVoidTy(*Ctx), DFSanWrapperExternWeakNullArgs, 1169 /*isVarArg=*/false); 1170 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1171 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1172 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1173 DFSanSetLabelArgs, /*isVarArg=*/false); 1174 DFSanNonzeroLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), std::nullopt, 1175 /*isVarArg=*/false); 1176 DFSanVarargWrapperFnTy = FunctionType::get( 1177 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1178 DFSanConditionalCallbackFnTy = 1179 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1180 /*isVarArg=*/false); 1181 Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy}; 1182 DFSanConditionalCallbackOriginFnTy = FunctionType::get( 1183 Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs, 1184 /*isVarArg=*/false); 1185 Type *DFSanReachesFunctionCallbackArgs[4] = {PrimitiveShadowTy, Int8Ptr, 1186 OriginTy, Int8Ptr}; 1187 DFSanReachesFunctionCallbackFnTy = 1188 FunctionType::get(Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackArgs, 1189 /*isVarArg=*/false); 1190 Type *DFSanReachesFunctionCallbackOriginArgs[5] = { 1191 PrimitiveShadowTy, OriginTy, Int8Ptr, OriginTy, Int8Ptr}; 1192 DFSanReachesFunctionCallbackOriginFnTy = FunctionType::get( 1193 Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackOriginArgs, 1194 /*isVarArg=*/false); 1195 DFSanCmpCallbackFnTy = 1196 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1197 /*isVarArg=*/false); 1198 DFSanChainOriginFnTy = 1199 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1200 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1201 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1202 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1203 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1204 Int8Ptr, IntptrTy, OriginTy}; 1205 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1206 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1207 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1208 DFSanMemOriginTransferFnTy = FunctionType::get( 1209 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1210 Type *DFSanMemShadowOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1211 DFSanMemShadowOriginTransferFnTy = 1212 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemShadowOriginTransferArgs, 1213 /*isVarArg=*/false); 1214 Type *DFSanMemShadowOriginConditionalExchangeArgs[5] = { 1215 IntegerType::get(*Ctx, 8), Int8Ptr, Int8Ptr, Int8Ptr, IntptrTy}; 1216 DFSanMemShadowOriginConditionalExchangeFnTy = FunctionType::get( 1217 Type::getVoidTy(*Ctx), DFSanMemShadowOriginConditionalExchangeArgs, 1218 /*isVarArg=*/false); 1219 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1220 DFSanLoadStoreCallbackFnTy = 1221 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1222 /*isVarArg=*/false); 1223 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1224 DFSanMemTransferCallbackFnTy = 1225 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1226 /*isVarArg=*/false); 1227 1228 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1229 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1230 return true; 1231 } 1232 1233 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1234 return !ABIList.isIn(*F, "uninstrumented"); 1235 } 1236 1237 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1238 return !ABIList.isIn(*GA, "uninstrumented"); 1239 } 1240 1241 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { 1242 return ABIList.isIn(*F, "force_zero_labels"); 1243 } 1244 1245 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1246 if (ABIList.isIn(*F, "functional")) 1247 return WK_Functional; 1248 if (ABIList.isIn(*F, "discard")) 1249 return WK_Discard; 1250 if (ABIList.isIn(*F, "custom")) 1251 return WK_Custom; 1252 1253 return WK_Warning; 1254 } 1255 1256 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { 1257 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan"; 1258 GV->setName(GVName + Suffix); 1259 1260 // Try to change the name of the function in module inline asm. We only do 1261 // this for specific asm directives, currently only ".symver", to try to avoid 1262 // corrupting asm which happens to contain the symbol name as a substring. 1263 // Note that the substitution for .symver assumes that the versioned symbol 1264 // also has an instrumented name. 1265 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1266 std::string SearchStr = ".symver " + GVName + ","; 1267 size_t Pos = Asm.find(SearchStr); 1268 if (Pos != std::string::npos) { 1269 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ","); 1270 Pos = Asm.find('@'); 1271 1272 if (Pos == std::string::npos) 1273 report_fatal_error(Twine("unsupported .symver: ", Asm)); 1274 1275 Asm.replace(Pos, 1, Suffix + "@"); 1276 GV->getParent()->setModuleInlineAsm(Asm); 1277 } 1278 } 1279 1280 void DataFlowSanitizer::buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, 1281 Function *F) { 1282 // If the function we are wrapping was ExternWeak, it may be null. 1283 // The original code before calling this wrapper may have checked for null, 1284 // but replacing with a known-to-not-be-null wrapper can break this check. 1285 // When replacing uses of the extern weak function with the wrapper we try 1286 // to avoid replacing uses in conditionals, but this is not perfect. 1287 // In the case where we fail, and accidentally optimize out a null check 1288 // for a extern weak function, add a check here to help identify the issue. 1289 if (GlobalValue::isExternalWeakLinkage(F->getLinkage())) { 1290 std::vector<Value *> Args; 1291 Args.push_back(IRB.CreatePointerCast(F, IRB.getInt8PtrTy())); 1292 Args.push_back(IRB.CreateGlobalStringPtr(F->getName())); 1293 IRB.CreateCall(DFSanWrapperExternWeakNullFn, Args); 1294 } 1295 } 1296 1297 Function * 1298 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1299 GlobalValue::LinkageTypes NewFLink, 1300 FunctionType *NewFT) { 1301 FunctionType *FT = F->getFunctionType(); 1302 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1303 NewFName, F->getParent()); 1304 NewF->copyAttributesFrom(F); 1305 NewF->removeRetAttrs( 1306 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1307 1308 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1309 if (F->isVarArg()) { 1310 NewF->removeFnAttr("split-stack"); 1311 CallInst::Create(DFSanVarargWrapperFn, 1312 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1313 BB); 1314 new UnreachableInst(*Ctx, BB); 1315 } else { 1316 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1317 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1318 1319 CallInst *CI = CallInst::Create(F, Args, "", BB); 1320 if (FT->getReturnType()->isVoidTy()) 1321 ReturnInst::Create(*Ctx, BB); 1322 else 1323 ReturnInst::Create(*Ctx, CI, BB); 1324 } 1325 1326 return NewF; 1327 } 1328 1329 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1330 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1331 LLVMContext &C = M.getContext(); 1332 { 1333 AttributeList AL; 1334 AL = AL.addFnAttribute(C, Attribute::NoUnwind); 1335 AL = AL.addFnAttribute( 1336 C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly())); 1337 AL = AL.addRetAttribute(C, Attribute::ZExt); 1338 DFSanUnionLoadFn = 1339 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1340 } 1341 { 1342 AttributeList AL; 1343 AL = AL.addFnAttribute(C, Attribute::NoUnwind); 1344 AL = AL.addFnAttribute( 1345 C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly())); 1346 AL = AL.addRetAttribute(C, Attribute::ZExt); 1347 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1348 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1349 } 1350 DFSanUnimplementedFn = 1351 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1352 DFSanWrapperExternWeakNullFn = Mod->getOrInsertFunction( 1353 "__dfsan_wrapper_extern_weak_null", DFSanWrapperExternWeakNullFnTy); 1354 { 1355 AttributeList AL; 1356 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1357 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1358 DFSanSetLabelFn = 1359 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1360 } 1361 DFSanNonzeroLabelFn = 1362 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1363 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1364 DFSanVarargWrapperFnTy); 1365 { 1366 AttributeList AL; 1367 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1368 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1369 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1370 DFSanChainOriginFnTy, AL); 1371 } 1372 { 1373 AttributeList AL; 1374 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1375 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1376 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1377 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1378 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1379 } 1380 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1381 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1382 1383 DFSanMemShadowOriginTransferFn = Mod->getOrInsertFunction( 1384 "__dfsan_mem_shadow_origin_transfer", DFSanMemShadowOriginTransferFnTy); 1385 1386 DFSanMemShadowOriginConditionalExchangeFn = 1387 Mod->getOrInsertFunction("__dfsan_mem_shadow_origin_conditional_exchange", 1388 DFSanMemShadowOriginConditionalExchangeFnTy); 1389 1390 { 1391 AttributeList AL; 1392 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1393 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1394 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1395 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1396 } 1397 1398 DFSanRuntimeFunctions.insert( 1399 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1400 DFSanRuntimeFunctions.insert( 1401 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1402 DFSanRuntimeFunctions.insert( 1403 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1404 DFSanRuntimeFunctions.insert( 1405 DFSanWrapperExternWeakNullFn.getCallee()->stripPointerCasts()); 1406 DFSanRuntimeFunctions.insert( 1407 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1408 DFSanRuntimeFunctions.insert( 1409 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1410 DFSanRuntimeFunctions.insert( 1411 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1412 DFSanRuntimeFunctions.insert( 1413 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1414 DFSanRuntimeFunctions.insert( 1415 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1416 DFSanRuntimeFunctions.insert( 1417 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1418 DFSanRuntimeFunctions.insert( 1419 DFSanConditionalCallbackFn.getCallee()->stripPointerCasts()); 1420 DFSanRuntimeFunctions.insert( 1421 DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts()); 1422 DFSanRuntimeFunctions.insert( 1423 DFSanReachesFunctionCallbackFn.getCallee()->stripPointerCasts()); 1424 DFSanRuntimeFunctions.insert( 1425 DFSanReachesFunctionCallbackOriginFn.getCallee()->stripPointerCasts()); 1426 DFSanRuntimeFunctions.insert( 1427 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1428 DFSanRuntimeFunctions.insert( 1429 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1430 DFSanRuntimeFunctions.insert( 1431 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1432 DFSanRuntimeFunctions.insert( 1433 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1434 DFSanRuntimeFunctions.insert( 1435 DFSanMemShadowOriginTransferFn.getCallee()->stripPointerCasts()); 1436 DFSanRuntimeFunctions.insert( 1437 DFSanMemShadowOriginConditionalExchangeFn.getCallee() 1438 ->stripPointerCasts()); 1439 DFSanRuntimeFunctions.insert( 1440 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1441 } 1442 1443 // Initializes event callback functions and declare them in the module 1444 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1445 { 1446 AttributeList AL; 1447 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1448 DFSanLoadCallbackFn = Mod->getOrInsertFunction( 1449 "__dfsan_load_callback", DFSanLoadStoreCallbackFnTy, AL); 1450 } 1451 { 1452 AttributeList AL; 1453 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1454 DFSanStoreCallbackFn = Mod->getOrInsertFunction( 1455 "__dfsan_store_callback", DFSanLoadStoreCallbackFnTy, AL); 1456 } 1457 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1458 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1459 { 1460 AttributeList AL; 1461 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1462 DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback", 1463 DFSanCmpCallbackFnTy, AL); 1464 } 1465 { 1466 AttributeList AL; 1467 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1468 DFSanConditionalCallbackFn = Mod->getOrInsertFunction( 1469 "__dfsan_conditional_callback", DFSanConditionalCallbackFnTy, AL); 1470 } 1471 { 1472 AttributeList AL; 1473 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1474 DFSanConditionalCallbackOriginFn = 1475 Mod->getOrInsertFunction("__dfsan_conditional_callback_origin", 1476 DFSanConditionalCallbackOriginFnTy, AL); 1477 } 1478 { 1479 AttributeList AL; 1480 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1481 DFSanReachesFunctionCallbackFn = 1482 Mod->getOrInsertFunction("__dfsan_reaches_function_callback", 1483 DFSanReachesFunctionCallbackFnTy, AL); 1484 } 1485 { 1486 AttributeList AL; 1487 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1488 DFSanReachesFunctionCallbackOriginFn = 1489 Mod->getOrInsertFunction("__dfsan_reaches_function_callback_origin", 1490 DFSanReachesFunctionCallbackOriginFnTy, AL); 1491 } 1492 } 1493 1494 bool DataFlowSanitizer::runImpl( 1495 Module &M, llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1496 initializeModule(M); 1497 1498 if (ABIList.isIn(M, "skip")) 1499 return false; 1500 1501 const unsigned InitialGlobalSize = M.global_size(); 1502 const unsigned InitialModuleSize = M.size(); 1503 1504 bool Changed = false; 1505 1506 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1507 Type *Ty) -> Constant * { 1508 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1509 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1510 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1511 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1512 } 1513 return C; 1514 }; 1515 1516 // These globals must be kept in sync with the ones in dfsan.cpp. 1517 ArgTLS = 1518 GetOrInsertGlobal("__dfsan_arg_tls", 1519 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1520 RetvalTLS = GetOrInsertGlobal( 1521 "__dfsan_retval_tls", 1522 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1523 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1524 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1525 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1526 1527 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1528 Changed = true; 1529 return new GlobalVariable( 1530 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1531 ConstantInt::getSigned(OriginTy, 1532 shouldTrackOrigins() ? ClTrackOrigins : 0), 1533 "__dfsan_track_origins"); 1534 }); 1535 1536 initializeCallbackFunctions(M); 1537 initializeRuntimeFunctions(M); 1538 1539 std::vector<Function *> FnsToInstrument; 1540 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1541 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; 1542 SmallPtrSet<Constant *, 1> PersonalityFns; 1543 for (Function &F : M) 1544 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F) && 1545 !LibAtomicFunction(F)) { 1546 FnsToInstrument.push_back(&F); 1547 if (F.hasPersonalityFn()) 1548 PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts()); 1549 } 1550 1551 if (ClIgnorePersonalityRoutine) { 1552 for (auto *C : PersonalityFns) { 1553 assert(isa<Function>(C) && "Personality routine is not a function!"); 1554 Function *F = cast<Function>(C); 1555 if (!isInstrumented(F)) 1556 llvm::erase_value(FnsToInstrument, F); 1557 } 1558 } 1559 1560 // Give function aliases prefixes when necessary, and build wrappers where the 1561 // instrumentedness is inconsistent. 1562 for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) { 1563 // Don't stop on weak. We assume people aren't playing games with the 1564 // instrumentedness of overridden weak aliases. 1565 auto *F = dyn_cast<Function>(GA.getAliaseeObject()); 1566 if (!F) 1567 continue; 1568 1569 bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F); 1570 if (GAInst && FInst) { 1571 addGlobalNameSuffix(&GA); 1572 } else if (GAInst != FInst) { 1573 // Non-instrumented alias of an instrumented function, or vice versa. 1574 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1575 // below will take care of instrumenting it. 1576 Function *NewF = 1577 buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType()); 1578 GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA.getType())); 1579 NewF->takeName(&GA); 1580 GA.eraseFromParent(); 1581 FnsToInstrument.push_back(NewF); 1582 } 1583 } 1584 1585 // TODO: This could be more precise. 1586 ReadOnlyNoneAttrs.addAttribute(Attribute::Memory); 1587 1588 // First, change the ABI of every function in the module. ABI-listed 1589 // functions keep their original ABI and get a wrapper function. 1590 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1591 FE = FnsToInstrument.end(); 1592 FI != FE; ++FI) { 1593 Function &F = **FI; 1594 FunctionType *FT = F.getFunctionType(); 1595 1596 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1597 FT->getReturnType()->isVoidTy()); 1598 1599 if (isInstrumented(&F)) { 1600 if (isForceZeroLabels(&F)) 1601 FnsWithForceZeroLabel.insert(&F); 1602 1603 // Instrumented functions get a '.dfsan' suffix. This allows us to more 1604 // easily identify cases of mismatching ABIs. This naming scheme is 1605 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. 1606 addGlobalNameSuffix(&F); 1607 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1608 // Build a wrapper function for F. The wrapper simply calls F, and is 1609 // added to FnsToInstrument so that any instrumentation according to its 1610 // WrapperKind is done in the second pass below. 1611 1612 // If the function being wrapped has local linkage, then preserve the 1613 // function's linkage in the wrapper function. 1614 GlobalValue::LinkageTypes WrapperLinkage = 1615 F.hasLocalLinkage() ? F.getLinkage() 1616 : GlobalValue::LinkOnceODRLinkage; 1617 1618 Function *NewF = buildWrapperFunction( 1619 &F, 1620 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1621 std::string(F.getName()), 1622 WrapperLinkage, FT); 1623 NewF->removeFnAttrs(ReadOnlyNoneAttrs); 1624 1625 Value *WrappedFnCst = 1626 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1627 1628 // Extern weak functions can sometimes be null at execution time. 1629 // Code will sometimes check if an extern weak function is null. 1630 // This could look something like: 1631 // declare extern_weak i8 @my_func(i8) 1632 // br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func, 1633 // label %avoid_my_func 1634 // The @"dfsw$my_func" wrapper is never null, so if we replace this use 1635 // in the comparison, the icmp will simplify to false and we have 1636 // accidentally optimized away a null check that is necessary. 1637 // This can lead to a crash when the null extern_weak my_func is called. 1638 // 1639 // To prevent (the most common pattern of) this problem, 1640 // do not replace uses in comparisons with the wrapper. 1641 // We definitely want to replace uses in call instructions. 1642 // Other uses (e.g. store the function address somewhere) might be 1643 // called or compared or both - this case may not be handled correctly. 1644 // We will default to replacing with wrapper in cases we are unsure. 1645 auto IsNotCmpUse = [](Use &U) -> bool { 1646 User *Usr = U.getUser(); 1647 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) { 1648 // This is the most common case for icmp ne null 1649 if (CE->getOpcode() == Instruction::ICmp) { 1650 return false; 1651 } 1652 } 1653 if (Instruction *I = dyn_cast<Instruction>(Usr)) { 1654 if (I->getOpcode() == Instruction::ICmp) { 1655 return false; 1656 } 1657 } 1658 return true; 1659 }; 1660 F.replaceUsesWithIf(WrappedFnCst, IsNotCmpUse); 1661 1662 UnwrappedFnMap[WrappedFnCst] = &F; 1663 *FI = NewF; 1664 1665 if (!F.isDeclaration()) { 1666 // This function is probably defining an interposition of an 1667 // uninstrumented function and hence needs to keep the original ABI. 1668 // But any functions it may call need to use the instrumented ABI, so 1669 // we instrument it in a mode which preserves the original ABI. 1670 FnsWithNativeABI.insert(&F); 1671 1672 // This code needs to rebuild the iterators, as they may be invalidated 1673 // by the push_back, taking care that the new range does not include 1674 // any functions added by this code. 1675 size_t N = FI - FnsToInstrument.begin(), 1676 Count = FE - FnsToInstrument.begin(); 1677 FnsToInstrument.push_back(&F); 1678 FI = FnsToInstrument.begin() + N; 1679 FE = FnsToInstrument.begin() + Count; 1680 } 1681 // Hopefully, nobody will try to indirectly call a vararg 1682 // function... yet. 1683 } else if (FT->isVarArg()) { 1684 UnwrappedFnMap[&F] = &F; 1685 *FI = nullptr; 1686 } 1687 } 1688 1689 for (Function *F : FnsToInstrument) { 1690 if (!F || F->isDeclaration()) 1691 continue; 1692 1693 removeUnreachableBlocks(*F); 1694 1695 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F), 1696 FnsWithForceZeroLabel.count(F), GetTLI(*F)); 1697 1698 if (ClReachesFunctionCallbacks) { 1699 // Add callback for arguments reaching this function. 1700 for (auto &FArg : F->args()) { 1701 Instruction *Next = &F->getEntryBlock().front(); 1702 Value *FArgShadow = DFSF.getShadow(&FArg); 1703 if (isZeroShadow(FArgShadow)) 1704 continue; 1705 if (Instruction *FArgShadowInst = dyn_cast<Instruction>(FArgShadow)) { 1706 Next = FArgShadowInst->getNextNode(); 1707 } 1708 if (shouldTrackOrigins()) { 1709 if (Instruction *Origin = 1710 dyn_cast<Instruction>(DFSF.getOrigin(&FArg))) { 1711 // Ensure IRB insertion point is after loads for shadow and origin. 1712 Instruction *OriginNext = Origin->getNextNode(); 1713 if (Next->comesBefore(OriginNext)) { 1714 Next = OriginNext; 1715 } 1716 } 1717 } 1718 IRBuilder<> IRB(Next); 1719 DFSF.addReachesFunctionCallbacksIfEnabled(IRB, *Next, &FArg); 1720 } 1721 } 1722 1723 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1724 // Build a copy of the list before iterating over it. 1725 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1726 1727 for (BasicBlock *BB : BBList) { 1728 Instruction *Inst = &BB->front(); 1729 while (true) { 1730 // DFSanVisitor may split the current basic block, changing the current 1731 // instruction's next pointer and moving the next instruction to the 1732 // tail block from which we should continue. 1733 Instruction *Next = Inst->getNextNode(); 1734 // DFSanVisitor may delete Inst, so keep track of whether it was a 1735 // terminator. 1736 bool IsTerminator = Inst->isTerminator(); 1737 if (!DFSF.SkipInsts.count(Inst)) 1738 DFSanVisitor(DFSF).visit(Inst); 1739 if (IsTerminator) 1740 break; 1741 Inst = Next; 1742 } 1743 } 1744 1745 // We will not necessarily be able to compute the shadow for every phi node 1746 // until we have visited every block. Therefore, the code that handles phi 1747 // nodes adds them to the PHIFixups list so that they can be properly 1748 // handled here. 1749 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1750 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1751 ++Val) { 1752 P.ShadowPhi->setIncomingValue( 1753 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1754 if (P.OriginPhi) 1755 P.OriginPhi->setIncomingValue( 1756 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1757 } 1758 } 1759 1760 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1761 // places (i.e. instructions in basic blocks we haven't even begun visiting 1762 // yet). To make our life easier, do this work in a pass after the main 1763 // instrumentation. 1764 if (ClDebugNonzeroLabels) { 1765 for (Value *V : DFSF.NonZeroChecks) { 1766 Instruction *Pos; 1767 if (Instruction *I = dyn_cast<Instruction>(V)) 1768 Pos = I->getNextNode(); 1769 else 1770 Pos = &DFSF.F->getEntryBlock().front(); 1771 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1772 Pos = Pos->getNextNode(); 1773 IRBuilder<> IRB(Pos); 1774 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1775 Value *Ne = 1776 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1777 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1778 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1779 IRBuilder<> ThenIRB(BI); 1780 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1781 } 1782 } 1783 } 1784 1785 return Changed || !FnsToInstrument.empty() || 1786 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1787 } 1788 1789 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1790 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1791 if (ArgOffset) 1792 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1793 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1794 "_dfsarg"); 1795 } 1796 1797 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1798 return IRB.CreatePointerCast( 1799 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1800 } 1801 1802 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1803 1804 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1805 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1806 "_dfsarg_o"); 1807 } 1808 1809 Value *DFSanFunction::getOrigin(Value *V) { 1810 assert(DFS.shouldTrackOrigins()); 1811 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1812 return DFS.ZeroOrigin; 1813 Value *&Origin = ValOriginMap[V]; 1814 if (!Origin) { 1815 if (Argument *A = dyn_cast<Argument>(V)) { 1816 if (IsNativeABI) 1817 return DFS.ZeroOrigin; 1818 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1819 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1820 IRBuilder<> IRB(ArgOriginTLSPos); 1821 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1822 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1823 } else { 1824 // Overflow 1825 Origin = DFS.ZeroOrigin; 1826 } 1827 } else { 1828 Origin = DFS.ZeroOrigin; 1829 } 1830 } 1831 return Origin; 1832 } 1833 1834 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1835 if (!DFS.shouldTrackOrigins()) 1836 return; 1837 assert(!ValOriginMap.count(I)); 1838 assert(Origin->getType() == DFS.OriginTy); 1839 ValOriginMap[I] = Origin; 1840 } 1841 1842 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1843 unsigned ArgOffset = 0; 1844 const DataLayout &DL = F->getParent()->getDataLayout(); 1845 for (auto &FArg : F->args()) { 1846 if (!FArg.getType()->isSized()) { 1847 if (A == &FArg) 1848 break; 1849 continue; 1850 } 1851 1852 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1853 if (A != &FArg) { 1854 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1855 if (ArgOffset > ArgTLSSize) 1856 break; // ArgTLS overflows, uses a zero shadow. 1857 continue; 1858 } 1859 1860 if (ArgOffset + Size > ArgTLSSize) 1861 break; // ArgTLS overflows, uses a zero shadow. 1862 1863 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1864 IRBuilder<> IRB(ArgTLSPos); 1865 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1866 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1867 ShadowTLSAlignment); 1868 } 1869 1870 return DFS.getZeroShadow(A); 1871 } 1872 1873 Value *DFSanFunction::getShadow(Value *V) { 1874 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1875 return DFS.getZeroShadow(V); 1876 if (IsForceZeroLabels) 1877 return DFS.getZeroShadow(V); 1878 Value *&Shadow = ValShadowMap[V]; 1879 if (!Shadow) { 1880 if (Argument *A = dyn_cast<Argument>(V)) { 1881 if (IsNativeABI) 1882 return DFS.getZeroShadow(V); 1883 Shadow = getShadowForTLSArgument(A); 1884 NonZeroChecks.push_back(Shadow); 1885 } else { 1886 Shadow = DFS.getZeroShadow(V); 1887 } 1888 } 1889 return Shadow; 1890 } 1891 1892 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1893 assert(!ValShadowMap.count(I)); 1894 ValShadowMap[I] = Shadow; 1895 } 1896 1897 /// Compute the integer shadow offset that corresponds to a given 1898 /// application address. 1899 /// 1900 /// Offset = (Addr & ~AndMask) ^ XorMask 1901 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1902 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1903 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1904 1905 uint64_t AndMask = MapParams->AndMask; 1906 if (AndMask) 1907 OffsetLong = 1908 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask)); 1909 1910 uint64_t XorMask = MapParams->XorMask; 1911 if (XorMask) 1912 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask)); 1913 return OffsetLong; 1914 } 1915 1916 std::pair<Value *, Value *> 1917 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1918 Instruction *Pos) { 1919 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL 1920 IRBuilder<> IRB(Pos); 1921 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1922 Value *ShadowLong = ShadowOffset; 1923 uint64_t ShadowBase = MapParams->ShadowBase; 1924 if (ShadowBase != 0) { 1925 ShadowLong = 1926 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase)); 1927 } 1928 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1929 Value *ShadowPtr = 1930 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1931 Value *OriginPtr = nullptr; 1932 if (shouldTrackOrigins()) { 1933 Value *OriginLong = ShadowOffset; 1934 uint64_t OriginBase = MapParams->OriginBase; 1935 if (OriginBase != 0) 1936 OriginLong = 1937 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase)); 1938 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1939 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1940 // So Mask is unnecessary. 1941 if (Alignment < MinOriginAlignment) { 1942 uint64_t Mask = MinOriginAlignment.value() - 1; 1943 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1944 } 1945 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1946 } 1947 return std::make_pair(ShadowPtr, OriginPtr); 1948 } 1949 1950 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, 1951 Value *ShadowOffset) { 1952 IRBuilder<> IRB(Pos); 1953 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1954 } 1955 1956 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1957 IRBuilder<> IRB(Pos); 1958 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1959 return getShadowAddress(Addr, Pos, ShadowOffset); 1960 } 1961 1962 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1963 Instruction *Pos) { 1964 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1965 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1966 } 1967 1968 // Generates IR to compute the union of the two given shadows, inserting it 1969 // before Pos. The combined value is with primitive type. 1970 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1971 if (DFS.isZeroShadow(V1)) 1972 return collapseToPrimitiveShadow(V2, Pos); 1973 if (DFS.isZeroShadow(V2)) 1974 return collapseToPrimitiveShadow(V1, Pos); 1975 if (V1 == V2) 1976 return collapseToPrimitiveShadow(V1, Pos); 1977 1978 auto V1Elems = ShadowElements.find(V1); 1979 auto V2Elems = ShadowElements.find(V2); 1980 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1981 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1982 V2Elems->second.begin(), V2Elems->second.end())) { 1983 return collapseToPrimitiveShadow(V1, Pos); 1984 } 1985 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1986 V1Elems->second.begin(), V1Elems->second.end())) { 1987 return collapseToPrimitiveShadow(V2, Pos); 1988 } 1989 } else if (V1Elems != ShadowElements.end()) { 1990 if (V1Elems->second.count(V2)) 1991 return collapseToPrimitiveShadow(V1, Pos); 1992 } else if (V2Elems != ShadowElements.end()) { 1993 if (V2Elems->second.count(V1)) 1994 return collapseToPrimitiveShadow(V2, Pos); 1995 } 1996 1997 auto Key = std::make_pair(V1, V2); 1998 if (V1 > V2) 1999 std::swap(Key.first, Key.second); 2000 CachedShadow &CCS = CachedShadows[Key]; 2001 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 2002 return CCS.Shadow; 2003 2004 // Converts inputs shadows to shadows with primitive types. 2005 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 2006 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 2007 2008 IRBuilder<> IRB(Pos); 2009 CCS.Block = Pos->getParent(); 2010 CCS.Shadow = IRB.CreateOr(PV1, PV2); 2011 2012 std::set<Value *> UnionElems; 2013 if (V1Elems != ShadowElements.end()) { 2014 UnionElems = V1Elems->second; 2015 } else { 2016 UnionElems.insert(V1); 2017 } 2018 if (V2Elems != ShadowElements.end()) { 2019 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 2020 } else { 2021 UnionElems.insert(V2); 2022 } 2023 ShadowElements[CCS.Shadow] = std::move(UnionElems); 2024 2025 return CCS.Shadow; 2026 } 2027 2028 // A convenience function which folds the shadows of each of the operands 2029 // of the provided instruction Inst, inserting the IR before Inst. Returns 2030 // the computed union Value. 2031 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 2032 if (Inst->getNumOperands() == 0) 2033 return DFS.getZeroShadow(Inst); 2034 2035 Value *Shadow = getShadow(Inst->getOperand(0)); 2036 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 2037 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 2038 2039 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 2040 } 2041 2042 void DFSanVisitor::visitInstOperands(Instruction &I) { 2043 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 2044 DFSF.setShadow(&I, CombinedShadow); 2045 visitInstOperandOrigins(I); 2046 } 2047 2048 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 2049 const std::vector<Value *> &Origins, 2050 Instruction *Pos, ConstantInt *Zero) { 2051 assert(Shadows.size() == Origins.size()); 2052 size_t Size = Origins.size(); 2053 if (Size == 0) 2054 return DFS.ZeroOrigin; 2055 Value *Origin = nullptr; 2056 if (!Zero) 2057 Zero = DFS.ZeroPrimitiveShadow; 2058 for (size_t I = 0; I != Size; ++I) { 2059 Value *OpOrigin = Origins[I]; 2060 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 2061 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 2062 continue; 2063 if (!Origin) { 2064 Origin = OpOrigin; 2065 continue; 2066 } 2067 Value *OpShadow = Shadows[I]; 2068 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 2069 IRBuilder<> IRB(Pos); 2070 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 2071 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2072 } 2073 return Origin ? Origin : DFS.ZeroOrigin; 2074 } 2075 2076 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 2077 size_t Size = Inst->getNumOperands(); 2078 std::vector<Value *> Shadows(Size); 2079 std::vector<Value *> Origins(Size); 2080 for (unsigned I = 0; I != Size; ++I) { 2081 Shadows[I] = getShadow(Inst->getOperand(I)); 2082 Origins[I] = getOrigin(Inst->getOperand(I)); 2083 } 2084 return combineOrigins(Shadows, Origins, Inst); 2085 } 2086 2087 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 2088 if (!DFSF.DFS.shouldTrackOrigins()) 2089 return; 2090 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 2091 DFSF.setOrigin(&I, CombinedOrigin); 2092 } 2093 2094 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 2095 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 2096 return Align(Alignment.value() * DFS.ShadowWidthBytes); 2097 } 2098 2099 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 2100 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 2101 return Align(std::max(MinOriginAlignment, Alignment)); 2102 } 2103 2104 bool DFSanFunction::isLookupTableConstant(Value *P) { 2105 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts())) 2106 if (GV->isConstant() && GV->hasName()) 2107 return DFS.CombineTaintLookupTableNames.count(GV->getName()); 2108 2109 return false; 2110 } 2111 2112 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 2113 Align InstAlignment) { 2114 // When enabling tracking load instructions, we always use 2115 // __dfsan_load_label_and_origin to reduce code size. 2116 if (ClTrackOrigins == 2) 2117 return true; 2118 2119 assert(Size != 0); 2120 // * if Size == 1, it is sufficient to load its origin aligned at 4. 2121 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 2122 // load its origin aligned at 4. If not, although origins may be lost, it 2123 // should not happen very often. 2124 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 2125 // Size % 4 == 0, it is more efficient to load origins without callbacks. 2126 // * Otherwise we use __dfsan_load_label_and_origin. 2127 // This should ensure that common cases run efficiently. 2128 if (Size <= 2) 2129 return false; 2130 2131 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 2132 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 2133 } 2134 2135 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign, 2136 Value **OriginAddr) { 2137 IRBuilder<> IRB(Pos); 2138 *OriginAddr = 2139 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 2140 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 2141 } 2142 2143 std::pair<Value *, Value *> DFSanFunction::loadShadowFast( 2144 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 2145 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 2146 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2147 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 2148 2149 assert(Size >= 4 && "Not large enough load size for fast path!"); 2150 2151 // Used for origin tracking. 2152 std::vector<Value *> Shadows; 2153 std::vector<Value *> Origins; 2154 2155 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 2156 // but this function is only used in a subset of cases that make it possible 2157 // to optimize the instrumentation. 2158 // 2159 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 2160 // per byte) is either: 2161 // - a multiple of 8 (common) 2162 // - equal to 4 (only for load32) 2163 // 2164 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 2165 // other cases, we use a 64-bit integer to hold the wide shadow. 2166 Type *WideShadowTy = 2167 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 2168 2169 IRBuilder<> IRB(Pos); 2170 Value *CombinedWideShadow = 2171 IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign); 2172 2173 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 2174 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 2175 2176 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 2177 if (BytesPerWideShadow > 4) { 2178 assert(BytesPerWideShadow == 8); 2179 // The wide shadow relates to two origin pointers: one for the first four 2180 // application bytes, and one for the latest four. We use a left shift to 2181 // get just the shadow bytes that correspond to the first origin pointer, 2182 // and then the entire shadow for the second origin pointer (which will be 2183 // chosen by combineOrigins() iff the least-significant half of the wide 2184 // shadow was empty but the other half was not). 2185 Value *WideShadowLo = IRB.CreateShl( 2186 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 2187 Shadows.push_back(WideShadow); 2188 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 2189 2190 Shadows.push_back(WideShadowLo); 2191 Origins.push_back(Origin); 2192 } else { 2193 Shadows.push_back(WideShadow); 2194 Origins.push_back(Origin); 2195 } 2196 }; 2197 2198 if (ShouldTrackOrigins) 2199 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 2200 2201 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 2202 // then OR individual shadows within the combined WideShadow by binary ORing. 2203 // This is fewer instructions than ORing shadows individually, since it 2204 // needs logN shift/or instructions (N being the bytes of the combined wide 2205 // shadow). 2206 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 2207 ByteOfs += BytesPerWideShadow) { 2208 ShadowAddr = IRB.CreateGEP(WideShadowTy, ShadowAddr, 2209 ConstantInt::get(DFS.IntptrTy, 1)); 2210 Value *NextWideShadow = 2211 IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign); 2212 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 2213 if (ShouldTrackOrigins) { 2214 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 2215 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 2216 } 2217 } 2218 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 2219 Width >>= 1) { 2220 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 2221 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 2222 } 2223 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 2224 ShouldTrackOrigins 2225 ? combineOrigins(Shadows, Origins, Pos, 2226 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 2227 : DFS.ZeroOrigin}; 2228 } 2229 2230 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 2231 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) { 2232 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2233 2234 // Non-escaped loads. 2235 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2236 const auto SI = AllocaShadowMap.find(AI); 2237 if (SI != AllocaShadowMap.end()) { 2238 IRBuilder<> IRB(Pos); 2239 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 2240 const auto OI = AllocaOriginMap.find(AI); 2241 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 2242 return {ShadowLI, ShouldTrackOrigins 2243 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 2244 : nullptr}; 2245 } 2246 } 2247 2248 // Load from constant addresses. 2249 SmallVector<const Value *, 2> Objs; 2250 getUnderlyingObjects(Addr, Objs); 2251 bool AllConstants = true; 2252 for (const Value *Obj : Objs) { 2253 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2254 continue; 2255 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2256 continue; 2257 2258 AllConstants = false; 2259 break; 2260 } 2261 if (AllConstants) 2262 return {DFS.ZeroPrimitiveShadow, 2263 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2264 2265 if (Size == 0) 2266 return {DFS.ZeroPrimitiveShadow, 2267 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2268 2269 // Use callback to load if this is not an optimizable case for origin 2270 // tracking. 2271 if (ShouldTrackOrigins && 2272 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2273 IRBuilder<> IRB(Pos); 2274 CallInst *Call = 2275 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2276 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2277 ConstantInt::get(DFS.IntptrTy, Size)}); 2278 Call->addRetAttr(Attribute::ZExt); 2279 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2280 DFS.PrimitiveShadowTy), 2281 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2282 } 2283 2284 // Other cases that support loading shadows or origins in a fast way. 2285 Value *ShadowAddr, *OriginAddr; 2286 std::tie(ShadowAddr, OriginAddr) = 2287 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2288 2289 const Align ShadowAlign = getShadowAlign(InstAlignment); 2290 const Align OriginAlign = getOriginAlign(InstAlignment); 2291 Value *Origin = nullptr; 2292 if (ShouldTrackOrigins) { 2293 IRBuilder<> IRB(Pos); 2294 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2295 } 2296 2297 // When the byte size is small enough, we can load the shadow directly with 2298 // just a few instructions. 2299 switch (Size) { 2300 case 1: { 2301 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2302 LI->setAlignment(ShadowAlign); 2303 return {LI, Origin}; 2304 } 2305 case 2: { 2306 IRBuilder<> IRB(Pos); 2307 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2308 ConstantInt::get(DFS.IntptrTy, 1)); 2309 Value *Load = 2310 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2311 Value *Load1 = 2312 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2313 return {combineShadows(Load, Load1, Pos), Origin}; 2314 } 2315 } 2316 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2317 2318 if (HasSizeForFastPath) 2319 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2320 OriginAlign, Origin, Pos); 2321 2322 IRBuilder<> IRB(Pos); 2323 CallInst *FallbackCall = IRB.CreateCall( 2324 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2325 FallbackCall->addRetAttr(Attribute::ZExt); 2326 return {FallbackCall, Origin}; 2327 } 2328 2329 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2330 uint64_t Size, 2331 Align InstAlignment, 2332 Instruction *Pos) { 2333 Value *PrimitiveShadow, *Origin; 2334 std::tie(PrimitiveShadow, Origin) = 2335 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2336 if (DFS.shouldTrackOrigins()) { 2337 if (ClTrackOrigins == 2) { 2338 IRBuilder<> IRB(Pos); 2339 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2340 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2341 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2342 } 2343 } 2344 return {PrimitiveShadow, Origin}; 2345 } 2346 2347 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2348 switch (AO) { 2349 case AtomicOrdering::NotAtomic: 2350 return AtomicOrdering::NotAtomic; 2351 case AtomicOrdering::Unordered: 2352 case AtomicOrdering::Monotonic: 2353 case AtomicOrdering::Acquire: 2354 return AtomicOrdering::Acquire; 2355 case AtomicOrdering::Release: 2356 case AtomicOrdering::AcquireRelease: 2357 return AtomicOrdering::AcquireRelease; 2358 case AtomicOrdering::SequentiallyConsistent: 2359 return AtomicOrdering::SequentiallyConsistent; 2360 } 2361 llvm_unreachable("Unknown ordering"); 2362 } 2363 2364 Value *StripPointerGEPsAndCasts(Value *V) { 2365 if (!V->getType()->isPointerTy()) 2366 return V; 2367 2368 // DFSan pass should be running on valid IR, but we'll 2369 // keep a seen set to ensure there are no issues. 2370 SmallPtrSet<const Value *, 4> Visited; 2371 Visited.insert(V); 2372 do { 2373 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 2374 V = GEP->getPointerOperand(); 2375 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2376 V = cast<Operator>(V)->getOperand(0); 2377 if (!V->getType()->isPointerTy()) 2378 return V; 2379 } else if (isa<GlobalAlias>(V)) { 2380 V = cast<GlobalAlias>(V)->getAliasee(); 2381 } 2382 } while (Visited.insert(V).second); 2383 2384 return V; 2385 } 2386 2387 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2388 auto &DL = LI.getModule()->getDataLayout(); 2389 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2390 if (Size == 0) { 2391 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2392 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2393 return; 2394 } 2395 2396 // When an application load is atomic, increase atomic ordering between 2397 // atomic application loads and stores to ensure happen-before order; load 2398 // shadow data after application data; store zero shadow data before 2399 // application data. This ensure shadow loads return either labels of the 2400 // initial application data or zeros. 2401 if (LI.isAtomic()) 2402 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2403 2404 Instruction *AfterLi = LI.getNextNode(); 2405 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2406 std::vector<Value *> Shadows; 2407 std::vector<Value *> Origins; 2408 Value *PrimitiveShadow, *Origin; 2409 std::tie(PrimitiveShadow, Origin) = 2410 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2411 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2412 if (ShouldTrackOrigins) { 2413 Shadows.push_back(PrimitiveShadow); 2414 Origins.push_back(Origin); 2415 } 2416 if (ClCombinePointerLabelsOnLoad || 2417 DFSF.isLookupTableConstant( 2418 StripPointerGEPsAndCasts(LI.getPointerOperand()))) { 2419 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2420 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2421 if (ShouldTrackOrigins) { 2422 Shadows.push_back(PtrShadow); 2423 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2424 } 2425 } 2426 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2427 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2428 2429 Value *Shadow = 2430 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2431 DFSF.setShadow(&LI, Shadow); 2432 2433 if (ShouldTrackOrigins) { 2434 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2435 } 2436 2437 if (ClEventCallbacks) { 2438 IRBuilder<> IRB(Pos); 2439 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2440 CallInst *CI = 2441 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2442 CI->addParamAttr(0, Attribute::ZExt); 2443 } 2444 2445 IRBuilder<> IRB(AfterLi); 2446 DFSF.addReachesFunctionCallbacksIfEnabled(IRB, LI, &LI); 2447 } 2448 2449 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2450 IRBuilder<> &IRB) { 2451 assert(DFS.shouldTrackOrigins()); 2452 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2453 } 2454 2455 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2456 if (!DFS.shouldTrackOrigins()) 2457 return V; 2458 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2459 } 2460 2461 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2462 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2463 const DataLayout &DL = F->getParent()->getDataLayout(); 2464 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2465 if (IntptrSize == OriginSize) 2466 return Origin; 2467 assert(IntptrSize == OriginSize * 2); 2468 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2469 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2470 } 2471 2472 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2473 Value *StoreOriginAddr, 2474 uint64_t StoreOriginSize, Align Alignment) { 2475 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2476 const DataLayout &DL = F->getParent()->getDataLayout(); 2477 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2478 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2479 assert(IntptrAlignment >= MinOriginAlignment); 2480 assert(IntptrSize >= OriginSize); 2481 2482 unsigned Ofs = 0; 2483 Align CurrentAlignment = Alignment; 2484 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2485 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2486 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2487 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2488 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2489 Value *Ptr = 2490 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2491 : IntptrStoreOriginPtr; 2492 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2493 Ofs += IntptrSize / OriginSize; 2494 CurrentAlignment = IntptrAlignment; 2495 } 2496 } 2497 2498 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2499 ++I) { 2500 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2501 : StoreOriginAddr; 2502 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2503 CurrentAlignment = MinOriginAlignment; 2504 } 2505 } 2506 2507 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2508 const Twine &Name) { 2509 Type *VTy = V->getType(); 2510 assert(VTy->isIntegerTy()); 2511 if (VTy->getIntegerBitWidth() == 1) 2512 // Just converting a bool to a bool, so do nothing. 2513 return V; 2514 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2515 } 2516 2517 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2518 Value *Shadow, Value *Origin, 2519 Value *StoreOriginAddr, Align InstAlignment) { 2520 // Do not write origins for zero shadows because we do not trace origins for 2521 // untainted sinks. 2522 const Align OriginAlignment = getOriginAlign(InstAlignment); 2523 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2524 IRBuilder<> IRB(Pos); 2525 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2526 if (!ConstantShadow->isZeroValue()) 2527 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2528 OriginAlignment); 2529 return; 2530 } 2531 2532 if (shouldInstrumentWithCall()) { 2533 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2534 {CollapsedShadow, 2535 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2536 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2537 } else { 2538 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2539 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2540 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2541 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DTU); 2542 IRBuilder<> IRBNew(CheckTerm); 2543 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2544 OriginAlignment); 2545 ++NumOriginStores; 2546 } 2547 } 2548 2549 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2550 Align ShadowAlign, 2551 Instruction *Pos) { 2552 IRBuilder<> IRB(Pos); 2553 IntegerType *ShadowTy = 2554 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2555 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2556 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2557 Value *ExtShadowAddr = 2558 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2559 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2560 // Do not write origins for 0 shadows because we do not trace origins for 2561 // untainted sinks. 2562 } 2563 2564 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2565 Align InstAlignment, 2566 Value *PrimitiveShadow, 2567 Value *Origin, 2568 Instruction *Pos) { 2569 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2570 2571 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2572 const auto SI = AllocaShadowMap.find(AI); 2573 if (SI != AllocaShadowMap.end()) { 2574 IRBuilder<> IRB(Pos); 2575 IRB.CreateStore(PrimitiveShadow, SI->second); 2576 2577 // Do not write origins for 0 shadows because we do not trace origins for 2578 // untainted sinks. 2579 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2580 const auto OI = AllocaOriginMap.find(AI); 2581 assert(OI != AllocaOriginMap.end() && Origin); 2582 IRB.CreateStore(Origin, OI->second); 2583 } 2584 return; 2585 } 2586 } 2587 2588 const Align ShadowAlign = getShadowAlign(InstAlignment); 2589 if (DFS.isZeroShadow(PrimitiveShadow)) { 2590 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2591 return; 2592 } 2593 2594 IRBuilder<> IRB(Pos); 2595 Value *ShadowAddr, *OriginAddr; 2596 std::tie(ShadowAddr, OriginAddr) = 2597 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2598 2599 const unsigned ShadowVecSize = 8; 2600 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2601 "Shadow vector is too large!"); 2602 2603 uint64_t Offset = 0; 2604 uint64_t LeftSize = Size; 2605 if (LeftSize >= ShadowVecSize) { 2606 auto *ShadowVecTy = 2607 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2608 Value *ShadowVec = PoisonValue::get(ShadowVecTy); 2609 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2610 ShadowVec = IRB.CreateInsertElement( 2611 ShadowVec, PrimitiveShadow, 2612 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2613 } 2614 Value *ShadowVecAddr = 2615 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2616 do { 2617 Value *CurShadowVecAddr = 2618 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2619 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2620 LeftSize -= ShadowVecSize; 2621 ++Offset; 2622 } while (LeftSize >= ShadowVecSize); 2623 Offset *= ShadowVecSize; 2624 } 2625 while (LeftSize > 0) { 2626 Value *CurShadowAddr = 2627 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2628 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2629 --LeftSize; 2630 ++Offset; 2631 } 2632 2633 if (ShouldTrackOrigins) { 2634 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2635 InstAlignment); 2636 } 2637 } 2638 2639 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2640 switch (AO) { 2641 case AtomicOrdering::NotAtomic: 2642 return AtomicOrdering::NotAtomic; 2643 case AtomicOrdering::Unordered: 2644 case AtomicOrdering::Monotonic: 2645 case AtomicOrdering::Release: 2646 return AtomicOrdering::Release; 2647 case AtomicOrdering::Acquire: 2648 case AtomicOrdering::AcquireRelease: 2649 return AtomicOrdering::AcquireRelease; 2650 case AtomicOrdering::SequentiallyConsistent: 2651 return AtomicOrdering::SequentiallyConsistent; 2652 } 2653 llvm_unreachable("Unknown ordering"); 2654 } 2655 2656 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2657 auto &DL = SI.getModule()->getDataLayout(); 2658 Value *Val = SI.getValueOperand(); 2659 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2660 if (Size == 0) 2661 return; 2662 2663 // When an application store is atomic, increase atomic ordering between 2664 // atomic application loads and stores to ensure happen-before order; load 2665 // shadow data after application data; store zero shadow data before 2666 // application data. This ensure shadow loads return either labels of the 2667 // initial application data or zeros. 2668 if (SI.isAtomic()) 2669 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2670 2671 const bool ShouldTrackOrigins = 2672 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2673 std::vector<Value *> Shadows; 2674 std::vector<Value *> Origins; 2675 2676 Value *Shadow = 2677 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2678 2679 if (ShouldTrackOrigins) { 2680 Shadows.push_back(Shadow); 2681 Origins.push_back(DFSF.getOrigin(Val)); 2682 } 2683 2684 Value *PrimitiveShadow; 2685 if (ClCombinePointerLabelsOnStore) { 2686 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2687 if (ShouldTrackOrigins) { 2688 Shadows.push_back(PtrShadow); 2689 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2690 } 2691 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2692 } else { 2693 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2694 } 2695 Value *Origin = nullptr; 2696 if (ShouldTrackOrigins) 2697 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2698 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2699 PrimitiveShadow, Origin, &SI); 2700 if (ClEventCallbacks) { 2701 IRBuilder<> IRB(&SI); 2702 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2703 CallInst *CI = 2704 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2705 CI->addParamAttr(0, Attribute::ZExt); 2706 } 2707 } 2708 2709 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2710 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2711 2712 Value *Val = I.getOperand(1); 2713 const auto &DL = I.getModule()->getDataLayout(); 2714 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2715 if (Size == 0) 2716 return; 2717 2718 // Conservatively set data at stored addresses and return with zero shadow to 2719 // prevent shadow data races. 2720 IRBuilder<> IRB(&I); 2721 Value *Addr = I.getOperand(0); 2722 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2723 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2724 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2725 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2726 } 2727 2728 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2729 visitCASOrRMW(I.getAlign(), I); 2730 // TODO: The ordering change follows MSan. It is possible not to change 2731 // ordering because we always set and use 0 shadows. 2732 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2733 } 2734 2735 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2736 visitCASOrRMW(I.getAlign(), I); 2737 // TODO: The ordering change follows MSan. It is possible not to change 2738 // ordering because we always set and use 0 shadows. 2739 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2740 } 2741 2742 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2743 visitInstOperands(UO); 2744 } 2745 2746 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2747 visitInstOperands(BO); 2748 } 2749 2750 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { 2751 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2752 // a musttail call and a ret, don't instrument. New instructions are not 2753 // allowed after a musttail call. 2754 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) 2755 if (CI->isMustTailCall()) 2756 return; 2757 visitInstOperands(BCI); 2758 } 2759 2760 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2761 2762 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2763 visitInstOperands(CI); 2764 if (ClEventCallbacks) { 2765 IRBuilder<> IRB(&CI); 2766 Value *CombinedShadow = DFSF.getShadow(&CI); 2767 CallInst *CallI = 2768 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2769 CallI->addParamAttr(0, Attribute::ZExt); 2770 } 2771 } 2772 2773 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { 2774 // We do not need to track data through LandingPadInst. 2775 // 2776 // For the C++ exceptions, if a value is thrown, this value will be stored 2777 // in a memory location provided by __cxa_allocate_exception(...) (on the 2778 // throw side) or __cxa_begin_catch(...) (on the catch side). 2779 // This memory will have a shadow, so with the loads and stores we will be 2780 // able to propagate labels on data thrown through exceptions, without any 2781 // special handling of the LandingPadInst. 2782 // 2783 // The second element in the pair result of the LandingPadInst is a 2784 // register value, but it is for a type ID and should never be tainted. 2785 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI)); 2786 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin); 2787 } 2788 2789 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2790 if (ClCombineOffsetLabelsOnGEP || 2791 DFSF.isLookupTableConstant( 2792 StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) { 2793 visitInstOperands(GEPI); 2794 return; 2795 } 2796 2797 // Only propagate shadow/origin of base pointer value but ignore those of 2798 // offset operands. 2799 Value *BasePointer = GEPI.getPointerOperand(); 2800 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); 2801 if (DFSF.DFS.shouldTrackOrigins()) 2802 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); 2803 } 2804 2805 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2806 visitInstOperands(I); 2807 } 2808 2809 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2810 visitInstOperands(I); 2811 } 2812 2813 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2814 visitInstOperands(I); 2815 } 2816 2817 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2818 IRBuilder<> IRB(&I); 2819 Value *Agg = I.getAggregateOperand(); 2820 Value *AggShadow = DFSF.getShadow(Agg); 2821 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2822 DFSF.setShadow(&I, ResShadow); 2823 visitInstOperandOrigins(I); 2824 } 2825 2826 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2827 IRBuilder<> IRB(&I); 2828 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2829 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2830 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2831 DFSF.setShadow(&I, Res); 2832 visitInstOperandOrigins(I); 2833 } 2834 2835 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2836 bool AllLoadsStores = true; 2837 for (User *U : I.users()) { 2838 if (isa<LoadInst>(U)) 2839 continue; 2840 2841 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2842 if (SI->getPointerOperand() == &I) 2843 continue; 2844 } 2845 2846 AllLoadsStores = false; 2847 break; 2848 } 2849 if (AllLoadsStores) { 2850 IRBuilder<> IRB(&I); 2851 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2852 if (DFSF.DFS.shouldTrackOrigins()) { 2853 DFSF.AllocaOriginMap[&I] = 2854 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2855 } 2856 } 2857 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2858 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2859 } 2860 2861 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2862 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2863 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2864 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2865 Value *ShadowSel = nullptr; 2866 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2867 std::vector<Value *> Shadows; 2868 std::vector<Value *> Origins; 2869 Value *TrueOrigin = 2870 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2871 Value *FalseOrigin = 2872 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2873 2874 DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition()); 2875 2876 if (isa<VectorType>(I.getCondition()->getType())) { 2877 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2878 FalseShadow, &I); 2879 if (ShouldTrackOrigins) { 2880 Shadows.push_back(TrueShadow); 2881 Shadows.push_back(FalseShadow); 2882 Origins.push_back(TrueOrigin); 2883 Origins.push_back(FalseOrigin); 2884 } 2885 } else { 2886 if (TrueShadow == FalseShadow) { 2887 ShadowSel = TrueShadow; 2888 if (ShouldTrackOrigins) { 2889 Shadows.push_back(TrueShadow); 2890 Origins.push_back(TrueOrigin); 2891 } 2892 } else { 2893 ShadowSel = 2894 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2895 if (ShouldTrackOrigins) { 2896 Shadows.push_back(ShadowSel); 2897 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2898 FalseOrigin, "", &I)); 2899 } 2900 } 2901 } 2902 DFSF.setShadow(&I, ClTrackSelectControlFlow 2903 ? DFSF.combineShadowsThenConvert( 2904 I.getType(), CondShadow, ShadowSel, &I) 2905 : ShadowSel); 2906 if (ShouldTrackOrigins) { 2907 if (ClTrackSelectControlFlow) { 2908 Shadows.push_back(CondShadow); 2909 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2910 } 2911 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2912 } 2913 } 2914 2915 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2916 IRBuilder<> IRB(&I); 2917 Value *ValShadow = DFSF.getShadow(I.getValue()); 2918 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2919 ? DFSF.getOrigin(I.getValue()) 2920 : DFSF.DFS.ZeroOrigin; 2921 IRB.CreateCall( 2922 DFSF.DFS.DFSanSetLabelFn, 2923 {ValShadow, ValOrigin, 2924 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2925 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2926 } 2927 2928 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2929 IRBuilder<> IRB(&I); 2930 2931 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2932 // need to move origins before moving shadows. 2933 if (DFSF.DFS.shouldTrackOrigins()) { 2934 IRB.CreateCall( 2935 DFSF.DFS.DFSanMemOriginTransferFn, 2936 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2937 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2938 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2939 } 2940 2941 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2942 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2943 Value *LenShadow = 2944 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2945 DFSF.DFS.ShadowWidthBytes)); 2946 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2947 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2948 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2949 auto *MTI = cast<MemTransferInst>( 2950 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2951 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2952 MTI->setDestAlignment(DFSF.getShadowAlign(I.getDestAlign().valueOrOne())); 2953 MTI->setSourceAlignment(DFSF.getShadowAlign(I.getSourceAlign().valueOrOne())); 2954 if (ClEventCallbacks) { 2955 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2956 {RawDestShadow, 2957 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2958 } 2959 } 2960 2961 void DFSanVisitor::visitBranchInst(BranchInst &BR) { 2962 if (!BR.isConditional()) 2963 return; 2964 2965 DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition()); 2966 } 2967 2968 void DFSanVisitor::visitSwitchInst(SwitchInst &SW) { 2969 DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition()); 2970 } 2971 2972 static bool isAMustTailRetVal(Value *RetVal) { 2973 // Tail call may have a bitcast between return. 2974 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2975 RetVal = I->getOperand(0); 2976 } 2977 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2978 return I->isMustTailCall(); 2979 } 2980 return false; 2981 } 2982 2983 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2984 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2985 // Don't emit the instrumentation for musttail call returns. 2986 if (isAMustTailRetVal(RI.getReturnValue())) 2987 return; 2988 2989 Value *S = DFSF.getShadow(RI.getReturnValue()); 2990 IRBuilder<> IRB(&RI); 2991 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2992 unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2993 if (Size <= RetvalTLSSize) { 2994 // If the size overflows, stores nothing. At callsite, oversized return 2995 // shadows are set to zero. 2996 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment); 2997 } 2998 if (DFSF.DFS.shouldTrackOrigins()) { 2999 Value *O = DFSF.getOrigin(RI.getReturnValue()); 3000 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 3001 } 3002 } 3003 } 3004 3005 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 3006 std::vector<Value *> &Args, 3007 IRBuilder<> &IRB) { 3008 FunctionType *FT = F.getFunctionType(); 3009 3010 auto *I = CB.arg_begin(); 3011 3012 // Adds non-variable argument shadows. 3013 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 3014 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 3015 3016 // Adds variable argument shadows. 3017 if (FT->isVarArg()) { 3018 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 3019 CB.arg_size() - FT->getNumParams()); 3020 auto *LabelVAAlloca = 3021 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 3022 "labelva", &DFSF.F->getEntryBlock().front()); 3023 3024 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 3025 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 3026 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 3027 LabelVAPtr); 3028 } 3029 3030 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 3031 } 3032 3033 // Adds the return value shadow. 3034 if (!FT->getReturnType()->isVoidTy()) { 3035 if (!DFSF.LabelReturnAlloca) { 3036 DFSF.LabelReturnAlloca = new AllocaInst( 3037 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 3038 "labelreturn", &DFSF.F->getEntryBlock().front()); 3039 } 3040 Args.push_back(DFSF.LabelReturnAlloca); 3041 } 3042 } 3043 3044 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 3045 std::vector<Value *> &Args, 3046 IRBuilder<> &IRB) { 3047 FunctionType *FT = F.getFunctionType(); 3048 3049 auto *I = CB.arg_begin(); 3050 3051 // Add non-variable argument origins. 3052 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 3053 Args.push_back(DFSF.getOrigin(*I)); 3054 3055 // Add variable argument origins. 3056 if (FT->isVarArg()) { 3057 auto *OriginVATy = 3058 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 3059 auto *OriginVAAlloca = 3060 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 3061 "originva", &DFSF.F->getEntryBlock().front()); 3062 3063 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 3064 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 3065 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 3066 } 3067 3068 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 3069 } 3070 3071 // Add the return value origin. 3072 if (!FT->getReturnType()->isVoidTy()) { 3073 if (!DFSF.OriginReturnAlloca) { 3074 DFSF.OriginReturnAlloca = new AllocaInst( 3075 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 3076 "originreturn", &DFSF.F->getEntryBlock().front()); 3077 } 3078 Args.push_back(DFSF.OriginReturnAlloca); 3079 } 3080 } 3081 3082 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 3083 IRBuilder<> IRB(&CB); 3084 switch (DFSF.DFS.getWrapperKind(&F)) { 3085 case DataFlowSanitizer::WK_Warning: 3086 CB.setCalledFunction(&F); 3087 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 3088 IRB.CreateGlobalStringPtr(F.getName())); 3089 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F); 3090 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3091 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 3092 return true; 3093 case DataFlowSanitizer::WK_Discard: 3094 CB.setCalledFunction(&F); 3095 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F); 3096 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3097 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 3098 return true; 3099 case DataFlowSanitizer::WK_Functional: 3100 CB.setCalledFunction(&F); 3101 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F); 3102 visitInstOperands(CB); 3103 return true; 3104 case DataFlowSanitizer::WK_Custom: 3105 // Don't try to handle invokes of custom functions, it's too complicated. 3106 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 3107 // wrapper. 3108 CallInst *CI = dyn_cast<CallInst>(&CB); 3109 if (!CI) 3110 return false; 3111 3112 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3113 FunctionType *FT = F.getFunctionType(); 3114 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 3115 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 3116 CustomFName += F.getName(); 3117 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 3118 CustomFName, CustomFn.TransformedType); 3119 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 3120 CustomFn->copyAttributesFrom(&F); 3121 3122 // Custom functions returning non-void will write to the return label. 3123 if (!FT->getReturnType()->isVoidTy()) { 3124 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs); 3125 } 3126 } 3127 3128 std::vector<Value *> Args; 3129 3130 // Adds non-variable arguments. 3131 auto *I = CB.arg_begin(); 3132 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 3133 Args.push_back(*I); 3134 } 3135 3136 // Adds shadow arguments. 3137 const unsigned ShadowArgStart = Args.size(); 3138 addShadowArguments(F, CB, Args, IRB); 3139 3140 // Adds origin arguments. 3141 const unsigned OriginArgStart = Args.size(); 3142 if (ShouldTrackOrigins) 3143 addOriginArguments(F, CB, Args, IRB); 3144 3145 // Adds variable arguments. 3146 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 3147 3148 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 3149 CustomCI->setCallingConv(CI->getCallingConv()); 3150 CustomCI->setAttributes(transformFunctionAttributes( 3151 CustomFn, CI->getContext(), CI->getAttributes())); 3152 3153 // Update the parameter attributes of the custom call instruction to 3154 // zero extend the shadow parameters. This is required for targets 3155 // which consider PrimitiveShadowTy an illegal type. 3156 for (unsigned N = 0; N < FT->getNumParams(); N++) { 3157 const unsigned ArgNo = ShadowArgStart + N; 3158 if (CustomCI->getArgOperand(ArgNo)->getType() == 3159 DFSF.DFS.PrimitiveShadowTy) 3160 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 3161 if (ShouldTrackOrigins) { 3162 const unsigned OriginArgNo = OriginArgStart + N; 3163 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 3164 DFSF.DFS.OriginTy) 3165 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 3166 } 3167 } 3168 3169 // Loads the return value shadow and origin. 3170 if (!FT->getReturnType()->isVoidTy()) { 3171 LoadInst *LabelLoad = 3172 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 3173 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 3174 FT->getReturnType(), LabelLoad, &CB)); 3175 if (ShouldTrackOrigins) { 3176 LoadInst *OriginLoad = 3177 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 3178 DFSF.setOrigin(CustomCI, OriginLoad); 3179 } 3180 } 3181 3182 CI->replaceAllUsesWith(CustomCI); 3183 CI->eraseFromParent(); 3184 return true; 3185 } 3186 return false; 3187 } 3188 3189 Value *DFSanVisitor::makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 3190 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 3191 uint32_t OrderingTable[NumOrderings] = {}; 3192 3193 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 3194 OrderingTable[(int)AtomicOrderingCABI::acquire] = 3195 OrderingTable[(int)AtomicOrderingCABI::consume] = 3196 (int)AtomicOrderingCABI::acquire; 3197 OrderingTable[(int)AtomicOrderingCABI::release] = 3198 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 3199 (int)AtomicOrderingCABI::acq_rel; 3200 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 3201 (int)AtomicOrderingCABI::seq_cst; 3202 3203 return ConstantDataVector::get(IRB.getContext(), 3204 ArrayRef(OrderingTable, NumOrderings)); 3205 } 3206 3207 void DFSanVisitor::visitLibAtomicLoad(CallBase &CB) { 3208 // Since we use getNextNode here, we can't have CB terminate the BB. 3209 assert(isa<CallInst>(CB)); 3210 3211 IRBuilder<> IRB(&CB); 3212 Value *Size = CB.getArgOperand(0); 3213 Value *SrcPtr = CB.getArgOperand(1); 3214 Value *DstPtr = CB.getArgOperand(2); 3215 Value *Ordering = CB.getArgOperand(3); 3216 // Convert the call to have at least Acquire ordering to make sure 3217 // the shadow operations aren't reordered before it. 3218 Value *NewOrdering = 3219 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3220 CB.setArgOperand(3, NewOrdering); 3221 3222 IRBuilder<> NextIRB(CB.getNextNode()); 3223 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3224 3225 // TODO: Support ClCombinePointerLabelsOnLoad 3226 // TODO: Support ClEventCallbacks 3227 3228 NextIRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn, 3229 {NextIRB.CreatePointerCast(DstPtr, NextIRB.getInt8PtrTy()), 3230 NextIRB.CreatePointerCast(SrcPtr, NextIRB.getInt8PtrTy()), 3231 NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3232 } 3233 3234 Value *DFSanVisitor::makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 3235 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 3236 uint32_t OrderingTable[NumOrderings] = {}; 3237 3238 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 3239 OrderingTable[(int)AtomicOrderingCABI::release] = 3240 (int)AtomicOrderingCABI::release; 3241 OrderingTable[(int)AtomicOrderingCABI::consume] = 3242 OrderingTable[(int)AtomicOrderingCABI::acquire] = 3243 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 3244 (int)AtomicOrderingCABI::acq_rel; 3245 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 3246 (int)AtomicOrderingCABI::seq_cst; 3247 3248 return ConstantDataVector::get(IRB.getContext(), 3249 ArrayRef(OrderingTable, NumOrderings)); 3250 } 3251 3252 void DFSanVisitor::visitLibAtomicStore(CallBase &CB) { 3253 IRBuilder<> IRB(&CB); 3254 Value *Size = CB.getArgOperand(0); 3255 Value *SrcPtr = CB.getArgOperand(1); 3256 Value *DstPtr = CB.getArgOperand(2); 3257 Value *Ordering = CB.getArgOperand(3); 3258 // Convert the call to have at least Release ordering to make sure 3259 // the shadow operations aren't reordered after it. 3260 Value *NewOrdering = 3261 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3262 CB.setArgOperand(3, NewOrdering); 3263 3264 // TODO: Support ClCombinePointerLabelsOnStore 3265 // TODO: Support ClEventCallbacks 3266 3267 IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn, 3268 {IRB.CreatePointerCast(DstPtr, IRB.getInt8PtrTy()), 3269 IRB.CreatePointerCast(SrcPtr, IRB.getInt8PtrTy()), 3270 IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3271 } 3272 3273 void DFSanVisitor::visitLibAtomicExchange(CallBase &CB) { 3274 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int 3275 // ordering) 3276 IRBuilder<> IRB(&CB); 3277 Value *Size = CB.getArgOperand(0); 3278 Value *TargetPtr = CB.getArgOperand(1); 3279 Value *SrcPtr = CB.getArgOperand(2); 3280 Value *DstPtr = CB.getArgOperand(3); 3281 3282 // This operation is not atomic for the shadow and origin memory. 3283 // This could result in DFSan false positives or false negatives. 3284 // For now we will assume these operations are rare, and 3285 // the additional complexity to address this is not warrented. 3286 3287 // Current Target to Dest 3288 IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn, 3289 {IRB.CreatePointerCast(DstPtr, IRB.getInt8PtrTy()), 3290 IRB.CreatePointerCast(TargetPtr, IRB.getInt8PtrTy()), 3291 IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3292 3293 // Current Src to Target (overriding) 3294 IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn, 3295 {IRB.CreatePointerCast(TargetPtr, IRB.getInt8PtrTy()), 3296 IRB.CreatePointerCast(SrcPtr, IRB.getInt8PtrTy()), 3297 IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3298 } 3299 3300 void DFSanVisitor::visitLibAtomicCompareExchange(CallBase &CB) { 3301 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void 3302 // *desired, int success_order, int failure_order) 3303 Value *Size = CB.getArgOperand(0); 3304 Value *TargetPtr = CB.getArgOperand(1); 3305 Value *ExpectedPtr = CB.getArgOperand(2); 3306 Value *DesiredPtr = CB.getArgOperand(3); 3307 3308 // This operation is not atomic for the shadow and origin memory. 3309 // This could result in DFSan false positives or false negatives. 3310 // For now we will assume these operations are rare, and 3311 // the additional complexity to address this is not warrented. 3312 3313 IRBuilder<> NextIRB(CB.getNextNode()); 3314 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3315 3316 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3317 3318 // If original call returned true, copy Desired to Target. 3319 // If original call returned false, copy Target to Expected. 3320 NextIRB.CreateCall( 3321 DFSF.DFS.DFSanMemShadowOriginConditionalExchangeFn, 3322 {NextIRB.CreateIntCast(&CB, NextIRB.getInt8Ty(), false), 3323 NextIRB.CreatePointerCast(TargetPtr, NextIRB.getInt8PtrTy()), 3324 NextIRB.CreatePointerCast(ExpectedPtr, NextIRB.getInt8PtrTy()), 3325 NextIRB.CreatePointerCast(DesiredPtr, NextIRB.getInt8PtrTy()), 3326 NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3327 } 3328 3329 void DFSanVisitor::visitCallBase(CallBase &CB) { 3330 Function *F = CB.getCalledFunction(); 3331 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 3332 visitInstOperands(CB); 3333 return; 3334 } 3335 3336 // Calls to this function are synthesized in wrappers, and we shouldn't 3337 // instrument them. 3338 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 3339 return; 3340 3341 LibFunc LF; 3342 if (DFSF.TLI.getLibFunc(CB, LF)) { 3343 // libatomic.a functions need to have special handling because there isn't 3344 // a good way to intercept them or compile the library with 3345 // instrumentation. 3346 switch (LF) { 3347 case LibFunc_atomic_load: 3348 if (!isa<CallInst>(CB)) { 3349 llvm::errs() << "DFSAN -- cannot instrument invoke of libatomic load. " 3350 "Ignoring!\n"; 3351 break; 3352 } 3353 visitLibAtomicLoad(CB); 3354 return; 3355 case LibFunc_atomic_store: 3356 visitLibAtomicStore(CB); 3357 return; 3358 default: 3359 break; 3360 } 3361 } 3362 3363 // TODO: These are not supported by TLI? They are not in the enum. 3364 if (F && F->hasName() && !F->isVarArg()) { 3365 if (F->getName() == "__atomic_exchange") { 3366 visitLibAtomicExchange(CB); 3367 return; 3368 } 3369 if (F->getName() == "__atomic_compare_exchange") { 3370 visitLibAtomicCompareExchange(CB); 3371 return; 3372 } 3373 } 3374 3375 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 3376 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 3377 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 3378 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 3379 return; 3380 3381 IRBuilder<> IRB(&CB); 3382 3383 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3384 FunctionType *FT = CB.getFunctionType(); 3385 const DataLayout &DL = getDataLayout(); 3386 3387 // Stores argument shadows. 3388 unsigned ArgOffset = 0; 3389 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 3390 if (ShouldTrackOrigins) { 3391 // Ignore overflowed origins 3392 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 3393 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 3394 !DFSF.DFS.isZeroShadow(ArgShadow)) 3395 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 3396 DFSF.getArgOriginTLS(I, IRB)); 3397 } 3398 3399 unsigned Size = 3400 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 3401 // Stop storing if arguments' size overflows. Inside a function, arguments 3402 // after overflow have zero shadow values. 3403 if (ArgOffset + Size > ArgTLSSize) 3404 break; 3405 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)), 3406 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 3407 ShadowTLSAlignment); 3408 ArgOffset += alignTo(Size, ShadowTLSAlignment); 3409 } 3410 3411 Instruction *Next = nullptr; 3412 if (!CB.getType()->isVoidTy()) { 3413 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3414 if (II->getNormalDest()->getSinglePredecessor()) { 3415 Next = &II->getNormalDest()->front(); 3416 } else { 3417 BasicBlock *NewBB = 3418 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 3419 Next = &NewBB->front(); 3420 } 3421 } else { 3422 assert(CB.getIterator() != CB.getParent()->end()); 3423 Next = CB.getNextNode(); 3424 } 3425 3426 // Don't emit the epilogue for musttail call returns. 3427 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3428 return; 3429 3430 // Loads the return value shadow. 3431 IRBuilder<> NextIRB(Next); 3432 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 3433 if (Size > RetvalTLSSize) { 3434 // Set overflowed return shadow to be zero. 3435 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3436 } else { 3437 LoadInst *LI = NextIRB.CreateAlignedLoad( 3438 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 3439 ShadowTLSAlignment, "_dfsret"); 3440 DFSF.SkipInsts.insert(LI); 3441 DFSF.setShadow(&CB, LI); 3442 DFSF.NonZeroChecks.push_back(LI); 3443 } 3444 3445 if (ShouldTrackOrigins) { 3446 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy, 3447 DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3448 DFSF.SkipInsts.insert(LI); 3449 DFSF.setOrigin(&CB, LI); 3450 } 3451 3452 DFSF.addReachesFunctionCallbacksIfEnabled(NextIRB, CB, &CB); 3453 } 3454 } 3455 3456 void DFSanVisitor::visitPHINode(PHINode &PN) { 3457 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3458 PHINode *ShadowPN = 3459 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 3460 3461 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3462 Value *UndefShadow = UndefValue::get(ShadowTy); 3463 for (BasicBlock *BB : PN.blocks()) 3464 ShadowPN->addIncoming(UndefShadow, BB); 3465 3466 DFSF.setShadow(&PN, ShadowPN); 3467 3468 PHINode *OriginPN = nullptr; 3469 if (DFSF.DFS.shouldTrackOrigins()) { 3470 OriginPN = 3471 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 3472 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3473 for (BasicBlock *BB : PN.blocks()) 3474 OriginPN->addIncoming(UndefOrigin, BB); 3475 DFSF.setOrigin(&PN, OriginPN); 3476 } 3477 3478 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3479 } 3480 3481 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3482 ModuleAnalysisManager &AM) { 3483 auto GetTLI = [&](Function &F) -> TargetLibraryInfo & { 3484 auto &FAM = 3485 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3486 return FAM.getResult<TargetLibraryAnalysis>(F); 3487 }; 3488 if (!DataFlowSanitizer(ABIListFiles).runImpl(M, GetTLI)) 3489 return PreservedAnalyses::all(); 3490 3491 PreservedAnalyses PA = PreservedAnalyses::none(); 3492 // GlobalsAA is considered stateless and does not get invalidated unless 3493 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 3494 // make changes that require GlobalsAA to be invalidated. 3495 PA.abandon<GlobalsAA>(); 3496 return PA; 3497 } 3498