1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 // FIXME: This sanitizer does not yet handle scalable vectors 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/BinaryFormat/MachO.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DIBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstVisitor.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCSectionMachO.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/ScopedPrinter.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Transforms/Utils/ModuleUtils.h" 79 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iomanip> 85 #include <limits> 86 #include <memory> 87 #include <sstream> 88 #include <string> 89 #include <tuple> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "asan" 94 95 static const uint64_t kDefaultShadowScale = 3; 96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 98 static const uint64_t kDynamicShadowSentinel = 99 std::numeric_limits<uint64_t>::max(); 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 109 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 111 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 112 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 113 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 114 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 115 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 116 static const uint64_t kEmscriptenShadowOffset = 0; 117 118 static const uint64_t kMyriadShadowScale = 5; 119 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 120 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 121 static const uint64_t kMyriadTagShift = 29; 122 static const uint64_t kMyriadDDRTag = 4; 123 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 124 125 // The shadow memory space is dynamically allocated. 126 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 127 128 static const size_t kMinStackMallocSize = 1 << 6; // 64B 129 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 130 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 131 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 132 133 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 134 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 135 static const uint64_t kAsanCtorAndDtorPriority = 1; 136 // On Emscripten, the system needs more than one priorities for constructors. 137 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 138 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 139 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 140 static const char *const kAsanUnregisterGlobalsName = 141 "__asan_unregister_globals"; 142 static const char *const kAsanRegisterImageGlobalsName = 143 "__asan_register_image_globals"; 144 static const char *const kAsanUnregisterImageGlobalsName = 145 "__asan_unregister_image_globals"; 146 static const char *const kAsanRegisterElfGlobalsName = 147 "__asan_register_elf_globals"; 148 static const char *const kAsanUnregisterElfGlobalsName = 149 "__asan_unregister_elf_globals"; 150 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 151 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 152 static const char *const kAsanInitName = "__asan_init"; 153 static const char *const kAsanVersionCheckNamePrefix = 154 "__asan_version_mismatch_check_v"; 155 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 156 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 157 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 158 static const int kMaxAsanStackMallocSizeClass = 10; 159 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 160 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 161 static const char *const kAsanGenPrefix = "___asan_gen_"; 162 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 163 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 164 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 165 static const char *const kAsanPoisonStackMemoryName = 166 "__asan_poison_stack_memory"; 167 static const char *const kAsanUnpoisonStackMemoryName = 168 "__asan_unpoison_stack_memory"; 169 170 // ASan version script has __asan_* wildcard. Triple underscore prevents a 171 // linker (gold) warning about attempting to export a local symbol. 172 static const char *const kAsanGlobalsRegisteredFlagName = 173 "___asan_globals_registered"; 174 175 static const char *const kAsanOptionDetectUseAfterReturn = 176 "__asan_option_detect_stack_use_after_return"; 177 178 static const char *const kAsanShadowMemoryDynamicAddress = 179 "__asan_shadow_memory_dynamic_address"; 180 181 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 182 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 183 184 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 185 static const size_t kNumberOfAccessSizes = 5; 186 187 static const unsigned kAllocaRzSize = 32; 188 189 // Command-line flags. 190 191 static cl::opt<bool> ClEnableKasan( 192 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 193 cl::Hidden, cl::init(false)); 194 195 static cl::opt<bool> ClRecover( 196 "asan-recover", 197 cl::desc("Enable recovery mode (continue-after-error)."), 198 cl::Hidden, cl::init(false)); 199 200 static cl::opt<bool> ClInsertVersionCheck( 201 "asan-guard-against-version-mismatch", 202 cl::desc("Guard against compiler/runtime version mismatch."), 203 cl::Hidden, cl::init(true)); 204 205 // This flag may need to be replaced with -f[no-]asan-reads. 206 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 207 cl::desc("instrument read instructions"), 208 cl::Hidden, cl::init(true)); 209 210 static cl::opt<bool> ClInstrumentWrites( 211 "asan-instrument-writes", cl::desc("instrument write instructions"), 212 cl::Hidden, cl::init(true)); 213 214 static cl::opt<bool> ClInstrumentAtomics( 215 "asan-instrument-atomics", 216 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 217 cl::init(true)); 218 219 static cl::opt<bool> 220 ClInstrumentByval("asan-instrument-byval", 221 cl::desc("instrument byval call arguments"), cl::Hidden, 222 cl::init(true)); 223 224 static cl::opt<bool> ClAlwaysSlowPath( 225 "asan-always-slow-path", 226 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 227 cl::init(false)); 228 229 static cl::opt<bool> ClForceDynamicShadow( 230 "asan-force-dynamic-shadow", 231 cl::desc("Load shadow address into a local variable for each function"), 232 cl::Hidden, cl::init(false)); 233 234 static cl::opt<bool> 235 ClWithIfunc("asan-with-ifunc", 236 cl::desc("Access dynamic shadow through an ifunc global on " 237 "platforms that support this"), 238 cl::Hidden, cl::init(true)); 239 240 static cl::opt<bool> ClWithIfuncSuppressRemat( 241 "asan-with-ifunc-suppress-remat", 242 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 243 "it through inline asm in prologue."), 244 cl::Hidden, cl::init(true)); 245 246 // This flag limits the number of instructions to be instrumented 247 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 248 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 249 // set it to 10000. 250 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 251 "asan-max-ins-per-bb", cl::init(10000), 252 cl::desc("maximal number of instructions to instrument in any given BB"), 253 cl::Hidden); 254 255 // This flag may need to be replaced with -f[no]asan-stack. 256 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 257 cl::Hidden, cl::init(true)); 258 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 259 "asan-max-inline-poisoning-size", 260 cl::desc( 261 "Inline shadow poisoning for blocks up to the given size in bytes."), 262 cl::Hidden, cl::init(64)); 263 264 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 265 cl::desc("Check stack-use-after-return"), 266 cl::Hidden, cl::init(true)); 267 268 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 269 cl::desc("Create redzones for byval " 270 "arguments (extra copy " 271 "required)"), cl::Hidden, 272 cl::init(true)); 273 274 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 275 cl::desc("Check stack-use-after-scope"), 276 cl::Hidden, cl::init(false)); 277 278 // This flag may need to be replaced with -f[no]asan-globals. 279 static cl::opt<bool> ClGlobals("asan-globals", 280 cl::desc("Handle global objects"), cl::Hidden, 281 cl::init(true)); 282 283 static cl::opt<bool> ClInitializers("asan-initialization-order", 284 cl::desc("Handle C++ initializer order"), 285 cl::Hidden, cl::init(true)); 286 287 static cl::opt<bool> ClInvalidPointerPairs( 288 "asan-detect-invalid-pointer-pair", 289 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 290 cl::init(false)); 291 292 static cl::opt<bool> ClInvalidPointerCmp( 293 "asan-detect-invalid-pointer-cmp", 294 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 295 cl::init(false)); 296 297 static cl::opt<bool> ClInvalidPointerSub( 298 "asan-detect-invalid-pointer-sub", 299 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 300 cl::init(false)); 301 302 static cl::opt<unsigned> ClRealignStack( 303 "asan-realign-stack", 304 cl::desc("Realign stack to the value of this flag (power of two)"), 305 cl::Hidden, cl::init(32)); 306 307 static cl::opt<int> ClInstrumentationWithCallsThreshold( 308 "asan-instrumentation-with-call-threshold", 309 cl::desc( 310 "If the function being instrumented contains more than " 311 "this number of memory accesses, use callbacks instead of " 312 "inline checks (-1 means never use callbacks)."), 313 cl::Hidden, cl::init(7000)); 314 315 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 316 "asan-memory-access-callback-prefix", 317 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 318 cl::init("__asan_")); 319 320 static cl::opt<bool> 321 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 322 cl::desc("instrument dynamic allocas"), 323 cl::Hidden, cl::init(true)); 324 325 static cl::opt<bool> ClSkipPromotableAllocas( 326 "asan-skip-promotable-allocas", 327 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 328 cl::init(true)); 329 330 // These flags allow to change the shadow mapping. 331 // The shadow mapping looks like 332 // Shadow = (Mem >> scale) + offset 333 334 static cl::opt<int> ClMappingScale("asan-mapping-scale", 335 cl::desc("scale of asan shadow mapping"), 336 cl::Hidden, cl::init(0)); 337 338 static cl::opt<uint64_t> 339 ClMappingOffset("asan-mapping-offset", 340 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 341 cl::Hidden, cl::init(0)); 342 343 // Optimization flags. Not user visible, used mostly for testing 344 // and benchmarking the tool. 345 346 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 347 cl::Hidden, cl::init(true)); 348 349 static cl::opt<bool> ClOptSameTemp( 350 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 351 cl::Hidden, cl::init(true)); 352 353 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 354 cl::desc("Don't instrument scalar globals"), 355 cl::Hidden, cl::init(true)); 356 357 static cl::opt<bool> ClOptStack( 358 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 359 cl::Hidden, cl::init(false)); 360 361 static cl::opt<bool> ClDynamicAllocaStack( 362 "asan-stack-dynamic-alloca", 363 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 364 cl::init(true)); 365 366 static cl::opt<uint32_t> ClForceExperiment( 367 "asan-force-experiment", 368 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 369 cl::init(0)); 370 371 static cl::opt<bool> 372 ClUsePrivateAlias("asan-use-private-alias", 373 cl::desc("Use private aliases for global variables"), 374 cl::Hidden, cl::init(false)); 375 376 static cl::opt<bool> 377 ClUseOdrIndicator("asan-use-odr-indicator", 378 cl::desc("Use odr indicators to improve ODR reporting"), 379 cl::Hidden, cl::init(false)); 380 381 static cl::opt<bool> 382 ClUseGlobalsGC("asan-globals-live-support", 383 cl::desc("Use linker features to support dead " 384 "code stripping of globals"), 385 cl::Hidden, cl::init(true)); 386 387 // This is on by default even though there is a bug in gold: 388 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 389 static cl::opt<bool> 390 ClWithComdat("asan-with-comdat", 391 cl::desc("Place ASan constructors in comdat sections"), 392 cl::Hidden, cl::init(true)); 393 394 // Debug flags. 395 396 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 397 cl::init(0)); 398 399 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 400 cl::Hidden, cl::init(0)); 401 402 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 403 cl::desc("Debug func")); 404 405 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 406 cl::Hidden, cl::init(-1)); 407 408 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 409 cl::Hidden, cl::init(-1)); 410 411 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 412 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 413 STATISTIC(NumOptimizedAccessesToGlobalVar, 414 "Number of optimized accesses to global vars"); 415 STATISTIC(NumOptimizedAccessesToStackVar, 416 "Number of optimized accesses to stack vars"); 417 418 namespace { 419 420 /// This struct defines the shadow mapping using the rule: 421 /// shadow = (mem >> Scale) ADD-or-OR Offset. 422 /// If InGlobal is true, then 423 /// extern char __asan_shadow[]; 424 /// shadow = (mem >> Scale) + &__asan_shadow 425 struct ShadowMapping { 426 int Scale; 427 uint64_t Offset; 428 bool OrShadowOffset; 429 bool InGlobal; 430 }; 431 432 } // end anonymous namespace 433 434 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 435 bool IsKasan) { 436 bool IsAndroid = TargetTriple.isAndroid(); 437 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 438 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 439 bool IsNetBSD = TargetTriple.isOSNetBSD(); 440 bool IsPS4CPU = TargetTriple.isPS4CPU(); 441 bool IsLinux = TargetTriple.isOSLinux(); 442 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 443 TargetTriple.getArch() == Triple::ppc64le; 444 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 445 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 446 bool IsMIPS32 = TargetTriple.isMIPS32(); 447 bool IsMIPS64 = TargetTriple.isMIPS64(); 448 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 449 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 450 bool IsWindows = TargetTriple.isOSWindows(); 451 bool IsFuchsia = TargetTriple.isOSFuchsia(); 452 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 453 bool IsEmscripten = TargetTriple.isOSEmscripten(); 454 455 ShadowMapping Mapping; 456 457 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 458 if (ClMappingScale.getNumOccurrences() > 0) { 459 Mapping.Scale = ClMappingScale; 460 } 461 462 if (LongSize == 32) { 463 if (IsAndroid) 464 Mapping.Offset = kDynamicShadowSentinel; 465 else if (IsMIPS32) 466 Mapping.Offset = kMIPS32_ShadowOffset32; 467 else if (IsFreeBSD) 468 Mapping.Offset = kFreeBSD_ShadowOffset32; 469 else if (IsNetBSD) 470 Mapping.Offset = kNetBSD_ShadowOffset32; 471 else if (IsIOS) 472 Mapping.Offset = kDynamicShadowSentinel; 473 else if (IsWindows) 474 Mapping.Offset = kWindowsShadowOffset32; 475 else if (IsEmscripten) 476 Mapping.Offset = kEmscriptenShadowOffset; 477 else if (IsMyriad) { 478 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 479 (kMyriadMemorySize32 >> Mapping.Scale)); 480 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 481 } 482 else 483 Mapping.Offset = kDefaultShadowOffset32; 484 } else { // LongSize == 64 485 // Fuchsia is always PIE, which means that the beginning of the address 486 // space is always available. 487 if (IsFuchsia) 488 Mapping.Offset = 0; 489 else if (IsPPC64) 490 Mapping.Offset = kPPC64_ShadowOffset64; 491 else if (IsSystemZ) 492 Mapping.Offset = kSystemZ_ShadowOffset64; 493 else if (IsFreeBSD && !IsMIPS64) { 494 if (IsKasan) 495 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 496 else 497 Mapping.Offset = kFreeBSD_ShadowOffset64; 498 } else if (IsNetBSD) { 499 if (IsKasan) 500 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 501 else 502 Mapping.Offset = kNetBSD_ShadowOffset64; 503 } else if (IsPS4CPU) 504 Mapping.Offset = kPS4CPU_ShadowOffset64; 505 else if (IsLinux && IsX86_64) { 506 if (IsKasan) 507 Mapping.Offset = kLinuxKasan_ShadowOffset64; 508 else 509 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 510 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 511 } else if (IsWindows && IsX86_64) { 512 Mapping.Offset = kWindowsShadowOffset64; 513 } else if (IsMIPS64) 514 Mapping.Offset = kMIPS64_ShadowOffset64; 515 else if (IsIOS) 516 Mapping.Offset = kDynamicShadowSentinel; 517 else if (IsAArch64) 518 Mapping.Offset = kAArch64_ShadowOffset64; 519 else 520 Mapping.Offset = kDefaultShadowOffset64; 521 } 522 523 if (ClForceDynamicShadow) { 524 Mapping.Offset = kDynamicShadowSentinel; 525 } 526 527 if (ClMappingOffset.getNumOccurrences() > 0) { 528 Mapping.Offset = ClMappingOffset; 529 } 530 531 // OR-ing shadow offset if more efficient (at least on x86) if the offset 532 // is a power of two, but on ppc64 we have to use add since the shadow 533 // offset is not necessary 1/8-th of the address space. On SystemZ, 534 // we could OR the constant in a single instruction, but it's more 535 // efficient to load it once and use indexed addressing. 536 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 537 !(Mapping.Offset & (Mapping.Offset - 1)) && 538 Mapping.Offset != kDynamicShadowSentinel; 539 bool IsAndroidWithIfuncSupport = 540 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 541 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 542 543 return Mapping; 544 } 545 546 static uint64_t getRedzoneSizeForScale(int MappingScale) { 547 // Redzone used for stack and globals is at least 32 bytes. 548 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 549 return std::max(32U, 1U << MappingScale); 550 } 551 552 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 553 if (TargetTriple.isOSEmscripten()) { 554 return kAsanEmscriptenCtorAndDtorPriority; 555 } else { 556 return kAsanCtorAndDtorPriority; 557 } 558 } 559 560 namespace { 561 562 /// Module analysis for getting various metadata about the module. 563 class ASanGlobalsMetadataWrapperPass : public ModulePass { 564 public: 565 static char ID; 566 567 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 568 initializeASanGlobalsMetadataWrapperPassPass( 569 *PassRegistry::getPassRegistry()); 570 } 571 572 bool runOnModule(Module &M) override { 573 GlobalsMD = GlobalsMetadata(M); 574 return false; 575 } 576 577 StringRef getPassName() const override { 578 return "ASanGlobalsMetadataWrapperPass"; 579 } 580 581 void getAnalysisUsage(AnalysisUsage &AU) const override { 582 AU.setPreservesAll(); 583 } 584 585 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 586 587 private: 588 GlobalsMetadata GlobalsMD; 589 }; 590 591 char ASanGlobalsMetadataWrapperPass::ID = 0; 592 593 /// AddressSanitizer: instrument the code in module to find memory bugs. 594 struct AddressSanitizer { 595 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 596 bool CompileKernel = false, bool Recover = false, 597 bool UseAfterScope = false) 598 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 599 : CompileKernel), 600 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 601 UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { 602 C = &(M.getContext()); 603 LongSize = M.getDataLayout().getPointerSizeInBits(); 604 IntptrTy = Type::getIntNTy(*C, LongSize); 605 TargetTriple = Triple(M.getTargetTriple()); 606 607 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 608 } 609 610 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 611 uint64_t ArraySize = 1; 612 if (AI.isArrayAllocation()) { 613 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 614 assert(CI && "non-constant array size"); 615 ArraySize = CI->getZExtValue(); 616 } 617 Type *Ty = AI.getAllocatedType(); 618 uint64_t SizeInBytes = 619 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 620 return SizeInBytes * ArraySize; 621 } 622 623 /// Check if we want (and can) handle this alloca. 624 bool isInterestingAlloca(const AllocaInst &AI); 625 626 bool ignoreAccess(Value *Ptr); 627 void getInterestingMemoryOperands( 628 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 629 630 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 631 InterestingMemoryOperand &O, bool UseCalls, 632 const DataLayout &DL); 633 void instrumentPointerComparisonOrSubtraction(Instruction *I); 634 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 635 Value *Addr, uint32_t TypeSize, bool IsWrite, 636 Value *SizeArgument, bool UseCalls, uint32_t Exp); 637 void instrumentUnusualSizeOrAlignment(Instruction *I, 638 Instruction *InsertBefore, Value *Addr, 639 uint32_t TypeSize, bool IsWrite, 640 Value *SizeArgument, bool UseCalls, 641 uint32_t Exp); 642 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 643 Value *ShadowValue, uint32_t TypeSize); 644 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 645 bool IsWrite, size_t AccessSizeIndex, 646 Value *SizeArgument, uint32_t Exp); 647 void instrumentMemIntrinsic(MemIntrinsic *MI); 648 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 649 bool suppressInstrumentationSiteForDebug(int &Instrumented); 650 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 651 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 652 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 653 void markEscapedLocalAllocas(Function &F); 654 655 private: 656 friend struct FunctionStackPoisoner; 657 658 void initializeCallbacks(Module &M); 659 660 bool LooksLikeCodeInBug11395(Instruction *I); 661 bool GlobalIsLinkerInitialized(GlobalVariable *G); 662 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 663 uint64_t TypeSize) const; 664 665 /// Helper to cleanup per-function state. 666 struct FunctionStateRAII { 667 AddressSanitizer *Pass; 668 669 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 670 assert(Pass->ProcessedAllocas.empty() && 671 "last pass forgot to clear cache"); 672 assert(!Pass->LocalDynamicShadow); 673 } 674 675 ~FunctionStateRAII() { 676 Pass->LocalDynamicShadow = nullptr; 677 Pass->ProcessedAllocas.clear(); 678 } 679 }; 680 681 LLVMContext *C; 682 Triple TargetTriple; 683 int LongSize; 684 bool CompileKernel; 685 bool Recover; 686 bool UseAfterScope; 687 Type *IntptrTy; 688 ShadowMapping Mapping; 689 FunctionCallee AsanHandleNoReturnFunc; 690 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 691 Constant *AsanShadowGlobal; 692 693 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 694 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 695 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 696 697 // These arrays is indexed by AccessIsWrite and Experiment. 698 FunctionCallee AsanErrorCallbackSized[2][2]; 699 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 700 701 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 702 Value *LocalDynamicShadow = nullptr; 703 const GlobalsMetadata &GlobalsMD; 704 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 705 }; 706 707 class AddressSanitizerLegacyPass : public FunctionPass { 708 public: 709 static char ID; 710 711 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 712 bool Recover = false, 713 bool UseAfterScope = false) 714 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 715 UseAfterScope(UseAfterScope) { 716 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 717 } 718 719 StringRef getPassName() const override { 720 return "AddressSanitizerFunctionPass"; 721 } 722 723 void getAnalysisUsage(AnalysisUsage &AU) const override { 724 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 725 AU.addRequired<TargetLibraryInfoWrapperPass>(); 726 } 727 728 bool runOnFunction(Function &F) override { 729 GlobalsMetadata &GlobalsMD = 730 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 731 const TargetLibraryInfo *TLI = 732 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 733 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 734 UseAfterScope); 735 return ASan.instrumentFunction(F, TLI); 736 } 737 738 private: 739 bool CompileKernel; 740 bool Recover; 741 bool UseAfterScope; 742 }; 743 744 class ModuleAddressSanitizer { 745 public: 746 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 747 bool CompileKernel = false, bool Recover = false, 748 bool UseGlobalsGC = true, bool UseOdrIndicator = false) 749 : GlobalsMD(*GlobalsMD), 750 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 751 : CompileKernel), 752 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 753 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 754 // Enable aliases as they should have no downside with ODR indicators. 755 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 756 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 757 // Not a typo: ClWithComdat is almost completely pointless without 758 // ClUseGlobalsGC (because then it only works on modules without 759 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 760 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 761 // argument is designed as workaround. Therefore, disable both 762 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 763 // do globals-gc. 764 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel) { 765 C = &(M.getContext()); 766 int LongSize = M.getDataLayout().getPointerSizeInBits(); 767 IntptrTy = Type::getIntNTy(*C, LongSize); 768 TargetTriple = Triple(M.getTargetTriple()); 769 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 770 } 771 772 bool instrumentModule(Module &); 773 774 private: 775 void initializeCallbacks(Module &M); 776 777 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 778 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 779 ArrayRef<GlobalVariable *> ExtendedGlobals, 780 ArrayRef<Constant *> MetadataInitializers); 781 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 782 ArrayRef<GlobalVariable *> ExtendedGlobals, 783 ArrayRef<Constant *> MetadataInitializers, 784 const std::string &UniqueModuleId); 785 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 786 ArrayRef<GlobalVariable *> ExtendedGlobals, 787 ArrayRef<Constant *> MetadataInitializers); 788 void 789 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 790 ArrayRef<GlobalVariable *> ExtendedGlobals, 791 ArrayRef<Constant *> MetadataInitializers); 792 793 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 794 StringRef OriginalName); 795 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 796 StringRef InternalSuffix); 797 Instruction *CreateAsanModuleDtor(Module &M); 798 799 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 800 bool shouldInstrumentGlobal(GlobalVariable *G) const; 801 bool ShouldUseMachOGlobalsSection() const; 802 StringRef getGlobalMetadataSection() const; 803 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 804 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 805 uint64_t getMinRedzoneSizeForGlobal() const { 806 return getRedzoneSizeForScale(Mapping.Scale); 807 } 808 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 809 int GetAsanVersion(const Module &M) const; 810 811 const GlobalsMetadata &GlobalsMD; 812 bool CompileKernel; 813 bool Recover; 814 bool UseGlobalsGC; 815 bool UsePrivateAlias; 816 bool UseOdrIndicator; 817 bool UseCtorComdat; 818 Type *IntptrTy; 819 LLVMContext *C; 820 Triple TargetTriple; 821 ShadowMapping Mapping; 822 FunctionCallee AsanPoisonGlobals; 823 FunctionCallee AsanUnpoisonGlobals; 824 FunctionCallee AsanRegisterGlobals; 825 FunctionCallee AsanUnregisterGlobals; 826 FunctionCallee AsanRegisterImageGlobals; 827 FunctionCallee AsanUnregisterImageGlobals; 828 FunctionCallee AsanRegisterElfGlobals; 829 FunctionCallee AsanUnregisterElfGlobals; 830 831 Function *AsanCtorFunction = nullptr; 832 Function *AsanDtorFunction = nullptr; 833 }; 834 835 class ModuleAddressSanitizerLegacyPass : public ModulePass { 836 public: 837 static char ID; 838 839 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, 840 bool Recover = false, 841 bool UseGlobalGC = true, 842 bool UseOdrIndicator = false) 843 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 844 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { 845 initializeModuleAddressSanitizerLegacyPassPass( 846 *PassRegistry::getPassRegistry()); 847 } 848 849 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 850 851 void getAnalysisUsage(AnalysisUsage &AU) const override { 852 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 853 } 854 855 bool runOnModule(Module &M) override { 856 GlobalsMetadata &GlobalsMD = 857 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 858 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 859 UseGlobalGC, UseOdrIndicator); 860 return ASanModule.instrumentModule(M); 861 } 862 863 private: 864 bool CompileKernel; 865 bool Recover; 866 bool UseGlobalGC; 867 bool UseOdrIndicator; 868 }; 869 870 // Stack poisoning does not play well with exception handling. 871 // When an exception is thrown, we essentially bypass the code 872 // that unpoisones the stack. This is why the run-time library has 873 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 874 // stack in the interceptor. This however does not work inside the 875 // actual function which catches the exception. Most likely because the 876 // compiler hoists the load of the shadow value somewhere too high. 877 // This causes asan to report a non-existing bug on 453.povray. 878 // It sounds like an LLVM bug. 879 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 880 Function &F; 881 AddressSanitizer &ASan; 882 DIBuilder DIB; 883 LLVMContext *C; 884 Type *IntptrTy; 885 Type *IntptrPtrTy; 886 ShadowMapping Mapping; 887 888 SmallVector<AllocaInst *, 16> AllocaVec; 889 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 890 SmallVector<Instruction *, 8> RetVec; 891 unsigned StackAlignment; 892 893 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 894 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 895 FunctionCallee AsanSetShadowFunc[0x100] = {}; 896 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 897 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 898 899 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 900 struct AllocaPoisonCall { 901 IntrinsicInst *InsBefore; 902 AllocaInst *AI; 903 uint64_t Size; 904 bool DoPoison; 905 }; 906 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 907 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 908 bool HasUntracedLifetimeIntrinsic = false; 909 910 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 911 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 912 AllocaInst *DynamicAllocaLayout = nullptr; 913 IntrinsicInst *LocalEscapeCall = nullptr; 914 915 // Maps Value to an AllocaInst from which the Value is originated. 916 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 917 AllocaForValueMapTy AllocaForValue; 918 919 bool HasInlineAsm = false; 920 bool HasReturnsTwiceCall = false; 921 922 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 923 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 924 C(ASan.C), IntptrTy(ASan.IntptrTy), 925 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 926 StackAlignment(1 << Mapping.Scale) {} 927 928 bool runOnFunction() { 929 if (!ClStack) return false; 930 931 if (ClRedzoneByvalArgs) 932 copyArgsPassedByValToAllocas(); 933 934 // Collect alloca, ret, lifetime instructions etc. 935 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 936 937 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 938 939 initializeCallbacks(*F.getParent()); 940 941 if (HasUntracedLifetimeIntrinsic) { 942 // If there are lifetime intrinsics which couldn't be traced back to an 943 // alloca, we may not know exactly when a variable enters scope, and 944 // therefore should "fail safe" by not poisoning them. 945 StaticAllocaPoisonCallVec.clear(); 946 DynamicAllocaPoisonCallVec.clear(); 947 } 948 949 processDynamicAllocas(); 950 processStaticAllocas(); 951 952 if (ClDebugStack) { 953 LLVM_DEBUG(dbgs() << F); 954 } 955 return true; 956 } 957 958 // Arguments marked with the "byval" attribute are implicitly copied without 959 // using an alloca instruction. To produce redzones for those arguments, we 960 // copy them a second time into memory allocated with an alloca instruction. 961 void copyArgsPassedByValToAllocas(); 962 963 // Finds all Alloca instructions and puts 964 // poisoned red zones around all of them. 965 // Then unpoison everything back before the function returns. 966 void processStaticAllocas(); 967 void processDynamicAllocas(); 968 969 void createDynamicAllocasInitStorage(); 970 971 // ----------------------- Visitors. 972 /// Collect all Ret instructions. 973 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 974 975 /// Collect all Resume instructions. 976 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 977 978 /// Collect all CatchReturnInst instructions. 979 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 980 981 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 982 Value *SavedStack) { 983 IRBuilder<> IRB(InstBefore); 984 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 985 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 986 // need to adjust extracted SP to compute the address of the most recent 987 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 988 // this purpose. 989 if (!isa<ReturnInst>(InstBefore)) { 990 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 991 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 992 {IntptrTy}); 993 994 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 995 996 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 997 DynamicAreaOffset); 998 } 999 1000 IRB.CreateCall( 1001 AsanAllocasUnpoisonFunc, 1002 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1003 } 1004 1005 // Unpoison dynamic allocas redzones. 1006 void unpoisonDynamicAllocas() { 1007 for (auto &Ret : RetVec) 1008 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1009 1010 for (auto &StackRestoreInst : StackRestoreVec) 1011 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1012 StackRestoreInst->getOperand(0)); 1013 } 1014 1015 // Deploy and poison redzones around dynamic alloca call. To do this, we 1016 // should replace this call with another one with changed parameters and 1017 // replace all its uses with new address, so 1018 // addr = alloca type, old_size, align 1019 // is replaced by 1020 // new_size = (old_size + additional_size) * sizeof(type) 1021 // tmp = alloca i8, new_size, max(align, 32) 1022 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1023 // Additional_size is added to make new memory allocation contain not only 1024 // requested memory, but also left, partial and right redzones. 1025 void handleDynamicAllocaCall(AllocaInst *AI); 1026 1027 /// Collect Alloca instructions we want (and can) handle. 1028 void visitAllocaInst(AllocaInst &AI) { 1029 if (!ASan.isInterestingAlloca(AI)) { 1030 if (AI.isStaticAlloca()) { 1031 // Skip over allocas that are present *before* the first instrumented 1032 // alloca, we don't want to move those around. 1033 if (AllocaVec.empty()) 1034 return; 1035 1036 StaticAllocasToMoveUp.push_back(&AI); 1037 } 1038 return; 1039 } 1040 1041 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1042 if (!AI.isStaticAlloca()) 1043 DynamicAllocaVec.push_back(&AI); 1044 else 1045 AllocaVec.push_back(&AI); 1046 } 1047 1048 /// Collect lifetime intrinsic calls to check for use-after-scope 1049 /// errors. 1050 void visitIntrinsicInst(IntrinsicInst &II) { 1051 Intrinsic::ID ID = II.getIntrinsicID(); 1052 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1053 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1054 if (!ASan.UseAfterScope) 1055 return; 1056 if (!II.isLifetimeStartOrEnd()) 1057 return; 1058 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1059 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1060 // If size argument is undefined, don't do anything. 1061 if (Size->isMinusOne()) return; 1062 // Check that size doesn't saturate uint64_t and can 1063 // be stored in IntptrTy. 1064 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1065 if (SizeValue == ~0ULL || 1066 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1067 return; 1068 // Find alloca instruction that corresponds to llvm.lifetime argument. 1069 AllocaInst *AI = 1070 llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue); 1071 if (!AI) { 1072 HasUntracedLifetimeIntrinsic = true; 1073 return; 1074 } 1075 // We're interested only in allocas we can handle. 1076 if (!ASan.isInterestingAlloca(*AI)) 1077 return; 1078 bool DoPoison = (ID == Intrinsic::lifetime_end); 1079 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1080 if (AI->isStaticAlloca()) 1081 StaticAllocaPoisonCallVec.push_back(APC); 1082 else if (ClInstrumentDynamicAllocas) 1083 DynamicAllocaPoisonCallVec.push_back(APC); 1084 } 1085 1086 void visitCallBase(CallBase &CB) { 1087 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1088 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1089 HasReturnsTwiceCall |= CI->canReturnTwice(); 1090 } 1091 } 1092 1093 // ---------------------- Helpers. 1094 void initializeCallbacks(Module &M); 1095 1096 // Copies bytes from ShadowBytes into shadow memory for indexes where 1097 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1098 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1099 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1100 IRBuilder<> &IRB, Value *ShadowBase); 1101 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1102 size_t Begin, size_t End, IRBuilder<> &IRB, 1103 Value *ShadowBase); 1104 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1105 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1106 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1107 1108 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1109 1110 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1111 bool Dynamic); 1112 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1113 Instruction *ThenTerm, Value *ValueIfFalse); 1114 }; 1115 1116 } // end anonymous namespace 1117 1118 void LocationMetadata::parse(MDNode *MDN) { 1119 assert(MDN->getNumOperands() == 3); 1120 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1121 Filename = DIFilename->getString(); 1122 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1123 ColumnNo = 1124 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1125 } 1126 1127 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1128 // we want to sanitize instead and reading this metadata on each pass over a 1129 // function instead of reading module level metadata at first. 1130 GlobalsMetadata::GlobalsMetadata(Module &M) { 1131 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1132 if (!Globals) 1133 return; 1134 for (auto MDN : Globals->operands()) { 1135 // Metadata node contains the global and the fields of "Entry". 1136 assert(MDN->getNumOperands() == 5); 1137 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1138 // The optimizer may optimize away a global entirely. 1139 if (!V) 1140 continue; 1141 auto *StrippedV = V->stripPointerCasts(); 1142 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1143 if (!GV) 1144 continue; 1145 // We can already have an entry for GV if it was merged with another 1146 // global. 1147 Entry &E = Entries[GV]; 1148 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1149 E.SourceLoc.parse(Loc); 1150 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1151 E.Name = Name->getString(); 1152 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1153 E.IsDynInit |= IsDynInit->isOne(); 1154 ConstantInt *IsExcluded = 1155 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1156 E.IsExcluded |= IsExcluded->isOne(); 1157 } 1158 } 1159 1160 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1161 1162 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1163 ModuleAnalysisManager &AM) { 1164 return GlobalsMetadata(M); 1165 } 1166 1167 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1168 bool UseAfterScope) 1169 : CompileKernel(CompileKernel), Recover(Recover), 1170 UseAfterScope(UseAfterScope) {} 1171 1172 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1173 AnalysisManager<Function> &AM) { 1174 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1175 Module &M = *F.getParent(); 1176 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1177 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1178 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); 1179 if (Sanitizer.instrumentFunction(F, TLI)) 1180 return PreservedAnalyses::none(); 1181 return PreservedAnalyses::all(); 1182 } 1183 1184 report_fatal_error( 1185 "The ASanGlobalsMetadataAnalysis is required to run before " 1186 "AddressSanitizer can run"); 1187 return PreservedAnalyses::all(); 1188 } 1189 1190 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, 1191 bool Recover, 1192 bool UseGlobalGC, 1193 bool UseOdrIndicator) 1194 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1195 UseOdrIndicator(UseOdrIndicator) {} 1196 1197 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1198 AnalysisManager<Module> &AM) { 1199 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1200 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1201 UseGlobalGC, UseOdrIndicator); 1202 if (Sanitizer.instrumentModule(M)) 1203 return PreservedAnalyses::none(); 1204 return PreservedAnalyses::all(); 1205 } 1206 1207 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1208 "Read metadata to mark which globals should be instrumented " 1209 "when running ASan.", 1210 false, true) 1211 1212 char AddressSanitizerLegacyPass::ID = 0; 1213 1214 INITIALIZE_PASS_BEGIN( 1215 AddressSanitizerLegacyPass, "asan", 1216 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1217 false) 1218 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1219 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1220 INITIALIZE_PASS_END( 1221 AddressSanitizerLegacyPass, "asan", 1222 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1223 false) 1224 1225 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1226 bool Recover, 1227 bool UseAfterScope) { 1228 assert(!CompileKernel || Recover); 1229 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1230 } 1231 1232 char ModuleAddressSanitizerLegacyPass::ID = 0; 1233 1234 INITIALIZE_PASS( 1235 ModuleAddressSanitizerLegacyPass, "asan-module", 1236 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1237 "ModulePass", 1238 false, false) 1239 1240 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1241 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { 1242 assert(!CompileKernel || Recover); 1243 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, 1244 UseGlobalsGC, UseOdrIndicator); 1245 } 1246 1247 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1248 size_t Res = countTrailingZeros(TypeSize / 8); 1249 assert(Res < kNumberOfAccessSizes); 1250 return Res; 1251 } 1252 1253 /// Create a global describing a source location. 1254 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1255 LocationMetadata MD) { 1256 Constant *LocData[] = { 1257 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1258 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1259 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1260 }; 1261 auto LocStruct = ConstantStruct::getAnon(LocData); 1262 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1263 GlobalValue::PrivateLinkage, LocStruct, 1264 kAsanGenPrefix); 1265 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1266 return GV; 1267 } 1268 1269 /// Check if \p G has been created by a trusted compiler pass. 1270 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1271 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1272 if (G->getName().startswith("llvm.")) 1273 return true; 1274 1275 // Do not instrument asan globals. 1276 if (G->getName().startswith(kAsanGenPrefix) || 1277 G->getName().startswith(kSanCovGenPrefix) || 1278 G->getName().startswith(kODRGenPrefix)) 1279 return true; 1280 1281 // Do not instrument gcov counter arrays. 1282 if (G->getName() == "__llvm_gcov_ctr") 1283 return true; 1284 1285 return false; 1286 } 1287 1288 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1289 // Shadow >> scale 1290 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1291 if (Mapping.Offset == 0) return Shadow; 1292 // (Shadow >> scale) | offset 1293 Value *ShadowBase; 1294 if (LocalDynamicShadow) 1295 ShadowBase = LocalDynamicShadow; 1296 else 1297 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1298 if (Mapping.OrShadowOffset) 1299 return IRB.CreateOr(Shadow, ShadowBase); 1300 else 1301 return IRB.CreateAdd(Shadow, ShadowBase); 1302 } 1303 1304 // Instrument memset/memmove/memcpy 1305 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1306 IRBuilder<> IRB(MI); 1307 if (isa<MemTransferInst>(MI)) { 1308 IRB.CreateCall( 1309 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1310 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1311 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1312 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1313 } else if (isa<MemSetInst>(MI)) { 1314 IRB.CreateCall( 1315 AsanMemset, 1316 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1317 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1318 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1319 } 1320 MI->eraseFromParent(); 1321 } 1322 1323 /// Check if we want (and can) handle this alloca. 1324 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1325 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1326 1327 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1328 return PreviouslySeenAllocaInfo->getSecond(); 1329 1330 bool IsInteresting = 1331 (AI.getAllocatedType()->isSized() && 1332 // alloca() may be called with 0 size, ignore it. 1333 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1334 // We are only interested in allocas not promotable to registers. 1335 // Promotable allocas are common under -O0. 1336 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1337 // inalloca allocas are not treated as static, and we don't want 1338 // dynamic alloca instrumentation for them as well. 1339 !AI.isUsedWithInAlloca() && 1340 // swifterror allocas are register promoted by ISel 1341 !AI.isSwiftError()); 1342 1343 ProcessedAllocas[&AI] = IsInteresting; 1344 return IsInteresting; 1345 } 1346 1347 bool AddressSanitizer::ignoreAccess(Value *Ptr) { 1348 // Do not instrument acesses from different address spaces; we cannot deal 1349 // with them. 1350 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1351 if (PtrTy->getPointerAddressSpace() != 0) 1352 return true; 1353 1354 // Ignore swifterror addresses. 1355 // swifterror memory addresses are mem2reg promoted by instruction 1356 // selection. As such they cannot have regular uses like an instrumentation 1357 // function and it makes no sense to track them as memory. 1358 if (Ptr->isSwiftError()) 1359 return true; 1360 1361 // Treat memory accesses to promotable allocas as non-interesting since they 1362 // will not cause memory violations. This greatly speeds up the instrumented 1363 // executable at -O0. 1364 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1365 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1366 return true; 1367 1368 return false; 1369 } 1370 1371 void AddressSanitizer::getInterestingMemoryOperands( 1372 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1373 // Skip memory accesses inserted by another instrumentation. 1374 if (I->hasMetadata("nosanitize")) 1375 return; 1376 1377 // Do not instrument the load fetching the dynamic shadow address. 1378 if (LocalDynamicShadow == I) 1379 return; 1380 1381 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1382 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) 1383 return; 1384 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1385 LI->getType(), LI->getAlign()); 1386 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1387 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) 1388 return; 1389 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1390 SI->getValueOperand()->getType(), SI->getAlign()); 1391 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1392 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) 1393 return; 1394 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1395 RMW->getValOperand()->getType(), None); 1396 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1397 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) 1398 return; 1399 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1400 XCHG->getCompareOperand()->getType(), None); 1401 } else if (auto CI = dyn_cast<CallInst>(I)) { 1402 auto *F = CI->getCalledFunction(); 1403 if (F && (F->getName().startswith("llvm.masked.load.") || 1404 F->getName().startswith("llvm.masked.store."))) { 1405 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1406 // Masked store has an initial operand for the value. 1407 unsigned OpOffset = IsWrite ? 1 : 0; 1408 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1409 return; 1410 1411 auto BasePtr = CI->getOperand(OpOffset); 1412 if (ignoreAccess(BasePtr)) 1413 return; 1414 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1415 MaybeAlign Alignment = Align(1); 1416 // Otherwise no alignment guarantees. We probably got Undef. 1417 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1418 Alignment = Op->getMaybeAlignValue(); 1419 Value *Mask = CI->getOperand(2 + OpOffset); 1420 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1421 } else { 1422 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { 1423 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1424 ignoreAccess(CI->getArgOperand(ArgNo))) 1425 continue; 1426 Type *Ty = CI->getParamByValType(ArgNo); 1427 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1428 } 1429 } 1430 } 1431 } 1432 1433 static bool isPointerOperand(Value *V) { 1434 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1435 } 1436 1437 // This is a rough heuristic; it may cause both false positives and 1438 // false negatives. The proper implementation requires cooperation with 1439 // the frontend. 1440 static bool isInterestingPointerComparison(Instruction *I) { 1441 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1442 if (!Cmp->isRelational()) 1443 return false; 1444 } else { 1445 return false; 1446 } 1447 return isPointerOperand(I->getOperand(0)) && 1448 isPointerOperand(I->getOperand(1)); 1449 } 1450 1451 // This is a rough heuristic; it may cause both false positives and 1452 // false negatives. The proper implementation requires cooperation with 1453 // the frontend. 1454 static bool isInterestingPointerSubtraction(Instruction *I) { 1455 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1456 if (BO->getOpcode() != Instruction::Sub) 1457 return false; 1458 } else { 1459 return false; 1460 } 1461 return isPointerOperand(I->getOperand(0)) && 1462 isPointerOperand(I->getOperand(1)); 1463 } 1464 1465 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1466 // If a global variable does not have dynamic initialization we don't 1467 // have to instrument it. However, if a global does not have initializer 1468 // at all, we assume it has dynamic initializer (in other TU). 1469 // 1470 // FIXME: Metadata should be attched directly to the global directly instead 1471 // of being added to llvm.asan.globals. 1472 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1473 } 1474 1475 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1476 Instruction *I) { 1477 IRBuilder<> IRB(I); 1478 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1479 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1480 for (Value *&i : Param) { 1481 if (i->getType()->isPointerTy()) 1482 i = IRB.CreatePointerCast(i, IntptrTy); 1483 } 1484 IRB.CreateCall(F, Param); 1485 } 1486 1487 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1488 Instruction *InsertBefore, Value *Addr, 1489 MaybeAlign Alignment, unsigned Granularity, 1490 uint32_t TypeSize, bool IsWrite, 1491 Value *SizeArgument, bool UseCalls, 1492 uint32_t Exp) { 1493 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1494 // if the data is properly aligned. 1495 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1496 TypeSize == 128) && 1497 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1498 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1499 nullptr, UseCalls, Exp); 1500 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1501 IsWrite, nullptr, UseCalls, Exp); 1502 } 1503 1504 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1505 const DataLayout &DL, Type *IntptrTy, 1506 Value *Mask, Instruction *I, 1507 Value *Addr, MaybeAlign Alignment, 1508 unsigned Granularity, uint32_t TypeSize, 1509 bool IsWrite, Value *SizeArgument, 1510 bool UseCalls, uint32_t Exp) { 1511 auto *VTy = cast<FixedVectorType>( 1512 cast<PointerType>(Addr->getType())->getElementType()); 1513 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1514 unsigned Num = VTy->getNumElements(); 1515 auto Zero = ConstantInt::get(IntptrTy, 0); 1516 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1517 Value *InstrumentedAddress = nullptr; 1518 Instruction *InsertBefore = I; 1519 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1520 // dyn_cast as we might get UndefValue 1521 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1522 if (Masked->isZero()) 1523 // Mask is constant false, so no instrumentation needed. 1524 continue; 1525 // If we have a true or undef value, fall through to doInstrumentAddress 1526 // with InsertBefore == I 1527 } 1528 } else { 1529 IRBuilder<> IRB(I); 1530 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1531 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1532 InsertBefore = ThenTerm; 1533 } 1534 1535 IRBuilder<> IRB(InsertBefore); 1536 InstrumentedAddress = 1537 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1538 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1539 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1540 UseCalls, Exp); 1541 } 1542 } 1543 1544 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1545 InterestingMemoryOperand &O, bool UseCalls, 1546 const DataLayout &DL) { 1547 Value *Addr = O.getPtr(); 1548 1549 // Optimization experiments. 1550 // The experiments can be used to evaluate potential optimizations that remove 1551 // instrumentation (assess false negatives). Instead of completely removing 1552 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1553 // experiments that want to remove instrumentation of this instruction). 1554 // If Exp is non-zero, this pass will emit special calls into runtime 1555 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1556 // make runtime terminate the program in a special way (with a different 1557 // exit status). Then you run the new compiler on a buggy corpus, collect 1558 // the special terminations (ideally, you don't see them at all -- no false 1559 // negatives) and make the decision on the optimization. 1560 uint32_t Exp = ClForceExperiment; 1561 1562 if (ClOpt && ClOptGlobals) { 1563 // If initialization order checking is disabled, a simple access to a 1564 // dynamically initialized global is always valid. 1565 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1566 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1567 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1568 NumOptimizedAccessesToGlobalVar++; 1569 return; 1570 } 1571 } 1572 1573 if (ClOpt && ClOptStack) { 1574 // A direct inbounds access to a stack variable is always valid. 1575 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1576 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1577 NumOptimizedAccessesToStackVar++; 1578 return; 1579 } 1580 } 1581 1582 if (O.IsWrite) 1583 NumInstrumentedWrites++; 1584 else 1585 NumInstrumentedReads++; 1586 1587 unsigned Granularity = 1 << Mapping.Scale; 1588 if (O.MaybeMask) { 1589 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1590 Addr, O.Alignment, Granularity, O.TypeSize, 1591 O.IsWrite, nullptr, UseCalls, Exp); 1592 } else { 1593 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1594 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1595 Exp); 1596 } 1597 } 1598 1599 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1600 Value *Addr, bool IsWrite, 1601 size_t AccessSizeIndex, 1602 Value *SizeArgument, 1603 uint32_t Exp) { 1604 IRBuilder<> IRB(InsertBefore); 1605 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1606 CallInst *Call = nullptr; 1607 if (SizeArgument) { 1608 if (Exp == 0) 1609 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1610 {Addr, SizeArgument}); 1611 else 1612 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1613 {Addr, SizeArgument, ExpVal}); 1614 } else { 1615 if (Exp == 0) 1616 Call = 1617 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1618 else 1619 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1620 {Addr, ExpVal}); 1621 } 1622 1623 Call->setCannotMerge(); 1624 return Call; 1625 } 1626 1627 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1628 Value *ShadowValue, 1629 uint32_t TypeSize) { 1630 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1631 // Addr & (Granularity - 1) 1632 Value *LastAccessedByte = 1633 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1634 // (Addr & (Granularity - 1)) + size - 1 1635 if (TypeSize / 8 > 1) 1636 LastAccessedByte = IRB.CreateAdd( 1637 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1638 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1639 LastAccessedByte = 1640 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1641 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1642 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1643 } 1644 1645 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1646 Instruction *InsertBefore, Value *Addr, 1647 uint32_t TypeSize, bool IsWrite, 1648 Value *SizeArgument, bool UseCalls, 1649 uint32_t Exp) { 1650 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1651 1652 IRBuilder<> IRB(InsertBefore); 1653 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1654 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1655 1656 if (UseCalls) { 1657 if (Exp == 0) 1658 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1659 AddrLong); 1660 else 1661 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1662 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1663 return; 1664 } 1665 1666 if (IsMyriad) { 1667 // Strip the cache bit and do range check. 1668 // AddrLong &= ~kMyriadCacheBitMask32 1669 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1670 // Tag = AddrLong >> kMyriadTagShift 1671 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1672 // Tag == kMyriadDDRTag 1673 Value *TagCheck = 1674 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1675 1676 Instruction *TagCheckTerm = 1677 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1678 MDBuilder(*C).createBranchWeights(1, 100000)); 1679 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1680 IRB.SetInsertPoint(TagCheckTerm); 1681 InsertBefore = TagCheckTerm; 1682 } 1683 1684 Type *ShadowTy = 1685 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1686 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1687 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1688 Value *CmpVal = Constant::getNullValue(ShadowTy); 1689 Value *ShadowValue = 1690 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1691 1692 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1693 size_t Granularity = 1ULL << Mapping.Scale; 1694 Instruction *CrashTerm = nullptr; 1695 1696 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1697 // We use branch weights for the slow path check, to indicate that the slow 1698 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1699 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1700 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1701 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1702 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1703 IRB.SetInsertPoint(CheckTerm); 1704 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1705 if (Recover) { 1706 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1707 } else { 1708 BasicBlock *CrashBlock = 1709 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1710 CrashTerm = new UnreachableInst(*C, CrashBlock); 1711 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1712 ReplaceInstWithInst(CheckTerm, NewTerm); 1713 } 1714 } else { 1715 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1716 } 1717 1718 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1719 AccessSizeIndex, SizeArgument, Exp); 1720 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1721 } 1722 1723 // Instrument unusual size or unusual alignment. 1724 // We can not do it with a single check, so we do 1-byte check for the first 1725 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1726 // to report the actual access size. 1727 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1728 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1729 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1730 IRBuilder<> IRB(InsertBefore); 1731 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1732 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1733 if (UseCalls) { 1734 if (Exp == 0) 1735 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1736 {AddrLong, Size}); 1737 else 1738 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1739 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1740 } else { 1741 Value *LastByte = IRB.CreateIntToPtr( 1742 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1743 Addr->getType()); 1744 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1745 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1746 } 1747 } 1748 1749 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1750 GlobalValue *ModuleName) { 1751 // Set up the arguments to our poison/unpoison functions. 1752 IRBuilder<> IRB(&GlobalInit.front(), 1753 GlobalInit.front().getFirstInsertionPt()); 1754 1755 // Add a call to poison all external globals before the given function starts. 1756 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1757 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1758 1759 // Add calls to unpoison all globals before each return instruction. 1760 for (auto &BB : GlobalInit.getBasicBlockList()) 1761 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1762 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1763 } 1764 1765 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1766 Module &M, GlobalValue *ModuleName) { 1767 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1768 if (!GV) 1769 return; 1770 1771 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1772 if (!CA) 1773 return; 1774 1775 for (Use &OP : CA->operands()) { 1776 if (isa<ConstantAggregateZero>(OP)) continue; 1777 ConstantStruct *CS = cast<ConstantStruct>(OP); 1778 1779 // Must have a function or null ptr. 1780 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1781 if (F->getName() == kAsanModuleCtorName) continue; 1782 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1783 // Don't instrument CTORs that will run before asan.module_ctor. 1784 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1785 continue; 1786 poisonOneInitializer(*F, ModuleName); 1787 } 1788 } 1789 } 1790 1791 const GlobalVariable * 1792 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1793 // In case this function should be expanded to include rules that do not just 1794 // apply when CompileKernel is true, either guard all existing rules with an 1795 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1796 // should also apply to user space. 1797 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1798 1799 const Constant *C = GA.getAliasee(); 1800 1801 // When compiling the kernel, globals that are aliased by symbols prefixed 1802 // by "__" are special and cannot be padded with a redzone. 1803 if (GA.getName().startswith("__")) 1804 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1805 1806 return nullptr; 1807 } 1808 1809 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1810 Type *Ty = G->getValueType(); 1811 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1812 1813 // FIXME: Metadata should be attched directly to the global directly instead 1814 // of being added to llvm.asan.globals. 1815 if (GlobalsMD.get(G).IsExcluded) return false; 1816 if (!Ty->isSized()) return false; 1817 if (!G->hasInitializer()) return false; 1818 // Only instrument globals of default address spaces 1819 if (G->getAddressSpace()) return false; 1820 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1821 // Two problems with thread-locals: 1822 // - The address of the main thread's copy can't be computed at link-time. 1823 // - Need to poison all copies, not just the main thread's one. 1824 if (G->isThreadLocal()) return false; 1825 // For now, just ignore this Global if the alignment is large. 1826 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1827 1828 // For non-COFF targets, only instrument globals known to be defined by this 1829 // TU. 1830 // FIXME: We can instrument comdat globals on ELF if we are using the 1831 // GC-friendly metadata scheme. 1832 if (!TargetTriple.isOSBinFormatCOFF()) { 1833 if (!G->hasExactDefinition() || G->hasComdat()) 1834 return false; 1835 } else { 1836 // On COFF, don't instrument non-ODR linkages. 1837 if (G->isInterposable()) 1838 return false; 1839 } 1840 1841 // If a comdat is present, it must have a selection kind that implies ODR 1842 // semantics: no duplicates, any, or exact match. 1843 if (Comdat *C = G->getComdat()) { 1844 switch (C->getSelectionKind()) { 1845 case Comdat::Any: 1846 case Comdat::ExactMatch: 1847 case Comdat::NoDuplicates: 1848 break; 1849 case Comdat::Largest: 1850 case Comdat::SameSize: 1851 return false; 1852 } 1853 } 1854 1855 if (G->hasSection()) { 1856 // The kernel uses explicit sections for mostly special global variables 1857 // that we should not instrument. E.g. the kernel may rely on their layout 1858 // without redzones, or remove them at link time ("discard.*"), etc. 1859 if (CompileKernel) 1860 return false; 1861 1862 StringRef Section = G->getSection(); 1863 1864 // Globals from llvm.metadata aren't emitted, do not instrument them. 1865 if (Section == "llvm.metadata") return false; 1866 // Do not instrument globals from special LLVM sections. 1867 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1868 1869 // Do not instrument function pointers to initialization and termination 1870 // routines: dynamic linker will not properly handle redzones. 1871 if (Section.startswith(".preinit_array") || 1872 Section.startswith(".init_array") || 1873 Section.startswith(".fini_array")) { 1874 return false; 1875 } 1876 1877 // On COFF, if the section name contains '$', it is highly likely that the 1878 // user is using section sorting to create an array of globals similar to 1879 // the way initialization callbacks are registered in .init_array and 1880 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1881 // to such globals is counterproductive, because the intent is that they 1882 // will form an array, and out-of-bounds accesses are expected. 1883 // See https://github.com/google/sanitizers/issues/305 1884 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1885 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1886 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1887 << *G << "\n"); 1888 return false; 1889 } 1890 1891 if (TargetTriple.isOSBinFormatMachO()) { 1892 StringRef ParsedSegment, ParsedSection; 1893 unsigned TAA = 0, StubSize = 0; 1894 bool TAAParsed; 1895 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1896 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1897 assert(ErrorCode.empty() && "Invalid section specifier."); 1898 1899 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1900 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1901 // them. 1902 if (ParsedSegment == "__OBJC" || 1903 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1904 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1905 return false; 1906 } 1907 // See https://github.com/google/sanitizers/issues/32 1908 // Constant CFString instances are compiled in the following way: 1909 // -- the string buffer is emitted into 1910 // __TEXT,__cstring,cstring_literals 1911 // -- the constant NSConstantString structure referencing that buffer 1912 // is placed into __DATA,__cfstring 1913 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1914 // Moreover, it causes the linker to crash on OS X 10.7 1915 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1916 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1917 return false; 1918 } 1919 // The linker merges the contents of cstring_literals and removes the 1920 // trailing zeroes. 1921 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1922 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1923 return false; 1924 } 1925 } 1926 } 1927 1928 if (CompileKernel) { 1929 // Globals that prefixed by "__" are special and cannot be padded with a 1930 // redzone. 1931 if (G->getName().startswith("__")) 1932 return false; 1933 } 1934 1935 return true; 1936 } 1937 1938 // On Mach-O platforms, we emit global metadata in a separate section of the 1939 // binary in order to allow the linker to properly dead strip. This is only 1940 // supported on recent versions of ld64. 1941 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1942 if (!TargetTriple.isOSBinFormatMachO()) 1943 return false; 1944 1945 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1946 return true; 1947 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1948 return true; 1949 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1950 return true; 1951 1952 return false; 1953 } 1954 1955 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1956 switch (TargetTriple.getObjectFormat()) { 1957 case Triple::COFF: return ".ASAN$GL"; 1958 case Triple::ELF: return "asan_globals"; 1959 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1960 case Triple::Wasm: 1961 case Triple::XCOFF: 1962 report_fatal_error( 1963 "ModuleAddressSanitizer not implemented for object file format."); 1964 case Triple::UnknownObjectFormat: 1965 break; 1966 } 1967 llvm_unreachable("unsupported object format"); 1968 } 1969 1970 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1971 IRBuilder<> IRB(*C); 1972 1973 // Declare our poisoning and unpoisoning functions. 1974 AsanPoisonGlobals = 1975 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1976 AsanUnpoisonGlobals = 1977 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1978 1979 // Declare functions that register/unregister globals. 1980 AsanRegisterGlobals = M.getOrInsertFunction( 1981 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1982 AsanUnregisterGlobals = M.getOrInsertFunction( 1983 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1984 1985 // Declare the functions that find globals in a shared object and then invoke 1986 // the (un)register function on them. 1987 AsanRegisterImageGlobals = M.getOrInsertFunction( 1988 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1989 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1990 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1991 1992 AsanRegisterElfGlobals = 1993 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1994 IntptrTy, IntptrTy, IntptrTy); 1995 AsanUnregisterElfGlobals = 1996 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1997 IntptrTy, IntptrTy, IntptrTy); 1998 } 1999 2000 // Put the metadata and the instrumented global in the same group. This ensures 2001 // that the metadata is discarded if the instrumented global is discarded. 2002 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2003 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2004 Module &M = *G->getParent(); 2005 Comdat *C = G->getComdat(); 2006 if (!C) { 2007 if (!G->hasName()) { 2008 // If G is unnamed, it must be internal. Give it an artificial name 2009 // so we can put it in a comdat. 2010 assert(G->hasLocalLinkage()); 2011 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2012 } 2013 2014 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2015 std::string Name = std::string(G->getName()); 2016 Name += InternalSuffix; 2017 C = M.getOrInsertComdat(Name); 2018 } else { 2019 C = M.getOrInsertComdat(G->getName()); 2020 } 2021 2022 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2023 // linkage to internal linkage so that a symbol table entry is emitted. This 2024 // is necessary in order to create the comdat group. 2025 if (TargetTriple.isOSBinFormatCOFF()) { 2026 C->setSelectionKind(Comdat::NoDuplicates); 2027 if (G->hasPrivateLinkage()) 2028 G->setLinkage(GlobalValue::InternalLinkage); 2029 } 2030 G->setComdat(C); 2031 } 2032 2033 assert(G->hasComdat()); 2034 Metadata->setComdat(G->getComdat()); 2035 } 2036 2037 // Create a separate metadata global and put it in the appropriate ASan 2038 // global registration section. 2039 GlobalVariable * 2040 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2041 StringRef OriginalName) { 2042 auto Linkage = TargetTriple.isOSBinFormatMachO() 2043 ? GlobalVariable::InternalLinkage 2044 : GlobalVariable::PrivateLinkage; 2045 GlobalVariable *Metadata = new GlobalVariable( 2046 M, Initializer->getType(), false, Linkage, Initializer, 2047 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2048 Metadata->setSection(getGlobalMetadataSection()); 2049 return Metadata; 2050 } 2051 2052 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2053 AsanDtorFunction = 2054 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 2055 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 2056 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2057 2058 return ReturnInst::Create(*C, AsanDtorBB); 2059 } 2060 2061 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2062 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2063 ArrayRef<Constant *> MetadataInitializers) { 2064 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2065 auto &DL = M.getDataLayout(); 2066 2067 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2068 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2069 Constant *Initializer = MetadataInitializers[i]; 2070 GlobalVariable *G = ExtendedGlobals[i]; 2071 GlobalVariable *Metadata = 2072 CreateMetadataGlobal(M, Initializer, G->getName()); 2073 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2074 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2075 MetadataGlobals[i] = Metadata; 2076 2077 // The MSVC linker always inserts padding when linking incrementally. We 2078 // cope with that by aligning each struct to its size, which must be a power 2079 // of two. 2080 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2081 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2082 "global metadata will not be padded appropriately"); 2083 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2084 2085 SetComdatForGlobalMetadata(G, Metadata, ""); 2086 } 2087 2088 // Update llvm.compiler.used, adding the new metadata globals. This is 2089 // needed so that during LTO these variables stay alive. 2090 if (!MetadataGlobals.empty()) 2091 appendToCompilerUsed(M, MetadataGlobals); 2092 } 2093 2094 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2095 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2096 ArrayRef<Constant *> MetadataInitializers, 2097 const std::string &UniqueModuleId) { 2098 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2099 2100 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2101 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2102 GlobalVariable *G = ExtendedGlobals[i]; 2103 GlobalVariable *Metadata = 2104 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2105 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2106 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2107 MetadataGlobals[i] = Metadata; 2108 2109 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2110 } 2111 2112 // This should never be called when there are no globals, by the logic that 2113 // computes the UniqueModuleId string, which is "" when there are no globals. 2114 // It's important that this path is only used when there are actually some 2115 // globals, because that means that there will certainly be a live 2116 // `asan_globals` input section at link time and thus `__start_asan_globals` 2117 // and `__stop_asan_globals` symbols will definitely be defined at link time. 2118 // This means there's no need for the references to them to be weak, which 2119 // enables better code generation because ExternalWeakLinkage implies 2120 // isInterposable() and thus requires GOT indirection for PIC. Since these 2121 // are known-defined hidden/dso_local symbols, direct PIC accesses without 2122 // dynamic relocation are always sufficient. 2123 assert(!MetadataGlobals.empty()); 2124 assert(!UniqueModuleId.empty()); 2125 2126 // Update llvm.compiler.used, adding the new metadata globals. This is 2127 // needed so that during LTO these variables stay alive. 2128 appendToCompilerUsed(M, MetadataGlobals); 2129 2130 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2131 // to look up the loaded image that contains it. Second, we can store in it 2132 // whether registration has already occurred, to prevent duplicate 2133 // registration. 2134 // 2135 // Common linkage ensures that there is only one global per shared library. 2136 GlobalVariable *RegisteredFlag = new GlobalVariable( 2137 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2138 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2139 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2140 2141 // Create start and stop symbols. These are known to be defined by 2142 // the linker, see comment above. 2143 auto MakeStartStopGV = [&](const char *Prefix) { 2144 GlobalVariable *StartStop = 2145 new GlobalVariable(M, IntptrTy, false, GlobalVariable::ExternalLinkage, 2146 nullptr, Prefix + getGlobalMetadataSection()); 2147 StartStop->setVisibility(GlobalVariable::HiddenVisibility); 2148 assert(StartStop->isImplicitDSOLocal()); 2149 return StartStop; 2150 }; 2151 GlobalVariable *StartELFMetadata = MakeStartStopGV("__start_"); 2152 GlobalVariable *StopELFMetadata = MakeStartStopGV("__stop_"); 2153 2154 // Create a call to register the globals with the runtime. 2155 IRB.CreateCall(AsanRegisterElfGlobals, 2156 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2157 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2158 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2159 2160 // We also need to unregister globals at the end, e.g., when a shared library 2161 // gets closed. 2162 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2163 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 2164 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2165 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2166 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2167 } 2168 2169 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2170 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2171 ArrayRef<Constant *> MetadataInitializers) { 2172 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2173 2174 // On recent Mach-O platforms, use a structure which binds the liveness of 2175 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2176 // created to be added to llvm.compiler.used 2177 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2178 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2179 2180 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2181 Constant *Initializer = MetadataInitializers[i]; 2182 GlobalVariable *G = ExtendedGlobals[i]; 2183 GlobalVariable *Metadata = 2184 CreateMetadataGlobal(M, Initializer, G->getName()); 2185 2186 // On recent Mach-O platforms, we emit the global metadata in a way that 2187 // allows the linker to properly strip dead globals. 2188 auto LivenessBinder = 2189 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2190 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2191 GlobalVariable *Liveness = new GlobalVariable( 2192 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2193 Twine("__asan_binder_") + G->getName()); 2194 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2195 LivenessGlobals[i] = Liveness; 2196 } 2197 2198 // Update llvm.compiler.used, adding the new liveness globals. This is 2199 // needed so that during LTO these variables stay alive. The alternative 2200 // would be to have the linker handling the LTO symbols, but libLTO 2201 // current API does not expose access to the section for each symbol. 2202 if (!LivenessGlobals.empty()) 2203 appendToCompilerUsed(M, LivenessGlobals); 2204 2205 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2206 // to look up the loaded image that contains it. Second, we can store in it 2207 // whether registration has already occurred, to prevent duplicate 2208 // registration. 2209 // 2210 // common linkage ensures that there is only one global per shared library. 2211 GlobalVariable *RegisteredFlag = new GlobalVariable( 2212 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2213 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2214 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2215 2216 IRB.CreateCall(AsanRegisterImageGlobals, 2217 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2218 2219 // We also need to unregister globals at the end, e.g., when a shared library 2220 // gets closed. 2221 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2222 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 2223 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2224 } 2225 2226 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2227 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2228 ArrayRef<Constant *> MetadataInitializers) { 2229 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2230 unsigned N = ExtendedGlobals.size(); 2231 assert(N > 0); 2232 2233 // On platforms that don't have a custom metadata section, we emit an array 2234 // of global metadata structures. 2235 ArrayType *ArrayOfGlobalStructTy = 2236 ArrayType::get(MetadataInitializers[0]->getType(), N); 2237 auto AllGlobals = new GlobalVariable( 2238 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2239 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2240 if (Mapping.Scale > 3) 2241 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2242 2243 IRB.CreateCall(AsanRegisterGlobals, 2244 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2245 ConstantInt::get(IntptrTy, N)}); 2246 2247 // We also need to unregister globals at the end, e.g., when a shared library 2248 // gets closed. 2249 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2250 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 2251 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2252 ConstantInt::get(IntptrTy, N)}); 2253 } 2254 2255 // This function replaces all global variables with new variables that have 2256 // trailing redzones. It also creates a function that poisons 2257 // redzones and inserts this function into llvm.global_ctors. 2258 // Sets *CtorComdat to true if the global registration code emitted into the 2259 // asan constructor is comdat-compatible. 2260 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2261 bool *CtorComdat) { 2262 *CtorComdat = false; 2263 2264 // Build set of globals that are aliased by some GA, where 2265 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2266 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2267 if (CompileKernel) { 2268 for (auto &GA : M.aliases()) { 2269 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2270 AliasedGlobalExclusions.insert(GV); 2271 } 2272 } 2273 2274 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2275 for (auto &G : M.globals()) { 2276 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2277 GlobalsToChange.push_back(&G); 2278 } 2279 2280 size_t n = GlobalsToChange.size(); 2281 if (n == 0) { 2282 *CtorComdat = true; 2283 return false; 2284 } 2285 2286 auto &DL = M.getDataLayout(); 2287 2288 // A global is described by a structure 2289 // size_t beg; 2290 // size_t size; 2291 // size_t size_with_redzone; 2292 // const char *name; 2293 // const char *module_name; 2294 // size_t has_dynamic_init; 2295 // void *source_location; 2296 // size_t odr_indicator; 2297 // We initialize an array of such structures and pass it to a run-time call. 2298 StructType *GlobalStructTy = 2299 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2300 IntptrTy, IntptrTy, IntptrTy); 2301 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2302 SmallVector<Constant *, 16> Initializers(n); 2303 2304 bool HasDynamicallyInitializedGlobals = false; 2305 2306 // We shouldn't merge same module names, as this string serves as unique 2307 // module ID in runtime. 2308 GlobalVariable *ModuleName = createPrivateGlobalForString( 2309 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2310 2311 for (size_t i = 0; i < n; i++) { 2312 GlobalVariable *G = GlobalsToChange[i]; 2313 2314 // FIXME: Metadata should be attched directly to the global directly instead 2315 // of being added to llvm.asan.globals. 2316 auto MD = GlobalsMD.get(G); 2317 StringRef NameForGlobal = G->getName(); 2318 // Create string holding the global name (use global name from metadata 2319 // if it's available, otherwise just write the name of global variable). 2320 GlobalVariable *Name = createPrivateGlobalForString( 2321 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2322 /*AllowMerging*/ true, kAsanGenPrefix); 2323 2324 Type *Ty = G->getValueType(); 2325 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2326 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2327 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2328 2329 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2330 Constant *NewInitializer = ConstantStruct::get( 2331 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2332 2333 // Create a new global variable with enough space for a redzone. 2334 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2335 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2336 Linkage = GlobalValue::InternalLinkage; 2337 GlobalVariable *NewGlobal = 2338 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2339 "", G, G->getThreadLocalMode()); 2340 NewGlobal->copyAttributesFrom(G); 2341 NewGlobal->setComdat(G->getComdat()); 2342 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2343 // Don't fold globals with redzones. ODR violation detector and redzone 2344 // poisoning implicitly creates a dependence on the global's address, so it 2345 // is no longer valid for it to be marked unnamed_addr. 2346 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2347 2348 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2349 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2350 G->isConstant()) { 2351 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2352 if (Seq && Seq->isCString()) 2353 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2354 } 2355 2356 // Transfer the debug info. The payload starts at offset zero so we can 2357 // copy the debug info over as is. 2358 SmallVector<DIGlobalVariableExpression *, 1> GVs; 2359 G->getDebugInfo(GVs); 2360 for (auto *GV : GVs) 2361 NewGlobal->addDebugInfo(GV); 2362 2363 Value *Indices2[2]; 2364 Indices2[0] = IRB.getInt32(0); 2365 Indices2[1] = IRB.getInt32(0); 2366 2367 G->replaceAllUsesWith( 2368 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2369 NewGlobal->takeName(G); 2370 G->eraseFromParent(); 2371 NewGlobals[i] = NewGlobal; 2372 2373 Constant *SourceLoc; 2374 if (!MD.SourceLoc.empty()) { 2375 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2376 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2377 } else { 2378 SourceLoc = ConstantInt::get(IntptrTy, 0); 2379 } 2380 2381 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2382 GlobalValue *InstrumentedGlobal = NewGlobal; 2383 2384 bool CanUsePrivateAliases = 2385 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2386 TargetTriple.isOSBinFormatWasm(); 2387 if (CanUsePrivateAliases && UsePrivateAlias) { 2388 // Create local alias for NewGlobal to avoid crash on ODR between 2389 // instrumented and non-instrumented libraries. 2390 InstrumentedGlobal = 2391 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2392 } 2393 2394 // ODR should not happen for local linkage. 2395 if (NewGlobal->hasLocalLinkage()) { 2396 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2397 IRB.getInt8PtrTy()); 2398 } else if (UseOdrIndicator) { 2399 // With local aliases, we need to provide another externally visible 2400 // symbol __odr_asan_XXX to detect ODR violation. 2401 auto *ODRIndicatorSym = 2402 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2403 Constant::getNullValue(IRB.getInt8Ty()), 2404 kODRGenPrefix + NameForGlobal, nullptr, 2405 NewGlobal->getThreadLocalMode()); 2406 2407 // Set meaningful attributes for indicator symbol. 2408 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2409 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2410 ODRIndicatorSym->setAlignment(Align(1)); 2411 ODRIndicator = ODRIndicatorSym; 2412 } 2413 2414 Constant *Initializer = ConstantStruct::get( 2415 GlobalStructTy, 2416 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2417 ConstantInt::get(IntptrTy, SizeInBytes), 2418 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2419 ConstantExpr::getPointerCast(Name, IntptrTy), 2420 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2421 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2422 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2423 2424 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2425 2426 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2427 2428 Initializers[i] = Initializer; 2429 } 2430 2431 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2432 // ConstantMerge'ing them. 2433 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2434 for (size_t i = 0; i < n; i++) { 2435 GlobalVariable *G = NewGlobals[i]; 2436 if (G->getName().empty()) continue; 2437 GlobalsToAddToUsedList.push_back(G); 2438 } 2439 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2440 2441 std::string ELFUniqueModuleId = 2442 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2443 : ""; 2444 2445 if (!ELFUniqueModuleId.empty()) { 2446 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2447 *CtorComdat = true; 2448 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2449 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2450 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2451 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2452 } else { 2453 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2454 } 2455 2456 // Create calls for poisoning before initializers run and unpoisoning after. 2457 if (HasDynamicallyInitializedGlobals) 2458 createInitializerPoisonCalls(M, ModuleName); 2459 2460 LLVM_DEBUG(dbgs() << M); 2461 return true; 2462 } 2463 2464 uint64_t 2465 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2466 constexpr uint64_t kMaxRZ = 1 << 18; 2467 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2468 2469 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2470 uint64_t RZ = 2471 std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2472 2473 // Round up to multiple of MinRZ. 2474 if (SizeInBytes % MinRZ) 2475 RZ += MinRZ - (SizeInBytes % MinRZ); 2476 assert((RZ + SizeInBytes) % MinRZ == 0); 2477 2478 return RZ; 2479 } 2480 2481 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2482 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2483 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2484 int Version = 8; 2485 // 32-bit Android is one version ahead because of the switch to dynamic 2486 // shadow. 2487 Version += (LongSize == 32 && isAndroid); 2488 return Version; 2489 } 2490 2491 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2492 initializeCallbacks(M); 2493 2494 // Create a module constructor. A destructor is created lazily because not all 2495 // platforms, and not all modules need it. 2496 if (CompileKernel) { 2497 // The kernel always builds with its own runtime, and therefore does not 2498 // need the init and version check calls. 2499 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2500 } else { 2501 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2502 std::string VersionCheckName = 2503 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2504 std::tie(AsanCtorFunction, std::ignore) = 2505 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2506 kAsanInitName, /*InitArgTypes=*/{}, 2507 /*InitArgs=*/{}, VersionCheckName); 2508 } 2509 2510 bool CtorComdat = true; 2511 if (ClGlobals) { 2512 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2513 InstrumentGlobals(IRB, M, &CtorComdat); 2514 } 2515 2516 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2517 2518 // Put the constructor and destructor in comdat if both 2519 // (1) global instrumentation is not TU-specific 2520 // (2) target is ELF. 2521 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2522 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2523 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2524 if (AsanDtorFunction) { 2525 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2526 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2527 } 2528 } else { 2529 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2530 if (AsanDtorFunction) 2531 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2532 } 2533 2534 return true; 2535 } 2536 2537 void AddressSanitizer::initializeCallbacks(Module &M) { 2538 IRBuilder<> IRB(*C); 2539 // Create __asan_report* callbacks. 2540 // IsWrite, TypeSize and Exp are encoded in the function name. 2541 for (int Exp = 0; Exp < 2; Exp++) { 2542 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2543 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2544 const std::string ExpStr = Exp ? "exp_" : ""; 2545 const std::string EndingStr = Recover ? "_noabort" : ""; 2546 2547 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2548 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2549 if (Exp) { 2550 Type *ExpType = Type::getInt32Ty(*C); 2551 Args2.push_back(ExpType); 2552 Args1.push_back(ExpType); 2553 } 2554 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2555 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2556 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2557 2558 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2559 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2560 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2561 2562 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2563 AccessSizeIndex++) { 2564 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2565 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2566 M.getOrInsertFunction( 2567 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2568 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2569 2570 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2571 M.getOrInsertFunction( 2572 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2573 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2574 } 2575 } 2576 } 2577 2578 const std::string MemIntrinCallbackPrefix = 2579 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2580 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2581 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2582 IRB.getInt8PtrTy(), IntptrTy); 2583 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2584 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2585 IRB.getInt8PtrTy(), IntptrTy); 2586 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2587 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2588 IRB.getInt32Ty(), IntptrTy); 2589 2590 AsanHandleNoReturnFunc = 2591 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2592 2593 AsanPtrCmpFunction = 2594 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2595 AsanPtrSubFunction = 2596 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2597 if (Mapping.InGlobal) 2598 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2599 ArrayType::get(IRB.getInt8Ty(), 0)); 2600 } 2601 2602 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2603 // For each NSObject descendant having a +load method, this method is invoked 2604 // by the ObjC runtime before any of the static constructors is called. 2605 // Therefore we need to instrument such methods with a call to __asan_init 2606 // at the beginning in order to initialize our runtime before any access to 2607 // the shadow memory. 2608 // We cannot just ignore these methods, because they may call other 2609 // instrumented functions. 2610 if (F.getName().find(" load]") != std::string::npos) { 2611 FunctionCallee AsanInitFunction = 2612 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2613 IRBuilder<> IRB(&F.front(), F.front().begin()); 2614 IRB.CreateCall(AsanInitFunction, {}); 2615 return true; 2616 } 2617 return false; 2618 } 2619 2620 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2621 // Generate code only when dynamic addressing is needed. 2622 if (Mapping.Offset != kDynamicShadowSentinel) 2623 return false; 2624 2625 IRBuilder<> IRB(&F.front().front()); 2626 if (Mapping.InGlobal) { 2627 if (ClWithIfuncSuppressRemat) { 2628 // An empty inline asm with input reg == output reg. 2629 // An opaque pointer-to-int cast, basically. 2630 InlineAsm *Asm = InlineAsm::get( 2631 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2632 StringRef(""), StringRef("=r,0"), 2633 /*hasSideEffects=*/false); 2634 LocalDynamicShadow = 2635 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2636 } else { 2637 LocalDynamicShadow = 2638 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2639 } 2640 } else { 2641 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2642 kAsanShadowMemoryDynamicAddress, IntptrTy); 2643 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2644 } 2645 return true; 2646 } 2647 2648 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2649 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2650 // to it as uninteresting. This assumes we haven't started processing allocas 2651 // yet. This check is done up front because iterating the use list in 2652 // isInterestingAlloca would be algorithmically slower. 2653 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2654 2655 // Try to get the declaration of llvm.localescape. If it's not in the module, 2656 // we can exit early. 2657 if (!F.getParent()->getFunction("llvm.localescape")) return; 2658 2659 // Look for a call to llvm.localescape call in the entry block. It can't be in 2660 // any other block. 2661 for (Instruction &I : F.getEntryBlock()) { 2662 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2663 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2664 // We found a call. Mark all the allocas passed in as uninteresting. 2665 for (Value *Arg : II->arg_operands()) { 2666 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2667 assert(AI && AI->isStaticAlloca() && 2668 "non-static alloca arg to localescape"); 2669 ProcessedAllocas[AI] = false; 2670 } 2671 break; 2672 } 2673 } 2674 } 2675 2676 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2677 bool ShouldInstrument = 2678 ClDebugMin < 0 || ClDebugMax < 0 || 2679 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2680 Instrumented++; 2681 return !ShouldInstrument; 2682 } 2683 2684 bool AddressSanitizer::instrumentFunction(Function &F, 2685 const TargetLibraryInfo *TLI) { 2686 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2687 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2688 if (F.getName().startswith("__asan_")) return false; 2689 2690 bool FunctionModified = false; 2691 2692 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2693 // This function needs to be called even if the function body is not 2694 // instrumented. 2695 if (maybeInsertAsanInitAtFunctionEntry(F)) 2696 FunctionModified = true; 2697 2698 // Leave if the function doesn't need instrumentation. 2699 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2700 2701 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2702 2703 initializeCallbacks(*F.getParent()); 2704 2705 FunctionStateRAII CleanupObj(this); 2706 2707 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2708 2709 // We can't instrument allocas used with llvm.localescape. Only static allocas 2710 // can be passed to that intrinsic. 2711 markEscapedLocalAllocas(F); 2712 2713 // We want to instrument every address only once per basic block (unless there 2714 // are calls between uses). 2715 SmallPtrSet<Value *, 16> TempsToInstrument; 2716 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2717 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2718 SmallVector<Instruction *, 8> NoReturnCalls; 2719 SmallVector<BasicBlock *, 16> AllBlocks; 2720 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2721 int NumAllocas = 0; 2722 2723 // Fill the set of memory operations to instrument. 2724 for (auto &BB : F) { 2725 AllBlocks.push_back(&BB); 2726 TempsToInstrument.clear(); 2727 int NumInsnsPerBB = 0; 2728 for (auto &Inst : BB) { 2729 if (LooksLikeCodeInBug11395(&Inst)) return false; 2730 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2731 getInterestingMemoryOperands(&Inst, InterestingOperands); 2732 2733 if (!InterestingOperands.empty()) { 2734 for (auto &Operand : InterestingOperands) { 2735 if (ClOpt && ClOptSameTemp) { 2736 Value *Ptr = Operand.getPtr(); 2737 // If we have a mask, skip instrumentation if we've already 2738 // instrumented the full object. But don't add to TempsToInstrument 2739 // because we might get another load/store with a different mask. 2740 if (Operand.MaybeMask) { 2741 if (TempsToInstrument.count(Ptr)) 2742 continue; // We've seen this (whole) temp in the current BB. 2743 } else { 2744 if (!TempsToInstrument.insert(Ptr).second) 2745 continue; // We've seen this temp in the current BB. 2746 } 2747 } 2748 OperandsToInstrument.push_back(Operand); 2749 NumInsnsPerBB++; 2750 } 2751 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2752 isInterestingPointerComparison(&Inst)) || 2753 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2754 isInterestingPointerSubtraction(&Inst))) { 2755 PointerComparisonsOrSubtracts.push_back(&Inst); 2756 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2757 // ok, take it. 2758 IntrinToInstrument.push_back(MI); 2759 NumInsnsPerBB++; 2760 } else { 2761 if (isa<AllocaInst>(Inst)) NumAllocas++; 2762 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2763 // A call inside BB. 2764 TempsToInstrument.clear(); 2765 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2766 NoReturnCalls.push_back(CB); 2767 } 2768 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2769 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2770 } 2771 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2772 } 2773 } 2774 2775 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2776 OperandsToInstrument.size() + IntrinToInstrument.size() > 2777 (unsigned)ClInstrumentationWithCallsThreshold); 2778 const DataLayout &DL = F.getParent()->getDataLayout(); 2779 ObjectSizeOpts ObjSizeOpts; 2780 ObjSizeOpts.RoundToAlign = true; 2781 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2782 2783 // Instrument. 2784 int NumInstrumented = 0; 2785 for (auto &Operand : OperandsToInstrument) { 2786 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2787 instrumentMop(ObjSizeVis, Operand, UseCalls, 2788 F.getParent()->getDataLayout()); 2789 FunctionModified = true; 2790 } 2791 for (auto Inst : IntrinToInstrument) { 2792 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2793 instrumentMemIntrinsic(Inst); 2794 FunctionModified = true; 2795 } 2796 2797 FunctionStackPoisoner FSP(F, *this); 2798 bool ChangedStack = FSP.runOnFunction(); 2799 2800 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2801 // See e.g. https://github.com/google/sanitizers/issues/37 2802 for (auto CI : NoReturnCalls) { 2803 IRBuilder<> IRB(CI); 2804 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2805 } 2806 2807 for (auto Inst : PointerComparisonsOrSubtracts) { 2808 instrumentPointerComparisonOrSubtraction(Inst); 2809 FunctionModified = true; 2810 } 2811 2812 if (ChangedStack || !NoReturnCalls.empty()) 2813 FunctionModified = true; 2814 2815 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2816 << F << "\n"); 2817 2818 return FunctionModified; 2819 } 2820 2821 // Workaround for bug 11395: we don't want to instrument stack in functions 2822 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2823 // FIXME: remove once the bug 11395 is fixed. 2824 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2825 if (LongSize != 32) return false; 2826 CallInst *CI = dyn_cast<CallInst>(I); 2827 if (!CI || !CI->isInlineAsm()) return false; 2828 if (CI->getNumArgOperands() <= 5) return false; 2829 // We have inline assembly with quite a few arguments. 2830 return true; 2831 } 2832 2833 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2834 IRBuilder<> IRB(*C); 2835 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2836 std::string Suffix = itostr(i); 2837 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2838 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2839 AsanStackFreeFunc[i] = 2840 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2841 IRB.getVoidTy(), IntptrTy, IntptrTy); 2842 } 2843 if (ASan.UseAfterScope) { 2844 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2845 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2846 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2847 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2848 } 2849 2850 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2851 std::ostringstream Name; 2852 Name << kAsanSetShadowPrefix; 2853 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2854 AsanSetShadowFunc[Val] = 2855 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2856 } 2857 2858 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2859 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2860 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2861 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2862 } 2863 2864 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2865 ArrayRef<uint8_t> ShadowBytes, 2866 size_t Begin, size_t End, 2867 IRBuilder<> &IRB, 2868 Value *ShadowBase) { 2869 if (Begin >= End) 2870 return; 2871 2872 const size_t LargestStoreSizeInBytes = 2873 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2874 2875 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2876 2877 // Poison given range in shadow using larges store size with out leading and 2878 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2879 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2880 // middle of a store. 2881 for (size_t i = Begin; i < End;) { 2882 if (!ShadowMask[i]) { 2883 assert(!ShadowBytes[i]); 2884 ++i; 2885 continue; 2886 } 2887 2888 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2889 // Fit store size into the range. 2890 while (StoreSizeInBytes > End - i) 2891 StoreSizeInBytes /= 2; 2892 2893 // Minimize store size by trimming trailing zeros. 2894 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2895 while (j <= StoreSizeInBytes / 2) 2896 StoreSizeInBytes /= 2; 2897 } 2898 2899 uint64_t Val = 0; 2900 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2901 if (IsLittleEndian) 2902 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2903 else 2904 Val = (Val << 8) | ShadowBytes[i + j]; 2905 } 2906 2907 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2908 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2909 IRB.CreateAlignedStore( 2910 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 2911 Align(1)); 2912 2913 i += StoreSizeInBytes; 2914 } 2915 } 2916 2917 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2918 ArrayRef<uint8_t> ShadowBytes, 2919 IRBuilder<> &IRB, Value *ShadowBase) { 2920 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2921 } 2922 2923 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2924 ArrayRef<uint8_t> ShadowBytes, 2925 size_t Begin, size_t End, 2926 IRBuilder<> &IRB, Value *ShadowBase) { 2927 assert(ShadowMask.size() == ShadowBytes.size()); 2928 size_t Done = Begin; 2929 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2930 if (!ShadowMask[i]) { 2931 assert(!ShadowBytes[i]); 2932 continue; 2933 } 2934 uint8_t Val = ShadowBytes[i]; 2935 if (!AsanSetShadowFunc[Val]) 2936 continue; 2937 2938 // Skip same values. 2939 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2940 } 2941 2942 if (j - i >= ClMaxInlinePoisoningSize) { 2943 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2944 IRB.CreateCall(AsanSetShadowFunc[Val], 2945 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2946 ConstantInt::get(IntptrTy, j - i)}); 2947 Done = j; 2948 } 2949 } 2950 2951 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2952 } 2953 2954 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2955 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2956 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2957 assert(LocalStackSize <= kMaxStackMallocSize); 2958 uint64_t MaxSize = kMinStackMallocSize; 2959 for (int i = 0;; i++, MaxSize *= 2) 2960 if (LocalStackSize <= MaxSize) return i; 2961 llvm_unreachable("impossible LocalStackSize"); 2962 } 2963 2964 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2965 Instruction *CopyInsertPoint = &F.front().front(); 2966 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2967 // Insert after the dynamic shadow location is determined 2968 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2969 assert(CopyInsertPoint); 2970 } 2971 IRBuilder<> IRB(CopyInsertPoint); 2972 const DataLayout &DL = F.getParent()->getDataLayout(); 2973 for (Argument &Arg : F.args()) { 2974 if (Arg.hasByValAttr()) { 2975 Type *Ty = Arg.getParamByValType(); 2976 const Align Alignment = 2977 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 2978 2979 AllocaInst *AI = IRB.CreateAlloca( 2980 Ty, nullptr, 2981 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2982 ".byval"); 2983 AI->setAlignment(Alignment); 2984 Arg.replaceAllUsesWith(AI); 2985 2986 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2987 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 2988 } 2989 } 2990 } 2991 2992 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2993 Value *ValueIfTrue, 2994 Instruction *ThenTerm, 2995 Value *ValueIfFalse) { 2996 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2997 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2998 PHI->addIncoming(ValueIfFalse, CondBlock); 2999 BasicBlock *ThenBlock = ThenTerm->getParent(); 3000 PHI->addIncoming(ValueIfTrue, ThenBlock); 3001 return PHI; 3002 } 3003 3004 Value *FunctionStackPoisoner::createAllocaForLayout( 3005 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3006 AllocaInst *Alloca; 3007 if (Dynamic) { 3008 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3009 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3010 "MyAlloca"); 3011 } else { 3012 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3013 nullptr, "MyAlloca"); 3014 assert(Alloca->isStaticAlloca()); 3015 } 3016 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3017 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 3018 Alloca->setAlignment(Align(FrameAlignment)); 3019 return IRB.CreatePointerCast(Alloca, IntptrTy); 3020 } 3021 3022 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3023 BasicBlock &FirstBB = *F.begin(); 3024 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3025 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3026 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3027 DynamicAllocaLayout->setAlignment(Align(32)); 3028 } 3029 3030 void FunctionStackPoisoner::processDynamicAllocas() { 3031 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3032 assert(DynamicAllocaPoisonCallVec.empty()); 3033 return; 3034 } 3035 3036 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3037 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3038 assert(APC.InsBefore); 3039 assert(APC.AI); 3040 assert(ASan.isInterestingAlloca(*APC.AI)); 3041 assert(!APC.AI->isStaticAlloca()); 3042 3043 IRBuilder<> IRB(APC.InsBefore); 3044 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3045 // Dynamic allocas will be unpoisoned unconditionally below in 3046 // unpoisonDynamicAllocas. 3047 // Flag that we need unpoison static allocas. 3048 } 3049 3050 // Handle dynamic allocas. 3051 createDynamicAllocasInitStorage(); 3052 for (auto &AI : DynamicAllocaVec) 3053 handleDynamicAllocaCall(AI); 3054 unpoisonDynamicAllocas(); 3055 } 3056 3057 /// Collect instructions in the entry block after \p InsBefore which initialize 3058 /// permanent storage for a function argument. These instructions must remain in 3059 /// the entry block so that uninitialized values do not appear in backtraces. An 3060 /// added benefit is that this conserves spill slots. This does not move stores 3061 /// before instrumented / "interesting" allocas. 3062 static void findStoresToUninstrumentedArgAllocas( 3063 AddressSanitizer &ASan, Instruction &InsBefore, 3064 SmallVectorImpl<Instruction *> &InitInsts) { 3065 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3066 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3067 // Argument initialization looks like: 3068 // 1) store <Argument>, <Alloca> OR 3069 // 2) <CastArgument> = cast <Argument> to ... 3070 // store <CastArgument> to <Alloca> 3071 // Do not consider any other kind of instruction. 3072 // 3073 // Note: This covers all known cases, but may not be exhaustive. An 3074 // alternative to pattern-matching stores is to DFS over all Argument uses: 3075 // this might be more general, but is probably much more complicated. 3076 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3077 continue; 3078 if (auto *Store = dyn_cast<StoreInst>(It)) { 3079 // The store destination must be an alloca that isn't interesting for 3080 // ASan to instrument. These are moved up before InsBefore, and they're 3081 // not interesting because allocas for arguments can be mem2reg'd. 3082 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3083 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3084 continue; 3085 3086 Value *Val = Store->getValueOperand(); 3087 bool IsDirectArgInit = isa<Argument>(Val); 3088 bool IsArgInitViaCast = 3089 isa<CastInst>(Val) && 3090 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3091 // Check that the cast appears directly before the store. Otherwise 3092 // moving the cast before InsBefore may break the IR. 3093 Val == It->getPrevNonDebugInstruction(); 3094 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3095 if (!IsArgInit) 3096 continue; 3097 3098 if (IsArgInitViaCast) 3099 InitInsts.push_back(cast<Instruction>(Val)); 3100 InitInsts.push_back(Store); 3101 continue; 3102 } 3103 3104 // Do not reorder past unknown instructions: argument initialization should 3105 // only involve casts and stores. 3106 return; 3107 } 3108 } 3109 3110 void FunctionStackPoisoner::processStaticAllocas() { 3111 if (AllocaVec.empty()) { 3112 assert(StaticAllocaPoisonCallVec.empty()); 3113 return; 3114 } 3115 3116 int StackMallocIdx = -1; 3117 DebugLoc EntryDebugLocation; 3118 if (auto SP = F.getSubprogram()) 3119 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 3120 3121 Instruction *InsBefore = AllocaVec[0]; 3122 IRBuilder<> IRB(InsBefore); 3123 3124 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3125 // debug info is broken, because only entry-block allocas are treated as 3126 // regular stack slots. 3127 auto InsBeforeB = InsBefore->getParent(); 3128 assert(InsBeforeB == &F.getEntryBlock()); 3129 for (auto *AI : StaticAllocasToMoveUp) 3130 if (AI->getParent() == InsBeforeB) 3131 AI->moveBefore(InsBefore); 3132 3133 // Move stores of arguments into entry-block allocas as well. This prevents 3134 // extra stack slots from being generated (to house the argument values until 3135 // they can be stored into the allocas). This also prevents uninitialized 3136 // values from being shown in backtraces. 3137 SmallVector<Instruction *, 8> ArgInitInsts; 3138 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3139 for (Instruction *ArgInitInst : ArgInitInsts) 3140 ArgInitInst->moveBefore(InsBefore); 3141 3142 // If we have a call to llvm.localescape, keep it in the entry block. 3143 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3144 3145 SmallVector<ASanStackVariableDescription, 16> SVD; 3146 SVD.reserve(AllocaVec.size()); 3147 for (AllocaInst *AI : AllocaVec) { 3148 ASanStackVariableDescription D = {AI->getName().data(), 3149 ASan.getAllocaSizeInBytes(*AI), 3150 0, 3151 AI->getAlignment(), 3152 AI, 3153 0, 3154 0}; 3155 SVD.push_back(D); 3156 } 3157 3158 // Minimal header size (left redzone) is 4 pointers, 3159 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3160 size_t Granularity = 1ULL << Mapping.Scale; 3161 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3162 const ASanStackFrameLayout &L = 3163 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3164 3165 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3166 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3167 for (auto &Desc : SVD) 3168 AllocaToSVDMap[Desc.AI] = &Desc; 3169 3170 // Update SVD with information from lifetime intrinsics. 3171 for (const auto &APC : StaticAllocaPoisonCallVec) { 3172 assert(APC.InsBefore); 3173 assert(APC.AI); 3174 assert(ASan.isInterestingAlloca(*APC.AI)); 3175 assert(APC.AI->isStaticAlloca()); 3176 3177 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3178 Desc.LifetimeSize = Desc.Size; 3179 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3180 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3181 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3182 if (unsigned Line = LifetimeLoc->getLine()) 3183 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3184 } 3185 } 3186 } 3187 3188 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3189 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3190 uint64_t LocalStackSize = L.FrameSize; 3191 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3192 LocalStackSize <= kMaxStackMallocSize; 3193 bool DoDynamicAlloca = ClDynamicAllocaStack; 3194 // Don't do dynamic alloca or stack malloc if: 3195 // 1) There is inline asm: too often it makes assumptions on which registers 3196 // are available. 3197 // 2) There is a returns_twice call (typically setjmp), which is 3198 // optimization-hostile, and doesn't play well with introduced indirect 3199 // register-relative calculation of local variable addresses. 3200 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3201 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3202 3203 Value *StaticAlloca = 3204 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3205 3206 Value *FakeStack; 3207 Value *LocalStackBase; 3208 Value *LocalStackBaseAlloca; 3209 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3210 3211 if (DoStackMalloc) { 3212 LocalStackBaseAlloca = 3213 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3214 // void *FakeStack = __asan_option_detect_stack_use_after_return 3215 // ? __asan_stack_malloc_N(LocalStackSize) 3216 // : nullptr; 3217 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3218 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3219 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3220 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3221 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3222 Constant::getNullValue(IRB.getInt32Ty())); 3223 Instruction *Term = 3224 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3225 IRBuilder<> IRBIf(Term); 3226 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3227 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3228 Value *FakeStackValue = 3229 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3230 ConstantInt::get(IntptrTy, LocalStackSize)); 3231 IRB.SetInsertPoint(InsBefore); 3232 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3233 ConstantInt::get(IntptrTy, 0)); 3234 3235 Value *NoFakeStack = 3236 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3237 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3238 IRBIf.SetInsertPoint(Term); 3239 Value *AllocaValue = 3240 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3241 3242 IRB.SetInsertPoint(InsBefore); 3243 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3244 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3245 DIExprFlags |= DIExpression::DerefBefore; 3246 } else { 3247 // void *FakeStack = nullptr; 3248 // void *LocalStackBase = alloca(LocalStackSize); 3249 FakeStack = ConstantInt::get(IntptrTy, 0); 3250 LocalStackBase = 3251 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3252 LocalStackBaseAlloca = LocalStackBase; 3253 } 3254 3255 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3256 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3257 // later passes and can result in dropped variable coverage in debug info. 3258 Value *LocalStackBaseAllocaPtr = 3259 isa<PtrToIntInst>(LocalStackBaseAlloca) 3260 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3261 : LocalStackBaseAlloca; 3262 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3263 "Variable descriptions relative to ASan stack base will be dropped"); 3264 3265 // Replace Alloca instructions with base+offset. 3266 for (const auto &Desc : SVD) { 3267 AllocaInst *AI = Desc.AI; 3268 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3269 Desc.Offset); 3270 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3271 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3272 AI->getType()); 3273 AI->replaceAllUsesWith(NewAllocaPtr); 3274 } 3275 3276 // The left-most redzone has enough space for at least 4 pointers. 3277 // Write the Magic value to redzone[0]. 3278 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3279 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3280 BasePlus0); 3281 // Write the frame description constant to redzone[1]. 3282 Value *BasePlus1 = IRB.CreateIntToPtr( 3283 IRB.CreateAdd(LocalStackBase, 3284 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3285 IntptrPtrTy); 3286 GlobalVariable *StackDescriptionGlobal = 3287 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3288 /*AllowMerging*/ true, kAsanGenPrefix); 3289 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3290 IRB.CreateStore(Description, BasePlus1); 3291 // Write the PC to redzone[2]. 3292 Value *BasePlus2 = IRB.CreateIntToPtr( 3293 IRB.CreateAdd(LocalStackBase, 3294 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3295 IntptrPtrTy); 3296 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3297 3298 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3299 3300 // Poison the stack red zones at the entry. 3301 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3302 // As mask we must use most poisoned case: red zones and after scope. 3303 // As bytes we can use either the same or just red zones only. 3304 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3305 3306 if (!StaticAllocaPoisonCallVec.empty()) { 3307 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3308 3309 // Poison static allocas near lifetime intrinsics. 3310 for (const auto &APC : StaticAllocaPoisonCallVec) { 3311 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3312 assert(Desc.Offset % L.Granularity == 0); 3313 size_t Begin = Desc.Offset / L.Granularity; 3314 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3315 3316 IRBuilder<> IRB(APC.InsBefore); 3317 copyToShadow(ShadowAfterScope, 3318 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3319 IRB, ShadowBase); 3320 } 3321 } 3322 3323 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3324 SmallVector<uint8_t, 64> ShadowAfterReturn; 3325 3326 // (Un)poison the stack before all ret instructions. 3327 for (auto Ret : RetVec) { 3328 IRBuilder<> IRBRet(Ret); 3329 // Mark the current frame as retired. 3330 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3331 BasePlus0); 3332 if (DoStackMalloc) { 3333 assert(StackMallocIdx >= 0); 3334 // if FakeStack != 0 // LocalStackBase == FakeStack 3335 // // In use-after-return mode, poison the whole stack frame. 3336 // if StackMallocIdx <= 4 3337 // // For small sizes inline the whole thing: 3338 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3339 // **SavedFlagPtr(FakeStack) = 0 3340 // else 3341 // __asan_stack_free_N(FakeStack, LocalStackSize) 3342 // else 3343 // <This is not a fake stack; unpoison the redzones> 3344 Value *Cmp = 3345 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3346 Instruction *ThenTerm, *ElseTerm; 3347 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3348 3349 IRBuilder<> IRBPoison(ThenTerm); 3350 if (StackMallocIdx <= 4) { 3351 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3352 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3353 kAsanStackUseAfterReturnMagic); 3354 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3355 ShadowBase); 3356 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3357 FakeStack, 3358 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3359 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3360 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3361 IRBPoison.CreateStore( 3362 Constant::getNullValue(IRBPoison.getInt8Ty()), 3363 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3364 } else { 3365 // For larger frames call __asan_stack_free_*. 3366 IRBPoison.CreateCall( 3367 AsanStackFreeFunc[StackMallocIdx], 3368 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3369 } 3370 3371 IRBuilder<> IRBElse(ElseTerm); 3372 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3373 } else { 3374 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3375 } 3376 } 3377 3378 // We are done. Remove the old unused alloca instructions. 3379 for (auto AI : AllocaVec) AI->eraseFromParent(); 3380 } 3381 3382 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3383 IRBuilder<> &IRB, bool DoPoison) { 3384 // For now just insert the call to ASan runtime. 3385 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3386 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3387 IRB.CreateCall( 3388 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3389 {AddrArg, SizeArg}); 3390 } 3391 3392 // Handling llvm.lifetime intrinsics for a given %alloca: 3393 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3394 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3395 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3396 // could be poisoned by previous llvm.lifetime.end instruction, as the 3397 // variable may go in and out of scope several times, e.g. in loops). 3398 // (3) if we poisoned at least one %alloca in a function, 3399 // unpoison the whole stack frame at function exit. 3400 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3401 IRBuilder<> IRB(AI); 3402 3403 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3404 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3405 3406 Value *Zero = Constant::getNullValue(IntptrTy); 3407 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3408 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3409 3410 // Since we need to extend alloca with additional memory to locate 3411 // redzones, and OldSize is number of allocated blocks with 3412 // ElementSize size, get allocated memory size in bytes by 3413 // OldSize * ElementSize. 3414 const unsigned ElementSize = 3415 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3416 Value *OldSize = 3417 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3418 ConstantInt::get(IntptrTy, ElementSize)); 3419 3420 // PartialSize = OldSize % 32 3421 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3422 3423 // Misalign = kAllocaRzSize - PartialSize; 3424 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3425 3426 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3427 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3428 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3429 3430 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3431 // Alignment is added to locate left redzone, PartialPadding for possible 3432 // partial redzone and kAllocaRzSize for right redzone respectively. 3433 Value *AdditionalChunkSize = IRB.CreateAdd( 3434 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3435 3436 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3437 3438 // Insert new alloca with new NewSize and Alignment params. 3439 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3440 NewAlloca->setAlignment(Align(Alignment)); 3441 3442 // NewAddress = Address + Alignment 3443 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3444 ConstantInt::get(IntptrTy, Alignment)); 3445 3446 // Insert __asan_alloca_poison call for new created alloca. 3447 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3448 3449 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3450 // for unpoisoning stuff. 3451 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3452 3453 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3454 3455 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3456 AI->replaceAllUsesWith(NewAddressPtr); 3457 3458 // We are done. Erase old alloca from parent. 3459 AI->eraseFromParent(); 3460 } 3461 3462 // isSafeAccess returns true if Addr is always inbounds with respect to its 3463 // base object. For example, it is a field access or an array access with 3464 // constant inbounds index. 3465 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3466 Value *Addr, uint64_t TypeSize) const { 3467 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3468 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3469 uint64_t Size = SizeOffset.first.getZExtValue(); 3470 int64_t Offset = SizeOffset.second.getSExtValue(); 3471 // Three checks are required to ensure safety: 3472 // . Offset >= 0 (since the offset is given from the base ptr) 3473 // . Size >= Offset (unsigned) 3474 // . Size - Offset >= NeededSize (unsigned) 3475 return Offset >= 0 && Size >= uint64_t(Offset) && 3476 Size - uint64_t(Offset) >= TypeSize / 8; 3477 } 3478