1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address basic correctness 10 // checker. 11 // Details of the algorithm: 12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 13 // 14 // FIXME: This sanitizer does not yet handle scalable vectors 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/StackSafetyAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/BinaryFormat/MachO.h" 34 #include "llvm/Demangle/Demangle.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Comdat.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DIBuilder.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/IRBuilder.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/InstVisitor.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/Intrinsics.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/MDBuilder.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Use.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/MC/MCSectionMachO.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Instrumentation.h" 73 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 75 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Transforms/Utils/ModuleUtils.h" 79 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iomanip> 85 #include <limits> 86 #include <sstream> 87 #include <string> 88 #include <tuple> 89 90 using namespace llvm; 91 92 #define DEBUG_TYPE "asan" 93 94 static const uint64_t kDefaultShadowScale = 3; 95 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 96 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 97 static const uint64_t kDynamicShadowSentinel = 98 std::numeric_limits<uint64_t>::max(); 99 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 100 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 101 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 102 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 103 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 104 static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 109 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 110 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 111 static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47; 112 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 113 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 114 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 115 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 116 static const uint64_t kPS_ShadowOffset64 = 1ULL << 40; 117 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 118 static const uint64_t kEmscriptenShadowOffset = 0; 119 120 // The shadow memory space is dynamically allocated. 121 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 122 123 static const size_t kMinStackMallocSize = 1 << 6; // 64B 124 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 125 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 126 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 127 128 const char kAsanModuleCtorName[] = "asan.module_ctor"; 129 const char kAsanModuleDtorName[] = "asan.module_dtor"; 130 static const uint64_t kAsanCtorAndDtorPriority = 1; 131 // On Emscripten, the system needs more than one priorities for constructors. 132 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 133 const char kAsanReportErrorTemplate[] = "__asan_report_"; 134 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 135 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 136 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 137 const char kAsanUnregisterImageGlobalsName[] = 138 "__asan_unregister_image_globals"; 139 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 140 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 141 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 142 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 143 const char kAsanInitName[] = "__asan_init"; 144 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 145 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 146 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 147 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 148 static const int kMaxAsanStackMallocSizeClass = 10; 149 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 150 const char kAsanStackMallocAlwaysNameTemplate[] = 151 "__asan_stack_malloc_always_"; 152 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 153 const char kAsanGenPrefix[] = "___asan_gen_"; 154 const char kODRGenPrefix[] = "__odr_asan_gen_"; 155 const char kSanCovGenPrefix[] = "__sancov_gen_"; 156 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 157 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 158 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 159 160 // ASan version script has __asan_* wildcard. Triple underscore prevents a 161 // linker (gold) warning about attempting to export a local symbol. 162 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 163 164 const char kAsanOptionDetectUseAfterReturn[] = 165 "__asan_option_detect_stack_use_after_return"; 166 167 const char kAsanShadowMemoryDynamicAddress[] = 168 "__asan_shadow_memory_dynamic_address"; 169 170 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 171 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 172 173 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 174 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 175 176 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 177 static const size_t kNumberOfAccessSizes = 5; 178 179 static const uint64_t kAllocaRzSize = 32; 180 181 // ASanAccessInfo implementation constants. 182 constexpr size_t kCompileKernelShift = 0; 183 constexpr size_t kCompileKernelMask = 0x1; 184 constexpr size_t kAccessSizeIndexShift = 1; 185 constexpr size_t kAccessSizeIndexMask = 0xf; 186 constexpr size_t kIsWriteShift = 5; 187 constexpr size_t kIsWriteMask = 0x1; 188 189 // Command-line flags. 190 191 static cl::opt<bool> ClEnableKasan( 192 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 193 cl::Hidden, cl::init(false)); 194 195 static cl::opt<bool> ClRecover( 196 "asan-recover", 197 cl::desc("Enable recovery mode (continue-after-error)."), 198 cl::Hidden, cl::init(false)); 199 200 static cl::opt<bool> ClInsertVersionCheck( 201 "asan-guard-against-version-mismatch", 202 cl::desc("Guard against compiler/runtime version mismatch."), 203 cl::Hidden, cl::init(true)); 204 205 // This flag may need to be replaced with -f[no-]asan-reads. 206 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 207 cl::desc("instrument read instructions"), 208 cl::Hidden, cl::init(true)); 209 210 static cl::opt<bool> ClInstrumentWrites( 211 "asan-instrument-writes", cl::desc("instrument write instructions"), 212 cl::Hidden, cl::init(true)); 213 214 static cl::opt<bool> 215 ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false), 216 cl::Hidden, cl::desc("Use Stack Safety analysis results"), 217 cl::Optional); 218 219 static cl::opt<bool> ClInstrumentAtomics( 220 "asan-instrument-atomics", 221 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 222 cl::init(true)); 223 224 static cl::opt<bool> 225 ClInstrumentByval("asan-instrument-byval", 226 cl::desc("instrument byval call arguments"), cl::Hidden, 227 cl::init(true)); 228 229 static cl::opt<bool> ClAlwaysSlowPath( 230 "asan-always-slow-path", 231 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 232 cl::init(false)); 233 234 static cl::opt<bool> ClForceDynamicShadow( 235 "asan-force-dynamic-shadow", 236 cl::desc("Load shadow address into a local variable for each function"), 237 cl::Hidden, cl::init(false)); 238 239 static cl::opt<bool> 240 ClWithIfunc("asan-with-ifunc", 241 cl::desc("Access dynamic shadow through an ifunc global on " 242 "platforms that support this"), 243 cl::Hidden, cl::init(true)); 244 245 static cl::opt<bool> ClWithIfuncSuppressRemat( 246 "asan-with-ifunc-suppress-remat", 247 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 248 "it through inline asm in prologue."), 249 cl::Hidden, cl::init(true)); 250 251 // This flag limits the number of instructions to be instrumented 252 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 253 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 254 // set it to 10000. 255 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 256 "asan-max-ins-per-bb", cl::init(10000), 257 cl::desc("maximal number of instructions to instrument in any given BB"), 258 cl::Hidden); 259 260 // This flag may need to be replaced with -f[no]asan-stack. 261 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 262 cl::Hidden, cl::init(true)); 263 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 264 "asan-max-inline-poisoning-size", 265 cl::desc( 266 "Inline shadow poisoning for blocks up to the given size in bytes."), 267 cl::Hidden, cl::init(64)); 268 269 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 270 "asan-use-after-return", 271 cl::desc("Sets the mode of detection for stack-use-after-return."), 272 cl::values( 273 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 274 "Never detect stack use after return."), 275 clEnumValN( 276 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 277 "Detect stack use after return if " 278 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 279 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 280 "Always detect stack use after return.")), 281 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 282 283 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 284 cl::desc("Create redzones for byval " 285 "arguments (extra copy " 286 "required)"), cl::Hidden, 287 cl::init(true)); 288 289 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 290 cl::desc("Check stack-use-after-scope"), 291 cl::Hidden, cl::init(false)); 292 293 // This flag may need to be replaced with -f[no]asan-globals. 294 static cl::opt<bool> ClGlobals("asan-globals", 295 cl::desc("Handle global objects"), cl::Hidden, 296 cl::init(true)); 297 298 static cl::opt<bool> ClInitializers("asan-initialization-order", 299 cl::desc("Handle C++ initializer order"), 300 cl::Hidden, cl::init(true)); 301 302 static cl::opt<bool> ClInvalidPointerPairs( 303 "asan-detect-invalid-pointer-pair", 304 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 305 cl::init(false)); 306 307 static cl::opt<bool> ClInvalidPointerCmp( 308 "asan-detect-invalid-pointer-cmp", 309 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 310 cl::init(false)); 311 312 static cl::opt<bool> ClInvalidPointerSub( 313 "asan-detect-invalid-pointer-sub", 314 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 315 cl::init(false)); 316 317 static cl::opt<unsigned> ClRealignStack( 318 "asan-realign-stack", 319 cl::desc("Realign stack to the value of this flag (power of two)"), 320 cl::Hidden, cl::init(32)); 321 322 static cl::opt<int> ClInstrumentationWithCallsThreshold( 323 "asan-instrumentation-with-call-threshold", 324 cl::desc( 325 "If the function being instrumented contains more than " 326 "this number of memory accesses, use callbacks instead of " 327 "inline checks (-1 means never use callbacks)."), 328 cl::Hidden, cl::init(7000)); 329 330 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 331 "asan-memory-access-callback-prefix", 332 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 333 cl::init("__asan_")); 334 335 static cl::opt<bool> ClKasanMemIntrinCallbackPrefix( 336 "asan-kernel-mem-intrinsic-prefix", 337 cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden, 338 cl::init(false)); 339 340 static cl::opt<bool> 341 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 342 cl::desc("instrument dynamic allocas"), 343 cl::Hidden, cl::init(true)); 344 345 static cl::opt<bool> ClSkipPromotableAllocas( 346 "asan-skip-promotable-allocas", 347 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 348 cl::init(true)); 349 350 // These flags allow to change the shadow mapping. 351 // The shadow mapping looks like 352 // Shadow = (Mem >> scale) + offset 353 354 static cl::opt<int> ClMappingScale("asan-mapping-scale", 355 cl::desc("scale of asan shadow mapping"), 356 cl::Hidden, cl::init(0)); 357 358 static cl::opt<uint64_t> 359 ClMappingOffset("asan-mapping-offset", 360 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 361 cl::Hidden, cl::init(0)); 362 363 // Optimization flags. Not user visible, used mostly for testing 364 // and benchmarking the tool. 365 366 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 367 cl::Hidden, cl::init(true)); 368 369 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", 370 cl::desc("Optimize callbacks"), 371 cl::Hidden, cl::init(false)); 372 373 static cl::opt<bool> ClOptSameTemp( 374 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 375 cl::Hidden, cl::init(true)); 376 377 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 378 cl::desc("Don't instrument scalar globals"), 379 cl::Hidden, cl::init(true)); 380 381 static cl::opt<bool> ClOptStack( 382 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 383 cl::Hidden, cl::init(false)); 384 385 static cl::opt<bool> ClDynamicAllocaStack( 386 "asan-stack-dynamic-alloca", 387 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 388 cl::init(true)); 389 390 static cl::opt<uint32_t> ClForceExperiment( 391 "asan-force-experiment", 392 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 393 cl::init(0)); 394 395 static cl::opt<bool> 396 ClUsePrivateAlias("asan-use-private-alias", 397 cl::desc("Use private aliases for global variables"), 398 cl::Hidden, cl::init(false)); 399 400 static cl::opt<bool> 401 ClUseOdrIndicator("asan-use-odr-indicator", 402 cl::desc("Use odr indicators to improve ODR reporting"), 403 cl::Hidden, cl::init(false)); 404 405 static cl::opt<bool> 406 ClUseGlobalsGC("asan-globals-live-support", 407 cl::desc("Use linker features to support dead " 408 "code stripping of globals"), 409 cl::Hidden, cl::init(true)); 410 411 // This is on by default even though there is a bug in gold: 412 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 413 static cl::opt<bool> 414 ClWithComdat("asan-with-comdat", 415 cl::desc("Place ASan constructors in comdat sections"), 416 cl::Hidden, cl::init(true)); 417 418 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 419 "asan-destructor-kind", 420 cl::desc("Sets the ASan destructor kind. The default is to use the value " 421 "provided to the pass constructor"), 422 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 423 clEnumValN(AsanDtorKind::Global, "global", 424 "Use global destructors")), 425 cl::init(AsanDtorKind::Invalid), cl::Hidden); 426 427 // Debug flags. 428 429 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 430 cl::init(0)); 431 432 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 433 cl::Hidden, cl::init(0)); 434 435 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 436 cl::desc("Debug func")); 437 438 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 439 cl::Hidden, cl::init(-1)); 440 441 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 442 cl::Hidden, cl::init(-1)); 443 444 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 445 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 446 STATISTIC(NumOptimizedAccessesToGlobalVar, 447 "Number of optimized accesses to global vars"); 448 STATISTIC(NumOptimizedAccessesToStackVar, 449 "Number of optimized accesses to stack vars"); 450 451 namespace { 452 453 /// This struct defines the shadow mapping using the rule: 454 /// shadow = (mem >> Scale) ADD-or-OR Offset. 455 /// If InGlobal is true, then 456 /// extern char __asan_shadow[]; 457 /// shadow = (mem >> Scale) + &__asan_shadow 458 struct ShadowMapping { 459 int Scale; 460 uint64_t Offset; 461 bool OrShadowOffset; 462 bool InGlobal; 463 }; 464 465 } // end anonymous namespace 466 467 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, 468 bool IsKasan) { 469 bool IsAndroid = TargetTriple.isAndroid(); 470 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() || 471 TargetTriple.isDriverKit(); 472 bool IsMacOS = TargetTriple.isMacOSX(); 473 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 474 bool IsNetBSD = TargetTriple.isOSNetBSD(); 475 bool IsPS = TargetTriple.isPS(); 476 bool IsLinux = TargetTriple.isOSLinux(); 477 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 478 TargetTriple.getArch() == Triple::ppc64le; 479 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 480 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 481 bool IsMIPSN32ABI = TargetTriple.getEnvironment() == Triple::GNUABIN32; 482 bool IsMIPS32 = TargetTriple.isMIPS32(); 483 bool IsMIPS64 = TargetTriple.isMIPS64(); 484 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 485 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 486 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 487 bool IsWindows = TargetTriple.isOSWindows(); 488 bool IsFuchsia = TargetTriple.isOSFuchsia(); 489 bool IsEmscripten = TargetTriple.isOSEmscripten(); 490 bool IsAMDGPU = TargetTriple.isAMDGPU(); 491 492 ShadowMapping Mapping; 493 494 Mapping.Scale = kDefaultShadowScale; 495 if (ClMappingScale.getNumOccurrences() > 0) { 496 Mapping.Scale = ClMappingScale; 497 } 498 499 if (LongSize == 32) { 500 if (IsAndroid) 501 Mapping.Offset = kDynamicShadowSentinel; 502 else if (IsMIPSN32ABI) 503 Mapping.Offset = kMIPS_ShadowOffsetN32; 504 else if (IsMIPS32) 505 Mapping.Offset = kMIPS32_ShadowOffset32; 506 else if (IsFreeBSD) 507 Mapping.Offset = kFreeBSD_ShadowOffset32; 508 else if (IsNetBSD) 509 Mapping.Offset = kNetBSD_ShadowOffset32; 510 else if (IsIOS) 511 Mapping.Offset = kDynamicShadowSentinel; 512 else if (IsWindows) 513 Mapping.Offset = kWindowsShadowOffset32; 514 else if (IsEmscripten) 515 Mapping.Offset = kEmscriptenShadowOffset; 516 else 517 Mapping.Offset = kDefaultShadowOffset32; 518 } else { // LongSize == 64 519 // Fuchsia is always PIE, which means that the beginning of the address 520 // space is always available. 521 if (IsFuchsia) 522 Mapping.Offset = 0; 523 else if (IsPPC64) 524 Mapping.Offset = kPPC64_ShadowOffset64; 525 else if (IsSystemZ) 526 Mapping.Offset = kSystemZ_ShadowOffset64; 527 else if (IsFreeBSD && IsAArch64) 528 Mapping.Offset = kFreeBSDAArch64_ShadowOffset64; 529 else if (IsFreeBSD && !IsMIPS64) { 530 if (IsKasan) 531 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 532 else 533 Mapping.Offset = kFreeBSD_ShadowOffset64; 534 } else if (IsNetBSD) { 535 if (IsKasan) 536 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 537 else 538 Mapping.Offset = kNetBSD_ShadowOffset64; 539 } else if (IsPS) 540 Mapping.Offset = kPS_ShadowOffset64; 541 else if (IsLinux && IsX86_64) { 542 if (IsKasan) 543 Mapping.Offset = kLinuxKasan_ShadowOffset64; 544 else 545 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 546 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 547 } else if (IsWindows && IsX86_64) { 548 Mapping.Offset = kWindowsShadowOffset64; 549 } else if (IsMIPS64) 550 Mapping.Offset = kMIPS64_ShadowOffset64; 551 else if (IsIOS) 552 Mapping.Offset = kDynamicShadowSentinel; 553 else if (IsMacOS && IsAArch64) 554 Mapping.Offset = kDynamicShadowSentinel; 555 else if (IsAArch64) 556 Mapping.Offset = kAArch64_ShadowOffset64; 557 else if (IsRISCV64) 558 Mapping.Offset = kRISCV64_ShadowOffset64; 559 else if (IsAMDGPU) 560 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 561 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 562 else 563 Mapping.Offset = kDefaultShadowOffset64; 564 } 565 566 if (ClForceDynamicShadow) { 567 Mapping.Offset = kDynamicShadowSentinel; 568 } 569 570 if (ClMappingOffset.getNumOccurrences() > 0) { 571 Mapping.Offset = ClMappingOffset; 572 } 573 574 // OR-ing shadow offset if more efficient (at least on x86) if the offset 575 // is a power of two, but on ppc64 we have to use add since the shadow 576 // offset is not necessary 1/8-th of the address space. On SystemZ, 577 // we could OR the constant in a single instruction, but it's more 578 // efficient to load it once and use indexed addressing. 579 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS && 580 !IsRISCV64 && 581 !(Mapping.Offset & (Mapping.Offset - 1)) && 582 Mapping.Offset != kDynamicShadowSentinel; 583 bool IsAndroidWithIfuncSupport = 584 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 585 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 586 587 return Mapping; 588 } 589 590 namespace llvm { 591 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, 592 bool IsKasan, uint64_t *ShadowBase, 593 int *MappingScale, bool *OrShadowOffset) { 594 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); 595 *ShadowBase = Mapping.Offset; 596 *MappingScale = Mapping.Scale; 597 *OrShadowOffset = Mapping.OrShadowOffset; 598 } 599 600 ASanAccessInfo::ASanAccessInfo(int32_t Packed) 601 : Packed(Packed), 602 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), 603 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), 604 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} 605 606 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, 607 uint8_t AccessSizeIndex) 608 : Packed((IsWrite << kIsWriteShift) + 609 (CompileKernel << kCompileKernelShift) + 610 (AccessSizeIndex << kAccessSizeIndexShift)), 611 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), 612 CompileKernel(CompileKernel) {} 613 614 } // namespace llvm 615 616 static uint64_t getRedzoneSizeForScale(int MappingScale) { 617 // Redzone used for stack and globals is at least 32 bytes. 618 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 619 return std::max(32U, 1U << MappingScale); 620 } 621 622 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 623 if (TargetTriple.isOSEmscripten()) { 624 return kAsanEmscriptenCtorAndDtorPriority; 625 } else { 626 return kAsanCtorAndDtorPriority; 627 } 628 } 629 630 namespace { 631 632 /// AddressSanitizer: instrument the code in module to find memory bugs. 633 struct AddressSanitizer { 634 AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI, 635 bool CompileKernel = false, bool Recover = false, 636 bool UseAfterScope = false, 637 AsanDetectStackUseAfterReturnMode UseAfterReturn = 638 AsanDetectStackUseAfterReturnMode::Runtime) 639 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 640 : CompileKernel), 641 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 642 UseAfterScope(UseAfterScope || ClUseAfterScope), 643 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn 644 : UseAfterReturn), 645 SSGI(SSGI) { 646 C = &(M.getContext()); 647 LongSize = M.getDataLayout().getPointerSizeInBits(); 648 IntptrTy = Type::getIntNTy(*C, LongSize); 649 Int8PtrTy = Type::getInt8PtrTy(*C); 650 Int32Ty = Type::getInt32Ty(*C); 651 TargetTriple = Triple(M.getTargetTriple()); 652 653 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 654 655 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); 656 } 657 658 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 659 uint64_t ArraySize = 1; 660 if (AI.isArrayAllocation()) { 661 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 662 assert(CI && "non-constant array size"); 663 ArraySize = CI->getZExtValue(); 664 } 665 Type *Ty = AI.getAllocatedType(); 666 uint64_t SizeInBytes = 667 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 668 return SizeInBytes * ArraySize; 669 } 670 671 /// Check if we want (and can) handle this alloca. 672 bool isInterestingAlloca(const AllocaInst &AI); 673 674 bool ignoreAccess(Instruction *Inst, Value *Ptr); 675 void getInterestingMemoryOperands( 676 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 677 678 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 679 InterestingMemoryOperand &O, bool UseCalls, 680 const DataLayout &DL); 681 void instrumentPointerComparisonOrSubtraction(Instruction *I); 682 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 683 Value *Addr, uint32_t TypeSize, bool IsWrite, 684 Value *SizeArgument, bool UseCalls, uint32_t Exp); 685 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 686 Instruction *InsertBefore, Value *Addr, 687 uint32_t TypeSize, bool IsWrite, 688 Value *SizeArgument); 689 void instrumentUnusualSizeOrAlignment(Instruction *I, 690 Instruction *InsertBefore, Value *Addr, 691 uint32_t TypeSize, bool IsWrite, 692 Value *SizeArgument, bool UseCalls, 693 uint32_t Exp); 694 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 695 Value *ShadowValue, uint32_t TypeSize); 696 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 697 bool IsWrite, size_t AccessSizeIndex, 698 Value *SizeArgument, uint32_t Exp); 699 void instrumentMemIntrinsic(MemIntrinsic *MI); 700 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 701 bool suppressInstrumentationSiteForDebug(int &Instrumented); 702 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 703 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 704 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 705 void markEscapedLocalAllocas(Function &F); 706 707 private: 708 friend struct FunctionStackPoisoner; 709 710 void initializeCallbacks(Module &M); 711 712 bool LooksLikeCodeInBug11395(Instruction *I); 713 bool GlobalIsLinkerInitialized(GlobalVariable *G); 714 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 715 uint64_t TypeSize) const; 716 717 /// Helper to cleanup per-function state. 718 struct FunctionStateRAII { 719 AddressSanitizer *Pass; 720 721 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 722 assert(Pass->ProcessedAllocas.empty() && 723 "last pass forgot to clear cache"); 724 assert(!Pass->LocalDynamicShadow); 725 } 726 727 ~FunctionStateRAII() { 728 Pass->LocalDynamicShadow = nullptr; 729 Pass->ProcessedAllocas.clear(); 730 } 731 }; 732 733 LLVMContext *C; 734 Triple TargetTriple; 735 int LongSize; 736 bool CompileKernel; 737 bool Recover; 738 bool UseAfterScope; 739 AsanDetectStackUseAfterReturnMode UseAfterReturn; 740 Type *IntptrTy; 741 Type *Int8PtrTy; 742 Type *Int32Ty; 743 ShadowMapping Mapping; 744 FunctionCallee AsanHandleNoReturnFunc; 745 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 746 Constant *AsanShadowGlobal; 747 748 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 749 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 750 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 751 752 // These arrays is indexed by AccessIsWrite and Experiment. 753 FunctionCallee AsanErrorCallbackSized[2][2]; 754 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 755 756 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 757 Value *LocalDynamicShadow = nullptr; 758 const StackSafetyGlobalInfo *SSGI; 759 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 760 761 FunctionCallee AMDGPUAddressShared; 762 FunctionCallee AMDGPUAddressPrivate; 763 }; 764 765 class ModuleAddressSanitizer { 766 public: 767 ModuleAddressSanitizer(Module &M, bool CompileKernel = false, 768 bool Recover = false, bool UseGlobalsGC = true, 769 bool UseOdrIndicator = false, 770 AsanDtorKind DestructorKind = AsanDtorKind::Global) 771 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 772 : CompileKernel), 773 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 774 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 775 // Enable aliases as they should have no downside with ODR indicators. 776 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 777 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 778 // Not a typo: ClWithComdat is almost completely pointless without 779 // ClUseGlobalsGC (because then it only works on modules without 780 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 781 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 782 // argument is designed as workaround. Therefore, disable both 783 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 784 // do globals-gc. 785 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 786 DestructorKind(DestructorKind) { 787 C = &(M.getContext()); 788 int LongSize = M.getDataLayout().getPointerSizeInBits(); 789 IntptrTy = Type::getIntNTy(*C, LongSize); 790 TargetTriple = Triple(M.getTargetTriple()); 791 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 792 793 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 794 this->DestructorKind = ClOverrideDestructorKind; 795 assert(this->DestructorKind != AsanDtorKind::Invalid); 796 } 797 798 bool instrumentModule(Module &); 799 800 private: 801 void initializeCallbacks(Module &M); 802 803 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 804 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 805 ArrayRef<GlobalVariable *> ExtendedGlobals, 806 ArrayRef<Constant *> MetadataInitializers); 807 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 808 ArrayRef<GlobalVariable *> ExtendedGlobals, 809 ArrayRef<Constant *> MetadataInitializers, 810 const std::string &UniqueModuleId); 811 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 812 ArrayRef<GlobalVariable *> ExtendedGlobals, 813 ArrayRef<Constant *> MetadataInitializers); 814 void 815 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 816 ArrayRef<GlobalVariable *> ExtendedGlobals, 817 ArrayRef<Constant *> MetadataInitializers); 818 819 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 820 StringRef OriginalName); 821 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 822 StringRef InternalSuffix); 823 Instruction *CreateAsanModuleDtor(Module &M); 824 825 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 826 bool shouldInstrumentGlobal(GlobalVariable *G) const; 827 bool ShouldUseMachOGlobalsSection() const; 828 StringRef getGlobalMetadataSection() const; 829 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 830 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 831 uint64_t getMinRedzoneSizeForGlobal() const { 832 return getRedzoneSizeForScale(Mapping.Scale); 833 } 834 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 835 int GetAsanVersion(const Module &M) const; 836 837 bool CompileKernel; 838 bool Recover; 839 bool UseGlobalsGC; 840 bool UsePrivateAlias; 841 bool UseOdrIndicator; 842 bool UseCtorComdat; 843 AsanDtorKind DestructorKind; 844 Type *IntptrTy; 845 LLVMContext *C; 846 Triple TargetTriple; 847 ShadowMapping Mapping; 848 FunctionCallee AsanPoisonGlobals; 849 FunctionCallee AsanUnpoisonGlobals; 850 FunctionCallee AsanRegisterGlobals; 851 FunctionCallee AsanUnregisterGlobals; 852 FunctionCallee AsanRegisterImageGlobals; 853 FunctionCallee AsanUnregisterImageGlobals; 854 FunctionCallee AsanRegisterElfGlobals; 855 FunctionCallee AsanUnregisterElfGlobals; 856 857 Function *AsanCtorFunction = nullptr; 858 Function *AsanDtorFunction = nullptr; 859 }; 860 861 // Stack poisoning does not play well with exception handling. 862 // When an exception is thrown, we essentially bypass the code 863 // that unpoisones the stack. This is why the run-time library has 864 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 865 // stack in the interceptor. This however does not work inside the 866 // actual function which catches the exception. Most likely because the 867 // compiler hoists the load of the shadow value somewhere too high. 868 // This causes asan to report a non-existing bug on 453.povray. 869 // It sounds like an LLVM bug. 870 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 871 Function &F; 872 AddressSanitizer &ASan; 873 DIBuilder DIB; 874 LLVMContext *C; 875 Type *IntptrTy; 876 Type *IntptrPtrTy; 877 ShadowMapping Mapping; 878 879 SmallVector<AllocaInst *, 16> AllocaVec; 880 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 881 SmallVector<Instruction *, 8> RetVec; 882 883 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 884 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 885 FunctionCallee AsanSetShadowFunc[0x100] = {}; 886 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 887 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 888 889 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 890 struct AllocaPoisonCall { 891 IntrinsicInst *InsBefore; 892 AllocaInst *AI; 893 uint64_t Size; 894 bool DoPoison; 895 }; 896 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 897 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 898 bool HasUntracedLifetimeIntrinsic = false; 899 900 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 901 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 902 AllocaInst *DynamicAllocaLayout = nullptr; 903 IntrinsicInst *LocalEscapeCall = nullptr; 904 905 bool HasInlineAsm = false; 906 bool HasReturnsTwiceCall = false; 907 bool PoisonStack; 908 909 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 910 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 911 C(ASan.C), IntptrTy(ASan.IntptrTy), 912 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 913 PoisonStack(ClStack && 914 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 915 916 bool runOnFunction() { 917 if (!PoisonStack) 918 return false; 919 920 if (ClRedzoneByvalArgs) 921 copyArgsPassedByValToAllocas(); 922 923 // Collect alloca, ret, lifetime instructions etc. 924 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 925 926 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 927 928 initializeCallbacks(*F.getParent()); 929 930 if (HasUntracedLifetimeIntrinsic) { 931 // If there are lifetime intrinsics which couldn't be traced back to an 932 // alloca, we may not know exactly when a variable enters scope, and 933 // therefore should "fail safe" by not poisoning them. 934 StaticAllocaPoisonCallVec.clear(); 935 DynamicAllocaPoisonCallVec.clear(); 936 } 937 938 processDynamicAllocas(); 939 processStaticAllocas(); 940 941 if (ClDebugStack) { 942 LLVM_DEBUG(dbgs() << F); 943 } 944 return true; 945 } 946 947 // Arguments marked with the "byval" attribute are implicitly copied without 948 // using an alloca instruction. To produce redzones for those arguments, we 949 // copy them a second time into memory allocated with an alloca instruction. 950 void copyArgsPassedByValToAllocas(); 951 952 // Finds all Alloca instructions and puts 953 // poisoned red zones around all of them. 954 // Then unpoison everything back before the function returns. 955 void processStaticAllocas(); 956 void processDynamicAllocas(); 957 958 void createDynamicAllocasInitStorage(); 959 960 // ----------------------- Visitors. 961 /// Collect all Ret instructions, or the musttail call instruction if it 962 /// precedes the return instruction. 963 void visitReturnInst(ReturnInst &RI) { 964 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 965 RetVec.push_back(CI); 966 else 967 RetVec.push_back(&RI); 968 } 969 970 /// Collect all Resume instructions. 971 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 972 973 /// Collect all CatchReturnInst instructions. 974 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 975 976 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 977 Value *SavedStack) { 978 IRBuilder<> IRB(InstBefore); 979 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 980 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 981 // need to adjust extracted SP to compute the address of the most recent 982 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 983 // this purpose. 984 if (!isa<ReturnInst>(InstBefore)) { 985 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 986 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 987 {IntptrTy}); 988 989 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 990 991 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 992 DynamicAreaOffset); 993 } 994 995 IRB.CreateCall( 996 AsanAllocasUnpoisonFunc, 997 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 998 } 999 1000 // Unpoison dynamic allocas redzones. 1001 void unpoisonDynamicAllocas() { 1002 for (Instruction *Ret : RetVec) 1003 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1004 1005 for (Instruction *StackRestoreInst : StackRestoreVec) 1006 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1007 StackRestoreInst->getOperand(0)); 1008 } 1009 1010 // Deploy and poison redzones around dynamic alloca call. To do this, we 1011 // should replace this call with another one with changed parameters and 1012 // replace all its uses with new address, so 1013 // addr = alloca type, old_size, align 1014 // is replaced by 1015 // new_size = (old_size + additional_size) * sizeof(type) 1016 // tmp = alloca i8, new_size, max(align, 32) 1017 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1018 // Additional_size is added to make new memory allocation contain not only 1019 // requested memory, but also left, partial and right redzones. 1020 void handleDynamicAllocaCall(AllocaInst *AI); 1021 1022 /// Collect Alloca instructions we want (and can) handle. 1023 void visitAllocaInst(AllocaInst &AI) { 1024 if (!ASan.isInterestingAlloca(AI)) { 1025 if (AI.isStaticAlloca()) { 1026 // Skip over allocas that are present *before* the first instrumented 1027 // alloca, we don't want to move those around. 1028 if (AllocaVec.empty()) 1029 return; 1030 1031 StaticAllocasToMoveUp.push_back(&AI); 1032 } 1033 return; 1034 } 1035 1036 if (!AI.isStaticAlloca()) 1037 DynamicAllocaVec.push_back(&AI); 1038 else 1039 AllocaVec.push_back(&AI); 1040 } 1041 1042 /// Collect lifetime intrinsic calls to check for use-after-scope 1043 /// errors. 1044 void visitIntrinsicInst(IntrinsicInst &II) { 1045 Intrinsic::ID ID = II.getIntrinsicID(); 1046 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1047 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1048 if (!ASan.UseAfterScope) 1049 return; 1050 if (!II.isLifetimeStartOrEnd()) 1051 return; 1052 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1053 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1054 // If size argument is undefined, don't do anything. 1055 if (Size->isMinusOne()) return; 1056 // Check that size doesn't saturate uint64_t and can 1057 // be stored in IntptrTy. 1058 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1059 if (SizeValue == ~0ULL || 1060 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1061 return; 1062 // Find alloca instruction that corresponds to llvm.lifetime argument. 1063 // Currently we can only handle lifetime markers pointing to the 1064 // beginning of the alloca. 1065 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1066 if (!AI) { 1067 HasUntracedLifetimeIntrinsic = true; 1068 return; 1069 } 1070 // We're interested only in allocas we can handle. 1071 if (!ASan.isInterestingAlloca(*AI)) 1072 return; 1073 bool DoPoison = (ID == Intrinsic::lifetime_end); 1074 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1075 if (AI->isStaticAlloca()) 1076 StaticAllocaPoisonCallVec.push_back(APC); 1077 else if (ClInstrumentDynamicAllocas) 1078 DynamicAllocaPoisonCallVec.push_back(APC); 1079 } 1080 1081 void visitCallBase(CallBase &CB) { 1082 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1083 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1084 HasReturnsTwiceCall |= CI->canReturnTwice(); 1085 } 1086 } 1087 1088 // ---------------------- Helpers. 1089 void initializeCallbacks(Module &M); 1090 1091 // Copies bytes from ShadowBytes into shadow memory for indexes where 1092 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1093 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1094 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1095 IRBuilder<> &IRB, Value *ShadowBase); 1096 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1097 size_t Begin, size_t End, IRBuilder<> &IRB, 1098 Value *ShadowBase); 1099 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1100 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1101 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1102 1103 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1104 1105 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1106 bool Dynamic); 1107 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1108 Instruction *ThenTerm, Value *ValueIfFalse); 1109 }; 1110 1111 } // end anonymous namespace 1112 1113 void ModuleAddressSanitizerPass::printPipeline( 1114 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1115 static_cast<PassInfoMixin<ModuleAddressSanitizerPass> *>(this)->printPipeline( 1116 OS, MapClassName2PassName); 1117 OS << "<"; 1118 if (Options.CompileKernel) 1119 OS << "kernel"; 1120 OS << ">"; 1121 } 1122 1123 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( 1124 const AddressSanitizerOptions &Options, bool UseGlobalGC, 1125 bool UseOdrIndicator, AsanDtorKind DestructorKind) 1126 : Options(Options), UseGlobalGC(UseGlobalGC), 1127 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} 1128 1129 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1130 ModuleAnalysisManager &MAM) { 1131 ModuleAddressSanitizer ModuleSanitizer(M, Options.CompileKernel, 1132 Options.Recover, UseGlobalGC, 1133 UseOdrIndicator, DestructorKind); 1134 bool Modified = false; 1135 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1136 const StackSafetyGlobalInfo *const SSGI = 1137 ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr; 1138 for (Function &F : M) { 1139 AddressSanitizer FunctionSanitizer(M, SSGI, Options.CompileKernel, 1140 Options.Recover, Options.UseAfterScope, 1141 Options.UseAfterReturn); 1142 const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1143 Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); 1144 } 1145 Modified |= ModuleSanitizer.instrumentModule(M); 1146 return Modified ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1147 } 1148 1149 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1150 size_t Res = countTrailingZeros(TypeSize / 8); 1151 assert(Res < kNumberOfAccessSizes); 1152 return Res; 1153 } 1154 1155 /// Check if \p G has been created by a trusted compiler pass. 1156 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1157 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1158 if (G->getName().startswith("llvm.") || 1159 // Do not instrument gcov counter arrays. 1160 G->getName().startswith("__llvm_gcov_ctr") || 1161 // Do not instrument rtti proxy symbols for function sanitizer. 1162 G->getName().startswith("__llvm_rtti_proxy")) 1163 return true; 1164 1165 // Do not instrument asan globals. 1166 if (G->getName().startswith(kAsanGenPrefix) || 1167 G->getName().startswith(kSanCovGenPrefix) || 1168 G->getName().startswith(kODRGenPrefix)) 1169 return true; 1170 1171 return false; 1172 } 1173 1174 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1175 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1176 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1177 if (AddrSpace == 3 || AddrSpace == 5) 1178 return true; 1179 return false; 1180 } 1181 1182 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1183 // Shadow >> scale 1184 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1185 if (Mapping.Offset == 0) return Shadow; 1186 // (Shadow >> scale) | offset 1187 Value *ShadowBase; 1188 if (LocalDynamicShadow) 1189 ShadowBase = LocalDynamicShadow; 1190 else 1191 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1192 if (Mapping.OrShadowOffset) 1193 return IRB.CreateOr(Shadow, ShadowBase); 1194 else 1195 return IRB.CreateAdd(Shadow, ShadowBase); 1196 } 1197 1198 // Instrument memset/memmove/memcpy 1199 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1200 IRBuilder<> IRB(MI); 1201 if (isa<MemTransferInst>(MI)) { 1202 IRB.CreateCall( 1203 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1204 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1205 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1206 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1207 } else if (isa<MemSetInst>(MI)) { 1208 IRB.CreateCall( 1209 AsanMemset, 1210 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1211 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1212 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1213 } 1214 MI->eraseFromParent(); 1215 } 1216 1217 /// Check if we want (and can) handle this alloca. 1218 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1219 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1220 1221 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1222 return PreviouslySeenAllocaInfo->getSecond(); 1223 1224 bool IsInteresting = 1225 (AI.getAllocatedType()->isSized() && 1226 // alloca() may be called with 0 size, ignore it. 1227 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1228 // We are only interested in allocas not promotable to registers. 1229 // Promotable allocas are common under -O0. 1230 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1231 // inalloca allocas are not treated as static, and we don't want 1232 // dynamic alloca instrumentation for them as well. 1233 !AI.isUsedWithInAlloca() && 1234 // swifterror allocas are register promoted by ISel 1235 !AI.isSwiftError() && 1236 // safe allocas are not interesting 1237 !(SSGI && SSGI->isSafe(AI))); 1238 1239 ProcessedAllocas[&AI] = IsInteresting; 1240 return IsInteresting; 1241 } 1242 1243 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { 1244 // Instrument acesses from different address spaces only for AMDGPU. 1245 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1246 if (PtrTy->getPointerAddressSpace() != 0 && 1247 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1248 return true; 1249 1250 // Ignore swifterror addresses. 1251 // swifterror memory addresses are mem2reg promoted by instruction 1252 // selection. As such they cannot have regular uses like an instrumentation 1253 // function and it makes no sense to track them as memory. 1254 if (Ptr->isSwiftError()) 1255 return true; 1256 1257 // Treat memory accesses to promotable allocas as non-interesting since they 1258 // will not cause memory violations. This greatly speeds up the instrumented 1259 // executable at -O0. 1260 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1261 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1262 return true; 1263 1264 if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && 1265 findAllocaForValue(Ptr)) 1266 return true; 1267 1268 return false; 1269 } 1270 1271 void AddressSanitizer::getInterestingMemoryOperands( 1272 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1273 // Do not instrument the load fetching the dynamic shadow address. 1274 if (LocalDynamicShadow == I) 1275 return; 1276 1277 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1278 if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand())) 1279 return; 1280 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1281 LI->getType(), LI->getAlign()); 1282 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1283 if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand())) 1284 return; 1285 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1286 SI->getValueOperand()->getType(), SI->getAlign()); 1287 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1288 if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand())) 1289 return; 1290 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1291 RMW->getValOperand()->getType(), None); 1292 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1293 if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand())) 1294 return; 1295 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1296 XCHG->getCompareOperand()->getType(), None); 1297 } else if (auto CI = dyn_cast<CallInst>(I)) { 1298 if (CI->getIntrinsicID() == Intrinsic::masked_load || 1299 CI->getIntrinsicID() == Intrinsic::masked_store) { 1300 bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_store; 1301 // Masked store has an initial operand for the value. 1302 unsigned OpOffset = IsWrite ? 1 : 0; 1303 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1304 return; 1305 1306 auto BasePtr = CI->getOperand(OpOffset); 1307 if (ignoreAccess(I, BasePtr)) 1308 return; 1309 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1310 MaybeAlign Alignment = Align(1); 1311 // Otherwise no alignment guarantees. We probably got Undef. 1312 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1313 Alignment = Op->getMaybeAlignValue(); 1314 Value *Mask = CI->getOperand(2 + OpOffset); 1315 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1316 } else { 1317 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { 1318 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1319 ignoreAccess(I, CI->getArgOperand(ArgNo))) 1320 continue; 1321 Type *Ty = CI->getParamByValType(ArgNo); 1322 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1323 } 1324 } 1325 } 1326 } 1327 1328 static bool isPointerOperand(Value *V) { 1329 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1330 } 1331 1332 // This is a rough heuristic; it may cause both false positives and 1333 // false negatives. The proper implementation requires cooperation with 1334 // the frontend. 1335 static bool isInterestingPointerComparison(Instruction *I) { 1336 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1337 if (!Cmp->isRelational()) 1338 return false; 1339 } else { 1340 return false; 1341 } 1342 return isPointerOperand(I->getOperand(0)) && 1343 isPointerOperand(I->getOperand(1)); 1344 } 1345 1346 // This is a rough heuristic; it may cause both false positives and 1347 // false negatives. The proper implementation requires cooperation with 1348 // the frontend. 1349 static bool isInterestingPointerSubtraction(Instruction *I) { 1350 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1351 if (BO->getOpcode() != Instruction::Sub) 1352 return false; 1353 } else { 1354 return false; 1355 } 1356 return isPointerOperand(I->getOperand(0)) && 1357 isPointerOperand(I->getOperand(1)); 1358 } 1359 1360 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1361 // If a global variable does not have dynamic initialization we don't 1362 // have to instrument it. However, if a global does not have initializer 1363 // at all, we assume it has dynamic initializer (in other TU). 1364 if (!G->hasInitializer()) 1365 return false; 1366 1367 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit) 1368 return false; 1369 1370 return true; 1371 } 1372 1373 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1374 Instruction *I) { 1375 IRBuilder<> IRB(I); 1376 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1377 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1378 for (Value *&i : Param) { 1379 if (i->getType()->isPointerTy()) 1380 i = IRB.CreatePointerCast(i, IntptrTy); 1381 } 1382 IRB.CreateCall(F, Param); 1383 } 1384 1385 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1386 Instruction *InsertBefore, Value *Addr, 1387 MaybeAlign Alignment, unsigned Granularity, 1388 uint32_t TypeSize, bool IsWrite, 1389 Value *SizeArgument, bool UseCalls, 1390 uint32_t Exp) { 1391 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1392 // if the data is properly aligned. 1393 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1394 TypeSize == 128) && 1395 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1396 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1397 nullptr, UseCalls, Exp); 1398 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1399 IsWrite, nullptr, UseCalls, Exp); 1400 } 1401 1402 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1403 const DataLayout &DL, Type *IntptrTy, 1404 Value *Mask, Instruction *I, 1405 Value *Addr, MaybeAlign Alignment, 1406 unsigned Granularity, Type *OpType, 1407 bool IsWrite, Value *SizeArgument, 1408 bool UseCalls, uint32_t Exp) { 1409 auto *VTy = cast<FixedVectorType>(OpType); 1410 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1411 unsigned Num = VTy->getNumElements(); 1412 auto Zero = ConstantInt::get(IntptrTy, 0); 1413 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1414 Value *InstrumentedAddress = nullptr; 1415 Instruction *InsertBefore = I; 1416 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1417 // dyn_cast as we might get UndefValue 1418 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1419 if (Masked->isZero()) 1420 // Mask is constant false, so no instrumentation needed. 1421 continue; 1422 // If we have a true or undef value, fall through to doInstrumentAddress 1423 // with InsertBefore == I 1424 } 1425 } else { 1426 IRBuilder<> IRB(I); 1427 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1428 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1429 InsertBefore = ThenTerm; 1430 } 1431 1432 IRBuilder<> IRB(InsertBefore); 1433 InstrumentedAddress = 1434 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1435 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1436 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1437 UseCalls, Exp); 1438 } 1439 } 1440 1441 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1442 InterestingMemoryOperand &O, bool UseCalls, 1443 const DataLayout &DL) { 1444 Value *Addr = O.getPtr(); 1445 1446 // Optimization experiments. 1447 // The experiments can be used to evaluate potential optimizations that remove 1448 // instrumentation (assess false negatives). Instead of completely removing 1449 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1450 // experiments that want to remove instrumentation of this instruction). 1451 // If Exp is non-zero, this pass will emit special calls into runtime 1452 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1453 // make runtime terminate the program in a special way (with a different 1454 // exit status). Then you run the new compiler on a buggy corpus, collect 1455 // the special terminations (ideally, you don't see them at all -- no false 1456 // negatives) and make the decision on the optimization. 1457 uint32_t Exp = ClForceExperiment; 1458 1459 if (ClOpt && ClOptGlobals) { 1460 // If initialization order checking is disabled, a simple access to a 1461 // dynamically initialized global is always valid. 1462 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1463 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1464 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1465 NumOptimizedAccessesToGlobalVar++; 1466 return; 1467 } 1468 } 1469 1470 if (ClOpt && ClOptStack) { 1471 // A direct inbounds access to a stack variable is always valid. 1472 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1473 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1474 NumOptimizedAccessesToStackVar++; 1475 return; 1476 } 1477 } 1478 1479 if (O.IsWrite) 1480 NumInstrumentedWrites++; 1481 else 1482 NumInstrumentedReads++; 1483 1484 unsigned Granularity = 1 << Mapping.Scale; 1485 if (O.MaybeMask) { 1486 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1487 Addr, O.Alignment, Granularity, O.OpType, 1488 O.IsWrite, nullptr, UseCalls, Exp); 1489 } else { 1490 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1491 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1492 Exp); 1493 } 1494 } 1495 1496 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1497 Value *Addr, bool IsWrite, 1498 size_t AccessSizeIndex, 1499 Value *SizeArgument, 1500 uint32_t Exp) { 1501 IRBuilder<> IRB(InsertBefore); 1502 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1503 CallInst *Call = nullptr; 1504 if (SizeArgument) { 1505 if (Exp == 0) 1506 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1507 {Addr, SizeArgument}); 1508 else 1509 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1510 {Addr, SizeArgument, ExpVal}); 1511 } else { 1512 if (Exp == 0) 1513 Call = 1514 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1515 else 1516 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1517 {Addr, ExpVal}); 1518 } 1519 1520 Call->setCannotMerge(); 1521 return Call; 1522 } 1523 1524 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1525 Value *ShadowValue, 1526 uint32_t TypeSize) { 1527 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1528 // Addr & (Granularity - 1) 1529 Value *LastAccessedByte = 1530 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1531 // (Addr & (Granularity - 1)) + size - 1 1532 if (TypeSize / 8 > 1) 1533 LastAccessedByte = IRB.CreateAdd( 1534 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1535 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1536 LastAccessedByte = 1537 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1538 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1539 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1540 } 1541 1542 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1543 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1544 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { 1545 // Do not instrument unsupported addrspaces. 1546 if (isUnsupportedAMDGPUAddrspace(Addr)) 1547 return nullptr; 1548 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1549 // Follow host instrumentation for global and constant addresses. 1550 if (PtrTy->getPointerAddressSpace() != 0) 1551 return InsertBefore; 1552 // Instrument generic addresses in supported addressspaces. 1553 IRBuilder<> IRB(InsertBefore); 1554 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); 1555 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); 1556 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); 1557 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1558 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); 1559 Value *AddrSpaceZeroLanding = 1560 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1561 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1562 return InsertBefore; 1563 } 1564 1565 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1566 Instruction *InsertBefore, Value *Addr, 1567 uint32_t TypeSize, bool IsWrite, 1568 Value *SizeArgument, bool UseCalls, 1569 uint32_t Exp) { 1570 if (TargetTriple.isAMDGPU()) { 1571 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1572 TypeSize, IsWrite, SizeArgument); 1573 if (!InsertBefore) 1574 return; 1575 } 1576 1577 IRBuilder<> IRB(InsertBefore); 1578 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1579 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1580 1581 if (UseCalls && ClOptimizeCallbacks) { 1582 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1583 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1584 IRB.CreateCall( 1585 Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), 1586 {IRB.CreatePointerCast(Addr, Int8PtrTy), 1587 ConstantInt::get(Int32Ty, AccessInfo.Packed)}); 1588 return; 1589 } 1590 1591 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1592 if (UseCalls) { 1593 if (Exp == 0) 1594 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1595 AddrLong); 1596 else 1597 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1598 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1599 return; 1600 } 1601 1602 Type *ShadowTy = 1603 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1604 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1605 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1606 Value *CmpVal = Constant::getNullValue(ShadowTy); 1607 Value *ShadowValue = 1608 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1609 1610 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1611 size_t Granularity = 1ULL << Mapping.Scale; 1612 Instruction *CrashTerm = nullptr; 1613 1614 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1615 // We use branch weights for the slow path check, to indicate that the slow 1616 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1617 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1618 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1619 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1620 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1621 IRB.SetInsertPoint(CheckTerm); 1622 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1623 if (Recover) { 1624 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1625 } else { 1626 BasicBlock *CrashBlock = 1627 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1628 CrashTerm = new UnreachableInst(*C, CrashBlock); 1629 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1630 ReplaceInstWithInst(CheckTerm, NewTerm); 1631 } 1632 } else { 1633 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1634 } 1635 1636 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1637 AccessSizeIndex, SizeArgument, Exp); 1638 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1639 } 1640 1641 // Instrument unusual size or unusual alignment. 1642 // We can not do it with a single check, so we do 1-byte check for the first 1643 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1644 // to report the actual access size. 1645 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1646 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1647 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1648 IRBuilder<> IRB(InsertBefore); 1649 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1650 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1651 if (UseCalls) { 1652 if (Exp == 0) 1653 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1654 {AddrLong, Size}); 1655 else 1656 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1657 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1658 } else { 1659 Value *LastByte = IRB.CreateIntToPtr( 1660 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1661 Addr->getType()); 1662 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1663 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1664 } 1665 } 1666 1667 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1668 GlobalValue *ModuleName) { 1669 // Set up the arguments to our poison/unpoison functions. 1670 IRBuilder<> IRB(&GlobalInit.front(), 1671 GlobalInit.front().getFirstInsertionPt()); 1672 1673 // Add a call to poison all external globals before the given function starts. 1674 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1675 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1676 1677 // Add calls to unpoison all globals before each return instruction. 1678 for (auto &BB : GlobalInit.getBasicBlockList()) 1679 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1680 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1681 } 1682 1683 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1684 Module &M, GlobalValue *ModuleName) { 1685 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1686 if (!GV) 1687 return; 1688 1689 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1690 if (!CA) 1691 return; 1692 1693 for (Use &OP : CA->operands()) { 1694 if (isa<ConstantAggregateZero>(OP)) continue; 1695 ConstantStruct *CS = cast<ConstantStruct>(OP); 1696 1697 // Must have a function or null ptr. 1698 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1699 if (F->getName() == kAsanModuleCtorName) continue; 1700 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1701 // Don't instrument CTORs that will run before asan.module_ctor. 1702 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1703 continue; 1704 poisonOneInitializer(*F, ModuleName); 1705 } 1706 } 1707 } 1708 1709 const GlobalVariable * 1710 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1711 // In case this function should be expanded to include rules that do not just 1712 // apply when CompileKernel is true, either guard all existing rules with an 1713 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1714 // should also apply to user space. 1715 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1716 1717 const Constant *C = GA.getAliasee(); 1718 1719 // When compiling the kernel, globals that are aliased by symbols prefixed 1720 // by "__" are special and cannot be padded with a redzone. 1721 if (GA.getName().startswith("__")) 1722 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1723 1724 return nullptr; 1725 } 1726 1727 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1728 Type *Ty = G->getValueType(); 1729 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1730 1731 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress) 1732 return false; 1733 if (!Ty->isSized()) return false; 1734 if (!G->hasInitializer()) return false; 1735 // Globals in address space 1 and 4 are supported for AMDGPU. 1736 if (G->getAddressSpace() && 1737 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 1738 return false; 1739 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1740 // Two problems with thread-locals: 1741 // - The address of the main thread's copy can't be computed at link-time. 1742 // - Need to poison all copies, not just the main thread's one. 1743 if (G->isThreadLocal()) return false; 1744 // For now, just ignore this Global if the alignment is large. 1745 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1746 1747 // For non-COFF targets, only instrument globals known to be defined by this 1748 // TU. 1749 // FIXME: We can instrument comdat globals on ELF if we are using the 1750 // GC-friendly metadata scheme. 1751 if (!TargetTriple.isOSBinFormatCOFF()) { 1752 if (!G->hasExactDefinition() || G->hasComdat()) 1753 return false; 1754 } else { 1755 // On COFF, don't instrument non-ODR linkages. 1756 if (G->isInterposable()) 1757 return false; 1758 } 1759 1760 // If a comdat is present, it must have a selection kind that implies ODR 1761 // semantics: no duplicates, any, or exact match. 1762 if (Comdat *C = G->getComdat()) { 1763 switch (C->getSelectionKind()) { 1764 case Comdat::Any: 1765 case Comdat::ExactMatch: 1766 case Comdat::NoDeduplicate: 1767 break; 1768 case Comdat::Largest: 1769 case Comdat::SameSize: 1770 return false; 1771 } 1772 } 1773 1774 if (G->hasSection()) { 1775 // The kernel uses explicit sections for mostly special global variables 1776 // that we should not instrument. E.g. the kernel may rely on their layout 1777 // without redzones, or remove them at link time ("discard.*"), etc. 1778 if (CompileKernel) 1779 return false; 1780 1781 StringRef Section = G->getSection(); 1782 1783 // Globals from llvm.metadata aren't emitted, do not instrument them. 1784 if (Section == "llvm.metadata") return false; 1785 // Do not instrument globals from special LLVM sections. 1786 if (Section.contains("__llvm") || Section.contains("__LLVM")) 1787 return false; 1788 1789 // Do not instrument function pointers to initialization and termination 1790 // routines: dynamic linker will not properly handle redzones. 1791 if (Section.startswith(".preinit_array") || 1792 Section.startswith(".init_array") || 1793 Section.startswith(".fini_array")) { 1794 return false; 1795 } 1796 1797 // Do not instrument user-defined sections (with names resembling 1798 // valid C identifiers) 1799 if (TargetTriple.isOSBinFormatELF()) { 1800 if (llvm::all_of(Section, 1801 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 1802 return false; 1803 } 1804 1805 // On COFF, if the section name contains '$', it is highly likely that the 1806 // user is using section sorting to create an array of globals similar to 1807 // the way initialization callbacks are registered in .init_array and 1808 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1809 // to such globals is counterproductive, because the intent is that they 1810 // will form an array, and out-of-bounds accesses are expected. 1811 // See https://github.com/google/sanitizers/issues/305 1812 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1813 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1814 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1815 << *G << "\n"); 1816 return false; 1817 } 1818 1819 if (TargetTriple.isOSBinFormatMachO()) { 1820 StringRef ParsedSegment, ParsedSection; 1821 unsigned TAA = 0, StubSize = 0; 1822 bool TAAParsed; 1823 cantFail(MCSectionMachO::ParseSectionSpecifier( 1824 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 1825 1826 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1827 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1828 // them. 1829 if (ParsedSegment == "__OBJC" || 1830 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1831 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1832 return false; 1833 } 1834 // See https://github.com/google/sanitizers/issues/32 1835 // Constant CFString instances are compiled in the following way: 1836 // -- the string buffer is emitted into 1837 // __TEXT,__cstring,cstring_literals 1838 // -- the constant NSConstantString structure referencing that buffer 1839 // is placed into __DATA,__cfstring 1840 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1841 // Moreover, it causes the linker to crash on OS X 10.7 1842 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1843 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1844 return false; 1845 } 1846 // The linker merges the contents of cstring_literals and removes the 1847 // trailing zeroes. 1848 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1849 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1850 return false; 1851 } 1852 } 1853 } 1854 1855 if (CompileKernel) { 1856 // Globals that prefixed by "__" are special and cannot be padded with a 1857 // redzone. 1858 if (G->getName().startswith("__")) 1859 return false; 1860 } 1861 1862 return true; 1863 } 1864 1865 // On Mach-O platforms, we emit global metadata in a separate section of the 1866 // binary in order to allow the linker to properly dead strip. This is only 1867 // supported on recent versions of ld64. 1868 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1869 if (!TargetTriple.isOSBinFormatMachO()) 1870 return false; 1871 1872 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1873 return true; 1874 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1875 return true; 1876 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1877 return true; 1878 if (TargetTriple.isDriverKit()) 1879 return true; 1880 1881 return false; 1882 } 1883 1884 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1885 switch (TargetTriple.getObjectFormat()) { 1886 case Triple::COFF: return ".ASAN$GL"; 1887 case Triple::ELF: return "asan_globals"; 1888 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1889 case Triple::Wasm: 1890 case Triple::GOFF: 1891 case Triple::SPIRV: 1892 case Triple::XCOFF: 1893 case Triple::DXContainer: 1894 report_fatal_error( 1895 "ModuleAddressSanitizer not implemented for object file format"); 1896 case Triple::UnknownObjectFormat: 1897 break; 1898 } 1899 llvm_unreachable("unsupported object format"); 1900 } 1901 1902 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1903 IRBuilder<> IRB(*C); 1904 1905 // Declare our poisoning and unpoisoning functions. 1906 AsanPoisonGlobals = 1907 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1908 AsanUnpoisonGlobals = 1909 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1910 1911 // Declare functions that register/unregister globals. 1912 AsanRegisterGlobals = M.getOrInsertFunction( 1913 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1914 AsanUnregisterGlobals = M.getOrInsertFunction( 1915 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1916 1917 // Declare the functions that find globals in a shared object and then invoke 1918 // the (un)register function on them. 1919 AsanRegisterImageGlobals = M.getOrInsertFunction( 1920 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1921 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1922 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1923 1924 AsanRegisterElfGlobals = 1925 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1926 IntptrTy, IntptrTy, IntptrTy); 1927 AsanUnregisterElfGlobals = 1928 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1929 IntptrTy, IntptrTy, IntptrTy); 1930 } 1931 1932 // Put the metadata and the instrumented global in the same group. This ensures 1933 // that the metadata is discarded if the instrumented global is discarded. 1934 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 1935 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1936 Module &M = *G->getParent(); 1937 Comdat *C = G->getComdat(); 1938 if (!C) { 1939 if (!G->hasName()) { 1940 // If G is unnamed, it must be internal. Give it an artificial name 1941 // so we can put it in a comdat. 1942 assert(G->hasLocalLinkage()); 1943 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 1944 } 1945 1946 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 1947 std::string Name = std::string(G->getName()); 1948 Name += InternalSuffix; 1949 C = M.getOrInsertComdat(Name); 1950 } else { 1951 C = M.getOrInsertComdat(G->getName()); 1952 } 1953 1954 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 1955 // linkage to internal linkage so that a symbol table entry is emitted. This 1956 // is necessary in order to create the comdat group. 1957 if (TargetTriple.isOSBinFormatCOFF()) { 1958 C->setSelectionKind(Comdat::NoDeduplicate); 1959 if (G->hasPrivateLinkage()) 1960 G->setLinkage(GlobalValue::InternalLinkage); 1961 } 1962 G->setComdat(C); 1963 } 1964 1965 assert(G->hasComdat()); 1966 Metadata->setComdat(G->getComdat()); 1967 } 1968 1969 // Create a separate metadata global and put it in the appropriate ASan 1970 // global registration section. 1971 GlobalVariable * 1972 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 1973 StringRef OriginalName) { 1974 auto Linkage = TargetTriple.isOSBinFormatMachO() 1975 ? GlobalVariable::InternalLinkage 1976 : GlobalVariable::PrivateLinkage; 1977 GlobalVariable *Metadata = new GlobalVariable( 1978 M, Initializer->getType(), false, Linkage, Initializer, 1979 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 1980 Metadata->setSection(getGlobalMetadataSection()); 1981 return Metadata; 1982 } 1983 1984 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 1985 AsanDtorFunction = Function::createWithDefaultAttr( 1986 FunctionType::get(Type::getVoidTy(*C), false), 1987 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 1988 AsanDtorFunction->addFnAttr(Attribute::NoUnwind); 1989 // Ensure Dtor cannot be discarded, even if in a comdat. 1990 appendToUsed(M, {AsanDtorFunction}); 1991 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 1992 1993 return ReturnInst::Create(*C, AsanDtorBB); 1994 } 1995 1996 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 1997 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 1998 ArrayRef<Constant *> MetadataInitializers) { 1999 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2000 auto &DL = M.getDataLayout(); 2001 2002 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2003 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2004 Constant *Initializer = MetadataInitializers[i]; 2005 GlobalVariable *G = ExtendedGlobals[i]; 2006 GlobalVariable *Metadata = 2007 CreateMetadataGlobal(M, Initializer, G->getName()); 2008 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2009 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2010 MetadataGlobals[i] = Metadata; 2011 2012 // The MSVC linker always inserts padding when linking incrementally. We 2013 // cope with that by aligning each struct to its size, which must be a power 2014 // of two. 2015 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2016 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2017 "global metadata will not be padded appropriately"); 2018 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2019 2020 SetComdatForGlobalMetadata(G, Metadata, ""); 2021 } 2022 2023 // Update llvm.compiler.used, adding the new metadata globals. This is 2024 // needed so that during LTO these variables stay alive. 2025 if (!MetadataGlobals.empty()) 2026 appendToCompilerUsed(M, MetadataGlobals); 2027 } 2028 2029 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2030 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2031 ArrayRef<Constant *> MetadataInitializers, 2032 const std::string &UniqueModuleId) { 2033 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2034 2035 // Putting globals in a comdat changes the semantic and potentially cause 2036 // false negative odr violations at link time. If odr indicators are used, we 2037 // keep the comdat sections, as link time odr violations will be dectected on 2038 // the odr indicator symbols. 2039 bool UseComdatForGlobalsGC = UseOdrIndicator; 2040 2041 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2042 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2043 GlobalVariable *G = ExtendedGlobals[i]; 2044 GlobalVariable *Metadata = 2045 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2046 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2047 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2048 MetadataGlobals[i] = Metadata; 2049 2050 if (UseComdatForGlobalsGC) 2051 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2052 } 2053 2054 // Update llvm.compiler.used, adding the new metadata globals. This is 2055 // needed so that during LTO these variables stay alive. 2056 if (!MetadataGlobals.empty()) 2057 appendToCompilerUsed(M, MetadataGlobals); 2058 2059 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2060 // to look up the loaded image that contains it. Second, we can store in it 2061 // whether registration has already occurred, to prevent duplicate 2062 // registration. 2063 // 2064 // Common linkage ensures that there is only one global per shared library. 2065 GlobalVariable *RegisteredFlag = new GlobalVariable( 2066 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2067 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2068 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2069 2070 // Create start and stop symbols. 2071 GlobalVariable *StartELFMetadata = new GlobalVariable( 2072 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2073 "__start_" + getGlobalMetadataSection()); 2074 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2075 GlobalVariable *StopELFMetadata = new GlobalVariable( 2076 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2077 "__stop_" + getGlobalMetadataSection()); 2078 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2079 2080 // Create a call to register the globals with the runtime. 2081 IRB.CreateCall(AsanRegisterElfGlobals, 2082 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2083 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2084 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2085 2086 // We also need to unregister globals at the end, e.g., when a shared library 2087 // gets closed. 2088 if (DestructorKind != AsanDtorKind::None) { 2089 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2090 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2091 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2092 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2093 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2094 } 2095 } 2096 2097 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2098 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2099 ArrayRef<Constant *> MetadataInitializers) { 2100 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2101 2102 // On recent Mach-O platforms, use a structure which binds the liveness of 2103 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2104 // created to be added to llvm.compiler.used 2105 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2106 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2107 2108 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2109 Constant *Initializer = MetadataInitializers[i]; 2110 GlobalVariable *G = ExtendedGlobals[i]; 2111 GlobalVariable *Metadata = 2112 CreateMetadataGlobal(M, Initializer, G->getName()); 2113 2114 // On recent Mach-O platforms, we emit the global metadata in a way that 2115 // allows the linker to properly strip dead globals. 2116 auto LivenessBinder = 2117 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2118 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2119 GlobalVariable *Liveness = new GlobalVariable( 2120 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2121 Twine("__asan_binder_") + G->getName()); 2122 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2123 LivenessGlobals[i] = Liveness; 2124 } 2125 2126 // Update llvm.compiler.used, adding the new liveness globals. This is 2127 // needed so that during LTO these variables stay alive. The alternative 2128 // would be to have the linker handling the LTO symbols, but libLTO 2129 // current API does not expose access to the section for each symbol. 2130 if (!LivenessGlobals.empty()) 2131 appendToCompilerUsed(M, LivenessGlobals); 2132 2133 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2134 // to look up the loaded image that contains it. Second, we can store in it 2135 // whether registration has already occurred, to prevent duplicate 2136 // registration. 2137 // 2138 // common linkage ensures that there is only one global per shared library. 2139 GlobalVariable *RegisteredFlag = new GlobalVariable( 2140 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2141 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2142 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2143 2144 IRB.CreateCall(AsanRegisterImageGlobals, 2145 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2146 2147 // We also need to unregister globals at the end, e.g., when a shared library 2148 // gets closed. 2149 if (DestructorKind != AsanDtorKind::None) { 2150 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2151 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2152 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2153 } 2154 } 2155 2156 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2157 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2158 ArrayRef<Constant *> MetadataInitializers) { 2159 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2160 unsigned N = ExtendedGlobals.size(); 2161 assert(N > 0); 2162 2163 // On platforms that don't have a custom metadata section, we emit an array 2164 // of global metadata structures. 2165 ArrayType *ArrayOfGlobalStructTy = 2166 ArrayType::get(MetadataInitializers[0]->getType(), N); 2167 auto AllGlobals = new GlobalVariable( 2168 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2169 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2170 if (Mapping.Scale > 3) 2171 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2172 2173 IRB.CreateCall(AsanRegisterGlobals, 2174 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2175 ConstantInt::get(IntptrTy, N)}); 2176 2177 // We also need to unregister globals at the end, e.g., when a shared library 2178 // gets closed. 2179 if (DestructorKind != AsanDtorKind::None) { 2180 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2181 IrbDtor.CreateCall(AsanUnregisterGlobals, 2182 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2183 ConstantInt::get(IntptrTy, N)}); 2184 } 2185 } 2186 2187 // This function replaces all global variables with new variables that have 2188 // trailing redzones. It also creates a function that poisons 2189 // redzones and inserts this function into llvm.global_ctors. 2190 // Sets *CtorComdat to true if the global registration code emitted into the 2191 // asan constructor is comdat-compatible. 2192 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2193 bool *CtorComdat) { 2194 *CtorComdat = false; 2195 2196 // Build set of globals that are aliased by some GA, where 2197 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2198 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2199 if (CompileKernel) { 2200 for (auto &GA : M.aliases()) { 2201 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2202 AliasedGlobalExclusions.insert(GV); 2203 } 2204 } 2205 2206 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2207 for (auto &G : M.globals()) { 2208 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2209 GlobalsToChange.push_back(&G); 2210 } 2211 2212 size_t n = GlobalsToChange.size(); 2213 if (n == 0) { 2214 *CtorComdat = true; 2215 return false; 2216 } 2217 2218 auto &DL = M.getDataLayout(); 2219 2220 // A global is described by a structure 2221 // size_t beg; 2222 // size_t size; 2223 // size_t size_with_redzone; 2224 // const char *name; 2225 // const char *module_name; 2226 // size_t has_dynamic_init; 2227 // size_t padding_for_windows_msvc_incremental_link; 2228 // size_t odr_indicator; 2229 // We initialize an array of such structures and pass it to a run-time call. 2230 StructType *GlobalStructTy = 2231 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2232 IntptrTy, IntptrTy, IntptrTy); 2233 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2234 SmallVector<Constant *, 16> Initializers(n); 2235 2236 bool HasDynamicallyInitializedGlobals = false; 2237 2238 // We shouldn't merge same module names, as this string serves as unique 2239 // module ID in runtime. 2240 GlobalVariable *ModuleName = createPrivateGlobalForString( 2241 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2242 2243 for (size_t i = 0; i < n; i++) { 2244 GlobalVariable *G = GlobalsToChange[i]; 2245 2246 GlobalValue::SanitizerMetadata MD; 2247 if (G->hasSanitizerMetadata()) 2248 MD = G->getSanitizerMetadata(); 2249 2250 // TODO: Symbol names in the descriptor can be demangled by the runtime 2251 // library. This could save ~0.4% of VM size for a private large binary. 2252 std::string NameForGlobal = llvm::demangle(G->getName().str()); 2253 GlobalVariable *Name = 2254 createPrivateGlobalForString(M, NameForGlobal, 2255 /*AllowMerging*/ true, kAsanGenPrefix); 2256 2257 Type *Ty = G->getValueType(); 2258 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2259 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2260 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2261 2262 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2263 Constant *NewInitializer = ConstantStruct::get( 2264 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2265 2266 // Create a new global variable with enough space for a redzone. 2267 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2268 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2269 Linkage = GlobalValue::InternalLinkage; 2270 GlobalVariable *NewGlobal = new GlobalVariable( 2271 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2272 G->getThreadLocalMode(), G->getAddressSpace()); 2273 NewGlobal->copyAttributesFrom(G); 2274 NewGlobal->setComdat(G->getComdat()); 2275 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2276 // Don't fold globals with redzones. ODR violation detector and redzone 2277 // poisoning implicitly creates a dependence on the global's address, so it 2278 // is no longer valid for it to be marked unnamed_addr. 2279 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2280 2281 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2282 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2283 G->isConstant()) { 2284 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2285 if (Seq && Seq->isCString()) 2286 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2287 } 2288 2289 // Transfer the debug info and type metadata. The payload starts at offset 2290 // zero so we can copy the metadata over as is. 2291 NewGlobal->copyMetadata(G, 0); 2292 2293 Value *Indices2[2]; 2294 Indices2[0] = IRB.getInt32(0); 2295 Indices2[1] = IRB.getInt32(0); 2296 2297 G->replaceAllUsesWith( 2298 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2299 NewGlobal->takeName(G); 2300 G->eraseFromParent(); 2301 NewGlobals[i] = NewGlobal; 2302 2303 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2304 GlobalValue *InstrumentedGlobal = NewGlobal; 2305 2306 bool CanUsePrivateAliases = 2307 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2308 TargetTriple.isOSBinFormatWasm(); 2309 if (CanUsePrivateAliases && UsePrivateAlias) { 2310 // Create local alias for NewGlobal to avoid crash on ODR between 2311 // instrumented and non-instrumented libraries. 2312 InstrumentedGlobal = 2313 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2314 } 2315 2316 // ODR should not happen for local linkage. 2317 if (NewGlobal->hasLocalLinkage()) { 2318 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2319 IRB.getInt8PtrTy()); 2320 } else if (UseOdrIndicator) { 2321 // With local aliases, we need to provide another externally visible 2322 // symbol __odr_asan_XXX to detect ODR violation. 2323 auto *ODRIndicatorSym = 2324 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2325 Constant::getNullValue(IRB.getInt8Ty()), 2326 kODRGenPrefix + NameForGlobal, nullptr, 2327 NewGlobal->getThreadLocalMode()); 2328 2329 // Set meaningful attributes for indicator symbol. 2330 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2331 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2332 ODRIndicatorSym->setAlignment(Align(1)); 2333 ODRIndicator = ODRIndicatorSym; 2334 } 2335 2336 Constant *Initializer = ConstantStruct::get( 2337 GlobalStructTy, 2338 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2339 ConstantInt::get(IntptrTy, SizeInBytes), 2340 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2341 ConstantExpr::getPointerCast(Name, IntptrTy), 2342 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2343 ConstantInt::get(IntptrTy, MD.IsDynInit), 2344 Constant::getNullValue(IntptrTy), 2345 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2346 2347 if (ClInitializers && MD.IsDynInit) 2348 HasDynamicallyInitializedGlobals = true; 2349 2350 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2351 2352 Initializers[i] = Initializer; 2353 } 2354 2355 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2356 // ConstantMerge'ing them. 2357 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2358 for (size_t i = 0; i < n; i++) { 2359 GlobalVariable *G = NewGlobals[i]; 2360 if (G->getName().empty()) continue; 2361 GlobalsToAddToUsedList.push_back(G); 2362 } 2363 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2364 2365 std::string ELFUniqueModuleId = 2366 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2367 : ""; 2368 2369 if (!ELFUniqueModuleId.empty()) { 2370 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2371 *CtorComdat = true; 2372 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2373 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2374 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2375 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2376 } else { 2377 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2378 } 2379 2380 // Create calls for poisoning before initializers run and unpoisoning after. 2381 if (HasDynamicallyInitializedGlobals) 2382 createInitializerPoisonCalls(M, ModuleName); 2383 2384 LLVM_DEBUG(dbgs() << M); 2385 return true; 2386 } 2387 2388 uint64_t 2389 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2390 constexpr uint64_t kMaxRZ = 1 << 18; 2391 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2392 2393 uint64_t RZ = 0; 2394 if (SizeInBytes <= MinRZ / 2) { 2395 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2396 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2397 // half of MinRZ. 2398 RZ = MinRZ - SizeInBytes; 2399 } else { 2400 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2401 RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2402 2403 // Round up to multiple of MinRZ. 2404 if (SizeInBytes % MinRZ) 2405 RZ += MinRZ - (SizeInBytes % MinRZ); 2406 } 2407 2408 assert((RZ + SizeInBytes) % MinRZ == 0); 2409 2410 return RZ; 2411 } 2412 2413 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2414 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2415 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2416 int Version = 8; 2417 // 32-bit Android is one version ahead because of the switch to dynamic 2418 // shadow. 2419 Version += (LongSize == 32 && isAndroid); 2420 return Version; 2421 } 2422 2423 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2424 initializeCallbacks(M); 2425 2426 // Create a module constructor. A destructor is created lazily because not all 2427 // platforms, and not all modules need it. 2428 if (CompileKernel) { 2429 // The kernel always builds with its own runtime, and therefore does not 2430 // need the init and version check calls. 2431 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2432 } else { 2433 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2434 std::string VersionCheckName = 2435 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2436 std::tie(AsanCtorFunction, std::ignore) = 2437 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2438 kAsanInitName, /*InitArgTypes=*/{}, 2439 /*InitArgs=*/{}, VersionCheckName); 2440 } 2441 2442 bool CtorComdat = true; 2443 if (ClGlobals) { 2444 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2445 InstrumentGlobals(IRB, M, &CtorComdat); 2446 } 2447 2448 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2449 2450 // Put the constructor and destructor in comdat if both 2451 // (1) global instrumentation is not TU-specific 2452 // (2) target is ELF. 2453 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2454 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2455 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2456 if (AsanDtorFunction) { 2457 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2458 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2459 } 2460 } else { 2461 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2462 if (AsanDtorFunction) 2463 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2464 } 2465 2466 return true; 2467 } 2468 2469 void AddressSanitizer::initializeCallbacks(Module &M) { 2470 IRBuilder<> IRB(*C); 2471 // Create __asan_report* callbacks. 2472 // IsWrite, TypeSize and Exp are encoded in the function name. 2473 for (int Exp = 0; Exp < 2; Exp++) { 2474 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2475 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2476 const std::string ExpStr = Exp ? "exp_" : ""; 2477 const std::string EndingStr = Recover ? "_noabort" : ""; 2478 2479 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2480 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2481 if (Exp) { 2482 Type *ExpType = Type::getInt32Ty(*C); 2483 Args2.push_back(ExpType); 2484 Args1.push_back(ExpType); 2485 } 2486 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2487 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2488 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2489 2490 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2491 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2492 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2493 2494 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2495 AccessSizeIndex++) { 2496 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2497 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2498 M.getOrInsertFunction( 2499 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2500 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2501 2502 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2503 M.getOrInsertFunction( 2504 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2505 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2506 } 2507 } 2508 } 2509 2510 const std::string MemIntrinCallbackPrefix = 2511 (CompileKernel && !ClKasanMemIntrinCallbackPrefix) 2512 ? std::string("") 2513 : ClMemoryAccessCallbackPrefix; 2514 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2515 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2516 IRB.getInt8PtrTy(), IntptrTy); 2517 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2518 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2519 IRB.getInt8PtrTy(), IntptrTy); 2520 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2521 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2522 IRB.getInt32Ty(), IntptrTy); 2523 2524 AsanHandleNoReturnFunc = 2525 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2526 2527 AsanPtrCmpFunction = 2528 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2529 AsanPtrSubFunction = 2530 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2531 if (Mapping.InGlobal) 2532 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2533 ArrayType::get(IRB.getInt8Ty(), 0)); 2534 2535 AMDGPUAddressShared = M.getOrInsertFunction( 2536 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2537 AMDGPUAddressPrivate = M.getOrInsertFunction( 2538 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2539 } 2540 2541 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2542 // For each NSObject descendant having a +load method, this method is invoked 2543 // by the ObjC runtime before any of the static constructors is called. 2544 // Therefore we need to instrument such methods with a call to __asan_init 2545 // at the beginning in order to initialize our runtime before any access to 2546 // the shadow memory. 2547 // We cannot just ignore these methods, because they may call other 2548 // instrumented functions. 2549 if (F.getName().find(" load]") != std::string::npos) { 2550 FunctionCallee AsanInitFunction = 2551 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2552 IRBuilder<> IRB(&F.front(), F.front().begin()); 2553 IRB.CreateCall(AsanInitFunction, {}); 2554 return true; 2555 } 2556 return false; 2557 } 2558 2559 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2560 // Generate code only when dynamic addressing is needed. 2561 if (Mapping.Offset != kDynamicShadowSentinel) 2562 return false; 2563 2564 IRBuilder<> IRB(&F.front().front()); 2565 if (Mapping.InGlobal) { 2566 if (ClWithIfuncSuppressRemat) { 2567 // An empty inline asm with input reg == output reg. 2568 // An opaque pointer-to-int cast, basically. 2569 InlineAsm *Asm = InlineAsm::get( 2570 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2571 StringRef(""), StringRef("=r,0"), 2572 /*hasSideEffects=*/false); 2573 LocalDynamicShadow = 2574 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2575 } else { 2576 LocalDynamicShadow = 2577 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2578 } 2579 } else { 2580 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2581 kAsanShadowMemoryDynamicAddress, IntptrTy); 2582 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2583 } 2584 return true; 2585 } 2586 2587 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2588 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2589 // to it as uninteresting. This assumes we haven't started processing allocas 2590 // yet. This check is done up front because iterating the use list in 2591 // isInterestingAlloca would be algorithmically slower. 2592 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2593 2594 // Try to get the declaration of llvm.localescape. If it's not in the module, 2595 // we can exit early. 2596 if (!F.getParent()->getFunction("llvm.localescape")) return; 2597 2598 // Look for a call to llvm.localescape call in the entry block. It can't be in 2599 // any other block. 2600 for (Instruction &I : F.getEntryBlock()) { 2601 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2602 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2603 // We found a call. Mark all the allocas passed in as uninteresting. 2604 for (Value *Arg : II->args()) { 2605 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2606 assert(AI && AI->isStaticAlloca() && 2607 "non-static alloca arg to localescape"); 2608 ProcessedAllocas[AI] = false; 2609 } 2610 break; 2611 } 2612 } 2613 } 2614 2615 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2616 bool ShouldInstrument = 2617 ClDebugMin < 0 || ClDebugMax < 0 || 2618 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2619 Instrumented++; 2620 return !ShouldInstrument; 2621 } 2622 2623 bool AddressSanitizer::instrumentFunction(Function &F, 2624 const TargetLibraryInfo *TLI) { 2625 if (F.empty()) 2626 return false; 2627 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2628 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2629 if (F.getName().startswith("__asan_")) return false; 2630 2631 bool FunctionModified = false; 2632 2633 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2634 // This function needs to be called even if the function body is not 2635 // instrumented. 2636 if (maybeInsertAsanInitAtFunctionEntry(F)) 2637 FunctionModified = true; 2638 2639 // Leave if the function doesn't need instrumentation. 2640 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2641 2642 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 2643 return FunctionModified; 2644 2645 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2646 2647 initializeCallbacks(*F.getParent()); 2648 2649 FunctionStateRAII CleanupObj(this); 2650 2651 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2652 2653 // We can't instrument allocas used with llvm.localescape. Only static allocas 2654 // can be passed to that intrinsic. 2655 markEscapedLocalAllocas(F); 2656 2657 // We want to instrument every address only once per basic block (unless there 2658 // are calls between uses). 2659 SmallPtrSet<Value *, 16> TempsToInstrument; 2660 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2661 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2662 SmallVector<Instruction *, 8> NoReturnCalls; 2663 SmallVector<BasicBlock *, 16> AllBlocks; 2664 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2665 2666 // Fill the set of memory operations to instrument. 2667 for (auto &BB : F) { 2668 AllBlocks.push_back(&BB); 2669 TempsToInstrument.clear(); 2670 int NumInsnsPerBB = 0; 2671 for (auto &Inst : BB) { 2672 if (LooksLikeCodeInBug11395(&Inst)) return false; 2673 // Skip instructions inserted by another instrumentation. 2674 if (Inst.hasMetadata(LLVMContext::MD_nosanitize)) 2675 continue; 2676 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2677 getInterestingMemoryOperands(&Inst, InterestingOperands); 2678 2679 if (!InterestingOperands.empty()) { 2680 for (auto &Operand : InterestingOperands) { 2681 if (ClOpt && ClOptSameTemp) { 2682 Value *Ptr = Operand.getPtr(); 2683 // If we have a mask, skip instrumentation if we've already 2684 // instrumented the full object. But don't add to TempsToInstrument 2685 // because we might get another load/store with a different mask. 2686 if (Operand.MaybeMask) { 2687 if (TempsToInstrument.count(Ptr)) 2688 continue; // We've seen this (whole) temp in the current BB. 2689 } else { 2690 if (!TempsToInstrument.insert(Ptr).second) 2691 continue; // We've seen this temp in the current BB. 2692 } 2693 } 2694 OperandsToInstrument.push_back(Operand); 2695 NumInsnsPerBB++; 2696 } 2697 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2698 isInterestingPointerComparison(&Inst)) || 2699 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2700 isInterestingPointerSubtraction(&Inst))) { 2701 PointerComparisonsOrSubtracts.push_back(&Inst); 2702 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2703 // ok, take it. 2704 IntrinToInstrument.push_back(MI); 2705 NumInsnsPerBB++; 2706 } else { 2707 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2708 // A call inside BB. 2709 TempsToInstrument.clear(); 2710 if (CB->doesNotReturn()) 2711 NoReturnCalls.push_back(CB); 2712 } 2713 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2714 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2715 } 2716 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2717 } 2718 } 2719 2720 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2721 OperandsToInstrument.size() + IntrinToInstrument.size() > 2722 (unsigned)ClInstrumentationWithCallsThreshold); 2723 const DataLayout &DL = F.getParent()->getDataLayout(); 2724 ObjectSizeOpts ObjSizeOpts; 2725 ObjSizeOpts.RoundToAlign = true; 2726 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2727 2728 // Instrument. 2729 int NumInstrumented = 0; 2730 for (auto &Operand : OperandsToInstrument) { 2731 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2732 instrumentMop(ObjSizeVis, Operand, UseCalls, 2733 F.getParent()->getDataLayout()); 2734 FunctionModified = true; 2735 } 2736 for (auto Inst : IntrinToInstrument) { 2737 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2738 instrumentMemIntrinsic(Inst); 2739 FunctionModified = true; 2740 } 2741 2742 FunctionStackPoisoner FSP(F, *this); 2743 bool ChangedStack = FSP.runOnFunction(); 2744 2745 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2746 // See e.g. https://github.com/google/sanitizers/issues/37 2747 for (auto CI : NoReturnCalls) { 2748 IRBuilder<> IRB(CI); 2749 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2750 } 2751 2752 for (auto Inst : PointerComparisonsOrSubtracts) { 2753 instrumentPointerComparisonOrSubtraction(Inst); 2754 FunctionModified = true; 2755 } 2756 2757 if (ChangedStack || !NoReturnCalls.empty()) 2758 FunctionModified = true; 2759 2760 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2761 << F << "\n"); 2762 2763 return FunctionModified; 2764 } 2765 2766 // Workaround for bug 11395: we don't want to instrument stack in functions 2767 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2768 // FIXME: remove once the bug 11395 is fixed. 2769 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2770 if (LongSize != 32) return false; 2771 CallInst *CI = dyn_cast<CallInst>(I); 2772 if (!CI || !CI->isInlineAsm()) return false; 2773 if (CI->arg_size() <= 5) 2774 return false; 2775 // We have inline assembly with quite a few arguments. 2776 return true; 2777 } 2778 2779 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2780 IRBuilder<> IRB(*C); 2781 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || 2782 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 2783 const char *MallocNameTemplate = 2784 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always 2785 ? kAsanStackMallocAlwaysNameTemplate 2786 : kAsanStackMallocNameTemplate; 2787 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { 2788 std::string Suffix = itostr(Index); 2789 AsanStackMallocFunc[Index] = M.getOrInsertFunction( 2790 MallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2791 AsanStackFreeFunc[Index] = 2792 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2793 IRB.getVoidTy(), IntptrTy, IntptrTy); 2794 } 2795 } 2796 if (ASan.UseAfterScope) { 2797 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2798 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2799 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2800 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2801 } 2802 2803 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2804 std::ostringstream Name; 2805 Name << kAsanSetShadowPrefix; 2806 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2807 AsanSetShadowFunc[Val] = 2808 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2809 } 2810 2811 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2812 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2813 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2814 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2815 } 2816 2817 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2818 ArrayRef<uint8_t> ShadowBytes, 2819 size_t Begin, size_t End, 2820 IRBuilder<> &IRB, 2821 Value *ShadowBase) { 2822 if (Begin >= End) 2823 return; 2824 2825 const size_t LargestStoreSizeInBytes = 2826 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2827 2828 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2829 2830 // Poison given range in shadow using larges store size with out leading and 2831 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2832 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2833 // middle of a store. 2834 for (size_t i = Begin; i < End;) { 2835 if (!ShadowMask[i]) { 2836 assert(!ShadowBytes[i]); 2837 ++i; 2838 continue; 2839 } 2840 2841 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2842 // Fit store size into the range. 2843 while (StoreSizeInBytes > End - i) 2844 StoreSizeInBytes /= 2; 2845 2846 // Minimize store size by trimming trailing zeros. 2847 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2848 while (j <= StoreSizeInBytes / 2) 2849 StoreSizeInBytes /= 2; 2850 } 2851 2852 uint64_t Val = 0; 2853 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2854 if (IsLittleEndian) 2855 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2856 else 2857 Val = (Val << 8) | ShadowBytes[i + j]; 2858 } 2859 2860 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2861 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2862 IRB.CreateAlignedStore( 2863 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 2864 Align(1)); 2865 2866 i += StoreSizeInBytes; 2867 } 2868 } 2869 2870 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2871 ArrayRef<uint8_t> ShadowBytes, 2872 IRBuilder<> &IRB, Value *ShadowBase) { 2873 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2874 } 2875 2876 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2877 ArrayRef<uint8_t> ShadowBytes, 2878 size_t Begin, size_t End, 2879 IRBuilder<> &IRB, Value *ShadowBase) { 2880 assert(ShadowMask.size() == ShadowBytes.size()); 2881 size_t Done = Begin; 2882 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2883 if (!ShadowMask[i]) { 2884 assert(!ShadowBytes[i]); 2885 continue; 2886 } 2887 uint8_t Val = ShadowBytes[i]; 2888 if (!AsanSetShadowFunc[Val]) 2889 continue; 2890 2891 // Skip same values. 2892 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2893 } 2894 2895 if (j - i >= ClMaxInlinePoisoningSize) { 2896 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2897 IRB.CreateCall(AsanSetShadowFunc[Val], 2898 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2899 ConstantInt::get(IntptrTy, j - i)}); 2900 Done = j; 2901 } 2902 } 2903 2904 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2905 } 2906 2907 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2908 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2909 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2910 assert(LocalStackSize <= kMaxStackMallocSize); 2911 uint64_t MaxSize = kMinStackMallocSize; 2912 for (int i = 0;; i++, MaxSize *= 2) 2913 if (LocalStackSize <= MaxSize) return i; 2914 llvm_unreachable("impossible LocalStackSize"); 2915 } 2916 2917 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2918 Instruction *CopyInsertPoint = &F.front().front(); 2919 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2920 // Insert after the dynamic shadow location is determined 2921 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2922 assert(CopyInsertPoint); 2923 } 2924 IRBuilder<> IRB(CopyInsertPoint); 2925 const DataLayout &DL = F.getParent()->getDataLayout(); 2926 for (Argument &Arg : F.args()) { 2927 if (Arg.hasByValAttr()) { 2928 Type *Ty = Arg.getParamByValType(); 2929 const Align Alignment = 2930 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 2931 2932 AllocaInst *AI = IRB.CreateAlloca( 2933 Ty, nullptr, 2934 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2935 ".byval"); 2936 AI->setAlignment(Alignment); 2937 Arg.replaceAllUsesWith(AI); 2938 2939 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2940 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 2941 } 2942 } 2943 } 2944 2945 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2946 Value *ValueIfTrue, 2947 Instruction *ThenTerm, 2948 Value *ValueIfFalse) { 2949 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2950 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2951 PHI->addIncoming(ValueIfFalse, CondBlock); 2952 BasicBlock *ThenBlock = ThenTerm->getParent(); 2953 PHI->addIncoming(ValueIfTrue, ThenBlock); 2954 return PHI; 2955 } 2956 2957 Value *FunctionStackPoisoner::createAllocaForLayout( 2958 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2959 AllocaInst *Alloca; 2960 if (Dynamic) { 2961 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2962 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2963 "MyAlloca"); 2964 } else { 2965 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2966 nullptr, "MyAlloca"); 2967 assert(Alloca->isStaticAlloca()); 2968 } 2969 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2970 uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); 2971 Alloca->setAlignment(Align(FrameAlignment)); 2972 return IRB.CreatePointerCast(Alloca, IntptrTy); 2973 } 2974 2975 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2976 BasicBlock &FirstBB = *F.begin(); 2977 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2978 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2979 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2980 DynamicAllocaLayout->setAlignment(Align(32)); 2981 } 2982 2983 void FunctionStackPoisoner::processDynamicAllocas() { 2984 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 2985 assert(DynamicAllocaPoisonCallVec.empty()); 2986 return; 2987 } 2988 2989 // Insert poison calls for lifetime intrinsics for dynamic allocas. 2990 for (const auto &APC : DynamicAllocaPoisonCallVec) { 2991 assert(APC.InsBefore); 2992 assert(APC.AI); 2993 assert(ASan.isInterestingAlloca(*APC.AI)); 2994 assert(!APC.AI->isStaticAlloca()); 2995 2996 IRBuilder<> IRB(APC.InsBefore); 2997 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2998 // Dynamic allocas will be unpoisoned unconditionally below in 2999 // unpoisonDynamicAllocas. 3000 // Flag that we need unpoison static allocas. 3001 } 3002 3003 // Handle dynamic allocas. 3004 createDynamicAllocasInitStorage(); 3005 for (auto &AI : DynamicAllocaVec) 3006 handleDynamicAllocaCall(AI); 3007 unpoisonDynamicAllocas(); 3008 } 3009 3010 /// Collect instructions in the entry block after \p InsBefore which initialize 3011 /// permanent storage for a function argument. These instructions must remain in 3012 /// the entry block so that uninitialized values do not appear in backtraces. An 3013 /// added benefit is that this conserves spill slots. This does not move stores 3014 /// before instrumented / "interesting" allocas. 3015 static void findStoresToUninstrumentedArgAllocas( 3016 AddressSanitizer &ASan, Instruction &InsBefore, 3017 SmallVectorImpl<Instruction *> &InitInsts) { 3018 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3019 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3020 // Argument initialization looks like: 3021 // 1) store <Argument>, <Alloca> OR 3022 // 2) <CastArgument> = cast <Argument> to ... 3023 // store <CastArgument> to <Alloca> 3024 // Do not consider any other kind of instruction. 3025 // 3026 // Note: This covers all known cases, but may not be exhaustive. An 3027 // alternative to pattern-matching stores is to DFS over all Argument uses: 3028 // this might be more general, but is probably much more complicated. 3029 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3030 continue; 3031 if (auto *Store = dyn_cast<StoreInst>(It)) { 3032 // The store destination must be an alloca that isn't interesting for 3033 // ASan to instrument. These are moved up before InsBefore, and they're 3034 // not interesting because allocas for arguments can be mem2reg'd. 3035 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3036 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3037 continue; 3038 3039 Value *Val = Store->getValueOperand(); 3040 bool IsDirectArgInit = isa<Argument>(Val); 3041 bool IsArgInitViaCast = 3042 isa<CastInst>(Val) && 3043 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3044 // Check that the cast appears directly before the store. Otherwise 3045 // moving the cast before InsBefore may break the IR. 3046 Val == It->getPrevNonDebugInstruction(); 3047 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3048 if (!IsArgInit) 3049 continue; 3050 3051 if (IsArgInitViaCast) 3052 InitInsts.push_back(cast<Instruction>(Val)); 3053 InitInsts.push_back(Store); 3054 continue; 3055 } 3056 3057 // Do not reorder past unknown instructions: argument initialization should 3058 // only involve casts and stores. 3059 return; 3060 } 3061 } 3062 3063 void FunctionStackPoisoner::processStaticAllocas() { 3064 if (AllocaVec.empty()) { 3065 assert(StaticAllocaPoisonCallVec.empty()); 3066 return; 3067 } 3068 3069 int StackMallocIdx = -1; 3070 DebugLoc EntryDebugLocation; 3071 if (auto SP = F.getSubprogram()) 3072 EntryDebugLocation = 3073 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3074 3075 Instruction *InsBefore = AllocaVec[0]; 3076 IRBuilder<> IRB(InsBefore); 3077 3078 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3079 // debug info is broken, because only entry-block allocas are treated as 3080 // regular stack slots. 3081 auto InsBeforeB = InsBefore->getParent(); 3082 assert(InsBeforeB == &F.getEntryBlock()); 3083 for (auto *AI : StaticAllocasToMoveUp) 3084 if (AI->getParent() == InsBeforeB) 3085 AI->moveBefore(InsBefore); 3086 3087 // Move stores of arguments into entry-block allocas as well. This prevents 3088 // extra stack slots from being generated (to house the argument values until 3089 // they can be stored into the allocas). This also prevents uninitialized 3090 // values from being shown in backtraces. 3091 SmallVector<Instruction *, 8> ArgInitInsts; 3092 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3093 for (Instruction *ArgInitInst : ArgInitInsts) 3094 ArgInitInst->moveBefore(InsBefore); 3095 3096 // If we have a call to llvm.localescape, keep it in the entry block. 3097 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3098 3099 SmallVector<ASanStackVariableDescription, 16> SVD; 3100 SVD.reserve(AllocaVec.size()); 3101 for (AllocaInst *AI : AllocaVec) { 3102 ASanStackVariableDescription D = {AI->getName().data(), 3103 ASan.getAllocaSizeInBytes(*AI), 3104 0, 3105 AI->getAlign().value(), 3106 AI, 3107 0, 3108 0}; 3109 SVD.push_back(D); 3110 } 3111 3112 // Minimal header size (left redzone) is 4 pointers, 3113 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3114 uint64_t Granularity = 1ULL << Mapping.Scale; 3115 uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); 3116 const ASanStackFrameLayout &L = 3117 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3118 3119 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3120 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3121 for (auto &Desc : SVD) 3122 AllocaToSVDMap[Desc.AI] = &Desc; 3123 3124 // Update SVD with information from lifetime intrinsics. 3125 for (const auto &APC : StaticAllocaPoisonCallVec) { 3126 assert(APC.InsBefore); 3127 assert(APC.AI); 3128 assert(ASan.isInterestingAlloca(*APC.AI)); 3129 assert(APC.AI->isStaticAlloca()); 3130 3131 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3132 Desc.LifetimeSize = Desc.Size; 3133 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3134 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3135 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3136 if (unsigned Line = LifetimeLoc->getLine()) 3137 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3138 } 3139 } 3140 } 3141 3142 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3143 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3144 uint64_t LocalStackSize = L.FrameSize; 3145 bool DoStackMalloc = 3146 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3147 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3148 bool DoDynamicAlloca = ClDynamicAllocaStack; 3149 // Don't do dynamic alloca or stack malloc if: 3150 // 1) There is inline asm: too often it makes assumptions on which registers 3151 // are available. 3152 // 2) There is a returns_twice call (typically setjmp), which is 3153 // optimization-hostile, and doesn't play well with introduced indirect 3154 // register-relative calculation of local variable addresses. 3155 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3156 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3157 3158 Value *StaticAlloca = 3159 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3160 3161 Value *FakeStack; 3162 Value *LocalStackBase; 3163 Value *LocalStackBaseAlloca; 3164 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3165 3166 if (DoStackMalloc) { 3167 LocalStackBaseAlloca = 3168 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3169 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3170 // void *FakeStack = __asan_option_detect_stack_use_after_return 3171 // ? __asan_stack_malloc_N(LocalStackSize) 3172 // : nullptr; 3173 // void *LocalStackBase = (FakeStack) ? FakeStack : 3174 // alloca(LocalStackSize); 3175 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3176 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3177 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3178 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3179 Constant::getNullValue(IRB.getInt32Ty())); 3180 Instruction *Term = 3181 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3182 IRBuilder<> IRBIf(Term); 3183 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3184 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3185 Value *FakeStackValue = 3186 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3187 ConstantInt::get(IntptrTy, LocalStackSize)); 3188 IRB.SetInsertPoint(InsBefore); 3189 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3190 ConstantInt::get(IntptrTy, 0)); 3191 } else { 3192 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3193 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3194 // void *LocalStackBase = (FakeStack) ? FakeStack : 3195 // alloca(LocalStackSize); 3196 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3197 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3198 ConstantInt::get(IntptrTy, LocalStackSize)); 3199 } 3200 Value *NoFakeStack = 3201 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3202 Instruction *Term = 3203 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3204 IRBuilder<> IRBIf(Term); 3205 Value *AllocaValue = 3206 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3207 3208 IRB.SetInsertPoint(InsBefore); 3209 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3210 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3211 DIExprFlags |= DIExpression::DerefBefore; 3212 } else { 3213 // void *FakeStack = nullptr; 3214 // void *LocalStackBase = alloca(LocalStackSize); 3215 FakeStack = ConstantInt::get(IntptrTy, 0); 3216 LocalStackBase = 3217 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3218 LocalStackBaseAlloca = LocalStackBase; 3219 } 3220 3221 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3222 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3223 // later passes and can result in dropped variable coverage in debug info. 3224 Value *LocalStackBaseAllocaPtr = 3225 isa<PtrToIntInst>(LocalStackBaseAlloca) 3226 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3227 : LocalStackBaseAlloca; 3228 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3229 "Variable descriptions relative to ASan stack base will be dropped"); 3230 3231 // Replace Alloca instructions with base+offset. 3232 for (const auto &Desc : SVD) { 3233 AllocaInst *AI = Desc.AI; 3234 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3235 Desc.Offset); 3236 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3237 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3238 AI->getType()); 3239 AI->replaceAllUsesWith(NewAllocaPtr); 3240 } 3241 3242 // The left-most redzone has enough space for at least 4 pointers. 3243 // Write the Magic value to redzone[0]. 3244 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3245 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3246 BasePlus0); 3247 // Write the frame description constant to redzone[1]. 3248 Value *BasePlus1 = IRB.CreateIntToPtr( 3249 IRB.CreateAdd(LocalStackBase, 3250 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3251 IntptrPtrTy); 3252 GlobalVariable *StackDescriptionGlobal = 3253 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3254 /*AllowMerging*/ true, kAsanGenPrefix); 3255 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3256 IRB.CreateStore(Description, BasePlus1); 3257 // Write the PC to redzone[2]. 3258 Value *BasePlus2 = IRB.CreateIntToPtr( 3259 IRB.CreateAdd(LocalStackBase, 3260 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3261 IntptrPtrTy); 3262 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3263 3264 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3265 3266 // Poison the stack red zones at the entry. 3267 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3268 // As mask we must use most poisoned case: red zones and after scope. 3269 // As bytes we can use either the same or just red zones only. 3270 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3271 3272 if (!StaticAllocaPoisonCallVec.empty()) { 3273 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3274 3275 // Poison static allocas near lifetime intrinsics. 3276 for (const auto &APC : StaticAllocaPoisonCallVec) { 3277 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3278 assert(Desc.Offset % L.Granularity == 0); 3279 size_t Begin = Desc.Offset / L.Granularity; 3280 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3281 3282 IRBuilder<> IRB(APC.InsBefore); 3283 copyToShadow(ShadowAfterScope, 3284 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3285 IRB, ShadowBase); 3286 } 3287 } 3288 3289 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3290 SmallVector<uint8_t, 64> ShadowAfterReturn; 3291 3292 // (Un)poison the stack before all ret instructions. 3293 for (Instruction *Ret : RetVec) { 3294 IRBuilder<> IRBRet(Ret); 3295 // Mark the current frame as retired. 3296 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3297 BasePlus0); 3298 if (DoStackMalloc) { 3299 assert(StackMallocIdx >= 0); 3300 // if FakeStack != 0 // LocalStackBase == FakeStack 3301 // // In use-after-return mode, poison the whole stack frame. 3302 // if StackMallocIdx <= 4 3303 // // For small sizes inline the whole thing: 3304 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3305 // **SavedFlagPtr(FakeStack) = 0 3306 // else 3307 // __asan_stack_free_N(FakeStack, LocalStackSize) 3308 // else 3309 // <This is not a fake stack; unpoison the redzones> 3310 Value *Cmp = 3311 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3312 Instruction *ThenTerm, *ElseTerm; 3313 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3314 3315 IRBuilder<> IRBPoison(ThenTerm); 3316 if (StackMallocIdx <= 4) { 3317 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3318 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3319 kAsanStackUseAfterReturnMagic); 3320 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3321 ShadowBase); 3322 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3323 FakeStack, 3324 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3325 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3326 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3327 IRBPoison.CreateStore( 3328 Constant::getNullValue(IRBPoison.getInt8Ty()), 3329 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3330 } else { 3331 // For larger frames call __asan_stack_free_*. 3332 IRBPoison.CreateCall( 3333 AsanStackFreeFunc[StackMallocIdx], 3334 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3335 } 3336 3337 IRBuilder<> IRBElse(ElseTerm); 3338 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3339 } else { 3340 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3341 } 3342 } 3343 3344 // We are done. Remove the old unused alloca instructions. 3345 for (auto AI : AllocaVec) AI->eraseFromParent(); 3346 } 3347 3348 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3349 IRBuilder<> &IRB, bool DoPoison) { 3350 // For now just insert the call to ASan runtime. 3351 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3352 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3353 IRB.CreateCall( 3354 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3355 {AddrArg, SizeArg}); 3356 } 3357 3358 // Handling llvm.lifetime intrinsics for a given %alloca: 3359 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3360 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3361 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3362 // could be poisoned by previous llvm.lifetime.end instruction, as the 3363 // variable may go in and out of scope several times, e.g. in loops). 3364 // (3) if we poisoned at least one %alloca in a function, 3365 // unpoison the whole stack frame at function exit. 3366 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3367 IRBuilder<> IRB(AI); 3368 3369 const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign()); 3370 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3371 3372 Value *Zero = Constant::getNullValue(IntptrTy); 3373 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3374 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3375 3376 // Since we need to extend alloca with additional memory to locate 3377 // redzones, and OldSize is number of allocated blocks with 3378 // ElementSize size, get allocated memory size in bytes by 3379 // OldSize * ElementSize. 3380 const unsigned ElementSize = 3381 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3382 Value *OldSize = 3383 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3384 ConstantInt::get(IntptrTy, ElementSize)); 3385 3386 // PartialSize = OldSize % 32 3387 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3388 3389 // Misalign = kAllocaRzSize - PartialSize; 3390 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3391 3392 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3393 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3394 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3395 3396 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3397 // Alignment is added to locate left redzone, PartialPadding for possible 3398 // partial redzone and kAllocaRzSize for right redzone respectively. 3399 Value *AdditionalChunkSize = IRB.CreateAdd( 3400 ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize), 3401 PartialPadding); 3402 3403 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3404 3405 // Insert new alloca with new NewSize and Alignment params. 3406 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3407 NewAlloca->setAlignment(Alignment); 3408 3409 // NewAddress = Address + Alignment 3410 Value *NewAddress = 3411 IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3412 ConstantInt::get(IntptrTy, Alignment.value())); 3413 3414 // Insert __asan_alloca_poison call for new created alloca. 3415 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3416 3417 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3418 // for unpoisoning stuff. 3419 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3420 3421 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3422 3423 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3424 AI->replaceAllUsesWith(NewAddressPtr); 3425 3426 // We are done. Erase old alloca from parent. 3427 AI->eraseFromParent(); 3428 } 3429 3430 // isSafeAccess returns true if Addr is always inbounds with respect to its 3431 // base object. For example, it is a field access or an array access with 3432 // constant inbounds index. 3433 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3434 Value *Addr, uint64_t TypeSize) const { 3435 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3436 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3437 uint64_t Size = SizeOffset.first.getZExtValue(); 3438 int64_t Offset = SizeOffset.second.getSExtValue(); 3439 // Three checks are required to ensure safety: 3440 // . Offset >= 0 (since the offset is given from the base ptr) 3441 // . Size >= Offset (unsigned) 3442 // . Size - Offset >= NeededSize (unsigned) 3443 return Offset >= 0 && Size >= uint64_t(Offset) && 3444 Size - uint64_t(Offset) >= TypeSize / 8; 3445 } 3446