xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 //  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/MachO.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstVisitor.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/MC/MCSectionMachO.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ModuleUtils.h"
76 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iomanip>
82 #include <limits>
83 #include <memory>
84 #include <sstream>
85 #include <string>
86 #include <tuple>
87 
88 using namespace llvm;
89 
90 #define DEBUG_TYPE "asan"
91 
92 static const uint64_t kDefaultShadowScale = 3;
93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
95 static const uint64_t kDynamicShadowSentinel =
96     std::numeric_limits<uint64_t>::max();
97 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
98 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
99 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
100 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
101 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
102 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
103 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
104 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
105 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
106 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
107 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
108 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
109 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
110 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
111 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
112 static const uint64_t kEmscriptenShadowOffset = 0;
113 
114 static const uint64_t kMyriadShadowScale = 5;
115 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
116 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
117 static const uint64_t kMyriadTagShift = 29;
118 static const uint64_t kMyriadDDRTag = 4;
119 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
120 
121 // The shadow memory space is dynamically allocated.
122 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
123 
124 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
125 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
126 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
127 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
128 
129 static const char *const kAsanModuleCtorName = "asan.module_ctor";
130 static const char *const kAsanModuleDtorName = "asan.module_dtor";
131 static const uint64_t kAsanCtorAndDtorPriority = 1;
132 // On Emscripten, the system needs more than one priorities for constructors.
133 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
134 static const char *const kAsanReportErrorTemplate = "__asan_report_";
135 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
136 static const char *const kAsanUnregisterGlobalsName =
137     "__asan_unregister_globals";
138 static const char *const kAsanRegisterImageGlobalsName =
139   "__asan_register_image_globals";
140 static const char *const kAsanUnregisterImageGlobalsName =
141   "__asan_unregister_image_globals";
142 static const char *const kAsanRegisterElfGlobalsName =
143   "__asan_register_elf_globals";
144 static const char *const kAsanUnregisterElfGlobalsName =
145   "__asan_unregister_elf_globals";
146 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
147 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
148 static const char *const kAsanInitName = "__asan_init";
149 static const char *const kAsanVersionCheckNamePrefix =
150     "__asan_version_mismatch_check_v";
151 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
152 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
153 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
154 static const int kMaxAsanStackMallocSizeClass = 10;
155 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
156 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
157 static const char *const kAsanGenPrefix = "___asan_gen_";
158 static const char *const kODRGenPrefix = "__odr_asan_gen_";
159 static const char *const kSanCovGenPrefix = "__sancov_gen_";
160 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
161 static const char *const kAsanPoisonStackMemoryName =
162     "__asan_poison_stack_memory";
163 static const char *const kAsanUnpoisonStackMemoryName =
164     "__asan_unpoison_stack_memory";
165 
166 // ASan version script has __asan_* wildcard. Triple underscore prevents a
167 // linker (gold) warning about attempting to export a local symbol.
168 static const char *const kAsanGlobalsRegisteredFlagName =
169     "___asan_globals_registered";
170 
171 static const char *const kAsanOptionDetectUseAfterReturn =
172     "__asan_option_detect_stack_use_after_return";
173 
174 static const char *const kAsanShadowMemoryDynamicAddress =
175     "__asan_shadow_memory_dynamic_address";
176 
177 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
178 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
179 
180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
181 static const size_t kNumberOfAccessSizes = 5;
182 
183 static const unsigned kAllocaRzSize = 32;
184 
185 // Command-line flags.
186 
187 static cl::opt<bool> ClEnableKasan(
188     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
189     cl::Hidden, cl::init(false));
190 
191 static cl::opt<bool> ClRecover(
192     "asan-recover",
193     cl::desc("Enable recovery mode (continue-after-error)."),
194     cl::Hidden, cl::init(false));
195 
196 static cl::opt<bool> ClInsertVersionCheck(
197     "asan-guard-against-version-mismatch",
198     cl::desc("Guard against compiler/runtime version mismatch."),
199     cl::Hidden, cl::init(true));
200 
201 // This flag may need to be replaced with -f[no-]asan-reads.
202 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
203                                        cl::desc("instrument read instructions"),
204                                        cl::Hidden, cl::init(true));
205 
206 static cl::opt<bool> ClInstrumentWrites(
207     "asan-instrument-writes", cl::desc("instrument write instructions"),
208     cl::Hidden, cl::init(true));
209 
210 static cl::opt<bool> ClInstrumentAtomics(
211     "asan-instrument-atomics",
212     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
213     cl::init(true));
214 
215 static cl::opt<bool> ClAlwaysSlowPath(
216     "asan-always-slow-path",
217     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
218     cl::init(false));
219 
220 static cl::opt<bool> ClForceDynamicShadow(
221     "asan-force-dynamic-shadow",
222     cl::desc("Load shadow address into a local variable for each function"),
223     cl::Hidden, cl::init(false));
224 
225 static cl::opt<bool>
226     ClWithIfunc("asan-with-ifunc",
227                 cl::desc("Access dynamic shadow through an ifunc global on "
228                          "platforms that support this"),
229                 cl::Hidden, cl::init(true));
230 
231 static cl::opt<bool> ClWithIfuncSuppressRemat(
232     "asan-with-ifunc-suppress-remat",
233     cl::desc("Suppress rematerialization of dynamic shadow address by passing "
234              "it through inline asm in prologue."),
235     cl::Hidden, cl::init(true));
236 
237 // This flag limits the number of instructions to be instrumented
238 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
239 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
240 // set it to 10000.
241 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
242     "asan-max-ins-per-bb", cl::init(10000),
243     cl::desc("maximal number of instructions to instrument in any given BB"),
244     cl::Hidden);
245 
246 // This flag may need to be replaced with -f[no]asan-stack.
247 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
248                              cl::Hidden, cl::init(true));
249 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
250     "asan-max-inline-poisoning-size",
251     cl::desc(
252         "Inline shadow poisoning for blocks up to the given size in bytes."),
253     cl::Hidden, cl::init(64));
254 
255 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
256                                       cl::desc("Check stack-use-after-return"),
257                                       cl::Hidden, cl::init(true));
258 
259 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
260                                         cl::desc("Create redzones for byval "
261                                                  "arguments (extra copy "
262                                                  "required)"), cl::Hidden,
263                                         cl::init(true));
264 
265 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
266                                      cl::desc("Check stack-use-after-scope"),
267                                      cl::Hidden, cl::init(false));
268 
269 // This flag may need to be replaced with -f[no]asan-globals.
270 static cl::opt<bool> ClGlobals("asan-globals",
271                                cl::desc("Handle global objects"), cl::Hidden,
272                                cl::init(true));
273 
274 static cl::opt<bool> ClInitializers("asan-initialization-order",
275                                     cl::desc("Handle C++ initializer order"),
276                                     cl::Hidden, cl::init(true));
277 
278 static cl::opt<bool> ClInvalidPointerPairs(
279     "asan-detect-invalid-pointer-pair",
280     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
281     cl::init(false));
282 
283 static cl::opt<bool> ClInvalidPointerCmp(
284     "asan-detect-invalid-pointer-cmp",
285     cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
286     cl::init(false));
287 
288 static cl::opt<bool> ClInvalidPointerSub(
289     "asan-detect-invalid-pointer-sub",
290     cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
291     cl::init(false));
292 
293 static cl::opt<unsigned> ClRealignStack(
294     "asan-realign-stack",
295     cl::desc("Realign stack to the value of this flag (power of two)"),
296     cl::Hidden, cl::init(32));
297 
298 static cl::opt<int> ClInstrumentationWithCallsThreshold(
299     "asan-instrumentation-with-call-threshold",
300     cl::desc(
301         "If the function being instrumented contains more than "
302         "this number of memory accesses, use callbacks instead of "
303         "inline checks (-1 means never use callbacks)."),
304     cl::Hidden, cl::init(7000));
305 
306 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
307     "asan-memory-access-callback-prefix",
308     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
309     cl::init("__asan_"));
310 
311 static cl::opt<bool>
312     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
313                                cl::desc("instrument dynamic allocas"),
314                                cl::Hidden, cl::init(true));
315 
316 static cl::opt<bool> ClSkipPromotableAllocas(
317     "asan-skip-promotable-allocas",
318     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
319     cl::init(true));
320 
321 // These flags allow to change the shadow mapping.
322 // The shadow mapping looks like
323 //    Shadow = (Mem >> scale) + offset
324 
325 static cl::opt<int> ClMappingScale("asan-mapping-scale",
326                                    cl::desc("scale of asan shadow mapping"),
327                                    cl::Hidden, cl::init(0));
328 
329 static cl::opt<uint64_t>
330     ClMappingOffset("asan-mapping-offset",
331                     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
332                     cl::Hidden, cl::init(0));
333 
334 // Optimization flags. Not user visible, used mostly for testing
335 // and benchmarking the tool.
336 
337 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
338                            cl::Hidden, cl::init(true));
339 
340 static cl::opt<bool> ClOptSameTemp(
341     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
342     cl::Hidden, cl::init(true));
343 
344 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
345                                   cl::desc("Don't instrument scalar globals"),
346                                   cl::Hidden, cl::init(true));
347 
348 static cl::opt<bool> ClOptStack(
349     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
350     cl::Hidden, cl::init(false));
351 
352 static cl::opt<bool> ClDynamicAllocaStack(
353     "asan-stack-dynamic-alloca",
354     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
355     cl::init(true));
356 
357 static cl::opt<uint32_t> ClForceExperiment(
358     "asan-force-experiment",
359     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
360     cl::init(0));
361 
362 static cl::opt<bool>
363     ClUsePrivateAlias("asan-use-private-alias",
364                       cl::desc("Use private aliases for global variables"),
365                       cl::Hidden, cl::init(false));
366 
367 static cl::opt<bool>
368     ClUseOdrIndicator("asan-use-odr-indicator",
369                       cl::desc("Use odr indicators to improve ODR reporting"),
370                       cl::Hidden, cl::init(false));
371 
372 static cl::opt<bool>
373     ClUseGlobalsGC("asan-globals-live-support",
374                    cl::desc("Use linker features to support dead "
375                             "code stripping of globals"),
376                    cl::Hidden, cl::init(true));
377 
378 // This is on by default even though there is a bug in gold:
379 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
380 static cl::opt<bool>
381     ClWithComdat("asan-with-comdat",
382                  cl::desc("Place ASan constructors in comdat sections"),
383                  cl::Hidden, cl::init(true));
384 
385 // Debug flags.
386 
387 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
388                             cl::init(0));
389 
390 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
391                                  cl::Hidden, cl::init(0));
392 
393 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
394                                         cl::desc("Debug func"));
395 
396 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
397                                cl::Hidden, cl::init(-1));
398 
399 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
400                                cl::Hidden, cl::init(-1));
401 
402 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
403 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
404 STATISTIC(NumOptimizedAccessesToGlobalVar,
405           "Number of optimized accesses to global vars");
406 STATISTIC(NumOptimizedAccessesToStackVar,
407           "Number of optimized accesses to stack vars");
408 
409 namespace {
410 
411 /// This struct defines the shadow mapping using the rule:
412 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
413 /// If InGlobal is true, then
414 ///   extern char __asan_shadow[];
415 ///   shadow = (mem >> Scale) + &__asan_shadow
416 struct ShadowMapping {
417   int Scale;
418   uint64_t Offset;
419   bool OrShadowOffset;
420   bool InGlobal;
421 };
422 
423 } // end anonymous namespace
424 
425 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
426                                       bool IsKasan) {
427   bool IsAndroid = TargetTriple.isAndroid();
428   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
429   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
430   bool IsNetBSD = TargetTriple.isOSNetBSD();
431   bool IsPS4CPU = TargetTriple.isPS4CPU();
432   bool IsLinux = TargetTriple.isOSLinux();
433   bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
434                  TargetTriple.getArch() == Triple::ppc64le;
435   bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
436   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
437   bool IsMIPS32 = TargetTriple.isMIPS32();
438   bool IsMIPS64 = TargetTriple.isMIPS64();
439   bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
440   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
441   bool IsWindows = TargetTriple.isOSWindows();
442   bool IsFuchsia = TargetTriple.isOSFuchsia();
443   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
444   bool IsEmscripten = TargetTriple.isOSEmscripten();
445 
446   ShadowMapping Mapping;
447 
448   Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
449   if (ClMappingScale.getNumOccurrences() > 0) {
450     Mapping.Scale = ClMappingScale;
451   }
452 
453   if (LongSize == 32) {
454     if (IsAndroid)
455       Mapping.Offset = kDynamicShadowSentinel;
456     else if (IsMIPS32)
457       Mapping.Offset = kMIPS32_ShadowOffset32;
458     else if (IsFreeBSD)
459       Mapping.Offset = kFreeBSD_ShadowOffset32;
460     else if (IsNetBSD)
461       Mapping.Offset = kNetBSD_ShadowOffset32;
462     else if (IsIOS)
463       Mapping.Offset = kDynamicShadowSentinel;
464     else if (IsWindows)
465       Mapping.Offset = kWindowsShadowOffset32;
466     else if (IsEmscripten)
467       Mapping.Offset = kEmscriptenShadowOffset;
468     else if (IsMyriad) {
469       uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
470                                (kMyriadMemorySize32 >> Mapping.Scale));
471       Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
472     }
473     else
474       Mapping.Offset = kDefaultShadowOffset32;
475   } else {  // LongSize == 64
476     // Fuchsia is always PIE, which means that the beginning of the address
477     // space is always available.
478     if (IsFuchsia)
479       Mapping.Offset = 0;
480     else if (IsPPC64)
481       Mapping.Offset = kPPC64_ShadowOffset64;
482     else if (IsSystemZ)
483       Mapping.Offset = kSystemZ_ShadowOffset64;
484     else if (IsFreeBSD && !IsMIPS64)
485       Mapping.Offset = kFreeBSD_ShadowOffset64;
486     else if (IsNetBSD) {
487       if (IsKasan)
488         Mapping.Offset = kNetBSDKasan_ShadowOffset64;
489       else
490         Mapping.Offset = kNetBSD_ShadowOffset64;
491     } else if (IsPS4CPU)
492       Mapping.Offset = kPS4CPU_ShadowOffset64;
493     else if (IsLinux && IsX86_64) {
494       if (IsKasan)
495         Mapping.Offset = kLinuxKasan_ShadowOffset64;
496       else
497         Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
498                           (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
499     } else if (IsWindows && IsX86_64) {
500       Mapping.Offset = kWindowsShadowOffset64;
501     } else if (IsMIPS64)
502       Mapping.Offset = kMIPS64_ShadowOffset64;
503     else if (IsIOS)
504       Mapping.Offset = kDynamicShadowSentinel;
505     else if (IsAArch64)
506       Mapping.Offset = kAArch64_ShadowOffset64;
507     else
508       Mapping.Offset = kDefaultShadowOffset64;
509   }
510 
511   if (ClForceDynamicShadow) {
512     Mapping.Offset = kDynamicShadowSentinel;
513   }
514 
515   if (ClMappingOffset.getNumOccurrences() > 0) {
516     Mapping.Offset = ClMappingOffset;
517   }
518 
519   // OR-ing shadow offset if more efficient (at least on x86) if the offset
520   // is a power of two, but on ppc64 we have to use add since the shadow
521   // offset is not necessary 1/8-th of the address space.  On SystemZ,
522   // we could OR the constant in a single instruction, but it's more
523   // efficient to load it once and use indexed addressing.
524   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
525                            !(Mapping.Offset & (Mapping.Offset - 1)) &&
526                            Mapping.Offset != kDynamicShadowSentinel;
527   bool IsAndroidWithIfuncSupport =
528       IsAndroid && !TargetTriple.isAndroidVersionLT(21);
529   Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
530 
531   return Mapping;
532 }
533 
534 static size_t RedzoneSizeForScale(int MappingScale) {
535   // Redzone used for stack and globals is at least 32 bytes.
536   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
537   return std::max(32U, 1U << MappingScale);
538 }
539 
540 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
541   if (TargetTriple.isOSEmscripten()) {
542     return kAsanEmscriptenCtorAndDtorPriority;
543   } else {
544     return kAsanCtorAndDtorPriority;
545   }
546 }
547 
548 namespace {
549 
550 /// Module analysis for getting various metadata about the module.
551 class ASanGlobalsMetadataWrapperPass : public ModulePass {
552 public:
553   static char ID;
554 
555   ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
556     initializeASanGlobalsMetadataWrapperPassPass(
557         *PassRegistry::getPassRegistry());
558   }
559 
560   bool runOnModule(Module &M) override {
561     GlobalsMD = GlobalsMetadata(M);
562     return false;
563   }
564 
565   StringRef getPassName() const override {
566     return "ASanGlobalsMetadataWrapperPass";
567   }
568 
569   void getAnalysisUsage(AnalysisUsage &AU) const override {
570     AU.setPreservesAll();
571   }
572 
573   GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
574 
575 private:
576   GlobalsMetadata GlobalsMD;
577 };
578 
579 char ASanGlobalsMetadataWrapperPass::ID = 0;
580 
581 /// AddressSanitizer: instrument the code in module to find memory bugs.
582 struct AddressSanitizer {
583   AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
584                    bool CompileKernel = false, bool Recover = false,
585                    bool UseAfterScope = false)
586       : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) {
587     this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
588     this->CompileKernel =
589         ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
590 
591     C = &(M.getContext());
592     LongSize = M.getDataLayout().getPointerSizeInBits();
593     IntptrTy = Type::getIntNTy(*C, LongSize);
594     TargetTriple = Triple(M.getTargetTriple());
595 
596     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
597   }
598 
599   uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
600     uint64_t ArraySize = 1;
601     if (AI.isArrayAllocation()) {
602       const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
603       assert(CI && "non-constant array size");
604       ArraySize = CI->getZExtValue();
605     }
606     Type *Ty = AI.getAllocatedType();
607     uint64_t SizeInBytes =
608         AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
609     return SizeInBytes * ArraySize;
610   }
611 
612   /// Check if we want (and can) handle this alloca.
613   bool isInterestingAlloca(const AllocaInst &AI);
614 
615   /// If it is an interesting memory access, return the PointerOperand
616   /// and set IsWrite/Alignment. Otherwise return nullptr.
617   /// MaybeMask is an output parameter for the mask Value, if we're looking at a
618   /// masked load/store.
619   Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
620                                    uint64_t *TypeSize, unsigned *Alignment,
621                                    Value **MaybeMask = nullptr);
622 
623   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
624                      bool UseCalls, const DataLayout &DL);
625   void instrumentPointerComparisonOrSubtraction(Instruction *I);
626   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
627                          Value *Addr, uint32_t TypeSize, bool IsWrite,
628                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
629   void instrumentUnusualSizeOrAlignment(Instruction *I,
630                                         Instruction *InsertBefore, Value *Addr,
631                                         uint32_t TypeSize, bool IsWrite,
632                                         Value *SizeArgument, bool UseCalls,
633                                         uint32_t Exp);
634   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
635                            Value *ShadowValue, uint32_t TypeSize);
636   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
637                                  bool IsWrite, size_t AccessSizeIndex,
638                                  Value *SizeArgument, uint32_t Exp);
639   void instrumentMemIntrinsic(MemIntrinsic *MI);
640   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
641   bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
642   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
643   void maybeInsertDynamicShadowAtFunctionEntry(Function &F);
644   void markEscapedLocalAllocas(Function &F);
645 
646 private:
647   friend struct FunctionStackPoisoner;
648 
649   void initializeCallbacks(Module &M);
650 
651   bool LooksLikeCodeInBug11395(Instruction *I);
652   bool GlobalIsLinkerInitialized(GlobalVariable *G);
653   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
654                     uint64_t TypeSize) const;
655 
656   /// Helper to cleanup per-function state.
657   struct FunctionStateRAII {
658     AddressSanitizer *Pass;
659 
660     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
661       assert(Pass->ProcessedAllocas.empty() &&
662              "last pass forgot to clear cache");
663       assert(!Pass->LocalDynamicShadow);
664     }
665 
666     ~FunctionStateRAII() {
667       Pass->LocalDynamicShadow = nullptr;
668       Pass->ProcessedAllocas.clear();
669     }
670   };
671 
672   LLVMContext *C;
673   Triple TargetTriple;
674   int LongSize;
675   bool CompileKernel;
676   bool Recover;
677   bool UseAfterScope;
678   Type *IntptrTy;
679   ShadowMapping Mapping;
680   FunctionCallee AsanHandleNoReturnFunc;
681   FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
682   Constant *AsanShadowGlobal;
683 
684   // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
685   FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
686   FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
687 
688   // These arrays is indexed by AccessIsWrite and Experiment.
689   FunctionCallee AsanErrorCallbackSized[2][2];
690   FunctionCallee AsanMemoryAccessCallbackSized[2][2];
691 
692   FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
693   InlineAsm *EmptyAsm;
694   Value *LocalDynamicShadow = nullptr;
695   const GlobalsMetadata &GlobalsMD;
696   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
697 };
698 
699 class AddressSanitizerLegacyPass : public FunctionPass {
700 public:
701   static char ID;
702 
703   explicit AddressSanitizerLegacyPass(bool CompileKernel = false,
704                                       bool Recover = false,
705                                       bool UseAfterScope = false)
706       : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
707         UseAfterScope(UseAfterScope) {
708     initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
709   }
710 
711   StringRef getPassName() const override {
712     return "AddressSanitizerFunctionPass";
713   }
714 
715   void getAnalysisUsage(AnalysisUsage &AU) const override {
716     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
717     AU.addRequired<TargetLibraryInfoWrapperPass>();
718   }
719 
720   bool runOnFunction(Function &F) override {
721     GlobalsMetadata &GlobalsMD =
722         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
723     const TargetLibraryInfo *TLI =
724         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
725     AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
726                           UseAfterScope);
727     return ASan.instrumentFunction(F, TLI);
728   }
729 
730 private:
731   bool CompileKernel;
732   bool Recover;
733   bool UseAfterScope;
734 };
735 
736 class ModuleAddressSanitizer {
737 public:
738   ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
739                          bool CompileKernel = false, bool Recover = false,
740                          bool UseGlobalsGC = true, bool UseOdrIndicator = false)
741       : GlobalsMD(*GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC),
742         // Enable aliases as they should have no downside with ODR indicators.
743         UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
744         UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
745         // Not a typo: ClWithComdat is almost completely pointless without
746         // ClUseGlobalsGC (because then it only works on modules without
747         // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
748         // and both suffer from gold PR19002 for which UseGlobalsGC constructor
749         // argument is designed as workaround. Therefore, disable both
750         // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
751         // do globals-gc.
752         UseCtorComdat(UseGlobalsGC && ClWithComdat) {
753     this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
754     this->CompileKernel =
755         ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
756 
757     C = &(M.getContext());
758     int LongSize = M.getDataLayout().getPointerSizeInBits();
759     IntptrTy = Type::getIntNTy(*C, LongSize);
760     TargetTriple = Triple(M.getTargetTriple());
761     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
762   }
763 
764   bool instrumentModule(Module &);
765 
766 private:
767   void initializeCallbacks(Module &M);
768 
769   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
770   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
771                              ArrayRef<GlobalVariable *> ExtendedGlobals,
772                              ArrayRef<Constant *> MetadataInitializers);
773   void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
774                             ArrayRef<GlobalVariable *> ExtendedGlobals,
775                             ArrayRef<Constant *> MetadataInitializers,
776                             const std::string &UniqueModuleId);
777   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
778                               ArrayRef<GlobalVariable *> ExtendedGlobals,
779                               ArrayRef<Constant *> MetadataInitializers);
780   void
781   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
782                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
783                                      ArrayRef<Constant *> MetadataInitializers);
784 
785   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
786                                        StringRef OriginalName);
787   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
788                                   StringRef InternalSuffix);
789   IRBuilder<> CreateAsanModuleDtor(Module &M);
790 
791   bool ShouldInstrumentGlobal(GlobalVariable *G);
792   bool ShouldUseMachOGlobalsSection() const;
793   StringRef getGlobalMetadataSection() const;
794   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
795   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
796   size_t MinRedzoneSizeForGlobal() const {
797     return RedzoneSizeForScale(Mapping.Scale);
798   }
799   int GetAsanVersion(const Module &M) const;
800 
801   const GlobalsMetadata &GlobalsMD;
802   bool CompileKernel;
803   bool Recover;
804   bool UseGlobalsGC;
805   bool UsePrivateAlias;
806   bool UseOdrIndicator;
807   bool UseCtorComdat;
808   Type *IntptrTy;
809   LLVMContext *C;
810   Triple TargetTriple;
811   ShadowMapping Mapping;
812   FunctionCallee AsanPoisonGlobals;
813   FunctionCallee AsanUnpoisonGlobals;
814   FunctionCallee AsanRegisterGlobals;
815   FunctionCallee AsanUnregisterGlobals;
816   FunctionCallee AsanRegisterImageGlobals;
817   FunctionCallee AsanUnregisterImageGlobals;
818   FunctionCallee AsanRegisterElfGlobals;
819   FunctionCallee AsanUnregisterElfGlobals;
820 
821   Function *AsanCtorFunction = nullptr;
822   Function *AsanDtorFunction = nullptr;
823 };
824 
825 class ModuleAddressSanitizerLegacyPass : public ModulePass {
826 public:
827   static char ID;
828 
829   explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false,
830                                             bool Recover = false,
831                                             bool UseGlobalGC = true,
832                                             bool UseOdrIndicator = false)
833       : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
834         UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) {
835     initializeModuleAddressSanitizerLegacyPassPass(
836         *PassRegistry::getPassRegistry());
837   }
838 
839   StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
840 
841   void getAnalysisUsage(AnalysisUsage &AU) const override {
842     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
843   }
844 
845   bool runOnModule(Module &M) override {
846     GlobalsMetadata &GlobalsMD =
847         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
848     ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
849                                       UseGlobalGC, UseOdrIndicator);
850     return ASanModule.instrumentModule(M);
851   }
852 
853 private:
854   bool CompileKernel;
855   bool Recover;
856   bool UseGlobalGC;
857   bool UseOdrIndicator;
858 };
859 
860 // Stack poisoning does not play well with exception handling.
861 // When an exception is thrown, we essentially bypass the code
862 // that unpoisones the stack. This is why the run-time library has
863 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
864 // stack in the interceptor. This however does not work inside the
865 // actual function which catches the exception. Most likely because the
866 // compiler hoists the load of the shadow value somewhere too high.
867 // This causes asan to report a non-existing bug on 453.povray.
868 // It sounds like an LLVM bug.
869 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
870   Function &F;
871   AddressSanitizer &ASan;
872   DIBuilder DIB;
873   LLVMContext *C;
874   Type *IntptrTy;
875   Type *IntptrPtrTy;
876   ShadowMapping Mapping;
877 
878   SmallVector<AllocaInst *, 16> AllocaVec;
879   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
880   SmallVector<Instruction *, 8> RetVec;
881   unsigned StackAlignment;
882 
883   FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
884       AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
885   FunctionCallee AsanSetShadowFunc[0x100] = {};
886   FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
887   FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
888 
889   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
890   struct AllocaPoisonCall {
891     IntrinsicInst *InsBefore;
892     AllocaInst *AI;
893     uint64_t Size;
894     bool DoPoison;
895   };
896   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
897   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
898   bool HasUntracedLifetimeIntrinsic = false;
899 
900   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
901   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
902   AllocaInst *DynamicAllocaLayout = nullptr;
903   IntrinsicInst *LocalEscapeCall = nullptr;
904 
905   // Maps Value to an AllocaInst from which the Value is originated.
906   using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
907   AllocaForValueMapTy AllocaForValue;
908 
909   bool HasNonEmptyInlineAsm = false;
910   bool HasReturnsTwiceCall = false;
911   std::unique_ptr<CallInst> EmptyInlineAsm;
912 
913   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
914       : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
915         C(ASan.C), IntptrTy(ASan.IntptrTy),
916         IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
917         StackAlignment(1 << Mapping.Scale),
918         EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
919 
920   bool runOnFunction() {
921     if (!ClStack) return false;
922 
923     if (ClRedzoneByvalArgs)
924       copyArgsPassedByValToAllocas();
925 
926     // Collect alloca, ret, lifetime instructions etc.
927     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
928 
929     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
930 
931     initializeCallbacks(*F.getParent());
932 
933     if (HasUntracedLifetimeIntrinsic) {
934       // If there are lifetime intrinsics which couldn't be traced back to an
935       // alloca, we may not know exactly when a variable enters scope, and
936       // therefore should "fail safe" by not poisoning them.
937       StaticAllocaPoisonCallVec.clear();
938       DynamicAllocaPoisonCallVec.clear();
939     }
940 
941     processDynamicAllocas();
942     processStaticAllocas();
943 
944     if (ClDebugStack) {
945       LLVM_DEBUG(dbgs() << F);
946     }
947     return true;
948   }
949 
950   // Arguments marked with the "byval" attribute are implicitly copied without
951   // using an alloca instruction.  To produce redzones for those arguments, we
952   // copy them a second time into memory allocated with an alloca instruction.
953   void copyArgsPassedByValToAllocas();
954 
955   // Finds all Alloca instructions and puts
956   // poisoned red zones around all of them.
957   // Then unpoison everything back before the function returns.
958   void processStaticAllocas();
959   void processDynamicAllocas();
960 
961   void createDynamicAllocasInitStorage();
962 
963   // ----------------------- Visitors.
964   /// Collect all Ret instructions.
965   void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
966 
967   /// Collect all Resume instructions.
968   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
969 
970   /// Collect all CatchReturnInst instructions.
971   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
972 
973   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
974                                         Value *SavedStack) {
975     IRBuilder<> IRB(InstBefore);
976     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
977     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
978     // need to adjust extracted SP to compute the address of the most recent
979     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
980     // this purpose.
981     if (!isa<ReturnInst>(InstBefore)) {
982       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
983           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
984           {IntptrTy});
985 
986       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
987 
988       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
989                                      DynamicAreaOffset);
990     }
991 
992     IRB.CreateCall(
993         AsanAllocasUnpoisonFunc,
994         {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
995   }
996 
997   // Unpoison dynamic allocas redzones.
998   void unpoisonDynamicAllocas() {
999     for (auto &Ret : RetVec)
1000       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1001 
1002     for (auto &StackRestoreInst : StackRestoreVec)
1003       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1004                                        StackRestoreInst->getOperand(0));
1005   }
1006 
1007   // Deploy and poison redzones around dynamic alloca call. To do this, we
1008   // should replace this call with another one with changed parameters and
1009   // replace all its uses with new address, so
1010   //   addr = alloca type, old_size, align
1011   // is replaced by
1012   //   new_size = (old_size + additional_size) * sizeof(type)
1013   //   tmp = alloca i8, new_size, max(align, 32)
1014   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
1015   // Additional_size is added to make new memory allocation contain not only
1016   // requested memory, but also left, partial and right redzones.
1017   void handleDynamicAllocaCall(AllocaInst *AI);
1018 
1019   /// Collect Alloca instructions we want (and can) handle.
1020   void visitAllocaInst(AllocaInst &AI) {
1021     if (!ASan.isInterestingAlloca(AI)) {
1022       if (AI.isStaticAlloca()) {
1023         // Skip over allocas that are present *before* the first instrumented
1024         // alloca, we don't want to move those around.
1025         if (AllocaVec.empty())
1026           return;
1027 
1028         StaticAllocasToMoveUp.push_back(&AI);
1029       }
1030       return;
1031     }
1032 
1033     StackAlignment = std::max(StackAlignment, AI.getAlignment());
1034     if (!AI.isStaticAlloca())
1035       DynamicAllocaVec.push_back(&AI);
1036     else
1037       AllocaVec.push_back(&AI);
1038   }
1039 
1040   /// Collect lifetime intrinsic calls to check for use-after-scope
1041   /// errors.
1042   void visitIntrinsicInst(IntrinsicInst &II) {
1043     Intrinsic::ID ID = II.getIntrinsicID();
1044     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1045     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1046     if (!ASan.UseAfterScope)
1047       return;
1048     if (!II.isLifetimeStartOrEnd())
1049       return;
1050     // Found lifetime intrinsic, add ASan instrumentation if necessary.
1051     auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1052     // If size argument is undefined, don't do anything.
1053     if (Size->isMinusOne()) return;
1054     // Check that size doesn't saturate uint64_t and can
1055     // be stored in IntptrTy.
1056     const uint64_t SizeValue = Size->getValue().getLimitedValue();
1057     if (SizeValue == ~0ULL ||
1058         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1059       return;
1060     // Find alloca instruction that corresponds to llvm.lifetime argument.
1061     AllocaInst *AI =
1062         llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue);
1063     if (!AI) {
1064       HasUntracedLifetimeIntrinsic = true;
1065       return;
1066     }
1067     // We're interested only in allocas we can handle.
1068     if (!ASan.isInterestingAlloca(*AI))
1069       return;
1070     bool DoPoison = (ID == Intrinsic::lifetime_end);
1071     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1072     if (AI->isStaticAlloca())
1073       StaticAllocaPoisonCallVec.push_back(APC);
1074     else if (ClInstrumentDynamicAllocas)
1075       DynamicAllocaPoisonCallVec.push_back(APC);
1076   }
1077 
1078   void visitCallSite(CallSite CS) {
1079     Instruction *I = CS.getInstruction();
1080     if (CallInst *CI = dyn_cast<CallInst>(I)) {
1081       HasNonEmptyInlineAsm |= CI->isInlineAsm() &&
1082                               !CI->isIdenticalTo(EmptyInlineAsm.get()) &&
1083                               I != ASan.LocalDynamicShadow;
1084       HasReturnsTwiceCall |= CI->canReturnTwice();
1085     }
1086   }
1087 
1088   // ---------------------- Helpers.
1089   void initializeCallbacks(Module &M);
1090 
1091   // Copies bytes from ShadowBytes into shadow memory for indexes where
1092   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1093   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1094   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1095                     IRBuilder<> &IRB, Value *ShadowBase);
1096   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1097                     size_t Begin, size_t End, IRBuilder<> &IRB,
1098                     Value *ShadowBase);
1099   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1100                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1101                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1102 
1103   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1104 
1105   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1106                                bool Dynamic);
1107   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1108                      Instruction *ThenTerm, Value *ValueIfFalse);
1109 };
1110 
1111 } // end anonymous namespace
1112 
1113 void LocationMetadata::parse(MDNode *MDN) {
1114   assert(MDN->getNumOperands() == 3);
1115   MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1116   Filename = DIFilename->getString();
1117   LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1118   ColumnNo =
1119       mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1120 }
1121 
1122 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1123 // we want to sanitize instead and reading this metadata on each pass over a
1124 // function instead of reading module level metadata at first.
1125 GlobalsMetadata::GlobalsMetadata(Module &M) {
1126   NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1127   if (!Globals)
1128     return;
1129   for (auto MDN : Globals->operands()) {
1130     // Metadata node contains the global and the fields of "Entry".
1131     assert(MDN->getNumOperands() == 5);
1132     auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1133     // The optimizer may optimize away a global entirely.
1134     if (!V)
1135       continue;
1136     auto *StrippedV = V->stripPointerCasts();
1137     auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1138     if (!GV)
1139       continue;
1140     // We can already have an entry for GV if it was merged with another
1141     // global.
1142     Entry &E = Entries[GV];
1143     if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1144       E.SourceLoc.parse(Loc);
1145     if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1146       E.Name = Name->getString();
1147     ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1148     E.IsDynInit |= IsDynInit->isOne();
1149     ConstantInt *IsBlacklisted =
1150         mdconst::extract<ConstantInt>(MDN->getOperand(4));
1151     E.IsBlacklisted |= IsBlacklisted->isOne();
1152   }
1153 }
1154 
1155 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1156 
1157 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1158                                                  ModuleAnalysisManager &AM) {
1159   return GlobalsMetadata(M);
1160 }
1161 
1162 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover,
1163                                            bool UseAfterScope)
1164     : CompileKernel(CompileKernel), Recover(Recover),
1165       UseAfterScope(UseAfterScope) {}
1166 
1167 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1168                                             AnalysisManager<Function> &AM) {
1169   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1170   auto &MAM = MAMProxy.getManager();
1171   Module &M = *F.getParent();
1172   if (auto *R = MAM.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1173     const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1174     AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope);
1175     if (Sanitizer.instrumentFunction(F, TLI))
1176       return PreservedAnalyses::none();
1177     return PreservedAnalyses::all();
1178   }
1179 
1180   report_fatal_error(
1181       "The ASanGlobalsMetadataAnalysis is required to run before "
1182       "AddressSanitizer can run");
1183   return PreservedAnalyses::all();
1184 }
1185 
1186 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel,
1187                                                        bool Recover,
1188                                                        bool UseGlobalGC,
1189                                                        bool UseOdrIndicator)
1190     : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1191       UseOdrIndicator(UseOdrIndicator) {}
1192 
1193 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1194                                                   AnalysisManager<Module> &AM) {
1195   GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1196   ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
1197                                    UseGlobalGC, UseOdrIndicator);
1198   if (Sanitizer.instrumentModule(M))
1199     return PreservedAnalyses::none();
1200   return PreservedAnalyses::all();
1201 }
1202 
1203 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1204                 "Read metadata to mark which globals should be instrumented "
1205                 "when running ASan.",
1206                 false, true)
1207 
1208 char AddressSanitizerLegacyPass::ID = 0;
1209 
1210 INITIALIZE_PASS_BEGIN(
1211     AddressSanitizerLegacyPass, "asan",
1212     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1213     false)
1214 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1215 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1216 INITIALIZE_PASS_END(
1217     AddressSanitizerLegacyPass, "asan",
1218     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1219     false)
1220 
1221 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
1222                                                        bool Recover,
1223                                                        bool UseAfterScope) {
1224   assert(!CompileKernel || Recover);
1225   return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope);
1226 }
1227 
1228 char ModuleAddressSanitizerLegacyPass::ID = 0;
1229 
1230 INITIALIZE_PASS(
1231     ModuleAddressSanitizerLegacyPass, "asan-module",
1232     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1233     "ModulePass",
1234     false, false)
1235 
1236 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1237     bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) {
1238   assert(!CompileKernel || Recover);
1239   return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover,
1240                                               UseGlobalsGC, UseOdrIndicator);
1241 }
1242 
1243 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1244   size_t Res = countTrailingZeros(TypeSize / 8);
1245   assert(Res < kNumberOfAccessSizes);
1246   return Res;
1247 }
1248 
1249 /// Create a global describing a source location.
1250 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1251                                                        LocationMetadata MD) {
1252   Constant *LocData[] = {
1253       createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1254       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1255       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1256   };
1257   auto LocStruct = ConstantStruct::getAnon(LocData);
1258   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1259                                GlobalValue::PrivateLinkage, LocStruct,
1260                                kAsanGenPrefix);
1261   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1262   return GV;
1263 }
1264 
1265 /// Check if \p G has been created by a trusted compiler pass.
1266 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1267   // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1268   if (G->getName().startswith("llvm."))
1269     return true;
1270 
1271   // Do not instrument asan globals.
1272   if (G->getName().startswith(kAsanGenPrefix) ||
1273       G->getName().startswith(kSanCovGenPrefix) ||
1274       G->getName().startswith(kODRGenPrefix))
1275     return true;
1276 
1277   // Do not instrument gcov counter arrays.
1278   if (G->getName() == "__llvm_gcov_ctr")
1279     return true;
1280 
1281   return false;
1282 }
1283 
1284 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1285   // Shadow >> scale
1286   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1287   if (Mapping.Offset == 0) return Shadow;
1288   // (Shadow >> scale) | offset
1289   Value *ShadowBase;
1290   if (LocalDynamicShadow)
1291     ShadowBase = LocalDynamicShadow;
1292   else
1293     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1294   if (Mapping.OrShadowOffset)
1295     return IRB.CreateOr(Shadow, ShadowBase);
1296   else
1297     return IRB.CreateAdd(Shadow, ShadowBase);
1298 }
1299 
1300 // Instrument memset/memmove/memcpy
1301 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1302   IRBuilder<> IRB(MI);
1303   if (isa<MemTransferInst>(MI)) {
1304     IRB.CreateCall(
1305         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1306         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1307          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1308          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1309   } else if (isa<MemSetInst>(MI)) {
1310     IRB.CreateCall(
1311         AsanMemset,
1312         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1313          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1314          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1315   }
1316   MI->eraseFromParent();
1317 }
1318 
1319 /// Check if we want (and can) handle this alloca.
1320 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1321   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1322 
1323   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1324     return PreviouslySeenAllocaInfo->getSecond();
1325 
1326   bool IsInteresting =
1327       (AI.getAllocatedType()->isSized() &&
1328        // alloca() may be called with 0 size, ignore it.
1329        ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1330        // We are only interested in allocas not promotable to registers.
1331        // Promotable allocas are common under -O0.
1332        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1333        // inalloca allocas are not treated as static, and we don't want
1334        // dynamic alloca instrumentation for them as well.
1335        !AI.isUsedWithInAlloca() &&
1336        // swifterror allocas are register promoted by ISel
1337        !AI.isSwiftError());
1338 
1339   ProcessedAllocas[&AI] = IsInteresting;
1340   return IsInteresting;
1341 }
1342 
1343 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
1344                                                    bool *IsWrite,
1345                                                    uint64_t *TypeSize,
1346                                                    unsigned *Alignment,
1347                                                    Value **MaybeMask) {
1348   // Skip memory accesses inserted by another instrumentation.
1349   if (I->hasMetadata("nosanitize")) return nullptr;
1350 
1351   // Do not instrument the load fetching the dynamic shadow address.
1352   if (LocalDynamicShadow == I)
1353     return nullptr;
1354 
1355   Value *PtrOperand = nullptr;
1356   const DataLayout &DL = I->getModule()->getDataLayout();
1357   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1358     if (!ClInstrumentReads) return nullptr;
1359     *IsWrite = false;
1360     *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
1361     *Alignment = LI->getAlignment();
1362     PtrOperand = LI->getPointerOperand();
1363   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1364     if (!ClInstrumentWrites) return nullptr;
1365     *IsWrite = true;
1366     *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
1367     *Alignment = SI->getAlignment();
1368     PtrOperand = SI->getPointerOperand();
1369   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1370     if (!ClInstrumentAtomics) return nullptr;
1371     *IsWrite = true;
1372     *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
1373     *Alignment = 0;
1374     PtrOperand = RMW->getPointerOperand();
1375   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1376     if (!ClInstrumentAtomics) return nullptr;
1377     *IsWrite = true;
1378     *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
1379     *Alignment = 0;
1380     PtrOperand = XCHG->getPointerOperand();
1381   } else if (auto CI = dyn_cast<CallInst>(I)) {
1382     auto *F = dyn_cast<Function>(CI->getCalledValue());
1383     if (F && (F->getName().startswith("llvm.masked.load.") ||
1384               F->getName().startswith("llvm.masked.store."))) {
1385       unsigned OpOffset = 0;
1386       if (F->getName().startswith("llvm.masked.store.")) {
1387         if (!ClInstrumentWrites)
1388           return nullptr;
1389         // Masked store has an initial operand for the value.
1390         OpOffset = 1;
1391         *IsWrite = true;
1392       } else {
1393         if (!ClInstrumentReads)
1394           return nullptr;
1395         *IsWrite = false;
1396       }
1397 
1398       auto BasePtr = CI->getOperand(0 + OpOffset);
1399       auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1400       *TypeSize = DL.getTypeStoreSizeInBits(Ty);
1401       if (auto AlignmentConstant =
1402               dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1403         *Alignment = (unsigned)AlignmentConstant->getZExtValue();
1404       else
1405         *Alignment = 1; // No alignment guarantees. We probably got Undef
1406       if (MaybeMask)
1407         *MaybeMask = CI->getOperand(2 + OpOffset);
1408       PtrOperand = BasePtr;
1409     }
1410   }
1411 
1412   if (PtrOperand) {
1413     // Do not instrument acesses from different address spaces; we cannot deal
1414     // with them.
1415     Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
1416     if (PtrTy->getPointerAddressSpace() != 0)
1417       return nullptr;
1418 
1419     // Ignore swifterror addresses.
1420     // swifterror memory addresses are mem2reg promoted by instruction
1421     // selection. As such they cannot have regular uses like an instrumentation
1422     // function and it makes no sense to track them as memory.
1423     if (PtrOperand->isSwiftError())
1424       return nullptr;
1425   }
1426 
1427   // Treat memory accesses to promotable allocas as non-interesting since they
1428   // will not cause memory violations. This greatly speeds up the instrumented
1429   // executable at -O0.
1430   if (ClSkipPromotableAllocas)
1431     if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
1432       return isInterestingAlloca(*AI) ? AI : nullptr;
1433 
1434   return PtrOperand;
1435 }
1436 
1437 static bool isPointerOperand(Value *V) {
1438   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1439 }
1440 
1441 // This is a rough heuristic; it may cause both false positives and
1442 // false negatives. The proper implementation requires cooperation with
1443 // the frontend.
1444 static bool isInterestingPointerComparison(Instruction *I) {
1445   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1446     if (!Cmp->isRelational())
1447       return false;
1448   } else {
1449     return false;
1450   }
1451   return isPointerOperand(I->getOperand(0)) &&
1452          isPointerOperand(I->getOperand(1));
1453 }
1454 
1455 // This is a rough heuristic; it may cause both false positives and
1456 // false negatives. The proper implementation requires cooperation with
1457 // the frontend.
1458 static bool isInterestingPointerSubtraction(Instruction *I) {
1459   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1460     if (BO->getOpcode() != Instruction::Sub)
1461       return false;
1462   } else {
1463     return false;
1464   }
1465   return isPointerOperand(I->getOperand(0)) &&
1466          isPointerOperand(I->getOperand(1));
1467 }
1468 
1469 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1470   // If a global variable does not have dynamic initialization we don't
1471   // have to instrument it.  However, if a global does not have initializer
1472   // at all, we assume it has dynamic initializer (in other TU).
1473   //
1474   // FIXME: Metadata should be attched directly to the global directly instead
1475   // of being added to llvm.asan.globals.
1476   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1477 }
1478 
1479 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1480     Instruction *I) {
1481   IRBuilder<> IRB(I);
1482   FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1483   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1484   for (Value *&i : Param) {
1485     if (i->getType()->isPointerTy())
1486       i = IRB.CreatePointerCast(i, IntptrTy);
1487   }
1488   IRB.CreateCall(F, Param);
1489 }
1490 
1491 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1492                                 Instruction *InsertBefore, Value *Addr,
1493                                 unsigned Alignment, unsigned Granularity,
1494                                 uint32_t TypeSize, bool IsWrite,
1495                                 Value *SizeArgument, bool UseCalls,
1496                                 uint32_t Exp) {
1497   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1498   // if the data is properly aligned.
1499   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1500        TypeSize == 128) &&
1501       (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1502     return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1503                                    nullptr, UseCalls, Exp);
1504   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1505                                          IsWrite, nullptr, UseCalls, Exp);
1506 }
1507 
1508 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1509                                         const DataLayout &DL, Type *IntptrTy,
1510                                         Value *Mask, Instruction *I,
1511                                         Value *Addr, unsigned Alignment,
1512                                         unsigned Granularity, uint32_t TypeSize,
1513                                         bool IsWrite, Value *SizeArgument,
1514                                         bool UseCalls, uint32_t Exp) {
1515   auto *VTy = cast<PointerType>(Addr->getType())->getElementType();
1516   uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1517   unsigned Num = VTy->getVectorNumElements();
1518   auto Zero = ConstantInt::get(IntptrTy, 0);
1519   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1520     Value *InstrumentedAddress = nullptr;
1521     Instruction *InsertBefore = I;
1522     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1523       // dyn_cast as we might get UndefValue
1524       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1525         if (Masked->isZero())
1526           // Mask is constant false, so no instrumentation needed.
1527           continue;
1528         // If we have a true or undef value, fall through to doInstrumentAddress
1529         // with InsertBefore == I
1530       }
1531     } else {
1532       IRBuilder<> IRB(I);
1533       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1534       Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1535       InsertBefore = ThenTerm;
1536     }
1537 
1538     IRBuilder<> IRB(InsertBefore);
1539     InstrumentedAddress =
1540         IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1541     doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1542                         Granularity, ElemTypeSize, IsWrite, SizeArgument,
1543                         UseCalls, Exp);
1544   }
1545 }
1546 
1547 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1548                                      Instruction *I, bool UseCalls,
1549                                      const DataLayout &DL) {
1550   bool IsWrite = false;
1551   unsigned Alignment = 0;
1552   uint64_t TypeSize = 0;
1553   Value *MaybeMask = nullptr;
1554   Value *Addr =
1555       isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
1556   assert(Addr);
1557 
1558   // Optimization experiments.
1559   // The experiments can be used to evaluate potential optimizations that remove
1560   // instrumentation (assess false negatives). Instead of completely removing
1561   // some instrumentation, you set Exp to a non-zero value (mask of optimization
1562   // experiments that want to remove instrumentation of this instruction).
1563   // If Exp is non-zero, this pass will emit special calls into runtime
1564   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1565   // make runtime terminate the program in a special way (with a different
1566   // exit status). Then you run the new compiler on a buggy corpus, collect
1567   // the special terminations (ideally, you don't see them at all -- no false
1568   // negatives) and make the decision on the optimization.
1569   uint32_t Exp = ClForceExperiment;
1570 
1571   if (ClOpt && ClOptGlobals) {
1572     // If initialization order checking is disabled, a simple access to a
1573     // dynamically initialized global is always valid.
1574     GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
1575     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1576         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1577       NumOptimizedAccessesToGlobalVar++;
1578       return;
1579     }
1580   }
1581 
1582   if (ClOpt && ClOptStack) {
1583     // A direct inbounds access to a stack variable is always valid.
1584     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
1585         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1586       NumOptimizedAccessesToStackVar++;
1587       return;
1588     }
1589   }
1590 
1591   if (IsWrite)
1592     NumInstrumentedWrites++;
1593   else
1594     NumInstrumentedReads++;
1595 
1596   unsigned Granularity = 1 << Mapping.Scale;
1597   if (MaybeMask) {
1598     instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr,
1599                                 Alignment, Granularity, TypeSize, IsWrite,
1600                                 nullptr, UseCalls, Exp);
1601   } else {
1602     doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize,
1603                         IsWrite, nullptr, UseCalls, Exp);
1604   }
1605 }
1606 
1607 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1608                                                  Value *Addr, bool IsWrite,
1609                                                  size_t AccessSizeIndex,
1610                                                  Value *SizeArgument,
1611                                                  uint32_t Exp) {
1612   IRBuilder<> IRB(InsertBefore);
1613   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1614   CallInst *Call = nullptr;
1615   if (SizeArgument) {
1616     if (Exp == 0)
1617       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1618                             {Addr, SizeArgument});
1619     else
1620       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1621                             {Addr, SizeArgument, ExpVal});
1622   } else {
1623     if (Exp == 0)
1624       Call =
1625           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1626     else
1627       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1628                             {Addr, ExpVal});
1629   }
1630 
1631   // We don't do Call->setDoesNotReturn() because the BB already has
1632   // UnreachableInst at the end.
1633   // This EmptyAsm is required to avoid callback merge.
1634   IRB.CreateCall(EmptyAsm, {});
1635   return Call;
1636 }
1637 
1638 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1639                                            Value *ShadowValue,
1640                                            uint32_t TypeSize) {
1641   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1642   // Addr & (Granularity - 1)
1643   Value *LastAccessedByte =
1644       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1645   // (Addr & (Granularity - 1)) + size - 1
1646   if (TypeSize / 8 > 1)
1647     LastAccessedByte = IRB.CreateAdd(
1648         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1649   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1650   LastAccessedByte =
1651       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1652   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1653   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1654 }
1655 
1656 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1657                                          Instruction *InsertBefore, Value *Addr,
1658                                          uint32_t TypeSize, bool IsWrite,
1659                                          Value *SizeArgument, bool UseCalls,
1660                                          uint32_t Exp) {
1661   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
1662 
1663   IRBuilder<> IRB(InsertBefore);
1664   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1665   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1666 
1667   if (UseCalls) {
1668     if (Exp == 0)
1669       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1670                      AddrLong);
1671     else
1672       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1673                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1674     return;
1675   }
1676 
1677   if (IsMyriad) {
1678     // Strip the cache bit and do range check.
1679     // AddrLong &= ~kMyriadCacheBitMask32
1680     AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
1681     // Tag = AddrLong >> kMyriadTagShift
1682     Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
1683     // Tag == kMyriadDDRTag
1684     Value *TagCheck =
1685         IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
1686 
1687     Instruction *TagCheckTerm =
1688         SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false,
1689                                   MDBuilder(*C).createBranchWeights(1, 100000));
1690     assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
1691     IRB.SetInsertPoint(TagCheckTerm);
1692     InsertBefore = TagCheckTerm;
1693   }
1694 
1695   Type *ShadowTy =
1696       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1697   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1698   Value *ShadowPtr = memToShadow(AddrLong, IRB);
1699   Value *CmpVal = Constant::getNullValue(ShadowTy);
1700   Value *ShadowValue =
1701       IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1702 
1703   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1704   size_t Granularity = 1ULL << Mapping.Scale;
1705   Instruction *CrashTerm = nullptr;
1706 
1707   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1708     // We use branch weights for the slow path check, to indicate that the slow
1709     // path is rarely taken. This seems to be the case for SPEC benchmarks.
1710     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1711         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1712     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1713     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1714     IRB.SetInsertPoint(CheckTerm);
1715     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1716     if (Recover) {
1717       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1718     } else {
1719       BasicBlock *CrashBlock =
1720         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1721       CrashTerm = new UnreachableInst(*C, CrashBlock);
1722       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1723       ReplaceInstWithInst(CheckTerm, NewTerm);
1724     }
1725   } else {
1726     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1727   }
1728 
1729   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1730                                          AccessSizeIndex, SizeArgument, Exp);
1731   Crash->setDebugLoc(OrigIns->getDebugLoc());
1732 }
1733 
1734 // Instrument unusual size or unusual alignment.
1735 // We can not do it with a single check, so we do 1-byte check for the first
1736 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1737 // to report the actual access size.
1738 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1739     Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1740     bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1741   IRBuilder<> IRB(InsertBefore);
1742   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1743   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1744   if (UseCalls) {
1745     if (Exp == 0)
1746       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1747                      {AddrLong, Size});
1748     else
1749       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1750                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1751   } else {
1752     Value *LastByte = IRB.CreateIntToPtr(
1753         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1754         Addr->getType());
1755     instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1756     instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1757   }
1758 }
1759 
1760 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1761                                                   GlobalValue *ModuleName) {
1762   // Set up the arguments to our poison/unpoison functions.
1763   IRBuilder<> IRB(&GlobalInit.front(),
1764                   GlobalInit.front().getFirstInsertionPt());
1765 
1766   // Add a call to poison all external globals before the given function starts.
1767   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1768   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1769 
1770   // Add calls to unpoison all globals before each return instruction.
1771   for (auto &BB : GlobalInit.getBasicBlockList())
1772     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1773       CallInst::Create(AsanUnpoisonGlobals, "", RI);
1774 }
1775 
1776 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1777     Module &M, GlobalValue *ModuleName) {
1778   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1779   if (!GV)
1780     return;
1781 
1782   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1783   if (!CA)
1784     return;
1785 
1786   for (Use &OP : CA->operands()) {
1787     if (isa<ConstantAggregateZero>(OP)) continue;
1788     ConstantStruct *CS = cast<ConstantStruct>(OP);
1789 
1790     // Must have a function or null ptr.
1791     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1792       if (F->getName() == kAsanModuleCtorName) continue;
1793       auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1794       // Don't instrument CTORs that will run before asan.module_ctor.
1795       if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1796         continue;
1797       poisonOneInitializer(*F, ModuleName);
1798     }
1799   }
1800 }
1801 
1802 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
1803   Type *Ty = G->getValueType();
1804   LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1805 
1806   // FIXME: Metadata should be attched directly to the global directly instead
1807   // of being added to llvm.asan.globals.
1808   if (GlobalsMD.get(G).IsBlacklisted) return false;
1809   if (!Ty->isSized()) return false;
1810   if (!G->hasInitializer()) return false;
1811   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1812   // Two problems with thread-locals:
1813   //   - The address of the main thread's copy can't be computed at link-time.
1814   //   - Need to poison all copies, not just the main thread's one.
1815   if (G->isThreadLocal()) return false;
1816   // For now, just ignore this Global if the alignment is large.
1817   if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1818 
1819   // For non-COFF targets, only instrument globals known to be defined by this
1820   // TU.
1821   // FIXME: We can instrument comdat globals on ELF if we are using the
1822   // GC-friendly metadata scheme.
1823   if (!TargetTriple.isOSBinFormatCOFF()) {
1824     if (!G->hasExactDefinition() || G->hasComdat())
1825       return false;
1826   } else {
1827     // On COFF, don't instrument non-ODR linkages.
1828     if (G->isInterposable())
1829       return false;
1830   }
1831 
1832   // If a comdat is present, it must have a selection kind that implies ODR
1833   // semantics: no duplicates, any, or exact match.
1834   if (Comdat *C = G->getComdat()) {
1835     switch (C->getSelectionKind()) {
1836     case Comdat::Any:
1837     case Comdat::ExactMatch:
1838     case Comdat::NoDuplicates:
1839       break;
1840     case Comdat::Largest:
1841     case Comdat::SameSize:
1842       return false;
1843     }
1844   }
1845 
1846   if (G->hasSection()) {
1847     StringRef Section = G->getSection();
1848 
1849     // Globals from llvm.metadata aren't emitted, do not instrument them.
1850     if (Section == "llvm.metadata") return false;
1851     // Do not instrument globals from special LLVM sections.
1852     if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1853 
1854     // Do not instrument function pointers to initialization and termination
1855     // routines: dynamic linker will not properly handle redzones.
1856     if (Section.startswith(".preinit_array") ||
1857         Section.startswith(".init_array") ||
1858         Section.startswith(".fini_array")) {
1859       return false;
1860     }
1861 
1862     // On COFF, if the section name contains '$', it is highly likely that the
1863     // user is using section sorting to create an array of globals similar to
1864     // the way initialization callbacks are registered in .init_array and
1865     // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1866     // to such globals is counterproductive, because the intent is that they
1867     // will form an array, and out-of-bounds accesses are expected.
1868     // See https://github.com/google/sanitizers/issues/305
1869     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1870     if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1871       LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1872                         << *G << "\n");
1873       return false;
1874     }
1875 
1876     if (TargetTriple.isOSBinFormatMachO()) {
1877       StringRef ParsedSegment, ParsedSection;
1878       unsigned TAA = 0, StubSize = 0;
1879       bool TAAParsed;
1880       std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1881           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1882       assert(ErrorCode.empty() && "Invalid section specifier.");
1883 
1884       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1885       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1886       // them.
1887       if (ParsedSegment == "__OBJC" ||
1888           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1889         LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1890         return false;
1891       }
1892       // See https://github.com/google/sanitizers/issues/32
1893       // Constant CFString instances are compiled in the following way:
1894       //  -- the string buffer is emitted into
1895       //     __TEXT,__cstring,cstring_literals
1896       //  -- the constant NSConstantString structure referencing that buffer
1897       //     is placed into __DATA,__cfstring
1898       // Therefore there's no point in placing redzones into __DATA,__cfstring.
1899       // Moreover, it causes the linker to crash on OS X 10.7
1900       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1901         LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1902         return false;
1903       }
1904       // The linker merges the contents of cstring_literals and removes the
1905       // trailing zeroes.
1906       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1907         LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1908         return false;
1909       }
1910     }
1911   }
1912 
1913   return true;
1914 }
1915 
1916 // On Mach-O platforms, we emit global metadata in a separate section of the
1917 // binary in order to allow the linker to properly dead strip. This is only
1918 // supported on recent versions of ld64.
1919 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
1920   if (!TargetTriple.isOSBinFormatMachO())
1921     return false;
1922 
1923   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1924     return true;
1925   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1926     return true;
1927   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1928     return true;
1929 
1930   return false;
1931 }
1932 
1933 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
1934   switch (TargetTriple.getObjectFormat()) {
1935   case Triple::COFF:  return ".ASAN$GL";
1936   case Triple::ELF:   return "asan_globals";
1937   case Triple::MachO: return "__DATA,__asan_globals,regular";
1938   case Triple::Wasm:
1939   case Triple::XCOFF:
1940     report_fatal_error(
1941         "ModuleAddressSanitizer not implemented for object file format.");
1942   case Triple::UnknownObjectFormat:
1943     break;
1944   }
1945   llvm_unreachable("unsupported object format");
1946 }
1947 
1948 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
1949   IRBuilder<> IRB(*C);
1950 
1951   // Declare our poisoning and unpoisoning functions.
1952   AsanPoisonGlobals =
1953       M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
1954   AsanUnpoisonGlobals =
1955       M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
1956 
1957   // Declare functions that register/unregister globals.
1958   AsanRegisterGlobals = M.getOrInsertFunction(
1959       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1960   AsanUnregisterGlobals = M.getOrInsertFunction(
1961       kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1962 
1963   // Declare the functions that find globals in a shared object and then invoke
1964   // the (un)register function on them.
1965   AsanRegisterImageGlobals = M.getOrInsertFunction(
1966       kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1967   AsanUnregisterImageGlobals = M.getOrInsertFunction(
1968       kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1969 
1970   AsanRegisterElfGlobals =
1971       M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
1972                             IntptrTy, IntptrTy, IntptrTy);
1973   AsanUnregisterElfGlobals =
1974       M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
1975                             IntptrTy, IntptrTy, IntptrTy);
1976 }
1977 
1978 // Put the metadata and the instrumented global in the same group. This ensures
1979 // that the metadata is discarded if the instrumented global is discarded.
1980 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
1981     GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
1982   Module &M = *G->getParent();
1983   Comdat *C = G->getComdat();
1984   if (!C) {
1985     if (!G->hasName()) {
1986       // If G is unnamed, it must be internal. Give it an artificial name
1987       // so we can put it in a comdat.
1988       assert(G->hasLocalLinkage());
1989       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
1990     }
1991 
1992     if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
1993       std::string Name = G->getName();
1994       Name += InternalSuffix;
1995       C = M.getOrInsertComdat(Name);
1996     } else {
1997       C = M.getOrInsertComdat(G->getName());
1998     }
1999 
2000     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2001     // linkage to internal linkage so that a symbol table entry is emitted. This
2002     // is necessary in order to create the comdat group.
2003     if (TargetTriple.isOSBinFormatCOFF()) {
2004       C->setSelectionKind(Comdat::NoDuplicates);
2005       if (G->hasPrivateLinkage())
2006         G->setLinkage(GlobalValue::InternalLinkage);
2007     }
2008     G->setComdat(C);
2009   }
2010 
2011   assert(G->hasComdat());
2012   Metadata->setComdat(G->getComdat());
2013 }
2014 
2015 // Create a separate metadata global and put it in the appropriate ASan
2016 // global registration section.
2017 GlobalVariable *
2018 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2019                                              StringRef OriginalName) {
2020   auto Linkage = TargetTriple.isOSBinFormatMachO()
2021                      ? GlobalVariable::InternalLinkage
2022                      : GlobalVariable::PrivateLinkage;
2023   GlobalVariable *Metadata = new GlobalVariable(
2024       M, Initializer->getType(), false, Linkage, Initializer,
2025       Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2026   Metadata->setSection(getGlobalMetadataSection());
2027   return Metadata;
2028 }
2029 
2030 IRBuilder<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2031   AsanDtorFunction =
2032       Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
2033                        GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
2034   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2035 
2036   return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB));
2037 }
2038 
2039 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2040     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2041     ArrayRef<Constant *> MetadataInitializers) {
2042   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2043   auto &DL = M.getDataLayout();
2044 
2045   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2046     Constant *Initializer = MetadataInitializers[i];
2047     GlobalVariable *G = ExtendedGlobals[i];
2048     GlobalVariable *Metadata =
2049         CreateMetadataGlobal(M, Initializer, G->getName());
2050 
2051     // The MSVC linker always inserts padding when linking incrementally. We
2052     // cope with that by aligning each struct to its size, which must be a power
2053     // of two.
2054     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2055     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2056            "global metadata will not be padded appropriately");
2057     Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2058 
2059     SetComdatForGlobalMetadata(G, Metadata, "");
2060   }
2061 }
2062 
2063 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2064     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2065     ArrayRef<Constant *> MetadataInitializers,
2066     const std::string &UniqueModuleId) {
2067   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2068 
2069   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2070   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2071     GlobalVariable *G = ExtendedGlobals[i];
2072     GlobalVariable *Metadata =
2073         CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2074     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2075     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2076     MetadataGlobals[i] = Metadata;
2077 
2078     SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2079   }
2080 
2081   // Update llvm.compiler.used, adding the new metadata globals. This is
2082   // needed so that during LTO these variables stay alive.
2083   if (!MetadataGlobals.empty())
2084     appendToCompilerUsed(M, MetadataGlobals);
2085 
2086   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2087   // to look up the loaded image that contains it. Second, we can store in it
2088   // whether registration has already occurred, to prevent duplicate
2089   // registration.
2090   //
2091   // Common linkage ensures that there is only one global per shared library.
2092   GlobalVariable *RegisteredFlag = new GlobalVariable(
2093       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2094       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2095   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2096 
2097   // Create start and stop symbols.
2098   GlobalVariable *StartELFMetadata = new GlobalVariable(
2099       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2100       "__start_" + getGlobalMetadataSection());
2101   StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2102   GlobalVariable *StopELFMetadata = new GlobalVariable(
2103       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2104       "__stop_" + getGlobalMetadataSection());
2105   StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2106 
2107   // Create a call to register the globals with the runtime.
2108   IRB.CreateCall(AsanRegisterElfGlobals,
2109                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2110                   IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2111                   IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2112 
2113   // We also need to unregister globals at the end, e.g., when a shared library
2114   // gets closed.
2115   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2116   IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
2117                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2118                        IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2119                        IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2120 }
2121 
2122 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2123     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2124     ArrayRef<Constant *> MetadataInitializers) {
2125   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2126 
2127   // On recent Mach-O platforms, use a structure which binds the liveness of
2128   // the global variable to the metadata struct. Keep the list of "Liveness" GV
2129   // created to be added to llvm.compiler.used
2130   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2131   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2132 
2133   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2134     Constant *Initializer = MetadataInitializers[i];
2135     GlobalVariable *G = ExtendedGlobals[i];
2136     GlobalVariable *Metadata =
2137         CreateMetadataGlobal(M, Initializer, G->getName());
2138 
2139     // On recent Mach-O platforms, we emit the global metadata in a way that
2140     // allows the linker to properly strip dead globals.
2141     auto LivenessBinder =
2142         ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2143                             ConstantExpr::getPointerCast(Metadata, IntptrTy));
2144     GlobalVariable *Liveness = new GlobalVariable(
2145         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2146         Twine("__asan_binder_") + G->getName());
2147     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2148     LivenessGlobals[i] = Liveness;
2149   }
2150 
2151   // Update llvm.compiler.used, adding the new liveness globals. This is
2152   // needed so that during LTO these variables stay alive. The alternative
2153   // would be to have the linker handling the LTO symbols, but libLTO
2154   // current API does not expose access to the section for each symbol.
2155   if (!LivenessGlobals.empty())
2156     appendToCompilerUsed(M, LivenessGlobals);
2157 
2158   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2159   // to look up the loaded image that contains it. Second, we can store in it
2160   // whether registration has already occurred, to prevent duplicate
2161   // registration.
2162   //
2163   // common linkage ensures that there is only one global per shared library.
2164   GlobalVariable *RegisteredFlag = new GlobalVariable(
2165       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2166       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2167   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2168 
2169   IRB.CreateCall(AsanRegisterImageGlobals,
2170                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2171 
2172   // We also need to unregister globals at the end, e.g., when a shared library
2173   // gets closed.
2174   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2175   IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
2176                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2177 }
2178 
2179 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2180     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2181     ArrayRef<Constant *> MetadataInitializers) {
2182   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2183   unsigned N = ExtendedGlobals.size();
2184   assert(N > 0);
2185 
2186   // On platforms that don't have a custom metadata section, we emit an array
2187   // of global metadata structures.
2188   ArrayType *ArrayOfGlobalStructTy =
2189       ArrayType::get(MetadataInitializers[0]->getType(), N);
2190   auto AllGlobals = new GlobalVariable(
2191       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2192       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2193   if (Mapping.Scale > 3)
2194     AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2195 
2196   IRB.CreateCall(AsanRegisterGlobals,
2197                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2198                   ConstantInt::get(IntptrTy, N)});
2199 
2200   // We also need to unregister globals at the end, e.g., when a shared library
2201   // gets closed.
2202   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2203   IRB_Dtor.CreateCall(AsanUnregisterGlobals,
2204                       {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2205                        ConstantInt::get(IntptrTy, N)});
2206 }
2207 
2208 // This function replaces all global variables with new variables that have
2209 // trailing redzones. It also creates a function that poisons
2210 // redzones and inserts this function into llvm.global_ctors.
2211 // Sets *CtorComdat to true if the global registration code emitted into the
2212 // asan constructor is comdat-compatible.
2213 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2214                                                bool *CtorComdat) {
2215   *CtorComdat = false;
2216 
2217   SmallVector<GlobalVariable *, 16> GlobalsToChange;
2218 
2219   for (auto &G : M.globals()) {
2220     if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
2221   }
2222 
2223   size_t n = GlobalsToChange.size();
2224   if (n == 0) {
2225     *CtorComdat = true;
2226     return false;
2227   }
2228 
2229   auto &DL = M.getDataLayout();
2230 
2231   // A global is described by a structure
2232   //   size_t beg;
2233   //   size_t size;
2234   //   size_t size_with_redzone;
2235   //   const char *name;
2236   //   const char *module_name;
2237   //   size_t has_dynamic_init;
2238   //   void *source_location;
2239   //   size_t odr_indicator;
2240   // We initialize an array of such structures and pass it to a run-time call.
2241   StructType *GlobalStructTy =
2242       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2243                       IntptrTy, IntptrTy, IntptrTy);
2244   SmallVector<GlobalVariable *, 16> NewGlobals(n);
2245   SmallVector<Constant *, 16> Initializers(n);
2246 
2247   bool HasDynamicallyInitializedGlobals = false;
2248 
2249   // We shouldn't merge same module names, as this string serves as unique
2250   // module ID in runtime.
2251   GlobalVariable *ModuleName = createPrivateGlobalForString(
2252       M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2253 
2254   for (size_t i = 0; i < n; i++) {
2255     static const uint64_t kMaxGlobalRedzone = 1 << 18;
2256     GlobalVariable *G = GlobalsToChange[i];
2257 
2258     // FIXME: Metadata should be attched directly to the global directly instead
2259     // of being added to llvm.asan.globals.
2260     auto MD = GlobalsMD.get(G);
2261     StringRef NameForGlobal = G->getName();
2262     // Create string holding the global name (use global name from metadata
2263     // if it's available, otherwise just write the name of global variable).
2264     GlobalVariable *Name = createPrivateGlobalForString(
2265         M, MD.Name.empty() ? NameForGlobal : MD.Name,
2266         /*AllowMerging*/ true, kAsanGenPrefix);
2267 
2268     Type *Ty = G->getValueType();
2269     uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2270     uint64_t MinRZ = MinRedzoneSizeForGlobal();
2271     // MinRZ <= RZ <= kMaxGlobalRedzone
2272     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
2273     uint64_t RZ = std::max(
2274         MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
2275     uint64_t RightRedzoneSize = RZ;
2276     // Round up to MinRZ
2277     if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
2278     assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
2279     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2280 
2281     StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2282     Constant *NewInitializer = ConstantStruct::get(
2283         NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2284 
2285     // Create a new global variable with enough space for a redzone.
2286     GlobalValue::LinkageTypes Linkage = G->getLinkage();
2287     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2288       Linkage = GlobalValue::InternalLinkage;
2289     GlobalVariable *NewGlobal =
2290         new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
2291                            "", G, G->getThreadLocalMode());
2292     NewGlobal->copyAttributesFrom(G);
2293     NewGlobal->setComdat(G->getComdat());
2294     NewGlobal->setAlignment(MaybeAlign(MinRZ));
2295     // Don't fold globals with redzones. ODR violation detector and redzone
2296     // poisoning implicitly creates a dependence on the global's address, so it
2297     // is no longer valid for it to be marked unnamed_addr.
2298     NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2299 
2300     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2301     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2302         G->isConstant()) {
2303       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2304       if (Seq && Seq->isCString())
2305         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2306     }
2307 
2308     // Transfer the debug info.  The payload starts at offset zero so we can
2309     // copy the debug info over as is.
2310     SmallVector<DIGlobalVariableExpression *, 1> GVs;
2311     G->getDebugInfo(GVs);
2312     for (auto *GV : GVs)
2313       NewGlobal->addDebugInfo(GV);
2314 
2315     Value *Indices2[2];
2316     Indices2[0] = IRB.getInt32(0);
2317     Indices2[1] = IRB.getInt32(0);
2318 
2319     G->replaceAllUsesWith(
2320         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2321     NewGlobal->takeName(G);
2322     G->eraseFromParent();
2323     NewGlobals[i] = NewGlobal;
2324 
2325     Constant *SourceLoc;
2326     if (!MD.SourceLoc.empty()) {
2327       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2328       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2329     } else {
2330       SourceLoc = ConstantInt::get(IntptrTy, 0);
2331     }
2332 
2333     Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2334     GlobalValue *InstrumentedGlobal = NewGlobal;
2335 
2336     bool CanUsePrivateAliases =
2337         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2338         TargetTriple.isOSBinFormatWasm();
2339     if (CanUsePrivateAliases && UsePrivateAlias) {
2340       // Create local alias for NewGlobal to avoid crash on ODR between
2341       // instrumented and non-instrumented libraries.
2342       InstrumentedGlobal =
2343           GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2344     }
2345 
2346     // ODR should not happen for local linkage.
2347     if (NewGlobal->hasLocalLinkage()) {
2348       ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2349                                                IRB.getInt8PtrTy());
2350     } else if (UseOdrIndicator) {
2351       // With local aliases, we need to provide another externally visible
2352       // symbol __odr_asan_XXX to detect ODR violation.
2353       auto *ODRIndicatorSym =
2354           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2355                              Constant::getNullValue(IRB.getInt8Ty()),
2356                              kODRGenPrefix + NameForGlobal, nullptr,
2357                              NewGlobal->getThreadLocalMode());
2358 
2359       // Set meaningful attributes for indicator symbol.
2360       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2361       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2362       ODRIndicatorSym->setAlignment(Align::None());
2363       ODRIndicator = ODRIndicatorSym;
2364     }
2365 
2366     Constant *Initializer = ConstantStruct::get(
2367         GlobalStructTy,
2368         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2369         ConstantInt::get(IntptrTy, SizeInBytes),
2370         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2371         ConstantExpr::getPointerCast(Name, IntptrTy),
2372         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2373         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2374         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2375 
2376     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2377 
2378     LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2379 
2380     Initializers[i] = Initializer;
2381   }
2382 
2383   // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2384   // ConstantMerge'ing them.
2385   SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2386   for (size_t i = 0; i < n; i++) {
2387     GlobalVariable *G = NewGlobals[i];
2388     if (G->getName().empty()) continue;
2389     GlobalsToAddToUsedList.push_back(G);
2390   }
2391   appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2392 
2393   std::string ELFUniqueModuleId =
2394       (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2395                                                         : "";
2396 
2397   if (!ELFUniqueModuleId.empty()) {
2398     InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2399     *CtorComdat = true;
2400   } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2401     InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2402   } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2403     InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2404   } else {
2405     InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2406   }
2407 
2408   // Create calls for poisoning before initializers run and unpoisoning after.
2409   if (HasDynamicallyInitializedGlobals)
2410     createInitializerPoisonCalls(M, ModuleName);
2411 
2412   LLVM_DEBUG(dbgs() << M);
2413   return true;
2414 }
2415 
2416 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2417   int LongSize = M.getDataLayout().getPointerSizeInBits();
2418   bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2419   int Version = 8;
2420   // 32-bit Android is one version ahead because of the switch to dynamic
2421   // shadow.
2422   Version += (LongSize == 32 && isAndroid);
2423   return Version;
2424 }
2425 
2426 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2427   initializeCallbacks(M);
2428 
2429   if (CompileKernel)
2430     return false;
2431 
2432   // Create a module constructor. A destructor is created lazily because not all
2433   // platforms, and not all modules need it.
2434   std::string AsanVersion = std::to_string(GetAsanVersion(M));
2435   std::string VersionCheckName =
2436       ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2437   std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
2438       M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{},
2439       /*InitArgs=*/{}, VersionCheckName);
2440 
2441   bool CtorComdat = true;
2442   // TODO(glider): temporarily disabled globals instrumentation for KASan.
2443   if (ClGlobals) {
2444     IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2445     InstrumentGlobals(IRB, M, &CtorComdat);
2446   }
2447 
2448   const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2449 
2450   // Put the constructor and destructor in comdat if both
2451   // (1) global instrumentation is not TU-specific
2452   // (2) target is ELF.
2453   if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2454     AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2455     appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2456     if (AsanDtorFunction) {
2457       AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2458       appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2459     }
2460   } else {
2461     appendToGlobalCtors(M, AsanCtorFunction, Priority);
2462     if (AsanDtorFunction)
2463       appendToGlobalDtors(M, AsanDtorFunction, Priority);
2464   }
2465 
2466   return true;
2467 }
2468 
2469 void AddressSanitizer::initializeCallbacks(Module &M) {
2470   IRBuilder<> IRB(*C);
2471   // Create __asan_report* callbacks.
2472   // IsWrite, TypeSize and Exp are encoded in the function name.
2473   for (int Exp = 0; Exp < 2; Exp++) {
2474     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2475       const std::string TypeStr = AccessIsWrite ? "store" : "load";
2476       const std::string ExpStr = Exp ? "exp_" : "";
2477       const std::string EndingStr = Recover ? "_noabort" : "";
2478 
2479       SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2480       SmallVector<Type *, 2> Args1{1, IntptrTy};
2481       if (Exp) {
2482         Type *ExpType = Type::getInt32Ty(*C);
2483         Args2.push_back(ExpType);
2484         Args1.push_back(ExpType);
2485       }
2486       AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2487           kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2488           FunctionType::get(IRB.getVoidTy(), Args2, false));
2489 
2490       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2491           ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2492           FunctionType::get(IRB.getVoidTy(), Args2, false));
2493 
2494       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2495            AccessSizeIndex++) {
2496         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2497         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2498             M.getOrInsertFunction(
2499                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2500                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2501 
2502         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2503             M.getOrInsertFunction(
2504                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2505                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2506       }
2507     }
2508   }
2509 
2510   const std::string MemIntrinCallbackPrefix =
2511       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2512   AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2513                                       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2514                                       IRB.getInt8PtrTy(), IntptrTy);
2515   AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2516                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2517                                      IRB.getInt8PtrTy(), IntptrTy);
2518   AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2519                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2520                                      IRB.getInt32Ty(), IntptrTy);
2521 
2522   AsanHandleNoReturnFunc =
2523       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2524 
2525   AsanPtrCmpFunction =
2526       M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2527   AsanPtrSubFunction =
2528       M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2529   // We insert an empty inline asm after __asan_report* to avoid callback merge.
2530   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
2531                             StringRef(""), StringRef(""),
2532                             /*hasSideEffects=*/true);
2533   if (Mapping.InGlobal)
2534     AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2535                                            ArrayType::get(IRB.getInt8Ty(), 0));
2536 }
2537 
2538 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2539   // For each NSObject descendant having a +load method, this method is invoked
2540   // by the ObjC runtime before any of the static constructors is called.
2541   // Therefore we need to instrument such methods with a call to __asan_init
2542   // at the beginning in order to initialize our runtime before any access to
2543   // the shadow memory.
2544   // We cannot just ignore these methods, because they may call other
2545   // instrumented functions.
2546   if (F.getName().find(" load]") != std::string::npos) {
2547     FunctionCallee AsanInitFunction =
2548         declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2549     IRBuilder<> IRB(&F.front(), F.front().begin());
2550     IRB.CreateCall(AsanInitFunction, {});
2551     return true;
2552   }
2553   return false;
2554 }
2555 
2556 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2557   // Generate code only when dynamic addressing is needed.
2558   if (Mapping.Offset != kDynamicShadowSentinel)
2559     return;
2560 
2561   IRBuilder<> IRB(&F.front().front());
2562   if (Mapping.InGlobal) {
2563     if (ClWithIfuncSuppressRemat) {
2564       // An empty inline asm with input reg == output reg.
2565       // An opaque pointer-to-int cast, basically.
2566       InlineAsm *Asm = InlineAsm::get(
2567           FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2568           StringRef(""), StringRef("=r,0"),
2569           /*hasSideEffects=*/false);
2570       LocalDynamicShadow =
2571           IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2572     } else {
2573       LocalDynamicShadow =
2574           IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2575     }
2576   } else {
2577     Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2578         kAsanShadowMemoryDynamicAddress, IntptrTy);
2579     LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2580   }
2581 }
2582 
2583 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2584   // Find the one possible call to llvm.localescape and pre-mark allocas passed
2585   // to it as uninteresting. This assumes we haven't started processing allocas
2586   // yet. This check is done up front because iterating the use list in
2587   // isInterestingAlloca would be algorithmically slower.
2588   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2589 
2590   // Try to get the declaration of llvm.localescape. If it's not in the module,
2591   // we can exit early.
2592   if (!F.getParent()->getFunction("llvm.localescape")) return;
2593 
2594   // Look for a call to llvm.localescape call in the entry block. It can't be in
2595   // any other block.
2596   for (Instruction &I : F.getEntryBlock()) {
2597     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2598     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2599       // We found a call. Mark all the allocas passed in as uninteresting.
2600       for (Value *Arg : II->arg_operands()) {
2601         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2602         assert(AI && AI->isStaticAlloca() &&
2603                "non-static alloca arg to localescape");
2604         ProcessedAllocas[AI] = false;
2605       }
2606       break;
2607     }
2608   }
2609 }
2610 
2611 bool AddressSanitizer::instrumentFunction(Function &F,
2612                                           const TargetLibraryInfo *TLI) {
2613   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2614   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2615   if (F.getName().startswith("__asan_")) return false;
2616 
2617   bool FunctionModified = false;
2618 
2619   // If needed, insert __asan_init before checking for SanitizeAddress attr.
2620   // This function needs to be called even if the function body is not
2621   // instrumented.
2622   if (maybeInsertAsanInitAtFunctionEntry(F))
2623     FunctionModified = true;
2624 
2625   // Leave if the function doesn't need instrumentation.
2626   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2627 
2628   LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2629 
2630   initializeCallbacks(*F.getParent());
2631 
2632   FunctionStateRAII CleanupObj(this);
2633 
2634   maybeInsertDynamicShadowAtFunctionEntry(F);
2635 
2636   // We can't instrument allocas used with llvm.localescape. Only static allocas
2637   // can be passed to that intrinsic.
2638   markEscapedLocalAllocas(F);
2639 
2640   // We want to instrument every address only once per basic block (unless there
2641   // are calls between uses).
2642   SmallPtrSet<Value *, 16> TempsToInstrument;
2643   SmallVector<Instruction *, 16> ToInstrument;
2644   SmallVector<Instruction *, 8> NoReturnCalls;
2645   SmallVector<BasicBlock *, 16> AllBlocks;
2646   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2647   int NumAllocas = 0;
2648   bool IsWrite;
2649   unsigned Alignment;
2650   uint64_t TypeSize;
2651 
2652   // Fill the set of memory operations to instrument.
2653   for (auto &BB : F) {
2654     AllBlocks.push_back(&BB);
2655     TempsToInstrument.clear();
2656     int NumInsnsPerBB = 0;
2657     for (auto &Inst : BB) {
2658       if (LooksLikeCodeInBug11395(&Inst)) return false;
2659       Value *MaybeMask = nullptr;
2660       if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
2661                                                   &Alignment, &MaybeMask)) {
2662         if (ClOpt && ClOptSameTemp) {
2663           // If we have a mask, skip instrumentation if we've already
2664           // instrumented the full object. But don't add to TempsToInstrument
2665           // because we might get another load/store with a different mask.
2666           if (MaybeMask) {
2667             if (TempsToInstrument.count(Addr))
2668               continue; // We've seen this (whole) temp in the current BB.
2669           } else {
2670             if (!TempsToInstrument.insert(Addr).second)
2671               continue; // We've seen this temp in the current BB.
2672           }
2673         }
2674       } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2675                   isInterestingPointerComparison(&Inst)) ||
2676                  ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2677                   isInterestingPointerSubtraction(&Inst))) {
2678         PointerComparisonsOrSubtracts.push_back(&Inst);
2679         continue;
2680       } else if (isa<MemIntrinsic>(Inst)) {
2681         // ok, take it.
2682       } else {
2683         if (isa<AllocaInst>(Inst)) NumAllocas++;
2684         CallSite CS(&Inst);
2685         if (CS) {
2686           // A call inside BB.
2687           TempsToInstrument.clear();
2688           if (CS.doesNotReturn() && !CS->hasMetadata("nosanitize"))
2689             NoReturnCalls.push_back(CS.getInstruction());
2690         }
2691         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2692           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2693         continue;
2694       }
2695       ToInstrument.push_back(&Inst);
2696       NumInsnsPerBB++;
2697       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2698     }
2699   }
2700 
2701   bool UseCalls =
2702       (ClInstrumentationWithCallsThreshold >= 0 &&
2703        ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
2704   const DataLayout &DL = F.getParent()->getDataLayout();
2705   ObjectSizeOpts ObjSizeOpts;
2706   ObjSizeOpts.RoundToAlign = true;
2707   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2708 
2709   // Instrument.
2710   int NumInstrumented = 0;
2711   for (auto Inst : ToInstrument) {
2712     if (ClDebugMin < 0 || ClDebugMax < 0 ||
2713         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
2714       if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
2715         instrumentMop(ObjSizeVis, Inst, UseCalls,
2716                       F.getParent()->getDataLayout());
2717       else
2718         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
2719     }
2720     NumInstrumented++;
2721   }
2722 
2723   FunctionStackPoisoner FSP(F, *this);
2724   bool ChangedStack = FSP.runOnFunction();
2725 
2726   // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2727   // See e.g. https://github.com/google/sanitizers/issues/37
2728   for (auto CI : NoReturnCalls) {
2729     IRBuilder<> IRB(CI);
2730     IRB.CreateCall(AsanHandleNoReturnFunc, {});
2731   }
2732 
2733   for (auto Inst : PointerComparisonsOrSubtracts) {
2734     instrumentPointerComparisonOrSubtraction(Inst);
2735     NumInstrumented++;
2736   }
2737 
2738   if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty())
2739     FunctionModified = true;
2740 
2741   LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2742                     << F << "\n");
2743 
2744   return FunctionModified;
2745 }
2746 
2747 // Workaround for bug 11395: we don't want to instrument stack in functions
2748 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2749 // FIXME: remove once the bug 11395 is fixed.
2750 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2751   if (LongSize != 32) return false;
2752   CallInst *CI = dyn_cast<CallInst>(I);
2753   if (!CI || !CI->isInlineAsm()) return false;
2754   if (CI->getNumArgOperands() <= 5) return false;
2755   // We have inline assembly with quite a few arguments.
2756   return true;
2757 }
2758 
2759 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2760   IRBuilder<> IRB(*C);
2761   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2762     std::string Suffix = itostr(i);
2763     AsanStackMallocFunc[i] = M.getOrInsertFunction(
2764         kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2765     AsanStackFreeFunc[i] =
2766         M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2767                               IRB.getVoidTy(), IntptrTy, IntptrTy);
2768   }
2769   if (ASan.UseAfterScope) {
2770     AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2771         kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2772     AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2773         kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2774   }
2775 
2776   for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2777     std::ostringstream Name;
2778     Name << kAsanSetShadowPrefix;
2779     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2780     AsanSetShadowFunc[Val] =
2781         M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2782   }
2783 
2784   AsanAllocaPoisonFunc = M.getOrInsertFunction(
2785       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2786   AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2787       kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2788 }
2789 
2790 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2791                                                ArrayRef<uint8_t> ShadowBytes,
2792                                                size_t Begin, size_t End,
2793                                                IRBuilder<> &IRB,
2794                                                Value *ShadowBase) {
2795   if (Begin >= End)
2796     return;
2797 
2798   const size_t LargestStoreSizeInBytes =
2799       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2800 
2801   const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2802 
2803   // Poison given range in shadow using larges store size with out leading and
2804   // trailing zeros in ShadowMask. Zeros never change, so they need neither
2805   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2806   // middle of a store.
2807   for (size_t i = Begin; i < End;) {
2808     if (!ShadowMask[i]) {
2809       assert(!ShadowBytes[i]);
2810       ++i;
2811       continue;
2812     }
2813 
2814     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2815     // Fit store size into the range.
2816     while (StoreSizeInBytes > End - i)
2817       StoreSizeInBytes /= 2;
2818 
2819     // Minimize store size by trimming trailing zeros.
2820     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2821       while (j <= StoreSizeInBytes / 2)
2822         StoreSizeInBytes /= 2;
2823     }
2824 
2825     uint64_t Val = 0;
2826     for (size_t j = 0; j < StoreSizeInBytes; j++) {
2827       if (IsLittleEndian)
2828         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
2829       else
2830         Val = (Val << 8) | ShadowBytes[i + j];
2831     }
2832 
2833     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
2834     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
2835     IRB.CreateAlignedStore(
2836         Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1);
2837 
2838     i += StoreSizeInBytes;
2839   }
2840 }
2841 
2842 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2843                                          ArrayRef<uint8_t> ShadowBytes,
2844                                          IRBuilder<> &IRB, Value *ShadowBase) {
2845   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
2846 }
2847 
2848 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2849                                          ArrayRef<uint8_t> ShadowBytes,
2850                                          size_t Begin, size_t End,
2851                                          IRBuilder<> &IRB, Value *ShadowBase) {
2852   assert(ShadowMask.size() == ShadowBytes.size());
2853   size_t Done = Begin;
2854   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
2855     if (!ShadowMask[i]) {
2856       assert(!ShadowBytes[i]);
2857       continue;
2858     }
2859     uint8_t Val = ShadowBytes[i];
2860     if (!AsanSetShadowFunc[Val])
2861       continue;
2862 
2863     // Skip same values.
2864     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
2865     }
2866 
2867     if (j - i >= ClMaxInlinePoisoningSize) {
2868       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
2869       IRB.CreateCall(AsanSetShadowFunc[Val],
2870                      {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
2871                       ConstantInt::get(IntptrTy, j - i)});
2872       Done = j;
2873     }
2874   }
2875 
2876   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
2877 }
2878 
2879 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2880 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2881 static int StackMallocSizeClass(uint64_t LocalStackSize) {
2882   assert(LocalStackSize <= kMaxStackMallocSize);
2883   uint64_t MaxSize = kMinStackMallocSize;
2884   for (int i = 0;; i++, MaxSize *= 2)
2885     if (LocalStackSize <= MaxSize) return i;
2886   llvm_unreachable("impossible LocalStackSize");
2887 }
2888 
2889 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2890   Instruction *CopyInsertPoint = &F.front().front();
2891   if (CopyInsertPoint == ASan.LocalDynamicShadow) {
2892     // Insert after the dynamic shadow location is determined
2893     CopyInsertPoint = CopyInsertPoint->getNextNode();
2894     assert(CopyInsertPoint);
2895   }
2896   IRBuilder<> IRB(CopyInsertPoint);
2897   const DataLayout &DL = F.getParent()->getDataLayout();
2898   for (Argument &Arg : F.args()) {
2899     if (Arg.hasByValAttr()) {
2900       Type *Ty = Arg.getType()->getPointerElementType();
2901       unsigned Alignment = Arg.getParamAlignment();
2902       if (Alignment == 0)
2903         Alignment = DL.getABITypeAlignment(Ty);
2904 
2905       AllocaInst *AI = IRB.CreateAlloca(
2906           Ty, nullptr,
2907           (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
2908               ".byval");
2909       AI->setAlignment(Align(Alignment));
2910       Arg.replaceAllUsesWith(AI);
2911 
2912       uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2913       IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
2914     }
2915   }
2916 }
2917 
2918 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
2919                                           Value *ValueIfTrue,
2920                                           Instruction *ThenTerm,
2921                                           Value *ValueIfFalse) {
2922   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
2923   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
2924   PHI->addIncoming(ValueIfFalse, CondBlock);
2925   BasicBlock *ThenBlock = ThenTerm->getParent();
2926   PHI->addIncoming(ValueIfTrue, ThenBlock);
2927   return PHI;
2928 }
2929 
2930 Value *FunctionStackPoisoner::createAllocaForLayout(
2931     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
2932   AllocaInst *Alloca;
2933   if (Dynamic) {
2934     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
2935                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
2936                               "MyAlloca");
2937   } else {
2938     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
2939                               nullptr, "MyAlloca");
2940     assert(Alloca->isStaticAlloca());
2941   }
2942   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
2943   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
2944   Alloca->setAlignment(MaybeAlign(FrameAlignment));
2945   return IRB.CreatePointerCast(Alloca, IntptrTy);
2946 }
2947 
2948 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2949   BasicBlock &FirstBB = *F.begin();
2950   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
2951   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
2952   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
2953   DynamicAllocaLayout->setAlignment(Align(32));
2954 }
2955 
2956 void FunctionStackPoisoner::processDynamicAllocas() {
2957   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
2958     assert(DynamicAllocaPoisonCallVec.empty());
2959     return;
2960   }
2961 
2962   // Insert poison calls for lifetime intrinsics for dynamic allocas.
2963   for (const auto &APC : DynamicAllocaPoisonCallVec) {
2964     assert(APC.InsBefore);
2965     assert(APC.AI);
2966     assert(ASan.isInterestingAlloca(*APC.AI));
2967     assert(!APC.AI->isStaticAlloca());
2968 
2969     IRBuilder<> IRB(APC.InsBefore);
2970     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
2971     // Dynamic allocas will be unpoisoned unconditionally below in
2972     // unpoisonDynamicAllocas.
2973     // Flag that we need unpoison static allocas.
2974   }
2975 
2976   // Handle dynamic allocas.
2977   createDynamicAllocasInitStorage();
2978   for (auto &AI : DynamicAllocaVec)
2979     handleDynamicAllocaCall(AI);
2980   unpoisonDynamicAllocas();
2981 }
2982 
2983 void FunctionStackPoisoner::processStaticAllocas() {
2984   if (AllocaVec.empty()) {
2985     assert(StaticAllocaPoisonCallVec.empty());
2986     return;
2987   }
2988 
2989   int StackMallocIdx = -1;
2990   DebugLoc EntryDebugLocation;
2991   if (auto SP = F.getSubprogram())
2992     EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
2993 
2994   Instruction *InsBefore = AllocaVec[0];
2995   IRBuilder<> IRB(InsBefore);
2996   IRB.SetCurrentDebugLocation(EntryDebugLocation);
2997 
2998   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2999   // debug info is broken, because only entry-block allocas are treated as
3000   // regular stack slots.
3001   auto InsBeforeB = InsBefore->getParent();
3002   assert(InsBeforeB == &F.getEntryBlock());
3003   for (auto *AI : StaticAllocasToMoveUp)
3004     if (AI->getParent() == InsBeforeB)
3005       AI->moveBefore(InsBefore);
3006 
3007   // If we have a call to llvm.localescape, keep it in the entry block.
3008   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3009 
3010   SmallVector<ASanStackVariableDescription, 16> SVD;
3011   SVD.reserve(AllocaVec.size());
3012   for (AllocaInst *AI : AllocaVec) {
3013     ASanStackVariableDescription D = {AI->getName().data(),
3014                                       ASan.getAllocaSizeInBytes(*AI),
3015                                       0,
3016                                       AI->getAlignment(),
3017                                       AI,
3018                                       0,
3019                                       0};
3020     SVD.push_back(D);
3021   }
3022 
3023   // Minimal header size (left redzone) is 4 pointers,
3024   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3025   size_t Granularity = 1ULL << Mapping.Scale;
3026   size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3027   const ASanStackFrameLayout &L =
3028       ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3029 
3030   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3031   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3032   for (auto &Desc : SVD)
3033     AllocaToSVDMap[Desc.AI] = &Desc;
3034 
3035   // Update SVD with information from lifetime intrinsics.
3036   for (const auto &APC : StaticAllocaPoisonCallVec) {
3037     assert(APC.InsBefore);
3038     assert(APC.AI);
3039     assert(ASan.isInterestingAlloca(*APC.AI));
3040     assert(APC.AI->isStaticAlloca());
3041 
3042     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3043     Desc.LifetimeSize = Desc.Size;
3044     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3045       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3046         if (LifetimeLoc->getFile() == FnLoc->getFile())
3047           if (unsigned Line = LifetimeLoc->getLine())
3048             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3049       }
3050     }
3051   }
3052 
3053   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3054   LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3055   uint64_t LocalStackSize = L.FrameSize;
3056   bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
3057                        LocalStackSize <= kMaxStackMallocSize;
3058   bool DoDynamicAlloca = ClDynamicAllocaStack;
3059   // Don't do dynamic alloca or stack malloc if:
3060   // 1) There is inline asm: too often it makes assumptions on which registers
3061   //    are available.
3062   // 2) There is a returns_twice call (typically setjmp), which is
3063   //    optimization-hostile, and doesn't play well with introduced indirect
3064   //    register-relative calculation of local variable addresses.
3065   DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3066   DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3067 
3068   Value *StaticAlloca =
3069       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3070 
3071   Value *FakeStack;
3072   Value *LocalStackBase;
3073   Value *LocalStackBaseAlloca;
3074   uint8_t DIExprFlags = DIExpression::ApplyOffset;
3075 
3076   if (DoStackMalloc) {
3077     LocalStackBaseAlloca =
3078         IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3079     // void *FakeStack = __asan_option_detect_stack_use_after_return
3080     //     ? __asan_stack_malloc_N(LocalStackSize)
3081     //     : nullptr;
3082     // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3083     Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3084         kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3085     Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3086         IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3087         Constant::getNullValue(IRB.getInt32Ty()));
3088     Instruction *Term =
3089         SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3090     IRBuilder<> IRBIf(Term);
3091     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
3092     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3093     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3094     Value *FakeStackValue =
3095         IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3096                          ConstantInt::get(IntptrTy, LocalStackSize));
3097     IRB.SetInsertPoint(InsBefore);
3098     IRB.SetCurrentDebugLocation(EntryDebugLocation);
3099     FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3100                           ConstantInt::get(IntptrTy, 0));
3101 
3102     Value *NoFakeStack =
3103         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3104     Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3105     IRBIf.SetInsertPoint(Term);
3106     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
3107     Value *AllocaValue =
3108         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3109 
3110     IRB.SetInsertPoint(InsBefore);
3111     IRB.SetCurrentDebugLocation(EntryDebugLocation);
3112     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3113     IRB.SetCurrentDebugLocation(EntryDebugLocation);
3114     IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3115     DIExprFlags |= DIExpression::DerefBefore;
3116   } else {
3117     // void *FakeStack = nullptr;
3118     // void *LocalStackBase = alloca(LocalStackSize);
3119     FakeStack = ConstantInt::get(IntptrTy, 0);
3120     LocalStackBase =
3121         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3122     LocalStackBaseAlloca = LocalStackBase;
3123   }
3124 
3125   // Replace Alloca instructions with base+offset.
3126   for (const auto &Desc : SVD) {
3127     AllocaInst *AI = Desc.AI;
3128     replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, DIExprFlags,
3129                                Desc.Offset);
3130     Value *NewAllocaPtr = IRB.CreateIntToPtr(
3131         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3132         AI->getType());
3133     AI->replaceAllUsesWith(NewAllocaPtr);
3134   }
3135 
3136   // The left-most redzone has enough space for at least 4 pointers.
3137   // Write the Magic value to redzone[0].
3138   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3139   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3140                   BasePlus0);
3141   // Write the frame description constant to redzone[1].
3142   Value *BasePlus1 = IRB.CreateIntToPtr(
3143       IRB.CreateAdd(LocalStackBase,
3144                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3145       IntptrPtrTy);
3146   GlobalVariable *StackDescriptionGlobal =
3147       createPrivateGlobalForString(*F.getParent(), DescriptionString,
3148                                    /*AllowMerging*/ true, kAsanGenPrefix);
3149   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3150   IRB.CreateStore(Description, BasePlus1);
3151   // Write the PC to redzone[2].
3152   Value *BasePlus2 = IRB.CreateIntToPtr(
3153       IRB.CreateAdd(LocalStackBase,
3154                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3155       IntptrPtrTy);
3156   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3157 
3158   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3159 
3160   // Poison the stack red zones at the entry.
3161   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3162   // As mask we must use most poisoned case: red zones and after scope.
3163   // As bytes we can use either the same or just red zones only.
3164   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3165 
3166   if (!StaticAllocaPoisonCallVec.empty()) {
3167     const auto &ShadowInScope = GetShadowBytes(SVD, L);
3168 
3169     // Poison static allocas near lifetime intrinsics.
3170     for (const auto &APC : StaticAllocaPoisonCallVec) {
3171       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3172       assert(Desc.Offset % L.Granularity == 0);
3173       size_t Begin = Desc.Offset / L.Granularity;
3174       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3175 
3176       IRBuilder<> IRB(APC.InsBefore);
3177       copyToShadow(ShadowAfterScope,
3178                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3179                    IRB, ShadowBase);
3180     }
3181   }
3182 
3183   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3184   SmallVector<uint8_t, 64> ShadowAfterReturn;
3185 
3186   // (Un)poison the stack before all ret instructions.
3187   for (auto Ret : RetVec) {
3188     IRBuilder<> IRBRet(Ret);
3189     // Mark the current frame as retired.
3190     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3191                        BasePlus0);
3192     if (DoStackMalloc) {
3193       assert(StackMallocIdx >= 0);
3194       // if FakeStack != 0  // LocalStackBase == FakeStack
3195       //     // In use-after-return mode, poison the whole stack frame.
3196       //     if StackMallocIdx <= 4
3197       //         // For small sizes inline the whole thing:
3198       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3199       //         **SavedFlagPtr(FakeStack) = 0
3200       //     else
3201       //         __asan_stack_free_N(FakeStack, LocalStackSize)
3202       // else
3203       //     <This is not a fake stack; unpoison the redzones>
3204       Value *Cmp =
3205           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3206       Instruction *ThenTerm, *ElseTerm;
3207       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3208 
3209       IRBuilder<> IRBPoison(ThenTerm);
3210       if (StackMallocIdx <= 4) {
3211         int ClassSize = kMinStackMallocSize << StackMallocIdx;
3212         ShadowAfterReturn.resize(ClassSize / L.Granularity,
3213                                  kAsanStackUseAfterReturnMagic);
3214         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3215                      ShadowBase);
3216         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3217             FakeStack,
3218             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3219         Value *SavedFlagPtr = IRBPoison.CreateLoad(
3220             IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3221         IRBPoison.CreateStore(
3222             Constant::getNullValue(IRBPoison.getInt8Ty()),
3223             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3224       } else {
3225         // For larger frames call __asan_stack_free_*.
3226         IRBPoison.CreateCall(
3227             AsanStackFreeFunc[StackMallocIdx],
3228             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3229       }
3230 
3231       IRBuilder<> IRBElse(ElseTerm);
3232       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3233     } else {
3234       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3235     }
3236   }
3237 
3238   // We are done. Remove the old unused alloca instructions.
3239   for (auto AI : AllocaVec) AI->eraseFromParent();
3240 }
3241 
3242 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3243                                          IRBuilder<> &IRB, bool DoPoison) {
3244   // For now just insert the call to ASan runtime.
3245   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3246   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3247   IRB.CreateCall(
3248       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3249       {AddrArg, SizeArg});
3250 }
3251 
3252 // Handling llvm.lifetime intrinsics for a given %alloca:
3253 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3254 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3255 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3256 //     could be poisoned by previous llvm.lifetime.end instruction, as the
3257 //     variable may go in and out of scope several times, e.g. in loops).
3258 // (3) if we poisoned at least one %alloca in a function,
3259 //     unpoison the whole stack frame at function exit.
3260 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3261   IRBuilder<> IRB(AI);
3262 
3263   const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
3264   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3265 
3266   Value *Zero = Constant::getNullValue(IntptrTy);
3267   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3268   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3269 
3270   // Since we need to extend alloca with additional memory to locate
3271   // redzones, and OldSize is number of allocated blocks with
3272   // ElementSize size, get allocated memory size in bytes by
3273   // OldSize * ElementSize.
3274   const unsigned ElementSize =
3275       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3276   Value *OldSize =
3277       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3278                     ConstantInt::get(IntptrTy, ElementSize));
3279 
3280   // PartialSize = OldSize % 32
3281   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3282 
3283   // Misalign = kAllocaRzSize - PartialSize;
3284   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3285 
3286   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3287   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3288   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3289 
3290   // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
3291   // Align is added to locate left redzone, PartialPadding for possible
3292   // partial redzone and kAllocaRzSize for right redzone respectively.
3293   Value *AdditionalChunkSize = IRB.CreateAdd(
3294       ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
3295 
3296   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3297 
3298   // Insert new alloca with new NewSize and Align params.
3299   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3300   NewAlloca->setAlignment(MaybeAlign(Align));
3301 
3302   // NewAddress = Address + Align
3303   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3304                                     ConstantInt::get(IntptrTy, Align));
3305 
3306   // Insert __asan_alloca_poison call for new created alloca.
3307   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3308 
3309   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3310   // for unpoisoning stuff.
3311   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3312 
3313   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3314 
3315   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3316   AI->replaceAllUsesWith(NewAddressPtr);
3317 
3318   // We are done. Erase old alloca from parent.
3319   AI->eraseFromParent();
3320 }
3321 
3322 // isSafeAccess returns true if Addr is always inbounds with respect to its
3323 // base object. For example, it is a field access or an array access with
3324 // constant inbounds index.
3325 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3326                                     Value *Addr, uint64_t TypeSize) const {
3327   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3328   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3329   uint64_t Size = SizeOffset.first.getZExtValue();
3330   int64_t Offset = SizeOffset.second.getSExtValue();
3331   // Three checks are required to ensure safety:
3332   // . Offset >= 0  (since the offset is given from the base ptr)
3333   // . Size >= Offset  (unsigned)
3334   // . Size - Offset >= NeededSize  (unsigned)
3335   return Offset >= 0 && Size >= uint64_t(Offset) &&
3336          Size - uint64_t(Offset) >= TypeSize / 8;
3337 }
3338