1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address basic correctness 10 // checker. 11 // Details of the algorithm: 12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 13 // 14 // FIXME: This sanitizer does not yet handle scalable vectors 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/StackSafetyAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/BinaryFormat/MachO.h" 34 #include "llvm/Demangle/Demangle.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Comdat.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DIBuilder.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/IRBuilder.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/InstVisitor.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/Intrinsics.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/MDBuilder.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Use.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/MC/MCSectionMachO.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Instrumentation.h" 73 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 75 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Transforms/Utils/ModuleUtils.h" 79 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iomanip> 85 #include <limits> 86 #include <sstream> 87 #include <string> 88 #include <tuple> 89 90 using namespace llvm; 91 92 #define DEBUG_TYPE "asan" 93 94 static const uint64_t kDefaultShadowScale = 3; 95 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 96 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 97 static const uint64_t kDynamicShadowSentinel = 98 std::numeric_limits<uint64_t>::max(); 99 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 100 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 101 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 102 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 103 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 104 static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 109 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 110 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 111 static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47; 112 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 113 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 114 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 115 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 116 static const uint64_t kPS_ShadowOffset64 = 1ULL << 40; 117 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 118 static const uint64_t kEmscriptenShadowOffset = 0; 119 120 // The shadow memory space is dynamically allocated. 121 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 122 123 static const size_t kMinStackMallocSize = 1 << 6; // 64B 124 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 125 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 126 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 127 128 const char kAsanModuleCtorName[] = "asan.module_ctor"; 129 const char kAsanModuleDtorName[] = "asan.module_dtor"; 130 static const uint64_t kAsanCtorAndDtorPriority = 1; 131 // On Emscripten, the system needs more than one priorities for constructors. 132 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 133 const char kAsanReportErrorTemplate[] = "__asan_report_"; 134 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 135 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 136 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 137 const char kAsanUnregisterImageGlobalsName[] = 138 "__asan_unregister_image_globals"; 139 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 140 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 141 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 142 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 143 const char kAsanInitName[] = "__asan_init"; 144 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 145 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 146 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 147 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 148 static const int kMaxAsanStackMallocSizeClass = 10; 149 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 150 const char kAsanStackMallocAlwaysNameTemplate[] = 151 "__asan_stack_malloc_always_"; 152 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 153 const char kAsanGenPrefix[] = "___asan_gen_"; 154 const char kODRGenPrefix[] = "__odr_asan_gen_"; 155 const char kSanCovGenPrefix[] = "__sancov_gen_"; 156 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 157 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 158 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 159 160 // ASan version script has __asan_* wildcard. Triple underscore prevents a 161 // linker (gold) warning about attempting to export a local symbol. 162 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 163 164 const char kAsanOptionDetectUseAfterReturn[] = 165 "__asan_option_detect_stack_use_after_return"; 166 167 const char kAsanShadowMemoryDynamicAddress[] = 168 "__asan_shadow_memory_dynamic_address"; 169 170 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 171 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 172 173 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 174 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 175 176 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 177 static const size_t kNumberOfAccessSizes = 5; 178 179 static const uint64_t kAllocaRzSize = 32; 180 181 // ASanAccessInfo implementation constants. 182 constexpr size_t kCompileKernelShift = 0; 183 constexpr size_t kCompileKernelMask = 0x1; 184 constexpr size_t kAccessSizeIndexShift = 1; 185 constexpr size_t kAccessSizeIndexMask = 0xf; 186 constexpr size_t kIsWriteShift = 5; 187 constexpr size_t kIsWriteMask = 0x1; 188 189 // Command-line flags. 190 191 static cl::opt<bool> ClEnableKasan( 192 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 193 cl::Hidden, cl::init(false)); 194 195 static cl::opt<bool> ClRecover( 196 "asan-recover", 197 cl::desc("Enable recovery mode (continue-after-error)."), 198 cl::Hidden, cl::init(false)); 199 200 static cl::opt<bool> ClInsertVersionCheck( 201 "asan-guard-against-version-mismatch", 202 cl::desc("Guard against compiler/runtime version mismatch."), 203 cl::Hidden, cl::init(true)); 204 205 // This flag may need to be replaced with -f[no-]asan-reads. 206 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 207 cl::desc("instrument read instructions"), 208 cl::Hidden, cl::init(true)); 209 210 static cl::opt<bool> ClInstrumentWrites( 211 "asan-instrument-writes", cl::desc("instrument write instructions"), 212 cl::Hidden, cl::init(true)); 213 214 static cl::opt<bool> 215 ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false), 216 cl::Hidden, cl::desc("Use Stack Safety analysis results"), 217 cl::Optional); 218 219 static cl::opt<bool> ClInstrumentAtomics( 220 "asan-instrument-atomics", 221 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 222 cl::init(true)); 223 224 static cl::opt<bool> 225 ClInstrumentByval("asan-instrument-byval", 226 cl::desc("instrument byval call arguments"), cl::Hidden, 227 cl::init(true)); 228 229 static cl::opt<bool> ClAlwaysSlowPath( 230 "asan-always-slow-path", 231 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 232 cl::init(false)); 233 234 static cl::opt<bool> ClForceDynamicShadow( 235 "asan-force-dynamic-shadow", 236 cl::desc("Load shadow address into a local variable for each function"), 237 cl::Hidden, cl::init(false)); 238 239 static cl::opt<bool> 240 ClWithIfunc("asan-with-ifunc", 241 cl::desc("Access dynamic shadow through an ifunc global on " 242 "platforms that support this"), 243 cl::Hidden, cl::init(true)); 244 245 static cl::opt<bool> ClWithIfuncSuppressRemat( 246 "asan-with-ifunc-suppress-remat", 247 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 248 "it through inline asm in prologue."), 249 cl::Hidden, cl::init(true)); 250 251 // This flag limits the number of instructions to be instrumented 252 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 253 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 254 // set it to 10000. 255 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 256 "asan-max-ins-per-bb", cl::init(10000), 257 cl::desc("maximal number of instructions to instrument in any given BB"), 258 cl::Hidden); 259 260 // This flag may need to be replaced with -f[no]asan-stack. 261 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 262 cl::Hidden, cl::init(true)); 263 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 264 "asan-max-inline-poisoning-size", 265 cl::desc( 266 "Inline shadow poisoning for blocks up to the given size in bytes."), 267 cl::Hidden, cl::init(64)); 268 269 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 270 "asan-use-after-return", 271 cl::desc("Sets the mode of detection for stack-use-after-return."), 272 cl::values( 273 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 274 "Never detect stack use after return."), 275 clEnumValN( 276 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 277 "Detect stack use after return if " 278 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 279 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 280 "Always detect stack use after return.")), 281 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 282 283 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 284 cl::desc("Create redzones for byval " 285 "arguments (extra copy " 286 "required)"), cl::Hidden, 287 cl::init(true)); 288 289 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 290 cl::desc("Check stack-use-after-scope"), 291 cl::Hidden, cl::init(false)); 292 293 // This flag may need to be replaced with -f[no]asan-globals. 294 static cl::opt<bool> ClGlobals("asan-globals", 295 cl::desc("Handle global objects"), cl::Hidden, 296 cl::init(true)); 297 298 static cl::opt<bool> ClInitializers("asan-initialization-order", 299 cl::desc("Handle C++ initializer order"), 300 cl::Hidden, cl::init(true)); 301 302 static cl::opt<bool> ClInvalidPointerPairs( 303 "asan-detect-invalid-pointer-pair", 304 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 305 cl::init(false)); 306 307 static cl::opt<bool> ClInvalidPointerCmp( 308 "asan-detect-invalid-pointer-cmp", 309 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 310 cl::init(false)); 311 312 static cl::opt<bool> ClInvalidPointerSub( 313 "asan-detect-invalid-pointer-sub", 314 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 315 cl::init(false)); 316 317 static cl::opt<unsigned> ClRealignStack( 318 "asan-realign-stack", 319 cl::desc("Realign stack to the value of this flag (power of two)"), 320 cl::Hidden, cl::init(32)); 321 322 static cl::opt<int> ClInstrumentationWithCallsThreshold( 323 "asan-instrumentation-with-call-threshold", 324 cl::desc( 325 "If the function being instrumented contains more than " 326 "this number of memory accesses, use callbacks instead of " 327 "inline checks (-1 means never use callbacks)."), 328 cl::Hidden, cl::init(7000)); 329 330 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 331 "asan-memory-access-callback-prefix", 332 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 333 cl::init("__asan_")); 334 335 static cl::opt<bool> ClKasanMemIntrinCallbackPrefix( 336 "asan-kernel-mem-intrinsic-prefix", 337 cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden, 338 cl::init(false)); 339 340 static cl::opt<bool> 341 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 342 cl::desc("instrument dynamic allocas"), 343 cl::Hidden, cl::init(true)); 344 345 static cl::opt<bool> ClSkipPromotableAllocas( 346 "asan-skip-promotable-allocas", 347 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 348 cl::init(true)); 349 350 // These flags allow to change the shadow mapping. 351 // The shadow mapping looks like 352 // Shadow = (Mem >> scale) + offset 353 354 static cl::opt<int> ClMappingScale("asan-mapping-scale", 355 cl::desc("scale of asan shadow mapping"), 356 cl::Hidden, cl::init(0)); 357 358 static cl::opt<uint64_t> 359 ClMappingOffset("asan-mapping-offset", 360 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 361 cl::Hidden, cl::init(0)); 362 363 // Optimization flags. Not user visible, used mostly for testing 364 // and benchmarking the tool. 365 366 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 367 cl::Hidden, cl::init(true)); 368 369 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", 370 cl::desc("Optimize callbacks"), 371 cl::Hidden, cl::init(false)); 372 373 static cl::opt<bool> ClOptSameTemp( 374 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 375 cl::Hidden, cl::init(true)); 376 377 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 378 cl::desc("Don't instrument scalar globals"), 379 cl::Hidden, cl::init(true)); 380 381 static cl::opt<bool> ClOptStack( 382 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 383 cl::Hidden, cl::init(false)); 384 385 static cl::opt<bool> ClDynamicAllocaStack( 386 "asan-stack-dynamic-alloca", 387 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 388 cl::init(true)); 389 390 static cl::opt<uint32_t> ClForceExperiment( 391 "asan-force-experiment", 392 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 393 cl::init(0)); 394 395 static cl::opt<bool> 396 ClUsePrivateAlias("asan-use-private-alias", 397 cl::desc("Use private aliases for global variables"), 398 cl::Hidden, cl::init(false)); 399 400 static cl::opt<bool> 401 ClUseOdrIndicator("asan-use-odr-indicator", 402 cl::desc("Use odr indicators to improve ODR reporting"), 403 cl::Hidden, cl::init(false)); 404 405 static cl::opt<bool> 406 ClUseGlobalsGC("asan-globals-live-support", 407 cl::desc("Use linker features to support dead " 408 "code stripping of globals"), 409 cl::Hidden, cl::init(true)); 410 411 // This is on by default even though there is a bug in gold: 412 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 413 static cl::opt<bool> 414 ClWithComdat("asan-with-comdat", 415 cl::desc("Place ASan constructors in comdat sections"), 416 cl::Hidden, cl::init(true)); 417 418 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 419 "asan-destructor-kind", 420 cl::desc("Sets the ASan destructor kind. The default is to use the value " 421 "provided to the pass constructor"), 422 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 423 clEnumValN(AsanDtorKind::Global, "global", 424 "Use global destructors")), 425 cl::init(AsanDtorKind::Invalid), cl::Hidden); 426 427 // Debug flags. 428 429 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 430 cl::init(0)); 431 432 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 433 cl::Hidden, cl::init(0)); 434 435 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 436 cl::desc("Debug func")); 437 438 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 439 cl::Hidden, cl::init(-1)); 440 441 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 442 cl::Hidden, cl::init(-1)); 443 444 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 445 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 446 STATISTIC(NumOptimizedAccessesToGlobalVar, 447 "Number of optimized accesses to global vars"); 448 STATISTIC(NumOptimizedAccessesToStackVar, 449 "Number of optimized accesses to stack vars"); 450 451 namespace { 452 453 /// This struct defines the shadow mapping using the rule: 454 /// shadow = (mem >> Scale) ADD-or-OR Offset. 455 /// If InGlobal is true, then 456 /// extern char __asan_shadow[]; 457 /// shadow = (mem >> Scale) + &__asan_shadow 458 struct ShadowMapping { 459 int Scale; 460 uint64_t Offset; 461 bool OrShadowOffset; 462 bool InGlobal; 463 }; 464 465 } // end anonymous namespace 466 467 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, 468 bool IsKasan) { 469 bool IsAndroid = TargetTriple.isAndroid(); 470 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() || 471 TargetTriple.isDriverKit(); 472 bool IsMacOS = TargetTriple.isMacOSX(); 473 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 474 bool IsNetBSD = TargetTriple.isOSNetBSD(); 475 bool IsPS = TargetTriple.isPS(); 476 bool IsLinux = TargetTriple.isOSLinux(); 477 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 478 TargetTriple.getArch() == Triple::ppc64le; 479 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 480 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 481 bool IsMIPSN32ABI = TargetTriple.getEnvironment() == Triple::GNUABIN32; 482 bool IsMIPS32 = TargetTriple.isMIPS32(); 483 bool IsMIPS64 = TargetTriple.isMIPS64(); 484 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 485 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 486 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 487 bool IsWindows = TargetTriple.isOSWindows(); 488 bool IsFuchsia = TargetTriple.isOSFuchsia(); 489 bool IsEmscripten = TargetTriple.isOSEmscripten(); 490 bool IsAMDGPU = TargetTriple.isAMDGPU(); 491 492 ShadowMapping Mapping; 493 494 Mapping.Scale = kDefaultShadowScale; 495 if (ClMappingScale.getNumOccurrences() > 0) { 496 Mapping.Scale = ClMappingScale; 497 } 498 499 if (LongSize == 32) { 500 if (IsAndroid) 501 Mapping.Offset = kDynamicShadowSentinel; 502 else if (IsMIPSN32ABI) 503 Mapping.Offset = kMIPS_ShadowOffsetN32; 504 else if (IsMIPS32) 505 Mapping.Offset = kMIPS32_ShadowOffset32; 506 else if (IsFreeBSD) 507 Mapping.Offset = kFreeBSD_ShadowOffset32; 508 else if (IsNetBSD) 509 Mapping.Offset = kNetBSD_ShadowOffset32; 510 else if (IsIOS) 511 Mapping.Offset = kDynamicShadowSentinel; 512 else if (IsWindows) 513 Mapping.Offset = kWindowsShadowOffset32; 514 else if (IsEmscripten) 515 Mapping.Offset = kEmscriptenShadowOffset; 516 else 517 Mapping.Offset = kDefaultShadowOffset32; 518 } else { // LongSize == 64 519 // Fuchsia is always PIE, which means that the beginning of the address 520 // space is always available. 521 if (IsFuchsia) 522 Mapping.Offset = 0; 523 else if (IsPPC64) 524 Mapping.Offset = kPPC64_ShadowOffset64; 525 else if (IsSystemZ) 526 Mapping.Offset = kSystemZ_ShadowOffset64; 527 else if (IsFreeBSD && IsAArch64) 528 Mapping.Offset = kFreeBSDAArch64_ShadowOffset64; 529 else if (IsFreeBSD && !IsMIPS64) { 530 if (IsKasan) 531 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 532 else 533 Mapping.Offset = kFreeBSD_ShadowOffset64; 534 } else if (IsNetBSD) { 535 if (IsKasan) 536 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 537 else 538 Mapping.Offset = kNetBSD_ShadowOffset64; 539 } else if (IsPS) 540 Mapping.Offset = kPS_ShadowOffset64; 541 else if (IsLinux && IsX86_64) { 542 if (IsKasan) 543 Mapping.Offset = kLinuxKasan_ShadowOffset64; 544 else 545 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 546 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 547 } else if (IsWindows && IsX86_64) { 548 Mapping.Offset = kWindowsShadowOffset64; 549 } else if (IsMIPS64) 550 Mapping.Offset = kMIPS64_ShadowOffset64; 551 else if (IsIOS) 552 Mapping.Offset = kDynamicShadowSentinel; 553 else if (IsMacOS && IsAArch64) 554 Mapping.Offset = kDynamicShadowSentinel; 555 else if (IsAArch64) 556 Mapping.Offset = kAArch64_ShadowOffset64; 557 else if (IsRISCV64) 558 Mapping.Offset = kRISCV64_ShadowOffset64; 559 else if (IsAMDGPU) 560 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 561 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 562 else 563 Mapping.Offset = kDefaultShadowOffset64; 564 } 565 566 if (ClForceDynamicShadow) { 567 Mapping.Offset = kDynamicShadowSentinel; 568 } 569 570 if (ClMappingOffset.getNumOccurrences() > 0) { 571 Mapping.Offset = ClMappingOffset; 572 } 573 574 // OR-ing shadow offset if more efficient (at least on x86) if the offset 575 // is a power of two, but on ppc64 we have to use add since the shadow 576 // offset is not necessary 1/8-th of the address space. On SystemZ, 577 // we could OR the constant in a single instruction, but it's more 578 // efficient to load it once and use indexed addressing. 579 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS && 580 !IsRISCV64 && 581 !(Mapping.Offset & (Mapping.Offset - 1)) && 582 Mapping.Offset != kDynamicShadowSentinel; 583 bool IsAndroidWithIfuncSupport = 584 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 585 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 586 587 return Mapping; 588 } 589 590 namespace llvm { 591 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, 592 bool IsKasan, uint64_t *ShadowBase, 593 int *MappingScale, bool *OrShadowOffset) { 594 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); 595 *ShadowBase = Mapping.Offset; 596 *MappingScale = Mapping.Scale; 597 *OrShadowOffset = Mapping.OrShadowOffset; 598 } 599 600 ASanAccessInfo::ASanAccessInfo(int32_t Packed) 601 : Packed(Packed), 602 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), 603 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), 604 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} 605 606 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, 607 uint8_t AccessSizeIndex) 608 : Packed((IsWrite << kIsWriteShift) + 609 (CompileKernel << kCompileKernelShift) + 610 (AccessSizeIndex << kAccessSizeIndexShift)), 611 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), 612 CompileKernel(CompileKernel) {} 613 614 } // namespace llvm 615 616 static uint64_t getRedzoneSizeForScale(int MappingScale) { 617 // Redzone used for stack and globals is at least 32 bytes. 618 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 619 return std::max(32U, 1U << MappingScale); 620 } 621 622 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 623 if (TargetTriple.isOSEmscripten()) { 624 return kAsanEmscriptenCtorAndDtorPriority; 625 } else { 626 return kAsanCtorAndDtorPriority; 627 } 628 } 629 630 namespace { 631 632 /// AddressSanitizer: instrument the code in module to find memory bugs. 633 struct AddressSanitizer { 634 AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI, 635 bool CompileKernel = false, bool Recover = false, 636 bool UseAfterScope = false, 637 AsanDetectStackUseAfterReturnMode UseAfterReturn = 638 AsanDetectStackUseAfterReturnMode::Runtime) 639 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 640 : CompileKernel), 641 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 642 UseAfterScope(UseAfterScope || ClUseAfterScope), 643 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn 644 : UseAfterReturn), 645 SSGI(SSGI) { 646 C = &(M.getContext()); 647 LongSize = M.getDataLayout().getPointerSizeInBits(); 648 IntptrTy = Type::getIntNTy(*C, LongSize); 649 Int8PtrTy = Type::getInt8PtrTy(*C); 650 Int32Ty = Type::getInt32Ty(*C); 651 TargetTriple = Triple(M.getTargetTriple()); 652 653 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 654 655 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); 656 } 657 658 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 659 uint64_t ArraySize = 1; 660 if (AI.isArrayAllocation()) { 661 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 662 assert(CI && "non-constant array size"); 663 ArraySize = CI->getZExtValue(); 664 } 665 Type *Ty = AI.getAllocatedType(); 666 uint64_t SizeInBytes = 667 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 668 return SizeInBytes * ArraySize; 669 } 670 671 /// Check if we want (and can) handle this alloca. 672 bool isInterestingAlloca(const AllocaInst &AI); 673 674 bool ignoreAccess(Instruction *Inst, Value *Ptr); 675 void getInterestingMemoryOperands( 676 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 677 678 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 679 InterestingMemoryOperand &O, bool UseCalls, 680 const DataLayout &DL); 681 void instrumentPointerComparisonOrSubtraction(Instruction *I); 682 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 683 Value *Addr, uint32_t TypeSize, bool IsWrite, 684 Value *SizeArgument, bool UseCalls, uint32_t Exp); 685 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 686 Instruction *InsertBefore, Value *Addr, 687 uint32_t TypeSize, bool IsWrite, 688 Value *SizeArgument); 689 void instrumentUnusualSizeOrAlignment(Instruction *I, 690 Instruction *InsertBefore, Value *Addr, 691 uint32_t TypeSize, bool IsWrite, 692 Value *SizeArgument, bool UseCalls, 693 uint32_t Exp); 694 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 695 Value *ShadowValue, uint32_t TypeSize); 696 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 697 bool IsWrite, size_t AccessSizeIndex, 698 Value *SizeArgument, uint32_t Exp); 699 void instrumentMemIntrinsic(MemIntrinsic *MI); 700 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 701 bool suppressInstrumentationSiteForDebug(int &Instrumented); 702 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 703 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 704 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 705 void markEscapedLocalAllocas(Function &F); 706 707 private: 708 friend struct FunctionStackPoisoner; 709 710 void initializeCallbacks(Module &M); 711 712 bool LooksLikeCodeInBug11395(Instruction *I); 713 bool GlobalIsLinkerInitialized(GlobalVariable *G); 714 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 715 uint64_t TypeSize) const; 716 717 /// Helper to cleanup per-function state. 718 struct FunctionStateRAII { 719 AddressSanitizer *Pass; 720 721 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 722 assert(Pass->ProcessedAllocas.empty() && 723 "last pass forgot to clear cache"); 724 assert(!Pass->LocalDynamicShadow); 725 } 726 727 ~FunctionStateRAII() { 728 Pass->LocalDynamicShadow = nullptr; 729 Pass->ProcessedAllocas.clear(); 730 } 731 }; 732 733 LLVMContext *C; 734 Triple TargetTriple; 735 int LongSize; 736 bool CompileKernel; 737 bool Recover; 738 bool UseAfterScope; 739 AsanDetectStackUseAfterReturnMode UseAfterReturn; 740 Type *IntptrTy; 741 Type *Int8PtrTy; 742 Type *Int32Ty; 743 ShadowMapping Mapping; 744 FunctionCallee AsanHandleNoReturnFunc; 745 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 746 Constant *AsanShadowGlobal; 747 748 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 749 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 750 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 751 752 // These arrays is indexed by AccessIsWrite and Experiment. 753 FunctionCallee AsanErrorCallbackSized[2][2]; 754 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 755 756 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 757 Value *LocalDynamicShadow = nullptr; 758 const StackSafetyGlobalInfo *SSGI; 759 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 760 761 FunctionCallee AMDGPUAddressShared; 762 FunctionCallee AMDGPUAddressPrivate; 763 }; 764 765 class ModuleAddressSanitizer { 766 public: 767 ModuleAddressSanitizer(Module &M, bool CompileKernel = false, 768 bool Recover = false, bool UseGlobalsGC = true, 769 bool UseOdrIndicator = false, 770 AsanDtorKind DestructorKind = AsanDtorKind::Global) 771 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 772 : CompileKernel), 773 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 774 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 775 // Enable aliases as they should have no downside with ODR indicators. 776 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 777 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 778 // Not a typo: ClWithComdat is almost completely pointless without 779 // ClUseGlobalsGC (because then it only works on modules without 780 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 781 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 782 // argument is designed as workaround. Therefore, disable both 783 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 784 // do globals-gc. 785 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 786 DestructorKind(DestructorKind) { 787 C = &(M.getContext()); 788 int LongSize = M.getDataLayout().getPointerSizeInBits(); 789 IntptrTy = Type::getIntNTy(*C, LongSize); 790 TargetTriple = Triple(M.getTargetTriple()); 791 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 792 793 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 794 this->DestructorKind = ClOverrideDestructorKind; 795 assert(this->DestructorKind != AsanDtorKind::Invalid); 796 } 797 798 bool instrumentModule(Module &); 799 800 private: 801 void initializeCallbacks(Module &M); 802 803 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 804 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 805 ArrayRef<GlobalVariable *> ExtendedGlobals, 806 ArrayRef<Constant *> MetadataInitializers); 807 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 808 ArrayRef<GlobalVariable *> ExtendedGlobals, 809 ArrayRef<Constant *> MetadataInitializers, 810 const std::string &UniqueModuleId); 811 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 812 ArrayRef<GlobalVariable *> ExtendedGlobals, 813 ArrayRef<Constant *> MetadataInitializers); 814 void 815 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 816 ArrayRef<GlobalVariable *> ExtendedGlobals, 817 ArrayRef<Constant *> MetadataInitializers); 818 819 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 820 StringRef OriginalName); 821 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 822 StringRef InternalSuffix); 823 Instruction *CreateAsanModuleDtor(Module &M); 824 825 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 826 bool shouldInstrumentGlobal(GlobalVariable *G) const; 827 bool ShouldUseMachOGlobalsSection() const; 828 StringRef getGlobalMetadataSection() const; 829 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 830 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 831 uint64_t getMinRedzoneSizeForGlobal() const { 832 return getRedzoneSizeForScale(Mapping.Scale); 833 } 834 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 835 int GetAsanVersion(const Module &M) const; 836 837 bool CompileKernel; 838 bool Recover; 839 bool UseGlobalsGC; 840 bool UsePrivateAlias; 841 bool UseOdrIndicator; 842 bool UseCtorComdat; 843 AsanDtorKind DestructorKind; 844 Type *IntptrTy; 845 LLVMContext *C; 846 Triple TargetTriple; 847 ShadowMapping Mapping; 848 FunctionCallee AsanPoisonGlobals; 849 FunctionCallee AsanUnpoisonGlobals; 850 FunctionCallee AsanRegisterGlobals; 851 FunctionCallee AsanUnregisterGlobals; 852 FunctionCallee AsanRegisterImageGlobals; 853 FunctionCallee AsanUnregisterImageGlobals; 854 FunctionCallee AsanRegisterElfGlobals; 855 FunctionCallee AsanUnregisterElfGlobals; 856 857 Function *AsanCtorFunction = nullptr; 858 Function *AsanDtorFunction = nullptr; 859 }; 860 861 // Stack poisoning does not play well with exception handling. 862 // When an exception is thrown, we essentially bypass the code 863 // that unpoisones the stack. This is why the run-time library has 864 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 865 // stack in the interceptor. This however does not work inside the 866 // actual function which catches the exception. Most likely because the 867 // compiler hoists the load of the shadow value somewhere too high. 868 // This causes asan to report a non-existing bug on 453.povray. 869 // It sounds like an LLVM bug. 870 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 871 Function &F; 872 AddressSanitizer &ASan; 873 DIBuilder DIB; 874 LLVMContext *C; 875 Type *IntptrTy; 876 Type *IntptrPtrTy; 877 ShadowMapping Mapping; 878 879 SmallVector<AllocaInst *, 16> AllocaVec; 880 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 881 SmallVector<Instruction *, 8> RetVec; 882 883 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 884 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 885 FunctionCallee AsanSetShadowFunc[0x100] = {}; 886 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 887 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 888 889 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 890 struct AllocaPoisonCall { 891 IntrinsicInst *InsBefore; 892 AllocaInst *AI; 893 uint64_t Size; 894 bool DoPoison; 895 }; 896 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 897 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 898 bool HasUntracedLifetimeIntrinsic = false; 899 900 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 901 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 902 AllocaInst *DynamicAllocaLayout = nullptr; 903 IntrinsicInst *LocalEscapeCall = nullptr; 904 905 bool HasInlineAsm = false; 906 bool HasReturnsTwiceCall = false; 907 bool PoisonStack; 908 909 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 910 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 911 C(ASan.C), IntptrTy(ASan.IntptrTy), 912 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 913 PoisonStack(ClStack && 914 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 915 916 bool runOnFunction() { 917 if (!PoisonStack) 918 return false; 919 920 if (ClRedzoneByvalArgs) 921 copyArgsPassedByValToAllocas(); 922 923 // Collect alloca, ret, lifetime instructions etc. 924 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 925 926 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 927 928 initializeCallbacks(*F.getParent()); 929 930 if (HasUntracedLifetimeIntrinsic) { 931 // If there are lifetime intrinsics which couldn't be traced back to an 932 // alloca, we may not know exactly when a variable enters scope, and 933 // therefore should "fail safe" by not poisoning them. 934 StaticAllocaPoisonCallVec.clear(); 935 DynamicAllocaPoisonCallVec.clear(); 936 } 937 938 processDynamicAllocas(); 939 processStaticAllocas(); 940 941 if (ClDebugStack) { 942 LLVM_DEBUG(dbgs() << F); 943 } 944 return true; 945 } 946 947 // Arguments marked with the "byval" attribute are implicitly copied without 948 // using an alloca instruction. To produce redzones for those arguments, we 949 // copy them a second time into memory allocated with an alloca instruction. 950 void copyArgsPassedByValToAllocas(); 951 952 // Finds all Alloca instructions and puts 953 // poisoned red zones around all of them. 954 // Then unpoison everything back before the function returns. 955 void processStaticAllocas(); 956 void processDynamicAllocas(); 957 958 void createDynamicAllocasInitStorage(); 959 960 // ----------------------- Visitors. 961 /// Collect all Ret instructions, or the musttail call instruction if it 962 /// precedes the return instruction. 963 void visitReturnInst(ReturnInst &RI) { 964 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 965 RetVec.push_back(CI); 966 else 967 RetVec.push_back(&RI); 968 } 969 970 /// Collect all Resume instructions. 971 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 972 973 /// Collect all CatchReturnInst instructions. 974 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 975 976 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 977 Value *SavedStack) { 978 IRBuilder<> IRB(InstBefore); 979 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 980 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 981 // need to adjust extracted SP to compute the address of the most recent 982 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 983 // this purpose. 984 if (!isa<ReturnInst>(InstBefore)) { 985 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 986 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 987 {IntptrTy}); 988 989 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 990 991 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 992 DynamicAreaOffset); 993 } 994 995 IRB.CreateCall( 996 AsanAllocasUnpoisonFunc, 997 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 998 } 999 1000 // Unpoison dynamic allocas redzones. 1001 void unpoisonDynamicAllocas() { 1002 for (Instruction *Ret : RetVec) 1003 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1004 1005 for (Instruction *StackRestoreInst : StackRestoreVec) 1006 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1007 StackRestoreInst->getOperand(0)); 1008 } 1009 1010 // Deploy and poison redzones around dynamic alloca call. To do this, we 1011 // should replace this call with another one with changed parameters and 1012 // replace all its uses with new address, so 1013 // addr = alloca type, old_size, align 1014 // is replaced by 1015 // new_size = (old_size + additional_size) * sizeof(type) 1016 // tmp = alloca i8, new_size, max(align, 32) 1017 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1018 // Additional_size is added to make new memory allocation contain not only 1019 // requested memory, but also left, partial and right redzones. 1020 void handleDynamicAllocaCall(AllocaInst *AI); 1021 1022 /// Collect Alloca instructions we want (and can) handle. 1023 void visitAllocaInst(AllocaInst &AI) { 1024 if (!ASan.isInterestingAlloca(AI)) { 1025 if (AI.isStaticAlloca()) { 1026 // Skip over allocas that are present *before* the first instrumented 1027 // alloca, we don't want to move those around. 1028 if (AllocaVec.empty()) 1029 return; 1030 1031 StaticAllocasToMoveUp.push_back(&AI); 1032 } 1033 return; 1034 } 1035 1036 if (!AI.isStaticAlloca()) 1037 DynamicAllocaVec.push_back(&AI); 1038 else 1039 AllocaVec.push_back(&AI); 1040 } 1041 1042 /// Collect lifetime intrinsic calls to check for use-after-scope 1043 /// errors. 1044 void visitIntrinsicInst(IntrinsicInst &II) { 1045 Intrinsic::ID ID = II.getIntrinsicID(); 1046 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1047 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1048 if (!ASan.UseAfterScope) 1049 return; 1050 if (!II.isLifetimeStartOrEnd()) 1051 return; 1052 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1053 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1054 // If size argument is undefined, don't do anything. 1055 if (Size->isMinusOne()) return; 1056 // Check that size doesn't saturate uint64_t and can 1057 // be stored in IntptrTy. 1058 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1059 if (SizeValue == ~0ULL || 1060 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1061 return; 1062 // Find alloca instruction that corresponds to llvm.lifetime argument. 1063 // Currently we can only handle lifetime markers pointing to the 1064 // beginning of the alloca. 1065 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1066 if (!AI) { 1067 HasUntracedLifetimeIntrinsic = true; 1068 return; 1069 } 1070 // We're interested only in allocas we can handle. 1071 if (!ASan.isInterestingAlloca(*AI)) 1072 return; 1073 bool DoPoison = (ID == Intrinsic::lifetime_end); 1074 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1075 if (AI->isStaticAlloca()) 1076 StaticAllocaPoisonCallVec.push_back(APC); 1077 else if (ClInstrumentDynamicAllocas) 1078 DynamicAllocaPoisonCallVec.push_back(APC); 1079 } 1080 1081 void visitCallBase(CallBase &CB) { 1082 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1083 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1084 HasReturnsTwiceCall |= CI->canReturnTwice(); 1085 } 1086 } 1087 1088 // ---------------------- Helpers. 1089 void initializeCallbacks(Module &M); 1090 1091 // Copies bytes from ShadowBytes into shadow memory for indexes where 1092 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1093 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1094 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1095 IRBuilder<> &IRB, Value *ShadowBase); 1096 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1097 size_t Begin, size_t End, IRBuilder<> &IRB, 1098 Value *ShadowBase); 1099 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1100 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1101 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1102 1103 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1104 1105 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1106 bool Dynamic); 1107 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1108 Instruction *ThenTerm, Value *ValueIfFalse); 1109 }; 1110 1111 } // end anonymous namespace 1112 1113 void ModuleAddressSanitizerPass::printPipeline( 1114 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1115 static_cast<PassInfoMixin<ModuleAddressSanitizerPass> *>(this)->printPipeline( 1116 OS, MapClassName2PassName); 1117 OS << "<"; 1118 if (Options.CompileKernel) 1119 OS << "kernel"; 1120 OS << ">"; 1121 } 1122 1123 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( 1124 const AddressSanitizerOptions &Options, bool UseGlobalGC, 1125 bool UseOdrIndicator, AsanDtorKind DestructorKind) 1126 : Options(Options), UseGlobalGC(UseGlobalGC), 1127 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} 1128 1129 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1130 ModuleAnalysisManager &MAM) { 1131 ModuleAddressSanitizer ModuleSanitizer(M, Options.CompileKernel, 1132 Options.Recover, UseGlobalGC, 1133 UseOdrIndicator, DestructorKind); 1134 bool Modified = false; 1135 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1136 const StackSafetyGlobalInfo *const SSGI = 1137 ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr; 1138 for (Function &F : M) { 1139 AddressSanitizer FunctionSanitizer(M, SSGI, Options.CompileKernel, 1140 Options.Recover, Options.UseAfterScope, 1141 Options.UseAfterReturn); 1142 const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1143 Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); 1144 } 1145 Modified |= ModuleSanitizer.instrumentModule(M); 1146 return Modified ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1147 } 1148 1149 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1150 size_t Res = countTrailingZeros(TypeSize / 8); 1151 assert(Res < kNumberOfAccessSizes); 1152 return Res; 1153 } 1154 1155 /// Check if \p G has been created by a trusted compiler pass. 1156 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1157 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1158 if (G->getName().startswith("llvm.") || 1159 // Do not instrument gcov counter arrays. 1160 G->getName().startswith("__llvm_gcov_ctr") || 1161 // Do not instrument rtti proxy symbols for function sanitizer. 1162 G->getName().startswith("__llvm_rtti_proxy")) 1163 return true; 1164 1165 // Do not instrument asan globals. 1166 if (G->getName().startswith(kAsanGenPrefix) || 1167 G->getName().startswith(kSanCovGenPrefix) || 1168 G->getName().startswith(kODRGenPrefix)) 1169 return true; 1170 1171 return false; 1172 } 1173 1174 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1175 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1176 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1177 if (AddrSpace == 3 || AddrSpace == 5) 1178 return true; 1179 return false; 1180 } 1181 1182 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1183 // Shadow >> scale 1184 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1185 if (Mapping.Offset == 0) return Shadow; 1186 // (Shadow >> scale) | offset 1187 Value *ShadowBase; 1188 if (LocalDynamicShadow) 1189 ShadowBase = LocalDynamicShadow; 1190 else 1191 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1192 if (Mapping.OrShadowOffset) 1193 return IRB.CreateOr(Shadow, ShadowBase); 1194 else 1195 return IRB.CreateAdd(Shadow, ShadowBase); 1196 } 1197 1198 // Instrument memset/memmove/memcpy 1199 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1200 IRBuilder<> IRB(MI); 1201 if (isa<MemTransferInst>(MI)) { 1202 IRB.CreateCall( 1203 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1204 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1205 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1206 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1207 } else if (isa<MemSetInst>(MI)) { 1208 IRB.CreateCall( 1209 AsanMemset, 1210 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1211 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1212 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1213 } 1214 MI->eraseFromParent(); 1215 } 1216 1217 /// Check if we want (and can) handle this alloca. 1218 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1219 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1220 1221 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1222 return PreviouslySeenAllocaInfo->getSecond(); 1223 1224 bool IsInteresting = 1225 (AI.getAllocatedType()->isSized() && 1226 // alloca() may be called with 0 size, ignore it. 1227 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1228 // We are only interested in allocas not promotable to registers. 1229 // Promotable allocas are common under -O0. 1230 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1231 // inalloca allocas are not treated as static, and we don't want 1232 // dynamic alloca instrumentation for them as well. 1233 !AI.isUsedWithInAlloca() && 1234 // swifterror allocas are register promoted by ISel 1235 !AI.isSwiftError()); 1236 1237 ProcessedAllocas[&AI] = IsInteresting; 1238 return IsInteresting; 1239 } 1240 1241 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { 1242 // Instrument acesses from different address spaces only for AMDGPU. 1243 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1244 if (PtrTy->getPointerAddressSpace() != 0 && 1245 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1246 return true; 1247 1248 // Ignore swifterror addresses. 1249 // swifterror memory addresses are mem2reg promoted by instruction 1250 // selection. As such they cannot have regular uses like an instrumentation 1251 // function and it makes no sense to track them as memory. 1252 if (Ptr->isSwiftError()) 1253 return true; 1254 1255 // Treat memory accesses to promotable allocas as non-interesting since they 1256 // will not cause memory violations. This greatly speeds up the instrumented 1257 // executable at -O0. 1258 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1259 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1260 return true; 1261 1262 if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && 1263 findAllocaForValue(Ptr)) 1264 return true; 1265 1266 return false; 1267 } 1268 1269 void AddressSanitizer::getInterestingMemoryOperands( 1270 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1271 // Do not instrument the load fetching the dynamic shadow address. 1272 if (LocalDynamicShadow == I) 1273 return; 1274 1275 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1276 if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand())) 1277 return; 1278 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1279 LI->getType(), LI->getAlign()); 1280 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1281 if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand())) 1282 return; 1283 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1284 SI->getValueOperand()->getType(), SI->getAlign()); 1285 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1286 if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand())) 1287 return; 1288 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1289 RMW->getValOperand()->getType(), None); 1290 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1291 if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand())) 1292 return; 1293 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1294 XCHG->getCompareOperand()->getType(), None); 1295 } else if (auto CI = dyn_cast<CallInst>(I)) { 1296 if (CI->getIntrinsicID() == Intrinsic::masked_load || 1297 CI->getIntrinsicID() == Intrinsic::masked_store) { 1298 bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_store; 1299 // Masked store has an initial operand for the value. 1300 unsigned OpOffset = IsWrite ? 1 : 0; 1301 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1302 return; 1303 1304 auto BasePtr = CI->getOperand(OpOffset); 1305 if (ignoreAccess(I, BasePtr)) 1306 return; 1307 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1308 MaybeAlign Alignment = Align(1); 1309 // Otherwise no alignment guarantees. We probably got Undef. 1310 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1311 Alignment = Op->getMaybeAlignValue(); 1312 Value *Mask = CI->getOperand(2 + OpOffset); 1313 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1314 } else { 1315 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { 1316 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1317 ignoreAccess(I, CI->getArgOperand(ArgNo))) 1318 continue; 1319 Type *Ty = CI->getParamByValType(ArgNo); 1320 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1321 } 1322 } 1323 } 1324 } 1325 1326 static bool isPointerOperand(Value *V) { 1327 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1328 } 1329 1330 // This is a rough heuristic; it may cause both false positives and 1331 // false negatives. The proper implementation requires cooperation with 1332 // the frontend. 1333 static bool isInterestingPointerComparison(Instruction *I) { 1334 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1335 if (!Cmp->isRelational()) 1336 return false; 1337 } else { 1338 return false; 1339 } 1340 return isPointerOperand(I->getOperand(0)) && 1341 isPointerOperand(I->getOperand(1)); 1342 } 1343 1344 // This is a rough heuristic; it may cause both false positives and 1345 // false negatives. The proper implementation requires cooperation with 1346 // the frontend. 1347 static bool isInterestingPointerSubtraction(Instruction *I) { 1348 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1349 if (BO->getOpcode() != Instruction::Sub) 1350 return false; 1351 } else { 1352 return false; 1353 } 1354 return isPointerOperand(I->getOperand(0)) && 1355 isPointerOperand(I->getOperand(1)); 1356 } 1357 1358 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1359 // If a global variable does not have dynamic initialization we don't 1360 // have to instrument it. However, if a global does not have initializer 1361 // at all, we assume it has dynamic initializer (in other TU). 1362 if (!G->hasInitializer()) 1363 return false; 1364 1365 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit) 1366 return false; 1367 1368 return true; 1369 } 1370 1371 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1372 Instruction *I) { 1373 IRBuilder<> IRB(I); 1374 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1375 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1376 for (Value *&i : Param) { 1377 if (i->getType()->isPointerTy()) 1378 i = IRB.CreatePointerCast(i, IntptrTy); 1379 } 1380 IRB.CreateCall(F, Param); 1381 } 1382 1383 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1384 Instruction *InsertBefore, Value *Addr, 1385 MaybeAlign Alignment, unsigned Granularity, 1386 uint32_t TypeSize, bool IsWrite, 1387 Value *SizeArgument, bool UseCalls, 1388 uint32_t Exp) { 1389 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1390 // if the data is properly aligned. 1391 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1392 TypeSize == 128) && 1393 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1394 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1395 nullptr, UseCalls, Exp); 1396 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1397 IsWrite, nullptr, UseCalls, Exp); 1398 } 1399 1400 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1401 const DataLayout &DL, Type *IntptrTy, 1402 Value *Mask, Instruction *I, 1403 Value *Addr, MaybeAlign Alignment, 1404 unsigned Granularity, Type *OpType, 1405 bool IsWrite, Value *SizeArgument, 1406 bool UseCalls, uint32_t Exp) { 1407 auto *VTy = cast<FixedVectorType>(OpType); 1408 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1409 unsigned Num = VTy->getNumElements(); 1410 auto Zero = ConstantInt::get(IntptrTy, 0); 1411 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1412 Value *InstrumentedAddress = nullptr; 1413 Instruction *InsertBefore = I; 1414 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1415 // dyn_cast as we might get UndefValue 1416 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1417 if (Masked->isZero()) 1418 // Mask is constant false, so no instrumentation needed. 1419 continue; 1420 // If we have a true or undef value, fall through to doInstrumentAddress 1421 // with InsertBefore == I 1422 } 1423 } else { 1424 IRBuilder<> IRB(I); 1425 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1426 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1427 InsertBefore = ThenTerm; 1428 } 1429 1430 IRBuilder<> IRB(InsertBefore); 1431 InstrumentedAddress = 1432 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1433 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1434 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1435 UseCalls, Exp); 1436 } 1437 } 1438 1439 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1440 InterestingMemoryOperand &O, bool UseCalls, 1441 const DataLayout &DL) { 1442 Value *Addr = O.getPtr(); 1443 1444 // Optimization experiments. 1445 // The experiments can be used to evaluate potential optimizations that remove 1446 // instrumentation (assess false negatives). Instead of completely removing 1447 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1448 // experiments that want to remove instrumentation of this instruction). 1449 // If Exp is non-zero, this pass will emit special calls into runtime 1450 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1451 // make runtime terminate the program in a special way (with a different 1452 // exit status). Then you run the new compiler on a buggy corpus, collect 1453 // the special terminations (ideally, you don't see them at all -- no false 1454 // negatives) and make the decision on the optimization. 1455 uint32_t Exp = ClForceExperiment; 1456 1457 if (ClOpt && ClOptGlobals) { 1458 // If initialization order checking is disabled, a simple access to a 1459 // dynamically initialized global is always valid. 1460 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1461 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1462 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1463 NumOptimizedAccessesToGlobalVar++; 1464 return; 1465 } 1466 } 1467 1468 if (ClOpt && ClOptStack) { 1469 // A direct inbounds access to a stack variable is always valid. 1470 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1471 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1472 NumOptimizedAccessesToStackVar++; 1473 return; 1474 } 1475 } 1476 1477 if (O.IsWrite) 1478 NumInstrumentedWrites++; 1479 else 1480 NumInstrumentedReads++; 1481 1482 unsigned Granularity = 1 << Mapping.Scale; 1483 if (O.MaybeMask) { 1484 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1485 Addr, O.Alignment, Granularity, O.OpType, 1486 O.IsWrite, nullptr, UseCalls, Exp); 1487 } else { 1488 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1489 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1490 Exp); 1491 } 1492 } 1493 1494 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1495 Value *Addr, bool IsWrite, 1496 size_t AccessSizeIndex, 1497 Value *SizeArgument, 1498 uint32_t Exp) { 1499 IRBuilder<> IRB(InsertBefore); 1500 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1501 CallInst *Call = nullptr; 1502 if (SizeArgument) { 1503 if (Exp == 0) 1504 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1505 {Addr, SizeArgument}); 1506 else 1507 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1508 {Addr, SizeArgument, ExpVal}); 1509 } else { 1510 if (Exp == 0) 1511 Call = 1512 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1513 else 1514 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1515 {Addr, ExpVal}); 1516 } 1517 1518 Call->setCannotMerge(); 1519 return Call; 1520 } 1521 1522 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1523 Value *ShadowValue, 1524 uint32_t TypeSize) { 1525 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1526 // Addr & (Granularity - 1) 1527 Value *LastAccessedByte = 1528 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1529 // (Addr & (Granularity - 1)) + size - 1 1530 if (TypeSize / 8 > 1) 1531 LastAccessedByte = IRB.CreateAdd( 1532 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1533 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1534 LastAccessedByte = 1535 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1536 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1537 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1538 } 1539 1540 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1541 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1542 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { 1543 // Do not instrument unsupported addrspaces. 1544 if (isUnsupportedAMDGPUAddrspace(Addr)) 1545 return nullptr; 1546 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1547 // Follow host instrumentation for global and constant addresses. 1548 if (PtrTy->getPointerAddressSpace() != 0) 1549 return InsertBefore; 1550 // Instrument generic addresses in supported addressspaces. 1551 IRBuilder<> IRB(InsertBefore); 1552 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); 1553 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); 1554 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); 1555 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1556 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); 1557 Value *AddrSpaceZeroLanding = 1558 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1559 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1560 return InsertBefore; 1561 } 1562 1563 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1564 Instruction *InsertBefore, Value *Addr, 1565 uint32_t TypeSize, bool IsWrite, 1566 Value *SizeArgument, bool UseCalls, 1567 uint32_t Exp) { 1568 if (TargetTriple.isAMDGPU()) { 1569 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1570 TypeSize, IsWrite, SizeArgument); 1571 if (!InsertBefore) 1572 return; 1573 } 1574 1575 IRBuilder<> IRB(InsertBefore); 1576 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1577 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1578 1579 if (UseCalls && ClOptimizeCallbacks) { 1580 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1581 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1582 IRB.CreateCall( 1583 Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), 1584 {IRB.CreatePointerCast(Addr, Int8PtrTy), 1585 ConstantInt::get(Int32Ty, AccessInfo.Packed)}); 1586 return; 1587 } 1588 1589 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1590 if (UseCalls) { 1591 if (Exp == 0) 1592 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1593 AddrLong); 1594 else 1595 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1596 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1597 return; 1598 } 1599 1600 Type *ShadowTy = 1601 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1602 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1603 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1604 Value *CmpVal = Constant::getNullValue(ShadowTy); 1605 Value *ShadowValue = 1606 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1607 1608 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1609 size_t Granularity = 1ULL << Mapping.Scale; 1610 Instruction *CrashTerm = nullptr; 1611 1612 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1613 // We use branch weights for the slow path check, to indicate that the slow 1614 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1615 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1616 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1617 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1618 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1619 IRB.SetInsertPoint(CheckTerm); 1620 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1621 if (Recover) { 1622 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1623 } else { 1624 BasicBlock *CrashBlock = 1625 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1626 CrashTerm = new UnreachableInst(*C, CrashBlock); 1627 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1628 ReplaceInstWithInst(CheckTerm, NewTerm); 1629 } 1630 } else { 1631 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1632 } 1633 1634 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1635 AccessSizeIndex, SizeArgument, Exp); 1636 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1637 } 1638 1639 // Instrument unusual size or unusual alignment. 1640 // We can not do it with a single check, so we do 1-byte check for the first 1641 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1642 // to report the actual access size. 1643 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1644 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1645 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1646 IRBuilder<> IRB(InsertBefore); 1647 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1648 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1649 if (UseCalls) { 1650 if (Exp == 0) 1651 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1652 {AddrLong, Size}); 1653 else 1654 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1655 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1656 } else { 1657 Value *LastByte = IRB.CreateIntToPtr( 1658 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1659 Addr->getType()); 1660 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1661 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1662 } 1663 } 1664 1665 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1666 GlobalValue *ModuleName) { 1667 // Set up the arguments to our poison/unpoison functions. 1668 IRBuilder<> IRB(&GlobalInit.front(), 1669 GlobalInit.front().getFirstInsertionPt()); 1670 1671 // Add a call to poison all external globals before the given function starts. 1672 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1673 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1674 1675 // Add calls to unpoison all globals before each return instruction. 1676 for (auto &BB : GlobalInit.getBasicBlockList()) 1677 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1678 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1679 } 1680 1681 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1682 Module &M, GlobalValue *ModuleName) { 1683 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1684 if (!GV) 1685 return; 1686 1687 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1688 if (!CA) 1689 return; 1690 1691 for (Use &OP : CA->operands()) { 1692 if (isa<ConstantAggregateZero>(OP)) continue; 1693 ConstantStruct *CS = cast<ConstantStruct>(OP); 1694 1695 // Must have a function or null ptr. 1696 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1697 if (F->getName() == kAsanModuleCtorName) continue; 1698 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1699 // Don't instrument CTORs that will run before asan.module_ctor. 1700 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1701 continue; 1702 poisonOneInitializer(*F, ModuleName); 1703 } 1704 } 1705 } 1706 1707 const GlobalVariable * 1708 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1709 // In case this function should be expanded to include rules that do not just 1710 // apply when CompileKernel is true, either guard all existing rules with an 1711 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1712 // should also apply to user space. 1713 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1714 1715 const Constant *C = GA.getAliasee(); 1716 1717 // When compiling the kernel, globals that are aliased by symbols prefixed 1718 // by "__" are special and cannot be padded with a redzone. 1719 if (GA.getName().startswith("__")) 1720 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1721 1722 return nullptr; 1723 } 1724 1725 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1726 Type *Ty = G->getValueType(); 1727 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1728 1729 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress) 1730 return false; 1731 if (!Ty->isSized()) return false; 1732 if (!G->hasInitializer()) return false; 1733 // Globals in address space 1 and 4 are supported for AMDGPU. 1734 if (G->getAddressSpace() && 1735 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 1736 return false; 1737 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1738 // Two problems with thread-locals: 1739 // - The address of the main thread's copy can't be computed at link-time. 1740 // - Need to poison all copies, not just the main thread's one. 1741 if (G->isThreadLocal()) return false; 1742 // For now, just ignore this Global if the alignment is large. 1743 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1744 1745 // For non-COFF targets, only instrument globals known to be defined by this 1746 // TU. 1747 // FIXME: We can instrument comdat globals on ELF if we are using the 1748 // GC-friendly metadata scheme. 1749 if (!TargetTriple.isOSBinFormatCOFF()) { 1750 if (!G->hasExactDefinition() || G->hasComdat()) 1751 return false; 1752 } else { 1753 // On COFF, don't instrument non-ODR linkages. 1754 if (G->isInterposable()) 1755 return false; 1756 } 1757 1758 // If a comdat is present, it must have a selection kind that implies ODR 1759 // semantics: no duplicates, any, or exact match. 1760 if (Comdat *C = G->getComdat()) { 1761 switch (C->getSelectionKind()) { 1762 case Comdat::Any: 1763 case Comdat::ExactMatch: 1764 case Comdat::NoDeduplicate: 1765 break; 1766 case Comdat::Largest: 1767 case Comdat::SameSize: 1768 return false; 1769 } 1770 } 1771 1772 if (G->hasSection()) { 1773 // The kernel uses explicit sections for mostly special global variables 1774 // that we should not instrument. E.g. the kernel may rely on their layout 1775 // without redzones, or remove them at link time ("discard.*"), etc. 1776 if (CompileKernel) 1777 return false; 1778 1779 StringRef Section = G->getSection(); 1780 1781 // Globals from llvm.metadata aren't emitted, do not instrument them. 1782 if (Section == "llvm.metadata") return false; 1783 // Do not instrument globals from special LLVM sections. 1784 if (Section.contains("__llvm") || Section.contains("__LLVM")) 1785 return false; 1786 1787 // Do not instrument function pointers to initialization and termination 1788 // routines: dynamic linker will not properly handle redzones. 1789 if (Section.startswith(".preinit_array") || 1790 Section.startswith(".init_array") || 1791 Section.startswith(".fini_array")) { 1792 return false; 1793 } 1794 1795 // Do not instrument user-defined sections (with names resembling 1796 // valid C identifiers) 1797 if (TargetTriple.isOSBinFormatELF()) { 1798 if (llvm::all_of(Section, 1799 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 1800 return false; 1801 } 1802 1803 // On COFF, if the section name contains '$', it is highly likely that the 1804 // user is using section sorting to create an array of globals similar to 1805 // the way initialization callbacks are registered in .init_array and 1806 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1807 // to such globals is counterproductive, because the intent is that they 1808 // will form an array, and out-of-bounds accesses are expected. 1809 // See https://github.com/google/sanitizers/issues/305 1810 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1811 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1812 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1813 << *G << "\n"); 1814 return false; 1815 } 1816 1817 if (TargetTriple.isOSBinFormatMachO()) { 1818 StringRef ParsedSegment, ParsedSection; 1819 unsigned TAA = 0, StubSize = 0; 1820 bool TAAParsed; 1821 cantFail(MCSectionMachO::ParseSectionSpecifier( 1822 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 1823 1824 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1825 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1826 // them. 1827 if (ParsedSegment == "__OBJC" || 1828 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1829 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1830 return false; 1831 } 1832 // See https://github.com/google/sanitizers/issues/32 1833 // Constant CFString instances are compiled in the following way: 1834 // -- the string buffer is emitted into 1835 // __TEXT,__cstring,cstring_literals 1836 // -- the constant NSConstantString structure referencing that buffer 1837 // is placed into __DATA,__cfstring 1838 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1839 // Moreover, it causes the linker to crash on OS X 10.7 1840 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1841 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1842 return false; 1843 } 1844 // The linker merges the contents of cstring_literals and removes the 1845 // trailing zeroes. 1846 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1847 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1848 return false; 1849 } 1850 } 1851 } 1852 1853 if (CompileKernel) { 1854 // Globals that prefixed by "__" are special and cannot be padded with a 1855 // redzone. 1856 if (G->getName().startswith("__")) 1857 return false; 1858 } 1859 1860 return true; 1861 } 1862 1863 // On Mach-O platforms, we emit global metadata in a separate section of the 1864 // binary in order to allow the linker to properly dead strip. This is only 1865 // supported on recent versions of ld64. 1866 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1867 if (!TargetTriple.isOSBinFormatMachO()) 1868 return false; 1869 1870 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1871 return true; 1872 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1873 return true; 1874 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1875 return true; 1876 if (TargetTriple.isDriverKit()) 1877 return true; 1878 1879 return false; 1880 } 1881 1882 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1883 switch (TargetTriple.getObjectFormat()) { 1884 case Triple::COFF: return ".ASAN$GL"; 1885 case Triple::ELF: return "asan_globals"; 1886 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1887 case Triple::Wasm: 1888 case Triple::GOFF: 1889 case Triple::SPIRV: 1890 case Triple::XCOFF: 1891 case Triple::DXContainer: 1892 report_fatal_error( 1893 "ModuleAddressSanitizer not implemented for object file format"); 1894 case Triple::UnknownObjectFormat: 1895 break; 1896 } 1897 llvm_unreachable("unsupported object format"); 1898 } 1899 1900 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1901 IRBuilder<> IRB(*C); 1902 1903 // Declare our poisoning and unpoisoning functions. 1904 AsanPoisonGlobals = 1905 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1906 AsanUnpoisonGlobals = 1907 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1908 1909 // Declare functions that register/unregister globals. 1910 AsanRegisterGlobals = M.getOrInsertFunction( 1911 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1912 AsanUnregisterGlobals = M.getOrInsertFunction( 1913 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1914 1915 // Declare the functions that find globals in a shared object and then invoke 1916 // the (un)register function on them. 1917 AsanRegisterImageGlobals = M.getOrInsertFunction( 1918 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1919 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1920 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1921 1922 AsanRegisterElfGlobals = 1923 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1924 IntptrTy, IntptrTy, IntptrTy); 1925 AsanUnregisterElfGlobals = 1926 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1927 IntptrTy, IntptrTy, IntptrTy); 1928 } 1929 1930 // Put the metadata and the instrumented global in the same group. This ensures 1931 // that the metadata is discarded if the instrumented global is discarded. 1932 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 1933 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1934 Module &M = *G->getParent(); 1935 Comdat *C = G->getComdat(); 1936 if (!C) { 1937 if (!G->hasName()) { 1938 // If G is unnamed, it must be internal. Give it an artificial name 1939 // so we can put it in a comdat. 1940 assert(G->hasLocalLinkage()); 1941 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 1942 } 1943 1944 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 1945 std::string Name = std::string(G->getName()); 1946 Name += InternalSuffix; 1947 C = M.getOrInsertComdat(Name); 1948 } else { 1949 C = M.getOrInsertComdat(G->getName()); 1950 } 1951 1952 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 1953 // linkage to internal linkage so that a symbol table entry is emitted. This 1954 // is necessary in order to create the comdat group. 1955 if (TargetTriple.isOSBinFormatCOFF()) { 1956 C->setSelectionKind(Comdat::NoDeduplicate); 1957 if (G->hasPrivateLinkage()) 1958 G->setLinkage(GlobalValue::InternalLinkage); 1959 } 1960 G->setComdat(C); 1961 } 1962 1963 assert(G->hasComdat()); 1964 Metadata->setComdat(G->getComdat()); 1965 } 1966 1967 // Create a separate metadata global and put it in the appropriate ASan 1968 // global registration section. 1969 GlobalVariable * 1970 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 1971 StringRef OriginalName) { 1972 auto Linkage = TargetTriple.isOSBinFormatMachO() 1973 ? GlobalVariable::InternalLinkage 1974 : GlobalVariable::PrivateLinkage; 1975 GlobalVariable *Metadata = new GlobalVariable( 1976 M, Initializer->getType(), false, Linkage, Initializer, 1977 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 1978 Metadata->setSection(getGlobalMetadataSection()); 1979 return Metadata; 1980 } 1981 1982 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 1983 AsanDtorFunction = Function::createWithDefaultAttr( 1984 FunctionType::get(Type::getVoidTy(*C), false), 1985 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 1986 AsanDtorFunction->addFnAttr(Attribute::NoUnwind); 1987 // Ensure Dtor cannot be discarded, even if in a comdat. 1988 appendToUsed(M, {AsanDtorFunction}); 1989 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 1990 1991 return ReturnInst::Create(*C, AsanDtorBB); 1992 } 1993 1994 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 1995 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1996 ArrayRef<Constant *> MetadataInitializers) { 1997 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 1998 auto &DL = M.getDataLayout(); 1999 2000 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2001 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2002 Constant *Initializer = MetadataInitializers[i]; 2003 GlobalVariable *G = ExtendedGlobals[i]; 2004 GlobalVariable *Metadata = 2005 CreateMetadataGlobal(M, Initializer, G->getName()); 2006 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2007 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2008 MetadataGlobals[i] = Metadata; 2009 2010 // The MSVC linker always inserts padding when linking incrementally. We 2011 // cope with that by aligning each struct to its size, which must be a power 2012 // of two. 2013 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2014 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2015 "global metadata will not be padded appropriately"); 2016 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2017 2018 SetComdatForGlobalMetadata(G, Metadata, ""); 2019 } 2020 2021 // Update llvm.compiler.used, adding the new metadata globals. This is 2022 // needed so that during LTO these variables stay alive. 2023 if (!MetadataGlobals.empty()) 2024 appendToCompilerUsed(M, MetadataGlobals); 2025 } 2026 2027 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2028 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2029 ArrayRef<Constant *> MetadataInitializers, 2030 const std::string &UniqueModuleId) { 2031 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2032 2033 // Putting globals in a comdat changes the semantic and potentially cause 2034 // false negative odr violations at link time. If odr indicators are used, we 2035 // keep the comdat sections, as link time odr violations will be dectected on 2036 // the odr indicator symbols. 2037 bool UseComdatForGlobalsGC = UseOdrIndicator; 2038 2039 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2040 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2041 GlobalVariable *G = ExtendedGlobals[i]; 2042 GlobalVariable *Metadata = 2043 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2044 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2045 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2046 MetadataGlobals[i] = Metadata; 2047 2048 if (UseComdatForGlobalsGC) 2049 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2050 } 2051 2052 // Update llvm.compiler.used, adding the new metadata globals. This is 2053 // needed so that during LTO these variables stay alive. 2054 if (!MetadataGlobals.empty()) 2055 appendToCompilerUsed(M, MetadataGlobals); 2056 2057 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2058 // to look up the loaded image that contains it. Second, we can store in it 2059 // whether registration has already occurred, to prevent duplicate 2060 // registration. 2061 // 2062 // Common linkage ensures that there is only one global per shared library. 2063 GlobalVariable *RegisteredFlag = new GlobalVariable( 2064 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2065 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2066 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2067 2068 // Create start and stop symbols. 2069 GlobalVariable *StartELFMetadata = new GlobalVariable( 2070 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2071 "__start_" + getGlobalMetadataSection()); 2072 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2073 GlobalVariable *StopELFMetadata = new GlobalVariable( 2074 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2075 "__stop_" + getGlobalMetadataSection()); 2076 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2077 2078 // Create a call to register the globals with the runtime. 2079 IRB.CreateCall(AsanRegisterElfGlobals, 2080 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2081 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2082 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2083 2084 // We also need to unregister globals at the end, e.g., when a shared library 2085 // gets closed. 2086 if (DestructorKind != AsanDtorKind::None) { 2087 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2088 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2089 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2090 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2091 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2092 } 2093 } 2094 2095 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2096 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2097 ArrayRef<Constant *> MetadataInitializers) { 2098 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2099 2100 // On recent Mach-O platforms, use a structure which binds the liveness of 2101 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2102 // created to be added to llvm.compiler.used 2103 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2104 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2105 2106 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2107 Constant *Initializer = MetadataInitializers[i]; 2108 GlobalVariable *G = ExtendedGlobals[i]; 2109 GlobalVariable *Metadata = 2110 CreateMetadataGlobal(M, Initializer, G->getName()); 2111 2112 // On recent Mach-O platforms, we emit the global metadata in a way that 2113 // allows the linker to properly strip dead globals. 2114 auto LivenessBinder = 2115 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2116 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2117 GlobalVariable *Liveness = new GlobalVariable( 2118 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2119 Twine("__asan_binder_") + G->getName()); 2120 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2121 LivenessGlobals[i] = Liveness; 2122 } 2123 2124 // Update llvm.compiler.used, adding the new liveness globals. This is 2125 // needed so that during LTO these variables stay alive. The alternative 2126 // would be to have the linker handling the LTO symbols, but libLTO 2127 // current API does not expose access to the section for each symbol. 2128 if (!LivenessGlobals.empty()) 2129 appendToCompilerUsed(M, LivenessGlobals); 2130 2131 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2132 // to look up the loaded image that contains it. Second, we can store in it 2133 // whether registration has already occurred, to prevent duplicate 2134 // registration. 2135 // 2136 // common linkage ensures that there is only one global per shared library. 2137 GlobalVariable *RegisteredFlag = new GlobalVariable( 2138 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2139 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2140 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2141 2142 IRB.CreateCall(AsanRegisterImageGlobals, 2143 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2144 2145 // We also need to unregister globals at the end, e.g., when a shared library 2146 // gets closed. 2147 if (DestructorKind != AsanDtorKind::None) { 2148 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2149 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2150 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2151 } 2152 } 2153 2154 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2155 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2156 ArrayRef<Constant *> MetadataInitializers) { 2157 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2158 unsigned N = ExtendedGlobals.size(); 2159 assert(N > 0); 2160 2161 // On platforms that don't have a custom metadata section, we emit an array 2162 // of global metadata structures. 2163 ArrayType *ArrayOfGlobalStructTy = 2164 ArrayType::get(MetadataInitializers[0]->getType(), N); 2165 auto AllGlobals = new GlobalVariable( 2166 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2167 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2168 if (Mapping.Scale > 3) 2169 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2170 2171 IRB.CreateCall(AsanRegisterGlobals, 2172 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2173 ConstantInt::get(IntptrTy, N)}); 2174 2175 // We also need to unregister globals at the end, e.g., when a shared library 2176 // gets closed. 2177 if (DestructorKind != AsanDtorKind::None) { 2178 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2179 IrbDtor.CreateCall(AsanUnregisterGlobals, 2180 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2181 ConstantInt::get(IntptrTy, N)}); 2182 } 2183 } 2184 2185 // This function replaces all global variables with new variables that have 2186 // trailing redzones. It also creates a function that poisons 2187 // redzones and inserts this function into llvm.global_ctors. 2188 // Sets *CtorComdat to true if the global registration code emitted into the 2189 // asan constructor is comdat-compatible. 2190 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2191 bool *CtorComdat) { 2192 *CtorComdat = false; 2193 2194 // Build set of globals that are aliased by some GA, where 2195 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2196 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2197 if (CompileKernel) { 2198 for (auto &GA : M.aliases()) { 2199 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2200 AliasedGlobalExclusions.insert(GV); 2201 } 2202 } 2203 2204 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2205 for (auto &G : M.globals()) { 2206 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2207 GlobalsToChange.push_back(&G); 2208 } 2209 2210 size_t n = GlobalsToChange.size(); 2211 if (n == 0) { 2212 *CtorComdat = true; 2213 return false; 2214 } 2215 2216 auto &DL = M.getDataLayout(); 2217 2218 // A global is described by a structure 2219 // size_t beg; 2220 // size_t size; 2221 // size_t size_with_redzone; 2222 // const char *name; 2223 // const char *module_name; 2224 // size_t has_dynamic_init; 2225 // size_t padding_for_windows_msvc_incremental_link; 2226 // size_t odr_indicator; 2227 // We initialize an array of such structures and pass it to a run-time call. 2228 StructType *GlobalStructTy = 2229 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2230 IntptrTy, IntptrTy, IntptrTy); 2231 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2232 SmallVector<Constant *, 16> Initializers(n); 2233 2234 bool HasDynamicallyInitializedGlobals = false; 2235 2236 // We shouldn't merge same module names, as this string serves as unique 2237 // module ID in runtime. 2238 GlobalVariable *ModuleName = createPrivateGlobalForString( 2239 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2240 2241 for (size_t i = 0; i < n; i++) { 2242 GlobalVariable *G = GlobalsToChange[i]; 2243 2244 GlobalValue::SanitizerMetadata MD; 2245 if (G->hasSanitizerMetadata()) 2246 MD = G->getSanitizerMetadata(); 2247 2248 // TODO: Symbol names in the descriptor can be demangled by the runtime 2249 // library. This could save ~0.4% of VM size for a private large binary. 2250 std::string NameForGlobal = llvm::demangle(G->getName().str()); 2251 GlobalVariable *Name = 2252 createPrivateGlobalForString(M, NameForGlobal, 2253 /*AllowMerging*/ true, kAsanGenPrefix); 2254 2255 Type *Ty = G->getValueType(); 2256 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2257 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2258 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2259 2260 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2261 Constant *NewInitializer = ConstantStruct::get( 2262 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2263 2264 // Create a new global variable with enough space for a redzone. 2265 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2266 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2267 Linkage = GlobalValue::InternalLinkage; 2268 GlobalVariable *NewGlobal = new GlobalVariable( 2269 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2270 G->getThreadLocalMode(), G->getAddressSpace()); 2271 NewGlobal->copyAttributesFrom(G); 2272 NewGlobal->setComdat(G->getComdat()); 2273 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2274 // Don't fold globals with redzones. ODR violation detector and redzone 2275 // poisoning implicitly creates a dependence on the global's address, so it 2276 // is no longer valid for it to be marked unnamed_addr. 2277 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2278 2279 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2280 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2281 G->isConstant()) { 2282 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2283 if (Seq && Seq->isCString()) 2284 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2285 } 2286 2287 // Transfer the debug info and type metadata. The payload starts at offset 2288 // zero so we can copy the metadata over as is. 2289 NewGlobal->copyMetadata(G, 0); 2290 2291 Value *Indices2[2]; 2292 Indices2[0] = IRB.getInt32(0); 2293 Indices2[1] = IRB.getInt32(0); 2294 2295 G->replaceAllUsesWith( 2296 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2297 NewGlobal->takeName(G); 2298 G->eraseFromParent(); 2299 NewGlobals[i] = NewGlobal; 2300 2301 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2302 GlobalValue *InstrumentedGlobal = NewGlobal; 2303 2304 bool CanUsePrivateAliases = 2305 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2306 TargetTriple.isOSBinFormatWasm(); 2307 if (CanUsePrivateAliases && UsePrivateAlias) { 2308 // Create local alias for NewGlobal to avoid crash on ODR between 2309 // instrumented and non-instrumented libraries. 2310 InstrumentedGlobal = 2311 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2312 } 2313 2314 // ODR should not happen for local linkage. 2315 if (NewGlobal->hasLocalLinkage()) { 2316 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2317 IRB.getInt8PtrTy()); 2318 } else if (UseOdrIndicator) { 2319 // With local aliases, we need to provide another externally visible 2320 // symbol __odr_asan_XXX to detect ODR violation. 2321 auto *ODRIndicatorSym = 2322 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2323 Constant::getNullValue(IRB.getInt8Ty()), 2324 kODRGenPrefix + NameForGlobal, nullptr, 2325 NewGlobal->getThreadLocalMode()); 2326 2327 // Set meaningful attributes for indicator symbol. 2328 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2329 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2330 ODRIndicatorSym->setAlignment(Align(1)); 2331 ODRIndicator = ODRIndicatorSym; 2332 } 2333 2334 Constant *Initializer = ConstantStruct::get( 2335 GlobalStructTy, 2336 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2337 ConstantInt::get(IntptrTy, SizeInBytes), 2338 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2339 ConstantExpr::getPointerCast(Name, IntptrTy), 2340 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2341 ConstantInt::get(IntptrTy, MD.IsDynInit), 2342 Constant::getNullValue(IntptrTy), 2343 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2344 2345 if (ClInitializers && MD.IsDynInit) 2346 HasDynamicallyInitializedGlobals = true; 2347 2348 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2349 2350 Initializers[i] = Initializer; 2351 } 2352 2353 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2354 // ConstantMerge'ing them. 2355 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2356 for (size_t i = 0; i < n; i++) { 2357 GlobalVariable *G = NewGlobals[i]; 2358 if (G->getName().empty()) continue; 2359 GlobalsToAddToUsedList.push_back(G); 2360 } 2361 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2362 2363 std::string ELFUniqueModuleId = 2364 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2365 : ""; 2366 2367 if (!ELFUniqueModuleId.empty()) { 2368 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2369 *CtorComdat = true; 2370 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2371 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2372 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2373 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2374 } else { 2375 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2376 } 2377 2378 // Create calls for poisoning before initializers run and unpoisoning after. 2379 if (HasDynamicallyInitializedGlobals) 2380 createInitializerPoisonCalls(M, ModuleName); 2381 2382 LLVM_DEBUG(dbgs() << M); 2383 return true; 2384 } 2385 2386 uint64_t 2387 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2388 constexpr uint64_t kMaxRZ = 1 << 18; 2389 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2390 2391 uint64_t RZ = 0; 2392 if (SizeInBytes <= MinRZ / 2) { 2393 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2394 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2395 // half of MinRZ. 2396 RZ = MinRZ - SizeInBytes; 2397 } else { 2398 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2399 RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2400 2401 // Round up to multiple of MinRZ. 2402 if (SizeInBytes % MinRZ) 2403 RZ += MinRZ - (SizeInBytes % MinRZ); 2404 } 2405 2406 assert((RZ + SizeInBytes) % MinRZ == 0); 2407 2408 return RZ; 2409 } 2410 2411 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2412 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2413 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2414 int Version = 8; 2415 // 32-bit Android is one version ahead because of the switch to dynamic 2416 // shadow. 2417 Version += (LongSize == 32 && isAndroid); 2418 return Version; 2419 } 2420 2421 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2422 initializeCallbacks(M); 2423 2424 // Create a module constructor. A destructor is created lazily because not all 2425 // platforms, and not all modules need it. 2426 if (CompileKernel) { 2427 // The kernel always builds with its own runtime, and therefore does not 2428 // need the init and version check calls. 2429 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2430 } else { 2431 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2432 std::string VersionCheckName = 2433 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2434 std::tie(AsanCtorFunction, std::ignore) = 2435 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2436 kAsanInitName, /*InitArgTypes=*/{}, 2437 /*InitArgs=*/{}, VersionCheckName); 2438 } 2439 2440 bool CtorComdat = true; 2441 if (ClGlobals) { 2442 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2443 InstrumentGlobals(IRB, M, &CtorComdat); 2444 } 2445 2446 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2447 2448 // Put the constructor and destructor in comdat if both 2449 // (1) global instrumentation is not TU-specific 2450 // (2) target is ELF. 2451 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2452 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2453 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2454 if (AsanDtorFunction) { 2455 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2456 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2457 } 2458 } else { 2459 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2460 if (AsanDtorFunction) 2461 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2462 } 2463 2464 return true; 2465 } 2466 2467 void AddressSanitizer::initializeCallbacks(Module &M) { 2468 IRBuilder<> IRB(*C); 2469 // Create __asan_report* callbacks. 2470 // IsWrite, TypeSize and Exp are encoded in the function name. 2471 for (int Exp = 0; Exp < 2; Exp++) { 2472 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2473 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2474 const std::string ExpStr = Exp ? "exp_" : ""; 2475 const std::string EndingStr = Recover ? "_noabort" : ""; 2476 2477 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2478 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2479 if (Exp) { 2480 Type *ExpType = Type::getInt32Ty(*C); 2481 Args2.push_back(ExpType); 2482 Args1.push_back(ExpType); 2483 } 2484 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2485 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2486 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2487 2488 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2489 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2490 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2491 2492 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2493 AccessSizeIndex++) { 2494 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2495 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2496 M.getOrInsertFunction( 2497 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2498 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2499 2500 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2501 M.getOrInsertFunction( 2502 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2503 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2504 } 2505 } 2506 } 2507 2508 const std::string MemIntrinCallbackPrefix = 2509 (CompileKernel && !ClKasanMemIntrinCallbackPrefix) 2510 ? std::string("") 2511 : ClMemoryAccessCallbackPrefix; 2512 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2513 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2514 IRB.getInt8PtrTy(), IntptrTy); 2515 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2516 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2517 IRB.getInt8PtrTy(), IntptrTy); 2518 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2519 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2520 IRB.getInt32Ty(), IntptrTy); 2521 2522 AsanHandleNoReturnFunc = 2523 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2524 2525 AsanPtrCmpFunction = 2526 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2527 AsanPtrSubFunction = 2528 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2529 if (Mapping.InGlobal) 2530 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2531 ArrayType::get(IRB.getInt8Ty(), 0)); 2532 2533 AMDGPUAddressShared = M.getOrInsertFunction( 2534 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2535 AMDGPUAddressPrivate = M.getOrInsertFunction( 2536 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2537 } 2538 2539 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2540 // For each NSObject descendant having a +load method, this method is invoked 2541 // by the ObjC runtime before any of the static constructors is called. 2542 // Therefore we need to instrument such methods with a call to __asan_init 2543 // at the beginning in order to initialize our runtime before any access to 2544 // the shadow memory. 2545 // We cannot just ignore these methods, because they may call other 2546 // instrumented functions. 2547 if (F.getName().find(" load]") != std::string::npos) { 2548 FunctionCallee AsanInitFunction = 2549 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2550 IRBuilder<> IRB(&F.front(), F.front().begin()); 2551 IRB.CreateCall(AsanInitFunction, {}); 2552 return true; 2553 } 2554 return false; 2555 } 2556 2557 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2558 // Generate code only when dynamic addressing is needed. 2559 if (Mapping.Offset != kDynamicShadowSentinel) 2560 return false; 2561 2562 IRBuilder<> IRB(&F.front().front()); 2563 if (Mapping.InGlobal) { 2564 if (ClWithIfuncSuppressRemat) { 2565 // An empty inline asm with input reg == output reg. 2566 // An opaque pointer-to-int cast, basically. 2567 InlineAsm *Asm = InlineAsm::get( 2568 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2569 StringRef(""), StringRef("=r,0"), 2570 /*hasSideEffects=*/false); 2571 LocalDynamicShadow = 2572 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2573 } else { 2574 LocalDynamicShadow = 2575 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2576 } 2577 } else { 2578 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2579 kAsanShadowMemoryDynamicAddress, IntptrTy); 2580 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2581 } 2582 return true; 2583 } 2584 2585 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2586 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2587 // to it as uninteresting. This assumes we haven't started processing allocas 2588 // yet. This check is done up front because iterating the use list in 2589 // isInterestingAlloca would be algorithmically slower. 2590 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2591 2592 // Try to get the declaration of llvm.localescape. If it's not in the module, 2593 // we can exit early. 2594 if (!F.getParent()->getFunction("llvm.localescape")) return; 2595 2596 // Look for a call to llvm.localescape call in the entry block. It can't be in 2597 // any other block. 2598 for (Instruction &I : F.getEntryBlock()) { 2599 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2600 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2601 // We found a call. Mark all the allocas passed in as uninteresting. 2602 for (Value *Arg : II->args()) { 2603 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2604 assert(AI && AI->isStaticAlloca() && 2605 "non-static alloca arg to localescape"); 2606 ProcessedAllocas[AI] = false; 2607 } 2608 break; 2609 } 2610 } 2611 } 2612 2613 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2614 bool ShouldInstrument = 2615 ClDebugMin < 0 || ClDebugMax < 0 || 2616 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2617 Instrumented++; 2618 return !ShouldInstrument; 2619 } 2620 2621 bool AddressSanitizer::instrumentFunction(Function &F, 2622 const TargetLibraryInfo *TLI) { 2623 if (F.empty()) 2624 return false; 2625 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2626 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2627 if (F.getName().startswith("__asan_")) return false; 2628 2629 bool FunctionModified = false; 2630 2631 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2632 // This function needs to be called even if the function body is not 2633 // instrumented. 2634 if (maybeInsertAsanInitAtFunctionEntry(F)) 2635 FunctionModified = true; 2636 2637 // Leave if the function doesn't need instrumentation. 2638 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2639 2640 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 2641 return FunctionModified; 2642 2643 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2644 2645 initializeCallbacks(*F.getParent()); 2646 2647 FunctionStateRAII CleanupObj(this); 2648 2649 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2650 2651 // We can't instrument allocas used with llvm.localescape. Only static allocas 2652 // can be passed to that intrinsic. 2653 markEscapedLocalAllocas(F); 2654 2655 // We want to instrument every address only once per basic block (unless there 2656 // are calls between uses). 2657 SmallPtrSet<Value *, 16> TempsToInstrument; 2658 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2659 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2660 SmallVector<Instruction *, 8> NoReturnCalls; 2661 SmallVector<BasicBlock *, 16> AllBlocks; 2662 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2663 2664 // Fill the set of memory operations to instrument. 2665 for (auto &BB : F) { 2666 AllBlocks.push_back(&BB); 2667 TempsToInstrument.clear(); 2668 int NumInsnsPerBB = 0; 2669 for (auto &Inst : BB) { 2670 if (LooksLikeCodeInBug11395(&Inst)) return false; 2671 // Skip instructions inserted by another instrumentation. 2672 if (Inst.hasMetadata(LLVMContext::MD_nosanitize)) 2673 continue; 2674 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2675 getInterestingMemoryOperands(&Inst, InterestingOperands); 2676 2677 if (!InterestingOperands.empty()) { 2678 for (auto &Operand : InterestingOperands) { 2679 if (ClOpt && ClOptSameTemp) { 2680 Value *Ptr = Operand.getPtr(); 2681 // If we have a mask, skip instrumentation if we've already 2682 // instrumented the full object. But don't add to TempsToInstrument 2683 // because we might get another load/store with a different mask. 2684 if (Operand.MaybeMask) { 2685 if (TempsToInstrument.count(Ptr)) 2686 continue; // We've seen this (whole) temp in the current BB. 2687 } else { 2688 if (!TempsToInstrument.insert(Ptr).second) 2689 continue; // We've seen this temp in the current BB. 2690 } 2691 } 2692 OperandsToInstrument.push_back(Operand); 2693 NumInsnsPerBB++; 2694 } 2695 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2696 isInterestingPointerComparison(&Inst)) || 2697 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2698 isInterestingPointerSubtraction(&Inst))) { 2699 PointerComparisonsOrSubtracts.push_back(&Inst); 2700 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2701 // ok, take it. 2702 IntrinToInstrument.push_back(MI); 2703 NumInsnsPerBB++; 2704 } else { 2705 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2706 // A call inside BB. 2707 TempsToInstrument.clear(); 2708 if (CB->doesNotReturn()) 2709 NoReturnCalls.push_back(CB); 2710 } 2711 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2712 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2713 } 2714 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2715 } 2716 } 2717 2718 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2719 OperandsToInstrument.size() + IntrinToInstrument.size() > 2720 (unsigned)ClInstrumentationWithCallsThreshold); 2721 const DataLayout &DL = F.getParent()->getDataLayout(); 2722 ObjectSizeOpts ObjSizeOpts; 2723 ObjSizeOpts.RoundToAlign = true; 2724 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2725 2726 // Instrument. 2727 int NumInstrumented = 0; 2728 for (auto &Operand : OperandsToInstrument) { 2729 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2730 instrumentMop(ObjSizeVis, Operand, UseCalls, 2731 F.getParent()->getDataLayout()); 2732 FunctionModified = true; 2733 } 2734 for (auto Inst : IntrinToInstrument) { 2735 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2736 instrumentMemIntrinsic(Inst); 2737 FunctionModified = true; 2738 } 2739 2740 FunctionStackPoisoner FSP(F, *this); 2741 bool ChangedStack = FSP.runOnFunction(); 2742 2743 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2744 // See e.g. https://github.com/google/sanitizers/issues/37 2745 for (auto CI : NoReturnCalls) { 2746 IRBuilder<> IRB(CI); 2747 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2748 } 2749 2750 for (auto Inst : PointerComparisonsOrSubtracts) { 2751 instrumentPointerComparisonOrSubtraction(Inst); 2752 FunctionModified = true; 2753 } 2754 2755 if (ChangedStack || !NoReturnCalls.empty()) 2756 FunctionModified = true; 2757 2758 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2759 << F << "\n"); 2760 2761 return FunctionModified; 2762 } 2763 2764 // Workaround for bug 11395: we don't want to instrument stack in functions 2765 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2766 // FIXME: remove once the bug 11395 is fixed. 2767 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2768 if (LongSize != 32) return false; 2769 CallInst *CI = dyn_cast<CallInst>(I); 2770 if (!CI || !CI->isInlineAsm()) return false; 2771 if (CI->arg_size() <= 5) 2772 return false; 2773 // We have inline assembly with quite a few arguments. 2774 return true; 2775 } 2776 2777 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2778 IRBuilder<> IRB(*C); 2779 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || 2780 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 2781 const char *MallocNameTemplate = 2782 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always 2783 ? kAsanStackMallocAlwaysNameTemplate 2784 : kAsanStackMallocNameTemplate; 2785 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { 2786 std::string Suffix = itostr(Index); 2787 AsanStackMallocFunc[Index] = M.getOrInsertFunction( 2788 MallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2789 AsanStackFreeFunc[Index] = 2790 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2791 IRB.getVoidTy(), IntptrTy, IntptrTy); 2792 } 2793 } 2794 if (ASan.UseAfterScope) { 2795 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2796 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2797 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2798 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2799 } 2800 2801 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2802 std::ostringstream Name; 2803 Name << kAsanSetShadowPrefix; 2804 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2805 AsanSetShadowFunc[Val] = 2806 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2807 } 2808 2809 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2810 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2811 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2812 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2813 } 2814 2815 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2816 ArrayRef<uint8_t> ShadowBytes, 2817 size_t Begin, size_t End, 2818 IRBuilder<> &IRB, 2819 Value *ShadowBase) { 2820 if (Begin >= End) 2821 return; 2822 2823 const size_t LargestStoreSizeInBytes = 2824 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2825 2826 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2827 2828 // Poison given range in shadow using larges store size with out leading and 2829 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2830 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2831 // middle of a store. 2832 for (size_t i = Begin; i < End;) { 2833 if (!ShadowMask[i]) { 2834 assert(!ShadowBytes[i]); 2835 ++i; 2836 continue; 2837 } 2838 2839 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2840 // Fit store size into the range. 2841 while (StoreSizeInBytes > End - i) 2842 StoreSizeInBytes /= 2; 2843 2844 // Minimize store size by trimming trailing zeros. 2845 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2846 while (j <= StoreSizeInBytes / 2) 2847 StoreSizeInBytes /= 2; 2848 } 2849 2850 uint64_t Val = 0; 2851 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2852 if (IsLittleEndian) 2853 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2854 else 2855 Val = (Val << 8) | ShadowBytes[i + j]; 2856 } 2857 2858 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2859 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2860 IRB.CreateAlignedStore( 2861 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 2862 Align(1)); 2863 2864 i += StoreSizeInBytes; 2865 } 2866 } 2867 2868 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2869 ArrayRef<uint8_t> ShadowBytes, 2870 IRBuilder<> &IRB, Value *ShadowBase) { 2871 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2872 } 2873 2874 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2875 ArrayRef<uint8_t> ShadowBytes, 2876 size_t Begin, size_t End, 2877 IRBuilder<> &IRB, Value *ShadowBase) { 2878 assert(ShadowMask.size() == ShadowBytes.size()); 2879 size_t Done = Begin; 2880 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2881 if (!ShadowMask[i]) { 2882 assert(!ShadowBytes[i]); 2883 continue; 2884 } 2885 uint8_t Val = ShadowBytes[i]; 2886 if (!AsanSetShadowFunc[Val]) 2887 continue; 2888 2889 // Skip same values. 2890 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2891 } 2892 2893 if (j - i >= ClMaxInlinePoisoningSize) { 2894 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2895 IRB.CreateCall(AsanSetShadowFunc[Val], 2896 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2897 ConstantInt::get(IntptrTy, j - i)}); 2898 Done = j; 2899 } 2900 } 2901 2902 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2903 } 2904 2905 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2906 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2907 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2908 assert(LocalStackSize <= kMaxStackMallocSize); 2909 uint64_t MaxSize = kMinStackMallocSize; 2910 for (int i = 0;; i++, MaxSize *= 2) 2911 if (LocalStackSize <= MaxSize) return i; 2912 llvm_unreachable("impossible LocalStackSize"); 2913 } 2914 2915 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2916 Instruction *CopyInsertPoint = &F.front().front(); 2917 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2918 // Insert after the dynamic shadow location is determined 2919 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2920 assert(CopyInsertPoint); 2921 } 2922 IRBuilder<> IRB(CopyInsertPoint); 2923 const DataLayout &DL = F.getParent()->getDataLayout(); 2924 for (Argument &Arg : F.args()) { 2925 if (Arg.hasByValAttr()) { 2926 Type *Ty = Arg.getParamByValType(); 2927 const Align Alignment = 2928 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 2929 2930 AllocaInst *AI = IRB.CreateAlloca( 2931 Ty, nullptr, 2932 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2933 ".byval"); 2934 AI->setAlignment(Alignment); 2935 Arg.replaceAllUsesWith(AI); 2936 2937 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2938 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 2939 } 2940 } 2941 } 2942 2943 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2944 Value *ValueIfTrue, 2945 Instruction *ThenTerm, 2946 Value *ValueIfFalse) { 2947 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2948 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2949 PHI->addIncoming(ValueIfFalse, CondBlock); 2950 BasicBlock *ThenBlock = ThenTerm->getParent(); 2951 PHI->addIncoming(ValueIfTrue, ThenBlock); 2952 return PHI; 2953 } 2954 2955 Value *FunctionStackPoisoner::createAllocaForLayout( 2956 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2957 AllocaInst *Alloca; 2958 if (Dynamic) { 2959 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2960 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2961 "MyAlloca"); 2962 } else { 2963 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2964 nullptr, "MyAlloca"); 2965 assert(Alloca->isStaticAlloca()); 2966 } 2967 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2968 uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); 2969 Alloca->setAlignment(Align(FrameAlignment)); 2970 return IRB.CreatePointerCast(Alloca, IntptrTy); 2971 } 2972 2973 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2974 BasicBlock &FirstBB = *F.begin(); 2975 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2976 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2977 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2978 DynamicAllocaLayout->setAlignment(Align(32)); 2979 } 2980 2981 void FunctionStackPoisoner::processDynamicAllocas() { 2982 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 2983 assert(DynamicAllocaPoisonCallVec.empty()); 2984 return; 2985 } 2986 2987 // Insert poison calls for lifetime intrinsics for dynamic allocas. 2988 for (const auto &APC : DynamicAllocaPoisonCallVec) { 2989 assert(APC.InsBefore); 2990 assert(APC.AI); 2991 assert(ASan.isInterestingAlloca(*APC.AI)); 2992 assert(!APC.AI->isStaticAlloca()); 2993 2994 IRBuilder<> IRB(APC.InsBefore); 2995 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2996 // Dynamic allocas will be unpoisoned unconditionally below in 2997 // unpoisonDynamicAllocas. 2998 // Flag that we need unpoison static allocas. 2999 } 3000 3001 // Handle dynamic allocas. 3002 createDynamicAllocasInitStorage(); 3003 for (auto &AI : DynamicAllocaVec) 3004 handleDynamicAllocaCall(AI); 3005 unpoisonDynamicAllocas(); 3006 } 3007 3008 /// Collect instructions in the entry block after \p InsBefore which initialize 3009 /// permanent storage for a function argument. These instructions must remain in 3010 /// the entry block so that uninitialized values do not appear in backtraces. An 3011 /// added benefit is that this conserves spill slots. This does not move stores 3012 /// before instrumented / "interesting" allocas. 3013 static void findStoresToUninstrumentedArgAllocas( 3014 AddressSanitizer &ASan, Instruction &InsBefore, 3015 SmallVectorImpl<Instruction *> &InitInsts) { 3016 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3017 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3018 // Argument initialization looks like: 3019 // 1) store <Argument>, <Alloca> OR 3020 // 2) <CastArgument> = cast <Argument> to ... 3021 // store <CastArgument> to <Alloca> 3022 // Do not consider any other kind of instruction. 3023 // 3024 // Note: This covers all known cases, but may not be exhaustive. An 3025 // alternative to pattern-matching stores is to DFS over all Argument uses: 3026 // this might be more general, but is probably much more complicated. 3027 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3028 continue; 3029 if (auto *Store = dyn_cast<StoreInst>(It)) { 3030 // The store destination must be an alloca that isn't interesting for 3031 // ASan to instrument. These are moved up before InsBefore, and they're 3032 // not interesting because allocas for arguments can be mem2reg'd. 3033 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3034 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3035 continue; 3036 3037 Value *Val = Store->getValueOperand(); 3038 bool IsDirectArgInit = isa<Argument>(Val); 3039 bool IsArgInitViaCast = 3040 isa<CastInst>(Val) && 3041 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3042 // Check that the cast appears directly before the store. Otherwise 3043 // moving the cast before InsBefore may break the IR. 3044 Val == It->getPrevNonDebugInstruction(); 3045 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3046 if (!IsArgInit) 3047 continue; 3048 3049 if (IsArgInitViaCast) 3050 InitInsts.push_back(cast<Instruction>(Val)); 3051 InitInsts.push_back(Store); 3052 continue; 3053 } 3054 3055 // Do not reorder past unknown instructions: argument initialization should 3056 // only involve casts and stores. 3057 return; 3058 } 3059 } 3060 3061 void FunctionStackPoisoner::processStaticAllocas() { 3062 if (AllocaVec.empty()) { 3063 assert(StaticAllocaPoisonCallVec.empty()); 3064 return; 3065 } 3066 3067 int StackMallocIdx = -1; 3068 DebugLoc EntryDebugLocation; 3069 if (auto SP = F.getSubprogram()) 3070 EntryDebugLocation = 3071 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3072 3073 Instruction *InsBefore = AllocaVec[0]; 3074 IRBuilder<> IRB(InsBefore); 3075 3076 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3077 // debug info is broken, because only entry-block allocas are treated as 3078 // regular stack slots. 3079 auto InsBeforeB = InsBefore->getParent(); 3080 assert(InsBeforeB == &F.getEntryBlock()); 3081 for (auto *AI : StaticAllocasToMoveUp) 3082 if (AI->getParent() == InsBeforeB) 3083 AI->moveBefore(InsBefore); 3084 3085 // Move stores of arguments into entry-block allocas as well. This prevents 3086 // extra stack slots from being generated (to house the argument values until 3087 // they can be stored into the allocas). This also prevents uninitialized 3088 // values from being shown in backtraces. 3089 SmallVector<Instruction *, 8> ArgInitInsts; 3090 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3091 for (Instruction *ArgInitInst : ArgInitInsts) 3092 ArgInitInst->moveBefore(InsBefore); 3093 3094 // If we have a call to llvm.localescape, keep it in the entry block. 3095 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3096 3097 SmallVector<ASanStackVariableDescription, 16> SVD; 3098 SVD.reserve(AllocaVec.size()); 3099 for (AllocaInst *AI : AllocaVec) { 3100 ASanStackVariableDescription D = {AI->getName().data(), 3101 ASan.getAllocaSizeInBytes(*AI), 3102 0, 3103 AI->getAlign().value(), 3104 AI, 3105 0, 3106 0}; 3107 SVD.push_back(D); 3108 } 3109 3110 // Minimal header size (left redzone) is 4 pointers, 3111 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3112 uint64_t Granularity = 1ULL << Mapping.Scale; 3113 uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); 3114 const ASanStackFrameLayout &L = 3115 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3116 3117 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3118 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3119 for (auto &Desc : SVD) 3120 AllocaToSVDMap[Desc.AI] = &Desc; 3121 3122 // Update SVD with information from lifetime intrinsics. 3123 for (const auto &APC : StaticAllocaPoisonCallVec) { 3124 assert(APC.InsBefore); 3125 assert(APC.AI); 3126 assert(ASan.isInterestingAlloca(*APC.AI)); 3127 assert(APC.AI->isStaticAlloca()); 3128 3129 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3130 Desc.LifetimeSize = Desc.Size; 3131 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3132 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3133 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3134 if (unsigned Line = LifetimeLoc->getLine()) 3135 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3136 } 3137 } 3138 } 3139 3140 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3141 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3142 uint64_t LocalStackSize = L.FrameSize; 3143 bool DoStackMalloc = 3144 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3145 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3146 bool DoDynamicAlloca = ClDynamicAllocaStack; 3147 // Don't do dynamic alloca or stack malloc if: 3148 // 1) There is inline asm: too often it makes assumptions on which registers 3149 // are available. 3150 // 2) There is a returns_twice call (typically setjmp), which is 3151 // optimization-hostile, and doesn't play well with introduced indirect 3152 // register-relative calculation of local variable addresses. 3153 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3154 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3155 3156 Value *StaticAlloca = 3157 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3158 3159 Value *FakeStack; 3160 Value *LocalStackBase; 3161 Value *LocalStackBaseAlloca; 3162 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3163 3164 if (DoStackMalloc) { 3165 LocalStackBaseAlloca = 3166 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3167 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3168 // void *FakeStack = __asan_option_detect_stack_use_after_return 3169 // ? __asan_stack_malloc_N(LocalStackSize) 3170 // : nullptr; 3171 // void *LocalStackBase = (FakeStack) ? FakeStack : 3172 // alloca(LocalStackSize); 3173 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3174 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3175 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3176 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3177 Constant::getNullValue(IRB.getInt32Ty())); 3178 Instruction *Term = 3179 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3180 IRBuilder<> IRBIf(Term); 3181 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3182 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3183 Value *FakeStackValue = 3184 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3185 ConstantInt::get(IntptrTy, LocalStackSize)); 3186 IRB.SetInsertPoint(InsBefore); 3187 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3188 ConstantInt::get(IntptrTy, 0)); 3189 } else { 3190 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3191 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3192 // void *LocalStackBase = (FakeStack) ? FakeStack : 3193 // alloca(LocalStackSize); 3194 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3195 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3196 ConstantInt::get(IntptrTy, LocalStackSize)); 3197 } 3198 Value *NoFakeStack = 3199 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3200 Instruction *Term = 3201 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3202 IRBuilder<> IRBIf(Term); 3203 Value *AllocaValue = 3204 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3205 3206 IRB.SetInsertPoint(InsBefore); 3207 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3208 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3209 DIExprFlags |= DIExpression::DerefBefore; 3210 } else { 3211 // void *FakeStack = nullptr; 3212 // void *LocalStackBase = alloca(LocalStackSize); 3213 FakeStack = ConstantInt::get(IntptrTy, 0); 3214 LocalStackBase = 3215 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3216 LocalStackBaseAlloca = LocalStackBase; 3217 } 3218 3219 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3220 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3221 // later passes and can result in dropped variable coverage in debug info. 3222 Value *LocalStackBaseAllocaPtr = 3223 isa<PtrToIntInst>(LocalStackBaseAlloca) 3224 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3225 : LocalStackBaseAlloca; 3226 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3227 "Variable descriptions relative to ASan stack base will be dropped"); 3228 3229 // Replace Alloca instructions with base+offset. 3230 for (const auto &Desc : SVD) { 3231 AllocaInst *AI = Desc.AI; 3232 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3233 Desc.Offset); 3234 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3235 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3236 AI->getType()); 3237 AI->replaceAllUsesWith(NewAllocaPtr); 3238 } 3239 3240 // The left-most redzone has enough space for at least 4 pointers. 3241 // Write the Magic value to redzone[0]. 3242 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3243 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3244 BasePlus0); 3245 // Write the frame description constant to redzone[1]. 3246 Value *BasePlus1 = IRB.CreateIntToPtr( 3247 IRB.CreateAdd(LocalStackBase, 3248 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3249 IntptrPtrTy); 3250 GlobalVariable *StackDescriptionGlobal = 3251 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3252 /*AllowMerging*/ true, kAsanGenPrefix); 3253 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3254 IRB.CreateStore(Description, BasePlus1); 3255 // Write the PC to redzone[2]. 3256 Value *BasePlus2 = IRB.CreateIntToPtr( 3257 IRB.CreateAdd(LocalStackBase, 3258 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3259 IntptrPtrTy); 3260 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3261 3262 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3263 3264 // Poison the stack red zones at the entry. 3265 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3266 // As mask we must use most poisoned case: red zones and after scope. 3267 // As bytes we can use either the same or just red zones only. 3268 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3269 3270 if (!StaticAllocaPoisonCallVec.empty()) { 3271 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3272 3273 // Poison static allocas near lifetime intrinsics. 3274 for (const auto &APC : StaticAllocaPoisonCallVec) { 3275 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3276 assert(Desc.Offset % L.Granularity == 0); 3277 size_t Begin = Desc.Offset / L.Granularity; 3278 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3279 3280 IRBuilder<> IRB(APC.InsBefore); 3281 copyToShadow(ShadowAfterScope, 3282 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3283 IRB, ShadowBase); 3284 } 3285 } 3286 3287 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3288 SmallVector<uint8_t, 64> ShadowAfterReturn; 3289 3290 // (Un)poison the stack before all ret instructions. 3291 for (Instruction *Ret : RetVec) { 3292 IRBuilder<> IRBRet(Ret); 3293 // Mark the current frame as retired. 3294 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3295 BasePlus0); 3296 if (DoStackMalloc) { 3297 assert(StackMallocIdx >= 0); 3298 // if FakeStack != 0 // LocalStackBase == FakeStack 3299 // // In use-after-return mode, poison the whole stack frame. 3300 // if StackMallocIdx <= 4 3301 // // For small sizes inline the whole thing: 3302 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3303 // **SavedFlagPtr(FakeStack) = 0 3304 // else 3305 // __asan_stack_free_N(FakeStack, LocalStackSize) 3306 // else 3307 // <This is not a fake stack; unpoison the redzones> 3308 Value *Cmp = 3309 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3310 Instruction *ThenTerm, *ElseTerm; 3311 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3312 3313 IRBuilder<> IRBPoison(ThenTerm); 3314 if (StackMallocIdx <= 4) { 3315 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3316 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3317 kAsanStackUseAfterReturnMagic); 3318 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3319 ShadowBase); 3320 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3321 FakeStack, 3322 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3323 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3324 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3325 IRBPoison.CreateStore( 3326 Constant::getNullValue(IRBPoison.getInt8Ty()), 3327 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3328 } else { 3329 // For larger frames call __asan_stack_free_*. 3330 IRBPoison.CreateCall( 3331 AsanStackFreeFunc[StackMallocIdx], 3332 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3333 } 3334 3335 IRBuilder<> IRBElse(ElseTerm); 3336 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3337 } else { 3338 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3339 } 3340 } 3341 3342 // We are done. Remove the old unused alloca instructions. 3343 for (auto AI : AllocaVec) AI->eraseFromParent(); 3344 } 3345 3346 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3347 IRBuilder<> &IRB, bool DoPoison) { 3348 // For now just insert the call to ASan runtime. 3349 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3350 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3351 IRB.CreateCall( 3352 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3353 {AddrArg, SizeArg}); 3354 } 3355 3356 // Handling llvm.lifetime intrinsics for a given %alloca: 3357 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3358 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3359 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3360 // could be poisoned by previous llvm.lifetime.end instruction, as the 3361 // variable may go in and out of scope several times, e.g. in loops). 3362 // (3) if we poisoned at least one %alloca in a function, 3363 // unpoison the whole stack frame at function exit. 3364 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3365 IRBuilder<> IRB(AI); 3366 3367 const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign()); 3368 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3369 3370 Value *Zero = Constant::getNullValue(IntptrTy); 3371 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3372 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3373 3374 // Since we need to extend alloca with additional memory to locate 3375 // redzones, and OldSize is number of allocated blocks with 3376 // ElementSize size, get allocated memory size in bytes by 3377 // OldSize * ElementSize. 3378 const unsigned ElementSize = 3379 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3380 Value *OldSize = 3381 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3382 ConstantInt::get(IntptrTy, ElementSize)); 3383 3384 // PartialSize = OldSize % 32 3385 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3386 3387 // Misalign = kAllocaRzSize - PartialSize; 3388 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3389 3390 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3391 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3392 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3393 3394 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3395 // Alignment is added to locate left redzone, PartialPadding for possible 3396 // partial redzone and kAllocaRzSize for right redzone respectively. 3397 Value *AdditionalChunkSize = IRB.CreateAdd( 3398 ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize), 3399 PartialPadding); 3400 3401 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3402 3403 // Insert new alloca with new NewSize and Alignment params. 3404 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3405 NewAlloca->setAlignment(Alignment); 3406 3407 // NewAddress = Address + Alignment 3408 Value *NewAddress = 3409 IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3410 ConstantInt::get(IntptrTy, Alignment.value())); 3411 3412 // Insert __asan_alloca_poison call for new created alloca. 3413 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3414 3415 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3416 // for unpoisoning stuff. 3417 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3418 3419 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3420 3421 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3422 AI->replaceAllUsesWith(NewAddressPtr); 3423 3424 // We are done. Erase old alloca from parent. 3425 AI->eraseFromParent(); 3426 } 3427 3428 // isSafeAccess returns true if Addr is always inbounds with respect to its 3429 // base object. For example, it is a field access or an array access with 3430 // constant inbounds index. 3431 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3432 Value *Addr, uint64_t TypeSize) const { 3433 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3434 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3435 uint64_t Size = SizeOffset.first.getZExtValue(); 3436 int64_t Offset = SizeOffset.second.getSExtValue(); 3437 // Three checks are required to ensure safety: 3438 // . Offset >= 0 (since the offset is given from the base ptr) 3439 // . Size >= Offset (unsigned) 3440 // . Size - Offset >= NeededSize (unsigned) 3441 return Offset >= 0 && Size >= uint64_t(Offset) && 3442 Size - uint64_t(Offset) >= TypeSize / 8; 3443 } 3444