xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/BoundsChecking.cpp (revision 5b56413d04e608379c9a306373554a8e4d321bc0)
1 //===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
10 #include "llvm/ADT/Statistic.h"
11 #include "llvm/ADT/Twine.h"
12 #include "llvm/Analysis/MemoryBuiltins.h"
13 #include "llvm/Analysis/ScalarEvolution.h"
14 #include "llvm/Analysis/TargetFolder.h"
15 #include "llvm/Analysis/TargetLibraryInfo.h"
16 #include "llvm/IR/BasicBlock.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <cstdint>
31 #include <utility>
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "bounds-checking"
36 
37 static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap",
38                                   cl::desc("Use one trap block per function"));
39 
40 static cl::opt<bool> DebugTrapBB("bounds-checking-unique-traps",
41                                  cl::desc("Always use one trap per check"));
42 
43 STATISTIC(ChecksAdded, "Bounds checks added");
44 STATISTIC(ChecksSkipped, "Bounds checks skipped");
45 STATISTIC(ChecksUnable, "Bounds checks unable to add");
46 
47 using BuilderTy = IRBuilder<TargetFolder>;
48 
49 /// Gets the conditions under which memory accessing instructions will overflow.
50 ///
51 /// \p Ptr is the pointer that will be read/written, and \p InstVal is either
52 /// the result from the load or the value being stored. It is used to determine
53 /// the size of memory block that is touched.
54 ///
55 /// Returns the condition under which the access will overflow.
56 static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal,
57                                  const DataLayout &DL, TargetLibraryInfo &TLI,
58                                  ObjectSizeOffsetEvaluator &ObjSizeEval,
59                                  BuilderTy &IRB, ScalarEvolution &SE) {
60   TypeSize NeededSize = DL.getTypeStoreSize(InstVal->getType());
61   LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
62                     << " bytes\n");
63 
64   SizeOffsetValue SizeOffset = ObjSizeEval.compute(Ptr);
65 
66   if (!SizeOffset.bothKnown()) {
67     ++ChecksUnable;
68     return nullptr;
69   }
70 
71   Value *Size = SizeOffset.Size;
72   Value *Offset = SizeOffset.Offset;
73   ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);
74 
75   Type *IndexTy = DL.getIndexType(Ptr->getType());
76   Value *NeededSizeVal = IRB.CreateTypeSize(IndexTy, NeededSize);
77 
78   auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size));
79   auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset));
80   auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal));
81 
82   // three checks are required to ensure safety:
83   // . Offset >= 0  (since the offset is given from the base ptr)
84   // . Size >= Offset  (unsigned)
85   // . Size - Offset >= NeededSize  (unsigned)
86   //
87   // optimization: if Size >= 0 (signed), skip 1st check
88   // FIXME: add NSW/NUW here?  -- we dont care if the subtraction overflows
89   Value *ObjSize = IRB.CreateSub(Size, Offset);
90   Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax())
91                     ? ConstantInt::getFalse(Ptr->getContext())
92                     : IRB.CreateICmpULT(Size, Offset);
93   Value *Cmp3 = SizeRange.sub(OffsetRange)
94                         .getUnsignedMin()
95                         .uge(NeededSizeRange.getUnsignedMax())
96                     ? ConstantInt::getFalse(Ptr->getContext())
97                     : IRB.CreateICmpULT(ObjSize, NeededSizeVal);
98   Value *Or = IRB.CreateOr(Cmp2, Cmp3);
99   if ((!SizeCI || SizeCI->getValue().slt(0)) &&
100       !SizeRange.getSignedMin().isNonNegative()) {
101     Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IndexTy, 0));
102     Or = IRB.CreateOr(Cmp1, Or);
103   }
104 
105   return Or;
106 }
107 
108 /// Adds run-time bounds checks to memory accessing instructions.
109 ///
110 /// \p Or is the condition that should guard the trap.
111 ///
112 /// \p GetTrapBB is a callable that returns the trap BB to use on failure.
113 template <typename GetTrapBBT>
114 static void insertBoundsCheck(Value *Or, BuilderTy &IRB, GetTrapBBT GetTrapBB) {
115   // check if the comparison is always false
116   ConstantInt *C = dyn_cast_or_null<ConstantInt>(Or);
117   if (C) {
118     ++ChecksSkipped;
119     // If non-zero, nothing to do.
120     if (!C->getZExtValue())
121       return;
122   }
123   ++ChecksAdded;
124 
125   BasicBlock::iterator SplitI = IRB.GetInsertPoint();
126   BasicBlock *OldBB = SplitI->getParent();
127   BasicBlock *Cont = OldBB->splitBasicBlock(SplitI);
128   OldBB->getTerminator()->eraseFromParent();
129 
130   if (C) {
131     // If we have a constant zero, unconditionally branch.
132     // FIXME: We should really handle this differently to bypass the splitting
133     // the block.
134     BranchInst::Create(GetTrapBB(IRB), OldBB);
135     return;
136   }
137 
138   // Create the conditional branch.
139   BranchInst::Create(GetTrapBB(IRB), Cont, Or, OldBB);
140 }
141 
142 static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI,
143                               ScalarEvolution &SE) {
144   if (F.hasFnAttribute(Attribute::NoSanitizeBounds))
145     return false;
146 
147   const DataLayout &DL = F.getParent()->getDataLayout();
148   ObjectSizeOpts EvalOpts;
149   EvalOpts.RoundToAlign = true;
150   EvalOpts.EvalMode = ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset;
151   ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(), EvalOpts);
152 
153   // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory
154   // touching instructions
155   SmallVector<std::pair<Instruction *, Value *>, 4> TrapInfo;
156   for (Instruction &I : instructions(F)) {
157     Value *Or = nullptr;
158     BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL));
159     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
160       if (!LI->isVolatile())
161         Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI,
162                                 ObjSizeEval, IRB, SE);
163     } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
164       if (!SI->isVolatile())
165         Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(),
166                                 DL, TLI, ObjSizeEval, IRB, SE);
167     } else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
168       if (!AI->isVolatile())
169         Or =
170             getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(),
171                                DL, TLI, ObjSizeEval, IRB, SE);
172     } else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
173       if (!AI->isVolatile())
174         Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(),
175                                 DL, TLI, ObjSizeEval, IRB, SE);
176     }
177     if (Or)
178       TrapInfo.push_back(std::make_pair(&I, Or));
179   }
180 
181   // Create a trapping basic block on demand using a callback. Depending on
182   // flags, this will either create a single block for the entire function or
183   // will create a fresh block every time it is called.
184   BasicBlock *TrapBB = nullptr;
185   auto GetTrapBB = [&TrapBB](BuilderTy &IRB) {
186     Function *Fn = IRB.GetInsertBlock()->getParent();
187     auto DebugLoc = IRB.getCurrentDebugLocation();
188     IRBuilder<>::InsertPointGuard Guard(IRB);
189 
190     if (TrapBB && SingleTrapBB && !DebugTrapBB)
191       return TrapBB;
192 
193     TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn);
194     IRB.SetInsertPoint(TrapBB);
195 
196     Intrinsic::ID IntrID = DebugTrapBB ? Intrinsic::ubsantrap : Intrinsic::trap;
197     auto *F = Intrinsic::getDeclaration(Fn->getParent(), IntrID);
198 
199     CallInst *TrapCall;
200     if (DebugTrapBB) {
201       TrapCall =
202           IRB.CreateCall(F, ConstantInt::get(IRB.getInt8Ty(), Fn->size()));
203     } else {
204       TrapCall = IRB.CreateCall(F, {});
205     }
206 
207     TrapCall->setDoesNotReturn();
208     TrapCall->setDoesNotThrow();
209     TrapCall->setDebugLoc(DebugLoc);
210     IRB.CreateUnreachable();
211 
212     return TrapBB;
213   };
214 
215   // Add the checks.
216   for (const auto &Entry : TrapInfo) {
217     Instruction *Inst = Entry.first;
218     BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL));
219     insertBoundsCheck(Entry.second, IRB, GetTrapBB);
220   }
221 
222   return !TrapInfo.empty();
223 }
224 
225 PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) {
226   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
227   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
228 
229   if (!addBoundsChecking(F, TLI, SE))
230     return PreservedAnalyses::all();
231 
232   return PreservedAnalyses::none();
233 }
234