1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 // FIXME: This sanitizer does not yet handle scalable vectors 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/BinaryFormat/MachO.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DIBuilder.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstVisitor.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/MDBuilder.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCSectionMachO.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/ScopedPrinter.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Transforms/Utils/ModuleUtils.h" 79 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iomanip> 85 #include <limits> 86 #include <memory> 87 #include <sstream> 88 #include <string> 89 #include <tuple> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "asan" 94 95 static const uint64_t kDefaultShadowScale = 3; 96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 98 static const uint64_t kDynamicShadowSentinel = 99 std::numeric_limits<uint64_t>::max(); 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 108 static const uint64_t kRISCV64_ShadowOffset64 = 0x20000000; 109 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 110 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 111 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 112 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 113 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 114 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 115 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 116 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 117 static const uint64_t kEmscriptenShadowOffset = 0; 118 119 static const uint64_t kMyriadShadowScale = 5; 120 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 121 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 122 static const uint64_t kMyriadTagShift = 29; 123 static const uint64_t kMyriadDDRTag = 4; 124 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 125 126 // The shadow memory space is dynamically allocated. 127 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 128 129 static const size_t kMinStackMallocSize = 1 << 6; // 64B 130 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 131 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 132 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 133 134 const char kAsanModuleCtorName[] = "asan.module_ctor"; 135 const char kAsanModuleDtorName[] = "asan.module_dtor"; 136 static const uint64_t kAsanCtorAndDtorPriority = 1; 137 // On Emscripten, the system needs more than one priorities for constructors. 138 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 139 const char kAsanReportErrorTemplate[] = "__asan_report_"; 140 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 141 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 142 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 143 const char kAsanUnregisterImageGlobalsName[] = 144 "__asan_unregister_image_globals"; 145 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 146 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 147 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 148 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 149 const char kAsanInitName[] = "__asan_init"; 150 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 151 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 152 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 153 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 154 static const int kMaxAsanStackMallocSizeClass = 10; 155 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 156 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 157 const char kAsanGenPrefix[] = "___asan_gen_"; 158 const char kODRGenPrefix[] = "__odr_asan_gen_"; 159 const char kSanCovGenPrefix[] = "__sancov_gen_"; 160 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 161 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 162 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 163 164 // ASan version script has __asan_* wildcard. Triple underscore prevents a 165 // linker (gold) warning about attempting to export a local symbol. 166 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 167 168 const char kAsanOptionDetectUseAfterReturn[] = 169 "__asan_option_detect_stack_use_after_return"; 170 171 const char kAsanShadowMemoryDynamicAddress[] = 172 "__asan_shadow_memory_dynamic_address"; 173 174 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 175 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 176 177 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 178 static const size_t kNumberOfAccessSizes = 5; 179 180 static const unsigned kAllocaRzSize = 32; 181 182 // Command-line flags. 183 184 static cl::opt<bool> ClEnableKasan( 185 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 186 cl::Hidden, cl::init(false)); 187 188 static cl::opt<bool> ClRecover( 189 "asan-recover", 190 cl::desc("Enable recovery mode (continue-after-error)."), 191 cl::Hidden, cl::init(false)); 192 193 static cl::opt<bool> ClInsertVersionCheck( 194 "asan-guard-against-version-mismatch", 195 cl::desc("Guard against compiler/runtime version mismatch."), 196 cl::Hidden, cl::init(true)); 197 198 // This flag may need to be replaced with -f[no-]asan-reads. 199 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 200 cl::desc("instrument read instructions"), 201 cl::Hidden, cl::init(true)); 202 203 static cl::opt<bool> ClInstrumentWrites( 204 "asan-instrument-writes", cl::desc("instrument write instructions"), 205 cl::Hidden, cl::init(true)); 206 207 static cl::opt<bool> ClInstrumentAtomics( 208 "asan-instrument-atomics", 209 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 210 cl::init(true)); 211 212 static cl::opt<bool> 213 ClInstrumentByval("asan-instrument-byval", 214 cl::desc("instrument byval call arguments"), cl::Hidden, 215 cl::init(true)); 216 217 static cl::opt<bool> ClAlwaysSlowPath( 218 "asan-always-slow-path", 219 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 220 cl::init(false)); 221 222 static cl::opt<bool> ClForceDynamicShadow( 223 "asan-force-dynamic-shadow", 224 cl::desc("Load shadow address into a local variable for each function"), 225 cl::Hidden, cl::init(false)); 226 227 static cl::opt<bool> 228 ClWithIfunc("asan-with-ifunc", 229 cl::desc("Access dynamic shadow through an ifunc global on " 230 "platforms that support this"), 231 cl::Hidden, cl::init(true)); 232 233 static cl::opt<bool> ClWithIfuncSuppressRemat( 234 "asan-with-ifunc-suppress-remat", 235 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 236 "it through inline asm in prologue."), 237 cl::Hidden, cl::init(true)); 238 239 // This flag limits the number of instructions to be instrumented 240 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 241 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 242 // set it to 10000. 243 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 244 "asan-max-ins-per-bb", cl::init(10000), 245 cl::desc("maximal number of instructions to instrument in any given BB"), 246 cl::Hidden); 247 248 // This flag may need to be replaced with -f[no]asan-stack. 249 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 250 cl::Hidden, cl::init(true)); 251 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 252 "asan-max-inline-poisoning-size", 253 cl::desc( 254 "Inline shadow poisoning for blocks up to the given size in bytes."), 255 cl::Hidden, cl::init(64)); 256 257 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 258 cl::desc("Check stack-use-after-return"), 259 cl::Hidden, cl::init(true)); 260 261 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 262 cl::desc("Create redzones for byval " 263 "arguments (extra copy " 264 "required)"), cl::Hidden, 265 cl::init(true)); 266 267 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 268 cl::desc("Check stack-use-after-scope"), 269 cl::Hidden, cl::init(false)); 270 271 // This flag may need to be replaced with -f[no]asan-globals. 272 static cl::opt<bool> ClGlobals("asan-globals", 273 cl::desc("Handle global objects"), cl::Hidden, 274 cl::init(true)); 275 276 static cl::opt<bool> ClInitializers("asan-initialization-order", 277 cl::desc("Handle C++ initializer order"), 278 cl::Hidden, cl::init(true)); 279 280 static cl::opt<bool> ClInvalidPointerPairs( 281 "asan-detect-invalid-pointer-pair", 282 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 283 cl::init(false)); 284 285 static cl::opt<bool> ClInvalidPointerCmp( 286 "asan-detect-invalid-pointer-cmp", 287 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 288 cl::init(false)); 289 290 static cl::opt<bool> ClInvalidPointerSub( 291 "asan-detect-invalid-pointer-sub", 292 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 293 cl::init(false)); 294 295 static cl::opt<unsigned> ClRealignStack( 296 "asan-realign-stack", 297 cl::desc("Realign stack to the value of this flag (power of two)"), 298 cl::Hidden, cl::init(32)); 299 300 static cl::opt<int> ClInstrumentationWithCallsThreshold( 301 "asan-instrumentation-with-call-threshold", 302 cl::desc( 303 "If the function being instrumented contains more than " 304 "this number of memory accesses, use callbacks instead of " 305 "inline checks (-1 means never use callbacks)."), 306 cl::Hidden, cl::init(7000)); 307 308 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 309 "asan-memory-access-callback-prefix", 310 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 311 cl::init("__asan_")); 312 313 static cl::opt<bool> 314 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 315 cl::desc("instrument dynamic allocas"), 316 cl::Hidden, cl::init(true)); 317 318 static cl::opt<bool> ClSkipPromotableAllocas( 319 "asan-skip-promotable-allocas", 320 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 321 cl::init(true)); 322 323 // These flags allow to change the shadow mapping. 324 // The shadow mapping looks like 325 // Shadow = (Mem >> scale) + offset 326 327 static cl::opt<int> ClMappingScale("asan-mapping-scale", 328 cl::desc("scale of asan shadow mapping"), 329 cl::Hidden, cl::init(0)); 330 331 static cl::opt<uint64_t> 332 ClMappingOffset("asan-mapping-offset", 333 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 334 cl::Hidden, cl::init(0)); 335 336 // Optimization flags. Not user visible, used mostly for testing 337 // and benchmarking the tool. 338 339 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 340 cl::Hidden, cl::init(true)); 341 342 static cl::opt<bool> ClOptSameTemp( 343 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 344 cl::Hidden, cl::init(true)); 345 346 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 347 cl::desc("Don't instrument scalar globals"), 348 cl::Hidden, cl::init(true)); 349 350 static cl::opt<bool> ClOptStack( 351 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 352 cl::Hidden, cl::init(false)); 353 354 static cl::opt<bool> ClDynamicAllocaStack( 355 "asan-stack-dynamic-alloca", 356 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 357 cl::init(true)); 358 359 static cl::opt<uint32_t> ClForceExperiment( 360 "asan-force-experiment", 361 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 362 cl::init(0)); 363 364 static cl::opt<bool> 365 ClUsePrivateAlias("asan-use-private-alias", 366 cl::desc("Use private aliases for global variables"), 367 cl::Hidden, cl::init(false)); 368 369 static cl::opt<bool> 370 ClUseOdrIndicator("asan-use-odr-indicator", 371 cl::desc("Use odr indicators to improve ODR reporting"), 372 cl::Hidden, cl::init(false)); 373 374 static cl::opt<bool> 375 ClUseGlobalsGC("asan-globals-live-support", 376 cl::desc("Use linker features to support dead " 377 "code stripping of globals"), 378 cl::Hidden, cl::init(true)); 379 380 // This is on by default even though there is a bug in gold: 381 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 382 static cl::opt<bool> 383 ClWithComdat("asan-with-comdat", 384 cl::desc("Place ASan constructors in comdat sections"), 385 cl::Hidden, cl::init(true)); 386 387 // Debug flags. 388 389 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 390 cl::init(0)); 391 392 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 393 cl::Hidden, cl::init(0)); 394 395 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 396 cl::desc("Debug func")); 397 398 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 399 cl::Hidden, cl::init(-1)); 400 401 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 402 cl::Hidden, cl::init(-1)); 403 404 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 405 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 406 STATISTIC(NumOptimizedAccessesToGlobalVar, 407 "Number of optimized accesses to global vars"); 408 STATISTIC(NumOptimizedAccessesToStackVar, 409 "Number of optimized accesses to stack vars"); 410 411 namespace { 412 413 /// This struct defines the shadow mapping using the rule: 414 /// shadow = (mem >> Scale) ADD-or-OR Offset. 415 /// If InGlobal is true, then 416 /// extern char __asan_shadow[]; 417 /// shadow = (mem >> Scale) + &__asan_shadow 418 struct ShadowMapping { 419 int Scale; 420 uint64_t Offset; 421 bool OrShadowOffset; 422 bool InGlobal; 423 }; 424 425 } // end anonymous namespace 426 427 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 428 bool IsKasan) { 429 bool IsAndroid = TargetTriple.isAndroid(); 430 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 431 bool IsMacOS = TargetTriple.isMacOSX(); 432 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 433 bool IsNetBSD = TargetTriple.isOSNetBSD(); 434 bool IsPS4CPU = TargetTriple.isPS4CPU(); 435 bool IsLinux = TargetTriple.isOSLinux(); 436 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 437 TargetTriple.getArch() == Triple::ppc64le; 438 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 439 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 440 bool IsMIPS32 = TargetTriple.isMIPS32(); 441 bool IsMIPS64 = TargetTriple.isMIPS64(); 442 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 443 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 444 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 445 bool IsWindows = TargetTriple.isOSWindows(); 446 bool IsFuchsia = TargetTriple.isOSFuchsia(); 447 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 448 bool IsEmscripten = TargetTriple.isOSEmscripten(); 449 450 ShadowMapping Mapping; 451 452 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 453 if (ClMappingScale.getNumOccurrences() > 0) { 454 Mapping.Scale = ClMappingScale; 455 } 456 457 if (LongSize == 32) { 458 if (IsAndroid) 459 Mapping.Offset = kDynamicShadowSentinel; 460 else if (IsMIPS32) 461 Mapping.Offset = kMIPS32_ShadowOffset32; 462 else if (IsFreeBSD) 463 Mapping.Offset = kFreeBSD_ShadowOffset32; 464 else if (IsNetBSD) 465 Mapping.Offset = kNetBSD_ShadowOffset32; 466 else if (IsIOS) 467 Mapping.Offset = kDynamicShadowSentinel; 468 else if (IsWindows) 469 Mapping.Offset = kWindowsShadowOffset32; 470 else if (IsEmscripten) 471 Mapping.Offset = kEmscriptenShadowOffset; 472 else if (IsMyriad) { 473 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 474 (kMyriadMemorySize32 >> Mapping.Scale)); 475 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 476 } 477 else 478 Mapping.Offset = kDefaultShadowOffset32; 479 } else { // LongSize == 64 480 // Fuchsia is always PIE, which means that the beginning of the address 481 // space is always available. 482 if (IsFuchsia) 483 Mapping.Offset = 0; 484 else if (IsPPC64) 485 Mapping.Offset = kPPC64_ShadowOffset64; 486 else if (IsSystemZ) 487 Mapping.Offset = kSystemZ_ShadowOffset64; 488 else if (IsFreeBSD && !IsMIPS64) { 489 if (IsKasan) 490 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 491 else 492 Mapping.Offset = kFreeBSD_ShadowOffset64; 493 } else if (IsNetBSD) { 494 if (IsKasan) 495 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 496 else 497 Mapping.Offset = kNetBSD_ShadowOffset64; 498 } else if (IsPS4CPU) 499 Mapping.Offset = kPS4CPU_ShadowOffset64; 500 else if (IsLinux && IsX86_64) { 501 if (IsKasan) 502 Mapping.Offset = kLinuxKasan_ShadowOffset64; 503 else 504 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 505 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 506 } else if (IsWindows && IsX86_64) { 507 Mapping.Offset = kWindowsShadowOffset64; 508 } else if (IsMIPS64) 509 Mapping.Offset = kMIPS64_ShadowOffset64; 510 else if (IsIOS) 511 Mapping.Offset = kDynamicShadowSentinel; 512 else if (IsMacOS && IsAArch64) 513 Mapping.Offset = kDynamicShadowSentinel; 514 else if (IsAArch64) 515 Mapping.Offset = kAArch64_ShadowOffset64; 516 else if (IsRISCV64) 517 Mapping.Offset = kRISCV64_ShadowOffset64; 518 else 519 Mapping.Offset = kDefaultShadowOffset64; 520 } 521 522 if (ClForceDynamicShadow) { 523 Mapping.Offset = kDynamicShadowSentinel; 524 } 525 526 if (ClMappingOffset.getNumOccurrences() > 0) { 527 Mapping.Offset = ClMappingOffset; 528 } 529 530 // OR-ing shadow offset if more efficient (at least on x86) if the offset 531 // is a power of two, but on ppc64 we have to use add since the shadow 532 // offset is not necessary 1/8-th of the address space. On SystemZ, 533 // we could OR the constant in a single instruction, but it's more 534 // efficient to load it once and use indexed addressing. 535 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 536 !IsRISCV64 && 537 !(Mapping.Offset & (Mapping.Offset - 1)) && 538 Mapping.Offset != kDynamicShadowSentinel; 539 bool IsAndroidWithIfuncSupport = 540 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 541 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 542 543 return Mapping; 544 } 545 546 static uint64_t getRedzoneSizeForScale(int MappingScale) { 547 // Redzone used for stack and globals is at least 32 bytes. 548 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 549 return std::max(32U, 1U << MappingScale); 550 } 551 552 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 553 if (TargetTriple.isOSEmscripten()) { 554 return kAsanEmscriptenCtorAndDtorPriority; 555 } else { 556 return kAsanCtorAndDtorPriority; 557 } 558 } 559 560 namespace { 561 562 /// Module analysis for getting various metadata about the module. 563 class ASanGlobalsMetadataWrapperPass : public ModulePass { 564 public: 565 static char ID; 566 567 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 568 initializeASanGlobalsMetadataWrapperPassPass( 569 *PassRegistry::getPassRegistry()); 570 } 571 572 bool runOnModule(Module &M) override { 573 GlobalsMD = GlobalsMetadata(M); 574 return false; 575 } 576 577 StringRef getPassName() const override { 578 return "ASanGlobalsMetadataWrapperPass"; 579 } 580 581 void getAnalysisUsage(AnalysisUsage &AU) const override { 582 AU.setPreservesAll(); 583 } 584 585 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 586 587 private: 588 GlobalsMetadata GlobalsMD; 589 }; 590 591 char ASanGlobalsMetadataWrapperPass::ID = 0; 592 593 /// AddressSanitizer: instrument the code in module to find memory bugs. 594 struct AddressSanitizer { 595 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 596 bool CompileKernel = false, bool Recover = false, 597 bool UseAfterScope = false) 598 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 599 : CompileKernel), 600 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 601 UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { 602 C = &(M.getContext()); 603 LongSize = M.getDataLayout().getPointerSizeInBits(); 604 IntptrTy = Type::getIntNTy(*C, LongSize); 605 TargetTriple = Triple(M.getTargetTriple()); 606 607 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 608 } 609 610 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 611 uint64_t ArraySize = 1; 612 if (AI.isArrayAllocation()) { 613 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 614 assert(CI && "non-constant array size"); 615 ArraySize = CI->getZExtValue(); 616 } 617 Type *Ty = AI.getAllocatedType(); 618 uint64_t SizeInBytes = 619 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 620 return SizeInBytes * ArraySize; 621 } 622 623 /// Check if we want (and can) handle this alloca. 624 bool isInterestingAlloca(const AllocaInst &AI); 625 626 bool ignoreAccess(Value *Ptr); 627 void getInterestingMemoryOperands( 628 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 629 630 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 631 InterestingMemoryOperand &O, bool UseCalls, 632 const DataLayout &DL); 633 void instrumentPointerComparisonOrSubtraction(Instruction *I); 634 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 635 Value *Addr, uint32_t TypeSize, bool IsWrite, 636 Value *SizeArgument, bool UseCalls, uint32_t Exp); 637 void instrumentUnusualSizeOrAlignment(Instruction *I, 638 Instruction *InsertBefore, Value *Addr, 639 uint32_t TypeSize, bool IsWrite, 640 Value *SizeArgument, bool UseCalls, 641 uint32_t Exp); 642 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 643 Value *ShadowValue, uint32_t TypeSize); 644 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 645 bool IsWrite, size_t AccessSizeIndex, 646 Value *SizeArgument, uint32_t Exp); 647 void instrumentMemIntrinsic(MemIntrinsic *MI); 648 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 649 bool suppressInstrumentationSiteForDebug(int &Instrumented); 650 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 651 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 652 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 653 void markEscapedLocalAllocas(Function &F); 654 655 private: 656 friend struct FunctionStackPoisoner; 657 658 void initializeCallbacks(Module &M); 659 660 bool LooksLikeCodeInBug11395(Instruction *I); 661 bool GlobalIsLinkerInitialized(GlobalVariable *G); 662 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 663 uint64_t TypeSize) const; 664 665 /// Helper to cleanup per-function state. 666 struct FunctionStateRAII { 667 AddressSanitizer *Pass; 668 669 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 670 assert(Pass->ProcessedAllocas.empty() && 671 "last pass forgot to clear cache"); 672 assert(!Pass->LocalDynamicShadow); 673 } 674 675 ~FunctionStateRAII() { 676 Pass->LocalDynamicShadow = nullptr; 677 Pass->ProcessedAllocas.clear(); 678 } 679 }; 680 681 LLVMContext *C; 682 Triple TargetTriple; 683 int LongSize; 684 bool CompileKernel; 685 bool Recover; 686 bool UseAfterScope; 687 Type *IntptrTy; 688 ShadowMapping Mapping; 689 FunctionCallee AsanHandleNoReturnFunc; 690 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 691 Constant *AsanShadowGlobal; 692 693 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 694 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 695 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 696 697 // These arrays is indexed by AccessIsWrite and Experiment. 698 FunctionCallee AsanErrorCallbackSized[2][2]; 699 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 700 701 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 702 Value *LocalDynamicShadow = nullptr; 703 const GlobalsMetadata &GlobalsMD; 704 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 705 }; 706 707 class AddressSanitizerLegacyPass : public FunctionPass { 708 public: 709 static char ID; 710 711 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 712 bool Recover = false, 713 bool UseAfterScope = false) 714 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 715 UseAfterScope(UseAfterScope) { 716 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 717 } 718 719 StringRef getPassName() const override { 720 return "AddressSanitizerFunctionPass"; 721 } 722 723 void getAnalysisUsage(AnalysisUsage &AU) const override { 724 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 725 AU.addRequired<TargetLibraryInfoWrapperPass>(); 726 } 727 728 bool runOnFunction(Function &F) override { 729 GlobalsMetadata &GlobalsMD = 730 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 731 const TargetLibraryInfo *TLI = 732 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 733 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 734 UseAfterScope); 735 return ASan.instrumentFunction(F, TLI); 736 } 737 738 private: 739 bool CompileKernel; 740 bool Recover; 741 bool UseAfterScope; 742 }; 743 744 class ModuleAddressSanitizer { 745 public: 746 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 747 bool CompileKernel = false, bool Recover = false, 748 bool UseGlobalsGC = true, bool UseOdrIndicator = false) 749 : GlobalsMD(*GlobalsMD), 750 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 751 : CompileKernel), 752 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 753 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 754 // Enable aliases as they should have no downside with ODR indicators. 755 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 756 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 757 // Not a typo: ClWithComdat is almost completely pointless without 758 // ClUseGlobalsGC (because then it only works on modules without 759 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 760 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 761 // argument is designed as workaround. Therefore, disable both 762 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 763 // do globals-gc. 764 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel) { 765 C = &(M.getContext()); 766 int LongSize = M.getDataLayout().getPointerSizeInBits(); 767 IntptrTy = Type::getIntNTy(*C, LongSize); 768 TargetTriple = Triple(M.getTargetTriple()); 769 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 770 } 771 772 bool instrumentModule(Module &); 773 774 private: 775 void initializeCallbacks(Module &M); 776 777 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 778 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 779 ArrayRef<GlobalVariable *> ExtendedGlobals, 780 ArrayRef<Constant *> MetadataInitializers); 781 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 782 ArrayRef<GlobalVariable *> ExtendedGlobals, 783 ArrayRef<Constant *> MetadataInitializers, 784 const std::string &UniqueModuleId); 785 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 786 ArrayRef<GlobalVariable *> ExtendedGlobals, 787 ArrayRef<Constant *> MetadataInitializers); 788 void 789 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 790 ArrayRef<GlobalVariable *> ExtendedGlobals, 791 ArrayRef<Constant *> MetadataInitializers); 792 793 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 794 StringRef OriginalName); 795 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 796 StringRef InternalSuffix); 797 Instruction *CreateAsanModuleDtor(Module &M); 798 799 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 800 bool shouldInstrumentGlobal(GlobalVariable *G) const; 801 bool ShouldUseMachOGlobalsSection() const; 802 StringRef getGlobalMetadataSection() const; 803 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 804 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 805 uint64_t getMinRedzoneSizeForGlobal() const { 806 return getRedzoneSizeForScale(Mapping.Scale); 807 } 808 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 809 int GetAsanVersion(const Module &M) const; 810 811 const GlobalsMetadata &GlobalsMD; 812 bool CompileKernel; 813 bool Recover; 814 bool UseGlobalsGC; 815 bool UsePrivateAlias; 816 bool UseOdrIndicator; 817 bool UseCtorComdat; 818 Type *IntptrTy; 819 LLVMContext *C; 820 Triple TargetTriple; 821 ShadowMapping Mapping; 822 FunctionCallee AsanPoisonGlobals; 823 FunctionCallee AsanUnpoisonGlobals; 824 FunctionCallee AsanRegisterGlobals; 825 FunctionCallee AsanUnregisterGlobals; 826 FunctionCallee AsanRegisterImageGlobals; 827 FunctionCallee AsanUnregisterImageGlobals; 828 FunctionCallee AsanRegisterElfGlobals; 829 FunctionCallee AsanUnregisterElfGlobals; 830 831 Function *AsanCtorFunction = nullptr; 832 Function *AsanDtorFunction = nullptr; 833 }; 834 835 class ModuleAddressSanitizerLegacyPass : public ModulePass { 836 public: 837 static char ID; 838 839 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, 840 bool Recover = false, 841 bool UseGlobalGC = true, 842 bool UseOdrIndicator = false) 843 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 844 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { 845 initializeModuleAddressSanitizerLegacyPassPass( 846 *PassRegistry::getPassRegistry()); 847 } 848 849 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 850 851 void getAnalysisUsage(AnalysisUsage &AU) const override { 852 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 853 } 854 855 bool runOnModule(Module &M) override { 856 GlobalsMetadata &GlobalsMD = 857 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 858 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 859 UseGlobalGC, UseOdrIndicator); 860 return ASanModule.instrumentModule(M); 861 } 862 863 private: 864 bool CompileKernel; 865 bool Recover; 866 bool UseGlobalGC; 867 bool UseOdrIndicator; 868 }; 869 870 // Stack poisoning does not play well with exception handling. 871 // When an exception is thrown, we essentially bypass the code 872 // that unpoisones the stack. This is why the run-time library has 873 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 874 // stack in the interceptor. This however does not work inside the 875 // actual function which catches the exception. Most likely because the 876 // compiler hoists the load of the shadow value somewhere too high. 877 // This causes asan to report a non-existing bug on 453.povray. 878 // It sounds like an LLVM bug. 879 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 880 Function &F; 881 AddressSanitizer &ASan; 882 DIBuilder DIB; 883 LLVMContext *C; 884 Type *IntptrTy; 885 Type *IntptrPtrTy; 886 ShadowMapping Mapping; 887 888 SmallVector<AllocaInst *, 16> AllocaVec; 889 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 890 SmallVector<Instruction *, 8> RetVec; 891 unsigned StackAlignment; 892 893 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 894 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 895 FunctionCallee AsanSetShadowFunc[0x100] = {}; 896 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 897 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 898 899 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 900 struct AllocaPoisonCall { 901 IntrinsicInst *InsBefore; 902 AllocaInst *AI; 903 uint64_t Size; 904 bool DoPoison; 905 }; 906 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 907 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 908 bool HasUntracedLifetimeIntrinsic = false; 909 910 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 911 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 912 AllocaInst *DynamicAllocaLayout = nullptr; 913 IntrinsicInst *LocalEscapeCall = nullptr; 914 915 bool HasInlineAsm = false; 916 bool HasReturnsTwiceCall = false; 917 918 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 919 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 920 C(ASan.C), IntptrTy(ASan.IntptrTy), 921 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 922 StackAlignment(1 << Mapping.Scale) {} 923 924 bool runOnFunction() { 925 if (!ClStack) return false; 926 927 if (ClRedzoneByvalArgs) 928 copyArgsPassedByValToAllocas(); 929 930 // Collect alloca, ret, lifetime instructions etc. 931 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 932 933 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 934 935 initializeCallbacks(*F.getParent()); 936 937 if (HasUntracedLifetimeIntrinsic) { 938 // If there are lifetime intrinsics which couldn't be traced back to an 939 // alloca, we may not know exactly when a variable enters scope, and 940 // therefore should "fail safe" by not poisoning them. 941 StaticAllocaPoisonCallVec.clear(); 942 DynamicAllocaPoisonCallVec.clear(); 943 } 944 945 processDynamicAllocas(); 946 processStaticAllocas(); 947 948 if (ClDebugStack) { 949 LLVM_DEBUG(dbgs() << F); 950 } 951 return true; 952 } 953 954 // Arguments marked with the "byval" attribute are implicitly copied without 955 // using an alloca instruction. To produce redzones for those arguments, we 956 // copy them a second time into memory allocated with an alloca instruction. 957 void copyArgsPassedByValToAllocas(); 958 959 // Finds all Alloca instructions and puts 960 // poisoned red zones around all of them. 961 // Then unpoison everything back before the function returns. 962 void processStaticAllocas(); 963 void processDynamicAllocas(); 964 965 void createDynamicAllocasInitStorage(); 966 967 // ----------------------- Visitors. 968 /// Collect all Ret instructions, or the musttail call instruction if it 969 /// precedes the return instruction. 970 void visitReturnInst(ReturnInst &RI) { 971 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 972 RetVec.push_back(CI); 973 else 974 RetVec.push_back(&RI); 975 } 976 977 /// Collect all Resume instructions. 978 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 979 980 /// Collect all CatchReturnInst instructions. 981 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 982 983 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 984 Value *SavedStack) { 985 IRBuilder<> IRB(InstBefore); 986 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 987 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 988 // need to adjust extracted SP to compute the address of the most recent 989 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 990 // this purpose. 991 if (!isa<ReturnInst>(InstBefore)) { 992 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 993 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 994 {IntptrTy}); 995 996 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 997 998 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 999 DynamicAreaOffset); 1000 } 1001 1002 IRB.CreateCall( 1003 AsanAllocasUnpoisonFunc, 1004 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1005 } 1006 1007 // Unpoison dynamic allocas redzones. 1008 void unpoisonDynamicAllocas() { 1009 for (Instruction *Ret : RetVec) 1010 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1011 1012 for (Instruction *StackRestoreInst : StackRestoreVec) 1013 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1014 StackRestoreInst->getOperand(0)); 1015 } 1016 1017 // Deploy and poison redzones around dynamic alloca call. To do this, we 1018 // should replace this call with another one with changed parameters and 1019 // replace all its uses with new address, so 1020 // addr = alloca type, old_size, align 1021 // is replaced by 1022 // new_size = (old_size + additional_size) * sizeof(type) 1023 // tmp = alloca i8, new_size, max(align, 32) 1024 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1025 // Additional_size is added to make new memory allocation contain not only 1026 // requested memory, but also left, partial and right redzones. 1027 void handleDynamicAllocaCall(AllocaInst *AI); 1028 1029 /// Collect Alloca instructions we want (and can) handle. 1030 void visitAllocaInst(AllocaInst &AI) { 1031 if (!ASan.isInterestingAlloca(AI)) { 1032 if (AI.isStaticAlloca()) { 1033 // Skip over allocas that are present *before* the first instrumented 1034 // alloca, we don't want to move those around. 1035 if (AllocaVec.empty()) 1036 return; 1037 1038 StaticAllocasToMoveUp.push_back(&AI); 1039 } 1040 return; 1041 } 1042 1043 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1044 if (!AI.isStaticAlloca()) 1045 DynamicAllocaVec.push_back(&AI); 1046 else 1047 AllocaVec.push_back(&AI); 1048 } 1049 1050 /// Collect lifetime intrinsic calls to check for use-after-scope 1051 /// errors. 1052 void visitIntrinsicInst(IntrinsicInst &II) { 1053 Intrinsic::ID ID = II.getIntrinsicID(); 1054 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1055 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1056 if (!ASan.UseAfterScope) 1057 return; 1058 if (!II.isLifetimeStartOrEnd()) 1059 return; 1060 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1061 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1062 // If size argument is undefined, don't do anything. 1063 if (Size->isMinusOne()) return; 1064 // Check that size doesn't saturate uint64_t and can 1065 // be stored in IntptrTy. 1066 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1067 if (SizeValue == ~0ULL || 1068 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1069 return; 1070 // Find alloca instruction that corresponds to llvm.lifetime argument. 1071 // Currently we can only handle lifetime markers pointing to the 1072 // beginning of the alloca. 1073 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1074 if (!AI) { 1075 HasUntracedLifetimeIntrinsic = true; 1076 return; 1077 } 1078 // We're interested only in allocas we can handle. 1079 if (!ASan.isInterestingAlloca(*AI)) 1080 return; 1081 bool DoPoison = (ID == Intrinsic::lifetime_end); 1082 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1083 if (AI->isStaticAlloca()) 1084 StaticAllocaPoisonCallVec.push_back(APC); 1085 else if (ClInstrumentDynamicAllocas) 1086 DynamicAllocaPoisonCallVec.push_back(APC); 1087 } 1088 1089 void visitCallBase(CallBase &CB) { 1090 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1091 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1092 HasReturnsTwiceCall |= CI->canReturnTwice(); 1093 } 1094 } 1095 1096 // ---------------------- Helpers. 1097 void initializeCallbacks(Module &M); 1098 1099 // Copies bytes from ShadowBytes into shadow memory for indexes where 1100 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1101 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1102 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1103 IRBuilder<> &IRB, Value *ShadowBase); 1104 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1105 size_t Begin, size_t End, IRBuilder<> &IRB, 1106 Value *ShadowBase); 1107 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1108 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1109 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1110 1111 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1112 1113 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1114 bool Dynamic); 1115 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1116 Instruction *ThenTerm, Value *ValueIfFalse); 1117 }; 1118 1119 } // end anonymous namespace 1120 1121 void LocationMetadata::parse(MDNode *MDN) { 1122 assert(MDN->getNumOperands() == 3); 1123 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1124 Filename = DIFilename->getString(); 1125 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1126 ColumnNo = 1127 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1128 } 1129 1130 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1131 // we want to sanitize instead and reading this metadata on each pass over a 1132 // function instead of reading module level metadata at first. 1133 GlobalsMetadata::GlobalsMetadata(Module &M) { 1134 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1135 if (!Globals) 1136 return; 1137 for (auto MDN : Globals->operands()) { 1138 // Metadata node contains the global and the fields of "Entry". 1139 assert(MDN->getNumOperands() == 5); 1140 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1141 // The optimizer may optimize away a global entirely. 1142 if (!V) 1143 continue; 1144 auto *StrippedV = V->stripPointerCasts(); 1145 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1146 if (!GV) 1147 continue; 1148 // We can already have an entry for GV if it was merged with another 1149 // global. 1150 Entry &E = Entries[GV]; 1151 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1152 E.SourceLoc.parse(Loc); 1153 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1154 E.Name = Name->getString(); 1155 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1156 E.IsDynInit |= IsDynInit->isOne(); 1157 ConstantInt *IsExcluded = 1158 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1159 E.IsExcluded |= IsExcluded->isOne(); 1160 } 1161 } 1162 1163 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1164 1165 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1166 ModuleAnalysisManager &AM) { 1167 return GlobalsMetadata(M); 1168 } 1169 1170 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1171 bool UseAfterScope) 1172 : CompileKernel(CompileKernel), Recover(Recover), 1173 UseAfterScope(UseAfterScope) {} 1174 1175 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1176 AnalysisManager<Function> &AM) { 1177 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1178 Module &M = *F.getParent(); 1179 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1180 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1181 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); 1182 if (Sanitizer.instrumentFunction(F, TLI)) 1183 return PreservedAnalyses::none(); 1184 return PreservedAnalyses::all(); 1185 } 1186 1187 report_fatal_error( 1188 "The ASanGlobalsMetadataAnalysis is required to run before " 1189 "AddressSanitizer can run"); 1190 return PreservedAnalyses::all(); 1191 } 1192 1193 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, 1194 bool Recover, 1195 bool UseGlobalGC, 1196 bool UseOdrIndicator) 1197 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1198 UseOdrIndicator(UseOdrIndicator) {} 1199 1200 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1201 AnalysisManager<Module> &AM) { 1202 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1203 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1204 UseGlobalGC, UseOdrIndicator); 1205 if (Sanitizer.instrumentModule(M)) 1206 return PreservedAnalyses::none(); 1207 return PreservedAnalyses::all(); 1208 } 1209 1210 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1211 "Read metadata to mark which globals should be instrumented " 1212 "when running ASan.", 1213 false, true) 1214 1215 char AddressSanitizerLegacyPass::ID = 0; 1216 1217 INITIALIZE_PASS_BEGIN( 1218 AddressSanitizerLegacyPass, "asan", 1219 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1220 false) 1221 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1222 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1223 INITIALIZE_PASS_END( 1224 AddressSanitizerLegacyPass, "asan", 1225 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1226 false) 1227 1228 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1229 bool Recover, 1230 bool UseAfterScope) { 1231 assert(!CompileKernel || Recover); 1232 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1233 } 1234 1235 char ModuleAddressSanitizerLegacyPass::ID = 0; 1236 1237 INITIALIZE_PASS( 1238 ModuleAddressSanitizerLegacyPass, "asan-module", 1239 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1240 "ModulePass", 1241 false, false) 1242 1243 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1244 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { 1245 assert(!CompileKernel || Recover); 1246 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, 1247 UseGlobalsGC, UseOdrIndicator); 1248 } 1249 1250 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1251 size_t Res = countTrailingZeros(TypeSize / 8); 1252 assert(Res < kNumberOfAccessSizes); 1253 return Res; 1254 } 1255 1256 /// Create a global describing a source location. 1257 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1258 LocationMetadata MD) { 1259 Constant *LocData[] = { 1260 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1261 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1262 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1263 }; 1264 auto LocStruct = ConstantStruct::getAnon(LocData); 1265 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1266 GlobalValue::PrivateLinkage, LocStruct, 1267 kAsanGenPrefix); 1268 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1269 return GV; 1270 } 1271 1272 /// Check if \p G has been created by a trusted compiler pass. 1273 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1274 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1275 if (G->getName().startswith("llvm.")) 1276 return true; 1277 1278 // Do not instrument asan globals. 1279 if (G->getName().startswith(kAsanGenPrefix) || 1280 G->getName().startswith(kSanCovGenPrefix) || 1281 G->getName().startswith(kODRGenPrefix)) 1282 return true; 1283 1284 // Do not instrument gcov counter arrays. 1285 if (G->getName() == "__llvm_gcov_ctr") 1286 return true; 1287 1288 return false; 1289 } 1290 1291 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1292 // Shadow >> scale 1293 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1294 if (Mapping.Offset == 0) return Shadow; 1295 // (Shadow >> scale) | offset 1296 Value *ShadowBase; 1297 if (LocalDynamicShadow) 1298 ShadowBase = LocalDynamicShadow; 1299 else 1300 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1301 if (Mapping.OrShadowOffset) 1302 return IRB.CreateOr(Shadow, ShadowBase); 1303 else 1304 return IRB.CreateAdd(Shadow, ShadowBase); 1305 } 1306 1307 // Instrument memset/memmove/memcpy 1308 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1309 IRBuilder<> IRB(MI); 1310 if (isa<MemTransferInst>(MI)) { 1311 IRB.CreateCall( 1312 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1313 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1314 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1315 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1316 } else if (isa<MemSetInst>(MI)) { 1317 IRB.CreateCall( 1318 AsanMemset, 1319 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1320 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1321 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1322 } 1323 MI->eraseFromParent(); 1324 } 1325 1326 /// Check if we want (and can) handle this alloca. 1327 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1328 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1329 1330 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1331 return PreviouslySeenAllocaInfo->getSecond(); 1332 1333 bool IsInteresting = 1334 (AI.getAllocatedType()->isSized() && 1335 // alloca() may be called with 0 size, ignore it. 1336 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1337 // We are only interested in allocas not promotable to registers. 1338 // Promotable allocas are common under -O0. 1339 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1340 // inalloca allocas are not treated as static, and we don't want 1341 // dynamic alloca instrumentation for them as well. 1342 !AI.isUsedWithInAlloca() && 1343 // swifterror allocas are register promoted by ISel 1344 !AI.isSwiftError()); 1345 1346 ProcessedAllocas[&AI] = IsInteresting; 1347 return IsInteresting; 1348 } 1349 1350 bool AddressSanitizer::ignoreAccess(Value *Ptr) { 1351 // Do not instrument acesses from different address spaces; we cannot deal 1352 // with them. 1353 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1354 if (PtrTy->getPointerAddressSpace() != 0) 1355 return true; 1356 1357 // Ignore swifterror addresses. 1358 // swifterror memory addresses are mem2reg promoted by instruction 1359 // selection. As such they cannot have regular uses like an instrumentation 1360 // function and it makes no sense to track them as memory. 1361 if (Ptr->isSwiftError()) 1362 return true; 1363 1364 // Treat memory accesses to promotable allocas as non-interesting since they 1365 // will not cause memory violations. This greatly speeds up the instrumented 1366 // executable at -O0. 1367 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1368 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1369 return true; 1370 1371 return false; 1372 } 1373 1374 void AddressSanitizer::getInterestingMemoryOperands( 1375 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1376 // Skip memory accesses inserted by another instrumentation. 1377 if (I->hasMetadata("nosanitize")) 1378 return; 1379 1380 // Do not instrument the load fetching the dynamic shadow address. 1381 if (LocalDynamicShadow == I) 1382 return; 1383 1384 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1385 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) 1386 return; 1387 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1388 LI->getType(), LI->getAlign()); 1389 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1390 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) 1391 return; 1392 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1393 SI->getValueOperand()->getType(), SI->getAlign()); 1394 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1395 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) 1396 return; 1397 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1398 RMW->getValOperand()->getType(), None); 1399 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1400 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) 1401 return; 1402 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1403 XCHG->getCompareOperand()->getType(), None); 1404 } else if (auto CI = dyn_cast<CallInst>(I)) { 1405 auto *F = CI->getCalledFunction(); 1406 if (F && (F->getName().startswith("llvm.masked.load.") || 1407 F->getName().startswith("llvm.masked.store."))) { 1408 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1409 // Masked store has an initial operand for the value. 1410 unsigned OpOffset = IsWrite ? 1 : 0; 1411 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1412 return; 1413 1414 auto BasePtr = CI->getOperand(OpOffset); 1415 if (ignoreAccess(BasePtr)) 1416 return; 1417 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1418 MaybeAlign Alignment = Align(1); 1419 // Otherwise no alignment guarantees. We probably got Undef. 1420 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1421 Alignment = Op->getMaybeAlignValue(); 1422 Value *Mask = CI->getOperand(2 + OpOffset); 1423 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1424 } else { 1425 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { 1426 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1427 ignoreAccess(CI->getArgOperand(ArgNo))) 1428 continue; 1429 Type *Ty = CI->getParamByValType(ArgNo); 1430 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1431 } 1432 } 1433 } 1434 } 1435 1436 static bool isPointerOperand(Value *V) { 1437 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1438 } 1439 1440 // This is a rough heuristic; it may cause both false positives and 1441 // false negatives. The proper implementation requires cooperation with 1442 // the frontend. 1443 static bool isInterestingPointerComparison(Instruction *I) { 1444 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1445 if (!Cmp->isRelational()) 1446 return false; 1447 } else { 1448 return false; 1449 } 1450 return isPointerOperand(I->getOperand(0)) && 1451 isPointerOperand(I->getOperand(1)); 1452 } 1453 1454 // This is a rough heuristic; it may cause both false positives and 1455 // false negatives. The proper implementation requires cooperation with 1456 // the frontend. 1457 static bool isInterestingPointerSubtraction(Instruction *I) { 1458 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1459 if (BO->getOpcode() != Instruction::Sub) 1460 return false; 1461 } else { 1462 return false; 1463 } 1464 return isPointerOperand(I->getOperand(0)) && 1465 isPointerOperand(I->getOperand(1)); 1466 } 1467 1468 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1469 // If a global variable does not have dynamic initialization we don't 1470 // have to instrument it. However, if a global does not have initializer 1471 // at all, we assume it has dynamic initializer (in other TU). 1472 // 1473 // FIXME: Metadata should be attched directly to the global directly instead 1474 // of being added to llvm.asan.globals. 1475 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1476 } 1477 1478 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1479 Instruction *I) { 1480 IRBuilder<> IRB(I); 1481 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1482 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1483 for (Value *&i : Param) { 1484 if (i->getType()->isPointerTy()) 1485 i = IRB.CreatePointerCast(i, IntptrTy); 1486 } 1487 IRB.CreateCall(F, Param); 1488 } 1489 1490 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1491 Instruction *InsertBefore, Value *Addr, 1492 MaybeAlign Alignment, unsigned Granularity, 1493 uint32_t TypeSize, bool IsWrite, 1494 Value *SizeArgument, bool UseCalls, 1495 uint32_t Exp) { 1496 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1497 // if the data is properly aligned. 1498 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1499 TypeSize == 128) && 1500 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1501 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1502 nullptr, UseCalls, Exp); 1503 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1504 IsWrite, nullptr, UseCalls, Exp); 1505 } 1506 1507 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1508 const DataLayout &DL, Type *IntptrTy, 1509 Value *Mask, Instruction *I, 1510 Value *Addr, MaybeAlign Alignment, 1511 unsigned Granularity, uint32_t TypeSize, 1512 bool IsWrite, Value *SizeArgument, 1513 bool UseCalls, uint32_t Exp) { 1514 auto *VTy = cast<FixedVectorType>( 1515 cast<PointerType>(Addr->getType())->getElementType()); 1516 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1517 unsigned Num = VTy->getNumElements(); 1518 auto Zero = ConstantInt::get(IntptrTy, 0); 1519 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1520 Value *InstrumentedAddress = nullptr; 1521 Instruction *InsertBefore = I; 1522 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1523 // dyn_cast as we might get UndefValue 1524 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1525 if (Masked->isZero()) 1526 // Mask is constant false, so no instrumentation needed. 1527 continue; 1528 // If we have a true or undef value, fall through to doInstrumentAddress 1529 // with InsertBefore == I 1530 } 1531 } else { 1532 IRBuilder<> IRB(I); 1533 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1534 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1535 InsertBefore = ThenTerm; 1536 } 1537 1538 IRBuilder<> IRB(InsertBefore); 1539 InstrumentedAddress = 1540 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1541 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1542 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1543 UseCalls, Exp); 1544 } 1545 } 1546 1547 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1548 InterestingMemoryOperand &O, bool UseCalls, 1549 const DataLayout &DL) { 1550 Value *Addr = O.getPtr(); 1551 1552 // Optimization experiments. 1553 // The experiments can be used to evaluate potential optimizations that remove 1554 // instrumentation (assess false negatives). Instead of completely removing 1555 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1556 // experiments that want to remove instrumentation of this instruction). 1557 // If Exp is non-zero, this pass will emit special calls into runtime 1558 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1559 // make runtime terminate the program in a special way (with a different 1560 // exit status). Then you run the new compiler on a buggy corpus, collect 1561 // the special terminations (ideally, you don't see them at all -- no false 1562 // negatives) and make the decision on the optimization. 1563 uint32_t Exp = ClForceExperiment; 1564 1565 if (ClOpt && ClOptGlobals) { 1566 // If initialization order checking is disabled, a simple access to a 1567 // dynamically initialized global is always valid. 1568 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1569 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1570 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1571 NumOptimizedAccessesToGlobalVar++; 1572 return; 1573 } 1574 } 1575 1576 if (ClOpt && ClOptStack) { 1577 // A direct inbounds access to a stack variable is always valid. 1578 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1579 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1580 NumOptimizedAccessesToStackVar++; 1581 return; 1582 } 1583 } 1584 1585 if (O.IsWrite) 1586 NumInstrumentedWrites++; 1587 else 1588 NumInstrumentedReads++; 1589 1590 unsigned Granularity = 1 << Mapping.Scale; 1591 if (O.MaybeMask) { 1592 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1593 Addr, O.Alignment, Granularity, O.TypeSize, 1594 O.IsWrite, nullptr, UseCalls, Exp); 1595 } else { 1596 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1597 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1598 Exp); 1599 } 1600 } 1601 1602 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1603 Value *Addr, bool IsWrite, 1604 size_t AccessSizeIndex, 1605 Value *SizeArgument, 1606 uint32_t Exp) { 1607 IRBuilder<> IRB(InsertBefore); 1608 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1609 CallInst *Call = nullptr; 1610 if (SizeArgument) { 1611 if (Exp == 0) 1612 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1613 {Addr, SizeArgument}); 1614 else 1615 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1616 {Addr, SizeArgument, ExpVal}); 1617 } else { 1618 if (Exp == 0) 1619 Call = 1620 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1621 else 1622 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1623 {Addr, ExpVal}); 1624 } 1625 1626 Call->setCannotMerge(); 1627 return Call; 1628 } 1629 1630 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1631 Value *ShadowValue, 1632 uint32_t TypeSize) { 1633 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1634 // Addr & (Granularity - 1) 1635 Value *LastAccessedByte = 1636 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1637 // (Addr & (Granularity - 1)) + size - 1 1638 if (TypeSize / 8 > 1) 1639 LastAccessedByte = IRB.CreateAdd( 1640 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1641 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1642 LastAccessedByte = 1643 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1644 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1645 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1646 } 1647 1648 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1649 Instruction *InsertBefore, Value *Addr, 1650 uint32_t TypeSize, bool IsWrite, 1651 Value *SizeArgument, bool UseCalls, 1652 uint32_t Exp) { 1653 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1654 1655 IRBuilder<> IRB(InsertBefore); 1656 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1657 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1658 1659 if (UseCalls) { 1660 if (Exp == 0) 1661 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1662 AddrLong); 1663 else 1664 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1665 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1666 return; 1667 } 1668 1669 if (IsMyriad) { 1670 // Strip the cache bit and do range check. 1671 // AddrLong &= ~kMyriadCacheBitMask32 1672 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1673 // Tag = AddrLong >> kMyriadTagShift 1674 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1675 // Tag == kMyriadDDRTag 1676 Value *TagCheck = 1677 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1678 1679 Instruction *TagCheckTerm = 1680 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1681 MDBuilder(*C).createBranchWeights(1, 100000)); 1682 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1683 IRB.SetInsertPoint(TagCheckTerm); 1684 InsertBefore = TagCheckTerm; 1685 } 1686 1687 Type *ShadowTy = 1688 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1689 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1690 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1691 Value *CmpVal = Constant::getNullValue(ShadowTy); 1692 Value *ShadowValue = 1693 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1694 1695 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1696 size_t Granularity = 1ULL << Mapping.Scale; 1697 Instruction *CrashTerm = nullptr; 1698 1699 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1700 // We use branch weights for the slow path check, to indicate that the slow 1701 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1702 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1703 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1704 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1705 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1706 IRB.SetInsertPoint(CheckTerm); 1707 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1708 if (Recover) { 1709 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1710 } else { 1711 BasicBlock *CrashBlock = 1712 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1713 CrashTerm = new UnreachableInst(*C, CrashBlock); 1714 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1715 ReplaceInstWithInst(CheckTerm, NewTerm); 1716 } 1717 } else { 1718 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1719 } 1720 1721 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1722 AccessSizeIndex, SizeArgument, Exp); 1723 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1724 } 1725 1726 // Instrument unusual size or unusual alignment. 1727 // We can not do it with a single check, so we do 1-byte check for the first 1728 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1729 // to report the actual access size. 1730 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1731 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1732 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1733 IRBuilder<> IRB(InsertBefore); 1734 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1735 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1736 if (UseCalls) { 1737 if (Exp == 0) 1738 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1739 {AddrLong, Size}); 1740 else 1741 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1742 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1743 } else { 1744 Value *LastByte = IRB.CreateIntToPtr( 1745 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1746 Addr->getType()); 1747 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1748 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1749 } 1750 } 1751 1752 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1753 GlobalValue *ModuleName) { 1754 // Set up the arguments to our poison/unpoison functions. 1755 IRBuilder<> IRB(&GlobalInit.front(), 1756 GlobalInit.front().getFirstInsertionPt()); 1757 1758 // Add a call to poison all external globals before the given function starts. 1759 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1760 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1761 1762 // Add calls to unpoison all globals before each return instruction. 1763 for (auto &BB : GlobalInit.getBasicBlockList()) 1764 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1765 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1766 } 1767 1768 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1769 Module &M, GlobalValue *ModuleName) { 1770 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1771 if (!GV) 1772 return; 1773 1774 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1775 if (!CA) 1776 return; 1777 1778 for (Use &OP : CA->operands()) { 1779 if (isa<ConstantAggregateZero>(OP)) continue; 1780 ConstantStruct *CS = cast<ConstantStruct>(OP); 1781 1782 // Must have a function or null ptr. 1783 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1784 if (F->getName() == kAsanModuleCtorName) continue; 1785 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1786 // Don't instrument CTORs that will run before asan.module_ctor. 1787 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1788 continue; 1789 poisonOneInitializer(*F, ModuleName); 1790 } 1791 } 1792 } 1793 1794 const GlobalVariable * 1795 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1796 // In case this function should be expanded to include rules that do not just 1797 // apply when CompileKernel is true, either guard all existing rules with an 1798 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1799 // should also apply to user space. 1800 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1801 1802 const Constant *C = GA.getAliasee(); 1803 1804 // When compiling the kernel, globals that are aliased by symbols prefixed 1805 // by "__" are special and cannot be padded with a redzone. 1806 if (GA.getName().startswith("__")) 1807 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1808 1809 return nullptr; 1810 } 1811 1812 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1813 Type *Ty = G->getValueType(); 1814 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1815 1816 // FIXME: Metadata should be attched directly to the global directly instead 1817 // of being added to llvm.asan.globals. 1818 if (GlobalsMD.get(G).IsExcluded) return false; 1819 if (!Ty->isSized()) return false; 1820 if (!G->hasInitializer()) return false; 1821 // Only instrument globals of default address spaces 1822 if (G->getAddressSpace()) return false; 1823 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1824 // Two problems with thread-locals: 1825 // - The address of the main thread's copy can't be computed at link-time. 1826 // - Need to poison all copies, not just the main thread's one. 1827 if (G->isThreadLocal()) return false; 1828 // For now, just ignore this Global if the alignment is large. 1829 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1830 1831 // For non-COFF targets, only instrument globals known to be defined by this 1832 // TU. 1833 // FIXME: We can instrument comdat globals on ELF if we are using the 1834 // GC-friendly metadata scheme. 1835 if (!TargetTriple.isOSBinFormatCOFF()) { 1836 if (!G->hasExactDefinition() || G->hasComdat()) 1837 return false; 1838 } else { 1839 // On COFF, don't instrument non-ODR linkages. 1840 if (G->isInterposable()) 1841 return false; 1842 } 1843 1844 // If a comdat is present, it must have a selection kind that implies ODR 1845 // semantics: no duplicates, any, or exact match. 1846 if (Comdat *C = G->getComdat()) { 1847 switch (C->getSelectionKind()) { 1848 case Comdat::Any: 1849 case Comdat::ExactMatch: 1850 case Comdat::NoDuplicates: 1851 break; 1852 case Comdat::Largest: 1853 case Comdat::SameSize: 1854 return false; 1855 } 1856 } 1857 1858 if (G->hasSection()) { 1859 // The kernel uses explicit sections for mostly special global variables 1860 // that we should not instrument. E.g. the kernel may rely on their layout 1861 // without redzones, or remove them at link time ("discard.*"), etc. 1862 if (CompileKernel) 1863 return false; 1864 1865 StringRef Section = G->getSection(); 1866 1867 // Globals from llvm.metadata aren't emitted, do not instrument them. 1868 if (Section == "llvm.metadata") return false; 1869 // Do not instrument globals from special LLVM sections. 1870 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1871 1872 // Do not instrument function pointers to initialization and termination 1873 // routines: dynamic linker will not properly handle redzones. 1874 if (Section.startswith(".preinit_array") || 1875 Section.startswith(".init_array") || 1876 Section.startswith(".fini_array")) { 1877 return false; 1878 } 1879 1880 // Do not instrument user-defined sections (with names resembling 1881 // valid C identifiers) 1882 if (TargetTriple.isOSBinFormatELF()) { 1883 if (llvm::all_of(Section, 1884 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 1885 return false; 1886 } 1887 1888 // On COFF, if the section name contains '$', it is highly likely that the 1889 // user is using section sorting to create an array of globals similar to 1890 // the way initialization callbacks are registered in .init_array and 1891 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1892 // to such globals is counterproductive, because the intent is that they 1893 // will form an array, and out-of-bounds accesses are expected. 1894 // See https://github.com/google/sanitizers/issues/305 1895 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1896 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1897 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1898 << *G << "\n"); 1899 return false; 1900 } 1901 1902 if (TargetTriple.isOSBinFormatMachO()) { 1903 StringRef ParsedSegment, ParsedSection; 1904 unsigned TAA = 0, StubSize = 0; 1905 bool TAAParsed; 1906 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1907 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1908 assert(ErrorCode.empty() && "Invalid section specifier."); 1909 1910 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1911 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1912 // them. 1913 if (ParsedSegment == "__OBJC" || 1914 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1915 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1916 return false; 1917 } 1918 // See https://github.com/google/sanitizers/issues/32 1919 // Constant CFString instances are compiled in the following way: 1920 // -- the string buffer is emitted into 1921 // __TEXT,__cstring,cstring_literals 1922 // -- the constant NSConstantString structure referencing that buffer 1923 // is placed into __DATA,__cfstring 1924 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1925 // Moreover, it causes the linker to crash on OS X 10.7 1926 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1927 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1928 return false; 1929 } 1930 // The linker merges the contents of cstring_literals and removes the 1931 // trailing zeroes. 1932 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1933 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1934 return false; 1935 } 1936 } 1937 } 1938 1939 if (CompileKernel) { 1940 // Globals that prefixed by "__" are special and cannot be padded with a 1941 // redzone. 1942 if (G->getName().startswith("__")) 1943 return false; 1944 } 1945 1946 return true; 1947 } 1948 1949 // On Mach-O platforms, we emit global metadata in a separate section of the 1950 // binary in order to allow the linker to properly dead strip. This is only 1951 // supported on recent versions of ld64. 1952 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1953 if (!TargetTriple.isOSBinFormatMachO()) 1954 return false; 1955 1956 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1957 return true; 1958 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1959 return true; 1960 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1961 return true; 1962 1963 return false; 1964 } 1965 1966 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1967 switch (TargetTriple.getObjectFormat()) { 1968 case Triple::COFF: return ".ASAN$GL"; 1969 case Triple::ELF: return "asan_globals"; 1970 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1971 case Triple::Wasm: 1972 case Triple::GOFF: 1973 case Triple::XCOFF: 1974 report_fatal_error( 1975 "ModuleAddressSanitizer not implemented for object file format"); 1976 case Triple::UnknownObjectFormat: 1977 break; 1978 } 1979 llvm_unreachable("unsupported object format"); 1980 } 1981 1982 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1983 IRBuilder<> IRB(*C); 1984 1985 // Declare our poisoning and unpoisoning functions. 1986 AsanPoisonGlobals = 1987 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1988 AsanUnpoisonGlobals = 1989 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1990 1991 // Declare functions that register/unregister globals. 1992 AsanRegisterGlobals = M.getOrInsertFunction( 1993 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1994 AsanUnregisterGlobals = M.getOrInsertFunction( 1995 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1996 1997 // Declare the functions that find globals in a shared object and then invoke 1998 // the (un)register function on them. 1999 AsanRegisterImageGlobals = M.getOrInsertFunction( 2000 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2001 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2002 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2003 2004 AsanRegisterElfGlobals = 2005 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2006 IntptrTy, IntptrTy, IntptrTy); 2007 AsanUnregisterElfGlobals = 2008 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2009 IntptrTy, IntptrTy, IntptrTy); 2010 } 2011 2012 // Put the metadata and the instrumented global in the same group. This ensures 2013 // that the metadata is discarded if the instrumented global is discarded. 2014 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2015 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2016 Module &M = *G->getParent(); 2017 Comdat *C = G->getComdat(); 2018 if (!C) { 2019 if (!G->hasName()) { 2020 // If G is unnamed, it must be internal. Give it an artificial name 2021 // so we can put it in a comdat. 2022 assert(G->hasLocalLinkage()); 2023 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2024 } 2025 2026 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2027 std::string Name = std::string(G->getName()); 2028 Name += InternalSuffix; 2029 C = M.getOrInsertComdat(Name); 2030 } else { 2031 C = M.getOrInsertComdat(G->getName()); 2032 } 2033 2034 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2035 // linkage to internal linkage so that a symbol table entry is emitted. This 2036 // is necessary in order to create the comdat group. 2037 if (TargetTriple.isOSBinFormatCOFF()) { 2038 C->setSelectionKind(Comdat::NoDuplicates); 2039 if (G->hasPrivateLinkage()) 2040 G->setLinkage(GlobalValue::InternalLinkage); 2041 } 2042 G->setComdat(C); 2043 } 2044 2045 assert(G->hasComdat()); 2046 Metadata->setComdat(G->getComdat()); 2047 } 2048 2049 // Create a separate metadata global and put it in the appropriate ASan 2050 // global registration section. 2051 GlobalVariable * 2052 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2053 StringRef OriginalName) { 2054 auto Linkage = TargetTriple.isOSBinFormatMachO() 2055 ? GlobalVariable::InternalLinkage 2056 : GlobalVariable::PrivateLinkage; 2057 GlobalVariable *Metadata = new GlobalVariable( 2058 M, Initializer->getType(), false, Linkage, Initializer, 2059 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2060 Metadata->setSection(getGlobalMetadataSection()); 2061 return Metadata; 2062 } 2063 2064 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2065 AsanDtorFunction = 2066 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 2067 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 2068 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2069 2070 return ReturnInst::Create(*C, AsanDtorBB); 2071 } 2072 2073 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2074 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2075 ArrayRef<Constant *> MetadataInitializers) { 2076 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2077 auto &DL = M.getDataLayout(); 2078 2079 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2080 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2081 Constant *Initializer = MetadataInitializers[i]; 2082 GlobalVariable *G = ExtendedGlobals[i]; 2083 GlobalVariable *Metadata = 2084 CreateMetadataGlobal(M, Initializer, G->getName()); 2085 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2086 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2087 MetadataGlobals[i] = Metadata; 2088 2089 // The MSVC linker always inserts padding when linking incrementally. We 2090 // cope with that by aligning each struct to its size, which must be a power 2091 // of two. 2092 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2093 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2094 "global metadata will not be padded appropriately"); 2095 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2096 2097 SetComdatForGlobalMetadata(G, Metadata, ""); 2098 } 2099 2100 // Update llvm.compiler.used, adding the new metadata globals. This is 2101 // needed so that during LTO these variables stay alive. 2102 if (!MetadataGlobals.empty()) 2103 appendToCompilerUsed(M, MetadataGlobals); 2104 } 2105 2106 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2107 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2108 ArrayRef<Constant *> MetadataInitializers, 2109 const std::string &UniqueModuleId) { 2110 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2111 2112 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2113 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2114 GlobalVariable *G = ExtendedGlobals[i]; 2115 GlobalVariable *Metadata = 2116 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2117 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2118 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2119 MetadataGlobals[i] = Metadata; 2120 2121 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2122 } 2123 2124 // Update llvm.compiler.used, adding the new metadata globals. This is 2125 // needed so that during LTO these variables stay alive. 2126 if (!MetadataGlobals.empty()) 2127 appendToCompilerUsed(M, MetadataGlobals); 2128 2129 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2130 // to look up the loaded image that contains it. Second, we can store in it 2131 // whether registration has already occurred, to prevent duplicate 2132 // registration. 2133 // 2134 // Common linkage ensures that there is only one global per shared library. 2135 GlobalVariable *RegisteredFlag = new GlobalVariable( 2136 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2137 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2138 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2139 2140 // Create start and stop symbols. 2141 GlobalVariable *StartELFMetadata = new GlobalVariable( 2142 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2143 "__start_" + getGlobalMetadataSection()); 2144 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2145 GlobalVariable *StopELFMetadata = new GlobalVariable( 2146 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2147 "__stop_" + getGlobalMetadataSection()); 2148 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2149 2150 // Create a call to register the globals with the runtime. 2151 IRB.CreateCall(AsanRegisterElfGlobals, 2152 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2153 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2154 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2155 2156 // We also need to unregister globals at the end, e.g., when a shared library 2157 // gets closed. 2158 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2159 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 2160 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2161 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2162 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2163 } 2164 2165 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2166 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2167 ArrayRef<Constant *> MetadataInitializers) { 2168 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2169 2170 // On recent Mach-O platforms, use a structure which binds the liveness of 2171 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2172 // created to be added to llvm.compiler.used 2173 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2174 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2175 2176 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2177 Constant *Initializer = MetadataInitializers[i]; 2178 GlobalVariable *G = ExtendedGlobals[i]; 2179 GlobalVariable *Metadata = 2180 CreateMetadataGlobal(M, Initializer, G->getName()); 2181 2182 // On recent Mach-O platforms, we emit the global metadata in a way that 2183 // allows the linker to properly strip dead globals. 2184 auto LivenessBinder = 2185 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2186 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2187 GlobalVariable *Liveness = new GlobalVariable( 2188 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2189 Twine("__asan_binder_") + G->getName()); 2190 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2191 LivenessGlobals[i] = Liveness; 2192 } 2193 2194 // Update llvm.compiler.used, adding the new liveness globals. This is 2195 // needed so that during LTO these variables stay alive. The alternative 2196 // would be to have the linker handling the LTO symbols, but libLTO 2197 // current API does not expose access to the section for each symbol. 2198 if (!LivenessGlobals.empty()) 2199 appendToCompilerUsed(M, LivenessGlobals); 2200 2201 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2202 // to look up the loaded image that contains it. Second, we can store in it 2203 // whether registration has already occurred, to prevent duplicate 2204 // registration. 2205 // 2206 // common linkage ensures that there is only one global per shared library. 2207 GlobalVariable *RegisteredFlag = new GlobalVariable( 2208 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2209 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2210 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2211 2212 IRB.CreateCall(AsanRegisterImageGlobals, 2213 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2214 2215 // We also need to unregister globals at the end, e.g., when a shared library 2216 // gets closed. 2217 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2218 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 2219 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2220 } 2221 2222 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2223 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2224 ArrayRef<Constant *> MetadataInitializers) { 2225 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2226 unsigned N = ExtendedGlobals.size(); 2227 assert(N > 0); 2228 2229 // On platforms that don't have a custom metadata section, we emit an array 2230 // of global metadata structures. 2231 ArrayType *ArrayOfGlobalStructTy = 2232 ArrayType::get(MetadataInitializers[0]->getType(), N); 2233 auto AllGlobals = new GlobalVariable( 2234 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2235 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2236 if (Mapping.Scale > 3) 2237 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2238 2239 IRB.CreateCall(AsanRegisterGlobals, 2240 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2241 ConstantInt::get(IntptrTy, N)}); 2242 2243 // We also need to unregister globals at the end, e.g., when a shared library 2244 // gets closed. 2245 IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); 2246 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 2247 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2248 ConstantInt::get(IntptrTy, N)}); 2249 } 2250 2251 // This function replaces all global variables with new variables that have 2252 // trailing redzones. It also creates a function that poisons 2253 // redzones and inserts this function into llvm.global_ctors. 2254 // Sets *CtorComdat to true if the global registration code emitted into the 2255 // asan constructor is comdat-compatible. 2256 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2257 bool *CtorComdat) { 2258 *CtorComdat = false; 2259 2260 // Build set of globals that are aliased by some GA, where 2261 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2262 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2263 if (CompileKernel) { 2264 for (auto &GA : M.aliases()) { 2265 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2266 AliasedGlobalExclusions.insert(GV); 2267 } 2268 } 2269 2270 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2271 for (auto &G : M.globals()) { 2272 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2273 GlobalsToChange.push_back(&G); 2274 } 2275 2276 size_t n = GlobalsToChange.size(); 2277 if (n == 0) { 2278 *CtorComdat = true; 2279 return false; 2280 } 2281 2282 auto &DL = M.getDataLayout(); 2283 2284 // A global is described by a structure 2285 // size_t beg; 2286 // size_t size; 2287 // size_t size_with_redzone; 2288 // const char *name; 2289 // const char *module_name; 2290 // size_t has_dynamic_init; 2291 // void *source_location; 2292 // size_t odr_indicator; 2293 // We initialize an array of such structures and pass it to a run-time call. 2294 StructType *GlobalStructTy = 2295 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2296 IntptrTy, IntptrTy, IntptrTy); 2297 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2298 SmallVector<Constant *, 16> Initializers(n); 2299 2300 bool HasDynamicallyInitializedGlobals = false; 2301 2302 // We shouldn't merge same module names, as this string serves as unique 2303 // module ID in runtime. 2304 GlobalVariable *ModuleName = createPrivateGlobalForString( 2305 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2306 2307 for (size_t i = 0; i < n; i++) { 2308 GlobalVariable *G = GlobalsToChange[i]; 2309 2310 // FIXME: Metadata should be attched directly to the global directly instead 2311 // of being added to llvm.asan.globals. 2312 auto MD = GlobalsMD.get(G); 2313 StringRef NameForGlobal = G->getName(); 2314 // Create string holding the global name (use global name from metadata 2315 // if it's available, otherwise just write the name of global variable). 2316 GlobalVariable *Name = createPrivateGlobalForString( 2317 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2318 /*AllowMerging*/ true, kAsanGenPrefix); 2319 2320 Type *Ty = G->getValueType(); 2321 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2322 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2323 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2324 2325 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2326 Constant *NewInitializer = ConstantStruct::get( 2327 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2328 2329 // Create a new global variable with enough space for a redzone. 2330 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2331 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2332 Linkage = GlobalValue::InternalLinkage; 2333 GlobalVariable *NewGlobal = 2334 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2335 "", G, G->getThreadLocalMode()); 2336 NewGlobal->copyAttributesFrom(G); 2337 NewGlobal->setComdat(G->getComdat()); 2338 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2339 // Don't fold globals with redzones. ODR violation detector and redzone 2340 // poisoning implicitly creates a dependence on the global's address, so it 2341 // is no longer valid for it to be marked unnamed_addr. 2342 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2343 2344 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2345 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2346 G->isConstant()) { 2347 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2348 if (Seq && Seq->isCString()) 2349 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2350 } 2351 2352 // Transfer the debug info and type metadata. The payload starts at offset 2353 // zero so we can copy the metadata over as is. 2354 NewGlobal->copyMetadata(G, 0); 2355 2356 Value *Indices2[2]; 2357 Indices2[0] = IRB.getInt32(0); 2358 Indices2[1] = IRB.getInt32(0); 2359 2360 G->replaceAllUsesWith( 2361 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2362 NewGlobal->takeName(G); 2363 G->eraseFromParent(); 2364 NewGlobals[i] = NewGlobal; 2365 2366 Constant *SourceLoc; 2367 if (!MD.SourceLoc.empty()) { 2368 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2369 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2370 } else { 2371 SourceLoc = ConstantInt::get(IntptrTy, 0); 2372 } 2373 2374 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2375 GlobalValue *InstrumentedGlobal = NewGlobal; 2376 2377 bool CanUsePrivateAliases = 2378 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2379 TargetTriple.isOSBinFormatWasm(); 2380 if (CanUsePrivateAliases && UsePrivateAlias) { 2381 // Create local alias for NewGlobal to avoid crash on ODR between 2382 // instrumented and non-instrumented libraries. 2383 InstrumentedGlobal = 2384 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2385 } 2386 2387 // ODR should not happen for local linkage. 2388 if (NewGlobal->hasLocalLinkage()) { 2389 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2390 IRB.getInt8PtrTy()); 2391 } else if (UseOdrIndicator) { 2392 // With local aliases, we need to provide another externally visible 2393 // symbol __odr_asan_XXX to detect ODR violation. 2394 auto *ODRIndicatorSym = 2395 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2396 Constant::getNullValue(IRB.getInt8Ty()), 2397 kODRGenPrefix + NameForGlobal, nullptr, 2398 NewGlobal->getThreadLocalMode()); 2399 2400 // Set meaningful attributes for indicator symbol. 2401 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2402 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2403 ODRIndicatorSym->setAlignment(Align(1)); 2404 ODRIndicator = ODRIndicatorSym; 2405 } 2406 2407 Constant *Initializer = ConstantStruct::get( 2408 GlobalStructTy, 2409 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2410 ConstantInt::get(IntptrTy, SizeInBytes), 2411 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2412 ConstantExpr::getPointerCast(Name, IntptrTy), 2413 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2414 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2415 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2416 2417 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2418 2419 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2420 2421 Initializers[i] = Initializer; 2422 } 2423 2424 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2425 // ConstantMerge'ing them. 2426 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2427 for (size_t i = 0; i < n; i++) { 2428 GlobalVariable *G = NewGlobals[i]; 2429 if (G->getName().empty()) continue; 2430 GlobalsToAddToUsedList.push_back(G); 2431 } 2432 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2433 2434 std::string ELFUniqueModuleId = 2435 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2436 : ""; 2437 2438 if (!ELFUniqueModuleId.empty()) { 2439 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2440 *CtorComdat = true; 2441 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2442 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2443 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2444 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2445 } else { 2446 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2447 } 2448 2449 // Create calls for poisoning before initializers run and unpoisoning after. 2450 if (HasDynamicallyInitializedGlobals) 2451 createInitializerPoisonCalls(M, ModuleName); 2452 2453 LLVM_DEBUG(dbgs() << M); 2454 return true; 2455 } 2456 2457 uint64_t 2458 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2459 constexpr uint64_t kMaxRZ = 1 << 18; 2460 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2461 2462 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2463 uint64_t RZ = 2464 std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2465 2466 // Round up to multiple of MinRZ. 2467 if (SizeInBytes % MinRZ) 2468 RZ += MinRZ - (SizeInBytes % MinRZ); 2469 assert((RZ + SizeInBytes) % MinRZ == 0); 2470 2471 return RZ; 2472 } 2473 2474 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2475 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2476 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2477 int Version = 8; 2478 // 32-bit Android is one version ahead because of the switch to dynamic 2479 // shadow. 2480 Version += (LongSize == 32 && isAndroid); 2481 return Version; 2482 } 2483 2484 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2485 initializeCallbacks(M); 2486 2487 // Create a module constructor. A destructor is created lazily because not all 2488 // platforms, and not all modules need it. 2489 if (CompileKernel) { 2490 // The kernel always builds with its own runtime, and therefore does not 2491 // need the init and version check calls. 2492 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2493 } else { 2494 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2495 std::string VersionCheckName = 2496 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2497 std::tie(AsanCtorFunction, std::ignore) = 2498 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2499 kAsanInitName, /*InitArgTypes=*/{}, 2500 /*InitArgs=*/{}, VersionCheckName); 2501 } 2502 2503 bool CtorComdat = true; 2504 if (ClGlobals) { 2505 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2506 InstrumentGlobals(IRB, M, &CtorComdat); 2507 } 2508 2509 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2510 2511 // Put the constructor and destructor in comdat if both 2512 // (1) global instrumentation is not TU-specific 2513 // (2) target is ELF. 2514 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2515 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2516 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2517 if (AsanDtorFunction) { 2518 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2519 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2520 } 2521 } else { 2522 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2523 if (AsanDtorFunction) 2524 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2525 } 2526 2527 return true; 2528 } 2529 2530 void AddressSanitizer::initializeCallbacks(Module &M) { 2531 IRBuilder<> IRB(*C); 2532 // Create __asan_report* callbacks. 2533 // IsWrite, TypeSize and Exp are encoded in the function name. 2534 for (int Exp = 0; Exp < 2; Exp++) { 2535 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2536 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2537 const std::string ExpStr = Exp ? "exp_" : ""; 2538 const std::string EndingStr = Recover ? "_noabort" : ""; 2539 2540 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2541 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2542 if (Exp) { 2543 Type *ExpType = Type::getInt32Ty(*C); 2544 Args2.push_back(ExpType); 2545 Args1.push_back(ExpType); 2546 } 2547 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2548 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2549 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2550 2551 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2552 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2553 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2554 2555 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2556 AccessSizeIndex++) { 2557 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2558 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2559 M.getOrInsertFunction( 2560 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2561 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2562 2563 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2564 M.getOrInsertFunction( 2565 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2566 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2567 } 2568 } 2569 } 2570 2571 const std::string MemIntrinCallbackPrefix = 2572 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2573 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2574 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2575 IRB.getInt8PtrTy(), IntptrTy); 2576 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2577 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2578 IRB.getInt8PtrTy(), IntptrTy); 2579 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2580 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2581 IRB.getInt32Ty(), IntptrTy); 2582 2583 AsanHandleNoReturnFunc = 2584 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2585 2586 AsanPtrCmpFunction = 2587 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2588 AsanPtrSubFunction = 2589 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2590 if (Mapping.InGlobal) 2591 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2592 ArrayType::get(IRB.getInt8Ty(), 0)); 2593 } 2594 2595 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2596 // For each NSObject descendant having a +load method, this method is invoked 2597 // by the ObjC runtime before any of the static constructors is called. 2598 // Therefore we need to instrument such methods with a call to __asan_init 2599 // at the beginning in order to initialize our runtime before any access to 2600 // the shadow memory. 2601 // We cannot just ignore these methods, because they may call other 2602 // instrumented functions. 2603 if (F.getName().find(" load]") != std::string::npos) { 2604 FunctionCallee AsanInitFunction = 2605 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2606 IRBuilder<> IRB(&F.front(), F.front().begin()); 2607 IRB.CreateCall(AsanInitFunction, {}); 2608 return true; 2609 } 2610 return false; 2611 } 2612 2613 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2614 // Generate code only when dynamic addressing is needed. 2615 if (Mapping.Offset != kDynamicShadowSentinel) 2616 return false; 2617 2618 IRBuilder<> IRB(&F.front().front()); 2619 if (Mapping.InGlobal) { 2620 if (ClWithIfuncSuppressRemat) { 2621 // An empty inline asm with input reg == output reg. 2622 // An opaque pointer-to-int cast, basically. 2623 InlineAsm *Asm = InlineAsm::get( 2624 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2625 StringRef(""), StringRef("=r,0"), 2626 /*hasSideEffects=*/false); 2627 LocalDynamicShadow = 2628 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2629 } else { 2630 LocalDynamicShadow = 2631 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2632 } 2633 } else { 2634 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2635 kAsanShadowMemoryDynamicAddress, IntptrTy); 2636 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2637 } 2638 return true; 2639 } 2640 2641 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2642 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2643 // to it as uninteresting. This assumes we haven't started processing allocas 2644 // yet. This check is done up front because iterating the use list in 2645 // isInterestingAlloca would be algorithmically slower. 2646 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2647 2648 // Try to get the declaration of llvm.localescape. If it's not in the module, 2649 // we can exit early. 2650 if (!F.getParent()->getFunction("llvm.localescape")) return; 2651 2652 // Look for a call to llvm.localescape call in the entry block. It can't be in 2653 // any other block. 2654 for (Instruction &I : F.getEntryBlock()) { 2655 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2656 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2657 // We found a call. Mark all the allocas passed in as uninteresting. 2658 for (Value *Arg : II->arg_operands()) { 2659 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2660 assert(AI && AI->isStaticAlloca() && 2661 "non-static alloca arg to localescape"); 2662 ProcessedAllocas[AI] = false; 2663 } 2664 break; 2665 } 2666 } 2667 } 2668 2669 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2670 bool ShouldInstrument = 2671 ClDebugMin < 0 || ClDebugMax < 0 || 2672 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2673 Instrumented++; 2674 return !ShouldInstrument; 2675 } 2676 2677 bool AddressSanitizer::instrumentFunction(Function &F, 2678 const TargetLibraryInfo *TLI) { 2679 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2680 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2681 if (F.getName().startswith("__asan_")) return false; 2682 2683 bool FunctionModified = false; 2684 2685 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2686 // This function needs to be called even if the function body is not 2687 // instrumented. 2688 if (maybeInsertAsanInitAtFunctionEntry(F)) 2689 FunctionModified = true; 2690 2691 // Leave if the function doesn't need instrumentation. 2692 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2693 2694 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2695 2696 initializeCallbacks(*F.getParent()); 2697 2698 FunctionStateRAII CleanupObj(this); 2699 2700 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2701 2702 // We can't instrument allocas used with llvm.localescape. Only static allocas 2703 // can be passed to that intrinsic. 2704 markEscapedLocalAllocas(F); 2705 2706 // We want to instrument every address only once per basic block (unless there 2707 // are calls between uses). 2708 SmallPtrSet<Value *, 16> TempsToInstrument; 2709 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2710 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2711 SmallVector<Instruction *, 8> NoReturnCalls; 2712 SmallVector<BasicBlock *, 16> AllBlocks; 2713 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2714 int NumAllocas = 0; 2715 2716 // Fill the set of memory operations to instrument. 2717 for (auto &BB : F) { 2718 AllBlocks.push_back(&BB); 2719 TempsToInstrument.clear(); 2720 int NumInsnsPerBB = 0; 2721 for (auto &Inst : BB) { 2722 if (LooksLikeCodeInBug11395(&Inst)) return false; 2723 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2724 getInterestingMemoryOperands(&Inst, InterestingOperands); 2725 2726 if (!InterestingOperands.empty()) { 2727 for (auto &Operand : InterestingOperands) { 2728 if (ClOpt && ClOptSameTemp) { 2729 Value *Ptr = Operand.getPtr(); 2730 // If we have a mask, skip instrumentation if we've already 2731 // instrumented the full object. But don't add to TempsToInstrument 2732 // because we might get another load/store with a different mask. 2733 if (Operand.MaybeMask) { 2734 if (TempsToInstrument.count(Ptr)) 2735 continue; // We've seen this (whole) temp in the current BB. 2736 } else { 2737 if (!TempsToInstrument.insert(Ptr).second) 2738 continue; // We've seen this temp in the current BB. 2739 } 2740 } 2741 OperandsToInstrument.push_back(Operand); 2742 NumInsnsPerBB++; 2743 } 2744 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2745 isInterestingPointerComparison(&Inst)) || 2746 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2747 isInterestingPointerSubtraction(&Inst))) { 2748 PointerComparisonsOrSubtracts.push_back(&Inst); 2749 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2750 // ok, take it. 2751 IntrinToInstrument.push_back(MI); 2752 NumInsnsPerBB++; 2753 } else { 2754 if (isa<AllocaInst>(Inst)) NumAllocas++; 2755 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2756 // A call inside BB. 2757 TempsToInstrument.clear(); 2758 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2759 NoReturnCalls.push_back(CB); 2760 } 2761 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2762 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2763 } 2764 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2765 } 2766 } 2767 2768 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2769 OperandsToInstrument.size() + IntrinToInstrument.size() > 2770 (unsigned)ClInstrumentationWithCallsThreshold); 2771 const DataLayout &DL = F.getParent()->getDataLayout(); 2772 ObjectSizeOpts ObjSizeOpts; 2773 ObjSizeOpts.RoundToAlign = true; 2774 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2775 2776 // Instrument. 2777 int NumInstrumented = 0; 2778 for (auto &Operand : OperandsToInstrument) { 2779 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2780 instrumentMop(ObjSizeVis, Operand, UseCalls, 2781 F.getParent()->getDataLayout()); 2782 FunctionModified = true; 2783 } 2784 for (auto Inst : IntrinToInstrument) { 2785 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2786 instrumentMemIntrinsic(Inst); 2787 FunctionModified = true; 2788 } 2789 2790 FunctionStackPoisoner FSP(F, *this); 2791 bool ChangedStack = FSP.runOnFunction(); 2792 2793 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2794 // See e.g. https://github.com/google/sanitizers/issues/37 2795 for (auto CI : NoReturnCalls) { 2796 IRBuilder<> IRB(CI); 2797 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2798 } 2799 2800 for (auto Inst : PointerComparisonsOrSubtracts) { 2801 instrumentPointerComparisonOrSubtraction(Inst); 2802 FunctionModified = true; 2803 } 2804 2805 if (ChangedStack || !NoReturnCalls.empty()) 2806 FunctionModified = true; 2807 2808 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2809 << F << "\n"); 2810 2811 return FunctionModified; 2812 } 2813 2814 // Workaround for bug 11395: we don't want to instrument stack in functions 2815 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2816 // FIXME: remove once the bug 11395 is fixed. 2817 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2818 if (LongSize != 32) return false; 2819 CallInst *CI = dyn_cast<CallInst>(I); 2820 if (!CI || !CI->isInlineAsm()) return false; 2821 if (CI->getNumArgOperands() <= 5) return false; 2822 // We have inline assembly with quite a few arguments. 2823 return true; 2824 } 2825 2826 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2827 IRBuilder<> IRB(*C); 2828 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2829 std::string Suffix = itostr(i); 2830 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2831 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2832 AsanStackFreeFunc[i] = 2833 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2834 IRB.getVoidTy(), IntptrTy, IntptrTy); 2835 } 2836 if (ASan.UseAfterScope) { 2837 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2838 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2839 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2840 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2841 } 2842 2843 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2844 std::ostringstream Name; 2845 Name << kAsanSetShadowPrefix; 2846 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2847 AsanSetShadowFunc[Val] = 2848 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2849 } 2850 2851 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2852 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2853 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2854 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2855 } 2856 2857 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2858 ArrayRef<uint8_t> ShadowBytes, 2859 size_t Begin, size_t End, 2860 IRBuilder<> &IRB, 2861 Value *ShadowBase) { 2862 if (Begin >= End) 2863 return; 2864 2865 const size_t LargestStoreSizeInBytes = 2866 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2867 2868 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2869 2870 // Poison given range in shadow using larges store size with out leading and 2871 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2872 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2873 // middle of a store. 2874 for (size_t i = Begin; i < End;) { 2875 if (!ShadowMask[i]) { 2876 assert(!ShadowBytes[i]); 2877 ++i; 2878 continue; 2879 } 2880 2881 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2882 // Fit store size into the range. 2883 while (StoreSizeInBytes > End - i) 2884 StoreSizeInBytes /= 2; 2885 2886 // Minimize store size by trimming trailing zeros. 2887 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2888 while (j <= StoreSizeInBytes / 2) 2889 StoreSizeInBytes /= 2; 2890 } 2891 2892 uint64_t Val = 0; 2893 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2894 if (IsLittleEndian) 2895 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2896 else 2897 Val = (Val << 8) | ShadowBytes[i + j]; 2898 } 2899 2900 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2901 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2902 IRB.CreateAlignedStore( 2903 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 2904 Align(1)); 2905 2906 i += StoreSizeInBytes; 2907 } 2908 } 2909 2910 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2911 ArrayRef<uint8_t> ShadowBytes, 2912 IRBuilder<> &IRB, Value *ShadowBase) { 2913 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2914 } 2915 2916 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2917 ArrayRef<uint8_t> ShadowBytes, 2918 size_t Begin, size_t End, 2919 IRBuilder<> &IRB, Value *ShadowBase) { 2920 assert(ShadowMask.size() == ShadowBytes.size()); 2921 size_t Done = Begin; 2922 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2923 if (!ShadowMask[i]) { 2924 assert(!ShadowBytes[i]); 2925 continue; 2926 } 2927 uint8_t Val = ShadowBytes[i]; 2928 if (!AsanSetShadowFunc[Val]) 2929 continue; 2930 2931 // Skip same values. 2932 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2933 } 2934 2935 if (j - i >= ClMaxInlinePoisoningSize) { 2936 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2937 IRB.CreateCall(AsanSetShadowFunc[Val], 2938 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2939 ConstantInt::get(IntptrTy, j - i)}); 2940 Done = j; 2941 } 2942 } 2943 2944 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2945 } 2946 2947 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2948 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2949 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2950 assert(LocalStackSize <= kMaxStackMallocSize); 2951 uint64_t MaxSize = kMinStackMallocSize; 2952 for (int i = 0;; i++, MaxSize *= 2) 2953 if (LocalStackSize <= MaxSize) return i; 2954 llvm_unreachable("impossible LocalStackSize"); 2955 } 2956 2957 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2958 Instruction *CopyInsertPoint = &F.front().front(); 2959 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2960 // Insert after the dynamic shadow location is determined 2961 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2962 assert(CopyInsertPoint); 2963 } 2964 IRBuilder<> IRB(CopyInsertPoint); 2965 const DataLayout &DL = F.getParent()->getDataLayout(); 2966 for (Argument &Arg : F.args()) { 2967 if (Arg.hasByValAttr()) { 2968 Type *Ty = Arg.getParamByValType(); 2969 const Align Alignment = 2970 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 2971 2972 AllocaInst *AI = IRB.CreateAlloca( 2973 Ty, nullptr, 2974 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2975 ".byval"); 2976 AI->setAlignment(Alignment); 2977 Arg.replaceAllUsesWith(AI); 2978 2979 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2980 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 2981 } 2982 } 2983 } 2984 2985 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2986 Value *ValueIfTrue, 2987 Instruction *ThenTerm, 2988 Value *ValueIfFalse) { 2989 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2990 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2991 PHI->addIncoming(ValueIfFalse, CondBlock); 2992 BasicBlock *ThenBlock = ThenTerm->getParent(); 2993 PHI->addIncoming(ValueIfTrue, ThenBlock); 2994 return PHI; 2995 } 2996 2997 Value *FunctionStackPoisoner::createAllocaForLayout( 2998 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2999 AllocaInst *Alloca; 3000 if (Dynamic) { 3001 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3002 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3003 "MyAlloca"); 3004 } else { 3005 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3006 nullptr, "MyAlloca"); 3007 assert(Alloca->isStaticAlloca()); 3008 } 3009 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3010 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 3011 Alloca->setAlignment(Align(FrameAlignment)); 3012 return IRB.CreatePointerCast(Alloca, IntptrTy); 3013 } 3014 3015 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3016 BasicBlock &FirstBB = *F.begin(); 3017 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3018 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3019 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3020 DynamicAllocaLayout->setAlignment(Align(32)); 3021 } 3022 3023 void FunctionStackPoisoner::processDynamicAllocas() { 3024 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3025 assert(DynamicAllocaPoisonCallVec.empty()); 3026 return; 3027 } 3028 3029 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3030 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3031 assert(APC.InsBefore); 3032 assert(APC.AI); 3033 assert(ASan.isInterestingAlloca(*APC.AI)); 3034 assert(!APC.AI->isStaticAlloca()); 3035 3036 IRBuilder<> IRB(APC.InsBefore); 3037 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3038 // Dynamic allocas will be unpoisoned unconditionally below in 3039 // unpoisonDynamicAllocas. 3040 // Flag that we need unpoison static allocas. 3041 } 3042 3043 // Handle dynamic allocas. 3044 createDynamicAllocasInitStorage(); 3045 for (auto &AI : DynamicAllocaVec) 3046 handleDynamicAllocaCall(AI); 3047 unpoisonDynamicAllocas(); 3048 } 3049 3050 /// Collect instructions in the entry block after \p InsBefore which initialize 3051 /// permanent storage for a function argument. These instructions must remain in 3052 /// the entry block so that uninitialized values do not appear in backtraces. An 3053 /// added benefit is that this conserves spill slots. This does not move stores 3054 /// before instrumented / "interesting" allocas. 3055 static void findStoresToUninstrumentedArgAllocas( 3056 AddressSanitizer &ASan, Instruction &InsBefore, 3057 SmallVectorImpl<Instruction *> &InitInsts) { 3058 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3059 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3060 // Argument initialization looks like: 3061 // 1) store <Argument>, <Alloca> OR 3062 // 2) <CastArgument> = cast <Argument> to ... 3063 // store <CastArgument> to <Alloca> 3064 // Do not consider any other kind of instruction. 3065 // 3066 // Note: This covers all known cases, but may not be exhaustive. An 3067 // alternative to pattern-matching stores is to DFS over all Argument uses: 3068 // this might be more general, but is probably much more complicated. 3069 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3070 continue; 3071 if (auto *Store = dyn_cast<StoreInst>(It)) { 3072 // The store destination must be an alloca that isn't interesting for 3073 // ASan to instrument. These are moved up before InsBefore, and they're 3074 // not interesting because allocas for arguments can be mem2reg'd. 3075 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3076 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3077 continue; 3078 3079 Value *Val = Store->getValueOperand(); 3080 bool IsDirectArgInit = isa<Argument>(Val); 3081 bool IsArgInitViaCast = 3082 isa<CastInst>(Val) && 3083 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3084 // Check that the cast appears directly before the store. Otherwise 3085 // moving the cast before InsBefore may break the IR. 3086 Val == It->getPrevNonDebugInstruction(); 3087 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3088 if (!IsArgInit) 3089 continue; 3090 3091 if (IsArgInitViaCast) 3092 InitInsts.push_back(cast<Instruction>(Val)); 3093 InitInsts.push_back(Store); 3094 continue; 3095 } 3096 3097 // Do not reorder past unknown instructions: argument initialization should 3098 // only involve casts and stores. 3099 return; 3100 } 3101 } 3102 3103 void FunctionStackPoisoner::processStaticAllocas() { 3104 if (AllocaVec.empty()) { 3105 assert(StaticAllocaPoisonCallVec.empty()); 3106 return; 3107 } 3108 3109 int StackMallocIdx = -1; 3110 DebugLoc EntryDebugLocation; 3111 if (auto SP = F.getSubprogram()) 3112 EntryDebugLocation = 3113 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3114 3115 Instruction *InsBefore = AllocaVec[0]; 3116 IRBuilder<> IRB(InsBefore); 3117 3118 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3119 // debug info is broken, because only entry-block allocas are treated as 3120 // regular stack slots. 3121 auto InsBeforeB = InsBefore->getParent(); 3122 assert(InsBeforeB == &F.getEntryBlock()); 3123 for (auto *AI : StaticAllocasToMoveUp) 3124 if (AI->getParent() == InsBeforeB) 3125 AI->moveBefore(InsBefore); 3126 3127 // Move stores of arguments into entry-block allocas as well. This prevents 3128 // extra stack slots from being generated (to house the argument values until 3129 // they can be stored into the allocas). This also prevents uninitialized 3130 // values from being shown in backtraces. 3131 SmallVector<Instruction *, 8> ArgInitInsts; 3132 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3133 for (Instruction *ArgInitInst : ArgInitInsts) 3134 ArgInitInst->moveBefore(InsBefore); 3135 3136 // If we have a call to llvm.localescape, keep it in the entry block. 3137 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3138 3139 SmallVector<ASanStackVariableDescription, 16> SVD; 3140 SVD.reserve(AllocaVec.size()); 3141 for (AllocaInst *AI : AllocaVec) { 3142 ASanStackVariableDescription D = {AI->getName().data(), 3143 ASan.getAllocaSizeInBytes(*AI), 3144 0, 3145 AI->getAlignment(), 3146 AI, 3147 0, 3148 0}; 3149 SVD.push_back(D); 3150 } 3151 3152 // Minimal header size (left redzone) is 4 pointers, 3153 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3154 size_t Granularity = 1ULL << Mapping.Scale; 3155 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3156 const ASanStackFrameLayout &L = 3157 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3158 3159 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3160 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3161 for (auto &Desc : SVD) 3162 AllocaToSVDMap[Desc.AI] = &Desc; 3163 3164 // Update SVD with information from lifetime intrinsics. 3165 for (const auto &APC : StaticAllocaPoisonCallVec) { 3166 assert(APC.InsBefore); 3167 assert(APC.AI); 3168 assert(ASan.isInterestingAlloca(*APC.AI)); 3169 assert(APC.AI->isStaticAlloca()); 3170 3171 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3172 Desc.LifetimeSize = Desc.Size; 3173 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3174 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3175 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3176 if (unsigned Line = LifetimeLoc->getLine()) 3177 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3178 } 3179 } 3180 } 3181 3182 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3183 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3184 uint64_t LocalStackSize = L.FrameSize; 3185 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3186 LocalStackSize <= kMaxStackMallocSize; 3187 bool DoDynamicAlloca = ClDynamicAllocaStack; 3188 // Don't do dynamic alloca or stack malloc if: 3189 // 1) There is inline asm: too often it makes assumptions on which registers 3190 // are available. 3191 // 2) There is a returns_twice call (typically setjmp), which is 3192 // optimization-hostile, and doesn't play well with introduced indirect 3193 // register-relative calculation of local variable addresses. 3194 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3195 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3196 3197 Value *StaticAlloca = 3198 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3199 3200 Value *FakeStack; 3201 Value *LocalStackBase; 3202 Value *LocalStackBaseAlloca; 3203 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3204 3205 if (DoStackMalloc) { 3206 LocalStackBaseAlloca = 3207 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3208 // void *FakeStack = __asan_option_detect_stack_use_after_return 3209 // ? __asan_stack_malloc_N(LocalStackSize) 3210 // : nullptr; 3211 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3212 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3213 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3214 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3215 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3216 Constant::getNullValue(IRB.getInt32Ty())); 3217 Instruction *Term = 3218 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3219 IRBuilder<> IRBIf(Term); 3220 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3221 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3222 Value *FakeStackValue = 3223 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3224 ConstantInt::get(IntptrTy, LocalStackSize)); 3225 IRB.SetInsertPoint(InsBefore); 3226 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3227 ConstantInt::get(IntptrTy, 0)); 3228 3229 Value *NoFakeStack = 3230 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3231 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3232 IRBIf.SetInsertPoint(Term); 3233 Value *AllocaValue = 3234 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3235 3236 IRB.SetInsertPoint(InsBefore); 3237 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3238 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3239 DIExprFlags |= DIExpression::DerefBefore; 3240 } else { 3241 // void *FakeStack = nullptr; 3242 // void *LocalStackBase = alloca(LocalStackSize); 3243 FakeStack = ConstantInt::get(IntptrTy, 0); 3244 LocalStackBase = 3245 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3246 LocalStackBaseAlloca = LocalStackBase; 3247 } 3248 3249 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3250 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3251 // later passes and can result in dropped variable coverage in debug info. 3252 Value *LocalStackBaseAllocaPtr = 3253 isa<PtrToIntInst>(LocalStackBaseAlloca) 3254 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3255 : LocalStackBaseAlloca; 3256 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3257 "Variable descriptions relative to ASan stack base will be dropped"); 3258 3259 // Replace Alloca instructions with base+offset. 3260 for (const auto &Desc : SVD) { 3261 AllocaInst *AI = Desc.AI; 3262 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3263 Desc.Offset); 3264 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3265 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3266 AI->getType()); 3267 AI->replaceAllUsesWith(NewAllocaPtr); 3268 } 3269 3270 // The left-most redzone has enough space for at least 4 pointers. 3271 // Write the Magic value to redzone[0]. 3272 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3273 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3274 BasePlus0); 3275 // Write the frame description constant to redzone[1]. 3276 Value *BasePlus1 = IRB.CreateIntToPtr( 3277 IRB.CreateAdd(LocalStackBase, 3278 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3279 IntptrPtrTy); 3280 GlobalVariable *StackDescriptionGlobal = 3281 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3282 /*AllowMerging*/ true, kAsanGenPrefix); 3283 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3284 IRB.CreateStore(Description, BasePlus1); 3285 // Write the PC to redzone[2]. 3286 Value *BasePlus2 = IRB.CreateIntToPtr( 3287 IRB.CreateAdd(LocalStackBase, 3288 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3289 IntptrPtrTy); 3290 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3291 3292 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3293 3294 // Poison the stack red zones at the entry. 3295 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3296 // As mask we must use most poisoned case: red zones and after scope. 3297 // As bytes we can use either the same or just red zones only. 3298 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3299 3300 if (!StaticAllocaPoisonCallVec.empty()) { 3301 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3302 3303 // Poison static allocas near lifetime intrinsics. 3304 for (const auto &APC : StaticAllocaPoisonCallVec) { 3305 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3306 assert(Desc.Offset % L.Granularity == 0); 3307 size_t Begin = Desc.Offset / L.Granularity; 3308 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3309 3310 IRBuilder<> IRB(APC.InsBefore); 3311 copyToShadow(ShadowAfterScope, 3312 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3313 IRB, ShadowBase); 3314 } 3315 } 3316 3317 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3318 SmallVector<uint8_t, 64> ShadowAfterReturn; 3319 3320 // (Un)poison the stack before all ret instructions. 3321 for (Instruction *Ret : RetVec) { 3322 IRBuilder<> IRBRet(Ret); 3323 // Mark the current frame as retired. 3324 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3325 BasePlus0); 3326 if (DoStackMalloc) { 3327 assert(StackMallocIdx >= 0); 3328 // if FakeStack != 0 // LocalStackBase == FakeStack 3329 // // In use-after-return mode, poison the whole stack frame. 3330 // if StackMallocIdx <= 4 3331 // // For small sizes inline the whole thing: 3332 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3333 // **SavedFlagPtr(FakeStack) = 0 3334 // else 3335 // __asan_stack_free_N(FakeStack, LocalStackSize) 3336 // else 3337 // <This is not a fake stack; unpoison the redzones> 3338 Value *Cmp = 3339 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3340 Instruction *ThenTerm, *ElseTerm; 3341 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3342 3343 IRBuilder<> IRBPoison(ThenTerm); 3344 if (StackMallocIdx <= 4) { 3345 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3346 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3347 kAsanStackUseAfterReturnMagic); 3348 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3349 ShadowBase); 3350 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3351 FakeStack, 3352 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3353 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3354 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3355 IRBPoison.CreateStore( 3356 Constant::getNullValue(IRBPoison.getInt8Ty()), 3357 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3358 } else { 3359 // For larger frames call __asan_stack_free_*. 3360 IRBPoison.CreateCall( 3361 AsanStackFreeFunc[StackMallocIdx], 3362 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3363 } 3364 3365 IRBuilder<> IRBElse(ElseTerm); 3366 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3367 } else { 3368 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3369 } 3370 } 3371 3372 // We are done. Remove the old unused alloca instructions. 3373 for (auto AI : AllocaVec) AI->eraseFromParent(); 3374 } 3375 3376 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3377 IRBuilder<> &IRB, bool DoPoison) { 3378 // For now just insert the call to ASan runtime. 3379 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3380 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3381 IRB.CreateCall( 3382 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3383 {AddrArg, SizeArg}); 3384 } 3385 3386 // Handling llvm.lifetime intrinsics for a given %alloca: 3387 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3388 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3389 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3390 // could be poisoned by previous llvm.lifetime.end instruction, as the 3391 // variable may go in and out of scope several times, e.g. in loops). 3392 // (3) if we poisoned at least one %alloca in a function, 3393 // unpoison the whole stack frame at function exit. 3394 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3395 IRBuilder<> IRB(AI); 3396 3397 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3398 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3399 3400 Value *Zero = Constant::getNullValue(IntptrTy); 3401 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3402 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3403 3404 // Since we need to extend alloca with additional memory to locate 3405 // redzones, and OldSize is number of allocated blocks with 3406 // ElementSize size, get allocated memory size in bytes by 3407 // OldSize * ElementSize. 3408 const unsigned ElementSize = 3409 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3410 Value *OldSize = 3411 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3412 ConstantInt::get(IntptrTy, ElementSize)); 3413 3414 // PartialSize = OldSize % 32 3415 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3416 3417 // Misalign = kAllocaRzSize - PartialSize; 3418 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3419 3420 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3421 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3422 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3423 3424 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3425 // Alignment is added to locate left redzone, PartialPadding for possible 3426 // partial redzone and kAllocaRzSize for right redzone respectively. 3427 Value *AdditionalChunkSize = IRB.CreateAdd( 3428 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3429 3430 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3431 3432 // Insert new alloca with new NewSize and Alignment params. 3433 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3434 NewAlloca->setAlignment(Align(Alignment)); 3435 3436 // NewAddress = Address + Alignment 3437 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3438 ConstantInt::get(IntptrTy, Alignment)); 3439 3440 // Insert __asan_alloca_poison call for new created alloca. 3441 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3442 3443 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3444 // for unpoisoning stuff. 3445 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3446 3447 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3448 3449 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3450 AI->replaceAllUsesWith(NewAddressPtr); 3451 3452 // We are done. Erase old alloca from parent. 3453 AI->eraseFromParent(); 3454 } 3455 3456 // isSafeAccess returns true if Addr is always inbounds with respect to its 3457 // base object. For example, it is a field access or an array access with 3458 // constant inbounds index. 3459 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3460 Value *Addr, uint64_t TypeSize) const { 3461 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3462 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3463 uint64_t Size = SizeOffset.first.getZExtValue(); 3464 int64_t Offset = SizeOffset.second.getSExtValue(); 3465 // Three checks are required to ensure safety: 3466 // . Offset >= 0 (since the offset is given from the base ptr) 3467 // . Size >= Offset (unsigned) 3468 // . Size - Offset >= NeededSize (unsigned) 3469 return Offset >= 0 && Size >= uint64_t(Offset) && 3470 Size - uint64_t(Offset) >= TypeSize / 8; 3471 } 3472