xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address basic correctness
10 // checker.
11 // Details of the algorithm:
12 //  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 //
14 // FIXME: This sanitizer does not yet handle scalable vectors
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/StackSafetyAnalysis.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/BinaryFormat/MachO.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Comdat.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DIBuilder.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/EHPersonalities.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GlobalAlias.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRBuilder.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstVisitor.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/MDBuilder.h"
61 #include "llvm/IR/Metadata.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/MC/MCSectionMachO.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/TargetParser/Triple.h"
74 #include "llvm/Transforms/Instrumentation.h"
75 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
76 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
77 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/Local.h"
80 #include "llvm/Transforms/Utils/ModuleUtils.h"
81 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
82 #include <algorithm>
83 #include <cassert>
84 #include <cstddef>
85 #include <cstdint>
86 #include <iomanip>
87 #include <limits>
88 #include <sstream>
89 #include <string>
90 #include <tuple>
91 
92 using namespace llvm;
93 
94 #define DEBUG_TYPE "asan"
95 
96 static const uint64_t kDefaultShadowScale = 3;
97 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
98 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
99 static const uint64_t kDynamicShadowSentinel =
100     std::numeric_limits<uint64_t>::max();
101 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
102 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
103 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
104 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
105 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
106 static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29;
107 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
108 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
109 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
110 static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46;
111 static const uint64_t kRISCV64_ShadowOffset64 = kDynamicShadowSentinel;
112 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
113 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
114 static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47;
115 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
116 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
117 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
118 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
119 static const uint64_t kPS_ShadowOffset64 = 1ULL << 40;
120 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
121 static const uint64_t kEmscriptenShadowOffset = 0;
122 
123 // The shadow memory space is dynamically allocated.
124 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
125 
126 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
127 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
128 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
129 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
130 
131 const char kAsanModuleCtorName[] = "asan.module_ctor";
132 const char kAsanModuleDtorName[] = "asan.module_dtor";
133 static const uint64_t kAsanCtorAndDtorPriority = 1;
134 // On Emscripten, the system needs more than one priorities for constructors.
135 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
136 const char kAsanReportErrorTemplate[] = "__asan_report_";
137 const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
138 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
139 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
140 const char kAsanUnregisterImageGlobalsName[] =
141     "__asan_unregister_image_globals";
142 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
143 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
144 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
145 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
146 const char kAsanInitName[] = "__asan_init";
147 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
148 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
149 const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
150 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
151 static const int kMaxAsanStackMallocSizeClass = 10;
152 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
153 const char kAsanStackMallocAlwaysNameTemplate[] =
154     "__asan_stack_malloc_always_";
155 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
156 const char kAsanGenPrefix[] = "___asan_gen_";
157 const char kODRGenPrefix[] = "__odr_asan_gen_";
158 const char kSanCovGenPrefix[] = "__sancov_gen_";
159 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
160 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
161 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
162 
163 // ASan version script has __asan_* wildcard. Triple underscore prevents a
164 // linker (gold) warning about attempting to export a local symbol.
165 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
166 
167 const char kAsanOptionDetectUseAfterReturn[] =
168     "__asan_option_detect_stack_use_after_return";
169 
170 const char kAsanShadowMemoryDynamicAddress[] =
171     "__asan_shadow_memory_dynamic_address";
172 
173 const char kAsanAllocaPoison[] = "__asan_alloca_poison";
174 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
175 
176 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
177 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
178 const char kAMDGPUBallotName[] = "llvm.amdgcn.ballot.i64";
179 const char kAMDGPUUnreachableName[] = "llvm.amdgcn.unreachable";
180 
181 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
182 static const size_t kNumberOfAccessSizes = 5;
183 
184 static const uint64_t kAllocaRzSize = 32;
185 
186 // ASanAccessInfo implementation constants.
187 constexpr size_t kCompileKernelShift = 0;
188 constexpr size_t kCompileKernelMask = 0x1;
189 constexpr size_t kAccessSizeIndexShift = 1;
190 constexpr size_t kAccessSizeIndexMask = 0xf;
191 constexpr size_t kIsWriteShift = 5;
192 constexpr size_t kIsWriteMask = 0x1;
193 
194 // Command-line flags.
195 
196 static cl::opt<bool> ClEnableKasan(
197     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
198     cl::Hidden, cl::init(false));
199 
200 static cl::opt<bool> ClRecover(
201     "asan-recover",
202     cl::desc("Enable recovery mode (continue-after-error)."),
203     cl::Hidden, cl::init(false));
204 
205 static cl::opt<bool> ClInsertVersionCheck(
206     "asan-guard-against-version-mismatch",
207     cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
208     cl::init(true));
209 
210 // This flag may need to be replaced with -f[no-]asan-reads.
211 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
212                                        cl::desc("instrument read instructions"),
213                                        cl::Hidden, cl::init(true));
214 
215 static cl::opt<bool> ClInstrumentWrites(
216     "asan-instrument-writes", cl::desc("instrument write instructions"),
217     cl::Hidden, cl::init(true));
218 
219 static cl::opt<bool>
220     ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(true),
221                      cl::Hidden, cl::desc("Use Stack Safety analysis results"),
222                      cl::Optional);
223 
224 static cl::opt<bool> ClInstrumentAtomics(
225     "asan-instrument-atomics",
226     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
227     cl::init(true));
228 
229 static cl::opt<bool>
230     ClInstrumentByval("asan-instrument-byval",
231                       cl::desc("instrument byval call arguments"), cl::Hidden,
232                       cl::init(true));
233 
234 static cl::opt<bool> ClAlwaysSlowPath(
235     "asan-always-slow-path",
236     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
237     cl::init(false));
238 
239 static cl::opt<bool> ClForceDynamicShadow(
240     "asan-force-dynamic-shadow",
241     cl::desc("Load shadow address into a local variable for each function"),
242     cl::Hidden, cl::init(false));
243 
244 static cl::opt<bool>
245     ClWithIfunc("asan-with-ifunc",
246                 cl::desc("Access dynamic shadow through an ifunc global on "
247                          "platforms that support this"),
248                 cl::Hidden, cl::init(true));
249 
250 static cl::opt<bool> ClWithIfuncSuppressRemat(
251     "asan-with-ifunc-suppress-remat",
252     cl::desc("Suppress rematerialization of dynamic shadow address by passing "
253              "it through inline asm in prologue."),
254     cl::Hidden, cl::init(true));
255 
256 // This flag limits the number of instructions to be instrumented
257 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
258 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
259 // set it to 10000.
260 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
261     "asan-max-ins-per-bb", cl::init(10000),
262     cl::desc("maximal number of instructions to instrument in any given BB"),
263     cl::Hidden);
264 
265 // This flag may need to be replaced with -f[no]asan-stack.
266 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
267                              cl::Hidden, cl::init(true));
268 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
269     "asan-max-inline-poisoning-size",
270     cl::desc(
271         "Inline shadow poisoning for blocks up to the given size in bytes."),
272     cl::Hidden, cl::init(64));
273 
274 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn(
275     "asan-use-after-return",
276     cl::desc("Sets the mode of detection for stack-use-after-return."),
277     cl::values(
278         clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",
279                    "Never detect stack use after return."),
280         clEnumValN(
281             AsanDetectStackUseAfterReturnMode::Runtime, "runtime",
282             "Detect stack use after return if "
283             "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."),
284         clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",
285                    "Always detect stack use after return.")),
286     cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));
287 
288 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
289                                         cl::desc("Create redzones for byval "
290                                                  "arguments (extra copy "
291                                                  "required)"), cl::Hidden,
292                                         cl::init(true));
293 
294 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
295                                      cl::desc("Check stack-use-after-scope"),
296                                      cl::Hidden, cl::init(false));
297 
298 // This flag may need to be replaced with -f[no]asan-globals.
299 static cl::opt<bool> ClGlobals("asan-globals",
300                                cl::desc("Handle global objects"), cl::Hidden,
301                                cl::init(true));
302 
303 static cl::opt<bool> ClInitializers("asan-initialization-order",
304                                     cl::desc("Handle C++ initializer order"),
305                                     cl::Hidden, cl::init(true));
306 
307 static cl::opt<bool> ClInvalidPointerPairs(
308     "asan-detect-invalid-pointer-pair",
309     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
310     cl::init(false));
311 
312 static cl::opt<bool> ClInvalidPointerCmp(
313     "asan-detect-invalid-pointer-cmp",
314     cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
315     cl::init(false));
316 
317 static cl::opt<bool> ClInvalidPointerSub(
318     "asan-detect-invalid-pointer-sub",
319     cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
320     cl::init(false));
321 
322 static cl::opt<unsigned> ClRealignStack(
323     "asan-realign-stack",
324     cl::desc("Realign stack to the value of this flag (power of two)"),
325     cl::Hidden, cl::init(32));
326 
327 static cl::opt<int> ClInstrumentationWithCallsThreshold(
328     "asan-instrumentation-with-call-threshold",
329     cl::desc("If the function being instrumented contains more than "
330              "this number of memory accesses, use callbacks instead of "
331              "inline checks (-1 means never use callbacks)."),
332     cl::Hidden, cl::init(7000));
333 
334 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
335     "asan-memory-access-callback-prefix",
336     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
337     cl::init("__asan_"));
338 
339 static cl::opt<bool> ClKasanMemIntrinCallbackPrefix(
340     "asan-kernel-mem-intrinsic-prefix",
341     cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden,
342     cl::init(false));
343 
344 static cl::opt<bool>
345     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
346                                cl::desc("instrument dynamic allocas"),
347                                cl::Hidden, cl::init(true));
348 
349 static cl::opt<bool> ClSkipPromotableAllocas(
350     "asan-skip-promotable-allocas",
351     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
352     cl::init(true));
353 
354 static cl::opt<AsanCtorKind> ClConstructorKind(
355     "asan-constructor-kind",
356     cl::desc("Sets the ASan constructor kind"),
357     cl::values(clEnumValN(AsanCtorKind::None, "none", "No constructors"),
358                clEnumValN(AsanCtorKind::Global, "global",
359                           "Use global constructors")),
360     cl::init(AsanCtorKind::Global), cl::Hidden);
361 // These flags allow to change the shadow mapping.
362 // The shadow mapping looks like
363 //    Shadow = (Mem >> scale) + offset
364 
365 static cl::opt<int> ClMappingScale("asan-mapping-scale",
366                                    cl::desc("scale of asan shadow mapping"),
367                                    cl::Hidden, cl::init(0));
368 
369 static cl::opt<uint64_t>
370     ClMappingOffset("asan-mapping-offset",
371                     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
372                     cl::Hidden, cl::init(0));
373 
374 // Optimization flags. Not user visible, used mostly for testing
375 // and benchmarking the tool.
376 
377 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
378                            cl::Hidden, cl::init(true));
379 
380 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks",
381                                          cl::desc("Optimize callbacks"),
382                                          cl::Hidden, cl::init(false));
383 
384 static cl::opt<bool> ClOptSameTemp(
385     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
386     cl::Hidden, cl::init(true));
387 
388 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
389                                   cl::desc("Don't instrument scalar globals"),
390                                   cl::Hidden, cl::init(true));
391 
392 static cl::opt<bool> ClOptStack(
393     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
394     cl::Hidden, cl::init(false));
395 
396 static cl::opt<bool> ClDynamicAllocaStack(
397     "asan-stack-dynamic-alloca",
398     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
399     cl::init(true));
400 
401 static cl::opt<uint32_t> ClForceExperiment(
402     "asan-force-experiment",
403     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
404     cl::init(0));
405 
406 static cl::opt<bool>
407     ClUsePrivateAlias("asan-use-private-alias",
408                       cl::desc("Use private aliases for global variables"),
409                       cl::Hidden, cl::init(true));
410 
411 static cl::opt<bool>
412     ClUseOdrIndicator("asan-use-odr-indicator",
413                       cl::desc("Use odr indicators to improve ODR reporting"),
414                       cl::Hidden, cl::init(true));
415 
416 static cl::opt<bool>
417     ClUseGlobalsGC("asan-globals-live-support",
418                    cl::desc("Use linker features to support dead "
419                             "code stripping of globals"),
420                    cl::Hidden, cl::init(true));
421 
422 // This is on by default even though there is a bug in gold:
423 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
424 static cl::opt<bool>
425     ClWithComdat("asan-with-comdat",
426                  cl::desc("Place ASan constructors in comdat sections"),
427                  cl::Hidden, cl::init(true));
428 
429 static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
430     "asan-destructor-kind",
431     cl::desc("Sets the ASan destructor kind. The default is to use the value "
432              "provided to the pass constructor"),
433     cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
434                clEnumValN(AsanDtorKind::Global, "global",
435                           "Use global destructors")),
436     cl::init(AsanDtorKind::Invalid), cl::Hidden);
437 
438 // Debug flags.
439 
440 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
441                             cl::init(0));
442 
443 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
444                                  cl::Hidden, cl::init(0));
445 
446 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
447                                         cl::desc("Debug func"));
448 
449 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
450                                cl::Hidden, cl::init(-1));
451 
452 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
453                                cl::Hidden, cl::init(-1));
454 
455 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
456 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
457 STATISTIC(NumOptimizedAccessesToGlobalVar,
458           "Number of optimized accesses to global vars");
459 STATISTIC(NumOptimizedAccessesToStackVar,
460           "Number of optimized accesses to stack vars");
461 
462 namespace {
463 
464 /// This struct defines the shadow mapping using the rule:
465 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
466 /// If InGlobal is true, then
467 ///   extern char __asan_shadow[];
468 ///   shadow = (mem >> Scale) + &__asan_shadow
469 struct ShadowMapping {
470   int Scale;
471   uint64_t Offset;
472   bool OrShadowOffset;
473   bool InGlobal;
474 };
475 
476 } // end anonymous namespace
477 
478 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize,
479                                       bool IsKasan) {
480   bool IsAndroid = TargetTriple.isAndroid();
481   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() ||
482                TargetTriple.isDriverKit();
483   bool IsMacOS = TargetTriple.isMacOSX();
484   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
485   bool IsNetBSD = TargetTriple.isOSNetBSD();
486   bool IsPS = TargetTriple.isPS();
487   bool IsLinux = TargetTriple.isOSLinux();
488   bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
489                  TargetTriple.getArch() == Triple::ppc64le;
490   bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
491   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
492   bool IsMIPSN32ABI = TargetTriple.getEnvironment() == Triple::GNUABIN32;
493   bool IsMIPS32 = TargetTriple.isMIPS32();
494   bool IsMIPS64 = TargetTriple.isMIPS64();
495   bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
496   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
497                    TargetTriple.getArch() == Triple::aarch64_be;
498   bool IsLoongArch64 = TargetTriple.isLoongArch64();
499   bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
500   bool IsWindows = TargetTriple.isOSWindows();
501   bool IsFuchsia = TargetTriple.isOSFuchsia();
502   bool IsEmscripten = TargetTriple.isOSEmscripten();
503   bool IsAMDGPU = TargetTriple.isAMDGPU();
504 
505   ShadowMapping Mapping;
506 
507   Mapping.Scale = kDefaultShadowScale;
508   if (ClMappingScale.getNumOccurrences() > 0) {
509     Mapping.Scale = ClMappingScale;
510   }
511 
512   if (LongSize == 32) {
513     if (IsAndroid)
514       Mapping.Offset = kDynamicShadowSentinel;
515     else if (IsMIPSN32ABI)
516       Mapping.Offset = kMIPS_ShadowOffsetN32;
517     else if (IsMIPS32)
518       Mapping.Offset = kMIPS32_ShadowOffset32;
519     else if (IsFreeBSD)
520       Mapping.Offset = kFreeBSD_ShadowOffset32;
521     else if (IsNetBSD)
522       Mapping.Offset = kNetBSD_ShadowOffset32;
523     else if (IsIOS)
524       Mapping.Offset = kDynamicShadowSentinel;
525     else if (IsWindows)
526       Mapping.Offset = kWindowsShadowOffset32;
527     else if (IsEmscripten)
528       Mapping.Offset = kEmscriptenShadowOffset;
529     else
530       Mapping.Offset = kDefaultShadowOffset32;
531   } else {  // LongSize == 64
532     // Fuchsia is always PIE, which means that the beginning of the address
533     // space is always available.
534     if (IsFuchsia)
535       Mapping.Offset = 0;
536     else if (IsPPC64)
537       Mapping.Offset = kPPC64_ShadowOffset64;
538     else if (IsSystemZ)
539       Mapping.Offset = kSystemZ_ShadowOffset64;
540     else if (IsFreeBSD && IsAArch64)
541         Mapping.Offset = kFreeBSDAArch64_ShadowOffset64;
542     else if (IsFreeBSD && !IsMIPS64) {
543       if (IsKasan)
544         Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
545       else
546         Mapping.Offset = kFreeBSD_ShadowOffset64;
547     } else if (IsNetBSD) {
548       if (IsKasan)
549         Mapping.Offset = kNetBSDKasan_ShadowOffset64;
550       else
551         Mapping.Offset = kNetBSD_ShadowOffset64;
552     } else if (IsPS)
553       Mapping.Offset = kPS_ShadowOffset64;
554     else if (IsLinux && IsX86_64) {
555       if (IsKasan)
556         Mapping.Offset = kLinuxKasan_ShadowOffset64;
557       else
558         Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
559                           (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
560     } else if (IsWindows && IsX86_64) {
561       Mapping.Offset = kWindowsShadowOffset64;
562     } else if (IsMIPS64)
563       Mapping.Offset = kMIPS64_ShadowOffset64;
564     else if (IsIOS)
565       Mapping.Offset = kDynamicShadowSentinel;
566     else if (IsMacOS && IsAArch64)
567       Mapping.Offset = kDynamicShadowSentinel;
568     else if (IsAArch64)
569       Mapping.Offset = kAArch64_ShadowOffset64;
570     else if (IsLoongArch64)
571       Mapping.Offset = kLoongArch64_ShadowOffset64;
572     else if (IsRISCV64)
573       Mapping.Offset = kRISCV64_ShadowOffset64;
574     else if (IsAMDGPU)
575       Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
576                         (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
577     else
578       Mapping.Offset = kDefaultShadowOffset64;
579   }
580 
581   if (ClForceDynamicShadow) {
582     Mapping.Offset = kDynamicShadowSentinel;
583   }
584 
585   if (ClMappingOffset.getNumOccurrences() > 0) {
586     Mapping.Offset = ClMappingOffset;
587   }
588 
589   // OR-ing shadow offset if more efficient (at least on x86) if the offset
590   // is a power of two, but on ppc64 and loongarch64 we have to use add since
591   // the shadow offset is not necessarily 1/8-th of the address space.  On
592   // SystemZ, we could OR the constant in a single instruction, but it's more
593   // efficient to load it once and use indexed addressing.
594   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS &&
595                            !IsRISCV64 && !IsLoongArch64 &&
596                            !(Mapping.Offset & (Mapping.Offset - 1)) &&
597                            Mapping.Offset != kDynamicShadowSentinel;
598   bool IsAndroidWithIfuncSupport =
599       IsAndroid && !TargetTriple.isAndroidVersionLT(21);
600   Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
601 
602   return Mapping;
603 }
604 
605 namespace llvm {
606 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize,
607                                bool IsKasan, uint64_t *ShadowBase,
608                                int *MappingScale, bool *OrShadowOffset) {
609   auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan);
610   *ShadowBase = Mapping.Offset;
611   *MappingScale = Mapping.Scale;
612   *OrShadowOffset = Mapping.OrShadowOffset;
613 }
614 
615 ASanAccessInfo::ASanAccessInfo(int32_t Packed)
616     : Packed(Packed),
617       AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask),
618       IsWrite((Packed >> kIsWriteShift) & kIsWriteMask),
619       CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {}
620 
621 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel,
622                                uint8_t AccessSizeIndex)
623     : Packed((IsWrite << kIsWriteShift) +
624              (CompileKernel << kCompileKernelShift) +
625              (AccessSizeIndex << kAccessSizeIndexShift)),
626       AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite),
627       CompileKernel(CompileKernel) {}
628 
629 } // namespace llvm
630 
631 static uint64_t getRedzoneSizeForScale(int MappingScale) {
632   // Redzone used for stack and globals is at least 32 bytes.
633   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
634   return std::max(32U, 1U << MappingScale);
635 }
636 
637 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
638   if (TargetTriple.isOSEmscripten()) {
639     return kAsanEmscriptenCtorAndDtorPriority;
640   } else {
641     return kAsanCtorAndDtorPriority;
642   }
643 }
644 
645 namespace {
646 /// Helper RAII class to post-process inserted asan runtime calls during a
647 /// pass on a single Function. Upon end of scope, detects and applies the
648 /// required funclet OpBundle.
649 class RuntimeCallInserter {
650   Function *OwnerFn = nullptr;
651   bool TrackInsertedCalls = false;
652   SmallVector<CallInst *> InsertedCalls;
653 
654 public:
655   RuntimeCallInserter(Function &Fn) : OwnerFn(&Fn) {
656     if (Fn.hasPersonalityFn()) {
657       auto Personality = classifyEHPersonality(Fn.getPersonalityFn());
658       if (isScopedEHPersonality(Personality))
659         TrackInsertedCalls = true;
660     }
661   }
662 
663   ~RuntimeCallInserter() {
664     if (InsertedCalls.empty())
665       return;
666     assert(TrackInsertedCalls && "Calls were wrongly tracked");
667 
668     DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*OwnerFn);
669     for (CallInst *CI : InsertedCalls) {
670       BasicBlock *BB = CI->getParent();
671       assert(BB && "Instruction doesn't belong to a BasicBlock");
672       assert(BB->getParent() == OwnerFn &&
673              "Instruction doesn't belong to the expected Function!");
674 
675       ColorVector &Colors = BlockColors[BB];
676       // funclet opbundles are only valid in monochromatic BBs.
677       // Note that unreachable BBs are seen as colorless by colorEHFunclets()
678       // and will be DCE'ed later.
679       if (Colors.empty())
680         continue;
681       if (Colors.size() != 1) {
682         OwnerFn->getContext().emitError(
683             "Instruction's BasicBlock is not monochromatic");
684         continue;
685       }
686 
687       BasicBlock *Color = Colors.front();
688       Instruction *EHPad = Color->getFirstNonPHI();
689 
690       if (EHPad && EHPad->isEHPad()) {
691         // Replace CI with a clone with an added funclet OperandBundle
692         OperandBundleDef OB("funclet", EHPad);
693         auto *NewCall =
694             CallBase::addOperandBundle(CI, LLVMContext::OB_funclet, OB, CI);
695         NewCall->copyMetadata(*CI);
696         CI->replaceAllUsesWith(NewCall);
697         CI->eraseFromParent();
698       }
699     }
700   }
701 
702   CallInst *createRuntimeCall(IRBuilder<> &IRB, FunctionCallee Callee,
703                               ArrayRef<Value *> Args = {},
704                               const Twine &Name = "") {
705     assert(IRB.GetInsertBlock()->getParent() == OwnerFn);
706 
707     CallInst *Inst = IRB.CreateCall(Callee, Args, Name, nullptr);
708     if (TrackInsertedCalls)
709       InsertedCalls.push_back(Inst);
710     return Inst;
711   }
712 };
713 
714 /// AddressSanitizer: instrument the code in module to find memory bugs.
715 struct AddressSanitizer {
716   AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI,
717                    int InstrumentationWithCallsThreshold,
718                    uint32_t MaxInlinePoisoningSize, bool CompileKernel = false,
719                    bool Recover = false, bool UseAfterScope = false,
720                    AsanDetectStackUseAfterReturnMode UseAfterReturn =
721                        AsanDetectStackUseAfterReturnMode::Runtime)
722       : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
723                                                             : CompileKernel),
724         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
725         UseAfterScope(UseAfterScope || ClUseAfterScope),
726         UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
727                                                             : UseAfterReturn),
728         SSGI(SSGI),
729         InstrumentationWithCallsThreshold(
730             ClInstrumentationWithCallsThreshold.getNumOccurrences() > 0
731                 ? ClInstrumentationWithCallsThreshold
732                 : InstrumentationWithCallsThreshold),
733         MaxInlinePoisoningSize(ClMaxInlinePoisoningSize.getNumOccurrences() > 0
734                                    ? ClMaxInlinePoisoningSize
735                                    : MaxInlinePoisoningSize) {
736     C = &(M.getContext());
737     DL = &M.getDataLayout();
738     LongSize = M.getDataLayout().getPointerSizeInBits();
739     IntptrTy = Type::getIntNTy(*C, LongSize);
740     PtrTy = PointerType::getUnqual(*C);
741     Int32Ty = Type::getInt32Ty(*C);
742     TargetTriple = Triple(M.getTargetTriple());
743 
744     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
745 
746     assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid);
747   }
748 
749   TypeSize getAllocaSizeInBytes(const AllocaInst &AI) const {
750     return *AI.getAllocationSize(AI.getDataLayout());
751   }
752 
753   /// Check if we want (and can) handle this alloca.
754   bool isInterestingAlloca(const AllocaInst &AI);
755 
756   bool ignoreAccess(Instruction *Inst, Value *Ptr);
757   void getInterestingMemoryOperands(
758       Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
759 
760   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
761                      InterestingMemoryOperand &O, bool UseCalls,
762                      const DataLayout &DL, RuntimeCallInserter &RTCI);
763   void instrumentPointerComparisonOrSubtraction(Instruction *I,
764                                                 RuntimeCallInserter &RTCI);
765   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
766                          Value *Addr, MaybeAlign Alignment,
767                          uint32_t TypeStoreSize, bool IsWrite,
768                          Value *SizeArgument, bool UseCalls, uint32_t Exp,
769                          RuntimeCallInserter &RTCI);
770   Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
771                                        Instruction *InsertBefore, Value *Addr,
772                                        uint32_t TypeStoreSize, bool IsWrite,
773                                        Value *SizeArgument);
774   Instruction *genAMDGPUReportBlock(IRBuilder<> &IRB, Value *Cond,
775                                     bool Recover);
776   void instrumentUnusualSizeOrAlignment(Instruction *I,
777                                         Instruction *InsertBefore, Value *Addr,
778                                         TypeSize TypeStoreSize, bool IsWrite,
779                                         Value *SizeArgument, bool UseCalls,
780                                         uint32_t Exp,
781                                         RuntimeCallInserter &RTCI);
782   void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL,
783                                    Type *IntptrTy, Value *Mask, Value *EVL,
784                                    Value *Stride, Instruction *I, Value *Addr,
785                                    MaybeAlign Alignment, unsigned Granularity,
786                                    Type *OpType, bool IsWrite,
787                                    Value *SizeArgument, bool UseCalls,
788                                    uint32_t Exp, RuntimeCallInserter &RTCI);
789   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
790                            Value *ShadowValue, uint32_t TypeStoreSize);
791   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
792                                  bool IsWrite, size_t AccessSizeIndex,
793                                  Value *SizeArgument, uint32_t Exp,
794                                  RuntimeCallInserter &RTCI);
795   void instrumentMemIntrinsic(MemIntrinsic *MI, RuntimeCallInserter &RTCI);
796   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
797   bool suppressInstrumentationSiteForDebug(int &Instrumented);
798   bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
799   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
800   bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
801   void markEscapedLocalAllocas(Function &F);
802 
803 private:
804   friend struct FunctionStackPoisoner;
805 
806   void initializeCallbacks(Module &M, const TargetLibraryInfo *TLI);
807 
808   bool LooksLikeCodeInBug11395(Instruction *I);
809   bool GlobalIsLinkerInitialized(GlobalVariable *G);
810   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
811                     TypeSize TypeStoreSize) const;
812 
813   /// Helper to cleanup per-function state.
814   struct FunctionStateRAII {
815     AddressSanitizer *Pass;
816 
817     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
818       assert(Pass->ProcessedAllocas.empty() &&
819              "last pass forgot to clear cache");
820       assert(!Pass->LocalDynamicShadow);
821     }
822 
823     ~FunctionStateRAII() {
824       Pass->LocalDynamicShadow = nullptr;
825       Pass->ProcessedAllocas.clear();
826     }
827   };
828 
829   LLVMContext *C;
830   const DataLayout *DL;
831   Triple TargetTriple;
832   int LongSize;
833   bool CompileKernel;
834   bool Recover;
835   bool UseAfterScope;
836   AsanDetectStackUseAfterReturnMode UseAfterReturn;
837   Type *IntptrTy;
838   Type *Int32Ty;
839   PointerType *PtrTy;
840   ShadowMapping Mapping;
841   FunctionCallee AsanHandleNoReturnFunc;
842   FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
843   Constant *AsanShadowGlobal;
844 
845   // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
846   FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
847   FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
848 
849   // These arrays is indexed by AccessIsWrite and Experiment.
850   FunctionCallee AsanErrorCallbackSized[2][2];
851   FunctionCallee AsanMemoryAccessCallbackSized[2][2];
852 
853   FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
854   Value *LocalDynamicShadow = nullptr;
855   const StackSafetyGlobalInfo *SSGI;
856   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
857 
858   FunctionCallee AMDGPUAddressShared;
859   FunctionCallee AMDGPUAddressPrivate;
860   int InstrumentationWithCallsThreshold;
861   uint32_t MaxInlinePoisoningSize;
862 };
863 
864 class ModuleAddressSanitizer {
865 public:
866   ModuleAddressSanitizer(Module &M, bool InsertVersionCheck,
867                          bool CompileKernel = false, bool Recover = false,
868                          bool UseGlobalsGC = true, bool UseOdrIndicator = true,
869                          AsanDtorKind DestructorKind = AsanDtorKind::Global,
870                          AsanCtorKind ConstructorKind = AsanCtorKind::Global)
871       : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
872                                                             : CompileKernel),
873         InsertVersionCheck(ClInsertVersionCheck.getNumOccurrences() > 0
874                                ? ClInsertVersionCheck
875                                : InsertVersionCheck),
876         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
877         UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
878         // Enable aliases as they should have no downside with ODR indicators.
879         UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0
880                             ? ClUsePrivateAlias
881                             : UseOdrIndicator),
882         UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0
883                             ? ClUseOdrIndicator
884                             : UseOdrIndicator),
885         // Not a typo: ClWithComdat is almost completely pointless without
886         // ClUseGlobalsGC (because then it only works on modules without
887         // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
888         // and both suffer from gold PR19002 for which UseGlobalsGC constructor
889         // argument is designed as workaround. Therefore, disable both
890         // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
891         // do globals-gc.
892         UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
893         DestructorKind(DestructorKind),
894         ConstructorKind(ClConstructorKind.getNumOccurrences() > 0
895                             ? ClConstructorKind
896                             : ConstructorKind) {
897     C = &(M.getContext());
898     int LongSize = M.getDataLayout().getPointerSizeInBits();
899     IntptrTy = Type::getIntNTy(*C, LongSize);
900     PtrTy = PointerType::getUnqual(*C);
901     TargetTriple = Triple(M.getTargetTriple());
902     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
903 
904     if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
905       this->DestructorKind = ClOverrideDestructorKind;
906     assert(this->DestructorKind != AsanDtorKind::Invalid);
907   }
908 
909   bool instrumentModule(Module &);
910 
911 private:
912   void initializeCallbacks(Module &M);
913 
914   void instrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
915   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
916                              ArrayRef<GlobalVariable *> ExtendedGlobals,
917                              ArrayRef<Constant *> MetadataInitializers);
918   void instrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
919                             ArrayRef<GlobalVariable *> ExtendedGlobals,
920                             ArrayRef<Constant *> MetadataInitializers,
921                             const std::string &UniqueModuleId);
922   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
923                               ArrayRef<GlobalVariable *> ExtendedGlobals,
924                               ArrayRef<Constant *> MetadataInitializers);
925   void
926   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
927                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
928                                      ArrayRef<Constant *> MetadataInitializers);
929 
930   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
931                                        StringRef OriginalName);
932   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
933                                   StringRef InternalSuffix);
934   Instruction *CreateAsanModuleDtor(Module &M);
935 
936   const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
937   bool shouldInstrumentGlobal(GlobalVariable *G) const;
938   bool ShouldUseMachOGlobalsSection() const;
939   StringRef getGlobalMetadataSection() const;
940   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
941   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
942   uint64_t getMinRedzoneSizeForGlobal() const {
943     return getRedzoneSizeForScale(Mapping.Scale);
944   }
945   uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
946   int GetAsanVersion(const Module &M) const;
947 
948   bool CompileKernel;
949   bool InsertVersionCheck;
950   bool Recover;
951   bool UseGlobalsGC;
952   bool UsePrivateAlias;
953   bool UseOdrIndicator;
954   bool UseCtorComdat;
955   AsanDtorKind DestructorKind;
956   AsanCtorKind ConstructorKind;
957   Type *IntptrTy;
958   PointerType *PtrTy;
959   LLVMContext *C;
960   Triple TargetTriple;
961   ShadowMapping Mapping;
962   FunctionCallee AsanPoisonGlobals;
963   FunctionCallee AsanUnpoisonGlobals;
964   FunctionCallee AsanRegisterGlobals;
965   FunctionCallee AsanUnregisterGlobals;
966   FunctionCallee AsanRegisterImageGlobals;
967   FunctionCallee AsanUnregisterImageGlobals;
968   FunctionCallee AsanRegisterElfGlobals;
969   FunctionCallee AsanUnregisterElfGlobals;
970 
971   Function *AsanCtorFunction = nullptr;
972   Function *AsanDtorFunction = nullptr;
973 };
974 
975 // Stack poisoning does not play well with exception handling.
976 // When an exception is thrown, we essentially bypass the code
977 // that unpoisones the stack. This is why the run-time library has
978 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
979 // stack in the interceptor. This however does not work inside the
980 // actual function which catches the exception. Most likely because the
981 // compiler hoists the load of the shadow value somewhere too high.
982 // This causes asan to report a non-existing bug on 453.povray.
983 // It sounds like an LLVM bug.
984 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
985   Function &F;
986   AddressSanitizer &ASan;
987   RuntimeCallInserter &RTCI;
988   DIBuilder DIB;
989   LLVMContext *C;
990   Type *IntptrTy;
991   Type *IntptrPtrTy;
992   ShadowMapping Mapping;
993 
994   SmallVector<AllocaInst *, 16> AllocaVec;
995   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
996   SmallVector<Instruction *, 8> RetVec;
997 
998   FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
999       AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
1000   FunctionCallee AsanSetShadowFunc[0x100] = {};
1001   FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
1002   FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
1003 
1004   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
1005   struct AllocaPoisonCall {
1006     IntrinsicInst *InsBefore;
1007     AllocaInst *AI;
1008     uint64_t Size;
1009     bool DoPoison;
1010   };
1011   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
1012   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
1013   bool HasUntracedLifetimeIntrinsic = false;
1014 
1015   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
1016   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
1017   AllocaInst *DynamicAllocaLayout = nullptr;
1018   IntrinsicInst *LocalEscapeCall = nullptr;
1019 
1020   bool HasInlineAsm = false;
1021   bool HasReturnsTwiceCall = false;
1022   bool PoisonStack;
1023 
1024   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan,
1025                         RuntimeCallInserter &RTCI)
1026       : F(F), ASan(ASan), RTCI(RTCI),
1027         DIB(*F.getParent(), /*AllowUnresolved*/ false), C(ASan.C),
1028         IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
1029         Mapping(ASan.Mapping),
1030         PoisonStack(ClStack &&
1031                     !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
1032 
1033   bool runOnFunction() {
1034     if (!PoisonStack)
1035       return false;
1036 
1037     if (ClRedzoneByvalArgs)
1038       copyArgsPassedByValToAllocas();
1039 
1040     // Collect alloca, ret, lifetime instructions etc.
1041     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
1042 
1043     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
1044 
1045     initializeCallbacks(*F.getParent());
1046 
1047     if (HasUntracedLifetimeIntrinsic) {
1048       // If there are lifetime intrinsics which couldn't be traced back to an
1049       // alloca, we may not know exactly when a variable enters scope, and
1050       // therefore should "fail safe" by not poisoning them.
1051       StaticAllocaPoisonCallVec.clear();
1052       DynamicAllocaPoisonCallVec.clear();
1053     }
1054 
1055     processDynamicAllocas();
1056     processStaticAllocas();
1057 
1058     if (ClDebugStack) {
1059       LLVM_DEBUG(dbgs() << F);
1060     }
1061     return true;
1062   }
1063 
1064   // Arguments marked with the "byval" attribute are implicitly copied without
1065   // using an alloca instruction.  To produce redzones for those arguments, we
1066   // copy them a second time into memory allocated with an alloca instruction.
1067   void copyArgsPassedByValToAllocas();
1068 
1069   // Finds all Alloca instructions and puts
1070   // poisoned red zones around all of them.
1071   // Then unpoison everything back before the function returns.
1072   void processStaticAllocas();
1073   void processDynamicAllocas();
1074 
1075   void createDynamicAllocasInitStorage();
1076 
1077   // ----------------------- Visitors.
1078   /// Collect all Ret instructions, or the musttail call instruction if it
1079   /// precedes the return instruction.
1080   void visitReturnInst(ReturnInst &RI) {
1081     if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
1082       RetVec.push_back(CI);
1083     else
1084       RetVec.push_back(&RI);
1085   }
1086 
1087   /// Collect all Resume instructions.
1088   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
1089 
1090   /// Collect all CatchReturnInst instructions.
1091   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
1092 
1093   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
1094                                         Value *SavedStack) {
1095     IRBuilder<> IRB(InstBefore);
1096     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1097     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1098     // need to adjust extracted SP to compute the address of the most recent
1099     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1100     // this purpose.
1101     if (!isa<ReturnInst>(InstBefore)) {
1102       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
1103           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
1104           {IntptrTy});
1105 
1106       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
1107 
1108       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1109                                      DynamicAreaOffset);
1110     }
1111 
1112     RTCI.createRuntimeCall(
1113         IRB, AsanAllocasUnpoisonFunc,
1114         {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1115   }
1116 
1117   // Unpoison dynamic allocas redzones.
1118   void unpoisonDynamicAllocas() {
1119     for (Instruction *Ret : RetVec)
1120       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1121 
1122     for (Instruction *StackRestoreInst : StackRestoreVec)
1123       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1124                                        StackRestoreInst->getOperand(0));
1125   }
1126 
1127   // Deploy and poison redzones around dynamic alloca call. To do this, we
1128   // should replace this call with another one with changed parameters and
1129   // replace all its uses with new address, so
1130   //   addr = alloca type, old_size, align
1131   // is replaced by
1132   //   new_size = (old_size + additional_size) * sizeof(type)
1133   //   tmp = alloca i8, new_size, max(align, 32)
1134   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
1135   // Additional_size is added to make new memory allocation contain not only
1136   // requested memory, but also left, partial and right redzones.
1137   void handleDynamicAllocaCall(AllocaInst *AI);
1138 
1139   /// Collect Alloca instructions we want (and can) handle.
1140   void visitAllocaInst(AllocaInst &AI) {
1141     // FIXME: Handle scalable vectors instead of ignoring them.
1142     const Type *AllocaType = AI.getAllocatedType();
1143     const auto *STy = dyn_cast<StructType>(AllocaType);
1144     if (!ASan.isInterestingAlloca(AI) || isa<ScalableVectorType>(AllocaType) ||
1145         (STy && STy->containsHomogeneousScalableVectorTypes())) {
1146       if (AI.isStaticAlloca()) {
1147         // Skip over allocas that are present *before* the first instrumented
1148         // alloca, we don't want to move those around.
1149         if (AllocaVec.empty())
1150           return;
1151 
1152         StaticAllocasToMoveUp.push_back(&AI);
1153       }
1154       return;
1155     }
1156 
1157     if (!AI.isStaticAlloca())
1158       DynamicAllocaVec.push_back(&AI);
1159     else
1160       AllocaVec.push_back(&AI);
1161   }
1162 
1163   /// Collect lifetime intrinsic calls to check for use-after-scope
1164   /// errors.
1165   void visitIntrinsicInst(IntrinsicInst &II) {
1166     Intrinsic::ID ID = II.getIntrinsicID();
1167     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1168     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1169     if (!ASan.UseAfterScope)
1170       return;
1171     if (!II.isLifetimeStartOrEnd())
1172       return;
1173     // Found lifetime intrinsic, add ASan instrumentation if necessary.
1174     auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1175     // If size argument is undefined, don't do anything.
1176     if (Size->isMinusOne()) return;
1177     // Check that size doesn't saturate uint64_t and can
1178     // be stored in IntptrTy.
1179     const uint64_t SizeValue = Size->getValue().getLimitedValue();
1180     if (SizeValue == ~0ULL ||
1181         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1182       return;
1183     // Find alloca instruction that corresponds to llvm.lifetime argument.
1184     // Currently we can only handle lifetime markers pointing to the
1185     // beginning of the alloca.
1186     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1187     if (!AI) {
1188       HasUntracedLifetimeIntrinsic = true;
1189       return;
1190     }
1191     // We're interested only in allocas we can handle.
1192     if (!ASan.isInterestingAlloca(*AI))
1193       return;
1194     bool DoPoison = (ID == Intrinsic::lifetime_end);
1195     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1196     if (AI->isStaticAlloca())
1197       StaticAllocaPoisonCallVec.push_back(APC);
1198     else if (ClInstrumentDynamicAllocas)
1199       DynamicAllocaPoisonCallVec.push_back(APC);
1200   }
1201 
1202   void visitCallBase(CallBase &CB) {
1203     if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1204       HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1205       HasReturnsTwiceCall |= CI->canReturnTwice();
1206     }
1207   }
1208 
1209   // ---------------------- Helpers.
1210   void initializeCallbacks(Module &M);
1211 
1212   // Copies bytes from ShadowBytes into shadow memory for indexes where
1213   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1214   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1215   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1216                     IRBuilder<> &IRB, Value *ShadowBase);
1217   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1218                     size_t Begin, size_t End, IRBuilder<> &IRB,
1219                     Value *ShadowBase);
1220   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1221                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1222                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1223 
1224   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1225 
1226   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1227                                bool Dynamic);
1228   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1229                      Instruction *ThenTerm, Value *ValueIfFalse);
1230 };
1231 
1232 } // end anonymous namespace
1233 
1234 void AddressSanitizerPass::printPipeline(
1235     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1236   static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline(
1237       OS, MapClassName2PassName);
1238   OS << '<';
1239   if (Options.CompileKernel)
1240     OS << "kernel";
1241   OS << '>';
1242 }
1243 
1244 AddressSanitizerPass::AddressSanitizerPass(
1245     const AddressSanitizerOptions &Options, bool UseGlobalGC,
1246     bool UseOdrIndicator, AsanDtorKind DestructorKind,
1247     AsanCtorKind ConstructorKind)
1248     : Options(Options), UseGlobalGC(UseGlobalGC),
1249       UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind),
1250       ConstructorKind(ConstructorKind) {}
1251 
1252 PreservedAnalyses AddressSanitizerPass::run(Module &M,
1253                                             ModuleAnalysisManager &MAM) {
1254   ModuleAddressSanitizer ModuleSanitizer(
1255       M, Options.InsertVersionCheck, Options.CompileKernel, Options.Recover,
1256       UseGlobalGC, UseOdrIndicator, DestructorKind, ConstructorKind);
1257   bool Modified = false;
1258   auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1259   const StackSafetyGlobalInfo *const SSGI =
1260       ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr;
1261   for (Function &F : M) {
1262     AddressSanitizer FunctionSanitizer(
1263         M, SSGI, Options.InstrumentationWithCallsThreshold,
1264         Options.MaxInlinePoisoningSize, Options.CompileKernel, Options.Recover,
1265         Options.UseAfterScope, Options.UseAfterReturn);
1266     const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1267     Modified |= FunctionSanitizer.instrumentFunction(F, &TLI);
1268   }
1269   Modified |= ModuleSanitizer.instrumentModule(M);
1270   if (!Modified)
1271     return PreservedAnalyses::all();
1272 
1273   PreservedAnalyses PA = PreservedAnalyses::none();
1274   // GlobalsAA is considered stateless and does not get invalidated unless
1275   // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
1276   // make changes that require GlobalsAA to be invalidated.
1277   PA.abandon<GlobalsAA>();
1278   return PA;
1279 }
1280 
1281 static size_t TypeStoreSizeToSizeIndex(uint32_t TypeSize) {
1282   size_t Res = llvm::countr_zero(TypeSize / 8);
1283   assert(Res < kNumberOfAccessSizes);
1284   return Res;
1285 }
1286 
1287 /// Check if \p G has been created by a trusted compiler pass.
1288 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1289   // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1290   if (G->getName().starts_with("llvm.") ||
1291       // Do not instrument gcov counter arrays.
1292       G->getName().starts_with("__llvm_gcov_ctr") ||
1293       // Do not instrument rtti proxy symbols for function sanitizer.
1294       G->getName().starts_with("__llvm_rtti_proxy"))
1295     return true;
1296 
1297   // Do not instrument asan globals.
1298   if (G->getName().starts_with(kAsanGenPrefix) ||
1299       G->getName().starts_with(kSanCovGenPrefix) ||
1300       G->getName().starts_with(kODRGenPrefix))
1301     return true;
1302 
1303   return false;
1304 }
1305 
1306 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
1307   Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1308   unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
1309   if (AddrSpace == 3 || AddrSpace == 5)
1310     return true;
1311   return false;
1312 }
1313 
1314 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1315   // Shadow >> scale
1316   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1317   if (Mapping.Offset == 0) return Shadow;
1318   // (Shadow >> scale) | offset
1319   Value *ShadowBase;
1320   if (LocalDynamicShadow)
1321     ShadowBase = LocalDynamicShadow;
1322   else
1323     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1324   if (Mapping.OrShadowOffset)
1325     return IRB.CreateOr(Shadow, ShadowBase);
1326   else
1327     return IRB.CreateAdd(Shadow, ShadowBase);
1328 }
1329 
1330 // Instrument memset/memmove/memcpy
1331 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI,
1332                                               RuntimeCallInserter &RTCI) {
1333   InstrumentationIRBuilder IRB(MI);
1334   if (isa<MemTransferInst>(MI)) {
1335     RTCI.createRuntimeCall(
1336         IRB, isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1337         {IRB.CreateAddrSpaceCast(MI->getOperand(0), PtrTy),
1338          IRB.CreateAddrSpaceCast(MI->getOperand(1), PtrTy),
1339          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1340   } else if (isa<MemSetInst>(MI)) {
1341     RTCI.createRuntimeCall(
1342         IRB, AsanMemset,
1343         {IRB.CreateAddrSpaceCast(MI->getOperand(0), PtrTy),
1344          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1345          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1346   }
1347   MI->eraseFromParent();
1348 }
1349 
1350 /// Check if we want (and can) handle this alloca.
1351 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1352   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1353 
1354   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1355     return PreviouslySeenAllocaInfo->getSecond();
1356 
1357   bool IsInteresting =
1358       (AI.getAllocatedType()->isSized() &&
1359        // alloca() may be called with 0 size, ignore it.
1360        ((!AI.isStaticAlloca()) || !getAllocaSizeInBytes(AI).isZero()) &&
1361        // We are only interested in allocas not promotable to registers.
1362        // Promotable allocas are common under -O0.
1363        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1364        // inalloca allocas are not treated as static, and we don't want
1365        // dynamic alloca instrumentation for them as well.
1366        !AI.isUsedWithInAlloca() &&
1367        // swifterror allocas are register promoted by ISel
1368        !AI.isSwiftError() &&
1369        // safe allocas are not interesting
1370        !(SSGI && SSGI->isSafe(AI)));
1371 
1372   ProcessedAllocas[&AI] = IsInteresting;
1373   return IsInteresting;
1374 }
1375 
1376 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) {
1377   // Instrument accesses from different address spaces only for AMDGPU.
1378   Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1379   if (PtrTy->getPointerAddressSpace() != 0 &&
1380       !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
1381     return true;
1382 
1383   // Ignore swifterror addresses.
1384   // swifterror memory addresses are mem2reg promoted by instruction
1385   // selection. As such they cannot have regular uses like an instrumentation
1386   // function and it makes no sense to track them as memory.
1387   if (Ptr->isSwiftError())
1388     return true;
1389 
1390   // Treat memory accesses to promotable allocas as non-interesting since they
1391   // will not cause memory violations. This greatly speeds up the instrumented
1392   // executable at -O0.
1393   if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1394     if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1395       return true;
1396 
1397   if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) &&
1398       findAllocaForValue(Ptr))
1399     return true;
1400 
1401   return false;
1402 }
1403 
1404 void AddressSanitizer::getInterestingMemoryOperands(
1405     Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1406   // Do not instrument the load fetching the dynamic shadow address.
1407   if (LocalDynamicShadow == I)
1408     return;
1409 
1410   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1411     if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand()))
1412       return;
1413     Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1414                              LI->getType(), LI->getAlign());
1415   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1416     if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand()))
1417       return;
1418     Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1419                              SI->getValueOperand()->getType(), SI->getAlign());
1420   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1421     if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand()))
1422       return;
1423     Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1424                              RMW->getValOperand()->getType(), std::nullopt);
1425   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1426     if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand()))
1427       return;
1428     Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1429                              XCHG->getCompareOperand()->getType(),
1430                              std::nullopt);
1431   } else if (auto CI = dyn_cast<CallInst>(I)) {
1432     switch (CI->getIntrinsicID()) {
1433     case Intrinsic::masked_load:
1434     case Intrinsic::masked_store:
1435     case Intrinsic::masked_gather:
1436     case Intrinsic::masked_scatter: {
1437       bool IsWrite = CI->getType()->isVoidTy();
1438       // Masked store has an initial operand for the value.
1439       unsigned OpOffset = IsWrite ? 1 : 0;
1440       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1441         return;
1442 
1443       auto BasePtr = CI->getOperand(OpOffset);
1444       if (ignoreAccess(I, BasePtr))
1445         return;
1446       Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1447       MaybeAlign Alignment = Align(1);
1448       // Otherwise no alignment guarantees. We probably got Undef.
1449       if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1450         Alignment = Op->getMaybeAlignValue();
1451       Value *Mask = CI->getOperand(2 + OpOffset);
1452       Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1453       break;
1454     }
1455     case Intrinsic::masked_expandload:
1456     case Intrinsic::masked_compressstore: {
1457       bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_compressstore;
1458       unsigned OpOffset = IsWrite ? 1 : 0;
1459       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1460         return;
1461       auto BasePtr = CI->getOperand(OpOffset);
1462       if (ignoreAccess(I, BasePtr))
1463         return;
1464       MaybeAlign Alignment = BasePtr->getPointerAlignment(*DL);
1465       Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1466 
1467       IRBuilder IB(I);
1468       Value *Mask = CI->getOperand(1 + OpOffset);
1469       // Use the popcount of Mask as the effective vector length.
1470       Type *ExtTy = VectorType::get(IntptrTy, cast<VectorType>(Ty));
1471       Value *ExtMask = IB.CreateZExt(Mask, ExtTy);
1472       Value *EVL = IB.CreateAddReduce(ExtMask);
1473       Value *TrueMask = ConstantInt::get(Mask->getType(), 1);
1474       Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, TrueMask,
1475                                EVL);
1476       break;
1477     }
1478     case Intrinsic::vp_load:
1479     case Intrinsic::vp_store:
1480     case Intrinsic::experimental_vp_strided_load:
1481     case Intrinsic::experimental_vp_strided_store: {
1482       auto *VPI = cast<VPIntrinsic>(CI);
1483       unsigned IID = CI->getIntrinsicID();
1484       bool IsWrite = CI->getType()->isVoidTy();
1485       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1486         return;
1487       unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID);
1488       Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1489       MaybeAlign Alignment = VPI->getOperand(PtrOpNo)->getPointerAlignment(*DL);
1490       Value *Stride = nullptr;
1491       if (IID == Intrinsic::experimental_vp_strided_store ||
1492           IID == Intrinsic::experimental_vp_strided_load) {
1493         Stride = VPI->getOperand(PtrOpNo + 1);
1494         // Use the pointer alignment as the element alignment if the stride is a
1495         // mutiple of the pointer alignment. Otherwise, the element alignment
1496         // should be Align(1).
1497         unsigned PointerAlign = Alignment.valueOrOne().value();
1498         if (!isa<ConstantInt>(Stride) ||
1499             cast<ConstantInt>(Stride)->getZExtValue() % PointerAlign != 0)
1500           Alignment = Align(1);
1501       }
1502       Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment,
1503                                VPI->getMaskParam(), VPI->getVectorLengthParam(),
1504                                Stride);
1505       break;
1506     }
1507     case Intrinsic::vp_gather:
1508     case Intrinsic::vp_scatter: {
1509       auto *VPI = cast<VPIntrinsic>(CI);
1510       unsigned IID = CI->getIntrinsicID();
1511       bool IsWrite = IID == Intrinsic::vp_scatter;
1512       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1513         return;
1514       unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID);
1515       Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1516       MaybeAlign Alignment = VPI->getPointerAlignment();
1517       Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment,
1518                                VPI->getMaskParam(),
1519                                VPI->getVectorLengthParam());
1520       break;
1521     }
1522     default:
1523       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) {
1524         if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1525             ignoreAccess(I, CI->getArgOperand(ArgNo)))
1526           continue;
1527         Type *Ty = CI->getParamByValType(ArgNo);
1528         Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1529       }
1530     }
1531   }
1532 }
1533 
1534 static bool isPointerOperand(Value *V) {
1535   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1536 }
1537 
1538 // This is a rough heuristic; it may cause both false positives and
1539 // false negatives. The proper implementation requires cooperation with
1540 // the frontend.
1541 static bool isInterestingPointerComparison(Instruction *I) {
1542   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1543     if (!Cmp->isRelational())
1544       return false;
1545   } else {
1546     return false;
1547   }
1548   return isPointerOperand(I->getOperand(0)) &&
1549          isPointerOperand(I->getOperand(1));
1550 }
1551 
1552 // This is a rough heuristic; it may cause both false positives and
1553 // false negatives. The proper implementation requires cooperation with
1554 // the frontend.
1555 static bool isInterestingPointerSubtraction(Instruction *I) {
1556   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1557     if (BO->getOpcode() != Instruction::Sub)
1558       return false;
1559   } else {
1560     return false;
1561   }
1562   return isPointerOperand(I->getOperand(0)) &&
1563          isPointerOperand(I->getOperand(1));
1564 }
1565 
1566 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1567   // If a global variable does not have dynamic initialization we don't
1568   // have to instrument it.  However, if a global does not have initializer
1569   // at all, we assume it has dynamic initializer (in other TU).
1570   if (!G->hasInitializer())
1571     return false;
1572 
1573   if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit)
1574     return false;
1575 
1576   return true;
1577 }
1578 
1579 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1580     Instruction *I, RuntimeCallInserter &RTCI) {
1581   IRBuilder<> IRB(I);
1582   FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1583   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1584   for (Value *&i : Param) {
1585     if (i->getType()->isPointerTy())
1586       i = IRB.CreatePointerCast(i, IntptrTy);
1587   }
1588   RTCI.createRuntimeCall(IRB, F, Param);
1589 }
1590 
1591 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1592                                 Instruction *InsertBefore, Value *Addr,
1593                                 MaybeAlign Alignment, unsigned Granularity,
1594                                 TypeSize TypeStoreSize, bool IsWrite,
1595                                 Value *SizeArgument, bool UseCalls,
1596                                 uint32_t Exp, RuntimeCallInserter &RTCI) {
1597   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1598   // if the data is properly aligned.
1599   if (!TypeStoreSize.isScalable()) {
1600     const auto FixedSize = TypeStoreSize.getFixedValue();
1601     switch (FixedSize) {
1602     case 8:
1603     case 16:
1604     case 32:
1605     case 64:
1606     case 128:
1607       if (!Alignment || *Alignment >= Granularity ||
1608           *Alignment >= FixedSize / 8)
1609         return Pass->instrumentAddress(I, InsertBefore, Addr, Alignment,
1610                                        FixedSize, IsWrite, nullptr, UseCalls,
1611                                        Exp, RTCI);
1612     }
1613   }
1614   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeStoreSize,
1615                                          IsWrite, nullptr, UseCalls, Exp, RTCI);
1616 }
1617 
1618 void AddressSanitizer::instrumentMaskedLoadOrStore(
1619     AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask,
1620     Value *EVL, Value *Stride, Instruction *I, Value *Addr,
1621     MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite,
1622     Value *SizeArgument, bool UseCalls, uint32_t Exp,
1623     RuntimeCallInserter &RTCI) {
1624   auto *VTy = cast<VectorType>(OpType);
1625   TypeSize ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1626   auto Zero = ConstantInt::get(IntptrTy, 0);
1627 
1628   IRBuilder IB(I);
1629   Instruction *LoopInsertBefore = I;
1630   if (EVL) {
1631     // The end argument of SplitBlockAndInsertForLane is assumed bigger
1632     // than zero, so we should check whether EVL is zero here.
1633     Type *EVLType = EVL->getType();
1634     Value *IsEVLZero = IB.CreateICmpNE(EVL, ConstantInt::get(EVLType, 0));
1635     LoopInsertBefore = SplitBlockAndInsertIfThen(IsEVLZero, I, false);
1636     IB.SetInsertPoint(LoopInsertBefore);
1637     // Cast EVL to IntptrTy.
1638     EVL = IB.CreateZExtOrTrunc(EVL, IntptrTy);
1639     // To avoid undefined behavior for extracting with out of range index, use
1640     // the minimum of evl and element count as trip count.
1641     Value *EC = IB.CreateElementCount(IntptrTy, VTy->getElementCount());
1642     EVL = IB.CreateBinaryIntrinsic(Intrinsic::umin, EVL, EC);
1643   } else {
1644     EVL = IB.CreateElementCount(IntptrTy, VTy->getElementCount());
1645   }
1646 
1647   // Cast Stride to IntptrTy.
1648   if (Stride)
1649     Stride = IB.CreateZExtOrTrunc(Stride, IntptrTy);
1650 
1651   SplitBlockAndInsertForEachLane(EVL, LoopInsertBefore,
1652                                  [&](IRBuilderBase &IRB, Value *Index) {
1653     Value *MaskElem = IRB.CreateExtractElement(Mask, Index);
1654     if (auto *MaskElemC = dyn_cast<ConstantInt>(MaskElem)) {
1655       if (MaskElemC->isZero())
1656         // No check
1657         return;
1658       // Unconditional check
1659     } else {
1660       // Conditional check
1661       Instruction *ThenTerm = SplitBlockAndInsertIfThen(
1662           MaskElem, &*IRB.GetInsertPoint(), false);
1663       IRB.SetInsertPoint(ThenTerm);
1664     }
1665 
1666     Value *InstrumentedAddress;
1667     if (isa<VectorType>(Addr->getType())) {
1668       assert(
1669           cast<VectorType>(Addr->getType())->getElementType()->isPointerTy() &&
1670           "Expected vector of pointer.");
1671       InstrumentedAddress = IRB.CreateExtractElement(Addr, Index);
1672     } else if (Stride) {
1673       Index = IRB.CreateMul(Index, Stride);
1674       InstrumentedAddress = IRB.CreatePtrAdd(Addr, Index);
1675     } else {
1676       InstrumentedAddress = IRB.CreateGEP(VTy, Addr, {Zero, Index});
1677     }
1678     doInstrumentAddress(Pass, I, &*IRB.GetInsertPoint(), InstrumentedAddress,
1679                         Alignment, Granularity, ElemTypeSize, IsWrite,
1680                         SizeArgument, UseCalls, Exp, RTCI);
1681   });
1682 }
1683 
1684 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1685                                      InterestingMemoryOperand &O, bool UseCalls,
1686                                      const DataLayout &DL,
1687                                      RuntimeCallInserter &RTCI) {
1688   Value *Addr = O.getPtr();
1689 
1690   // Optimization experiments.
1691   // The experiments can be used to evaluate potential optimizations that remove
1692   // instrumentation (assess false negatives). Instead of completely removing
1693   // some instrumentation, you set Exp to a non-zero value (mask of optimization
1694   // experiments that want to remove instrumentation of this instruction).
1695   // If Exp is non-zero, this pass will emit special calls into runtime
1696   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1697   // make runtime terminate the program in a special way (with a different
1698   // exit status). Then you run the new compiler on a buggy corpus, collect
1699   // the special terminations (ideally, you don't see them at all -- no false
1700   // negatives) and make the decision on the optimization.
1701   uint32_t Exp = ClForceExperiment;
1702 
1703   if (ClOpt && ClOptGlobals) {
1704     // If initialization order checking is disabled, a simple access to a
1705     // dynamically initialized global is always valid.
1706     GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1707     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1708         isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) {
1709       NumOptimizedAccessesToGlobalVar++;
1710       return;
1711     }
1712   }
1713 
1714   if (ClOpt && ClOptStack) {
1715     // A direct inbounds access to a stack variable is always valid.
1716     if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1717         isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) {
1718       NumOptimizedAccessesToStackVar++;
1719       return;
1720     }
1721   }
1722 
1723   if (O.IsWrite)
1724     NumInstrumentedWrites++;
1725   else
1726     NumInstrumentedReads++;
1727 
1728   unsigned Granularity = 1 << Mapping.Scale;
1729   if (O.MaybeMask) {
1730     instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.MaybeEVL,
1731                                 O.MaybeStride, O.getInsn(), Addr, O.Alignment,
1732                                 Granularity, O.OpType, O.IsWrite, nullptr,
1733                                 UseCalls, Exp, RTCI);
1734   } else {
1735     doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1736                         Granularity, O.TypeStoreSize, O.IsWrite, nullptr,
1737                         UseCalls, Exp, RTCI);
1738   }
1739 }
1740 
1741 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1742                                                  Value *Addr, bool IsWrite,
1743                                                  size_t AccessSizeIndex,
1744                                                  Value *SizeArgument,
1745                                                  uint32_t Exp,
1746                                                  RuntimeCallInserter &RTCI) {
1747   InstrumentationIRBuilder IRB(InsertBefore);
1748   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1749   CallInst *Call = nullptr;
1750   if (SizeArgument) {
1751     if (Exp == 0)
1752       Call = RTCI.createRuntimeCall(IRB, AsanErrorCallbackSized[IsWrite][0],
1753                                     {Addr, SizeArgument});
1754     else
1755       Call = RTCI.createRuntimeCall(IRB, AsanErrorCallbackSized[IsWrite][1],
1756                                     {Addr, SizeArgument, ExpVal});
1757   } else {
1758     if (Exp == 0)
1759       Call = RTCI.createRuntimeCall(
1760           IRB, AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1761     else
1762       Call = RTCI.createRuntimeCall(
1763           IRB, AsanErrorCallback[IsWrite][1][AccessSizeIndex], {Addr, ExpVal});
1764   }
1765 
1766   Call->setCannotMerge();
1767   return Call;
1768 }
1769 
1770 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1771                                            Value *ShadowValue,
1772                                            uint32_t TypeStoreSize) {
1773   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1774   // Addr & (Granularity - 1)
1775   Value *LastAccessedByte =
1776       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1777   // (Addr & (Granularity - 1)) + size - 1
1778   if (TypeStoreSize / 8 > 1)
1779     LastAccessedByte = IRB.CreateAdd(
1780         LastAccessedByte, ConstantInt::get(IntptrTy, TypeStoreSize / 8 - 1));
1781   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1782   LastAccessedByte =
1783       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1784   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1785   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1786 }
1787 
1788 Instruction *AddressSanitizer::instrumentAMDGPUAddress(
1789     Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
1790     uint32_t TypeStoreSize, bool IsWrite, Value *SizeArgument) {
1791   // Do not instrument unsupported addrspaces.
1792   if (isUnsupportedAMDGPUAddrspace(Addr))
1793     return nullptr;
1794   Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1795   // Follow host instrumentation for global and constant addresses.
1796   if (PtrTy->getPointerAddressSpace() != 0)
1797     return InsertBefore;
1798   // Instrument generic addresses in supported addressspaces.
1799   IRBuilder<> IRB(InsertBefore);
1800   Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {Addr});
1801   Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {Addr});
1802   Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
1803   Value *Cmp = IRB.CreateNot(IsSharedOrPrivate);
1804   Value *AddrSpaceZeroLanding =
1805       SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
1806   InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
1807   return InsertBefore;
1808 }
1809 
1810 Instruction *AddressSanitizer::genAMDGPUReportBlock(IRBuilder<> &IRB,
1811                                                     Value *Cond, bool Recover) {
1812   Module &M = *IRB.GetInsertBlock()->getModule();
1813   Value *ReportCond = Cond;
1814   if (!Recover) {
1815     auto Ballot = M.getOrInsertFunction(kAMDGPUBallotName, IRB.getInt64Ty(),
1816                                         IRB.getInt1Ty());
1817     ReportCond = IRB.CreateIsNotNull(IRB.CreateCall(Ballot, {Cond}));
1818   }
1819 
1820   auto *Trm =
1821       SplitBlockAndInsertIfThen(ReportCond, &*IRB.GetInsertPoint(), false,
1822                                 MDBuilder(*C).createUnlikelyBranchWeights());
1823   Trm->getParent()->setName("asan.report");
1824 
1825   if (Recover)
1826     return Trm;
1827 
1828   Trm = SplitBlockAndInsertIfThen(Cond, Trm, false);
1829   IRB.SetInsertPoint(Trm);
1830   return IRB.CreateCall(
1831       M.getOrInsertFunction(kAMDGPUUnreachableName, IRB.getVoidTy()), {});
1832 }
1833 
1834 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1835                                          Instruction *InsertBefore, Value *Addr,
1836                                          MaybeAlign Alignment,
1837                                          uint32_t TypeStoreSize, bool IsWrite,
1838                                          Value *SizeArgument, bool UseCalls,
1839                                          uint32_t Exp,
1840                                          RuntimeCallInserter &RTCI) {
1841   if (TargetTriple.isAMDGPU()) {
1842     InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
1843                                            TypeStoreSize, IsWrite, SizeArgument);
1844     if (!InsertBefore)
1845       return;
1846   }
1847 
1848   InstrumentationIRBuilder IRB(InsertBefore);
1849   size_t AccessSizeIndex = TypeStoreSizeToSizeIndex(TypeStoreSize);
1850   const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1851 
1852   if (UseCalls && ClOptimizeCallbacks) {
1853     const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1854     Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1855     IRB.CreateCall(
1856         Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess),
1857         {IRB.CreatePointerCast(Addr, PtrTy),
1858          ConstantInt::get(Int32Ty, AccessInfo.Packed)});
1859     return;
1860   }
1861 
1862   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1863   if (UseCalls) {
1864     if (Exp == 0)
1865       RTCI.createRuntimeCall(
1866           IRB, AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], AddrLong);
1867     else
1868       RTCI.createRuntimeCall(
1869           IRB, AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1870           {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1871     return;
1872   }
1873 
1874   Type *ShadowTy =
1875       IntegerType::get(*C, std::max(8U, TypeStoreSize >> Mapping.Scale));
1876   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1877   Value *ShadowPtr = memToShadow(AddrLong, IRB);
1878   const uint64_t ShadowAlign =
1879       std::max<uint64_t>(Alignment.valueOrOne().value() >> Mapping.Scale, 1);
1880   Value *ShadowValue = IRB.CreateAlignedLoad(
1881       ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy), Align(ShadowAlign));
1882 
1883   Value *Cmp = IRB.CreateIsNotNull(ShadowValue);
1884   size_t Granularity = 1ULL << Mapping.Scale;
1885   Instruction *CrashTerm = nullptr;
1886 
1887   bool GenSlowPath = (ClAlwaysSlowPath || (TypeStoreSize < 8 * Granularity));
1888 
1889   if (TargetTriple.isAMDGCN()) {
1890     if (GenSlowPath) {
1891       auto *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize);
1892       Cmp = IRB.CreateAnd(Cmp, Cmp2);
1893     }
1894     CrashTerm = genAMDGPUReportBlock(IRB, Cmp, Recover);
1895   } else if (GenSlowPath) {
1896     // We use branch weights for the slow path check, to indicate that the slow
1897     // path is rarely taken. This seems to be the case for SPEC benchmarks.
1898     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1899         Cmp, InsertBefore, false, MDBuilder(*C).createUnlikelyBranchWeights());
1900     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1901     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1902     IRB.SetInsertPoint(CheckTerm);
1903     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize);
1904     if (Recover) {
1905       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1906     } else {
1907       BasicBlock *CrashBlock =
1908         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1909       CrashTerm = new UnreachableInst(*C, CrashBlock);
1910       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1911       ReplaceInstWithInst(CheckTerm, NewTerm);
1912     }
1913   } else {
1914     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1915   }
1916 
1917   Instruction *Crash = generateCrashCode(
1918       CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument, Exp, RTCI);
1919   if (OrigIns->getDebugLoc())
1920     Crash->setDebugLoc(OrigIns->getDebugLoc());
1921 }
1922 
1923 // Instrument unusual size or unusual alignment.
1924 // We can not do it with a single check, so we do 1-byte check for the first
1925 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1926 // to report the actual access size.
1927 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1928     Instruction *I, Instruction *InsertBefore, Value *Addr,
1929     TypeSize TypeStoreSize, bool IsWrite, Value *SizeArgument, bool UseCalls,
1930     uint32_t Exp, RuntimeCallInserter &RTCI) {
1931   InstrumentationIRBuilder IRB(InsertBefore);
1932   Value *NumBits = IRB.CreateTypeSize(IntptrTy, TypeStoreSize);
1933   Value *Size = IRB.CreateLShr(NumBits, ConstantInt::get(IntptrTy, 3));
1934 
1935   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1936   if (UseCalls) {
1937     if (Exp == 0)
1938       RTCI.createRuntimeCall(IRB, AsanMemoryAccessCallbackSized[IsWrite][0],
1939                              {AddrLong, Size});
1940     else
1941       RTCI.createRuntimeCall(
1942           IRB, AsanMemoryAccessCallbackSized[IsWrite][1],
1943           {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1944   } else {
1945     Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1));
1946     Value *LastByte = IRB.CreateIntToPtr(
1947         IRB.CreateAdd(AddrLong, SizeMinusOne),
1948         Addr->getType());
1949     instrumentAddress(I, InsertBefore, Addr, {}, 8, IsWrite, Size, false, Exp,
1950                       RTCI);
1951     instrumentAddress(I, InsertBefore, LastByte, {}, 8, IsWrite, Size, false,
1952                       Exp, RTCI);
1953   }
1954 }
1955 
1956 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1957                                                   GlobalValue *ModuleName) {
1958   // Set up the arguments to our poison/unpoison functions.
1959   IRBuilder<> IRB(&GlobalInit.front(),
1960                   GlobalInit.front().getFirstInsertionPt());
1961 
1962   // Add a call to poison all external globals before the given function starts.
1963   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1964   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1965 
1966   // Add calls to unpoison all globals before each return instruction.
1967   for (auto &BB : GlobalInit)
1968     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1969       CallInst::Create(AsanUnpoisonGlobals, "", RI->getIterator());
1970 }
1971 
1972 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1973     Module &M, GlobalValue *ModuleName) {
1974   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1975   if (!GV)
1976     return;
1977 
1978   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1979   if (!CA)
1980     return;
1981 
1982   for (Use &OP : CA->operands()) {
1983     if (isa<ConstantAggregateZero>(OP)) continue;
1984     ConstantStruct *CS = cast<ConstantStruct>(OP);
1985 
1986     // Must have a function or null ptr.
1987     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1988       if (F->getName() == kAsanModuleCtorName) continue;
1989       auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1990       // Don't instrument CTORs that will run before asan.module_ctor.
1991       if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1992         continue;
1993       poisonOneInitializer(*F, ModuleName);
1994     }
1995   }
1996 }
1997 
1998 const GlobalVariable *
1999 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
2000   // In case this function should be expanded to include rules that do not just
2001   // apply when CompileKernel is true, either guard all existing rules with an
2002   // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
2003   // should also apply to user space.
2004   assert(CompileKernel && "Only expecting to be called when compiling kernel");
2005 
2006   const Constant *C = GA.getAliasee();
2007 
2008   // When compiling the kernel, globals that are aliased by symbols prefixed
2009   // by "__" are special and cannot be padded with a redzone.
2010   if (GA.getName().starts_with("__"))
2011     return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
2012 
2013   return nullptr;
2014 }
2015 
2016 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
2017   Type *Ty = G->getValueType();
2018   LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
2019 
2020   if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress)
2021     return false;
2022   if (!Ty->isSized()) return false;
2023   if (!G->hasInitializer()) return false;
2024   // Globals in address space 1 and 4 are supported for AMDGPU.
2025   if (G->getAddressSpace() &&
2026       !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
2027     return false;
2028   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
2029   // Two problems with thread-locals:
2030   //   - The address of the main thread's copy can't be computed at link-time.
2031   //   - Need to poison all copies, not just the main thread's one.
2032   if (G->isThreadLocal()) return false;
2033   // For now, just ignore this Global if the alignment is large.
2034   if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false;
2035 
2036   // For non-COFF targets, only instrument globals known to be defined by this
2037   // TU.
2038   // FIXME: We can instrument comdat globals on ELF if we are using the
2039   // GC-friendly metadata scheme.
2040   if (!TargetTriple.isOSBinFormatCOFF()) {
2041     if (!G->hasExactDefinition() || G->hasComdat())
2042       return false;
2043   } else {
2044     // On COFF, don't instrument non-ODR linkages.
2045     if (G->isInterposable())
2046       return false;
2047     // If the global has AvailableExternally linkage, then it is not in this
2048     // module, which means it does not need to be instrumented.
2049     if (G->hasAvailableExternallyLinkage())
2050       return false;
2051   }
2052 
2053   // If a comdat is present, it must have a selection kind that implies ODR
2054   // semantics: no duplicates, any, or exact match.
2055   if (Comdat *C = G->getComdat()) {
2056     switch (C->getSelectionKind()) {
2057     case Comdat::Any:
2058     case Comdat::ExactMatch:
2059     case Comdat::NoDeduplicate:
2060       break;
2061     case Comdat::Largest:
2062     case Comdat::SameSize:
2063       return false;
2064     }
2065   }
2066 
2067   if (G->hasSection()) {
2068     // The kernel uses explicit sections for mostly special global variables
2069     // that we should not instrument. E.g. the kernel may rely on their layout
2070     // without redzones, or remove them at link time ("discard.*"), etc.
2071     if (CompileKernel)
2072       return false;
2073 
2074     StringRef Section = G->getSection();
2075 
2076     // Globals from llvm.metadata aren't emitted, do not instrument them.
2077     if (Section == "llvm.metadata") return false;
2078     // Do not instrument globals from special LLVM sections.
2079     if (Section.contains("__llvm") || Section.contains("__LLVM"))
2080       return false;
2081 
2082     // Do not instrument function pointers to initialization and termination
2083     // routines: dynamic linker will not properly handle redzones.
2084     if (Section.starts_with(".preinit_array") ||
2085         Section.starts_with(".init_array") ||
2086         Section.starts_with(".fini_array")) {
2087       return false;
2088     }
2089 
2090     // Do not instrument user-defined sections (with names resembling
2091     // valid C identifiers)
2092     if (TargetTriple.isOSBinFormatELF()) {
2093       if (llvm::all_of(Section,
2094                        [](char c) { return llvm::isAlnum(c) || c == '_'; }))
2095         return false;
2096     }
2097 
2098     // On COFF, if the section name contains '$', it is highly likely that the
2099     // user is using section sorting to create an array of globals similar to
2100     // the way initialization callbacks are registered in .init_array and
2101     // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
2102     // to such globals is counterproductive, because the intent is that they
2103     // will form an array, and out-of-bounds accesses are expected.
2104     // See https://github.com/google/sanitizers/issues/305
2105     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
2106     if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
2107       LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
2108                         << *G << "\n");
2109       return false;
2110     }
2111 
2112     if (TargetTriple.isOSBinFormatMachO()) {
2113       StringRef ParsedSegment, ParsedSection;
2114       unsigned TAA = 0, StubSize = 0;
2115       bool TAAParsed;
2116       cantFail(MCSectionMachO::ParseSectionSpecifier(
2117           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
2118 
2119       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
2120       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
2121       // them.
2122       if (ParsedSegment == "__OBJC" ||
2123           (ParsedSegment == "__DATA" && ParsedSection.starts_with("__objc_"))) {
2124         LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
2125         return false;
2126       }
2127       // See https://github.com/google/sanitizers/issues/32
2128       // Constant CFString instances are compiled in the following way:
2129       //  -- the string buffer is emitted into
2130       //     __TEXT,__cstring,cstring_literals
2131       //  -- the constant NSConstantString structure referencing that buffer
2132       //     is placed into __DATA,__cfstring
2133       // Therefore there's no point in placing redzones into __DATA,__cfstring.
2134       // Moreover, it causes the linker to crash on OS X 10.7
2135       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
2136         LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
2137         return false;
2138       }
2139       // The linker merges the contents of cstring_literals and removes the
2140       // trailing zeroes.
2141       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
2142         LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
2143         return false;
2144       }
2145     }
2146   }
2147 
2148   if (CompileKernel) {
2149     // Globals that prefixed by "__" are special and cannot be padded with a
2150     // redzone.
2151     if (G->getName().starts_with("__"))
2152       return false;
2153   }
2154 
2155   return true;
2156 }
2157 
2158 // On Mach-O platforms, we emit global metadata in a separate section of the
2159 // binary in order to allow the linker to properly dead strip. This is only
2160 // supported on recent versions of ld64.
2161 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2162   if (!TargetTriple.isOSBinFormatMachO())
2163     return false;
2164 
2165   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
2166     return true;
2167   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
2168     return true;
2169   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
2170     return true;
2171   if (TargetTriple.isDriverKit())
2172     return true;
2173   if (TargetTriple.isXROS())
2174     return true;
2175 
2176   return false;
2177 }
2178 
2179 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
2180   switch (TargetTriple.getObjectFormat()) {
2181   case Triple::COFF:  return ".ASAN$GL";
2182   case Triple::ELF:   return "asan_globals";
2183   case Triple::MachO: return "__DATA,__asan_globals,regular";
2184   case Triple::Wasm:
2185   case Triple::GOFF:
2186   case Triple::SPIRV:
2187   case Triple::XCOFF:
2188   case Triple::DXContainer:
2189     report_fatal_error(
2190         "ModuleAddressSanitizer not implemented for object file format");
2191   case Triple::UnknownObjectFormat:
2192     break;
2193   }
2194   llvm_unreachable("unsupported object format");
2195 }
2196 
2197 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
2198   IRBuilder<> IRB(*C);
2199 
2200   // Declare our poisoning and unpoisoning functions.
2201   AsanPoisonGlobals =
2202       M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2203   AsanUnpoisonGlobals =
2204       M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2205 
2206   // Declare functions that register/unregister globals.
2207   AsanRegisterGlobals = M.getOrInsertFunction(
2208       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2209   AsanUnregisterGlobals = M.getOrInsertFunction(
2210       kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2211 
2212   // Declare the functions that find globals in a shared object and then invoke
2213   // the (un)register function on them.
2214   AsanRegisterImageGlobals = M.getOrInsertFunction(
2215       kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2216   AsanUnregisterImageGlobals = M.getOrInsertFunction(
2217       kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2218 
2219   AsanRegisterElfGlobals =
2220       M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2221                             IntptrTy, IntptrTy, IntptrTy);
2222   AsanUnregisterElfGlobals =
2223       M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2224                             IntptrTy, IntptrTy, IntptrTy);
2225 }
2226 
2227 // Put the metadata and the instrumented global in the same group. This ensures
2228 // that the metadata is discarded if the instrumented global is discarded.
2229 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2230     GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2231   Module &M = *G->getParent();
2232   Comdat *C = G->getComdat();
2233   if (!C) {
2234     if (!G->hasName()) {
2235       // If G is unnamed, it must be internal. Give it an artificial name
2236       // so we can put it in a comdat.
2237       assert(G->hasLocalLinkage());
2238       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2239     }
2240 
2241     if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2242       std::string Name = std::string(G->getName());
2243       Name += InternalSuffix;
2244       C = M.getOrInsertComdat(Name);
2245     } else {
2246       C = M.getOrInsertComdat(G->getName());
2247     }
2248 
2249     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2250     // linkage to internal linkage so that a symbol table entry is emitted. This
2251     // is necessary in order to create the comdat group.
2252     if (TargetTriple.isOSBinFormatCOFF()) {
2253       C->setSelectionKind(Comdat::NoDeduplicate);
2254       if (G->hasPrivateLinkage())
2255         G->setLinkage(GlobalValue::InternalLinkage);
2256     }
2257     G->setComdat(C);
2258   }
2259 
2260   assert(G->hasComdat());
2261   Metadata->setComdat(G->getComdat());
2262 }
2263 
2264 // Create a separate metadata global and put it in the appropriate ASan
2265 // global registration section.
2266 GlobalVariable *
2267 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2268                                              StringRef OriginalName) {
2269   auto Linkage = TargetTriple.isOSBinFormatMachO()
2270                      ? GlobalVariable::InternalLinkage
2271                      : GlobalVariable::PrivateLinkage;
2272   GlobalVariable *Metadata = new GlobalVariable(
2273       M, Initializer->getType(), false, Linkage, Initializer,
2274       Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2275   Metadata->setSection(getGlobalMetadataSection());
2276   // Place metadata in a large section for x86-64 ELF binaries to mitigate
2277   // relocation pressure.
2278   setGlobalVariableLargeSection(TargetTriple, *Metadata);
2279   return Metadata;
2280 }
2281 
2282 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2283   AsanDtorFunction = Function::createWithDefaultAttr(
2284       FunctionType::get(Type::getVoidTy(*C), false),
2285       GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
2286   AsanDtorFunction->addFnAttr(Attribute::NoUnwind);
2287   // Ensure Dtor cannot be discarded, even if in a comdat.
2288   appendToUsed(M, {AsanDtorFunction});
2289   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2290 
2291   return ReturnInst::Create(*C, AsanDtorBB);
2292 }
2293 
2294 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2295     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2296     ArrayRef<Constant *> MetadataInitializers) {
2297   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2298   auto &DL = M.getDataLayout();
2299 
2300   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2301   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2302     Constant *Initializer = MetadataInitializers[i];
2303     GlobalVariable *G = ExtendedGlobals[i];
2304     GlobalVariable *Metadata =
2305         CreateMetadataGlobal(M, Initializer, G->getName());
2306     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2307     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2308     MetadataGlobals[i] = Metadata;
2309 
2310     // The MSVC linker always inserts padding when linking incrementally. We
2311     // cope with that by aligning each struct to its size, which must be a power
2312     // of two.
2313     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2314     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2315            "global metadata will not be padded appropriately");
2316     Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2317 
2318     SetComdatForGlobalMetadata(G, Metadata, "");
2319   }
2320 
2321   // Update llvm.compiler.used, adding the new metadata globals. This is
2322   // needed so that during LTO these variables stay alive.
2323   if (!MetadataGlobals.empty())
2324     appendToCompilerUsed(M, MetadataGlobals);
2325 }
2326 
2327 void ModuleAddressSanitizer::instrumentGlobalsELF(
2328     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2329     ArrayRef<Constant *> MetadataInitializers,
2330     const std::string &UniqueModuleId) {
2331   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2332 
2333   // Putting globals in a comdat changes the semantic and potentially cause
2334   // false negative odr violations at link time. If odr indicators are used, we
2335   // keep the comdat sections, as link time odr violations will be dectected on
2336   // the odr indicator symbols.
2337   bool UseComdatForGlobalsGC = UseOdrIndicator && !UniqueModuleId.empty();
2338 
2339   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2340   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2341     GlobalVariable *G = ExtendedGlobals[i];
2342     GlobalVariable *Metadata =
2343         CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2344     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2345     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2346     MetadataGlobals[i] = Metadata;
2347 
2348     if (UseComdatForGlobalsGC)
2349       SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2350   }
2351 
2352   // Update llvm.compiler.used, adding the new metadata globals. This is
2353   // needed so that during LTO these variables stay alive.
2354   if (!MetadataGlobals.empty())
2355     appendToCompilerUsed(M, MetadataGlobals);
2356 
2357   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2358   // to look up the loaded image that contains it. Second, we can store in it
2359   // whether registration has already occurred, to prevent duplicate
2360   // registration.
2361   //
2362   // Common linkage ensures that there is only one global per shared library.
2363   GlobalVariable *RegisteredFlag = new GlobalVariable(
2364       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2365       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2366   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2367 
2368   // Create start and stop symbols.
2369   GlobalVariable *StartELFMetadata = new GlobalVariable(
2370       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2371       "__start_" + getGlobalMetadataSection());
2372   StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2373   GlobalVariable *StopELFMetadata = new GlobalVariable(
2374       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2375       "__stop_" + getGlobalMetadataSection());
2376   StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2377 
2378   // Create a call to register the globals with the runtime.
2379   if (ConstructorKind == AsanCtorKind::Global)
2380     IRB.CreateCall(AsanRegisterElfGlobals,
2381                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2382                   IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2383                   IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2384 
2385   // We also need to unregister globals at the end, e.g., when a shared library
2386   // gets closed.
2387   if (DestructorKind != AsanDtorKind::None && !MetadataGlobals.empty()) {
2388     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2389     IrbDtor.CreateCall(AsanUnregisterElfGlobals,
2390                        {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2391                         IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2392                         IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2393   }
2394 }
2395 
2396 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2397     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2398     ArrayRef<Constant *> MetadataInitializers) {
2399   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2400 
2401   // On recent Mach-O platforms, use a structure which binds the liveness of
2402   // the global variable to the metadata struct. Keep the list of "Liveness" GV
2403   // created to be added to llvm.compiler.used
2404   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2405   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2406 
2407   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2408     Constant *Initializer = MetadataInitializers[i];
2409     GlobalVariable *G = ExtendedGlobals[i];
2410     GlobalVariable *Metadata =
2411         CreateMetadataGlobal(M, Initializer, G->getName());
2412 
2413     // On recent Mach-O platforms, we emit the global metadata in a way that
2414     // allows the linker to properly strip dead globals.
2415     auto LivenessBinder =
2416         ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2417                             ConstantExpr::getPointerCast(Metadata, IntptrTy));
2418     GlobalVariable *Liveness = new GlobalVariable(
2419         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2420         Twine("__asan_binder_") + G->getName());
2421     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2422     LivenessGlobals[i] = Liveness;
2423   }
2424 
2425   // Update llvm.compiler.used, adding the new liveness globals. This is
2426   // needed so that during LTO these variables stay alive. The alternative
2427   // would be to have the linker handling the LTO symbols, but libLTO
2428   // current API does not expose access to the section for each symbol.
2429   if (!LivenessGlobals.empty())
2430     appendToCompilerUsed(M, LivenessGlobals);
2431 
2432   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2433   // to look up the loaded image that contains it. Second, we can store in it
2434   // whether registration has already occurred, to prevent duplicate
2435   // registration.
2436   //
2437   // common linkage ensures that there is only one global per shared library.
2438   GlobalVariable *RegisteredFlag = new GlobalVariable(
2439       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2440       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2441   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2442 
2443   if (ConstructorKind == AsanCtorKind::Global)
2444     IRB.CreateCall(AsanRegisterImageGlobals,
2445                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2446 
2447   // We also need to unregister globals at the end, e.g., when a shared library
2448   // gets closed.
2449   if (DestructorKind != AsanDtorKind::None) {
2450     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2451     IrbDtor.CreateCall(AsanUnregisterImageGlobals,
2452                        {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2453   }
2454 }
2455 
2456 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2457     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2458     ArrayRef<Constant *> MetadataInitializers) {
2459   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2460   unsigned N = ExtendedGlobals.size();
2461   assert(N > 0);
2462 
2463   // On platforms that don't have a custom metadata section, we emit an array
2464   // of global metadata structures.
2465   ArrayType *ArrayOfGlobalStructTy =
2466       ArrayType::get(MetadataInitializers[0]->getType(), N);
2467   auto AllGlobals = new GlobalVariable(
2468       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2469       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2470   if (Mapping.Scale > 3)
2471     AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2472 
2473   if (ConstructorKind == AsanCtorKind::Global)
2474     IRB.CreateCall(AsanRegisterGlobals,
2475                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2476                   ConstantInt::get(IntptrTy, N)});
2477 
2478   // We also need to unregister globals at the end, e.g., when a shared library
2479   // gets closed.
2480   if (DestructorKind != AsanDtorKind::None) {
2481     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2482     IrbDtor.CreateCall(AsanUnregisterGlobals,
2483                        {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2484                         ConstantInt::get(IntptrTy, N)});
2485   }
2486 }
2487 
2488 // This function replaces all global variables with new variables that have
2489 // trailing redzones. It also creates a function that poisons
2490 // redzones and inserts this function into llvm.global_ctors.
2491 // Sets *CtorComdat to true if the global registration code emitted into the
2492 // asan constructor is comdat-compatible.
2493 void ModuleAddressSanitizer::instrumentGlobals(IRBuilder<> &IRB, Module &M,
2494                                                bool *CtorComdat) {
2495   // Build set of globals that are aliased by some GA, where
2496   // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2497   SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2498   if (CompileKernel) {
2499     for (auto &GA : M.aliases()) {
2500       if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
2501         AliasedGlobalExclusions.insert(GV);
2502     }
2503   }
2504 
2505   SmallVector<GlobalVariable *, 16> GlobalsToChange;
2506   for (auto &G : M.globals()) {
2507     if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2508       GlobalsToChange.push_back(&G);
2509   }
2510 
2511   size_t n = GlobalsToChange.size();
2512   auto &DL = M.getDataLayout();
2513 
2514   // A global is described by a structure
2515   //   size_t beg;
2516   //   size_t size;
2517   //   size_t size_with_redzone;
2518   //   const char *name;
2519   //   const char *module_name;
2520   //   size_t has_dynamic_init;
2521   //   size_t padding_for_windows_msvc_incremental_link;
2522   //   size_t odr_indicator;
2523   // We initialize an array of such structures and pass it to a run-time call.
2524   StructType *GlobalStructTy =
2525       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2526                       IntptrTy, IntptrTy, IntptrTy);
2527   SmallVector<GlobalVariable *, 16> NewGlobals(n);
2528   SmallVector<Constant *, 16> Initializers(n);
2529 
2530   bool HasDynamicallyInitializedGlobals = false;
2531 
2532   // We shouldn't merge same module names, as this string serves as unique
2533   // module ID in runtime.
2534   GlobalVariable *ModuleName =
2535       n != 0
2536           ? createPrivateGlobalForString(M, M.getModuleIdentifier(),
2537                                          /*AllowMerging*/ false, kAsanGenPrefix)
2538           : nullptr;
2539 
2540   for (size_t i = 0; i < n; i++) {
2541     GlobalVariable *G = GlobalsToChange[i];
2542 
2543     GlobalValue::SanitizerMetadata MD;
2544     if (G->hasSanitizerMetadata())
2545       MD = G->getSanitizerMetadata();
2546 
2547     // The runtime library tries demangling symbol names in the descriptor but
2548     // functionality like __cxa_demangle may be unavailable (e.g.
2549     // -static-libstdc++). So we demangle the symbol names here.
2550     std::string NameForGlobal = G->getName().str();
2551     GlobalVariable *Name =
2552         createPrivateGlobalForString(M, llvm::demangle(NameForGlobal),
2553                                      /*AllowMerging*/ true, kAsanGenPrefix);
2554 
2555     Type *Ty = G->getValueType();
2556     const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2557     const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2558     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2559 
2560     StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2561     Constant *NewInitializer = ConstantStruct::get(
2562         NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2563 
2564     // Create a new global variable with enough space for a redzone.
2565     GlobalValue::LinkageTypes Linkage = G->getLinkage();
2566     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2567       Linkage = GlobalValue::InternalLinkage;
2568     GlobalVariable *NewGlobal = new GlobalVariable(
2569         M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
2570         G->getThreadLocalMode(), G->getAddressSpace());
2571     NewGlobal->copyAttributesFrom(G);
2572     NewGlobal->setComdat(G->getComdat());
2573     NewGlobal->setAlignment(Align(getMinRedzoneSizeForGlobal()));
2574     // Don't fold globals with redzones. ODR violation detector and redzone
2575     // poisoning implicitly creates a dependence on the global's address, so it
2576     // is no longer valid for it to be marked unnamed_addr.
2577     NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2578 
2579     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2580     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2581         G->isConstant()) {
2582       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2583       if (Seq && Seq->isCString())
2584         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2585     }
2586 
2587     // Transfer the debug info and type metadata.  The payload starts at offset
2588     // zero so we can copy the metadata over as is.
2589     NewGlobal->copyMetadata(G, 0);
2590 
2591     Value *Indices2[2];
2592     Indices2[0] = IRB.getInt32(0);
2593     Indices2[1] = IRB.getInt32(0);
2594 
2595     G->replaceAllUsesWith(
2596         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2597     NewGlobal->takeName(G);
2598     G->eraseFromParent();
2599     NewGlobals[i] = NewGlobal;
2600 
2601     Constant *ODRIndicator = ConstantPointerNull::get(PtrTy);
2602     GlobalValue *InstrumentedGlobal = NewGlobal;
2603 
2604     bool CanUsePrivateAliases =
2605         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2606         TargetTriple.isOSBinFormatWasm();
2607     if (CanUsePrivateAliases && UsePrivateAlias) {
2608       // Create local alias for NewGlobal to avoid crash on ODR between
2609       // instrumented and non-instrumented libraries.
2610       InstrumentedGlobal =
2611           GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2612     }
2613 
2614     // ODR should not happen for local linkage.
2615     if (NewGlobal->hasLocalLinkage()) {
2616       ODRIndicator =
2617           ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), PtrTy);
2618     } else if (UseOdrIndicator) {
2619       // With local aliases, we need to provide another externally visible
2620       // symbol __odr_asan_XXX to detect ODR violation.
2621       auto *ODRIndicatorSym =
2622           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2623                              Constant::getNullValue(IRB.getInt8Ty()),
2624                              kODRGenPrefix + NameForGlobal, nullptr,
2625                              NewGlobal->getThreadLocalMode());
2626 
2627       // Set meaningful attributes for indicator symbol.
2628       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2629       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2630       ODRIndicatorSym->setAlignment(Align(1));
2631       ODRIndicator = ODRIndicatorSym;
2632     }
2633 
2634     Constant *Initializer = ConstantStruct::get(
2635         GlobalStructTy,
2636         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2637         ConstantInt::get(IntptrTy, SizeInBytes),
2638         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2639         ConstantExpr::getPointerCast(Name, IntptrTy),
2640         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2641         ConstantInt::get(IntptrTy, MD.IsDynInit),
2642         Constant::getNullValue(IntptrTy),
2643         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2644 
2645     if (ClInitializers && MD.IsDynInit)
2646       HasDynamicallyInitializedGlobals = true;
2647 
2648     LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2649 
2650     Initializers[i] = Initializer;
2651   }
2652 
2653   // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2654   // ConstantMerge'ing them.
2655   SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2656   for (size_t i = 0; i < n; i++) {
2657     GlobalVariable *G = NewGlobals[i];
2658     if (G->getName().empty()) continue;
2659     GlobalsToAddToUsedList.push_back(G);
2660   }
2661   appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2662 
2663   if (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) {
2664     // Use COMDAT and register globals even if n == 0 to ensure that (a) the
2665     // linkage unit will only have one module constructor, and (b) the register
2666     // function will be called. The module destructor is not created when n ==
2667     // 0.
2668     *CtorComdat = true;
2669     instrumentGlobalsELF(IRB, M, NewGlobals, Initializers,
2670                          getUniqueModuleId(&M));
2671   } else if (n == 0) {
2672     // When UseGlobalsGC is false, COMDAT can still be used if n == 0, because
2673     // all compile units will have identical module constructor/destructor.
2674     *CtorComdat = TargetTriple.isOSBinFormatELF();
2675   } else {
2676     *CtorComdat = false;
2677     if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2678       InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2679     } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2680       InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2681     } else {
2682       InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2683     }
2684   }
2685 
2686   // Create calls for poisoning before initializers run and unpoisoning after.
2687   if (HasDynamicallyInitializedGlobals)
2688     createInitializerPoisonCalls(M, ModuleName);
2689 
2690   LLVM_DEBUG(dbgs() << M);
2691 }
2692 
2693 uint64_t
2694 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2695   constexpr uint64_t kMaxRZ = 1 << 18;
2696   const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2697 
2698   uint64_t RZ = 0;
2699   if (SizeInBytes <= MinRZ / 2) {
2700     // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2701     // at least 32 bytes, optimize when SizeInBytes is less than or equal to
2702     // half of MinRZ.
2703     RZ = MinRZ - SizeInBytes;
2704   } else {
2705     // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2706     RZ = std::clamp((SizeInBytes / MinRZ / 4) * MinRZ, MinRZ, kMaxRZ);
2707 
2708     // Round up to multiple of MinRZ.
2709     if (SizeInBytes % MinRZ)
2710       RZ += MinRZ - (SizeInBytes % MinRZ);
2711   }
2712 
2713   assert((RZ + SizeInBytes) % MinRZ == 0);
2714 
2715   return RZ;
2716 }
2717 
2718 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2719   int LongSize = M.getDataLayout().getPointerSizeInBits();
2720   bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2721   int Version = 8;
2722   // 32-bit Android is one version ahead because of the switch to dynamic
2723   // shadow.
2724   Version += (LongSize == 32 && isAndroid);
2725   return Version;
2726 }
2727 
2728 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2729   initializeCallbacks(M);
2730 
2731   // Create a module constructor. A destructor is created lazily because not all
2732   // platforms, and not all modules need it.
2733   if (ConstructorKind == AsanCtorKind::Global) {
2734     if (CompileKernel) {
2735       // The kernel always builds with its own runtime, and therefore does not
2736       // need the init and version check calls.
2737       AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2738     } else {
2739       std::string AsanVersion = std::to_string(GetAsanVersion(M));
2740       std::string VersionCheckName =
2741           InsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2742       std::tie(AsanCtorFunction, std::ignore) =
2743           createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2744                                               kAsanInitName, /*InitArgTypes=*/{},
2745                                               /*InitArgs=*/{}, VersionCheckName);
2746     }
2747   }
2748 
2749   bool CtorComdat = true;
2750   if (ClGlobals) {
2751     assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None);
2752     if (AsanCtorFunction) {
2753       IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2754       instrumentGlobals(IRB, M, &CtorComdat);
2755     } else {
2756       IRBuilder<> IRB(*C);
2757       instrumentGlobals(IRB, M, &CtorComdat);
2758     }
2759   }
2760 
2761   const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2762 
2763   // Put the constructor and destructor in comdat if both
2764   // (1) global instrumentation is not TU-specific
2765   // (2) target is ELF.
2766   if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2767     if (AsanCtorFunction) {
2768       AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2769       appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2770     }
2771     if (AsanDtorFunction) {
2772       AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2773       appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2774     }
2775   } else {
2776     if (AsanCtorFunction)
2777       appendToGlobalCtors(M, AsanCtorFunction, Priority);
2778     if (AsanDtorFunction)
2779       appendToGlobalDtors(M, AsanDtorFunction, Priority);
2780   }
2781 
2782   return true;
2783 }
2784 
2785 void AddressSanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo *TLI) {
2786   IRBuilder<> IRB(*C);
2787   // Create __asan_report* callbacks.
2788   // IsWrite, TypeSize and Exp are encoded in the function name.
2789   for (int Exp = 0; Exp < 2; Exp++) {
2790     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2791       const std::string TypeStr = AccessIsWrite ? "store" : "load";
2792       const std::string ExpStr = Exp ? "exp_" : "";
2793       const std::string EndingStr = Recover ? "_noabort" : "";
2794 
2795       SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2796       SmallVector<Type *, 2> Args1{1, IntptrTy};
2797       AttributeList AL2;
2798       AttributeList AL1;
2799       if (Exp) {
2800         Type *ExpType = Type::getInt32Ty(*C);
2801         Args2.push_back(ExpType);
2802         Args1.push_back(ExpType);
2803         if (auto AK = TLI->getExtAttrForI32Param(false)) {
2804           AL2 = AL2.addParamAttribute(*C, 2, AK);
2805           AL1 = AL1.addParamAttribute(*C, 1, AK);
2806         }
2807       }
2808       AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2809           kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2810           FunctionType::get(IRB.getVoidTy(), Args2, false), AL2);
2811 
2812       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2813           ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2814           FunctionType::get(IRB.getVoidTy(), Args2, false), AL2);
2815 
2816       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2817            AccessSizeIndex++) {
2818         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2819         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2820             M.getOrInsertFunction(
2821                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2822                 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1);
2823 
2824         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2825             M.getOrInsertFunction(
2826                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2827                 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1);
2828       }
2829     }
2830   }
2831 
2832   const std::string MemIntrinCallbackPrefix =
2833       (CompileKernel && !ClKasanMemIntrinCallbackPrefix)
2834           ? std::string("")
2835           : ClMemoryAccessCallbackPrefix;
2836   AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2837                                       PtrTy, PtrTy, PtrTy, IntptrTy);
2838   AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", PtrTy,
2839                                      PtrTy, PtrTy, IntptrTy);
2840   AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2841                                      TLI->getAttrList(C, {1}, /*Signed=*/false),
2842                                      PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy);
2843 
2844   AsanHandleNoReturnFunc =
2845       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2846 
2847   AsanPtrCmpFunction =
2848       M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2849   AsanPtrSubFunction =
2850       M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2851   if (Mapping.InGlobal)
2852     AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2853                                            ArrayType::get(IRB.getInt8Ty(), 0));
2854 
2855   AMDGPUAddressShared =
2856       M.getOrInsertFunction(kAMDGPUAddressSharedName, IRB.getInt1Ty(), PtrTy);
2857   AMDGPUAddressPrivate =
2858       M.getOrInsertFunction(kAMDGPUAddressPrivateName, IRB.getInt1Ty(), PtrTy);
2859 }
2860 
2861 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2862   // For each NSObject descendant having a +load method, this method is invoked
2863   // by the ObjC runtime before any of the static constructors is called.
2864   // Therefore we need to instrument such methods with a call to __asan_init
2865   // at the beginning in order to initialize our runtime before any access to
2866   // the shadow memory.
2867   // We cannot just ignore these methods, because they may call other
2868   // instrumented functions.
2869   if (F.getName().contains(" load]")) {
2870     FunctionCallee AsanInitFunction =
2871         declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2872     IRBuilder<> IRB(&F.front(), F.front().begin());
2873     IRB.CreateCall(AsanInitFunction, {});
2874     return true;
2875   }
2876   return false;
2877 }
2878 
2879 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2880   // Generate code only when dynamic addressing is needed.
2881   if (Mapping.Offset != kDynamicShadowSentinel)
2882     return false;
2883 
2884   IRBuilder<> IRB(&F.front().front());
2885   if (Mapping.InGlobal) {
2886     if (ClWithIfuncSuppressRemat) {
2887       // An empty inline asm with input reg == output reg.
2888       // An opaque pointer-to-int cast, basically.
2889       InlineAsm *Asm = InlineAsm::get(
2890           FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2891           StringRef(""), StringRef("=r,0"),
2892           /*hasSideEffects=*/false);
2893       LocalDynamicShadow =
2894           IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2895     } else {
2896       LocalDynamicShadow =
2897           IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2898     }
2899   } else {
2900     Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2901         kAsanShadowMemoryDynamicAddress, IntptrTy);
2902     LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2903   }
2904   return true;
2905 }
2906 
2907 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2908   // Find the one possible call to llvm.localescape and pre-mark allocas passed
2909   // to it as uninteresting. This assumes we haven't started processing allocas
2910   // yet. This check is done up front because iterating the use list in
2911   // isInterestingAlloca would be algorithmically slower.
2912   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2913 
2914   // Try to get the declaration of llvm.localescape. If it's not in the module,
2915   // we can exit early.
2916   if (!F.getParent()->getFunction("llvm.localescape")) return;
2917 
2918   // Look for a call to llvm.localescape call in the entry block. It can't be in
2919   // any other block.
2920   for (Instruction &I : F.getEntryBlock()) {
2921     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2922     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2923       // We found a call. Mark all the allocas passed in as uninteresting.
2924       for (Value *Arg : II->args()) {
2925         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2926         assert(AI && AI->isStaticAlloca() &&
2927                "non-static alloca arg to localescape");
2928         ProcessedAllocas[AI] = false;
2929       }
2930       break;
2931     }
2932   }
2933 }
2934 
2935 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2936   bool ShouldInstrument =
2937       ClDebugMin < 0 || ClDebugMax < 0 ||
2938       (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2939   Instrumented++;
2940   return !ShouldInstrument;
2941 }
2942 
2943 bool AddressSanitizer::instrumentFunction(Function &F,
2944                                           const TargetLibraryInfo *TLI) {
2945   if (F.empty())
2946     return false;
2947   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2948   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2949   if (F.getName().starts_with("__asan_")) return false;
2950   if (F.isPresplitCoroutine())
2951     return false;
2952 
2953   bool FunctionModified = false;
2954 
2955   // If needed, insert __asan_init before checking for SanitizeAddress attr.
2956   // This function needs to be called even if the function body is not
2957   // instrumented.
2958   if (maybeInsertAsanInitAtFunctionEntry(F))
2959     FunctionModified = true;
2960 
2961   // Leave if the function doesn't need instrumentation.
2962   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2963 
2964   if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
2965     return FunctionModified;
2966 
2967   LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2968 
2969   initializeCallbacks(*F.getParent(), TLI);
2970 
2971   FunctionStateRAII CleanupObj(this);
2972 
2973   RuntimeCallInserter RTCI(F);
2974 
2975   FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2976 
2977   // We can't instrument allocas used with llvm.localescape. Only static allocas
2978   // can be passed to that intrinsic.
2979   markEscapedLocalAllocas(F);
2980 
2981   // We want to instrument every address only once per basic block (unless there
2982   // are calls between uses).
2983   SmallPtrSet<Value *, 16> TempsToInstrument;
2984   SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2985   SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2986   SmallVector<Instruction *, 8> NoReturnCalls;
2987   SmallVector<BasicBlock *, 16> AllBlocks;
2988   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2989 
2990   // Fill the set of memory operations to instrument.
2991   for (auto &BB : F) {
2992     AllBlocks.push_back(&BB);
2993     TempsToInstrument.clear();
2994     int NumInsnsPerBB = 0;
2995     for (auto &Inst : BB) {
2996       if (LooksLikeCodeInBug11395(&Inst)) return false;
2997       // Skip instructions inserted by another instrumentation.
2998       if (Inst.hasMetadata(LLVMContext::MD_nosanitize))
2999         continue;
3000       SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
3001       getInterestingMemoryOperands(&Inst, InterestingOperands);
3002 
3003       if (!InterestingOperands.empty()) {
3004         for (auto &Operand : InterestingOperands) {
3005           if (ClOpt && ClOptSameTemp) {
3006             Value *Ptr = Operand.getPtr();
3007             // If we have a mask, skip instrumentation if we've already
3008             // instrumented the full object. But don't add to TempsToInstrument
3009             // because we might get another load/store with a different mask.
3010             if (Operand.MaybeMask) {
3011               if (TempsToInstrument.count(Ptr))
3012                 continue; // We've seen this (whole) temp in the current BB.
3013             } else {
3014               if (!TempsToInstrument.insert(Ptr).second)
3015                 continue; // We've seen this temp in the current BB.
3016             }
3017           }
3018           OperandsToInstrument.push_back(Operand);
3019           NumInsnsPerBB++;
3020         }
3021       } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
3022                   isInterestingPointerComparison(&Inst)) ||
3023                  ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
3024                   isInterestingPointerSubtraction(&Inst))) {
3025         PointerComparisonsOrSubtracts.push_back(&Inst);
3026       } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
3027         // ok, take it.
3028         IntrinToInstrument.push_back(MI);
3029         NumInsnsPerBB++;
3030       } else {
3031         if (auto *CB = dyn_cast<CallBase>(&Inst)) {
3032           // A call inside BB.
3033           TempsToInstrument.clear();
3034           if (CB->doesNotReturn())
3035             NoReturnCalls.push_back(CB);
3036         }
3037         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
3038           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
3039       }
3040       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
3041     }
3042   }
3043 
3044   bool UseCalls = (InstrumentationWithCallsThreshold >= 0 &&
3045                    OperandsToInstrument.size() + IntrinToInstrument.size() >
3046                        (unsigned)InstrumentationWithCallsThreshold);
3047   const DataLayout &DL = F.getDataLayout();
3048   ObjectSizeOpts ObjSizeOpts;
3049   ObjSizeOpts.RoundToAlign = true;
3050   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
3051 
3052   // Instrument.
3053   int NumInstrumented = 0;
3054   for (auto &Operand : OperandsToInstrument) {
3055     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
3056       instrumentMop(ObjSizeVis, Operand, UseCalls,
3057                     F.getDataLayout(), RTCI);
3058     FunctionModified = true;
3059   }
3060   for (auto *Inst : IntrinToInstrument) {
3061     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
3062       instrumentMemIntrinsic(Inst, RTCI);
3063     FunctionModified = true;
3064   }
3065 
3066   FunctionStackPoisoner FSP(F, *this, RTCI);
3067   bool ChangedStack = FSP.runOnFunction();
3068 
3069   // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
3070   // See e.g. https://github.com/google/sanitizers/issues/37
3071   for (auto *CI : NoReturnCalls) {
3072     IRBuilder<> IRB(CI);
3073     RTCI.createRuntimeCall(IRB, AsanHandleNoReturnFunc, {});
3074   }
3075 
3076   for (auto *Inst : PointerComparisonsOrSubtracts) {
3077     instrumentPointerComparisonOrSubtraction(Inst, RTCI);
3078     FunctionModified = true;
3079   }
3080 
3081   if (ChangedStack || !NoReturnCalls.empty())
3082     FunctionModified = true;
3083 
3084   LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
3085                     << F << "\n");
3086 
3087   return FunctionModified;
3088 }
3089 
3090 // Workaround for bug 11395: we don't want to instrument stack in functions
3091 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
3092 // FIXME: remove once the bug 11395 is fixed.
3093 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
3094   if (LongSize != 32) return false;
3095   CallInst *CI = dyn_cast<CallInst>(I);
3096   if (!CI || !CI->isInlineAsm()) return false;
3097   if (CI->arg_size() <= 5)
3098     return false;
3099   // We have inline assembly with quite a few arguments.
3100   return true;
3101 }
3102 
3103 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
3104   IRBuilder<> IRB(*C);
3105   if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
3106       ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3107     const char *MallocNameTemplate =
3108         ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
3109             ? kAsanStackMallocAlwaysNameTemplate
3110             : kAsanStackMallocNameTemplate;
3111     for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
3112       std::string Suffix = itostr(Index);
3113       AsanStackMallocFunc[Index] = M.getOrInsertFunction(
3114           MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
3115       AsanStackFreeFunc[Index] =
3116           M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
3117                                 IRB.getVoidTy(), IntptrTy, IntptrTy);
3118     }
3119   }
3120   if (ASan.UseAfterScope) {
3121     AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
3122         kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
3123     AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
3124         kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
3125   }
3126 
3127   for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2,
3128                      0xf3, 0xf5, 0xf8}) {
3129     std::ostringstream Name;
3130     Name << kAsanSetShadowPrefix;
3131     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
3132     AsanSetShadowFunc[Val] =
3133         M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
3134   }
3135 
3136   AsanAllocaPoisonFunc = M.getOrInsertFunction(
3137       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3138   AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
3139       kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3140 }
3141 
3142 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
3143                                                ArrayRef<uint8_t> ShadowBytes,
3144                                                size_t Begin, size_t End,
3145                                                IRBuilder<> &IRB,
3146                                                Value *ShadowBase) {
3147   if (Begin >= End)
3148     return;
3149 
3150   const size_t LargestStoreSizeInBytes =
3151       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
3152 
3153   const bool IsLittleEndian = F.getDataLayout().isLittleEndian();
3154 
3155   // Poison given range in shadow using larges store size with out leading and
3156   // trailing zeros in ShadowMask. Zeros never change, so they need neither
3157   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
3158   // middle of a store.
3159   for (size_t i = Begin; i < End;) {
3160     if (!ShadowMask[i]) {
3161       assert(!ShadowBytes[i]);
3162       ++i;
3163       continue;
3164     }
3165 
3166     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
3167     // Fit store size into the range.
3168     while (StoreSizeInBytes > End - i)
3169       StoreSizeInBytes /= 2;
3170 
3171     // Minimize store size by trimming trailing zeros.
3172     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
3173       while (j <= StoreSizeInBytes / 2)
3174         StoreSizeInBytes /= 2;
3175     }
3176 
3177     uint64_t Val = 0;
3178     for (size_t j = 0; j < StoreSizeInBytes; j++) {
3179       if (IsLittleEndian)
3180         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
3181       else
3182         Val = (Val << 8) | ShadowBytes[i + j];
3183     }
3184 
3185     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
3186     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
3187     IRB.CreateAlignedStore(
3188         Poison, IRB.CreateIntToPtr(Ptr, PointerType::getUnqual(Poison->getContext())),
3189         Align(1));
3190 
3191     i += StoreSizeInBytes;
3192   }
3193 }
3194 
3195 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3196                                          ArrayRef<uint8_t> ShadowBytes,
3197                                          IRBuilder<> &IRB, Value *ShadowBase) {
3198   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
3199 }
3200 
3201 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3202                                          ArrayRef<uint8_t> ShadowBytes,
3203                                          size_t Begin, size_t End,
3204                                          IRBuilder<> &IRB, Value *ShadowBase) {
3205   assert(ShadowMask.size() == ShadowBytes.size());
3206   size_t Done = Begin;
3207   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
3208     if (!ShadowMask[i]) {
3209       assert(!ShadowBytes[i]);
3210       continue;
3211     }
3212     uint8_t Val = ShadowBytes[i];
3213     if (!AsanSetShadowFunc[Val])
3214       continue;
3215 
3216     // Skip same values.
3217     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
3218     }
3219 
3220     if (j - i >= ASan.MaxInlinePoisoningSize) {
3221       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
3222       RTCI.createRuntimeCall(
3223           IRB, AsanSetShadowFunc[Val],
3224           {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
3225            ConstantInt::get(IntptrTy, j - i)});
3226       Done = j;
3227     }
3228   }
3229 
3230   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
3231 }
3232 
3233 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
3234 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
3235 static int StackMallocSizeClass(uint64_t LocalStackSize) {
3236   assert(LocalStackSize <= kMaxStackMallocSize);
3237   uint64_t MaxSize = kMinStackMallocSize;
3238   for (int i = 0;; i++, MaxSize *= 2)
3239     if (LocalStackSize <= MaxSize) return i;
3240   llvm_unreachable("impossible LocalStackSize");
3241 }
3242 
3243 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3244   Instruction *CopyInsertPoint = &F.front().front();
3245   if (CopyInsertPoint == ASan.LocalDynamicShadow) {
3246     // Insert after the dynamic shadow location is determined
3247     CopyInsertPoint = CopyInsertPoint->getNextNode();
3248     assert(CopyInsertPoint);
3249   }
3250   IRBuilder<> IRB(CopyInsertPoint);
3251   const DataLayout &DL = F.getDataLayout();
3252   for (Argument &Arg : F.args()) {
3253     if (Arg.hasByValAttr()) {
3254       Type *Ty = Arg.getParamByValType();
3255       const Align Alignment =
3256           DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
3257 
3258       AllocaInst *AI = IRB.CreateAlloca(
3259           Ty, nullptr,
3260           (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
3261               ".byval");
3262       AI->setAlignment(Alignment);
3263       Arg.replaceAllUsesWith(AI);
3264 
3265       uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3266       IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
3267     }
3268   }
3269 }
3270 
3271 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3272                                           Value *ValueIfTrue,
3273                                           Instruction *ThenTerm,
3274                                           Value *ValueIfFalse) {
3275   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3276   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3277   PHI->addIncoming(ValueIfFalse, CondBlock);
3278   BasicBlock *ThenBlock = ThenTerm->getParent();
3279   PHI->addIncoming(ValueIfTrue, ThenBlock);
3280   return PHI;
3281 }
3282 
3283 Value *FunctionStackPoisoner::createAllocaForLayout(
3284     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3285   AllocaInst *Alloca;
3286   if (Dynamic) {
3287     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3288                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3289                               "MyAlloca");
3290   } else {
3291     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3292                               nullptr, "MyAlloca");
3293     assert(Alloca->isStaticAlloca());
3294   }
3295   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
3296   uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack));
3297   Alloca->setAlignment(Align(FrameAlignment));
3298   return IRB.CreatePointerCast(Alloca, IntptrTy);
3299 }
3300 
3301 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3302   BasicBlock &FirstBB = *F.begin();
3303   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3304   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3305   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3306   DynamicAllocaLayout->setAlignment(Align(32));
3307 }
3308 
3309 void FunctionStackPoisoner::processDynamicAllocas() {
3310   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3311     assert(DynamicAllocaPoisonCallVec.empty());
3312     return;
3313   }
3314 
3315   // Insert poison calls for lifetime intrinsics for dynamic allocas.
3316   for (const auto &APC : DynamicAllocaPoisonCallVec) {
3317     assert(APC.InsBefore);
3318     assert(APC.AI);
3319     assert(ASan.isInterestingAlloca(*APC.AI));
3320     assert(!APC.AI->isStaticAlloca());
3321 
3322     IRBuilder<> IRB(APC.InsBefore);
3323     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3324     // Dynamic allocas will be unpoisoned unconditionally below in
3325     // unpoisonDynamicAllocas.
3326     // Flag that we need unpoison static allocas.
3327   }
3328 
3329   // Handle dynamic allocas.
3330   createDynamicAllocasInitStorage();
3331   for (auto &AI : DynamicAllocaVec)
3332     handleDynamicAllocaCall(AI);
3333   unpoisonDynamicAllocas();
3334 }
3335 
3336 /// Collect instructions in the entry block after \p InsBefore which initialize
3337 /// permanent storage for a function argument. These instructions must remain in
3338 /// the entry block so that uninitialized values do not appear in backtraces. An
3339 /// added benefit is that this conserves spill slots. This does not move stores
3340 /// before instrumented / "interesting" allocas.
3341 static void findStoresToUninstrumentedArgAllocas(
3342     AddressSanitizer &ASan, Instruction &InsBefore,
3343     SmallVectorImpl<Instruction *> &InitInsts) {
3344   Instruction *Start = InsBefore.getNextNonDebugInstruction();
3345   for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3346     // Argument initialization looks like:
3347     // 1) store <Argument>, <Alloca> OR
3348     // 2) <CastArgument> = cast <Argument> to ...
3349     //    store <CastArgument> to <Alloca>
3350     // Do not consider any other kind of instruction.
3351     //
3352     // Note: This covers all known cases, but may not be exhaustive. An
3353     // alternative to pattern-matching stores is to DFS over all Argument uses:
3354     // this might be more general, but is probably much more complicated.
3355     if (isa<AllocaInst>(It) || isa<CastInst>(It))
3356       continue;
3357     if (auto *Store = dyn_cast<StoreInst>(It)) {
3358       // The store destination must be an alloca that isn't interesting for
3359       // ASan to instrument. These are moved up before InsBefore, and they're
3360       // not interesting because allocas for arguments can be mem2reg'd.
3361       auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3362       if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3363         continue;
3364 
3365       Value *Val = Store->getValueOperand();
3366       bool IsDirectArgInit = isa<Argument>(Val);
3367       bool IsArgInitViaCast =
3368           isa<CastInst>(Val) &&
3369           isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3370           // Check that the cast appears directly before the store. Otherwise
3371           // moving the cast before InsBefore may break the IR.
3372           Val == It->getPrevNonDebugInstruction();
3373       bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3374       if (!IsArgInit)
3375         continue;
3376 
3377       if (IsArgInitViaCast)
3378         InitInsts.push_back(cast<Instruction>(Val));
3379       InitInsts.push_back(Store);
3380       continue;
3381     }
3382 
3383     // Do not reorder past unknown instructions: argument initialization should
3384     // only involve casts and stores.
3385     return;
3386   }
3387 }
3388 
3389 void FunctionStackPoisoner::processStaticAllocas() {
3390   if (AllocaVec.empty()) {
3391     assert(StaticAllocaPoisonCallVec.empty());
3392     return;
3393   }
3394 
3395   int StackMallocIdx = -1;
3396   DebugLoc EntryDebugLocation;
3397   if (auto SP = F.getSubprogram())
3398     EntryDebugLocation =
3399         DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
3400 
3401   Instruction *InsBefore = AllocaVec[0];
3402   IRBuilder<> IRB(InsBefore);
3403 
3404   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3405   // debug info is broken, because only entry-block allocas are treated as
3406   // regular stack slots.
3407   auto InsBeforeB = InsBefore->getParent();
3408   assert(InsBeforeB == &F.getEntryBlock());
3409   for (auto *AI : StaticAllocasToMoveUp)
3410     if (AI->getParent() == InsBeforeB)
3411       AI->moveBefore(InsBefore);
3412 
3413   // Move stores of arguments into entry-block allocas as well. This prevents
3414   // extra stack slots from being generated (to house the argument values until
3415   // they can be stored into the allocas). This also prevents uninitialized
3416   // values from being shown in backtraces.
3417   SmallVector<Instruction *, 8> ArgInitInsts;
3418   findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3419   for (Instruction *ArgInitInst : ArgInitInsts)
3420     ArgInitInst->moveBefore(InsBefore);
3421 
3422   // If we have a call to llvm.localescape, keep it in the entry block.
3423   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3424 
3425   SmallVector<ASanStackVariableDescription, 16> SVD;
3426   SVD.reserve(AllocaVec.size());
3427   for (AllocaInst *AI : AllocaVec) {
3428     ASanStackVariableDescription D = {AI->getName().data(),
3429                                       ASan.getAllocaSizeInBytes(*AI),
3430                                       0,
3431                                       AI->getAlign().value(),
3432                                       AI,
3433                                       0,
3434                                       0};
3435     SVD.push_back(D);
3436   }
3437 
3438   // Minimal header size (left redzone) is 4 pointers,
3439   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3440   uint64_t Granularity = 1ULL << Mapping.Scale;
3441   uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity);
3442   const ASanStackFrameLayout &L =
3443       ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3444 
3445   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3446   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3447   for (auto &Desc : SVD)
3448     AllocaToSVDMap[Desc.AI] = &Desc;
3449 
3450   // Update SVD with information from lifetime intrinsics.
3451   for (const auto &APC : StaticAllocaPoisonCallVec) {
3452     assert(APC.InsBefore);
3453     assert(APC.AI);
3454     assert(ASan.isInterestingAlloca(*APC.AI));
3455     assert(APC.AI->isStaticAlloca());
3456 
3457     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3458     Desc.LifetimeSize = Desc.Size;
3459     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3460       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3461         if (LifetimeLoc->getFile() == FnLoc->getFile())
3462           if (unsigned Line = LifetimeLoc->getLine())
3463             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3464       }
3465     }
3466   }
3467 
3468   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3469   LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3470   uint64_t LocalStackSize = L.FrameSize;
3471   bool DoStackMalloc =
3472       ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
3473       !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
3474   bool DoDynamicAlloca = ClDynamicAllocaStack;
3475   // Don't do dynamic alloca or stack malloc if:
3476   // 1) There is inline asm: too often it makes assumptions on which registers
3477   //    are available.
3478   // 2) There is a returns_twice call (typically setjmp), which is
3479   //    optimization-hostile, and doesn't play well with introduced indirect
3480   //    register-relative calculation of local variable addresses.
3481   DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3482   DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3483 
3484   Value *StaticAlloca =
3485       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3486 
3487   Value *FakeStack;
3488   Value *LocalStackBase;
3489   Value *LocalStackBaseAlloca;
3490   uint8_t DIExprFlags = DIExpression::ApplyOffset;
3491 
3492   if (DoStackMalloc) {
3493     LocalStackBaseAlloca =
3494         IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3495     if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3496       // void *FakeStack = __asan_option_detect_stack_use_after_return
3497       //     ? __asan_stack_malloc_N(LocalStackSize)
3498       //     : nullptr;
3499       // void *LocalStackBase = (FakeStack) ? FakeStack :
3500       //                        alloca(LocalStackSize);
3501       Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3502           kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3503       Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3504           IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3505           Constant::getNullValue(IRB.getInt32Ty()));
3506       Instruction *Term =
3507           SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3508       IRBuilder<> IRBIf(Term);
3509       StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3510       assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3511       Value *FakeStackValue =
3512           RTCI.createRuntimeCall(IRBIf, AsanStackMallocFunc[StackMallocIdx],
3513                                  ConstantInt::get(IntptrTy, LocalStackSize));
3514       IRB.SetInsertPoint(InsBefore);
3515       FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3516                             ConstantInt::get(IntptrTy, 0));
3517     } else {
3518       // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
3519       // void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
3520       // void *LocalStackBase = (FakeStack) ? FakeStack :
3521       //                        alloca(LocalStackSize);
3522       StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3523       FakeStack =
3524           RTCI.createRuntimeCall(IRB, AsanStackMallocFunc[StackMallocIdx],
3525                                  ConstantInt::get(IntptrTy, LocalStackSize));
3526     }
3527     Value *NoFakeStack =
3528         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3529     Instruction *Term =
3530         SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3531     IRBuilder<> IRBIf(Term);
3532     Value *AllocaValue =
3533         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3534 
3535     IRB.SetInsertPoint(InsBefore);
3536     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3537     IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3538     DIExprFlags |= DIExpression::DerefBefore;
3539   } else {
3540     // void *FakeStack = nullptr;
3541     // void *LocalStackBase = alloca(LocalStackSize);
3542     FakeStack = ConstantInt::get(IntptrTy, 0);
3543     LocalStackBase =
3544         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3545     LocalStackBaseAlloca = LocalStackBase;
3546   }
3547 
3548   // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3549   // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3550   // later passes and can result in dropped variable coverage in debug info.
3551   Value *LocalStackBaseAllocaPtr =
3552       isa<PtrToIntInst>(LocalStackBaseAlloca)
3553           ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3554           : LocalStackBaseAlloca;
3555   assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3556          "Variable descriptions relative to ASan stack base will be dropped");
3557 
3558   // Replace Alloca instructions with base+offset.
3559   for (const auto &Desc : SVD) {
3560     AllocaInst *AI = Desc.AI;
3561     replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3562                       Desc.Offset);
3563     Value *NewAllocaPtr = IRB.CreateIntToPtr(
3564         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3565         AI->getType());
3566     AI->replaceAllUsesWith(NewAllocaPtr);
3567   }
3568 
3569   // The left-most redzone has enough space for at least 4 pointers.
3570   // Write the Magic value to redzone[0].
3571   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3572   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3573                   BasePlus0);
3574   // Write the frame description constant to redzone[1].
3575   Value *BasePlus1 = IRB.CreateIntToPtr(
3576       IRB.CreateAdd(LocalStackBase,
3577                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3578       IntptrPtrTy);
3579   GlobalVariable *StackDescriptionGlobal =
3580       createPrivateGlobalForString(*F.getParent(), DescriptionString,
3581                                    /*AllowMerging*/ true, kAsanGenPrefix);
3582   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3583   IRB.CreateStore(Description, BasePlus1);
3584   // Write the PC to redzone[2].
3585   Value *BasePlus2 = IRB.CreateIntToPtr(
3586       IRB.CreateAdd(LocalStackBase,
3587                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3588       IntptrPtrTy);
3589   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3590 
3591   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3592 
3593   // Poison the stack red zones at the entry.
3594   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3595   // As mask we must use most poisoned case: red zones and after scope.
3596   // As bytes we can use either the same or just red zones only.
3597   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3598 
3599   if (!StaticAllocaPoisonCallVec.empty()) {
3600     const auto &ShadowInScope = GetShadowBytes(SVD, L);
3601 
3602     // Poison static allocas near lifetime intrinsics.
3603     for (const auto &APC : StaticAllocaPoisonCallVec) {
3604       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3605       assert(Desc.Offset % L.Granularity == 0);
3606       size_t Begin = Desc.Offset / L.Granularity;
3607       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3608 
3609       IRBuilder<> IRB(APC.InsBefore);
3610       copyToShadow(ShadowAfterScope,
3611                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3612                    IRB, ShadowBase);
3613     }
3614   }
3615 
3616   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3617   SmallVector<uint8_t, 64> ShadowAfterReturn;
3618 
3619   // (Un)poison the stack before all ret instructions.
3620   for (Instruction *Ret : RetVec) {
3621     IRBuilder<> IRBRet(Ret);
3622     // Mark the current frame as retired.
3623     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3624                        BasePlus0);
3625     if (DoStackMalloc) {
3626       assert(StackMallocIdx >= 0);
3627       // if FakeStack != 0  // LocalStackBase == FakeStack
3628       //     // In use-after-return mode, poison the whole stack frame.
3629       //     if StackMallocIdx <= 4
3630       //         // For small sizes inline the whole thing:
3631       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3632       //         **SavedFlagPtr(FakeStack) = 0
3633       //     else
3634       //         __asan_stack_free_N(FakeStack, LocalStackSize)
3635       // else
3636       //     <This is not a fake stack; unpoison the redzones>
3637       Value *Cmp =
3638           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3639       Instruction *ThenTerm, *ElseTerm;
3640       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3641 
3642       IRBuilder<> IRBPoison(ThenTerm);
3643       if (ASan.MaxInlinePoisoningSize != 0 && StackMallocIdx <= 4) {
3644         int ClassSize = kMinStackMallocSize << StackMallocIdx;
3645         ShadowAfterReturn.resize(ClassSize / L.Granularity,
3646                                  kAsanStackUseAfterReturnMagic);
3647         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3648                      ShadowBase);
3649         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3650             FakeStack,
3651             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3652         Value *SavedFlagPtr = IRBPoison.CreateLoad(
3653             IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3654         IRBPoison.CreateStore(
3655             Constant::getNullValue(IRBPoison.getInt8Ty()),
3656             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getPtrTy()));
3657       } else {
3658         // For larger frames call __asan_stack_free_*.
3659         RTCI.createRuntimeCall(
3660             IRBPoison, AsanStackFreeFunc[StackMallocIdx],
3661             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3662       }
3663 
3664       IRBuilder<> IRBElse(ElseTerm);
3665       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3666     } else {
3667       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3668     }
3669   }
3670 
3671   // We are done. Remove the old unused alloca instructions.
3672   for (auto *AI : AllocaVec)
3673     AI->eraseFromParent();
3674 }
3675 
3676 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3677                                          IRBuilder<> &IRB, bool DoPoison) {
3678   // For now just insert the call to ASan runtime.
3679   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3680   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3681   RTCI.createRuntimeCall(
3682       IRB, DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3683       {AddrArg, SizeArg});
3684 }
3685 
3686 // Handling llvm.lifetime intrinsics for a given %alloca:
3687 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3688 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3689 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3690 //     could be poisoned by previous llvm.lifetime.end instruction, as the
3691 //     variable may go in and out of scope several times, e.g. in loops).
3692 // (3) if we poisoned at least one %alloca in a function,
3693 //     unpoison the whole stack frame at function exit.
3694 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3695   IRBuilder<> IRB(AI);
3696 
3697   const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign());
3698   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3699 
3700   Value *Zero = Constant::getNullValue(IntptrTy);
3701   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3702   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3703 
3704   // Since we need to extend alloca with additional memory to locate
3705   // redzones, and OldSize is number of allocated blocks with
3706   // ElementSize size, get allocated memory size in bytes by
3707   // OldSize * ElementSize.
3708   const unsigned ElementSize =
3709       F.getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3710   Value *OldSize =
3711       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3712                     ConstantInt::get(IntptrTy, ElementSize));
3713 
3714   // PartialSize = OldSize % 32
3715   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3716 
3717   // Misalign = kAllocaRzSize - PartialSize;
3718   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3719 
3720   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3721   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3722   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3723 
3724   // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3725   // Alignment is added to locate left redzone, PartialPadding for possible
3726   // partial redzone and kAllocaRzSize for right redzone respectively.
3727   Value *AdditionalChunkSize = IRB.CreateAdd(
3728       ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize),
3729       PartialPadding);
3730 
3731   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3732 
3733   // Insert new alloca with new NewSize and Alignment params.
3734   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3735   NewAlloca->setAlignment(Alignment);
3736 
3737   // NewAddress = Address + Alignment
3738   Value *NewAddress =
3739       IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3740                     ConstantInt::get(IntptrTy, Alignment.value()));
3741 
3742   // Insert __asan_alloca_poison call for new created alloca.
3743   RTCI.createRuntimeCall(IRB, AsanAllocaPoisonFunc, {NewAddress, OldSize});
3744 
3745   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3746   // for unpoisoning stuff.
3747   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3748 
3749   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3750 
3751   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3752   AI->replaceAllUsesWith(NewAddressPtr);
3753 
3754   // We are done. Erase old alloca from parent.
3755   AI->eraseFromParent();
3756 }
3757 
3758 // isSafeAccess returns true if Addr is always inbounds with respect to its
3759 // base object. For example, it is a field access or an array access with
3760 // constant inbounds index.
3761 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3762                                     Value *Addr, TypeSize TypeStoreSize) const {
3763   if (TypeStoreSize.isScalable())
3764     // TODO: We can use vscale_range to convert a scalable value to an
3765     // upper bound on the access size.
3766     return false;
3767 
3768   SizeOffsetAPInt SizeOffset = ObjSizeVis.compute(Addr);
3769   if (!SizeOffset.bothKnown())
3770     return false;
3771 
3772   uint64_t Size = SizeOffset.Size.getZExtValue();
3773   int64_t Offset = SizeOffset.Offset.getSExtValue();
3774 
3775   // Three checks are required to ensure safety:
3776   // . Offset >= 0  (since the offset is given from the base ptr)
3777   // . Size >= Offset  (unsigned)
3778   // . Size - Offset >= NeededSize  (unsigned)
3779   return Offset >= 0 && Size >= uint64_t(Offset) &&
3780          Size - uint64_t(Offset) >= TypeStoreSize / 8;
3781 }
3782