1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address basic correctness 10 // checker. 11 // Details of the algorithm: 12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 13 // 14 // FIXME: This sanitizer does not yet handle scalable vectors 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/StackSafetyAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/BinaryFormat/MachO.h" 34 #include "llvm/Demangle/Demangle.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Comdat.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DIBuilder.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/IRBuilder.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/InstVisitor.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/Intrinsics.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/MDBuilder.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Use.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/MC/MCSectionMachO.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 76 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/ModuleUtils.h" 80 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cstddef> 84 #include <cstdint> 85 #include <iomanip> 86 #include <limits> 87 #include <sstream> 88 #include <string> 89 #include <tuple> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "asan" 94 95 static const uint64_t kDefaultShadowScale = 3; 96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 98 static const uint64_t kDynamicShadowSentinel = 99 std::numeric_limits<uint64_t>::max(); 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29; 106 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 107 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 108 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 109 static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 111 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 112 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 113 static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47; 114 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 115 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 116 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 117 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 118 static const uint64_t kPS_ShadowOffset64 = 1ULL << 40; 119 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 120 static const uint64_t kEmscriptenShadowOffset = 0; 121 122 // The shadow memory space is dynamically allocated. 123 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 124 125 static const size_t kMinStackMallocSize = 1 << 6; // 64B 126 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 127 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 128 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 129 130 const char kAsanModuleCtorName[] = "asan.module_ctor"; 131 const char kAsanModuleDtorName[] = "asan.module_dtor"; 132 static const uint64_t kAsanCtorAndDtorPriority = 1; 133 // On Emscripten, the system needs more than one priorities for constructors. 134 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 135 const char kAsanReportErrorTemplate[] = "__asan_report_"; 136 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 137 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 138 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 139 const char kAsanUnregisterImageGlobalsName[] = 140 "__asan_unregister_image_globals"; 141 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 142 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 143 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 144 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 145 const char kAsanInitName[] = "__asan_init"; 146 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 147 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 148 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 149 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 150 static const int kMaxAsanStackMallocSizeClass = 10; 151 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 152 const char kAsanStackMallocAlwaysNameTemplate[] = 153 "__asan_stack_malloc_always_"; 154 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 155 const char kAsanGenPrefix[] = "___asan_gen_"; 156 const char kODRGenPrefix[] = "__odr_asan_gen_"; 157 const char kSanCovGenPrefix[] = "__sancov_gen_"; 158 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 159 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 160 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 161 162 // ASan version script has __asan_* wildcard. Triple underscore prevents a 163 // linker (gold) warning about attempting to export a local symbol. 164 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 165 166 const char kAsanOptionDetectUseAfterReturn[] = 167 "__asan_option_detect_stack_use_after_return"; 168 169 const char kAsanShadowMemoryDynamicAddress[] = 170 "__asan_shadow_memory_dynamic_address"; 171 172 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 173 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 174 175 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 176 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 177 178 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 179 static const size_t kNumberOfAccessSizes = 5; 180 181 static const uint64_t kAllocaRzSize = 32; 182 183 // ASanAccessInfo implementation constants. 184 constexpr size_t kCompileKernelShift = 0; 185 constexpr size_t kCompileKernelMask = 0x1; 186 constexpr size_t kAccessSizeIndexShift = 1; 187 constexpr size_t kAccessSizeIndexMask = 0xf; 188 constexpr size_t kIsWriteShift = 5; 189 constexpr size_t kIsWriteMask = 0x1; 190 191 // Command-line flags. 192 193 static cl::opt<bool> ClEnableKasan( 194 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 195 cl::Hidden, cl::init(false)); 196 197 static cl::opt<bool> ClRecover( 198 "asan-recover", 199 cl::desc("Enable recovery mode (continue-after-error)."), 200 cl::Hidden, cl::init(false)); 201 202 static cl::opt<bool> ClInsertVersionCheck( 203 "asan-guard-against-version-mismatch", 204 cl::desc("Guard against compiler/runtime version mismatch."), 205 cl::Hidden, cl::init(true)); 206 207 // This flag may need to be replaced with -f[no-]asan-reads. 208 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 209 cl::desc("instrument read instructions"), 210 cl::Hidden, cl::init(true)); 211 212 static cl::opt<bool> ClInstrumentWrites( 213 "asan-instrument-writes", cl::desc("instrument write instructions"), 214 cl::Hidden, cl::init(true)); 215 216 static cl::opt<bool> 217 ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false), 218 cl::Hidden, cl::desc("Use Stack Safety analysis results"), 219 cl::Optional); 220 221 static cl::opt<bool> ClInstrumentAtomics( 222 "asan-instrument-atomics", 223 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 224 cl::init(true)); 225 226 static cl::opt<bool> 227 ClInstrumentByval("asan-instrument-byval", 228 cl::desc("instrument byval call arguments"), cl::Hidden, 229 cl::init(true)); 230 231 static cl::opt<bool> ClAlwaysSlowPath( 232 "asan-always-slow-path", 233 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 234 cl::init(false)); 235 236 static cl::opt<bool> ClForceDynamicShadow( 237 "asan-force-dynamic-shadow", 238 cl::desc("Load shadow address into a local variable for each function"), 239 cl::Hidden, cl::init(false)); 240 241 static cl::opt<bool> 242 ClWithIfunc("asan-with-ifunc", 243 cl::desc("Access dynamic shadow through an ifunc global on " 244 "platforms that support this"), 245 cl::Hidden, cl::init(true)); 246 247 static cl::opt<bool> ClWithIfuncSuppressRemat( 248 "asan-with-ifunc-suppress-remat", 249 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 250 "it through inline asm in prologue."), 251 cl::Hidden, cl::init(true)); 252 253 // This flag limits the number of instructions to be instrumented 254 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 255 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 256 // set it to 10000. 257 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 258 "asan-max-ins-per-bb", cl::init(10000), 259 cl::desc("maximal number of instructions to instrument in any given BB"), 260 cl::Hidden); 261 262 // This flag may need to be replaced with -f[no]asan-stack. 263 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 264 cl::Hidden, cl::init(true)); 265 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 266 "asan-max-inline-poisoning-size", 267 cl::desc( 268 "Inline shadow poisoning for blocks up to the given size in bytes."), 269 cl::Hidden, cl::init(64)); 270 271 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 272 "asan-use-after-return", 273 cl::desc("Sets the mode of detection for stack-use-after-return."), 274 cl::values( 275 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 276 "Never detect stack use after return."), 277 clEnumValN( 278 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 279 "Detect stack use after return if " 280 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 281 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 282 "Always detect stack use after return.")), 283 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 284 285 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 286 cl::desc("Create redzones for byval " 287 "arguments (extra copy " 288 "required)"), cl::Hidden, 289 cl::init(true)); 290 291 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 292 cl::desc("Check stack-use-after-scope"), 293 cl::Hidden, cl::init(false)); 294 295 // This flag may need to be replaced with -f[no]asan-globals. 296 static cl::opt<bool> ClGlobals("asan-globals", 297 cl::desc("Handle global objects"), cl::Hidden, 298 cl::init(true)); 299 300 static cl::opt<bool> ClInitializers("asan-initialization-order", 301 cl::desc("Handle C++ initializer order"), 302 cl::Hidden, cl::init(true)); 303 304 static cl::opt<bool> ClInvalidPointerPairs( 305 "asan-detect-invalid-pointer-pair", 306 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 307 cl::init(false)); 308 309 static cl::opt<bool> ClInvalidPointerCmp( 310 "asan-detect-invalid-pointer-cmp", 311 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 312 cl::init(false)); 313 314 static cl::opt<bool> ClInvalidPointerSub( 315 "asan-detect-invalid-pointer-sub", 316 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 317 cl::init(false)); 318 319 static cl::opt<unsigned> ClRealignStack( 320 "asan-realign-stack", 321 cl::desc("Realign stack to the value of this flag (power of two)"), 322 cl::Hidden, cl::init(32)); 323 324 static cl::opt<int> ClInstrumentationWithCallsThreshold( 325 "asan-instrumentation-with-call-threshold", 326 cl::desc( 327 "If the function being instrumented contains more than " 328 "this number of memory accesses, use callbacks instead of " 329 "inline checks (-1 means never use callbacks)."), 330 cl::Hidden, cl::init(7000)); 331 332 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 333 "asan-memory-access-callback-prefix", 334 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 335 cl::init("__asan_")); 336 337 static cl::opt<bool> ClKasanMemIntrinCallbackPrefix( 338 "asan-kernel-mem-intrinsic-prefix", 339 cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden, 340 cl::init(false)); 341 342 static cl::opt<bool> 343 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 344 cl::desc("instrument dynamic allocas"), 345 cl::Hidden, cl::init(true)); 346 347 static cl::opt<bool> ClSkipPromotableAllocas( 348 "asan-skip-promotable-allocas", 349 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 350 cl::init(true)); 351 352 static cl::opt<AsanCtorKind> ClConstructorKind( 353 "asan-constructor-kind", 354 cl::desc("Sets the ASan constructor kind"), 355 cl::values(clEnumValN(AsanCtorKind::None, "none", "No constructors"), 356 clEnumValN(AsanCtorKind::Global, "global", 357 "Use global constructors")), 358 cl::init(AsanCtorKind::Global), cl::Hidden); 359 // These flags allow to change the shadow mapping. 360 // The shadow mapping looks like 361 // Shadow = (Mem >> scale) + offset 362 363 static cl::opt<int> ClMappingScale("asan-mapping-scale", 364 cl::desc("scale of asan shadow mapping"), 365 cl::Hidden, cl::init(0)); 366 367 static cl::opt<uint64_t> 368 ClMappingOffset("asan-mapping-offset", 369 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 370 cl::Hidden, cl::init(0)); 371 372 // Optimization flags. Not user visible, used mostly for testing 373 // and benchmarking the tool. 374 375 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 376 cl::Hidden, cl::init(true)); 377 378 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", 379 cl::desc("Optimize callbacks"), 380 cl::Hidden, cl::init(false)); 381 382 static cl::opt<bool> ClOptSameTemp( 383 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 384 cl::Hidden, cl::init(true)); 385 386 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 387 cl::desc("Don't instrument scalar globals"), 388 cl::Hidden, cl::init(true)); 389 390 static cl::opt<bool> ClOptStack( 391 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 392 cl::Hidden, cl::init(false)); 393 394 static cl::opt<bool> ClDynamicAllocaStack( 395 "asan-stack-dynamic-alloca", 396 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 397 cl::init(true)); 398 399 static cl::opt<uint32_t> ClForceExperiment( 400 "asan-force-experiment", 401 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 402 cl::init(0)); 403 404 static cl::opt<bool> 405 ClUsePrivateAlias("asan-use-private-alias", 406 cl::desc("Use private aliases for global variables"), 407 cl::Hidden, cl::init(true)); 408 409 static cl::opt<bool> 410 ClUseOdrIndicator("asan-use-odr-indicator", 411 cl::desc("Use odr indicators to improve ODR reporting"), 412 cl::Hidden, cl::init(true)); 413 414 static cl::opt<bool> 415 ClUseGlobalsGC("asan-globals-live-support", 416 cl::desc("Use linker features to support dead " 417 "code stripping of globals"), 418 cl::Hidden, cl::init(true)); 419 420 // This is on by default even though there is a bug in gold: 421 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 422 static cl::opt<bool> 423 ClWithComdat("asan-with-comdat", 424 cl::desc("Place ASan constructors in comdat sections"), 425 cl::Hidden, cl::init(true)); 426 427 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 428 "asan-destructor-kind", 429 cl::desc("Sets the ASan destructor kind. The default is to use the value " 430 "provided to the pass constructor"), 431 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 432 clEnumValN(AsanDtorKind::Global, "global", 433 "Use global destructors")), 434 cl::init(AsanDtorKind::Invalid), cl::Hidden); 435 436 // Debug flags. 437 438 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 439 cl::init(0)); 440 441 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 442 cl::Hidden, cl::init(0)); 443 444 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 445 cl::desc("Debug func")); 446 447 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 448 cl::Hidden, cl::init(-1)); 449 450 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 451 cl::Hidden, cl::init(-1)); 452 453 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 454 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 455 STATISTIC(NumOptimizedAccessesToGlobalVar, 456 "Number of optimized accesses to global vars"); 457 STATISTIC(NumOptimizedAccessesToStackVar, 458 "Number of optimized accesses to stack vars"); 459 460 namespace { 461 462 /// This struct defines the shadow mapping using the rule: 463 /// shadow = (mem >> Scale) ADD-or-OR Offset. 464 /// If InGlobal is true, then 465 /// extern char __asan_shadow[]; 466 /// shadow = (mem >> Scale) + &__asan_shadow 467 struct ShadowMapping { 468 int Scale; 469 uint64_t Offset; 470 bool OrShadowOffset; 471 bool InGlobal; 472 }; 473 474 } // end anonymous namespace 475 476 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, 477 bool IsKasan) { 478 bool IsAndroid = TargetTriple.isAndroid(); 479 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() || 480 TargetTriple.isDriverKit(); 481 bool IsMacOS = TargetTriple.isMacOSX(); 482 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 483 bool IsNetBSD = TargetTriple.isOSNetBSD(); 484 bool IsPS = TargetTriple.isPS(); 485 bool IsLinux = TargetTriple.isOSLinux(); 486 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 487 TargetTriple.getArch() == Triple::ppc64le; 488 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 489 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 490 bool IsMIPSN32ABI = TargetTriple.getEnvironment() == Triple::GNUABIN32; 491 bool IsMIPS32 = TargetTriple.isMIPS32(); 492 bool IsMIPS64 = TargetTriple.isMIPS64(); 493 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 494 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 495 bool IsLoongArch64 = TargetTriple.isLoongArch64(); 496 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 497 bool IsWindows = TargetTriple.isOSWindows(); 498 bool IsFuchsia = TargetTriple.isOSFuchsia(); 499 bool IsEmscripten = TargetTriple.isOSEmscripten(); 500 bool IsAMDGPU = TargetTriple.isAMDGPU(); 501 502 ShadowMapping Mapping; 503 504 Mapping.Scale = kDefaultShadowScale; 505 if (ClMappingScale.getNumOccurrences() > 0) { 506 Mapping.Scale = ClMappingScale; 507 } 508 509 if (LongSize == 32) { 510 if (IsAndroid) 511 Mapping.Offset = kDynamicShadowSentinel; 512 else if (IsMIPSN32ABI) 513 Mapping.Offset = kMIPS_ShadowOffsetN32; 514 else if (IsMIPS32) 515 Mapping.Offset = kMIPS32_ShadowOffset32; 516 else if (IsFreeBSD) 517 Mapping.Offset = kFreeBSD_ShadowOffset32; 518 else if (IsNetBSD) 519 Mapping.Offset = kNetBSD_ShadowOffset32; 520 else if (IsIOS) 521 Mapping.Offset = kDynamicShadowSentinel; 522 else if (IsWindows) 523 Mapping.Offset = kWindowsShadowOffset32; 524 else if (IsEmscripten) 525 Mapping.Offset = kEmscriptenShadowOffset; 526 else 527 Mapping.Offset = kDefaultShadowOffset32; 528 } else { // LongSize == 64 529 // Fuchsia is always PIE, which means that the beginning of the address 530 // space is always available. 531 if (IsFuchsia) 532 Mapping.Offset = 0; 533 else if (IsPPC64) 534 Mapping.Offset = kPPC64_ShadowOffset64; 535 else if (IsSystemZ) 536 Mapping.Offset = kSystemZ_ShadowOffset64; 537 else if (IsFreeBSD && IsAArch64) 538 Mapping.Offset = kFreeBSDAArch64_ShadowOffset64; 539 else if (IsFreeBSD && !IsMIPS64) { 540 if (IsKasan) 541 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 542 else 543 Mapping.Offset = kFreeBSD_ShadowOffset64; 544 } else if (IsNetBSD) { 545 if (IsKasan) 546 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 547 else 548 Mapping.Offset = kNetBSD_ShadowOffset64; 549 } else if (IsPS) 550 Mapping.Offset = kPS_ShadowOffset64; 551 else if (IsLinux && IsX86_64) { 552 if (IsKasan) 553 Mapping.Offset = kLinuxKasan_ShadowOffset64; 554 else 555 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 556 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 557 } else if (IsWindows && IsX86_64) { 558 Mapping.Offset = kWindowsShadowOffset64; 559 } else if (IsMIPS64) 560 Mapping.Offset = kMIPS64_ShadowOffset64; 561 else if (IsIOS) 562 Mapping.Offset = kDynamicShadowSentinel; 563 else if (IsMacOS && IsAArch64) 564 Mapping.Offset = kDynamicShadowSentinel; 565 else if (IsAArch64) 566 Mapping.Offset = kAArch64_ShadowOffset64; 567 else if (IsLoongArch64) 568 Mapping.Offset = kLoongArch64_ShadowOffset64; 569 else if (IsRISCV64) 570 Mapping.Offset = kRISCV64_ShadowOffset64; 571 else if (IsAMDGPU) 572 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 573 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 574 else 575 Mapping.Offset = kDefaultShadowOffset64; 576 } 577 578 if (ClForceDynamicShadow) { 579 Mapping.Offset = kDynamicShadowSentinel; 580 } 581 582 if (ClMappingOffset.getNumOccurrences() > 0) { 583 Mapping.Offset = ClMappingOffset; 584 } 585 586 // OR-ing shadow offset if more efficient (at least on x86) if the offset 587 // is a power of two, but on ppc64 and loongarch64 we have to use add since 588 // the shadow offset is not necessarily 1/8-th of the address space. On 589 // SystemZ, we could OR the constant in a single instruction, but it's more 590 // efficient to load it once and use indexed addressing. 591 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS && 592 !IsRISCV64 && !IsLoongArch64 && 593 !(Mapping.Offset & (Mapping.Offset - 1)) && 594 Mapping.Offset != kDynamicShadowSentinel; 595 bool IsAndroidWithIfuncSupport = 596 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 597 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 598 599 return Mapping; 600 } 601 602 namespace llvm { 603 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, 604 bool IsKasan, uint64_t *ShadowBase, 605 int *MappingScale, bool *OrShadowOffset) { 606 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); 607 *ShadowBase = Mapping.Offset; 608 *MappingScale = Mapping.Scale; 609 *OrShadowOffset = Mapping.OrShadowOffset; 610 } 611 612 ASanAccessInfo::ASanAccessInfo(int32_t Packed) 613 : Packed(Packed), 614 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), 615 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), 616 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} 617 618 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, 619 uint8_t AccessSizeIndex) 620 : Packed((IsWrite << kIsWriteShift) + 621 (CompileKernel << kCompileKernelShift) + 622 (AccessSizeIndex << kAccessSizeIndexShift)), 623 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), 624 CompileKernel(CompileKernel) {} 625 626 } // namespace llvm 627 628 static uint64_t getRedzoneSizeForScale(int MappingScale) { 629 // Redzone used for stack and globals is at least 32 bytes. 630 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 631 return std::max(32U, 1U << MappingScale); 632 } 633 634 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 635 if (TargetTriple.isOSEmscripten()) { 636 return kAsanEmscriptenCtorAndDtorPriority; 637 } else { 638 return kAsanCtorAndDtorPriority; 639 } 640 } 641 642 namespace { 643 644 /// AddressSanitizer: instrument the code in module to find memory bugs. 645 struct AddressSanitizer { 646 AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI, 647 bool CompileKernel = false, bool Recover = false, 648 bool UseAfterScope = false, 649 AsanDetectStackUseAfterReturnMode UseAfterReturn = 650 AsanDetectStackUseAfterReturnMode::Runtime) 651 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 652 : CompileKernel), 653 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 654 UseAfterScope(UseAfterScope || ClUseAfterScope), 655 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn 656 : UseAfterReturn), 657 SSGI(SSGI) { 658 C = &(M.getContext()); 659 DL = &M.getDataLayout(); 660 LongSize = M.getDataLayout().getPointerSizeInBits(); 661 IntptrTy = Type::getIntNTy(*C, LongSize); 662 Int8PtrTy = Type::getInt8PtrTy(*C); 663 Int32Ty = Type::getInt32Ty(*C); 664 TargetTriple = Triple(M.getTargetTriple()); 665 666 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 667 668 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); 669 } 670 671 TypeSize getAllocaSizeInBytes(const AllocaInst &AI) const { 672 return *AI.getAllocationSize(AI.getModule()->getDataLayout()); 673 } 674 675 /// Check if we want (and can) handle this alloca. 676 bool isInterestingAlloca(const AllocaInst &AI); 677 678 bool ignoreAccess(Instruction *Inst, Value *Ptr); 679 void getInterestingMemoryOperands( 680 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 681 682 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 683 InterestingMemoryOperand &O, bool UseCalls, 684 const DataLayout &DL); 685 void instrumentPointerComparisonOrSubtraction(Instruction *I); 686 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 687 Value *Addr, MaybeAlign Alignment, 688 uint32_t TypeStoreSize, bool IsWrite, 689 Value *SizeArgument, bool UseCalls, uint32_t Exp); 690 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 691 Instruction *InsertBefore, Value *Addr, 692 uint32_t TypeStoreSize, bool IsWrite, 693 Value *SizeArgument); 694 void instrumentUnusualSizeOrAlignment(Instruction *I, 695 Instruction *InsertBefore, Value *Addr, 696 TypeSize TypeStoreSize, bool IsWrite, 697 Value *SizeArgument, bool UseCalls, 698 uint32_t Exp); 699 void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL, 700 Type *IntptrTy, Value *Mask, Value *EVL, 701 Value *Stride, Instruction *I, Value *Addr, 702 MaybeAlign Alignment, unsigned Granularity, 703 Type *OpType, bool IsWrite, 704 Value *SizeArgument, bool UseCalls, 705 uint32_t Exp); 706 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 707 Value *ShadowValue, uint32_t TypeStoreSize); 708 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 709 bool IsWrite, size_t AccessSizeIndex, 710 Value *SizeArgument, uint32_t Exp); 711 void instrumentMemIntrinsic(MemIntrinsic *MI); 712 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 713 bool suppressInstrumentationSiteForDebug(int &Instrumented); 714 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 715 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 716 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 717 void markEscapedLocalAllocas(Function &F); 718 719 private: 720 friend struct FunctionStackPoisoner; 721 722 void initializeCallbacks(Module &M, const TargetLibraryInfo *TLI); 723 724 bool LooksLikeCodeInBug11395(Instruction *I); 725 bool GlobalIsLinkerInitialized(GlobalVariable *G); 726 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 727 TypeSize TypeStoreSize) const; 728 729 /// Helper to cleanup per-function state. 730 struct FunctionStateRAII { 731 AddressSanitizer *Pass; 732 733 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 734 assert(Pass->ProcessedAllocas.empty() && 735 "last pass forgot to clear cache"); 736 assert(!Pass->LocalDynamicShadow); 737 } 738 739 ~FunctionStateRAII() { 740 Pass->LocalDynamicShadow = nullptr; 741 Pass->ProcessedAllocas.clear(); 742 } 743 }; 744 745 LLVMContext *C; 746 const DataLayout *DL; 747 Triple TargetTriple; 748 int LongSize; 749 bool CompileKernel; 750 bool Recover; 751 bool UseAfterScope; 752 AsanDetectStackUseAfterReturnMode UseAfterReturn; 753 Type *IntptrTy; 754 Type *Int8PtrTy; 755 Type *Int32Ty; 756 ShadowMapping Mapping; 757 FunctionCallee AsanHandleNoReturnFunc; 758 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 759 Constant *AsanShadowGlobal; 760 761 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 762 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 763 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 764 765 // These arrays is indexed by AccessIsWrite and Experiment. 766 FunctionCallee AsanErrorCallbackSized[2][2]; 767 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 768 769 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 770 Value *LocalDynamicShadow = nullptr; 771 const StackSafetyGlobalInfo *SSGI; 772 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 773 774 FunctionCallee AMDGPUAddressShared; 775 FunctionCallee AMDGPUAddressPrivate; 776 }; 777 778 class ModuleAddressSanitizer { 779 public: 780 ModuleAddressSanitizer(Module &M, bool CompileKernel = false, 781 bool Recover = false, bool UseGlobalsGC = true, 782 bool UseOdrIndicator = true, 783 AsanDtorKind DestructorKind = AsanDtorKind::Global, 784 AsanCtorKind ConstructorKind = AsanCtorKind::Global) 785 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 786 : CompileKernel), 787 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 788 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 789 // Enable aliases as they should have no downside with ODR indicators. 790 UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0 791 ? ClUsePrivateAlias 792 : UseOdrIndicator), 793 UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0 794 ? ClUseOdrIndicator 795 : UseOdrIndicator), 796 // Not a typo: ClWithComdat is almost completely pointless without 797 // ClUseGlobalsGC (because then it only works on modules without 798 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 799 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 800 // argument is designed as workaround. Therefore, disable both 801 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 802 // do globals-gc. 803 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 804 DestructorKind(DestructorKind), 805 ConstructorKind(ConstructorKind) { 806 C = &(M.getContext()); 807 int LongSize = M.getDataLayout().getPointerSizeInBits(); 808 IntptrTy = Type::getIntNTy(*C, LongSize); 809 TargetTriple = Triple(M.getTargetTriple()); 810 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 811 812 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 813 this->DestructorKind = ClOverrideDestructorKind; 814 assert(this->DestructorKind != AsanDtorKind::Invalid); 815 } 816 817 bool instrumentModule(Module &); 818 819 private: 820 void initializeCallbacks(Module &M); 821 822 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 823 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 824 ArrayRef<GlobalVariable *> ExtendedGlobals, 825 ArrayRef<Constant *> MetadataInitializers); 826 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 827 ArrayRef<GlobalVariable *> ExtendedGlobals, 828 ArrayRef<Constant *> MetadataInitializers, 829 const std::string &UniqueModuleId); 830 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 831 ArrayRef<GlobalVariable *> ExtendedGlobals, 832 ArrayRef<Constant *> MetadataInitializers); 833 void 834 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 835 ArrayRef<GlobalVariable *> ExtendedGlobals, 836 ArrayRef<Constant *> MetadataInitializers); 837 838 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 839 StringRef OriginalName); 840 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 841 StringRef InternalSuffix); 842 Instruction *CreateAsanModuleDtor(Module &M); 843 844 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 845 bool shouldInstrumentGlobal(GlobalVariable *G) const; 846 bool ShouldUseMachOGlobalsSection() const; 847 StringRef getGlobalMetadataSection() const; 848 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 849 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 850 uint64_t getMinRedzoneSizeForGlobal() const { 851 return getRedzoneSizeForScale(Mapping.Scale); 852 } 853 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 854 int GetAsanVersion(const Module &M) const; 855 856 bool CompileKernel; 857 bool Recover; 858 bool UseGlobalsGC; 859 bool UsePrivateAlias; 860 bool UseOdrIndicator; 861 bool UseCtorComdat; 862 AsanDtorKind DestructorKind; 863 AsanCtorKind ConstructorKind; 864 Type *IntptrTy; 865 LLVMContext *C; 866 Triple TargetTriple; 867 ShadowMapping Mapping; 868 FunctionCallee AsanPoisonGlobals; 869 FunctionCallee AsanUnpoisonGlobals; 870 FunctionCallee AsanRegisterGlobals; 871 FunctionCallee AsanUnregisterGlobals; 872 FunctionCallee AsanRegisterImageGlobals; 873 FunctionCallee AsanUnregisterImageGlobals; 874 FunctionCallee AsanRegisterElfGlobals; 875 FunctionCallee AsanUnregisterElfGlobals; 876 877 Function *AsanCtorFunction = nullptr; 878 Function *AsanDtorFunction = nullptr; 879 }; 880 881 // Stack poisoning does not play well with exception handling. 882 // When an exception is thrown, we essentially bypass the code 883 // that unpoisones the stack. This is why the run-time library has 884 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 885 // stack in the interceptor. This however does not work inside the 886 // actual function which catches the exception. Most likely because the 887 // compiler hoists the load of the shadow value somewhere too high. 888 // This causes asan to report a non-existing bug on 453.povray. 889 // It sounds like an LLVM bug. 890 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 891 Function &F; 892 AddressSanitizer &ASan; 893 DIBuilder DIB; 894 LLVMContext *C; 895 Type *IntptrTy; 896 Type *IntptrPtrTy; 897 ShadowMapping Mapping; 898 899 SmallVector<AllocaInst *, 16> AllocaVec; 900 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 901 SmallVector<Instruction *, 8> RetVec; 902 903 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 904 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 905 FunctionCallee AsanSetShadowFunc[0x100] = {}; 906 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 907 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 908 909 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 910 struct AllocaPoisonCall { 911 IntrinsicInst *InsBefore; 912 AllocaInst *AI; 913 uint64_t Size; 914 bool DoPoison; 915 }; 916 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 917 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 918 bool HasUntracedLifetimeIntrinsic = false; 919 920 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 921 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 922 AllocaInst *DynamicAllocaLayout = nullptr; 923 IntrinsicInst *LocalEscapeCall = nullptr; 924 925 bool HasInlineAsm = false; 926 bool HasReturnsTwiceCall = false; 927 bool PoisonStack; 928 929 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 930 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 931 C(ASan.C), IntptrTy(ASan.IntptrTy), 932 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 933 PoisonStack(ClStack && 934 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 935 936 bool runOnFunction() { 937 if (!PoisonStack) 938 return false; 939 940 if (ClRedzoneByvalArgs) 941 copyArgsPassedByValToAllocas(); 942 943 // Collect alloca, ret, lifetime instructions etc. 944 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 945 946 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 947 948 initializeCallbacks(*F.getParent()); 949 950 if (HasUntracedLifetimeIntrinsic) { 951 // If there are lifetime intrinsics which couldn't be traced back to an 952 // alloca, we may not know exactly when a variable enters scope, and 953 // therefore should "fail safe" by not poisoning them. 954 StaticAllocaPoisonCallVec.clear(); 955 DynamicAllocaPoisonCallVec.clear(); 956 } 957 958 processDynamicAllocas(); 959 processStaticAllocas(); 960 961 if (ClDebugStack) { 962 LLVM_DEBUG(dbgs() << F); 963 } 964 return true; 965 } 966 967 // Arguments marked with the "byval" attribute are implicitly copied without 968 // using an alloca instruction. To produce redzones for those arguments, we 969 // copy them a second time into memory allocated with an alloca instruction. 970 void copyArgsPassedByValToAllocas(); 971 972 // Finds all Alloca instructions and puts 973 // poisoned red zones around all of them. 974 // Then unpoison everything back before the function returns. 975 void processStaticAllocas(); 976 void processDynamicAllocas(); 977 978 void createDynamicAllocasInitStorage(); 979 980 // ----------------------- Visitors. 981 /// Collect all Ret instructions, or the musttail call instruction if it 982 /// precedes the return instruction. 983 void visitReturnInst(ReturnInst &RI) { 984 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 985 RetVec.push_back(CI); 986 else 987 RetVec.push_back(&RI); 988 } 989 990 /// Collect all Resume instructions. 991 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 992 993 /// Collect all CatchReturnInst instructions. 994 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 995 996 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 997 Value *SavedStack) { 998 IRBuilder<> IRB(InstBefore); 999 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 1000 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1001 // need to adjust extracted SP to compute the address of the most recent 1002 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1003 // this purpose. 1004 if (!isa<ReturnInst>(InstBefore)) { 1005 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 1006 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 1007 {IntptrTy}); 1008 1009 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 1010 1011 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1012 DynamicAreaOffset); 1013 } 1014 1015 IRB.CreateCall( 1016 AsanAllocasUnpoisonFunc, 1017 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1018 } 1019 1020 // Unpoison dynamic allocas redzones. 1021 void unpoisonDynamicAllocas() { 1022 for (Instruction *Ret : RetVec) 1023 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1024 1025 for (Instruction *StackRestoreInst : StackRestoreVec) 1026 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1027 StackRestoreInst->getOperand(0)); 1028 } 1029 1030 // Deploy and poison redzones around dynamic alloca call. To do this, we 1031 // should replace this call with another one with changed parameters and 1032 // replace all its uses with new address, so 1033 // addr = alloca type, old_size, align 1034 // is replaced by 1035 // new_size = (old_size + additional_size) * sizeof(type) 1036 // tmp = alloca i8, new_size, max(align, 32) 1037 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1038 // Additional_size is added to make new memory allocation contain not only 1039 // requested memory, but also left, partial and right redzones. 1040 void handleDynamicAllocaCall(AllocaInst *AI); 1041 1042 /// Collect Alloca instructions we want (and can) handle. 1043 void visitAllocaInst(AllocaInst &AI) { 1044 // FIXME: Handle scalable vectors instead of ignoring them. 1045 if (!ASan.isInterestingAlloca(AI) || 1046 isa<ScalableVectorType>(AI.getAllocatedType())) { 1047 if (AI.isStaticAlloca()) { 1048 // Skip over allocas that are present *before* the first instrumented 1049 // alloca, we don't want to move those around. 1050 if (AllocaVec.empty()) 1051 return; 1052 1053 StaticAllocasToMoveUp.push_back(&AI); 1054 } 1055 return; 1056 } 1057 1058 if (!AI.isStaticAlloca()) 1059 DynamicAllocaVec.push_back(&AI); 1060 else 1061 AllocaVec.push_back(&AI); 1062 } 1063 1064 /// Collect lifetime intrinsic calls to check for use-after-scope 1065 /// errors. 1066 void visitIntrinsicInst(IntrinsicInst &II) { 1067 Intrinsic::ID ID = II.getIntrinsicID(); 1068 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1069 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1070 if (!ASan.UseAfterScope) 1071 return; 1072 if (!II.isLifetimeStartOrEnd()) 1073 return; 1074 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1075 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1076 // If size argument is undefined, don't do anything. 1077 if (Size->isMinusOne()) return; 1078 // Check that size doesn't saturate uint64_t and can 1079 // be stored in IntptrTy. 1080 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1081 if (SizeValue == ~0ULL || 1082 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1083 return; 1084 // Find alloca instruction that corresponds to llvm.lifetime argument. 1085 // Currently we can only handle lifetime markers pointing to the 1086 // beginning of the alloca. 1087 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1088 if (!AI) { 1089 HasUntracedLifetimeIntrinsic = true; 1090 return; 1091 } 1092 // We're interested only in allocas we can handle. 1093 if (!ASan.isInterestingAlloca(*AI)) 1094 return; 1095 bool DoPoison = (ID == Intrinsic::lifetime_end); 1096 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1097 if (AI->isStaticAlloca()) 1098 StaticAllocaPoisonCallVec.push_back(APC); 1099 else if (ClInstrumentDynamicAllocas) 1100 DynamicAllocaPoisonCallVec.push_back(APC); 1101 } 1102 1103 void visitCallBase(CallBase &CB) { 1104 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1105 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1106 HasReturnsTwiceCall |= CI->canReturnTwice(); 1107 } 1108 } 1109 1110 // ---------------------- Helpers. 1111 void initializeCallbacks(Module &M); 1112 1113 // Copies bytes from ShadowBytes into shadow memory for indexes where 1114 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1115 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1116 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1117 IRBuilder<> &IRB, Value *ShadowBase); 1118 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1119 size_t Begin, size_t End, IRBuilder<> &IRB, 1120 Value *ShadowBase); 1121 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1122 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1123 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1124 1125 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1126 1127 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1128 bool Dynamic); 1129 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1130 Instruction *ThenTerm, Value *ValueIfFalse); 1131 }; 1132 1133 } // end anonymous namespace 1134 1135 void AddressSanitizerPass::printPipeline( 1136 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1137 static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline( 1138 OS, MapClassName2PassName); 1139 OS << '<'; 1140 if (Options.CompileKernel) 1141 OS << "kernel"; 1142 OS << '>'; 1143 } 1144 1145 AddressSanitizerPass::AddressSanitizerPass( 1146 const AddressSanitizerOptions &Options, bool UseGlobalGC, 1147 bool UseOdrIndicator, AsanDtorKind DestructorKind, 1148 AsanCtorKind ConstructorKind) 1149 : Options(Options), UseGlobalGC(UseGlobalGC), 1150 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind), 1151 ConstructorKind(ClConstructorKind) {} 1152 1153 PreservedAnalyses AddressSanitizerPass::run(Module &M, 1154 ModuleAnalysisManager &MAM) { 1155 ModuleAddressSanitizer ModuleSanitizer(M, Options.CompileKernel, 1156 Options.Recover, UseGlobalGC, 1157 UseOdrIndicator, DestructorKind, 1158 ConstructorKind); 1159 bool Modified = false; 1160 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1161 const StackSafetyGlobalInfo *const SSGI = 1162 ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr; 1163 for (Function &F : M) { 1164 AddressSanitizer FunctionSanitizer(M, SSGI, Options.CompileKernel, 1165 Options.Recover, Options.UseAfterScope, 1166 Options.UseAfterReturn); 1167 const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1168 Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); 1169 } 1170 Modified |= ModuleSanitizer.instrumentModule(M); 1171 if (!Modified) 1172 return PreservedAnalyses::all(); 1173 1174 PreservedAnalyses PA = PreservedAnalyses::none(); 1175 // GlobalsAA is considered stateless and does not get invalidated unless 1176 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 1177 // make changes that require GlobalsAA to be invalidated. 1178 PA.abandon<GlobalsAA>(); 1179 return PA; 1180 } 1181 1182 static size_t TypeStoreSizeToSizeIndex(uint32_t TypeSize) { 1183 size_t Res = llvm::countr_zero(TypeSize / 8); 1184 assert(Res < kNumberOfAccessSizes); 1185 return Res; 1186 } 1187 1188 /// Check if \p G has been created by a trusted compiler pass. 1189 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1190 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1191 if (G->getName().startswith("llvm.") || 1192 // Do not instrument gcov counter arrays. 1193 G->getName().startswith("__llvm_gcov_ctr") || 1194 // Do not instrument rtti proxy symbols for function sanitizer. 1195 G->getName().startswith("__llvm_rtti_proxy")) 1196 return true; 1197 1198 // Do not instrument asan globals. 1199 if (G->getName().startswith(kAsanGenPrefix) || 1200 G->getName().startswith(kSanCovGenPrefix) || 1201 G->getName().startswith(kODRGenPrefix)) 1202 return true; 1203 1204 return false; 1205 } 1206 1207 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1208 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1209 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1210 if (AddrSpace == 3 || AddrSpace == 5) 1211 return true; 1212 return false; 1213 } 1214 1215 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1216 // Shadow >> scale 1217 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1218 if (Mapping.Offset == 0) return Shadow; 1219 // (Shadow >> scale) | offset 1220 Value *ShadowBase; 1221 if (LocalDynamicShadow) 1222 ShadowBase = LocalDynamicShadow; 1223 else 1224 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1225 if (Mapping.OrShadowOffset) 1226 return IRB.CreateOr(Shadow, ShadowBase); 1227 else 1228 return IRB.CreateAdd(Shadow, ShadowBase); 1229 } 1230 1231 // Instrument memset/memmove/memcpy 1232 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1233 InstrumentationIRBuilder IRB(MI); 1234 if (isa<MemTransferInst>(MI)) { 1235 IRB.CreateCall( 1236 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1237 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1238 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1239 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1240 } else if (isa<MemSetInst>(MI)) { 1241 IRB.CreateCall( 1242 AsanMemset, 1243 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1244 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1245 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1246 } 1247 MI->eraseFromParent(); 1248 } 1249 1250 /// Check if we want (and can) handle this alloca. 1251 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1252 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1253 1254 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1255 return PreviouslySeenAllocaInfo->getSecond(); 1256 1257 bool IsInteresting = 1258 (AI.getAllocatedType()->isSized() && 1259 // alloca() may be called with 0 size, ignore it. 1260 ((!AI.isStaticAlloca()) || !getAllocaSizeInBytes(AI).isZero()) && 1261 // We are only interested in allocas not promotable to registers. 1262 // Promotable allocas are common under -O0. 1263 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1264 // inalloca allocas are not treated as static, and we don't want 1265 // dynamic alloca instrumentation for them as well. 1266 !AI.isUsedWithInAlloca() && 1267 // swifterror allocas are register promoted by ISel 1268 !AI.isSwiftError() && 1269 // safe allocas are not interesting 1270 !(SSGI && SSGI->isSafe(AI))); 1271 1272 ProcessedAllocas[&AI] = IsInteresting; 1273 return IsInteresting; 1274 } 1275 1276 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { 1277 // Instrument accesses from different address spaces only for AMDGPU. 1278 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1279 if (PtrTy->getPointerAddressSpace() != 0 && 1280 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1281 return true; 1282 1283 // Ignore swifterror addresses. 1284 // swifterror memory addresses are mem2reg promoted by instruction 1285 // selection. As such they cannot have regular uses like an instrumentation 1286 // function and it makes no sense to track them as memory. 1287 if (Ptr->isSwiftError()) 1288 return true; 1289 1290 // Treat memory accesses to promotable allocas as non-interesting since they 1291 // will not cause memory violations. This greatly speeds up the instrumented 1292 // executable at -O0. 1293 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1294 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1295 return true; 1296 1297 if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && 1298 findAllocaForValue(Ptr)) 1299 return true; 1300 1301 return false; 1302 } 1303 1304 void AddressSanitizer::getInterestingMemoryOperands( 1305 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1306 // Do not instrument the load fetching the dynamic shadow address. 1307 if (LocalDynamicShadow == I) 1308 return; 1309 1310 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1311 if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand())) 1312 return; 1313 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1314 LI->getType(), LI->getAlign()); 1315 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1316 if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand())) 1317 return; 1318 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1319 SI->getValueOperand()->getType(), SI->getAlign()); 1320 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1321 if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand())) 1322 return; 1323 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1324 RMW->getValOperand()->getType(), std::nullopt); 1325 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1326 if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand())) 1327 return; 1328 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1329 XCHG->getCompareOperand()->getType(), 1330 std::nullopt); 1331 } else if (auto CI = dyn_cast<CallInst>(I)) { 1332 switch (CI->getIntrinsicID()) { 1333 case Intrinsic::masked_load: 1334 case Intrinsic::masked_store: 1335 case Intrinsic::masked_gather: 1336 case Intrinsic::masked_scatter: { 1337 bool IsWrite = CI->getType()->isVoidTy(); 1338 // Masked store has an initial operand for the value. 1339 unsigned OpOffset = IsWrite ? 1 : 0; 1340 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1341 return; 1342 1343 auto BasePtr = CI->getOperand(OpOffset); 1344 if (ignoreAccess(I, BasePtr)) 1345 return; 1346 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1347 MaybeAlign Alignment = Align(1); 1348 // Otherwise no alignment guarantees. We probably got Undef. 1349 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1350 Alignment = Op->getMaybeAlignValue(); 1351 Value *Mask = CI->getOperand(2 + OpOffset); 1352 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1353 break; 1354 } 1355 case Intrinsic::masked_expandload: 1356 case Intrinsic::masked_compressstore: { 1357 bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_compressstore; 1358 unsigned OpOffset = IsWrite ? 1 : 0; 1359 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1360 return; 1361 auto BasePtr = CI->getOperand(OpOffset); 1362 if (ignoreAccess(I, BasePtr)) 1363 return; 1364 MaybeAlign Alignment = BasePtr->getPointerAlignment(*DL); 1365 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1366 1367 IRBuilder IB(I); 1368 Value *Mask = CI->getOperand(1 + OpOffset); 1369 // Use the popcount of Mask as the effective vector length. 1370 Type *ExtTy = VectorType::get(IntptrTy, cast<VectorType>(Ty)); 1371 Value *ExtMask = IB.CreateZExt(Mask, ExtTy); 1372 Value *EVL = IB.CreateAddReduce(ExtMask); 1373 Value *TrueMask = ConstantInt::get(Mask->getType(), 1); 1374 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, TrueMask, 1375 EVL); 1376 break; 1377 } 1378 case Intrinsic::vp_load: 1379 case Intrinsic::vp_store: 1380 case Intrinsic::experimental_vp_strided_load: 1381 case Intrinsic::experimental_vp_strided_store: { 1382 auto *VPI = cast<VPIntrinsic>(CI); 1383 unsigned IID = CI->getIntrinsicID(); 1384 bool IsWrite = CI->getType()->isVoidTy(); 1385 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1386 return; 1387 unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID); 1388 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1389 MaybeAlign Alignment = VPI->getOperand(PtrOpNo)->getPointerAlignment(*DL); 1390 Value *Stride = nullptr; 1391 if (IID == Intrinsic::experimental_vp_strided_store || 1392 IID == Intrinsic::experimental_vp_strided_load) { 1393 Stride = VPI->getOperand(PtrOpNo + 1); 1394 // Use the pointer alignment as the element alignment if the stride is a 1395 // mutiple of the pointer alignment. Otherwise, the element alignment 1396 // should be Align(1). 1397 unsigned PointerAlign = Alignment.valueOrOne().value(); 1398 if (!isa<ConstantInt>(Stride) || 1399 cast<ConstantInt>(Stride)->getZExtValue() % PointerAlign != 0) 1400 Alignment = Align(1); 1401 } 1402 Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment, 1403 VPI->getMaskParam(), VPI->getVectorLengthParam(), 1404 Stride); 1405 break; 1406 } 1407 case Intrinsic::vp_gather: 1408 case Intrinsic::vp_scatter: { 1409 auto *VPI = cast<VPIntrinsic>(CI); 1410 unsigned IID = CI->getIntrinsicID(); 1411 bool IsWrite = IID == Intrinsic::vp_scatter; 1412 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1413 return; 1414 unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID); 1415 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1416 MaybeAlign Alignment = VPI->getPointerAlignment(); 1417 Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment, 1418 VPI->getMaskParam(), 1419 VPI->getVectorLengthParam()); 1420 break; 1421 } 1422 default: 1423 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { 1424 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1425 ignoreAccess(I, CI->getArgOperand(ArgNo))) 1426 continue; 1427 Type *Ty = CI->getParamByValType(ArgNo); 1428 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1429 } 1430 } 1431 } 1432 } 1433 1434 static bool isPointerOperand(Value *V) { 1435 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1436 } 1437 1438 // This is a rough heuristic; it may cause both false positives and 1439 // false negatives. The proper implementation requires cooperation with 1440 // the frontend. 1441 static bool isInterestingPointerComparison(Instruction *I) { 1442 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1443 if (!Cmp->isRelational()) 1444 return false; 1445 } else { 1446 return false; 1447 } 1448 return isPointerOperand(I->getOperand(0)) && 1449 isPointerOperand(I->getOperand(1)); 1450 } 1451 1452 // This is a rough heuristic; it may cause both false positives and 1453 // false negatives. The proper implementation requires cooperation with 1454 // the frontend. 1455 static bool isInterestingPointerSubtraction(Instruction *I) { 1456 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1457 if (BO->getOpcode() != Instruction::Sub) 1458 return false; 1459 } else { 1460 return false; 1461 } 1462 return isPointerOperand(I->getOperand(0)) && 1463 isPointerOperand(I->getOperand(1)); 1464 } 1465 1466 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1467 // If a global variable does not have dynamic initialization we don't 1468 // have to instrument it. However, if a global does not have initializer 1469 // at all, we assume it has dynamic initializer (in other TU). 1470 if (!G->hasInitializer()) 1471 return false; 1472 1473 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit) 1474 return false; 1475 1476 return true; 1477 } 1478 1479 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1480 Instruction *I) { 1481 IRBuilder<> IRB(I); 1482 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1483 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1484 for (Value *&i : Param) { 1485 if (i->getType()->isPointerTy()) 1486 i = IRB.CreatePointerCast(i, IntptrTy); 1487 } 1488 IRB.CreateCall(F, Param); 1489 } 1490 1491 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1492 Instruction *InsertBefore, Value *Addr, 1493 MaybeAlign Alignment, unsigned Granularity, 1494 TypeSize TypeStoreSize, bool IsWrite, 1495 Value *SizeArgument, bool UseCalls, 1496 uint32_t Exp) { 1497 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1498 // if the data is properly aligned. 1499 if (!TypeStoreSize.isScalable()) { 1500 const auto FixedSize = TypeStoreSize.getFixedValue(); 1501 switch (FixedSize) { 1502 case 8: 1503 case 16: 1504 case 32: 1505 case 64: 1506 case 128: 1507 if (!Alignment || *Alignment >= Granularity || 1508 *Alignment >= FixedSize / 8) 1509 return Pass->instrumentAddress(I, InsertBefore, Addr, Alignment, 1510 FixedSize, IsWrite, nullptr, UseCalls, 1511 Exp); 1512 } 1513 } 1514 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeStoreSize, 1515 IsWrite, nullptr, UseCalls, Exp); 1516 } 1517 1518 void AddressSanitizer::instrumentMaskedLoadOrStore( 1519 AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask, 1520 Value *EVL, Value *Stride, Instruction *I, Value *Addr, 1521 MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite, 1522 Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1523 auto *VTy = cast<VectorType>(OpType); 1524 TypeSize ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1525 auto Zero = ConstantInt::get(IntptrTy, 0); 1526 1527 IRBuilder IB(I); 1528 Instruction *LoopInsertBefore = I; 1529 if (EVL) { 1530 // The end argument of SplitBlockAndInsertForLane is assumed bigger 1531 // than zero, so we should check whether EVL is zero here. 1532 Type *EVLType = EVL->getType(); 1533 Value *IsEVLZero = IB.CreateICmpNE(EVL, ConstantInt::get(EVLType, 0)); 1534 LoopInsertBefore = SplitBlockAndInsertIfThen(IsEVLZero, I, false); 1535 IB.SetInsertPoint(LoopInsertBefore); 1536 // Cast EVL to IntptrTy. 1537 EVL = IB.CreateZExtOrTrunc(EVL, IntptrTy); 1538 // To avoid undefined behavior for extracting with out of range index, use 1539 // the minimum of evl and element count as trip count. 1540 Value *EC = IB.CreateElementCount(IntptrTy, VTy->getElementCount()); 1541 EVL = IB.CreateBinaryIntrinsic(Intrinsic::umin, EVL, EC); 1542 } else { 1543 EVL = IB.CreateElementCount(IntptrTy, VTy->getElementCount()); 1544 } 1545 1546 // Cast Stride to IntptrTy. 1547 if (Stride) 1548 Stride = IB.CreateZExtOrTrunc(Stride, IntptrTy); 1549 1550 SplitBlockAndInsertForEachLane(EVL, LoopInsertBefore, 1551 [&](IRBuilderBase &IRB, Value *Index) { 1552 Value *MaskElem = IRB.CreateExtractElement(Mask, Index); 1553 if (auto *MaskElemC = dyn_cast<ConstantInt>(MaskElem)) { 1554 if (MaskElemC->isZero()) 1555 // No check 1556 return; 1557 // Unconditional check 1558 } else { 1559 // Conditional check 1560 Instruction *ThenTerm = SplitBlockAndInsertIfThen( 1561 MaskElem, &*IRB.GetInsertPoint(), false); 1562 IRB.SetInsertPoint(ThenTerm); 1563 } 1564 1565 Value *InstrumentedAddress; 1566 if (isa<VectorType>(Addr->getType())) { 1567 assert( 1568 cast<VectorType>(Addr->getType())->getElementType()->isPointerTy() && 1569 "Expected vector of pointer."); 1570 InstrumentedAddress = IRB.CreateExtractElement(Addr, Index); 1571 } else if (Stride) { 1572 Index = IRB.CreateMul(Index, Stride); 1573 Addr = IRB.CreateBitCast(Addr, Type::getInt8PtrTy(*C)); 1574 InstrumentedAddress = IRB.CreateGEP(Type::getInt8Ty(*C), Addr, {Index}); 1575 } else { 1576 InstrumentedAddress = IRB.CreateGEP(VTy, Addr, {Zero, Index}); 1577 } 1578 doInstrumentAddress(Pass, I, &*IRB.GetInsertPoint(), 1579 InstrumentedAddress, Alignment, Granularity, 1580 ElemTypeSize, IsWrite, SizeArgument, UseCalls, Exp); 1581 }); 1582 } 1583 1584 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1585 InterestingMemoryOperand &O, bool UseCalls, 1586 const DataLayout &DL) { 1587 Value *Addr = O.getPtr(); 1588 1589 // Optimization experiments. 1590 // The experiments can be used to evaluate potential optimizations that remove 1591 // instrumentation (assess false negatives). Instead of completely removing 1592 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1593 // experiments that want to remove instrumentation of this instruction). 1594 // If Exp is non-zero, this pass will emit special calls into runtime 1595 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1596 // make runtime terminate the program in a special way (with a different 1597 // exit status). Then you run the new compiler on a buggy corpus, collect 1598 // the special terminations (ideally, you don't see them at all -- no false 1599 // negatives) and make the decision on the optimization. 1600 uint32_t Exp = ClForceExperiment; 1601 1602 if (ClOpt && ClOptGlobals) { 1603 // If initialization order checking is disabled, a simple access to a 1604 // dynamically initialized global is always valid. 1605 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1606 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1607 isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) { 1608 NumOptimizedAccessesToGlobalVar++; 1609 return; 1610 } 1611 } 1612 1613 if (ClOpt && ClOptStack) { 1614 // A direct inbounds access to a stack variable is always valid. 1615 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1616 isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) { 1617 NumOptimizedAccessesToStackVar++; 1618 return; 1619 } 1620 } 1621 1622 if (O.IsWrite) 1623 NumInstrumentedWrites++; 1624 else 1625 NumInstrumentedReads++; 1626 1627 unsigned Granularity = 1 << Mapping.Scale; 1628 if (O.MaybeMask) { 1629 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.MaybeEVL, 1630 O.MaybeStride, O.getInsn(), Addr, O.Alignment, 1631 Granularity, O.OpType, O.IsWrite, nullptr, 1632 UseCalls, Exp); 1633 } else { 1634 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1635 Granularity, O.TypeStoreSize, O.IsWrite, nullptr, UseCalls, 1636 Exp); 1637 } 1638 } 1639 1640 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1641 Value *Addr, bool IsWrite, 1642 size_t AccessSizeIndex, 1643 Value *SizeArgument, 1644 uint32_t Exp) { 1645 InstrumentationIRBuilder IRB(InsertBefore); 1646 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1647 CallInst *Call = nullptr; 1648 if (SizeArgument) { 1649 if (Exp == 0) 1650 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1651 {Addr, SizeArgument}); 1652 else 1653 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1654 {Addr, SizeArgument, ExpVal}); 1655 } else { 1656 if (Exp == 0) 1657 Call = 1658 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1659 else 1660 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1661 {Addr, ExpVal}); 1662 } 1663 1664 Call->setCannotMerge(); 1665 return Call; 1666 } 1667 1668 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1669 Value *ShadowValue, 1670 uint32_t TypeStoreSize) { 1671 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1672 // Addr & (Granularity - 1) 1673 Value *LastAccessedByte = 1674 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1675 // (Addr & (Granularity - 1)) + size - 1 1676 if (TypeStoreSize / 8 > 1) 1677 LastAccessedByte = IRB.CreateAdd( 1678 LastAccessedByte, ConstantInt::get(IntptrTy, TypeStoreSize / 8 - 1)); 1679 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1680 LastAccessedByte = 1681 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1682 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1683 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1684 } 1685 1686 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1687 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1688 uint32_t TypeStoreSize, bool IsWrite, Value *SizeArgument) { 1689 // Do not instrument unsupported addrspaces. 1690 if (isUnsupportedAMDGPUAddrspace(Addr)) 1691 return nullptr; 1692 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1693 // Follow host instrumentation for global and constant addresses. 1694 if (PtrTy->getPointerAddressSpace() != 0) 1695 return InsertBefore; 1696 // Instrument generic addresses in supported addressspaces. 1697 IRBuilder<> IRB(InsertBefore); 1698 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); 1699 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); 1700 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); 1701 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1702 Value *Cmp = IRB.CreateNot(IsSharedOrPrivate); 1703 Value *AddrSpaceZeroLanding = 1704 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1705 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1706 return InsertBefore; 1707 } 1708 1709 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1710 Instruction *InsertBefore, Value *Addr, 1711 MaybeAlign Alignment, 1712 uint32_t TypeStoreSize, bool IsWrite, 1713 Value *SizeArgument, bool UseCalls, 1714 uint32_t Exp) { 1715 if (TargetTriple.isAMDGPU()) { 1716 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1717 TypeStoreSize, IsWrite, SizeArgument); 1718 if (!InsertBefore) 1719 return; 1720 } 1721 1722 InstrumentationIRBuilder IRB(InsertBefore); 1723 size_t AccessSizeIndex = TypeStoreSizeToSizeIndex(TypeStoreSize); 1724 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1725 1726 if (UseCalls && ClOptimizeCallbacks) { 1727 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1728 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1729 IRB.CreateCall( 1730 Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), 1731 {IRB.CreatePointerCast(Addr, Int8PtrTy), 1732 ConstantInt::get(Int32Ty, AccessInfo.Packed)}); 1733 return; 1734 } 1735 1736 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1737 if (UseCalls) { 1738 if (Exp == 0) 1739 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1740 AddrLong); 1741 else 1742 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1743 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1744 return; 1745 } 1746 1747 Type *ShadowTy = 1748 IntegerType::get(*C, std::max(8U, TypeStoreSize >> Mapping.Scale)); 1749 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1750 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1751 const uint64_t ShadowAlign = 1752 std::max<uint64_t>(Alignment.valueOrOne().value() >> Mapping.Scale, 1); 1753 Value *ShadowValue = IRB.CreateAlignedLoad( 1754 ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy), Align(ShadowAlign)); 1755 1756 Value *Cmp = IRB.CreateIsNotNull(ShadowValue); 1757 size_t Granularity = 1ULL << Mapping.Scale; 1758 Instruction *CrashTerm = nullptr; 1759 1760 if (ClAlwaysSlowPath || (TypeStoreSize < 8 * Granularity)) { 1761 // We use branch weights for the slow path check, to indicate that the slow 1762 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1763 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1764 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1765 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1766 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1767 IRB.SetInsertPoint(CheckTerm); 1768 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize); 1769 if (Recover) { 1770 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1771 } else { 1772 BasicBlock *CrashBlock = 1773 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1774 CrashTerm = new UnreachableInst(*C, CrashBlock); 1775 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1776 ReplaceInstWithInst(CheckTerm, NewTerm); 1777 } 1778 } else { 1779 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1780 } 1781 1782 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1783 AccessSizeIndex, SizeArgument, Exp); 1784 if (OrigIns->getDebugLoc()) 1785 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1786 } 1787 1788 // Instrument unusual size or unusual alignment. 1789 // We can not do it with a single check, so we do 1-byte check for the first 1790 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1791 // to report the actual access size. 1792 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1793 Instruction *I, Instruction *InsertBefore, Value *Addr, TypeSize TypeStoreSize, 1794 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1795 InstrumentationIRBuilder IRB(InsertBefore); 1796 Value *NumBits = IRB.CreateTypeSize(IntptrTy, TypeStoreSize); 1797 Value *Size = IRB.CreateLShr(NumBits, ConstantInt::get(IntptrTy, 3)); 1798 1799 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1800 if (UseCalls) { 1801 if (Exp == 0) 1802 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1803 {AddrLong, Size}); 1804 else 1805 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1806 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1807 } else { 1808 Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1)); 1809 Value *LastByte = IRB.CreateIntToPtr( 1810 IRB.CreateAdd(AddrLong, SizeMinusOne), 1811 Addr->getType()); 1812 instrumentAddress(I, InsertBefore, Addr, {}, 8, IsWrite, Size, false, Exp); 1813 instrumentAddress(I, InsertBefore, LastByte, {}, 8, IsWrite, Size, false, 1814 Exp); 1815 } 1816 } 1817 1818 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1819 GlobalValue *ModuleName) { 1820 // Set up the arguments to our poison/unpoison functions. 1821 IRBuilder<> IRB(&GlobalInit.front(), 1822 GlobalInit.front().getFirstInsertionPt()); 1823 1824 // Add a call to poison all external globals before the given function starts. 1825 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1826 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1827 1828 // Add calls to unpoison all globals before each return instruction. 1829 for (auto &BB : GlobalInit) 1830 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1831 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1832 } 1833 1834 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1835 Module &M, GlobalValue *ModuleName) { 1836 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1837 if (!GV) 1838 return; 1839 1840 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1841 if (!CA) 1842 return; 1843 1844 for (Use &OP : CA->operands()) { 1845 if (isa<ConstantAggregateZero>(OP)) continue; 1846 ConstantStruct *CS = cast<ConstantStruct>(OP); 1847 1848 // Must have a function or null ptr. 1849 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1850 if (F->getName() == kAsanModuleCtorName) continue; 1851 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1852 // Don't instrument CTORs that will run before asan.module_ctor. 1853 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1854 continue; 1855 poisonOneInitializer(*F, ModuleName); 1856 } 1857 } 1858 } 1859 1860 const GlobalVariable * 1861 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1862 // In case this function should be expanded to include rules that do not just 1863 // apply when CompileKernel is true, either guard all existing rules with an 1864 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1865 // should also apply to user space. 1866 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1867 1868 const Constant *C = GA.getAliasee(); 1869 1870 // When compiling the kernel, globals that are aliased by symbols prefixed 1871 // by "__" are special and cannot be padded with a redzone. 1872 if (GA.getName().startswith("__")) 1873 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1874 1875 return nullptr; 1876 } 1877 1878 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1879 Type *Ty = G->getValueType(); 1880 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1881 1882 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress) 1883 return false; 1884 if (!Ty->isSized()) return false; 1885 if (!G->hasInitializer()) return false; 1886 // Globals in address space 1 and 4 are supported for AMDGPU. 1887 if (G->getAddressSpace() && 1888 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 1889 return false; 1890 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1891 // Two problems with thread-locals: 1892 // - The address of the main thread's copy can't be computed at link-time. 1893 // - Need to poison all copies, not just the main thread's one. 1894 if (G->isThreadLocal()) return false; 1895 // For now, just ignore this Global if the alignment is large. 1896 if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false; 1897 1898 // For non-COFF targets, only instrument globals known to be defined by this 1899 // TU. 1900 // FIXME: We can instrument comdat globals on ELF if we are using the 1901 // GC-friendly metadata scheme. 1902 if (!TargetTriple.isOSBinFormatCOFF()) { 1903 if (!G->hasExactDefinition() || G->hasComdat()) 1904 return false; 1905 } else { 1906 // On COFF, don't instrument non-ODR linkages. 1907 if (G->isInterposable()) 1908 return false; 1909 } 1910 1911 // If a comdat is present, it must have a selection kind that implies ODR 1912 // semantics: no duplicates, any, or exact match. 1913 if (Comdat *C = G->getComdat()) { 1914 switch (C->getSelectionKind()) { 1915 case Comdat::Any: 1916 case Comdat::ExactMatch: 1917 case Comdat::NoDeduplicate: 1918 break; 1919 case Comdat::Largest: 1920 case Comdat::SameSize: 1921 return false; 1922 } 1923 } 1924 1925 if (G->hasSection()) { 1926 // The kernel uses explicit sections for mostly special global variables 1927 // that we should not instrument. E.g. the kernel may rely on their layout 1928 // without redzones, or remove them at link time ("discard.*"), etc. 1929 if (CompileKernel) 1930 return false; 1931 1932 StringRef Section = G->getSection(); 1933 1934 // Globals from llvm.metadata aren't emitted, do not instrument them. 1935 if (Section == "llvm.metadata") return false; 1936 // Do not instrument globals from special LLVM sections. 1937 if (Section.contains("__llvm") || Section.contains("__LLVM")) 1938 return false; 1939 1940 // Do not instrument function pointers to initialization and termination 1941 // routines: dynamic linker will not properly handle redzones. 1942 if (Section.startswith(".preinit_array") || 1943 Section.startswith(".init_array") || 1944 Section.startswith(".fini_array")) { 1945 return false; 1946 } 1947 1948 // Do not instrument user-defined sections (with names resembling 1949 // valid C identifiers) 1950 if (TargetTriple.isOSBinFormatELF()) { 1951 if (llvm::all_of(Section, 1952 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 1953 return false; 1954 } 1955 1956 // On COFF, if the section name contains '$', it is highly likely that the 1957 // user is using section sorting to create an array of globals similar to 1958 // the way initialization callbacks are registered in .init_array and 1959 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1960 // to such globals is counterproductive, because the intent is that they 1961 // will form an array, and out-of-bounds accesses are expected. 1962 // See https://github.com/google/sanitizers/issues/305 1963 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1964 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1965 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1966 << *G << "\n"); 1967 return false; 1968 } 1969 1970 if (TargetTriple.isOSBinFormatMachO()) { 1971 StringRef ParsedSegment, ParsedSection; 1972 unsigned TAA = 0, StubSize = 0; 1973 bool TAAParsed; 1974 cantFail(MCSectionMachO::ParseSectionSpecifier( 1975 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 1976 1977 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1978 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1979 // them. 1980 if (ParsedSegment == "__OBJC" || 1981 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1982 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1983 return false; 1984 } 1985 // See https://github.com/google/sanitizers/issues/32 1986 // Constant CFString instances are compiled in the following way: 1987 // -- the string buffer is emitted into 1988 // __TEXT,__cstring,cstring_literals 1989 // -- the constant NSConstantString structure referencing that buffer 1990 // is placed into __DATA,__cfstring 1991 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1992 // Moreover, it causes the linker to crash on OS X 10.7 1993 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1994 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1995 return false; 1996 } 1997 // The linker merges the contents of cstring_literals and removes the 1998 // trailing zeroes. 1999 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 2000 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 2001 return false; 2002 } 2003 } 2004 } 2005 2006 if (CompileKernel) { 2007 // Globals that prefixed by "__" are special and cannot be padded with a 2008 // redzone. 2009 if (G->getName().startswith("__")) 2010 return false; 2011 } 2012 2013 return true; 2014 } 2015 2016 // On Mach-O platforms, we emit global metadata in a separate section of the 2017 // binary in order to allow the linker to properly dead strip. This is only 2018 // supported on recent versions of ld64. 2019 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 2020 if (!TargetTriple.isOSBinFormatMachO()) 2021 return false; 2022 2023 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 2024 return true; 2025 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 2026 return true; 2027 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 2028 return true; 2029 if (TargetTriple.isDriverKit()) 2030 return true; 2031 2032 return false; 2033 } 2034 2035 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 2036 switch (TargetTriple.getObjectFormat()) { 2037 case Triple::COFF: return ".ASAN$GL"; 2038 case Triple::ELF: return "asan_globals"; 2039 case Triple::MachO: return "__DATA,__asan_globals,regular"; 2040 case Triple::Wasm: 2041 case Triple::GOFF: 2042 case Triple::SPIRV: 2043 case Triple::XCOFF: 2044 case Triple::DXContainer: 2045 report_fatal_error( 2046 "ModuleAddressSanitizer not implemented for object file format"); 2047 case Triple::UnknownObjectFormat: 2048 break; 2049 } 2050 llvm_unreachable("unsupported object format"); 2051 } 2052 2053 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 2054 IRBuilder<> IRB(*C); 2055 2056 // Declare our poisoning and unpoisoning functions. 2057 AsanPoisonGlobals = 2058 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 2059 AsanUnpoisonGlobals = 2060 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 2061 2062 // Declare functions that register/unregister globals. 2063 AsanRegisterGlobals = M.getOrInsertFunction( 2064 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2065 AsanUnregisterGlobals = M.getOrInsertFunction( 2066 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2067 2068 // Declare the functions that find globals in a shared object and then invoke 2069 // the (un)register function on them. 2070 AsanRegisterImageGlobals = M.getOrInsertFunction( 2071 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2072 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2073 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2074 2075 AsanRegisterElfGlobals = 2076 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2077 IntptrTy, IntptrTy, IntptrTy); 2078 AsanUnregisterElfGlobals = 2079 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2080 IntptrTy, IntptrTy, IntptrTy); 2081 } 2082 2083 // Put the metadata and the instrumented global in the same group. This ensures 2084 // that the metadata is discarded if the instrumented global is discarded. 2085 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2086 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2087 Module &M = *G->getParent(); 2088 Comdat *C = G->getComdat(); 2089 if (!C) { 2090 if (!G->hasName()) { 2091 // If G is unnamed, it must be internal. Give it an artificial name 2092 // so we can put it in a comdat. 2093 assert(G->hasLocalLinkage()); 2094 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2095 } 2096 2097 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2098 std::string Name = std::string(G->getName()); 2099 Name += InternalSuffix; 2100 C = M.getOrInsertComdat(Name); 2101 } else { 2102 C = M.getOrInsertComdat(G->getName()); 2103 } 2104 2105 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2106 // linkage to internal linkage so that a symbol table entry is emitted. This 2107 // is necessary in order to create the comdat group. 2108 if (TargetTriple.isOSBinFormatCOFF()) { 2109 C->setSelectionKind(Comdat::NoDeduplicate); 2110 if (G->hasPrivateLinkage()) 2111 G->setLinkage(GlobalValue::InternalLinkage); 2112 } 2113 G->setComdat(C); 2114 } 2115 2116 assert(G->hasComdat()); 2117 Metadata->setComdat(G->getComdat()); 2118 } 2119 2120 // Create a separate metadata global and put it in the appropriate ASan 2121 // global registration section. 2122 GlobalVariable * 2123 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2124 StringRef OriginalName) { 2125 auto Linkage = TargetTriple.isOSBinFormatMachO() 2126 ? GlobalVariable::InternalLinkage 2127 : GlobalVariable::PrivateLinkage; 2128 GlobalVariable *Metadata = new GlobalVariable( 2129 M, Initializer->getType(), false, Linkage, Initializer, 2130 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2131 Metadata->setSection(getGlobalMetadataSection()); 2132 return Metadata; 2133 } 2134 2135 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2136 AsanDtorFunction = Function::createWithDefaultAttr( 2137 FunctionType::get(Type::getVoidTy(*C), false), 2138 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2139 AsanDtorFunction->addFnAttr(Attribute::NoUnwind); 2140 // Ensure Dtor cannot be discarded, even if in a comdat. 2141 appendToUsed(M, {AsanDtorFunction}); 2142 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2143 2144 return ReturnInst::Create(*C, AsanDtorBB); 2145 } 2146 2147 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2148 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2149 ArrayRef<Constant *> MetadataInitializers) { 2150 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2151 auto &DL = M.getDataLayout(); 2152 2153 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2154 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2155 Constant *Initializer = MetadataInitializers[i]; 2156 GlobalVariable *G = ExtendedGlobals[i]; 2157 GlobalVariable *Metadata = 2158 CreateMetadataGlobal(M, Initializer, G->getName()); 2159 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2160 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2161 MetadataGlobals[i] = Metadata; 2162 2163 // The MSVC linker always inserts padding when linking incrementally. We 2164 // cope with that by aligning each struct to its size, which must be a power 2165 // of two. 2166 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2167 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2168 "global metadata will not be padded appropriately"); 2169 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2170 2171 SetComdatForGlobalMetadata(G, Metadata, ""); 2172 } 2173 2174 // Update llvm.compiler.used, adding the new metadata globals. This is 2175 // needed so that during LTO these variables stay alive. 2176 if (!MetadataGlobals.empty()) 2177 appendToCompilerUsed(M, MetadataGlobals); 2178 } 2179 2180 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2181 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2182 ArrayRef<Constant *> MetadataInitializers, 2183 const std::string &UniqueModuleId) { 2184 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2185 2186 // Putting globals in a comdat changes the semantic and potentially cause 2187 // false negative odr violations at link time. If odr indicators are used, we 2188 // keep the comdat sections, as link time odr violations will be dectected on 2189 // the odr indicator symbols. 2190 bool UseComdatForGlobalsGC = UseOdrIndicator; 2191 2192 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2193 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2194 GlobalVariable *G = ExtendedGlobals[i]; 2195 GlobalVariable *Metadata = 2196 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2197 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2198 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2199 MetadataGlobals[i] = Metadata; 2200 2201 if (UseComdatForGlobalsGC) 2202 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2203 } 2204 2205 // Update llvm.compiler.used, adding the new metadata globals. This is 2206 // needed so that during LTO these variables stay alive. 2207 if (!MetadataGlobals.empty()) 2208 appendToCompilerUsed(M, MetadataGlobals); 2209 2210 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2211 // to look up the loaded image that contains it. Second, we can store in it 2212 // whether registration has already occurred, to prevent duplicate 2213 // registration. 2214 // 2215 // Common linkage ensures that there is only one global per shared library. 2216 GlobalVariable *RegisteredFlag = new GlobalVariable( 2217 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2218 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2219 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2220 2221 // Create start and stop symbols. 2222 GlobalVariable *StartELFMetadata = new GlobalVariable( 2223 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2224 "__start_" + getGlobalMetadataSection()); 2225 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2226 GlobalVariable *StopELFMetadata = new GlobalVariable( 2227 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2228 "__stop_" + getGlobalMetadataSection()); 2229 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2230 2231 // Create a call to register the globals with the runtime. 2232 if (ConstructorKind == AsanCtorKind::Global) 2233 IRB.CreateCall(AsanRegisterElfGlobals, 2234 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2235 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2236 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2237 2238 // We also need to unregister globals at the end, e.g., when a shared library 2239 // gets closed. 2240 if (DestructorKind != AsanDtorKind::None) { 2241 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2242 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2243 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2244 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2245 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2246 } 2247 } 2248 2249 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2250 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2251 ArrayRef<Constant *> MetadataInitializers) { 2252 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2253 2254 // On recent Mach-O platforms, use a structure which binds the liveness of 2255 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2256 // created to be added to llvm.compiler.used 2257 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2258 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2259 2260 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2261 Constant *Initializer = MetadataInitializers[i]; 2262 GlobalVariable *G = ExtendedGlobals[i]; 2263 GlobalVariable *Metadata = 2264 CreateMetadataGlobal(M, Initializer, G->getName()); 2265 2266 // On recent Mach-O platforms, we emit the global metadata in a way that 2267 // allows the linker to properly strip dead globals. 2268 auto LivenessBinder = 2269 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2270 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2271 GlobalVariable *Liveness = new GlobalVariable( 2272 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2273 Twine("__asan_binder_") + G->getName()); 2274 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2275 LivenessGlobals[i] = Liveness; 2276 } 2277 2278 // Update llvm.compiler.used, adding the new liveness globals. This is 2279 // needed so that during LTO these variables stay alive. The alternative 2280 // would be to have the linker handling the LTO symbols, but libLTO 2281 // current API does not expose access to the section for each symbol. 2282 if (!LivenessGlobals.empty()) 2283 appendToCompilerUsed(M, LivenessGlobals); 2284 2285 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2286 // to look up the loaded image that contains it. Second, we can store in it 2287 // whether registration has already occurred, to prevent duplicate 2288 // registration. 2289 // 2290 // common linkage ensures that there is only one global per shared library. 2291 GlobalVariable *RegisteredFlag = new GlobalVariable( 2292 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2293 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2294 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2295 2296 if (ConstructorKind == AsanCtorKind::Global) 2297 IRB.CreateCall(AsanRegisterImageGlobals, 2298 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2299 2300 // We also need to unregister globals at the end, e.g., when a shared library 2301 // gets closed. 2302 if (DestructorKind != AsanDtorKind::None) { 2303 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2304 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2305 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2306 } 2307 } 2308 2309 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2310 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2311 ArrayRef<Constant *> MetadataInitializers) { 2312 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2313 unsigned N = ExtendedGlobals.size(); 2314 assert(N > 0); 2315 2316 // On platforms that don't have a custom metadata section, we emit an array 2317 // of global metadata structures. 2318 ArrayType *ArrayOfGlobalStructTy = 2319 ArrayType::get(MetadataInitializers[0]->getType(), N); 2320 auto AllGlobals = new GlobalVariable( 2321 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2322 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2323 if (Mapping.Scale > 3) 2324 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2325 2326 if (ConstructorKind == AsanCtorKind::Global) 2327 IRB.CreateCall(AsanRegisterGlobals, 2328 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2329 ConstantInt::get(IntptrTy, N)}); 2330 2331 // We also need to unregister globals at the end, e.g., when a shared library 2332 // gets closed. 2333 if (DestructorKind != AsanDtorKind::None) { 2334 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2335 IrbDtor.CreateCall(AsanUnregisterGlobals, 2336 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2337 ConstantInt::get(IntptrTy, N)}); 2338 } 2339 } 2340 2341 // This function replaces all global variables with new variables that have 2342 // trailing redzones. It also creates a function that poisons 2343 // redzones and inserts this function into llvm.global_ctors. 2344 // Sets *CtorComdat to true if the global registration code emitted into the 2345 // asan constructor is comdat-compatible. 2346 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2347 bool *CtorComdat) { 2348 *CtorComdat = false; 2349 2350 // Build set of globals that are aliased by some GA, where 2351 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2352 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2353 if (CompileKernel) { 2354 for (auto &GA : M.aliases()) { 2355 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2356 AliasedGlobalExclusions.insert(GV); 2357 } 2358 } 2359 2360 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2361 for (auto &G : M.globals()) { 2362 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2363 GlobalsToChange.push_back(&G); 2364 } 2365 2366 size_t n = GlobalsToChange.size(); 2367 if (n == 0) { 2368 *CtorComdat = true; 2369 return false; 2370 } 2371 2372 auto &DL = M.getDataLayout(); 2373 2374 // A global is described by a structure 2375 // size_t beg; 2376 // size_t size; 2377 // size_t size_with_redzone; 2378 // const char *name; 2379 // const char *module_name; 2380 // size_t has_dynamic_init; 2381 // size_t padding_for_windows_msvc_incremental_link; 2382 // size_t odr_indicator; 2383 // We initialize an array of such structures and pass it to a run-time call. 2384 StructType *GlobalStructTy = 2385 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2386 IntptrTy, IntptrTy, IntptrTy); 2387 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2388 SmallVector<Constant *, 16> Initializers(n); 2389 2390 bool HasDynamicallyInitializedGlobals = false; 2391 2392 // We shouldn't merge same module names, as this string serves as unique 2393 // module ID in runtime. 2394 GlobalVariable *ModuleName = createPrivateGlobalForString( 2395 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2396 2397 for (size_t i = 0; i < n; i++) { 2398 GlobalVariable *G = GlobalsToChange[i]; 2399 2400 GlobalValue::SanitizerMetadata MD; 2401 if (G->hasSanitizerMetadata()) 2402 MD = G->getSanitizerMetadata(); 2403 2404 // The runtime library tries demangling symbol names in the descriptor but 2405 // functionality like __cxa_demangle may be unavailable (e.g. 2406 // -static-libstdc++). So we demangle the symbol names here. 2407 std::string NameForGlobal = G->getName().str(); 2408 GlobalVariable *Name = 2409 createPrivateGlobalForString(M, llvm::demangle(NameForGlobal), 2410 /*AllowMerging*/ true, kAsanGenPrefix); 2411 2412 Type *Ty = G->getValueType(); 2413 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2414 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2415 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2416 2417 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2418 Constant *NewInitializer = ConstantStruct::get( 2419 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2420 2421 // Create a new global variable with enough space for a redzone. 2422 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2423 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2424 Linkage = GlobalValue::InternalLinkage; 2425 GlobalVariable *NewGlobal = new GlobalVariable( 2426 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2427 G->getThreadLocalMode(), G->getAddressSpace()); 2428 NewGlobal->copyAttributesFrom(G); 2429 NewGlobal->setComdat(G->getComdat()); 2430 NewGlobal->setAlignment(Align(getMinRedzoneSizeForGlobal())); 2431 // Don't fold globals with redzones. ODR violation detector and redzone 2432 // poisoning implicitly creates a dependence on the global's address, so it 2433 // is no longer valid for it to be marked unnamed_addr. 2434 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2435 2436 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2437 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2438 G->isConstant()) { 2439 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2440 if (Seq && Seq->isCString()) 2441 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2442 } 2443 2444 // Transfer the debug info and type metadata. The payload starts at offset 2445 // zero so we can copy the metadata over as is. 2446 NewGlobal->copyMetadata(G, 0); 2447 2448 Value *Indices2[2]; 2449 Indices2[0] = IRB.getInt32(0); 2450 Indices2[1] = IRB.getInt32(0); 2451 2452 G->replaceAllUsesWith( 2453 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2454 NewGlobal->takeName(G); 2455 G->eraseFromParent(); 2456 NewGlobals[i] = NewGlobal; 2457 2458 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2459 GlobalValue *InstrumentedGlobal = NewGlobal; 2460 2461 bool CanUsePrivateAliases = 2462 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2463 TargetTriple.isOSBinFormatWasm(); 2464 if (CanUsePrivateAliases && UsePrivateAlias) { 2465 // Create local alias for NewGlobal to avoid crash on ODR between 2466 // instrumented and non-instrumented libraries. 2467 InstrumentedGlobal = 2468 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2469 } 2470 2471 // ODR should not happen for local linkage. 2472 if (NewGlobal->hasLocalLinkage()) { 2473 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2474 IRB.getInt8PtrTy()); 2475 } else if (UseOdrIndicator) { 2476 // With local aliases, we need to provide another externally visible 2477 // symbol __odr_asan_XXX to detect ODR violation. 2478 auto *ODRIndicatorSym = 2479 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2480 Constant::getNullValue(IRB.getInt8Ty()), 2481 kODRGenPrefix + NameForGlobal, nullptr, 2482 NewGlobal->getThreadLocalMode()); 2483 2484 // Set meaningful attributes for indicator symbol. 2485 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2486 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2487 ODRIndicatorSym->setAlignment(Align(1)); 2488 ODRIndicator = ODRIndicatorSym; 2489 } 2490 2491 Constant *Initializer = ConstantStruct::get( 2492 GlobalStructTy, 2493 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2494 ConstantInt::get(IntptrTy, SizeInBytes), 2495 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2496 ConstantExpr::getPointerCast(Name, IntptrTy), 2497 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2498 ConstantInt::get(IntptrTy, MD.IsDynInit), 2499 Constant::getNullValue(IntptrTy), 2500 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2501 2502 if (ClInitializers && MD.IsDynInit) 2503 HasDynamicallyInitializedGlobals = true; 2504 2505 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2506 2507 Initializers[i] = Initializer; 2508 } 2509 2510 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2511 // ConstantMerge'ing them. 2512 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2513 for (size_t i = 0; i < n; i++) { 2514 GlobalVariable *G = NewGlobals[i]; 2515 if (G->getName().empty()) continue; 2516 GlobalsToAddToUsedList.push_back(G); 2517 } 2518 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2519 2520 std::string ELFUniqueModuleId = 2521 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2522 : ""; 2523 2524 if (!ELFUniqueModuleId.empty()) { 2525 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2526 *CtorComdat = true; 2527 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2528 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2529 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2530 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2531 } else { 2532 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2533 } 2534 2535 // Create calls for poisoning before initializers run and unpoisoning after. 2536 if (HasDynamicallyInitializedGlobals) 2537 createInitializerPoisonCalls(M, ModuleName); 2538 2539 LLVM_DEBUG(dbgs() << M); 2540 return true; 2541 } 2542 2543 uint64_t 2544 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2545 constexpr uint64_t kMaxRZ = 1 << 18; 2546 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2547 2548 uint64_t RZ = 0; 2549 if (SizeInBytes <= MinRZ / 2) { 2550 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2551 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2552 // half of MinRZ. 2553 RZ = MinRZ - SizeInBytes; 2554 } else { 2555 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2556 RZ = std::clamp((SizeInBytes / MinRZ / 4) * MinRZ, MinRZ, kMaxRZ); 2557 2558 // Round up to multiple of MinRZ. 2559 if (SizeInBytes % MinRZ) 2560 RZ += MinRZ - (SizeInBytes % MinRZ); 2561 } 2562 2563 assert((RZ + SizeInBytes) % MinRZ == 0); 2564 2565 return RZ; 2566 } 2567 2568 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2569 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2570 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2571 int Version = 8; 2572 // 32-bit Android is one version ahead because of the switch to dynamic 2573 // shadow. 2574 Version += (LongSize == 32 && isAndroid); 2575 return Version; 2576 } 2577 2578 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2579 initializeCallbacks(M); 2580 2581 // Create a module constructor. A destructor is created lazily because not all 2582 // platforms, and not all modules need it. 2583 if (ConstructorKind == AsanCtorKind::Global) { 2584 if (CompileKernel) { 2585 // The kernel always builds with its own runtime, and therefore does not 2586 // need the init and version check calls. 2587 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2588 } else { 2589 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2590 std::string VersionCheckName = 2591 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2592 std::tie(AsanCtorFunction, std::ignore) = 2593 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2594 kAsanInitName, /*InitArgTypes=*/{}, 2595 /*InitArgs=*/{}, VersionCheckName); 2596 } 2597 } 2598 2599 bool CtorComdat = true; 2600 if (ClGlobals) { 2601 assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None); 2602 if (AsanCtorFunction) { 2603 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2604 InstrumentGlobals(IRB, M, &CtorComdat); 2605 } else { 2606 IRBuilder<> IRB(*C); 2607 InstrumentGlobals(IRB, M, &CtorComdat); 2608 } 2609 } 2610 2611 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2612 2613 // Put the constructor and destructor in comdat if both 2614 // (1) global instrumentation is not TU-specific 2615 // (2) target is ELF. 2616 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2617 if (AsanCtorFunction) { 2618 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2619 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2620 } 2621 if (AsanDtorFunction) { 2622 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2623 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2624 } 2625 } else { 2626 if (AsanCtorFunction) 2627 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2628 if (AsanDtorFunction) 2629 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2630 } 2631 2632 return true; 2633 } 2634 2635 void AddressSanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo *TLI) { 2636 IRBuilder<> IRB(*C); 2637 // Create __asan_report* callbacks. 2638 // IsWrite, TypeSize and Exp are encoded in the function name. 2639 for (int Exp = 0; Exp < 2; Exp++) { 2640 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2641 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2642 const std::string ExpStr = Exp ? "exp_" : ""; 2643 const std::string EndingStr = Recover ? "_noabort" : ""; 2644 2645 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2646 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2647 AttributeList AL2; 2648 AttributeList AL1; 2649 if (Exp) { 2650 Type *ExpType = Type::getInt32Ty(*C); 2651 Args2.push_back(ExpType); 2652 Args1.push_back(ExpType); 2653 if (auto AK = TLI->getExtAttrForI32Param(false)) { 2654 AL2 = AL2.addParamAttribute(*C, 2, AK); 2655 AL1 = AL1.addParamAttribute(*C, 1, AK); 2656 } 2657 } 2658 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2659 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2660 FunctionType::get(IRB.getVoidTy(), Args2, false), AL2); 2661 2662 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2663 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2664 FunctionType::get(IRB.getVoidTy(), Args2, false), AL2); 2665 2666 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2667 AccessSizeIndex++) { 2668 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2669 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2670 M.getOrInsertFunction( 2671 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2672 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1); 2673 2674 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2675 M.getOrInsertFunction( 2676 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2677 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1); 2678 } 2679 } 2680 } 2681 2682 const std::string MemIntrinCallbackPrefix = 2683 (CompileKernel && !ClKasanMemIntrinCallbackPrefix) 2684 ? std::string("") 2685 : ClMemoryAccessCallbackPrefix; 2686 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2687 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2688 IRB.getInt8PtrTy(), IntptrTy); 2689 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2690 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2691 IRB.getInt8PtrTy(), IntptrTy); 2692 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2693 TLI->getAttrList(C, {1}, /*Signed=*/false), 2694 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2695 IRB.getInt32Ty(), IntptrTy); 2696 2697 AsanHandleNoReturnFunc = 2698 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2699 2700 AsanPtrCmpFunction = 2701 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2702 AsanPtrSubFunction = 2703 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2704 if (Mapping.InGlobal) 2705 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2706 ArrayType::get(IRB.getInt8Ty(), 0)); 2707 2708 AMDGPUAddressShared = M.getOrInsertFunction( 2709 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2710 AMDGPUAddressPrivate = M.getOrInsertFunction( 2711 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2712 } 2713 2714 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2715 // For each NSObject descendant having a +load method, this method is invoked 2716 // by the ObjC runtime before any of the static constructors is called. 2717 // Therefore we need to instrument such methods with a call to __asan_init 2718 // at the beginning in order to initialize our runtime before any access to 2719 // the shadow memory. 2720 // We cannot just ignore these methods, because they may call other 2721 // instrumented functions. 2722 if (F.getName().find(" load]") != std::string::npos) { 2723 FunctionCallee AsanInitFunction = 2724 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2725 IRBuilder<> IRB(&F.front(), F.front().begin()); 2726 IRB.CreateCall(AsanInitFunction, {}); 2727 return true; 2728 } 2729 return false; 2730 } 2731 2732 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2733 // Generate code only when dynamic addressing is needed. 2734 if (Mapping.Offset != kDynamicShadowSentinel) 2735 return false; 2736 2737 IRBuilder<> IRB(&F.front().front()); 2738 if (Mapping.InGlobal) { 2739 if (ClWithIfuncSuppressRemat) { 2740 // An empty inline asm with input reg == output reg. 2741 // An opaque pointer-to-int cast, basically. 2742 InlineAsm *Asm = InlineAsm::get( 2743 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2744 StringRef(""), StringRef("=r,0"), 2745 /*hasSideEffects=*/false); 2746 LocalDynamicShadow = 2747 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2748 } else { 2749 LocalDynamicShadow = 2750 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2751 } 2752 } else { 2753 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2754 kAsanShadowMemoryDynamicAddress, IntptrTy); 2755 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2756 } 2757 return true; 2758 } 2759 2760 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2761 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2762 // to it as uninteresting. This assumes we haven't started processing allocas 2763 // yet. This check is done up front because iterating the use list in 2764 // isInterestingAlloca would be algorithmically slower. 2765 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2766 2767 // Try to get the declaration of llvm.localescape. If it's not in the module, 2768 // we can exit early. 2769 if (!F.getParent()->getFunction("llvm.localescape")) return; 2770 2771 // Look for a call to llvm.localescape call in the entry block. It can't be in 2772 // any other block. 2773 for (Instruction &I : F.getEntryBlock()) { 2774 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2775 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2776 // We found a call. Mark all the allocas passed in as uninteresting. 2777 for (Value *Arg : II->args()) { 2778 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2779 assert(AI && AI->isStaticAlloca() && 2780 "non-static alloca arg to localescape"); 2781 ProcessedAllocas[AI] = false; 2782 } 2783 break; 2784 } 2785 } 2786 } 2787 2788 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2789 bool ShouldInstrument = 2790 ClDebugMin < 0 || ClDebugMax < 0 || 2791 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2792 Instrumented++; 2793 return !ShouldInstrument; 2794 } 2795 2796 bool AddressSanitizer::instrumentFunction(Function &F, 2797 const TargetLibraryInfo *TLI) { 2798 if (F.empty()) 2799 return false; 2800 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2801 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2802 if (F.getName().startswith("__asan_")) return false; 2803 2804 bool FunctionModified = false; 2805 2806 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2807 // This function needs to be called even if the function body is not 2808 // instrumented. 2809 if (maybeInsertAsanInitAtFunctionEntry(F)) 2810 FunctionModified = true; 2811 2812 // Leave if the function doesn't need instrumentation. 2813 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2814 2815 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 2816 return FunctionModified; 2817 2818 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2819 2820 initializeCallbacks(*F.getParent(), TLI); 2821 2822 FunctionStateRAII CleanupObj(this); 2823 2824 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2825 2826 // We can't instrument allocas used with llvm.localescape. Only static allocas 2827 // can be passed to that intrinsic. 2828 markEscapedLocalAllocas(F); 2829 2830 // We want to instrument every address only once per basic block (unless there 2831 // are calls between uses). 2832 SmallPtrSet<Value *, 16> TempsToInstrument; 2833 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2834 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2835 SmallVector<Instruction *, 8> NoReturnCalls; 2836 SmallVector<BasicBlock *, 16> AllBlocks; 2837 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2838 2839 // Fill the set of memory operations to instrument. 2840 for (auto &BB : F) { 2841 AllBlocks.push_back(&BB); 2842 TempsToInstrument.clear(); 2843 int NumInsnsPerBB = 0; 2844 for (auto &Inst : BB) { 2845 if (LooksLikeCodeInBug11395(&Inst)) return false; 2846 // Skip instructions inserted by another instrumentation. 2847 if (Inst.hasMetadata(LLVMContext::MD_nosanitize)) 2848 continue; 2849 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2850 getInterestingMemoryOperands(&Inst, InterestingOperands); 2851 2852 if (!InterestingOperands.empty()) { 2853 for (auto &Operand : InterestingOperands) { 2854 if (ClOpt && ClOptSameTemp) { 2855 Value *Ptr = Operand.getPtr(); 2856 // If we have a mask, skip instrumentation if we've already 2857 // instrumented the full object. But don't add to TempsToInstrument 2858 // because we might get another load/store with a different mask. 2859 if (Operand.MaybeMask) { 2860 if (TempsToInstrument.count(Ptr)) 2861 continue; // We've seen this (whole) temp in the current BB. 2862 } else { 2863 if (!TempsToInstrument.insert(Ptr).second) 2864 continue; // We've seen this temp in the current BB. 2865 } 2866 } 2867 OperandsToInstrument.push_back(Operand); 2868 NumInsnsPerBB++; 2869 } 2870 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2871 isInterestingPointerComparison(&Inst)) || 2872 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2873 isInterestingPointerSubtraction(&Inst))) { 2874 PointerComparisonsOrSubtracts.push_back(&Inst); 2875 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2876 // ok, take it. 2877 IntrinToInstrument.push_back(MI); 2878 NumInsnsPerBB++; 2879 } else { 2880 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2881 // A call inside BB. 2882 TempsToInstrument.clear(); 2883 if (CB->doesNotReturn()) 2884 NoReturnCalls.push_back(CB); 2885 } 2886 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2887 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2888 } 2889 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2890 } 2891 } 2892 2893 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2894 OperandsToInstrument.size() + IntrinToInstrument.size() > 2895 (unsigned)ClInstrumentationWithCallsThreshold); 2896 const DataLayout &DL = F.getParent()->getDataLayout(); 2897 ObjectSizeOpts ObjSizeOpts; 2898 ObjSizeOpts.RoundToAlign = true; 2899 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2900 2901 // Instrument. 2902 int NumInstrumented = 0; 2903 for (auto &Operand : OperandsToInstrument) { 2904 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2905 instrumentMop(ObjSizeVis, Operand, UseCalls, 2906 F.getParent()->getDataLayout()); 2907 FunctionModified = true; 2908 } 2909 for (auto *Inst : IntrinToInstrument) { 2910 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2911 instrumentMemIntrinsic(Inst); 2912 FunctionModified = true; 2913 } 2914 2915 FunctionStackPoisoner FSP(F, *this); 2916 bool ChangedStack = FSP.runOnFunction(); 2917 2918 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2919 // See e.g. https://github.com/google/sanitizers/issues/37 2920 for (auto *CI : NoReturnCalls) { 2921 IRBuilder<> IRB(CI); 2922 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2923 } 2924 2925 for (auto *Inst : PointerComparisonsOrSubtracts) { 2926 instrumentPointerComparisonOrSubtraction(Inst); 2927 FunctionModified = true; 2928 } 2929 2930 if (ChangedStack || !NoReturnCalls.empty()) 2931 FunctionModified = true; 2932 2933 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2934 << F << "\n"); 2935 2936 return FunctionModified; 2937 } 2938 2939 // Workaround for bug 11395: we don't want to instrument stack in functions 2940 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2941 // FIXME: remove once the bug 11395 is fixed. 2942 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2943 if (LongSize != 32) return false; 2944 CallInst *CI = dyn_cast<CallInst>(I); 2945 if (!CI || !CI->isInlineAsm()) return false; 2946 if (CI->arg_size() <= 5) 2947 return false; 2948 // We have inline assembly with quite a few arguments. 2949 return true; 2950 } 2951 2952 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2953 IRBuilder<> IRB(*C); 2954 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || 2955 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 2956 const char *MallocNameTemplate = 2957 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always 2958 ? kAsanStackMallocAlwaysNameTemplate 2959 : kAsanStackMallocNameTemplate; 2960 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { 2961 std::string Suffix = itostr(Index); 2962 AsanStackMallocFunc[Index] = M.getOrInsertFunction( 2963 MallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2964 AsanStackFreeFunc[Index] = 2965 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2966 IRB.getVoidTy(), IntptrTy, IntptrTy); 2967 } 2968 } 2969 if (ASan.UseAfterScope) { 2970 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2971 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2972 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2973 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2974 } 2975 2976 for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2, 2977 0xf3, 0xf5, 0xf8}) { 2978 std::ostringstream Name; 2979 Name << kAsanSetShadowPrefix; 2980 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2981 AsanSetShadowFunc[Val] = 2982 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2983 } 2984 2985 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2986 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2987 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2988 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2989 } 2990 2991 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2992 ArrayRef<uint8_t> ShadowBytes, 2993 size_t Begin, size_t End, 2994 IRBuilder<> &IRB, 2995 Value *ShadowBase) { 2996 if (Begin >= End) 2997 return; 2998 2999 const size_t LargestStoreSizeInBytes = 3000 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 3001 3002 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 3003 3004 // Poison given range in shadow using larges store size with out leading and 3005 // trailing zeros in ShadowMask. Zeros never change, so they need neither 3006 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 3007 // middle of a store. 3008 for (size_t i = Begin; i < End;) { 3009 if (!ShadowMask[i]) { 3010 assert(!ShadowBytes[i]); 3011 ++i; 3012 continue; 3013 } 3014 3015 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 3016 // Fit store size into the range. 3017 while (StoreSizeInBytes > End - i) 3018 StoreSizeInBytes /= 2; 3019 3020 // Minimize store size by trimming trailing zeros. 3021 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 3022 while (j <= StoreSizeInBytes / 2) 3023 StoreSizeInBytes /= 2; 3024 } 3025 3026 uint64_t Val = 0; 3027 for (size_t j = 0; j < StoreSizeInBytes; j++) { 3028 if (IsLittleEndian) 3029 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 3030 else 3031 Val = (Val << 8) | ShadowBytes[i + j]; 3032 } 3033 3034 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 3035 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 3036 IRB.CreateAlignedStore( 3037 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 3038 Align(1)); 3039 3040 i += StoreSizeInBytes; 3041 } 3042 } 3043 3044 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3045 ArrayRef<uint8_t> ShadowBytes, 3046 IRBuilder<> &IRB, Value *ShadowBase) { 3047 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 3048 } 3049 3050 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3051 ArrayRef<uint8_t> ShadowBytes, 3052 size_t Begin, size_t End, 3053 IRBuilder<> &IRB, Value *ShadowBase) { 3054 assert(ShadowMask.size() == ShadowBytes.size()); 3055 size_t Done = Begin; 3056 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 3057 if (!ShadowMask[i]) { 3058 assert(!ShadowBytes[i]); 3059 continue; 3060 } 3061 uint8_t Val = ShadowBytes[i]; 3062 if (!AsanSetShadowFunc[Val]) 3063 continue; 3064 3065 // Skip same values. 3066 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 3067 } 3068 3069 if (j - i >= ClMaxInlinePoisoningSize) { 3070 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 3071 IRB.CreateCall(AsanSetShadowFunc[Val], 3072 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 3073 ConstantInt::get(IntptrTy, j - i)}); 3074 Done = j; 3075 } 3076 } 3077 3078 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 3079 } 3080 3081 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 3082 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 3083 static int StackMallocSizeClass(uint64_t LocalStackSize) { 3084 assert(LocalStackSize <= kMaxStackMallocSize); 3085 uint64_t MaxSize = kMinStackMallocSize; 3086 for (int i = 0;; i++, MaxSize *= 2) 3087 if (LocalStackSize <= MaxSize) return i; 3088 llvm_unreachable("impossible LocalStackSize"); 3089 } 3090 3091 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 3092 Instruction *CopyInsertPoint = &F.front().front(); 3093 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 3094 // Insert after the dynamic shadow location is determined 3095 CopyInsertPoint = CopyInsertPoint->getNextNode(); 3096 assert(CopyInsertPoint); 3097 } 3098 IRBuilder<> IRB(CopyInsertPoint); 3099 const DataLayout &DL = F.getParent()->getDataLayout(); 3100 for (Argument &Arg : F.args()) { 3101 if (Arg.hasByValAttr()) { 3102 Type *Ty = Arg.getParamByValType(); 3103 const Align Alignment = 3104 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 3105 3106 AllocaInst *AI = IRB.CreateAlloca( 3107 Ty, nullptr, 3108 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 3109 ".byval"); 3110 AI->setAlignment(Alignment); 3111 Arg.replaceAllUsesWith(AI); 3112 3113 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3114 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 3115 } 3116 } 3117 } 3118 3119 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3120 Value *ValueIfTrue, 3121 Instruction *ThenTerm, 3122 Value *ValueIfFalse) { 3123 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3124 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3125 PHI->addIncoming(ValueIfFalse, CondBlock); 3126 BasicBlock *ThenBlock = ThenTerm->getParent(); 3127 PHI->addIncoming(ValueIfTrue, ThenBlock); 3128 return PHI; 3129 } 3130 3131 Value *FunctionStackPoisoner::createAllocaForLayout( 3132 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3133 AllocaInst *Alloca; 3134 if (Dynamic) { 3135 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3136 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3137 "MyAlloca"); 3138 } else { 3139 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3140 nullptr, "MyAlloca"); 3141 assert(Alloca->isStaticAlloca()); 3142 } 3143 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3144 uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); 3145 Alloca->setAlignment(Align(FrameAlignment)); 3146 return IRB.CreatePointerCast(Alloca, IntptrTy); 3147 } 3148 3149 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3150 BasicBlock &FirstBB = *F.begin(); 3151 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3152 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3153 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3154 DynamicAllocaLayout->setAlignment(Align(32)); 3155 } 3156 3157 void FunctionStackPoisoner::processDynamicAllocas() { 3158 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3159 assert(DynamicAllocaPoisonCallVec.empty()); 3160 return; 3161 } 3162 3163 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3164 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3165 assert(APC.InsBefore); 3166 assert(APC.AI); 3167 assert(ASan.isInterestingAlloca(*APC.AI)); 3168 assert(!APC.AI->isStaticAlloca()); 3169 3170 IRBuilder<> IRB(APC.InsBefore); 3171 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3172 // Dynamic allocas will be unpoisoned unconditionally below in 3173 // unpoisonDynamicAllocas. 3174 // Flag that we need unpoison static allocas. 3175 } 3176 3177 // Handle dynamic allocas. 3178 createDynamicAllocasInitStorage(); 3179 for (auto &AI : DynamicAllocaVec) 3180 handleDynamicAllocaCall(AI); 3181 unpoisonDynamicAllocas(); 3182 } 3183 3184 /// Collect instructions in the entry block after \p InsBefore which initialize 3185 /// permanent storage for a function argument. These instructions must remain in 3186 /// the entry block so that uninitialized values do not appear in backtraces. An 3187 /// added benefit is that this conserves spill slots. This does not move stores 3188 /// before instrumented / "interesting" allocas. 3189 static void findStoresToUninstrumentedArgAllocas( 3190 AddressSanitizer &ASan, Instruction &InsBefore, 3191 SmallVectorImpl<Instruction *> &InitInsts) { 3192 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3193 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3194 // Argument initialization looks like: 3195 // 1) store <Argument>, <Alloca> OR 3196 // 2) <CastArgument> = cast <Argument> to ... 3197 // store <CastArgument> to <Alloca> 3198 // Do not consider any other kind of instruction. 3199 // 3200 // Note: This covers all known cases, but may not be exhaustive. An 3201 // alternative to pattern-matching stores is to DFS over all Argument uses: 3202 // this might be more general, but is probably much more complicated. 3203 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3204 continue; 3205 if (auto *Store = dyn_cast<StoreInst>(It)) { 3206 // The store destination must be an alloca that isn't interesting for 3207 // ASan to instrument. These are moved up before InsBefore, and they're 3208 // not interesting because allocas for arguments can be mem2reg'd. 3209 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3210 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3211 continue; 3212 3213 Value *Val = Store->getValueOperand(); 3214 bool IsDirectArgInit = isa<Argument>(Val); 3215 bool IsArgInitViaCast = 3216 isa<CastInst>(Val) && 3217 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3218 // Check that the cast appears directly before the store. Otherwise 3219 // moving the cast before InsBefore may break the IR. 3220 Val == It->getPrevNonDebugInstruction(); 3221 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3222 if (!IsArgInit) 3223 continue; 3224 3225 if (IsArgInitViaCast) 3226 InitInsts.push_back(cast<Instruction>(Val)); 3227 InitInsts.push_back(Store); 3228 continue; 3229 } 3230 3231 // Do not reorder past unknown instructions: argument initialization should 3232 // only involve casts and stores. 3233 return; 3234 } 3235 } 3236 3237 void FunctionStackPoisoner::processStaticAllocas() { 3238 if (AllocaVec.empty()) { 3239 assert(StaticAllocaPoisonCallVec.empty()); 3240 return; 3241 } 3242 3243 int StackMallocIdx = -1; 3244 DebugLoc EntryDebugLocation; 3245 if (auto SP = F.getSubprogram()) 3246 EntryDebugLocation = 3247 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3248 3249 Instruction *InsBefore = AllocaVec[0]; 3250 IRBuilder<> IRB(InsBefore); 3251 3252 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3253 // debug info is broken, because only entry-block allocas are treated as 3254 // regular stack slots. 3255 auto InsBeforeB = InsBefore->getParent(); 3256 assert(InsBeforeB == &F.getEntryBlock()); 3257 for (auto *AI : StaticAllocasToMoveUp) 3258 if (AI->getParent() == InsBeforeB) 3259 AI->moveBefore(InsBefore); 3260 3261 // Move stores of arguments into entry-block allocas as well. This prevents 3262 // extra stack slots from being generated (to house the argument values until 3263 // they can be stored into the allocas). This also prevents uninitialized 3264 // values from being shown in backtraces. 3265 SmallVector<Instruction *, 8> ArgInitInsts; 3266 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3267 for (Instruction *ArgInitInst : ArgInitInsts) 3268 ArgInitInst->moveBefore(InsBefore); 3269 3270 // If we have a call to llvm.localescape, keep it in the entry block. 3271 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3272 3273 SmallVector<ASanStackVariableDescription, 16> SVD; 3274 SVD.reserve(AllocaVec.size()); 3275 for (AllocaInst *AI : AllocaVec) { 3276 ASanStackVariableDescription D = {AI->getName().data(), 3277 ASan.getAllocaSizeInBytes(*AI), 3278 0, 3279 AI->getAlign().value(), 3280 AI, 3281 0, 3282 0}; 3283 SVD.push_back(D); 3284 } 3285 3286 // Minimal header size (left redzone) is 4 pointers, 3287 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3288 uint64_t Granularity = 1ULL << Mapping.Scale; 3289 uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); 3290 const ASanStackFrameLayout &L = 3291 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3292 3293 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3294 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3295 for (auto &Desc : SVD) 3296 AllocaToSVDMap[Desc.AI] = &Desc; 3297 3298 // Update SVD with information from lifetime intrinsics. 3299 for (const auto &APC : StaticAllocaPoisonCallVec) { 3300 assert(APC.InsBefore); 3301 assert(APC.AI); 3302 assert(ASan.isInterestingAlloca(*APC.AI)); 3303 assert(APC.AI->isStaticAlloca()); 3304 3305 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3306 Desc.LifetimeSize = Desc.Size; 3307 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3308 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3309 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3310 if (unsigned Line = LifetimeLoc->getLine()) 3311 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3312 } 3313 } 3314 } 3315 3316 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3317 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3318 uint64_t LocalStackSize = L.FrameSize; 3319 bool DoStackMalloc = 3320 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3321 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3322 bool DoDynamicAlloca = ClDynamicAllocaStack; 3323 // Don't do dynamic alloca or stack malloc if: 3324 // 1) There is inline asm: too often it makes assumptions on which registers 3325 // are available. 3326 // 2) There is a returns_twice call (typically setjmp), which is 3327 // optimization-hostile, and doesn't play well with introduced indirect 3328 // register-relative calculation of local variable addresses. 3329 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3330 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3331 3332 Value *StaticAlloca = 3333 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3334 3335 Value *FakeStack; 3336 Value *LocalStackBase; 3337 Value *LocalStackBaseAlloca; 3338 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3339 3340 if (DoStackMalloc) { 3341 LocalStackBaseAlloca = 3342 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3343 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3344 // void *FakeStack = __asan_option_detect_stack_use_after_return 3345 // ? __asan_stack_malloc_N(LocalStackSize) 3346 // : nullptr; 3347 // void *LocalStackBase = (FakeStack) ? FakeStack : 3348 // alloca(LocalStackSize); 3349 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3350 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3351 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3352 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3353 Constant::getNullValue(IRB.getInt32Ty())); 3354 Instruction *Term = 3355 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3356 IRBuilder<> IRBIf(Term); 3357 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3358 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3359 Value *FakeStackValue = 3360 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3361 ConstantInt::get(IntptrTy, LocalStackSize)); 3362 IRB.SetInsertPoint(InsBefore); 3363 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3364 ConstantInt::get(IntptrTy, 0)); 3365 } else { 3366 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3367 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3368 // void *LocalStackBase = (FakeStack) ? FakeStack : 3369 // alloca(LocalStackSize); 3370 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3371 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3372 ConstantInt::get(IntptrTy, LocalStackSize)); 3373 } 3374 Value *NoFakeStack = 3375 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3376 Instruction *Term = 3377 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3378 IRBuilder<> IRBIf(Term); 3379 Value *AllocaValue = 3380 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3381 3382 IRB.SetInsertPoint(InsBefore); 3383 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3384 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3385 DIExprFlags |= DIExpression::DerefBefore; 3386 } else { 3387 // void *FakeStack = nullptr; 3388 // void *LocalStackBase = alloca(LocalStackSize); 3389 FakeStack = ConstantInt::get(IntptrTy, 0); 3390 LocalStackBase = 3391 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3392 LocalStackBaseAlloca = LocalStackBase; 3393 } 3394 3395 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3396 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3397 // later passes and can result in dropped variable coverage in debug info. 3398 Value *LocalStackBaseAllocaPtr = 3399 isa<PtrToIntInst>(LocalStackBaseAlloca) 3400 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3401 : LocalStackBaseAlloca; 3402 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3403 "Variable descriptions relative to ASan stack base will be dropped"); 3404 3405 // Replace Alloca instructions with base+offset. 3406 for (const auto &Desc : SVD) { 3407 AllocaInst *AI = Desc.AI; 3408 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3409 Desc.Offset); 3410 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3411 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3412 AI->getType()); 3413 AI->replaceAllUsesWith(NewAllocaPtr); 3414 } 3415 3416 // The left-most redzone has enough space for at least 4 pointers. 3417 // Write the Magic value to redzone[0]. 3418 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3419 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3420 BasePlus0); 3421 // Write the frame description constant to redzone[1]. 3422 Value *BasePlus1 = IRB.CreateIntToPtr( 3423 IRB.CreateAdd(LocalStackBase, 3424 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3425 IntptrPtrTy); 3426 GlobalVariable *StackDescriptionGlobal = 3427 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3428 /*AllowMerging*/ true, kAsanGenPrefix); 3429 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3430 IRB.CreateStore(Description, BasePlus1); 3431 // Write the PC to redzone[2]. 3432 Value *BasePlus2 = IRB.CreateIntToPtr( 3433 IRB.CreateAdd(LocalStackBase, 3434 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3435 IntptrPtrTy); 3436 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3437 3438 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3439 3440 // Poison the stack red zones at the entry. 3441 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3442 // As mask we must use most poisoned case: red zones and after scope. 3443 // As bytes we can use either the same or just red zones only. 3444 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3445 3446 if (!StaticAllocaPoisonCallVec.empty()) { 3447 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3448 3449 // Poison static allocas near lifetime intrinsics. 3450 for (const auto &APC : StaticAllocaPoisonCallVec) { 3451 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3452 assert(Desc.Offset % L.Granularity == 0); 3453 size_t Begin = Desc.Offset / L.Granularity; 3454 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3455 3456 IRBuilder<> IRB(APC.InsBefore); 3457 copyToShadow(ShadowAfterScope, 3458 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3459 IRB, ShadowBase); 3460 } 3461 } 3462 3463 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3464 SmallVector<uint8_t, 64> ShadowAfterReturn; 3465 3466 // (Un)poison the stack before all ret instructions. 3467 for (Instruction *Ret : RetVec) { 3468 IRBuilder<> IRBRet(Ret); 3469 // Mark the current frame as retired. 3470 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3471 BasePlus0); 3472 if (DoStackMalloc) { 3473 assert(StackMallocIdx >= 0); 3474 // if FakeStack != 0 // LocalStackBase == FakeStack 3475 // // In use-after-return mode, poison the whole stack frame. 3476 // if StackMallocIdx <= 4 3477 // // For small sizes inline the whole thing: 3478 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3479 // **SavedFlagPtr(FakeStack) = 0 3480 // else 3481 // __asan_stack_free_N(FakeStack, LocalStackSize) 3482 // else 3483 // <This is not a fake stack; unpoison the redzones> 3484 Value *Cmp = 3485 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3486 Instruction *ThenTerm, *ElseTerm; 3487 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3488 3489 IRBuilder<> IRBPoison(ThenTerm); 3490 if (StackMallocIdx <= 4) { 3491 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3492 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3493 kAsanStackUseAfterReturnMagic); 3494 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3495 ShadowBase); 3496 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3497 FakeStack, 3498 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3499 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3500 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3501 IRBPoison.CreateStore( 3502 Constant::getNullValue(IRBPoison.getInt8Ty()), 3503 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3504 } else { 3505 // For larger frames call __asan_stack_free_*. 3506 IRBPoison.CreateCall( 3507 AsanStackFreeFunc[StackMallocIdx], 3508 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3509 } 3510 3511 IRBuilder<> IRBElse(ElseTerm); 3512 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3513 } else { 3514 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3515 } 3516 } 3517 3518 // We are done. Remove the old unused alloca instructions. 3519 for (auto *AI : AllocaVec) 3520 AI->eraseFromParent(); 3521 } 3522 3523 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3524 IRBuilder<> &IRB, bool DoPoison) { 3525 // For now just insert the call to ASan runtime. 3526 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3527 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3528 IRB.CreateCall( 3529 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3530 {AddrArg, SizeArg}); 3531 } 3532 3533 // Handling llvm.lifetime intrinsics for a given %alloca: 3534 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3535 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3536 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3537 // could be poisoned by previous llvm.lifetime.end instruction, as the 3538 // variable may go in and out of scope several times, e.g. in loops). 3539 // (3) if we poisoned at least one %alloca in a function, 3540 // unpoison the whole stack frame at function exit. 3541 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3542 IRBuilder<> IRB(AI); 3543 3544 const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign()); 3545 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3546 3547 Value *Zero = Constant::getNullValue(IntptrTy); 3548 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3549 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3550 3551 // Since we need to extend alloca with additional memory to locate 3552 // redzones, and OldSize is number of allocated blocks with 3553 // ElementSize size, get allocated memory size in bytes by 3554 // OldSize * ElementSize. 3555 const unsigned ElementSize = 3556 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3557 Value *OldSize = 3558 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3559 ConstantInt::get(IntptrTy, ElementSize)); 3560 3561 // PartialSize = OldSize % 32 3562 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3563 3564 // Misalign = kAllocaRzSize - PartialSize; 3565 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3566 3567 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3568 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3569 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3570 3571 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3572 // Alignment is added to locate left redzone, PartialPadding for possible 3573 // partial redzone and kAllocaRzSize for right redzone respectively. 3574 Value *AdditionalChunkSize = IRB.CreateAdd( 3575 ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize), 3576 PartialPadding); 3577 3578 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3579 3580 // Insert new alloca with new NewSize and Alignment params. 3581 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3582 NewAlloca->setAlignment(Alignment); 3583 3584 // NewAddress = Address + Alignment 3585 Value *NewAddress = 3586 IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3587 ConstantInt::get(IntptrTy, Alignment.value())); 3588 3589 // Insert __asan_alloca_poison call for new created alloca. 3590 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3591 3592 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3593 // for unpoisoning stuff. 3594 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3595 3596 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3597 3598 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3599 AI->replaceAllUsesWith(NewAddressPtr); 3600 3601 // We are done. Erase old alloca from parent. 3602 AI->eraseFromParent(); 3603 } 3604 3605 // isSafeAccess returns true if Addr is always inbounds with respect to its 3606 // base object. For example, it is a field access or an array access with 3607 // constant inbounds index. 3608 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3609 Value *Addr, TypeSize TypeStoreSize) const { 3610 if (TypeStoreSize.isScalable()) 3611 // TODO: We can use vscale_range to convert a scalable value to an 3612 // upper bound on the access size. 3613 return false; 3614 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3615 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3616 uint64_t Size = SizeOffset.first.getZExtValue(); 3617 int64_t Offset = SizeOffset.second.getSExtValue(); 3618 // Three checks are required to ensure safety: 3619 // . Offset >= 0 (since the offset is given from the base ptr) 3620 // . Size >= Offset (unsigned) 3621 // . Size - Offset >= NeededSize (unsigned) 3622 return Offset >= 0 && Size >= uint64_t(Offset) && 3623 Size - uint64_t(Offset) >= TypeStoreSize / 8; 3624 } 3625