1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address basic correctness 10 // checker. 11 // Details of the algorithm: 12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 13 // 14 // FIXME: This sanitizer does not yet handle scalable vectors 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/StackSafetyAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/BinaryFormat/MachO.h" 34 #include "llvm/Demangle/Demangle.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Comdat.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DIBuilder.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/EHPersonalities.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GlobalAlias.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/IRBuilder.h" 52 #include "llvm/IR/InlineAsm.h" 53 #include "llvm/IR/InstVisitor.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/MDBuilder.h" 61 #include "llvm/IR/Metadata.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/Use.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/MC/MCSectionMachO.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/TargetParser/Triple.h" 74 #include "llvm/Transforms/Instrumentation.h" 75 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 76 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 77 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/Local.h" 80 #include "llvm/Transforms/Utils/ModuleUtils.h" 81 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 82 #include <algorithm> 83 #include <cassert> 84 #include <cstddef> 85 #include <cstdint> 86 #include <iomanip> 87 #include <limits> 88 #include <sstream> 89 #include <string> 90 #include <tuple> 91 92 using namespace llvm; 93 94 #define DEBUG_TYPE "asan" 95 96 static const uint64_t kDefaultShadowScale = 3; 97 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 98 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 99 static const uint64_t kDynamicShadowSentinel = 100 std::numeric_limits<uint64_t>::max(); 101 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 102 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 103 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 104 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 105 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 106 static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29; 107 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 108 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 109 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 110 static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46; 111 static const uint64_t kRISCV64_ShadowOffset64 = kDynamicShadowSentinel; 112 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 113 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 114 static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47; 115 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 116 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 117 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 118 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 119 static const uint64_t kPS_ShadowOffset64 = 1ULL << 40; 120 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 121 static const uint64_t kEmscriptenShadowOffset = 0; 122 123 // The shadow memory space is dynamically allocated. 124 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 125 126 static const size_t kMinStackMallocSize = 1 << 6; // 64B 127 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 128 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 129 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 130 131 const char kAsanModuleCtorName[] = "asan.module_ctor"; 132 const char kAsanModuleDtorName[] = "asan.module_dtor"; 133 static const uint64_t kAsanCtorAndDtorPriority = 1; 134 // On Emscripten, the system needs more than one priorities for constructors. 135 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 136 const char kAsanReportErrorTemplate[] = "__asan_report_"; 137 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 138 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 139 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 140 const char kAsanUnregisterImageGlobalsName[] = 141 "__asan_unregister_image_globals"; 142 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 143 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 144 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 145 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 146 const char kAsanInitName[] = "__asan_init"; 147 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 148 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 149 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 150 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 151 static const int kMaxAsanStackMallocSizeClass = 10; 152 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 153 const char kAsanStackMallocAlwaysNameTemplate[] = 154 "__asan_stack_malloc_always_"; 155 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 156 const char kAsanGenPrefix[] = "___asan_gen_"; 157 const char kODRGenPrefix[] = "__odr_asan_gen_"; 158 const char kSanCovGenPrefix[] = "__sancov_gen_"; 159 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 160 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 161 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 162 163 // ASan version script has __asan_* wildcard. Triple underscore prevents a 164 // linker (gold) warning about attempting to export a local symbol. 165 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 166 167 const char kAsanOptionDetectUseAfterReturn[] = 168 "__asan_option_detect_stack_use_after_return"; 169 170 const char kAsanShadowMemoryDynamicAddress[] = 171 "__asan_shadow_memory_dynamic_address"; 172 173 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 174 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 175 176 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 177 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 178 const char kAMDGPUBallotName[] = "llvm.amdgcn.ballot.i64"; 179 const char kAMDGPUUnreachableName[] = "llvm.amdgcn.unreachable"; 180 181 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 182 static const size_t kNumberOfAccessSizes = 5; 183 184 static const uint64_t kAllocaRzSize = 32; 185 186 // ASanAccessInfo implementation constants. 187 constexpr size_t kCompileKernelShift = 0; 188 constexpr size_t kCompileKernelMask = 0x1; 189 constexpr size_t kAccessSizeIndexShift = 1; 190 constexpr size_t kAccessSizeIndexMask = 0xf; 191 constexpr size_t kIsWriteShift = 5; 192 constexpr size_t kIsWriteMask = 0x1; 193 194 // Command-line flags. 195 196 static cl::opt<bool> ClEnableKasan( 197 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 198 cl::Hidden, cl::init(false)); 199 200 static cl::opt<bool> ClRecover( 201 "asan-recover", 202 cl::desc("Enable recovery mode (continue-after-error)."), 203 cl::Hidden, cl::init(false)); 204 205 static cl::opt<bool> ClInsertVersionCheck( 206 "asan-guard-against-version-mismatch", 207 cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden, 208 cl::init(true)); 209 210 // This flag may need to be replaced with -f[no-]asan-reads. 211 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 212 cl::desc("instrument read instructions"), 213 cl::Hidden, cl::init(true)); 214 215 static cl::opt<bool> ClInstrumentWrites( 216 "asan-instrument-writes", cl::desc("instrument write instructions"), 217 cl::Hidden, cl::init(true)); 218 219 static cl::opt<bool> 220 ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(true), 221 cl::Hidden, cl::desc("Use Stack Safety analysis results"), 222 cl::Optional); 223 224 static cl::opt<bool> ClInstrumentAtomics( 225 "asan-instrument-atomics", 226 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 227 cl::init(true)); 228 229 static cl::opt<bool> 230 ClInstrumentByval("asan-instrument-byval", 231 cl::desc("instrument byval call arguments"), cl::Hidden, 232 cl::init(true)); 233 234 static cl::opt<bool> ClAlwaysSlowPath( 235 "asan-always-slow-path", 236 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 237 cl::init(false)); 238 239 static cl::opt<bool> ClForceDynamicShadow( 240 "asan-force-dynamic-shadow", 241 cl::desc("Load shadow address into a local variable for each function"), 242 cl::Hidden, cl::init(false)); 243 244 static cl::opt<bool> 245 ClWithIfunc("asan-with-ifunc", 246 cl::desc("Access dynamic shadow through an ifunc global on " 247 "platforms that support this"), 248 cl::Hidden, cl::init(true)); 249 250 static cl::opt<bool> ClWithIfuncSuppressRemat( 251 "asan-with-ifunc-suppress-remat", 252 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 253 "it through inline asm in prologue."), 254 cl::Hidden, cl::init(true)); 255 256 // This flag limits the number of instructions to be instrumented 257 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 258 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 259 // set it to 10000. 260 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 261 "asan-max-ins-per-bb", cl::init(10000), 262 cl::desc("maximal number of instructions to instrument in any given BB"), 263 cl::Hidden); 264 265 // This flag may need to be replaced with -f[no]asan-stack. 266 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 267 cl::Hidden, cl::init(true)); 268 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 269 "asan-max-inline-poisoning-size", 270 cl::desc( 271 "Inline shadow poisoning for blocks up to the given size in bytes."), 272 cl::Hidden, cl::init(64)); 273 274 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 275 "asan-use-after-return", 276 cl::desc("Sets the mode of detection for stack-use-after-return."), 277 cl::values( 278 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 279 "Never detect stack use after return."), 280 clEnumValN( 281 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 282 "Detect stack use after return if " 283 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 284 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 285 "Always detect stack use after return.")), 286 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 287 288 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 289 cl::desc("Create redzones for byval " 290 "arguments (extra copy " 291 "required)"), cl::Hidden, 292 cl::init(true)); 293 294 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 295 cl::desc("Check stack-use-after-scope"), 296 cl::Hidden, cl::init(false)); 297 298 // This flag may need to be replaced with -f[no]asan-globals. 299 static cl::opt<bool> ClGlobals("asan-globals", 300 cl::desc("Handle global objects"), cl::Hidden, 301 cl::init(true)); 302 303 static cl::opt<bool> ClInitializers("asan-initialization-order", 304 cl::desc("Handle C++ initializer order"), 305 cl::Hidden, cl::init(true)); 306 307 static cl::opt<bool> ClInvalidPointerPairs( 308 "asan-detect-invalid-pointer-pair", 309 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 310 cl::init(false)); 311 312 static cl::opt<bool> ClInvalidPointerCmp( 313 "asan-detect-invalid-pointer-cmp", 314 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 315 cl::init(false)); 316 317 static cl::opt<bool> ClInvalidPointerSub( 318 "asan-detect-invalid-pointer-sub", 319 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 320 cl::init(false)); 321 322 static cl::opt<unsigned> ClRealignStack( 323 "asan-realign-stack", 324 cl::desc("Realign stack to the value of this flag (power of two)"), 325 cl::Hidden, cl::init(32)); 326 327 static cl::opt<int> ClInstrumentationWithCallsThreshold( 328 "asan-instrumentation-with-call-threshold", 329 cl::desc("If the function being instrumented contains more than " 330 "this number of memory accesses, use callbacks instead of " 331 "inline checks (-1 means never use callbacks)."), 332 cl::Hidden, cl::init(7000)); 333 334 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 335 "asan-memory-access-callback-prefix", 336 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 337 cl::init("__asan_")); 338 339 static cl::opt<bool> ClKasanMemIntrinCallbackPrefix( 340 "asan-kernel-mem-intrinsic-prefix", 341 cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden, 342 cl::init(false)); 343 344 static cl::opt<bool> 345 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 346 cl::desc("instrument dynamic allocas"), 347 cl::Hidden, cl::init(true)); 348 349 static cl::opt<bool> ClSkipPromotableAllocas( 350 "asan-skip-promotable-allocas", 351 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 352 cl::init(true)); 353 354 static cl::opt<AsanCtorKind> ClConstructorKind( 355 "asan-constructor-kind", 356 cl::desc("Sets the ASan constructor kind"), 357 cl::values(clEnumValN(AsanCtorKind::None, "none", "No constructors"), 358 clEnumValN(AsanCtorKind::Global, "global", 359 "Use global constructors")), 360 cl::init(AsanCtorKind::Global), cl::Hidden); 361 // These flags allow to change the shadow mapping. 362 // The shadow mapping looks like 363 // Shadow = (Mem >> scale) + offset 364 365 static cl::opt<int> ClMappingScale("asan-mapping-scale", 366 cl::desc("scale of asan shadow mapping"), 367 cl::Hidden, cl::init(0)); 368 369 static cl::opt<uint64_t> 370 ClMappingOffset("asan-mapping-offset", 371 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 372 cl::Hidden, cl::init(0)); 373 374 // Optimization flags. Not user visible, used mostly for testing 375 // and benchmarking the tool. 376 377 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 378 cl::Hidden, cl::init(true)); 379 380 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", 381 cl::desc("Optimize callbacks"), 382 cl::Hidden, cl::init(false)); 383 384 static cl::opt<bool> ClOptSameTemp( 385 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 386 cl::Hidden, cl::init(true)); 387 388 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 389 cl::desc("Don't instrument scalar globals"), 390 cl::Hidden, cl::init(true)); 391 392 static cl::opt<bool> ClOptStack( 393 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 394 cl::Hidden, cl::init(false)); 395 396 static cl::opt<bool> ClDynamicAllocaStack( 397 "asan-stack-dynamic-alloca", 398 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 399 cl::init(true)); 400 401 static cl::opt<uint32_t> ClForceExperiment( 402 "asan-force-experiment", 403 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 404 cl::init(0)); 405 406 static cl::opt<bool> 407 ClUsePrivateAlias("asan-use-private-alias", 408 cl::desc("Use private aliases for global variables"), 409 cl::Hidden, cl::init(true)); 410 411 static cl::opt<bool> 412 ClUseOdrIndicator("asan-use-odr-indicator", 413 cl::desc("Use odr indicators to improve ODR reporting"), 414 cl::Hidden, cl::init(true)); 415 416 static cl::opt<bool> 417 ClUseGlobalsGC("asan-globals-live-support", 418 cl::desc("Use linker features to support dead " 419 "code stripping of globals"), 420 cl::Hidden, cl::init(true)); 421 422 // This is on by default even though there is a bug in gold: 423 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 424 static cl::opt<bool> 425 ClWithComdat("asan-with-comdat", 426 cl::desc("Place ASan constructors in comdat sections"), 427 cl::Hidden, cl::init(true)); 428 429 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 430 "asan-destructor-kind", 431 cl::desc("Sets the ASan destructor kind. The default is to use the value " 432 "provided to the pass constructor"), 433 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 434 clEnumValN(AsanDtorKind::Global, "global", 435 "Use global destructors")), 436 cl::init(AsanDtorKind::Invalid), cl::Hidden); 437 438 // Debug flags. 439 440 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 441 cl::init(0)); 442 443 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 444 cl::Hidden, cl::init(0)); 445 446 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 447 cl::desc("Debug func")); 448 449 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 450 cl::Hidden, cl::init(-1)); 451 452 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 453 cl::Hidden, cl::init(-1)); 454 455 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 456 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 457 STATISTIC(NumOptimizedAccessesToGlobalVar, 458 "Number of optimized accesses to global vars"); 459 STATISTIC(NumOptimizedAccessesToStackVar, 460 "Number of optimized accesses to stack vars"); 461 462 namespace { 463 464 /// This struct defines the shadow mapping using the rule: 465 /// shadow = (mem >> Scale) ADD-or-OR Offset. 466 /// If InGlobal is true, then 467 /// extern char __asan_shadow[]; 468 /// shadow = (mem >> Scale) + &__asan_shadow 469 struct ShadowMapping { 470 int Scale; 471 uint64_t Offset; 472 bool OrShadowOffset; 473 bool InGlobal; 474 }; 475 476 } // end anonymous namespace 477 478 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, 479 bool IsKasan) { 480 bool IsAndroid = TargetTriple.isAndroid(); 481 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() || 482 TargetTriple.isDriverKit(); 483 bool IsMacOS = TargetTriple.isMacOSX(); 484 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 485 bool IsNetBSD = TargetTriple.isOSNetBSD(); 486 bool IsPS = TargetTriple.isPS(); 487 bool IsLinux = TargetTriple.isOSLinux(); 488 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 489 TargetTriple.getArch() == Triple::ppc64le; 490 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 491 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 492 bool IsMIPSN32ABI = TargetTriple.getEnvironment() == Triple::GNUABIN32; 493 bool IsMIPS32 = TargetTriple.isMIPS32(); 494 bool IsMIPS64 = TargetTriple.isMIPS64(); 495 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 496 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 497 TargetTriple.getArch() == Triple::aarch64_be; 498 bool IsLoongArch64 = TargetTriple.isLoongArch64(); 499 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 500 bool IsWindows = TargetTriple.isOSWindows(); 501 bool IsFuchsia = TargetTriple.isOSFuchsia(); 502 bool IsEmscripten = TargetTriple.isOSEmscripten(); 503 bool IsAMDGPU = TargetTriple.isAMDGPU(); 504 505 ShadowMapping Mapping; 506 507 Mapping.Scale = kDefaultShadowScale; 508 if (ClMappingScale.getNumOccurrences() > 0) { 509 Mapping.Scale = ClMappingScale; 510 } 511 512 if (LongSize == 32) { 513 if (IsAndroid) 514 Mapping.Offset = kDynamicShadowSentinel; 515 else if (IsMIPSN32ABI) 516 Mapping.Offset = kMIPS_ShadowOffsetN32; 517 else if (IsMIPS32) 518 Mapping.Offset = kMIPS32_ShadowOffset32; 519 else if (IsFreeBSD) 520 Mapping.Offset = kFreeBSD_ShadowOffset32; 521 else if (IsNetBSD) 522 Mapping.Offset = kNetBSD_ShadowOffset32; 523 else if (IsIOS) 524 Mapping.Offset = kDynamicShadowSentinel; 525 else if (IsWindows) 526 Mapping.Offset = kWindowsShadowOffset32; 527 else if (IsEmscripten) 528 Mapping.Offset = kEmscriptenShadowOffset; 529 else 530 Mapping.Offset = kDefaultShadowOffset32; 531 } else { // LongSize == 64 532 // Fuchsia is always PIE, which means that the beginning of the address 533 // space is always available. 534 if (IsFuchsia) 535 Mapping.Offset = 0; 536 else if (IsPPC64) 537 Mapping.Offset = kPPC64_ShadowOffset64; 538 else if (IsSystemZ) 539 Mapping.Offset = kSystemZ_ShadowOffset64; 540 else if (IsFreeBSD && IsAArch64) 541 Mapping.Offset = kFreeBSDAArch64_ShadowOffset64; 542 else if (IsFreeBSD && !IsMIPS64) { 543 if (IsKasan) 544 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 545 else 546 Mapping.Offset = kFreeBSD_ShadowOffset64; 547 } else if (IsNetBSD) { 548 if (IsKasan) 549 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 550 else 551 Mapping.Offset = kNetBSD_ShadowOffset64; 552 } else if (IsPS) 553 Mapping.Offset = kPS_ShadowOffset64; 554 else if (IsLinux && IsX86_64) { 555 if (IsKasan) 556 Mapping.Offset = kLinuxKasan_ShadowOffset64; 557 else 558 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 559 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 560 } else if (IsWindows && IsX86_64) { 561 Mapping.Offset = kWindowsShadowOffset64; 562 } else if (IsMIPS64) 563 Mapping.Offset = kMIPS64_ShadowOffset64; 564 else if (IsIOS) 565 Mapping.Offset = kDynamicShadowSentinel; 566 else if (IsMacOS && IsAArch64) 567 Mapping.Offset = kDynamicShadowSentinel; 568 else if (IsAArch64) 569 Mapping.Offset = kAArch64_ShadowOffset64; 570 else if (IsLoongArch64) 571 Mapping.Offset = kLoongArch64_ShadowOffset64; 572 else if (IsRISCV64) 573 Mapping.Offset = kRISCV64_ShadowOffset64; 574 else if (IsAMDGPU) 575 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 576 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 577 else 578 Mapping.Offset = kDefaultShadowOffset64; 579 } 580 581 if (ClForceDynamicShadow) { 582 Mapping.Offset = kDynamicShadowSentinel; 583 } 584 585 if (ClMappingOffset.getNumOccurrences() > 0) { 586 Mapping.Offset = ClMappingOffset; 587 } 588 589 // OR-ing shadow offset if more efficient (at least on x86) if the offset 590 // is a power of two, but on ppc64 and loongarch64 we have to use add since 591 // the shadow offset is not necessarily 1/8-th of the address space. On 592 // SystemZ, we could OR the constant in a single instruction, but it's more 593 // efficient to load it once and use indexed addressing. 594 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS && 595 !IsRISCV64 && !IsLoongArch64 && 596 !(Mapping.Offset & (Mapping.Offset - 1)) && 597 Mapping.Offset != kDynamicShadowSentinel; 598 bool IsAndroidWithIfuncSupport = 599 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 600 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 601 602 return Mapping; 603 } 604 605 namespace llvm { 606 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, 607 bool IsKasan, uint64_t *ShadowBase, 608 int *MappingScale, bool *OrShadowOffset) { 609 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); 610 *ShadowBase = Mapping.Offset; 611 *MappingScale = Mapping.Scale; 612 *OrShadowOffset = Mapping.OrShadowOffset; 613 } 614 615 ASanAccessInfo::ASanAccessInfo(int32_t Packed) 616 : Packed(Packed), 617 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), 618 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), 619 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} 620 621 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, 622 uint8_t AccessSizeIndex) 623 : Packed((IsWrite << kIsWriteShift) + 624 (CompileKernel << kCompileKernelShift) + 625 (AccessSizeIndex << kAccessSizeIndexShift)), 626 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), 627 CompileKernel(CompileKernel) {} 628 629 } // namespace llvm 630 631 static uint64_t getRedzoneSizeForScale(int MappingScale) { 632 // Redzone used for stack and globals is at least 32 bytes. 633 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 634 return std::max(32U, 1U << MappingScale); 635 } 636 637 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 638 if (TargetTriple.isOSEmscripten()) { 639 return kAsanEmscriptenCtorAndDtorPriority; 640 } else { 641 return kAsanCtorAndDtorPriority; 642 } 643 } 644 645 namespace { 646 /// Helper RAII class to post-process inserted asan runtime calls during a 647 /// pass on a single Function. Upon end of scope, detects and applies the 648 /// required funclet OpBundle. 649 class RuntimeCallInserter { 650 Function *OwnerFn = nullptr; 651 bool TrackInsertedCalls = false; 652 SmallVector<CallInst *> InsertedCalls; 653 654 public: 655 RuntimeCallInserter(Function &Fn) : OwnerFn(&Fn) { 656 if (Fn.hasPersonalityFn()) { 657 auto Personality = classifyEHPersonality(Fn.getPersonalityFn()); 658 if (isScopedEHPersonality(Personality)) 659 TrackInsertedCalls = true; 660 } 661 } 662 663 ~RuntimeCallInserter() { 664 if (InsertedCalls.empty()) 665 return; 666 assert(TrackInsertedCalls && "Calls were wrongly tracked"); 667 668 DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*OwnerFn); 669 for (CallInst *CI : InsertedCalls) { 670 BasicBlock *BB = CI->getParent(); 671 assert(BB && "Instruction doesn't belong to a BasicBlock"); 672 assert(BB->getParent() == OwnerFn && 673 "Instruction doesn't belong to the expected Function!"); 674 675 ColorVector &Colors = BlockColors[BB]; 676 // funclet opbundles are only valid in monochromatic BBs. 677 // Note that unreachable BBs are seen as colorless by colorEHFunclets() 678 // and will be DCE'ed later. 679 if (Colors.empty()) 680 continue; 681 if (Colors.size() != 1) { 682 OwnerFn->getContext().emitError( 683 "Instruction's BasicBlock is not monochromatic"); 684 continue; 685 } 686 687 BasicBlock *Color = Colors.front(); 688 Instruction *EHPad = Color->getFirstNonPHI(); 689 690 if (EHPad && EHPad->isEHPad()) { 691 // Replace CI with a clone with an added funclet OperandBundle 692 OperandBundleDef OB("funclet", EHPad); 693 auto *NewCall = 694 CallBase::addOperandBundle(CI, LLVMContext::OB_funclet, OB, CI); 695 NewCall->copyMetadata(*CI); 696 CI->replaceAllUsesWith(NewCall); 697 CI->eraseFromParent(); 698 } 699 } 700 } 701 702 CallInst *createRuntimeCall(IRBuilder<> &IRB, FunctionCallee Callee, 703 ArrayRef<Value *> Args = {}, 704 const Twine &Name = "") { 705 assert(IRB.GetInsertBlock()->getParent() == OwnerFn); 706 707 CallInst *Inst = IRB.CreateCall(Callee, Args, Name, nullptr); 708 if (TrackInsertedCalls) 709 InsertedCalls.push_back(Inst); 710 return Inst; 711 } 712 }; 713 714 /// AddressSanitizer: instrument the code in module to find memory bugs. 715 struct AddressSanitizer { 716 AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI, 717 int InstrumentationWithCallsThreshold, 718 uint32_t MaxInlinePoisoningSize, bool CompileKernel = false, 719 bool Recover = false, bool UseAfterScope = false, 720 AsanDetectStackUseAfterReturnMode UseAfterReturn = 721 AsanDetectStackUseAfterReturnMode::Runtime) 722 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 723 : CompileKernel), 724 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 725 UseAfterScope(UseAfterScope || ClUseAfterScope), 726 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn 727 : UseAfterReturn), 728 SSGI(SSGI), 729 InstrumentationWithCallsThreshold( 730 ClInstrumentationWithCallsThreshold.getNumOccurrences() > 0 731 ? ClInstrumentationWithCallsThreshold 732 : InstrumentationWithCallsThreshold), 733 MaxInlinePoisoningSize(ClMaxInlinePoisoningSize.getNumOccurrences() > 0 734 ? ClMaxInlinePoisoningSize 735 : MaxInlinePoisoningSize) { 736 C = &(M.getContext()); 737 DL = &M.getDataLayout(); 738 LongSize = M.getDataLayout().getPointerSizeInBits(); 739 IntptrTy = Type::getIntNTy(*C, LongSize); 740 PtrTy = PointerType::getUnqual(*C); 741 Int32Ty = Type::getInt32Ty(*C); 742 TargetTriple = Triple(M.getTargetTriple()); 743 744 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 745 746 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); 747 } 748 749 TypeSize getAllocaSizeInBytes(const AllocaInst &AI) const { 750 return *AI.getAllocationSize(AI.getDataLayout()); 751 } 752 753 /// Check if we want (and can) handle this alloca. 754 bool isInterestingAlloca(const AllocaInst &AI); 755 756 bool ignoreAccess(Instruction *Inst, Value *Ptr); 757 void getInterestingMemoryOperands( 758 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 759 760 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 761 InterestingMemoryOperand &O, bool UseCalls, 762 const DataLayout &DL, RuntimeCallInserter &RTCI); 763 void instrumentPointerComparisonOrSubtraction(Instruction *I, 764 RuntimeCallInserter &RTCI); 765 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 766 Value *Addr, MaybeAlign Alignment, 767 uint32_t TypeStoreSize, bool IsWrite, 768 Value *SizeArgument, bool UseCalls, uint32_t Exp, 769 RuntimeCallInserter &RTCI); 770 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 771 Instruction *InsertBefore, Value *Addr, 772 uint32_t TypeStoreSize, bool IsWrite, 773 Value *SizeArgument); 774 Instruction *genAMDGPUReportBlock(IRBuilder<> &IRB, Value *Cond, 775 bool Recover); 776 void instrumentUnusualSizeOrAlignment(Instruction *I, 777 Instruction *InsertBefore, Value *Addr, 778 TypeSize TypeStoreSize, bool IsWrite, 779 Value *SizeArgument, bool UseCalls, 780 uint32_t Exp, 781 RuntimeCallInserter &RTCI); 782 void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL, 783 Type *IntptrTy, Value *Mask, Value *EVL, 784 Value *Stride, Instruction *I, Value *Addr, 785 MaybeAlign Alignment, unsigned Granularity, 786 Type *OpType, bool IsWrite, 787 Value *SizeArgument, bool UseCalls, 788 uint32_t Exp, RuntimeCallInserter &RTCI); 789 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 790 Value *ShadowValue, uint32_t TypeStoreSize); 791 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 792 bool IsWrite, size_t AccessSizeIndex, 793 Value *SizeArgument, uint32_t Exp, 794 RuntimeCallInserter &RTCI); 795 void instrumentMemIntrinsic(MemIntrinsic *MI, RuntimeCallInserter &RTCI); 796 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 797 bool suppressInstrumentationSiteForDebug(int &Instrumented); 798 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 799 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 800 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 801 void markEscapedLocalAllocas(Function &F); 802 803 private: 804 friend struct FunctionStackPoisoner; 805 806 void initializeCallbacks(Module &M, const TargetLibraryInfo *TLI); 807 808 bool LooksLikeCodeInBug11395(Instruction *I); 809 bool GlobalIsLinkerInitialized(GlobalVariable *G); 810 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 811 TypeSize TypeStoreSize) const; 812 813 /// Helper to cleanup per-function state. 814 struct FunctionStateRAII { 815 AddressSanitizer *Pass; 816 817 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 818 assert(Pass->ProcessedAllocas.empty() && 819 "last pass forgot to clear cache"); 820 assert(!Pass->LocalDynamicShadow); 821 } 822 823 ~FunctionStateRAII() { 824 Pass->LocalDynamicShadow = nullptr; 825 Pass->ProcessedAllocas.clear(); 826 } 827 }; 828 829 LLVMContext *C; 830 const DataLayout *DL; 831 Triple TargetTriple; 832 int LongSize; 833 bool CompileKernel; 834 bool Recover; 835 bool UseAfterScope; 836 AsanDetectStackUseAfterReturnMode UseAfterReturn; 837 Type *IntptrTy; 838 Type *Int32Ty; 839 PointerType *PtrTy; 840 ShadowMapping Mapping; 841 FunctionCallee AsanHandleNoReturnFunc; 842 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 843 Constant *AsanShadowGlobal; 844 845 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 846 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 847 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 848 849 // These arrays is indexed by AccessIsWrite and Experiment. 850 FunctionCallee AsanErrorCallbackSized[2][2]; 851 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 852 853 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 854 Value *LocalDynamicShadow = nullptr; 855 const StackSafetyGlobalInfo *SSGI; 856 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 857 858 FunctionCallee AMDGPUAddressShared; 859 FunctionCallee AMDGPUAddressPrivate; 860 int InstrumentationWithCallsThreshold; 861 uint32_t MaxInlinePoisoningSize; 862 }; 863 864 class ModuleAddressSanitizer { 865 public: 866 ModuleAddressSanitizer(Module &M, bool InsertVersionCheck, 867 bool CompileKernel = false, bool Recover = false, 868 bool UseGlobalsGC = true, bool UseOdrIndicator = true, 869 AsanDtorKind DestructorKind = AsanDtorKind::Global, 870 AsanCtorKind ConstructorKind = AsanCtorKind::Global) 871 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 872 : CompileKernel), 873 InsertVersionCheck(ClInsertVersionCheck.getNumOccurrences() > 0 874 ? ClInsertVersionCheck 875 : InsertVersionCheck), 876 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 877 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 878 // Enable aliases as they should have no downside with ODR indicators. 879 UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0 880 ? ClUsePrivateAlias 881 : UseOdrIndicator), 882 UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0 883 ? ClUseOdrIndicator 884 : UseOdrIndicator), 885 // Not a typo: ClWithComdat is almost completely pointless without 886 // ClUseGlobalsGC (because then it only works on modules without 887 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 888 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 889 // argument is designed as workaround. Therefore, disable both 890 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 891 // do globals-gc. 892 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 893 DestructorKind(DestructorKind), 894 ConstructorKind(ClConstructorKind.getNumOccurrences() > 0 895 ? ClConstructorKind 896 : ConstructorKind) { 897 C = &(M.getContext()); 898 int LongSize = M.getDataLayout().getPointerSizeInBits(); 899 IntptrTy = Type::getIntNTy(*C, LongSize); 900 PtrTy = PointerType::getUnqual(*C); 901 TargetTriple = Triple(M.getTargetTriple()); 902 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 903 904 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 905 this->DestructorKind = ClOverrideDestructorKind; 906 assert(this->DestructorKind != AsanDtorKind::Invalid); 907 } 908 909 bool instrumentModule(Module &); 910 911 private: 912 void initializeCallbacks(Module &M); 913 914 void instrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 915 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 916 ArrayRef<GlobalVariable *> ExtendedGlobals, 917 ArrayRef<Constant *> MetadataInitializers); 918 void instrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 919 ArrayRef<GlobalVariable *> ExtendedGlobals, 920 ArrayRef<Constant *> MetadataInitializers, 921 const std::string &UniqueModuleId); 922 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 923 ArrayRef<GlobalVariable *> ExtendedGlobals, 924 ArrayRef<Constant *> MetadataInitializers); 925 void 926 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 927 ArrayRef<GlobalVariable *> ExtendedGlobals, 928 ArrayRef<Constant *> MetadataInitializers); 929 930 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 931 StringRef OriginalName); 932 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 933 StringRef InternalSuffix); 934 Instruction *CreateAsanModuleDtor(Module &M); 935 936 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 937 bool shouldInstrumentGlobal(GlobalVariable *G) const; 938 bool ShouldUseMachOGlobalsSection() const; 939 StringRef getGlobalMetadataSection() const; 940 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 941 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 942 uint64_t getMinRedzoneSizeForGlobal() const { 943 return getRedzoneSizeForScale(Mapping.Scale); 944 } 945 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 946 int GetAsanVersion(const Module &M) const; 947 948 bool CompileKernel; 949 bool InsertVersionCheck; 950 bool Recover; 951 bool UseGlobalsGC; 952 bool UsePrivateAlias; 953 bool UseOdrIndicator; 954 bool UseCtorComdat; 955 AsanDtorKind DestructorKind; 956 AsanCtorKind ConstructorKind; 957 Type *IntptrTy; 958 PointerType *PtrTy; 959 LLVMContext *C; 960 Triple TargetTriple; 961 ShadowMapping Mapping; 962 FunctionCallee AsanPoisonGlobals; 963 FunctionCallee AsanUnpoisonGlobals; 964 FunctionCallee AsanRegisterGlobals; 965 FunctionCallee AsanUnregisterGlobals; 966 FunctionCallee AsanRegisterImageGlobals; 967 FunctionCallee AsanUnregisterImageGlobals; 968 FunctionCallee AsanRegisterElfGlobals; 969 FunctionCallee AsanUnregisterElfGlobals; 970 971 Function *AsanCtorFunction = nullptr; 972 Function *AsanDtorFunction = nullptr; 973 }; 974 975 // Stack poisoning does not play well with exception handling. 976 // When an exception is thrown, we essentially bypass the code 977 // that unpoisones the stack. This is why the run-time library has 978 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 979 // stack in the interceptor. This however does not work inside the 980 // actual function which catches the exception. Most likely because the 981 // compiler hoists the load of the shadow value somewhere too high. 982 // This causes asan to report a non-existing bug on 453.povray. 983 // It sounds like an LLVM bug. 984 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 985 Function &F; 986 AddressSanitizer &ASan; 987 RuntimeCallInserter &RTCI; 988 DIBuilder DIB; 989 LLVMContext *C; 990 Type *IntptrTy; 991 Type *IntptrPtrTy; 992 ShadowMapping Mapping; 993 994 SmallVector<AllocaInst *, 16> AllocaVec; 995 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 996 SmallVector<Instruction *, 8> RetVec; 997 998 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 999 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 1000 FunctionCallee AsanSetShadowFunc[0x100] = {}; 1001 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 1002 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 1003 1004 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 1005 struct AllocaPoisonCall { 1006 IntrinsicInst *InsBefore; 1007 AllocaInst *AI; 1008 uint64_t Size; 1009 bool DoPoison; 1010 }; 1011 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 1012 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 1013 bool HasUntracedLifetimeIntrinsic = false; 1014 1015 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 1016 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 1017 AllocaInst *DynamicAllocaLayout = nullptr; 1018 IntrinsicInst *LocalEscapeCall = nullptr; 1019 1020 bool HasInlineAsm = false; 1021 bool HasReturnsTwiceCall = false; 1022 bool PoisonStack; 1023 1024 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan, 1025 RuntimeCallInserter &RTCI) 1026 : F(F), ASan(ASan), RTCI(RTCI), 1027 DIB(*F.getParent(), /*AllowUnresolved*/ false), C(ASan.C), 1028 IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)), 1029 Mapping(ASan.Mapping), 1030 PoisonStack(ClStack && 1031 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 1032 1033 bool runOnFunction() { 1034 if (!PoisonStack) 1035 return false; 1036 1037 if (ClRedzoneByvalArgs) 1038 copyArgsPassedByValToAllocas(); 1039 1040 // Collect alloca, ret, lifetime instructions etc. 1041 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 1042 1043 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 1044 1045 initializeCallbacks(*F.getParent()); 1046 1047 if (HasUntracedLifetimeIntrinsic) { 1048 // If there are lifetime intrinsics which couldn't be traced back to an 1049 // alloca, we may not know exactly when a variable enters scope, and 1050 // therefore should "fail safe" by not poisoning them. 1051 StaticAllocaPoisonCallVec.clear(); 1052 DynamicAllocaPoisonCallVec.clear(); 1053 } 1054 1055 processDynamicAllocas(); 1056 processStaticAllocas(); 1057 1058 if (ClDebugStack) { 1059 LLVM_DEBUG(dbgs() << F); 1060 } 1061 return true; 1062 } 1063 1064 // Arguments marked with the "byval" attribute are implicitly copied without 1065 // using an alloca instruction. To produce redzones for those arguments, we 1066 // copy them a second time into memory allocated with an alloca instruction. 1067 void copyArgsPassedByValToAllocas(); 1068 1069 // Finds all Alloca instructions and puts 1070 // poisoned red zones around all of them. 1071 // Then unpoison everything back before the function returns. 1072 void processStaticAllocas(); 1073 void processDynamicAllocas(); 1074 1075 void createDynamicAllocasInitStorage(); 1076 1077 // ----------------------- Visitors. 1078 /// Collect all Ret instructions, or the musttail call instruction if it 1079 /// precedes the return instruction. 1080 void visitReturnInst(ReturnInst &RI) { 1081 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 1082 RetVec.push_back(CI); 1083 else 1084 RetVec.push_back(&RI); 1085 } 1086 1087 /// Collect all Resume instructions. 1088 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 1089 1090 /// Collect all CatchReturnInst instructions. 1091 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 1092 1093 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 1094 Value *SavedStack) { 1095 IRBuilder<> IRB(InstBefore); 1096 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 1097 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1098 // need to adjust extracted SP to compute the address of the most recent 1099 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1100 // this purpose. 1101 if (!isa<ReturnInst>(InstBefore)) { 1102 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 1103 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 1104 {IntptrTy}); 1105 1106 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 1107 1108 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1109 DynamicAreaOffset); 1110 } 1111 1112 RTCI.createRuntimeCall( 1113 IRB, AsanAllocasUnpoisonFunc, 1114 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1115 } 1116 1117 // Unpoison dynamic allocas redzones. 1118 void unpoisonDynamicAllocas() { 1119 for (Instruction *Ret : RetVec) 1120 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1121 1122 for (Instruction *StackRestoreInst : StackRestoreVec) 1123 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1124 StackRestoreInst->getOperand(0)); 1125 } 1126 1127 // Deploy and poison redzones around dynamic alloca call. To do this, we 1128 // should replace this call with another one with changed parameters and 1129 // replace all its uses with new address, so 1130 // addr = alloca type, old_size, align 1131 // is replaced by 1132 // new_size = (old_size + additional_size) * sizeof(type) 1133 // tmp = alloca i8, new_size, max(align, 32) 1134 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1135 // Additional_size is added to make new memory allocation contain not only 1136 // requested memory, but also left, partial and right redzones. 1137 void handleDynamicAllocaCall(AllocaInst *AI); 1138 1139 /// Collect Alloca instructions we want (and can) handle. 1140 void visitAllocaInst(AllocaInst &AI) { 1141 // FIXME: Handle scalable vectors instead of ignoring them. 1142 const Type *AllocaType = AI.getAllocatedType(); 1143 const auto *STy = dyn_cast<StructType>(AllocaType); 1144 if (!ASan.isInterestingAlloca(AI) || isa<ScalableVectorType>(AllocaType) || 1145 (STy && STy->containsHomogeneousScalableVectorTypes())) { 1146 if (AI.isStaticAlloca()) { 1147 // Skip over allocas that are present *before* the first instrumented 1148 // alloca, we don't want to move those around. 1149 if (AllocaVec.empty()) 1150 return; 1151 1152 StaticAllocasToMoveUp.push_back(&AI); 1153 } 1154 return; 1155 } 1156 1157 if (!AI.isStaticAlloca()) 1158 DynamicAllocaVec.push_back(&AI); 1159 else 1160 AllocaVec.push_back(&AI); 1161 } 1162 1163 /// Collect lifetime intrinsic calls to check for use-after-scope 1164 /// errors. 1165 void visitIntrinsicInst(IntrinsicInst &II) { 1166 Intrinsic::ID ID = II.getIntrinsicID(); 1167 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1168 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1169 if (!ASan.UseAfterScope) 1170 return; 1171 if (!II.isLifetimeStartOrEnd()) 1172 return; 1173 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1174 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1175 // If size argument is undefined, don't do anything. 1176 if (Size->isMinusOne()) return; 1177 // Check that size doesn't saturate uint64_t and can 1178 // be stored in IntptrTy. 1179 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1180 if (SizeValue == ~0ULL || 1181 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1182 return; 1183 // Find alloca instruction that corresponds to llvm.lifetime argument. 1184 // Currently we can only handle lifetime markers pointing to the 1185 // beginning of the alloca. 1186 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1187 if (!AI) { 1188 HasUntracedLifetimeIntrinsic = true; 1189 return; 1190 } 1191 // We're interested only in allocas we can handle. 1192 if (!ASan.isInterestingAlloca(*AI)) 1193 return; 1194 bool DoPoison = (ID == Intrinsic::lifetime_end); 1195 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1196 if (AI->isStaticAlloca()) 1197 StaticAllocaPoisonCallVec.push_back(APC); 1198 else if (ClInstrumentDynamicAllocas) 1199 DynamicAllocaPoisonCallVec.push_back(APC); 1200 } 1201 1202 void visitCallBase(CallBase &CB) { 1203 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1204 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1205 HasReturnsTwiceCall |= CI->canReturnTwice(); 1206 } 1207 } 1208 1209 // ---------------------- Helpers. 1210 void initializeCallbacks(Module &M); 1211 1212 // Copies bytes from ShadowBytes into shadow memory for indexes where 1213 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1214 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1215 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1216 IRBuilder<> &IRB, Value *ShadowBase); 1217 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1218 size_t Begin, size_t End, IRBuilder<> &IRB, 1219 Value *ShadowBase); 1220 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1221 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1222 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1223 1224 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1225 1226 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1227 bool Dynamic); 1228 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1229 Instruction *ThenTerm, Value *ValueIfFalse); 1230 }; 1231 1232 } // end anonymous namespace 1233 1234 void AddressSanitizerPass::printPipeline( 1235 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1236 static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline( 1237 OS, MapClassName2PassName); 1238 OS << '<'; 1239 if (Options.CompileKernel) 1240 OS << "kernel"; 1241 OS << '>'; 1242 } 1243 1244 AddressSanitizerPass::AddressSanitizerPass( 1245 const AddressSanitizerOptions &Options, bool UseGlobalGC, 1246 bool UseOdrIndicator, AsanDtorKind DestructorKind, 1247 AsanCtorKind ConstructorKind) 1248 : Options(Options), UseGlobalGC(UseGlobalGC), 1249 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind), 1250 ConstructorKind(ConstructorKind) {} 1251 1252 PreservedAnalyses AddressSanitizerPass::run(Module &M, 1253 ModuleAnalysisManager &MAM) { 1254 ModuleAddressSanitizer ModuleSanitizer( 1255 M, Options.InsertVersionCheck, Options.CompileKernel, Options.Recover, 1256 UseGlobalGC, UseOdrIndicator, DestructorKind, ConstructorKind); 1257 bool Modified = false; 1258 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1259 const StackSafetyGlobalInfo *const SSGI = 1260 ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr; 1261 for (Function &F : M) { 1262 AddressSanitizer FunctionSanitizer( 1263 M, SSGI, Options.InstrumentationWithCallsThreshold, 1264 Options.MaxInlinePoisoningSize, Options.CompileKernel, Options.Recover, 1265 Options.UseAfterScope, Options.UseAfterReturn); 1266 const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1267 Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); 1268 } 1269 Modified |= ModuleSanitizer.instrumentModule(M); 1270 if (!Modified) 1271 return PreservedAnalyses::all(); 1272 1273 PreservedAnalyses PA = PreservedAnalyses::none(); 1274 // GlobalsAA is considered stateless and does not get invalidated unless 1275 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 1276 // make changes that require GlobalsAA to be invalidated. 1277 PA.abandon<GlobalsAA>(); 1278 return PA; 1279 } 1280 1281 static size_t TypeStoreSizeToSizeIndex(uint32_t TypeSize) { 1282 size_t Res = llvm::countr_zero(TypeSize / 8); 1283 assert(Res < kNumberOfAccessSizes); 1284 return Res; 1285 } 1286 1287 /// Check if \p G has been created by a trusted compiler pass. 1288 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1289 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1290 if (G->getName().starts_with("llvm.") || 1291 // Do not instrument gcov counter arrays. 1292 G->getName().starts_with("__llvm_gcov_ctr") || 1293 // Do not instrument rtti proxy symbols for function sanitizer. 1294 G->getName().starts_with("__llvm_rtti_proxy")) 1295 return true; 1296 1297 // Do not instrument asan globals. 1298 if (G->getName().starts_with(kAsanGenPrefix) || 1299 G->getName().starts_with(kSanCovGenPrefix) || 1300 G->getName().starts_with(kODRGenPrefix)) 1301 return true; 1302 1303 return false; 1304 } 1305 1306 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1307 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1308 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1309 if (AddrSpace == 3 || AddrSpace == 5) 1310 return true; 1311 return false; 1312 } 1313 1314 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1315 // Shadow >> scale 1316 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1317 if (Mapping.Offset == 0) return Shadow; 1318 // (Shadow >> scale) | offset 1319 Value *ShadowBase; 1320 if (LocalDynamicShadow) 1321 ShadowBase = LocalDynamicShadow; 1322 else 1323 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1324 if (Mapping.OrShadowOffset) 1325 return IRB.CreateOr(Shadow, ShadowBase); 1326 else 1327 return IRB.CreateAdd(Shadow, ShadowBase); 1328 } 1329 1330 // Instrument memset/memmove/memcpy 1331 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI, 1332 RuntimeCallInserter &RTCI) { 1333 InstrumentationIRBuilder IRB(MI); 1334 if (isa<MemTransferInst>(MI)) { 1335 RTCI.createRuntimeCall( 1336 IRB, isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1337 {IRB.CreateAddrSpaceCast(MI->getOperand(0), PtrTy), 1338 IRB.CreateAddrSpaceCast(MI->getOperand(1), PtrTy), 1339 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1340 } else if (isa<MemSetInst>(MI)) { 1341 RTCI.createRuntimeCall( 1342 IRB, AsanMemset, 1343 {IRB.CreateAddrSpaceCast(MI->getOperand(0), PtrTy), 1344 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1345 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1346 } 1347 MI->eraseFromParent(); 1348 } 1349 1350 /// Check if we want (and can) handle this alloca. 1351 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1352 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1353 1354 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1355 return PreviouslySeenAllocaInfo->getSecond(); 1356 1357 bool IsInteresting = 1358 (AI.getAllocatedType()->isSized() && 1359 // alloca() may be called with 0 size, ignore it. 1360 ((!AI.isStaticAlloca()) || !getAllocaSizeInBytes(AI).isZero()) && 1361 // We are only interested in allocas not promotable to registers. 1362 // Promotable allocas are common under -O0. 1363 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1364 // inalloca allocas are not treated as static, and we don't want 1365 // dynamic alloca instrumentation for them as well. 1366 !AI.isUsedWithInAlloca() && 1367 // swifterror allocas are register promoted by ISel 1368 !AI.isSwiftError() && 1369 // safe allocas are not interesting 1370 !(SSGI && SSGI->isSafe(AI))); 1371 1372 ProcessedAllocas[&AI] = IsInteresting; 1373 return IsInteresting; 1374 } 1375 1376 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { 1377 // Instrument accesses from different address spaces only for AMDGPU. 1378 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1379 if (PtrTy->getPointerAddressSpace() != 0 && 1380 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1381 return true; 1382 1383 // Ignore swifterror addresses. 1384 // swifterror memory addresses are mem2reg promoted by instruction 1385 // selection. As such they cannot have regular uses like an instrumentation 1386 // function and it makes no sense to track them as memory. 1387 if (Ptr->isSwiftError()) 1388 return true; 1389 1390 // Treat memory accesses to promotable allocas as non-interesting since they 1391 // will not cause memory violations. This greatly speeds up the instrumented 1392 // executable at -O0. 1393 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1394 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1395 return true; 1396 1397 if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && 1398 findAllocaForValue(Ptr)) 1399 return true; 1400 1401 return false; 1402 } 1403 1404 void AddressSanitizer::getInterestingMemoryOperands( 1405 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1406 // Do not instrument the load fetching the dynamic shadow address. 1407 if (LocalDynamicShadow == I) 1408 return; 1409 1410 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1411 if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand())) 1412 return; 1413 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1414 LI->getType(), LI->getAlign()); 1415 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1416 if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand())) 1417 return; 1418 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1419 SI->getValueOperand()->getType(), SI->getAlign()); 1420 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1421 if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand())) 1422 return; 1423 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1424 RMW->getValOperand()->getType(), std::nullopt); 1425 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1426 if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand())) 1427 return; 1428 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1429 XCHG->getCompareOperand()->getType(), 1430 std::nullopt); 1431 } else if (auto CI = dyn_cast<CallInst>(I)) { 1432 switch (CI->getIntrinsicID()) { 1433 case Intrinsic::masked_load: 1434 case Intrinsic::masked_store: 1435 case Intrinsic::masked_gather: 1436 case Intrinsic::masked_scatter: { 1437 bool IsWrite = CI->getType()->isVoidTy(); 1438 // Masked store has an initial operand for the value. 1439 unsigned OpOffset = IsWrite ? 1 : 0; 1440 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1441 return; 1442 1443 auto BasePtr = CI->getOperand(OpOffset); 1444 if (ignoreAccess(I, BasePtr)) 1445 return; 1446 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1447 MaybeAlign Alignment = Align(1); 1448 // Otherwise no alignment guarantees. We probably got Undef. 1449 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1450 Alignment = Op->getMaybeAlignValue(); 1451 Value *Mask = CI->getOperand(2 + OpOffset); 1452 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1453 break; 1454 } 1455 case Intrinsic::masked_expandload: 1456 case Intrinsic::masked_compressstore: { 1457 bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_compressstore; 1458 unsigned OpOffset = IsWrite ? 1 : 0; 1459 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1460 return; 1461 auto BasePtr = CI->getOperand(OpOffset); 1462 if (ignoreAccess(I, BasePtr)) 1463 return; 1464 MaybeAlign Alignment = BasePtr->getPointerAlignment(*DL); 1465 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1466 1467 IRBuilder IB(I); 1468 Value *Mask = CI->getOperand(1 + OpOffset); 1469 // Use the popcount of Mask as the effective vector length. 1470 Type *ExtTy = VectorType::get(IntptrTy, cast<VectorType>(Ty)); 1471 Value *ExtMask = IB.CreateZExt(Mask, ExtTy); 1472 Value *EVL = IB.CreateAddReduce(ExtMask); 1473 Value *TrueMask = ConstantInt::get(Mask->getType(), 1); 1474 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, TrueMask, 1475 EVL); 1476 break; 1477 } 1478 case Intrinsic::vp_load: 1479 case Intrinsic::vp_store: 1480 case Intrinsic::experimental_vp_strided_load: 1481 case Intrinsic::experimental_vp_strided_store: { 1482 auto *VPI = cast<VPIntrinsic>(CI); 1483 unsigned IID = CI->getIntrinsicID(); 1484 bool IsWrite = CI->getType()->isVoidTy(); 1485 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1486 return; 1487 unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID); 1488 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1489 MaybeAlign Alignment = VPI->getOperand(PtrOpNo)->getPointerAlignment(*DL); 1490 Value *Stride = nullptr; 1491 if (IID == Intrinsic::experimental_vp_strided_store || 1492 IID == Intrinsic::experimental_vp_strided_load) { 1493 Stride = VPI->getOperand(PtrOpNo + 1); 1494 // Use the pointer alignment as the element alignment if the stride is a 1495 // mutiple of the pointer alignment. Otherwise, the element alignment 1496 // should be Align(1). 1497 unsigned PointerAlign = Alignment.valueOrOne().value(); 1498 if (!isa<ConstantInt>(Stride) || 1499 cast<ConstantInt>(Stride)->getZExtValue() % PointerAlign != 0) 1500 Alignment = Align(1); 1501 } 1502 Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment, 1503 VPI->getMaskParam(), VPI->getVectorLengthParam(), 1504 Stride); 1505 break; 1506 } 1507 case Intrinsic::vp_gather: 1508 case Intrinsic::vp_scatter: { 1509 auto *VPI = cast<VPIntrinsic>(CI); 1510 unsigned IID = CI->getIntrinsicID(); 1511 bool IsWrite = IID == Intrinsic::vp_scatter; 1512 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1513 return; 1514 unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID); 1515 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1516 MaybeAlign Alignment = VPI->getPointerAlignment(); 1517 Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment, 1518 VPI->getMaskParam(), 1519 VPI->getVectorLengthParam()); 1520 break; 1521 } 1522 default: 1523 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { 1524 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1525 ignoreAccess(I, CI->getArgOperand(ArgNo))) 1526 continue; 1527 Type *Ty = CI->getParamByValType(ArgNo); 1528 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1529 } 1530 } 1531 } 1532 } 1533 1534 static bool isPointerOperand(Value *V) { 1535 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1536 } 1537 1538 // This is a rough heuristic; it may cause both false positives and 1539 // false negatives. The proper implementation requires cooperation with 1540 // the frontend. 1541 static bool isInterestingPointerComparison(Instruction *I) { 1542 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1543 if (!Cmp->isRelational()) 1544 return false; 1545 } else { 1546 return false; 1547 } 1548 return isPointerOperand(I->getOperand(0)) && 1549 isPointerOperand(I->getOperand(1)); 1550 } 1551 1552 // This is a rough heuristic; it may cause both false positives and 1553 // false negatives. The proper implementation requires cooperation with 1554 // the frontend. 1555 static bool isInterestingPointerSubtraction(Instruction *I) { 1556 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1557 if (BO->getOpcode() != Instruction::Sub) 1558 return false; 1559 } else { 1560 return false; 1561 } 1562 return isPointerOperand(I->getOperand(0)) && 1563 isPointerOperand(I->getOperand(1)); 1564 } 1565 1566 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1567 // If a global variable does not have dynamic initialization we don't 1568 // have to instrument it. However, if a global does not have initializer 1569 // at all, we assume it has dynamic initializer (in other TU). 1570 if (!G->hasInitializer()) 1571 return false; 1572 1573 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit) 1574 return false; 1575 1576 return true; 1577 } 1578 1579 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1580 Instruction *I, RuntimeCallInserter &RTCI) { 1581 IRBuilder<> IRB(I); 1582 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1583 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1584 for (Value *&i : Param) { 1585 if (i->getType()->isPointerTy()) 1586 i = IRB.CreatePointerCast(i, IntptrTy); 1587 } 1588 RTCI.createRuntimeCall(IRB, F, Param); 1589 } 1590 1591 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1592 Instruction *InsertBefore, Value *Addr, 1593 MaybeAlign Alignment, unsigned Granularity, 1594 TypeSize TypeStoreSize, bool IsWrite, 1595 Value *SizeArgument, bool UseCalls, 1596 uint32_t Exp, RuntimeCallInserter &RTCI) { 1597 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1598 // if the data is properly aligned. 1599 if (!TypeStoreSize.isScalable()) { 1600 const auto FixedSize = TypeStoreSize.getFixedValue(); 1601 switch (FixedSize) { 1602 case 8: 1603 case 16: 1604 case 32: 1605 case 64: 1606 case 128: 1607 if (!Alignment || *Alignment >= Granularity || 1608 *Alignment >= FixedSize / 8) 1609 return Pass->instrumentAddress(I, InsertBefore, Addr, Alignment, 1610 FixedSize, IsWrite, nullptr, UseCalls, 1611 Exp, RTCI); 1612 } 1613 } 1614 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeStoreSize, 1615 IsWrite, nullptr, UseCalls, Exp, RTCI); 1616 } 1617 1618 void AddressSanitizer::instrumentMaskedLoadOrStore( 1619 AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask, 1620 Value *EVL, Value *Stride, Instruction *I, Value *Addr, 1621 MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite, 1622 Value *SizeArgument, bool UseCalls, uint32_t Exp, 1623 RuntimeCallInserter &RTCI) { 1624 auto *VTy = cast<VectorType>(OpType); 1625 TypeSize ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1626 auto Zero = ConstantInt::get(IntptrTy, 0); 1627 1628 IRBuilder IB(I); 1629 Instruction *LoopInsertBefore = I; 1630 if (EVL) { 1631 // The end argument of SplitBlockAndInsertForLane is assumed bigger 1632 // than zero, so we should check whether EVL is zero here. 1633 Type *EVLType = EVL->getType(); 1634 Value *IsEVLZero = IB.CreateICmpNE(EVL, ConstantInt::get(EVLType, 0)); 1635 LoopInsertBefore = SplitBlockAndInsertIfThen(IsEVLZero, I, false); 1636 IB.SetInsertPoint(LoopInsertBefore); 1637 // Cast EVL to IntptrTy. 1638 EVL = IB.CreateZExtOrTrunc(EVL, IntptrTy); 1639 // To avoid undefined behavior for extracting with out of range index, use 1640 // the minimum of evl and element count as trip count. 1641 Value *EC = IB.CreateElementCount(IntptrTy, VTy->getElementCount()); 1642 EVL = IB.CreateBinaryIntrinsic(Intrinsic::umin, EVL, EC); 1643 } else { 1644 EVL = IB.CreateElementCount(IntptrTy, VTy->getElementCount()); 1645 } 1646 1647 // Cast Stride to IntptrTy. 1648 if (Stride) 1649 Stride = IB.CreateZExtOrTrunc(Stride, IntptrTy); 1650 1651 SplitBlockAndInsertForEachLane(EVL, LoopInsertBefore, 1652 [&](IRBuilderBase &IRB, Value *Index) { 1653 Value *MaskElem = IRB.CreateExtractElement(Mask, Index); 1654 if (auto *MaskElemC = dyn_cast<ConstantInt>(MaskElem)) { 1655 if (MaskElemC->isZero()) 1656 // No check 1657 return; 1658 // Unconditional check 1659 } else { 1660 // Conditional check 1661 Instruction *ThenTerm = SplitBlockAndInsertIfThen( 1662 MaskElem, &*IRB.GetInsertPoint(), false); 1663 IRB.SetInsertPoint(ThenTerm); 1664 } 1665 1666 Value *InstrumentedAddress; 1667 if (isa<VectorType>(Addr->getType())) { 1668 assert( 1669 cast<VectorType>(Addr->getType())->getElementType()->isPointerTy() && 1670 "Expected vector of pointer."); 1671 InstrumentedAddress = IRB.CreateExtractElement(Addr, Index); 1672 } else if (Stride) { 1673 Index = IRB.CreateMul(Index, Stride); 1674 InstrumentedAddress = IRB.CreatePtrAdd(Addr, Index); 1675 } else { 1676 InstrumentedAddress = IRB.CreateGEP(VTy, Addr, {Zero, Index}); 1677 } 1678 doInstrumentAddress(Pass, I, &*IRB.GetInsertPoint(), InstrumentedAddress, 1679 Alignment, Granularity, ElemTypeSize, IsWrite, 1680 SizeArgument, UseCalls, Exp, RTCI); 1681 }); 1682 } 1683 1684 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1685 InterestingMemoryOperand &O, bool UseCalls, 1686 const DataLayout &DL, 1687 RuntimeCallInserter &RTCI) { 1688 Value *Addr = O.getPtr(); 1689 1690 // Optimization experiments. 1691 // The experiments can be used to evaluate potential optimizations that remove 1692 // instrumentation (assess false negatives). Instead of completely removing 1693 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1694 // experiments that want to remove instrumentation of this instruction). 1695 // If Exp is non-zero, this pass will emit special calls into runtime 1696 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1697 // make runtime terminate the program in a special way (with a different 1698 // exit status). Then you run the new compiler on a buggy corpus, collect 1699 // the special terminations (ideally, you don't see them at all -- no false 1700 // negatives) and make the decision on the optimization. 1701 uint32_t Exp = ClForceExperiment; 1702 1703 if (ClOpt && ClOptGlobals) { 1704 // If initialization order checking is disabled, a simple access to a 1705 // dynamically initialized global is always valid. 1706 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1707 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1708 isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) { 1709 NumOptimizedAccessesToGlobalVar++; 1710 return; 1711 } 1712 } 1713 1714 if (ClOpt && ClOptStack) { 1715 // A direct inbounds access to a stack variable is always valid. 1716 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1717 isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) { 1718 NumOptimizedAccessesToStackVar++; 1719 return; 1720 } 1721 } 1722 1723 if (O.IsWrite) 1724 NumInstrumentedWrites++; 1725 else 1726 NumInstrumentedReads++; 1727 1728 unsigned Granularity = 1 << Mapping.Scale; 1729 if (O.MaybeMask) { 1730 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.MaybeEVL, 1731 O.MaybeStride, O.getInsn(), Addr, O.Alignment, 1732 Granularity, O.OpType, O.IsWrite, nullptr, 1733 UseCalls, Exp, RTCI); 1734 } else { 1735 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1736 Granularity, O.TypeStoreSize, O.IsWrite, nullptr, 1737 UseCalls, Exp, RTCI); 1738 } 1739 } 1740 1741 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1742 Value *Addr, bool IsWrite, 1743 size_t AccessSizeIndex, 1744 Value *SizeArgument, 1745 uint32_t Exp, 1746 RuntimeCallInserter &RTCI) { 1747 InstrumentationIRBuilder IRB(InsertBefore); 1748 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1749 CallInst *Call = nullptr; 1750 if (SizeArgument) { 1751 if (Exp == 0) 1752 Call = RTCI.createRuntimeCall(IRB, AsanErrorCallbackSized[IsWrite][0], 1753 {Addr, SizeArgument}); 1754 else 1755 Call = RTCI.createRuntimeCall(IRB, AsanErrorCallbackSized[IsWrite][1], 1756 {Addr, SizeArgument, ExpVal}); 1757 } else { 1758 if (Exp == 0) 1759 Call = RTCI.createRuntimeCall( 1760 IRB, AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1761 else 1762 Call = RTCI.createRuntimeCall( 1763 IRB, AsanErrorCallback[IsWrite][1][AccessSizeIndex], {Addr, ExpVal}); 1764 } 1765 1766 Call->setCannotMerge(); 1767 return Call; 1768 } 1769 1770 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1771 Value *ShadowValue, 1772 uint32_t TypeStoreSize) { 1773 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1774 // Addr & (Granularity - 1) 1775 Value *LastAccessedByte = 1776 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1777 // (Addr & (Granularity - 1)) + size - 1 1778 if (TypeStoreSize / 8 > 1) 1779 LastAccessedByte = IRB.CreateAdd( 1780 LastAccessedByte, ConstantInt::get(IntptrTy, TypeStoreSize / 8 - 1)); 1781 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1782 LastAccessedByte = 1783 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1784 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1785 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1786 } 1787 1788 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1789 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1790 uint32_t TypeStoreSize, bool IsWrite, Value *SizeArgument) { 1791 // Do not instrument unsupported addrspaces. 1792 if (isUnsupportedAMDGPUAddrspace(Addr)) 1793 return nullptr; 1794 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1795 // Follow host instrumentation for global and constant addresses. 1796 if (PtrTy->getPointerAddressSpace() != 0) 1797 return InsertBefore; 1798 // Instrument generic addresses in supported addressspaces. 1799 IRBuilder<> IRB(InsertBefore); 1800 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {Addr}); 1801 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {Addr}); 1802 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1803 Value *Cmp = IRB.CreateNot(IsSharedOrPrivate); 1804 Value *AddrSpaceZeroLanding = 1805 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1806 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1807 return InsertBefore; 1808 } 1809 1810 Instruction *AddressSanitizer::genAMDGPUReportBlock(IRBuilder<> &IRB, 1811 Value *Cond, bool Recover) { 1812 Module &M = *IRB.GetInsertBlock()->getModule(); 1813 Value *ReportCond = Cond; 1814 if (!Recover) { 1815 auto Ballot = M.getOrInsertFunction(kAMDGPUBallotName, IRB.getInt64Ty(), 1816 IRB.getInt1Ty()); 1817 ReportCond = IRB.CreateIsNotNull(IRB.CreateCall(Ballot, {Cond})); 1818 } 1819 1820 auto *Trm = 1821 SplitBlockAndInsertIfThen(ReportCond, &*IRB.GetInsertPoint(), false, 1822 MDBuilder(*C).createUnlikelyBranchWeights()); 1823 Trm->getParent()->setName("asan.report"); 1824 1825 if (Recover) 1826 return Trm; 1827 1828 Trm = SplitBlockAndInsertIfThen(Cond, Trm, false); 1829 IRB.SetInsertPoint(Trm); 1830 return IRB.CreateCall( 1831 M.getOrInsertFunction(kAMDGPUUnreachableName, IRB.getVoidTy()), {}); 1832 } 1833 1834 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1835 Instruction *InsertBefore, Value *Addr, 1836 MaybeAlign Alignment, 1837 uint32_t TypeStoreSize, bool IsWrite, 1838 Value *SizeArgument, bool UseCalls, 1839 uint32_t Exp, 1840 RuntimeCallInserter &RTCI) { 1841 if (TargetTriple.isAMDGPU()) { 1842 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1843 TypeStoreSize, IsWrite, SizeArgument); 1844 if (!InsertBefore) 1845 return; 1846 } 1847 1848 InstrumentationIRBuilder IRB(InsertBefore); 1849 size_t AccessSizeIndex = TypeStoreSizeToSizeIndex(TypeStoreSize); 1850 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1851 1852 if (UseCalls && ClOptimizeCallbacks) { 1853 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1854 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1855 IRB.CreateCall( 1856 Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), 1857 {IRB.CreatePointerCast(Addr, PtrTy), 1858 ConstantInt::get(Int32Ty, AccessInfo.Packed)}); 1859 return; 1860 } 1861 1862 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1863 if (UseCalls) { 1864 if (Exp == 0) 1865 RTCI.createRuntimeCall( 1866 IRB, AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], AddrLong); 1867 else 1868 RTCI.createRuntimeCall( 1869 IRB, AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1870 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1871 return; 1872 } 1873 1874 Type *ShadowTy = 1875 IntegerType::get(*C, std::max(8U, TypeStoreSize >> Mapping.Scale)); 1876 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1877 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1878 const uint64_t ShadowAlign = 1879 std::max<uint64_t>(Alignment.valueOrOne().value() >> Mapping.Scale, 1); 1880 Value *ShadowValue = IRB.CreateAlignedLoad( 1881 ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy), Align(ShadowAlign)); 1882 1883 Value *Cmp = IRB.CreateIsNotNull(ShadowValue); 1884 size_t Granularity = 1ULL << Mapping.Scale; 1885 Instruction *CrashTerm = nullptr; 1886 1887 bool GenSlowPath = (ClAlwaysSlowPath || (TypeStoreSize < 8 * Granularity)); 1888 1889 if (TargetTriple.isAMDGCN()) { 1890 if (GenSlowPath) { 1891 auto *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize); 1892 Cmp = IRB.CreateAnd(Cmp, Cmp2); 1893 } 1894 CrashTerm = genAMDGPUReportBlock(IRB, Cmp, Recover); 1895 } else if (GenSlowPath) { 1896 // We use branch weights for the slow path check, to indicate that the slow 1897 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1898 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1899 Cmp, InsertBefore, false, MDBuilder(*C).createUnlikelyBranchWeights()); 1900 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1901 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1902 IRB.SetInsertPoint(CheckTerm); 1903 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize); 1904 if (Recover) { 1905 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1906 } else { 1907 BasicBlock *CrashBlock = 1908 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1909 CrashTerm = new UnreachableInst(*C, CrashBlock); 1910 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1911 ReplaceInstWithInst(CheckTerm, NewTerm); 1912 } 1913 } else { 1914 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1915 } 1916 1917 Instruction *Crash = generateCrashCode( 1918 CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument, Exp, RTCI); 1919 if (OrigIns->getDebugLoc()) 1920 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1921 } 1922 1923 // Instrument unusual size or unusual alignment. 1924 // We can not do it with a single check, so we do 1-byte check for the first 1925 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1926 // to report the actual access size. 1927 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1928 Instruction *I, Instruction *InsertBefore, Value *Addr, 1929 TypeSize TypeStoreSize, bool IsWrite, Value *SizeArgument, bool UseCalls, 1930 uint32_t Exp, RuntimeCallInserter &RTCI) { 1931 InstrumentationIRBuilder IRB(InsertBefore); 1932 Value *NumBits = IRB.CreateTypeSize(IntptrTy, TypeStoreSize); 1933 Value *Size = IRB.CreateLShr(NumBits, ConstantInt::get(IntptrTy, 3)); 1934 1935 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1936 if (UseCalls) { 1937 if (Exp == 0) 1938 RTCI.createRuntimeCall(IRB, AsanMemoryAccessCallbackSized[IsWrite][0], 1939 {AddrLong, Size}); 1940 else 1941 RTCI.createRuntimeCall( 1942 IRB, AsanMemoryAccessCallbackSized[IsWrite][1], 1943 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1944 } else { 1945 Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1)); 1946 Value *LastByte = IRB.CreateIntToPtr( 1947 IRB.CreateAdd(AddrLong, SizeMinusOne), 1948 Addr->getType()); 1949 instrumentAddress(I, InsertBefore, Addr, {}, 8, IsWrite, Size, false, Exp, 1950 RTCI); 1951 instrumentAddress(I, InsertBefore, LastByte, {}, 8, IsWrite, Size, false, 1952 Exp, RTCI); 1953 } 1954 } 1955 1956 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1957 GlobalValue *ModuleName) { 1958 // Set up the arguments to our poison/unpoison functions. 1959 IRBuilder<> IRB(&GlobalInit.front(), 1960 GlobalInit.front().getFirstInsertionPt()); 1961 1962 // Add a call to poison all external globals before the given function starts. 1963 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1964 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1965 1966 // Add calls to unpoison all globals before each return instruction. 1967 for (auto &BB : GlobalInit) 1968 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1969 CallInst::Create(AsanUnpoisonGlobals, "", RI->getIterator()); 1970 } 1971 1972 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1973 Module &M, GlobalValue *ModuleName) { 1974 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1975 if (!GV) 1976 return; 1977 1978 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1979 if (!CA) 1980 return; 1981 1982 for (Use &OP : CA->operands()) { 1983 if (isa<ConstantAggregateZero>(OP)) continue; 1984 ConstantStruct *CS = cast<ConstantStruct>(OP); 1985 1986 // Must have a function or null ptr. 1987 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1988 if (F->getName() == kAsanModuleCtorName) continue; 1989 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1990 // Don't instrument CTORs that will run before asan.module_ctor. 1991 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1992 continue; 1993 poisonOneInitializer(*F, ModuleName); 1994 } 1995 } 1996 } 1997 1998 const GlobalVariable * 1999 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 2000 // In case this function should be expanded to include rules that do not just 2001 // apply when CompileKernel is true, either guard all existing rules with an 2002 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 2003 // should also apply to user space. 2004 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 2005 2006 const Constant *C = GA.getAliasee(); 2007 2008 // When compiling the kernel, globals that are aliased by symbols prefixed 2009 // by "__" are special and cannot be padded with a redzone. 2010 if (GA.getName().starts_with("__")) 2011 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 2012 2013 return nullptr; 2014 } 2015 2016 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 2017 Type *Ty = G->getValueType(); 2018 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 2019 2020 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress) 2021 return false; 2022 if (!Ty->isSized()) return false; 2023 if (!G->hasInitializer()) return false; 2024 // Globals in address space 1 and 4 are supported for AMDGPU. 2025 if (G->getAddressSpace() && 2026 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 2027 return false; 2028 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 2029 // Two problems with thread-locals: 2030 // - The address of the main thread's copy can't be computed at link-time. 2031 // - Need to poison all copies, not just the main thread's one. 2032 if (G->isThreadLocal()) return false; 2033 // For now, just ignore this Global if the alignment is large. 2034 if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false; 2035 2036 // For non-COFF targets, only instrument globals known to be defined by this 2037 // TU. 2038 // FIXME: We can instrument comdat globals on ELF if we are using the 2039 // GC-friendly metadata scheme. 2040 if (!TargetTriple.isOSBinFormatCOFF()) { 2041 if (!G->hasExactDefinition() || G->hasComdat()) 2042 return false; 2043 } else { 2044 // On COFF, don't instrument non-ODR linkages. 2045 if (G->isInterposable()) 2046 return false; 2047 // If the global has AvailableExternally linkage, then it is not in this 2048 // module, which means it does not need to be instrumented. 2049 if (G->hasAvailableExternallyLinkage()) 2050 return false; 2051 } 2052 2053 // If a comdat is present, it must have a selection kind that implies ODR 2054 // semantics: no duplicates, any, or exact match. 2055 if (Comdat *C = G->getComdat()) { 2056 switch (C->getSelectionKind()) { 2057 case Comdat::Any: 2058 case Comdat::ExactMatch: 2059 case Comdat::NoDeduplicate: 2060 break; 2061 case Comdat::Largest: 2062 case Comdat::SameSize: 2063 return false; 2064 } 2065 } 2066 2067 if (G->hasSection()) { 2068 // The kernel uses explicit sections for mostly special global variables 2069 // that we should not instrument. E.g. the kernel may rely on their layout 2070 // without redzones, or remove them at link time ("discard.*"), etc. 2071 if (CompileKernel) 2072 return false; 2073 2074 StringRef Section = G->getSection(); 2075 2076 // Globals from llvm.metadata aren't emitted, do not instrument them. 2077 if (Section == "llvm.metadata") return false; 2078 // Do not instrument globals from special LLVM sections. 2079 if (Section.contains("__llvm") || Section.contains("__LLVM")) 2080 return false; 2081 2082 // Do not instrument function pointers to initialization and termination 2083 // routines: dynamic linker will not properly handle redzones. 2084 if (Section.starts_with(".preinit_array") || 2085 Section.starts_with(".init_array") || 2086 Section.starts_with(".fini_array")) { 2087 return false; 2088 } 2089 2090 // Do not instrument user-defined sections (with names resembling 2091 // valid C identifiers) 2092 if (TargetTriple.isOSBinFormatELF()) { 2093 if (llvm::all_of(Section, 2094 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 2095 return false; 2096 } 2097 2098 // On COFF, if the section name contains '$', it is highly likely that the 2099 // user is using section sorting to create an array of globals similar to 2100 // the way initialization callbacks are registered in .init_array and 2101 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 2102 // to such globals is counterproductive, because the intent is that they 2103 // will form an array, and out-of-bounds accesses are expected. 2104 // See https://github.com/google/sanitizers/issues/305 2105 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 2106 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 2107 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 2108 << *G << "\n"); 2109 return false; 2110 } 2111 2112 if (TargetTriple.isOSBinFormatMachO()) { 2113 StringRef ParsedSegment, ParsedSection; 2114 unsigned TAA = 0, StubSize = 0; 2115 bool TAAParsed; 2116 cantFail(MCSectionMachO::ParseSectionSpecifier( 2117 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 2118 2119 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 2120 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 2121 // them. 2122 if (ParsedSegment == "__OBJC" || 2123 (ParsedSegment == "__DATA" && ParsedSection.starts_with("__objc_"))) { 2124 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 2125 return false; 2126 } 2127 // See https://github.com/google/sanitizers/issues/32 2128 // Constant CFString instances are compiled in the following way: 2129 // -- the string buffer is emitted into 2130 // __TEXT,__cstring,cstring_literals 2131 // -- the constant NSConstantString structure referencing that buffer 2132 // is placed into __DATA,__cfstring 2133 // Therefore there's no point in placing redzones into __DATA,__cfstring. 2134 // Moreover, it causes the linker to crash on OS X 10.7 2135 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 2136 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 2137 return false; 2138 } 2139 // The linker merges the contents of cstring_literals and removes the 2140 // trailing zeroes. 2141 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 2142 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 2143 return false; 2144 } 2145 } 2146 } 2147 2148 if (CompileKernel) { 2149 // Globals that prefixed by "__" are special and cannot be padded with a 2150 // redzone. 2151 if (G->getName().starts_with("__")) 2152 return false; 2153 } 2154 2155 return true; 2156 } 2157 2158 // On Mach-O platforms, we emit global metadata in a separate section of the 2159 // binary in order to allow the linker to properly dead strip. This is only 2160 // supported on recent versions of ld64. 2161 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 2162 if (!TargetTriple.isOSBinFormatMachO()) 2163 return false; 2164 2165 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 2166 return true; 2167 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 2168 return true; 2169 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 2170 return true; 2171 if (TargetTriple.isDriverKit()) 2172 return true; 2173 if (TargetTriple.isXROS()) 2174 return true; 2175 2176 return false; 2177 } 2178 2179 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 2180 switch (TargetTriple.getObjectFormat()) { 2181 case Triple::COFF: return ".ASAN$GL"; 2182 case Triple::ELF: return "asan_globals"; 2183 case Triple::MachO: return "__DATA,__asan_globals,regular"; 2184 case Triple::Wasm: 2185 case Triple::GOFF: 2186 case Triple::SPIRV: 2187 case Triple::XCOFF: 2188 case Triple::DXContainer: 2189 report_fatal_error( 2190 "ModuleAddressSanitizer not implemented for object file format"); 2191 case Triple::UnknownObjectFormat: 2192 break; 2193 } 2194 llvm_unreachable("unsupported object format"); 2195 } 2196 2197 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 2198 IRBuilder<> IRB(*C); 2199 2200 // Declare our poisoning and unpoisoning functions. 2201 AsanPoisonGlobals = 2202 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 2203 AsanUnpoisonGlobals = 2204 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 2205 2206 // Declare functions that register/unregister globals. 2207 AsanRegisterGlobals = M.getOrInsertFunction( 2208 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2209 AsanUnregisterGlobals = M.getOrInsertFunction( 2210 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2211 2212 // Declare the functions that find globals in a shared object and then invoke 2213 // the (un)register function on them. 2214 AsanRegisterImageGlobals = M.getOrInsertFunction( 2215 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2216 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2217 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2218 2219 AsanRegisterElfGlobals = 2220 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2221 IntptrTy, IntptrTy, IntptrTy); 2222 AsanUnregisterElfGlobals = 2223 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2224 IntptrTy, IntptrTy, IntptrTy); 2225 } 2226 2227 // Put the metadata and the instrumented global in the same group. This ensures 2228 // that the metadata is discarded if the instrumented global is discarded. 2229 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2230 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2231 Module &M = *G->getParent(); 2232 Comdat *C = G->getComdat(); 2233 if (!C) { 2234 if (!G->hasName()) { 2235 // If G is unnamed, it must be internal. Give it an artificial name 2236 // so we can put it in a comdat. 2237 assert(G->hasLocalLinkage()); 2238 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2239 } 2240 2241 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2242 std::string Name = std::string(G->getName()); 2243 Name += InternalSuffix; 2244 C = M.getOrInsertComdat(Name); 2245 } else { 2246 C = M.getOrInsertComdat(G->getName()); 2247 } 2248 2249 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2250 // linkage to internal linkage so that a symbol table entry is emitted. This 2251 // is necessary in order to create the comdat group. 2252 if (TargetTriple.isOSBinFormatCOFF()) { 2253 C->setSelectionKind(Comdat::NoDeduplicate); 2254 if (G->hasPrivateLinkage()) 2255 G->setLinkage(GlobalValue::InternalLinkage); 2256 } 2257 G->setComdat(C); 2258 } 2259 2260 assert(G->hasComdat()); 2261 Metadata->setComdat(G->getComdat()); 2262 } 2263 2264 // Create a separate metadata global and put it in the appropriate ASan 2265 // global registration section. 2266 GlobalVariable * 2267 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2268 StringRef OriginalName) { 2269 auto Linkage = TargetTriple.isOSBinFormatMachO() 2270 ? GlobalVariable::InternalLinkage 2271 : GlobalVariable::PrivateLinkage; 2272 GlobalVariable *Metadata = new GlobalVariable( 2273 M, Initializer->getType(), false, Linkage, Initializer, 2274 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2275 Metadata->setSection(getGlobalMetadataSection()); 2276 // Place metadata in a large section for x86-64 ELF binaries to mitigate 2277 // relocation pressure. 2278 setGlobalVariableLargeSection(TargetTriple, *Metadata); 2279 return Metadata; 2280 } 2281 2282 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2283 AsanDtorFunction = Function::createWithDefaultAttr( 2284 FunctionType::get(Type::getVoidTy(*C), false), 2285 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2286 AsanDtorFunction->addFnAttr(Attribute::NoUnwind); 2287 // Ensure Dtor cannot be discarded, even if in a comdat. 2288 appendToUsed(M, {AsanDtorFunction}); 2289 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2290 2291 return ReturnInst::Create(*C, AsanDtorBB); 2292 } 2293 2294 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2295 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2296 ArrayRef<Constant *> MetadataInitializers) { 2297 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2298 auto &DL = M.getDataLayout(); 2299 2300 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2301 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2302 Constant *Initializer = MetadataInitializers[i]; 2303 GlobalVariable *G = ExtendedGlobals[i]; 2304 GlobalVariable *Metadata = 2305 CreateMetadataGlobal(M, Initializer, G->getName()); 2306 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2307 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2308 MetadataGlobals[i] = Metadata; 2309 2310 // The MSVC linker always inserts padding when linking incrementally. We 2311 // cope with that by aligning each struct to its size, which must be a power 2312 // of two. 2313 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2314 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2315 "global metadata will not be padded appropriately"); 2316 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2317 2318 SetComdatForGlobalMetadata(G, Metadata, ""); 2319 } 2320 2321 // Update llvm.compiler.used, adding the new metadata globals. This is 2322 // needed so that during LTO these variables stay alive. 2323 if (!MetadataGlobals.empty()) 2324 appendToCompilerUsed(M, MetadataGlobals); 2325 } 2326 2327 void ModuleAddressSanitizer::instrumentGlobalsELF( 2328 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2329 ArrayRef<Constant *> MetadataInitializers, 2330 const std::string &UniqueModuleId) { 2331 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2332 2333 // Putting globals in a comdat changes the semantic and potentially cause 2334 // false negative odr violations at link time. If odr indicators are used, we 2335 // keep the comdat sections, as link time odr violations will be dectected on 2336 // the odr indicator symbols. 2337 bool UseComdatForGlobalsGC = UseOdrIndicator && !UniqueModuleId.empty(); 2338 2339 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2340 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2341 GlobalVariable *G = ExtendedGlobals[i]; 2342 GlobalVariable *Metadata = 2343 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2344 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2345 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2346 MetadataGlobals[i] = Metadata; 2347 2348 if (UseComdatForGlobalsGC) 2349 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2350 } 2351 2352 // Update llvm.compiler.used, adding the new metadata globals. This is 2353 // needed so that during LTO these variables stay alive. 2354 if (!MetadataGlobals.empty()) 2355 appendToCompilerUsed(M, MetadataGlobals); 2356 2357 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2358 // to look up the loaded image that contains it. Second, we can store in it 2359 // whether registration has already occurred, to prevent duplicate 2360 // registration. 2361 // 2362 // Common linkage ensures that there is only one global per shared library. 2363 GlobalVariable *RegisteredFlag = new GlobalVariable( 2364 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2365 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2366 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2367 2368 // Create start and stop symbols. 2369 GlobalVariable *StartELFMetadata = new GlobalVariable( 2370 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2371 "__start_" + getGlobalMetadataSection()); 2372 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2373 GlobalVariable *StopELFMetadata = new GlobalVariable( 2374 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2375 "__stop_" + getGlobalMetadataSection()); 2376 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2377 2378 // Create a call to register the globals with the runtime. 2379 if (ConstructorKind == AsanCtorKind::Global) 2380 IRB.CreateCall(AsanRegisterElfGlobals, 2381 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2382 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2383 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2384 2385 // We also need to unregister globals at the end, e.g., when a shared library 2386 // gets closed. 2387 if (DestructorKind != AsanDtorKind::None && !MetadataGlobals.empty()) { 2388 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2389 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2390 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2391 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2392 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2393 } 2394 } 2395 2396 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2397 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2398 ArrayRef<Constant *> MetadataInitializers) { 2399 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2400 2401 // On recent Mach-O platforms, use a structure which binds the liveness of 2402 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2403 // created to be added to llvm.compiler.used 2404 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2405 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2406 2407 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2408 Constant *Initializer = MetadataInitializers[i]; 2409 GlobalVariable *G = ExtendedGlobals[i]; 2410 GlobalVariable *Metadata = 2411 CreateMetadataGlobal(M, Initializer, G->getName()); 2412 2413 // On recent Mach-O platforms, we emit the global metadata in a way that 2414 // allows the linker to properly strip dead globals. 2415 auto LivenessBinder = 2416 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2417 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2418 GlobalVariable *Liveness = new GlobalVariable( 2419 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2420 Twine("__asan_binder_") + G->getName()); 2421 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2422 LivenessGlobals[i] = Liveness; 2423 } 2424 2425 // Update llvm.compiler.used, adding the new liveness globals. This is 2426 // needed so that during LTO these variables stay alive. The alternative 2427 // would be to have the linker handling the LTO symbols, but libLTO 2428 // current API does not expose access to the section for each symbol. 2429 if (!LivenessGlobals.empty()) 2430 appendToCompilerUsed(M, LivenessGlobals); 2431 2432 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2433 // to look up the loaded image that contains it. Second, we can store in it 2434 // whether registration has already occurred, to prevent duplicate 2435 // registration. 2436 // 2437 // common linkage ensures that there is only one global per shared library. 2438 GlobalVariable *RegisteredFlag = new GlobalVariable( 2439 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2440 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2441 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2442 2443 if (ConstructorKind == AsanCtorKind::Global) 2444 IRB.CreateCall(AsanRegisterImageGlobals, 2445 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2446 2447 // We also need to unregister globals at the end, e.g., when a shared library 2448 // gets closed. 2449 if (DestructorKind != AsanDtorKind::None) { 2450 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2451 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2452 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2453 } 2454 } 2455 2456 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2457 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2458 ArrayRef<Constant *> MetadataInitializers) { 2459 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2460 unsigned N = ExtendedGlobals.size(); 2461 assert(N > 0); 2462 2463 // On platforms that don't have a custom metadata section, we emit an array 2464 // of global metadata structures. 2465 ArrayType *ArrayOfGlobalStructTy = 2466 ArrayType::get(MetadataInitializers[0]->getType(), N); 2467 auto AllGlobals = new GlobalVariable( 2468 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2469 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2470 if (Mapping.Scale > 3) 2471 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2472 2473 if (ConstructorKind == AsanCtorKind::Global) 2474 IRB.CreateCall(AsanRegisterGlobals, 2475 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2476 ConstantInt::get(IntptrTy, N)}); 2477 2478 // We also need to unregister globals at the end, e.g., when a shared library 2479 // gets closed. 2480 if (DestructorKind != AsanDtorKind::None) { 2481 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2482 IrbDtor.CreateCall(AsanUnregisterGlobals, 2483 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2484 ConstantInt::get(IntptrTy, N)}); 2485 } 2486 } 2487 2488 // This function replaces all global variables with new variables that have 2489 // trailing redzones. It also creates a function that poisons 2490 // redzones and inserts this function into llvm.global_ctors. 2491 // Sets *CtorComdat to true if the global registration code emitted into the 2492 // asan constructor is comdat-compatible. 2493 void ModuleAddressSanitizer::instrumentGlobals(IRBuilder<> &IRB, Module &M, 2494 bool *CtorComdat) { 2495 // Build set of globals that are aliased by some GA, where 2496 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2497 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2498 if (CompileKernel) { 2499 for (auto &GA : M.aliases()) { 2500 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2501 AliasedGlobalExclusions.insert(GV); 2502 } 2503 } 2504 2505 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2506 for (auto &G : M.globals()) { 2507 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2508 GlobalsToChange.push_back(&G); 2509 } 2510 2511 size_t n = GlobalsToChange.size(); 2512 auto &DL = M.getDataLayout(); 2513 2514 // A global is described by a structure 2515 // size_t beg; 2516 // size_t size; 2517 // size_t size_with_redzone; 2518 // const char *name; 2519 // const char *module_name; 2520 // size_t has_dynamic_init; 2521 // size_t padding_for_windows_msvc_incremental_link; 2522 // size_t odr_indicator; 2523 // We initialize an array of such structures and pass it to a run-time call. 2524 StructType *GlobalStructTy = 2525 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2526 IntptrTy, IntptrTy, IntptrTy); 2527 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2528 SmallVector<Constant *, 16> Initializers(n); 2529 2530 bool HasDynamicallyInitializedGlobals = false; 2531 2532 // We shouldn't merge same module names, as this string serves as unique 2533 // module ID in runtime. 2534 GlobalVariable *ModuleName = 2535 n != 0 2536 ? createPrivateGlobalForString(M, M.getModuleIdentifier(), 2537 /*AllowMerging*/ false, kAsanGenPrefix) 2538 : nullptr; 2539 2540 for (size_t i = 0; i < n; i++) { 2541 GlobalVariable *G = GlobalsToChange[i]; 2542 2543 GlobalValue::SanitizerMetadata MD; 2544 if (G->hasSanitizerMetadata()) 2545 MD = G->getSanitizerMetadata(); 2546 2547 // The runtime library tries demangling symbol names in the descriptor but 2548 // functionality like __cxa_demangle may be unavailable (e.g. 2549 // -static-libstdc++). So we demangle the symbol names here. 2550 std::string NameForGlobal = G->getName().str(); 2551 GlobalVariable *Name = 2552 createPrivateGlobalForString(M, llvm::demangle(NameForGlobal), 2553 /*AllowMerging*/ true, kAsanGenPrefix); 2554 2555 Type *Ty = G->getValueType(); 2556 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2557 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2558 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2559 2560 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2561 Constant *NewInitializer = ConstantStruct::get( 2562 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2563 2564 // Create a new global variable with enough space for a redzone. 2565 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2566 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2567 Linkage = GlobalValue::InternalLinkage; 2568 GlobalVariable *NewGlobal = new GlobalVariable( 2569 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2570 G->getThreadLocalMode(), G->getAddressSpace()); 2571 NewGlobal->copyAttributesFrom(G); 2572 NewGlobal->setComdat(G->getComdat()); 2573 NewGlobal->setAlignment(Align(getMinRedzoneSizeForGlobal())); 2574 // Don't fold globals with redzones. ODR violation detector and redzone 2575 // poisoning implicitly creates a dependence on the global's address, so it 2576 // is no longer valid for it to be marked unnamed_addr. 2577 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2578 2579 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2580 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2581 G->isConstant()) { 2582 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2583 if (Seq && Seq->isCString()) 2584 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2585 } 2586 2587 // Transfer the debug info and type metadata. The payload starts at offset 2588 // zero so we can copy the metadata over as is. 2589 NewGlobal->copyMetadata(G, 0); 2590 2591 Value *Indices2[2]; 2592 Indices2[0] = IRB.getInt32(0); 2593 Indices2[1] = IRB.getInt32(0); 2594 2595 G->replaceAllUsesWith( 2596 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2597 NewGlobal->takeName(G); 2598 G->eraseFromParent(); 2599 NewGlobals[i] = NewGlobal; 2600 2601 Constant *ODRIndicator = ConstantPointerNull::get(PtrTy); 2602 GlobalValue *InstrumentedGlobal = NewGlobal; 2603 2604 bool CanUsePrivateAliases = 2605 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2606 TargetTriple.isOSBinFormatWasm(); 2607 if (CanUsePrivateAliases && UsePrivateAlias) { 2608 // Create local alias for NewGlobal to avoid crash on ODR between 2609 // instrumented and non-instrumented libraries. 2610 InstrumentedGlobal = 2611 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2612 } 2613 2614 // ODR should not happen for local linkage. 2615 if (NewGlobal->hasLocalLinkage()) { 2616 ODRIndicator = 2617 ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), PtrTy); 2618 } else if (UseOdrIndicator) { 2619 // With local aliases, we need to provide another externally visible 2620 // symbol __odr_asan_XXX to detect ODR violation. 2621 auto *ODRIndicatorSym = 2622 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2623 Constant::getNullValue(IRB.getInt8Ty()), 2624 kODRGenPrefix + NameForGlobal, nullptr, 2625 NewGlobal->getThreadLocalMode()); 2626 2627 // Set meaningful attributes for indicator symbol. 2628 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2629 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2630 ODRIndicatorSym->setAlignment(Align(1)); 2631 ODRIndicator = ODRIndicatorSym; 2632 } 2633 2634 Constant *Initializer = ConstantStruct::get( 2635 GlobalStructTy, 2636 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2637 ConstantInt::get(IntptrTy, SizeInBytes), 2638 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2639 ConstantExpr::getPointerCast(Name, IntptrTy), 2640 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2641 ConstantInt::get(IntptrTy, MD.IsDynInit), 2642 Constant::getNullValue(IntptrTy), 2643 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2644 2645 if (ClInitializers && MD.IsDynInit) 2646 HasDynamicallyInitializedGlobals = true; 2647 2648 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2649 2650 Initializers[i] = Initializer; 2651 } 2652 2653 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2654 // ConstantMerge'ing them. 2655 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2656 for (size_t i = 0; i < n; i++) { 2657 GlobalVariable *G = NewGlobals[i]; 2658 if (G->getName().empty()) continue; 2659 GlobalsToAddToUsedList.push_back(G); 2660 } 2661 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2662 2663 if (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) { 2664 // Use COMDAT and register globals even if n == 0 to ensure that (a) the 2665 // linkage unit will only have one module constructor, and (b) the register 2666 // function will be called. The module destructor is not created when n == 2667 // 0. 2668 *CtorComdat = true; 2669 instrumentGlobalsELF(IRB, M, NewGlobals, Initializers, 2670 getUniqueModuleId(&M)); 2671 } else if (n == 0) { 2672 // When UseGlobalsGC is false, COMDAT can still be used if n == 0, because 2673 // all compile units will have identical module constructor/destructor. 2674 *CtorComdat = TargetTriple.isOSBinFormatELF(); 2675 } else { 2676 *CtorComdat = false; 2677 if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2678 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2679 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2680 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2681 } else { 2682 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2683 } 2684 } 2685 2686 // Create calls for poisoning before initializers run and unpoisoning after. 2687 if (HasDynamicallyInitializedGlobals) 2688 createInitializerPoisonCalls(M, ModuleName); 2689 2690 LLVM_DEBUG(dbgs() << M); 2691 } 2692 2693 uint64_t 2694 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2695 constexpr uint64_t kMaxRZ = 1 << 18; 2696 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2697 2698 uint64_t RZ = 0; 2699 if (SizeInBytes <= MinRZ / 2) { 2700 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2701 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2702 // half of MinRZ. 2703 RZ = MinRZ - SizeInBytes; 2704 } else { 2705 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2706 RZ = std::clamp((SizeInBytes / MinRZ / 4) * MinRZ, MinRZ, kMaxRZ); 2707 2708 // Round up to multiple of MinRZ. 2709 if (SizeInBytes % MinRZ) 2710 RZ += MinRZ - (SizeInBytes % MinRZ); 2711 } 2712 2713 assert((RZ + SizeInBytes) % MinRZ == 0); 2714 2715 return RZ; 2716 } 2717 2718 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2719 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2720 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2721 int Version = 8; 2722 // 32-bit Android is one version ahead because of the switch to dynamic 2723 // shadow. 2724 Version += (LongSize == 32 && isAndroid); 2725 return Version; 2726 } 2727 2728 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2729 initializeCallbacks(M); 2730 2731 // Create a module constructor. A destructor is created lazily because not all 2732 // platforms, and not all modules need it. 2733 if (ConstructorKind == AsanCtorKind::Global) { 2734 if (CompileKernel) { 2735 // The kernel always builds with its own runtime, and therefore does not 2736 // need the init and version check calls. 2737 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2738 } else { 2739 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2740 std::string VersionCheckName = 2741 InsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2742 std::tie(AsanCtorFunction, std::ignore) = 2743 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2744 kAsanInitName, /*InitArgTypes=*/{}, 2745 /*InitArgs=*/{}, VersionCheckName); 2746 } 2747 } 2748 2749 bool CtorComdat = true; 2750 if (ClGlobals) { 2751 assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None); 2752 if (AsanCtorFunction) { 2753 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2754 instrumentGlobals(IRB, M, &CtorComdat); 2755 } else { 2756 IRBuilder<> IRB(*C); 2757 instrumentGlobals(IRB, M, &CtorComdat); 2758 } 2759 } 2760 2761 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2762 2763 // Put the constructor and destructor in comdat if both 2764 // (1) global instrumentation is not TU-specific 2765 // (2) target is ELF. 2766 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2767 if (AsanCtorFunction) { 2768 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2769 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2770 } 2771 if (AsanDtorFunction) { 2772 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2773 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2774 } 2775 } else { 2776 if (AsanCtorFunction) 2777 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2778 if (AsanDtorFunction) 2779 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2780 } 2781 2782 return true; 2783 } 2784 2785 void AddressSanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo *TLI) { 2786 IRBuilder<> IRB(*C); 2787 // Create __asan_report* callbacks. 2788 // IsWrite, TypeSize and Exp are encoded in the function name. 2789 for (int Exp = 0; Exp < 2; Exp++) { 2790 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2791 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2792 const std::string ExpStr = Exp ? "exp_" : ""; 2793 const std::string EndingStr = Recover ? "_noabort" : ""; 2794 2795 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2796 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2797 AttributeList AL2; 2798 AttributeList AL1; 2799 if (Exp) { 2800 Type *ExpType = Type::getInt32Ty(*C); 2801 Args2.push_back(ExpType); 2802 Args1.push_back(ExpType); 2803 if (auto AK = TLI->getExtAttrForI32Param(false)) { 2804 AL2 = AL2.addParamAttribute(*C, 2, AK); 2805 AL1 = AL1.addParamAttribute(*C, 1, AK); 2806 } 2807 } 2808 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2809 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2810 FunctionType::get(IRB.getVoidTy(), Args2, false), AL2); 2811 2812 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2813 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2814 FunctionType::get(IRB.getVoidTy(), Args2, false), AL2); 2815 2816 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2817 AccessSizeIndex++) { 2818 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2819 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2820 M.getOrInsertFunction( 2821 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2822 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1); 2823 2824 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2825 M.getOrInsertFunction( 2826 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2827 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1); 2828 } 2829 } 2830 } 2831 2832 const std::string MemIntrinCallbackPrefix = 2833 (CompileKernel && !ClKasanMemIntrinCallbackPrefix) 2834 ? std::string("") 2835 : ClMemoryAccessCallbackPrefix; 2836 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2837 PtrTy, PtrTy, PtrTy, IntptrTy); 2838 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", PtrTy, 2839 PtrTy, PtrTy, IntptrTy); 2840 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2841 TLI->getAttrList(C, {1}, /*Signed=*/false), 2842 PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy); 2843 2844 AsanHandleNoReturnFunc = 2845 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2846 2847 AsanPtrCmpFunction = 2848 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2849 AsanPtrSubFunction = 2850 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2851 if (Mapping.InGlobal) 2852 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2853 ArrayType::get(IRB.getInt8Ty(), 0)); 2854 2855 AMDGPUAddressShared = 2856 M.getOrInsertFunction(kAMDGPUAddressSharedName, IRB.getInt1Ty(), PtrTy); 2857 AMDGPUAddressPrivate = 2858 M.getOrInsertFunction(kAMDGPUAddressPrivateName, IRB.getInt1Ty(), PtrTy); 2859 } 2860 2861 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2862 // For each NSObject descendant having a +load method, this method is invoked 2863 // by the ObjC runtime before any of the static constructors is called. 2864 // Therefore we need to instrument such methods with a call to __asan_init 2865 // at the beginning in order to initialize our runtime before any access to 2866 // the shadow memory. 2867 // We cannot just ignore these methods, because they may call other 2868 // instrumented functions. 2869 if (F.getName().contains(" load]")) { 2870 FunctionCallee AsanInitFunction = 2871 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2872 IRBuilder<> IRB(&F.front(), F.front().begin()); 2873 IRB.CreateCall(AsanInitFunction, {}); 2874 return true; 2875 } 2876 return false; 2877 } 2878 2879 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2880 // Generate code only when dynamic addressing is needed. 2881 if (Mapping.Offset != kDynamicShadowSentinel) 2882 return false; 2883 2884 IRBuilder<> IRB(&F.front().front()); 2885 if (Mapping.InGlobal) { 2886 if (ClWithIfuncSuppressRemat) { 2887 // An empty inline asm with input reg == output reg. 2888 // An opaque pointer-to-int cast, basically. 2889 InlineAsm *Asm = InlineAsm::get( 2890 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2891 StringRef(""), StringRef("=r,0"), 2892 /*hasSideEffects=*/false); 2893 LocalDynamicShadow = 2894 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2895 } else { 2896 LocalDynamicShadow = 2897 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2898 } 2899 } else { 2900 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2901 kAsanShadowMemoryDynamicAddress, IntptrTy); 2902 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2903 } 2904 return true; 2905 } 2906 2907 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2908 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2909 // to it as uninteresting. This assumes we haven't started processing allocas 2910 // yet. This check is done up front because iterating the use list in 2911 // isInterestingAlloca would be algorithmically slower. 2912 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2913 2914 // Try to get the declaration of llvm.localescape. If it's not in the module, 2915 // we can exit early. 2916 if (!F.getParent()->getFunction("llvm.localescape")) return; 2917 2918 // Look for a call to llvm.localescape call in the entry block. It can't be in 2919 // any other block. 2920 for (Instruction &I : F.getEntryBlock()) { 2921 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2922 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2923 // We found a call. Mark all the allocas passed in as uninteresting. 2924 for (Value *Arg : II->args()) { 2925 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2926 assert(AI && AI->isStaticAlloca() && 2927 "non-static alloca arg to localescape"); 2928 ProcessedAllocas[AI] = false; 2929 } 2930 break; 2931 } 2932 } 2933 } 2934 2935 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2936 bool ShouldInstrument = 2937 ClDebugMin < 0 || ClDebugMax < 0 || 2938 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2939 Instrumented++; 2940 return !ShouldInstrument; 2941 } 2942 2943 bool AddressSanitizer::instrumentFunction(Function &F, 2944 const TargetLibraryInfo *TLI) { 2945 if (F.empty()) 2946 return false; 2947 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2948 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2949 if (F.getName().starts_with("__asan_")) return false; 2950 if (F.isPresplitCoroutine()) 2951 return false; 2952 2953 bool FunctionModified = false; 2954 2955 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2956 // This function needs to be called even if the function body is not 2957 // instrumented. 2958 if (maybeInsertAsanInitAtFunctionEntry(F)) 2959 FunctionModified = true; 2960 2961 // Leave if the function doesn't need instrumentation. 2962 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2963 2964 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 2965 return FunctionModified; 2966 2967 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2968 2969 initializeCallbacks(*F.getParent(), TLI); 2970 2971 FunctionStateRAII CleanupObj(this); 2972 2973 RuntimeCallInserter RTCI(F); 2974 2975 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2976 2977 // We can't instrument allocas used with llvm.localescape. Only static allocas 2978 // can be passed to that intrinsic. 2979 markEscapedLocalAllocas(F); 2980 2981 // We want to instrument every address only once per basic block (unless there 2982 // are calls between uses). 2983 SmallPtrSet<Value *, 16> TempsToInstrument; 2984 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2985 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2986 SmallVector<Instruction *, 8> NoReturnCalls; 2987 SmallVector<BasicBlock *, 16> AllBlocks; 2988 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2989 2990 // Fill the set of memory operations to instrument. 2991 for (auto &BB : F) { 2992 AllBlocks.push_back(&BB); 2993 TempsToInstrument.clear(); 2994 int NumInsnsPerBB = 0; 2995 for (auto &Inst : BB) { 2996 if (LooksLikeCodeInBug11395(&Inst)) return false; 2997 // Skip instructions inserted by another instrumentation. 2998 if (Inst.hasMetadata(LLVMContext::MD_nosanitize)) 2999 continue; 3000 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 3001 getInterestingMemoryOperands(&Inst, InterestingOperands); 3002 3003 if (!InterestingOperands.empty()) { 3004 for (auto &Operand : InterestingOperands) { 3005 if (ClOpt && ClOptSameTemp) { 3006 Value *Ptr = Operand.getPtr(); 3007 // If we have a mask, skip instrumentation if we've already 3008 // instrumented the full object. But don't add to TempsToInstrument 3009 // because we might get another load/store with a different mask. 3010 if (Operand.MaybeMask) { 3011 if (TempsToInstrument.count(Ptr)) 3012 continue; // We've seen this (whole) temp in the current BB. 3013 } else { 3014 if (!TempsToInstrument.insert(Ptr).second) 3015 continue; // We've seen this temp in the current BB. 3016 } 3017 } 3018 OperandsToInstrument.push_back(Operand); 3019 NumInsnsPerBB++; 3020 } 3021 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 3022 isInterestingPointerComparison(&Inst)) || 3023 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 3024 isInterestingPointerSubtraction(&Inst))) { 3025 PointerComparisonsOrSubtracts.push_back(&Inst); 3026 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 3027 // ok, take it. 3028 IntrinToInstrument.push_back(MI); 3029 NumInsnsPerBB++; 3030 } else { 3031 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 3032 // A call inside BB. 3033 TempsToInstrument.clear(); 3034 if (CB->doesNotReturn()) 3035 NoReturnCalls.push_back(CB); 3036 } 3037 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 3038 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 3039 } 3040 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 3041 } 3042 } 3043 3044 bool UseCalls = (InstrumentationWithCallsThreshold >= 0 && 3045 OperandsToInstrument.size() + IntrinToInstrument.size() > 3046 (unsigned)InstrumentationWithCallsThreshold); 3047 const DataLayout &DL = F.getDataLayout(); 3048 ObjectSizeOpts ObjSizeOpts; 3049 ObjSizeOpts.RoundToAlign = true; 3050 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 3051 3052 // Instrument. 3053 int NumInstrumented = 0; 3054 for (auto &Operand : OperandsToInstrument) { 3055 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 3056 instrumentMop(ObjSizeVis, Operand, UseCalls, 3057 F.getDataLayout(), RTCI); 3058 FunctionModified = true; 3059 } 3060 for (auto *Inst : IntrinToInstrument) { 3061 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 3062 instrumentMemIntrinsic(Inst, RTCI); 3063 FunctionModified = true; 3064 } 3065 3066 FunctionStackPoisoner FSP(F, *this, RTCI); 3067 bool ChangedStack = FSP.runOnFunction(); 3068 3069 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 3070 // See e.g. https://github.com/google/sanitizers/issues/37 3071 for (auto *CI : NoReturnCalls) { 3072 IRBuilder<> IRB(CI); 3073 RTCI.createRuntimeCall(IRB, AsanHandleNoReturnFunc, {}); 3074 } 3075 3076 for (auto *Inst : PointerComparisonsOrSubtracts) { 3077 instrumentPointerComparisonOrSubtraction(Inst, RTCI); 3078 FunctionModified = true; 3079 } 3080 3081 if (ChangedStack || !NoReturnCalls.empty()) 3082 FunctionModified = true; 3083 3084 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 3085 << F << "\n"); 3086 3087 return FunctionModified; 3088 } 3089 3090 // Workaround for bug 11395: we don't want to instrument stack in functions 3091 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 3092 // FIXME: remove once the bug 11395 is fixed. 3093 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 3094 if (LongSize != 32) return false; 3095 CallInst *CI = dyn_cast<CallInst>(I); 3096 if (!CI || !CI->isInlineAsm()) return false; 3097 if (CI->arg_size() <= 5) 3098 return false; 3099 // We have inline assembly with quite a few arguments. 3100 return true; 3101 } 3102 3103 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 3104 IRBuilder<> IRB(*C); 3105 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || 3106 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3107 const char *MallocNameTemplate = 3108 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always 3109 ? kAsanStackMallocAlwaysNameTemplate 3110 : kAsanStackMallocNameTemplate; 3111 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { 3112 std::string Suffix = itostr(Index); 3113 AsanStackMallocFunc[Index] = M.getOrInsertFunction( 3114 MallocNameTemplate + Suffix, IntptrTy, IntptrTy); 3115 AsanStackFreeFunc[Index] = 3116 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 3117 IRB.getVoidTy(), IntptrTy, IntptrTy); 3118 } 3119 } 3120 if (ASan.UseAfterScope) { 3121 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 3122 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3123 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 3124 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3125 } 3126 3127 for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2, 3128 0xf3, 0xf5, 0xf8}) { 3129 std::ostringstream Name; 3130 Name << kAsanSetShadowPrefix; 3131 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 3132 AsanSetShadowFunc[Val] = 3133 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 3134 } 3135 3136 AsanAllocaPoisonFunc = M.getOrInsertFunction( 3137 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3138 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 3139 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3140 } 3141 3142 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 3143 ArrayRef<uint8_t> ShadowBytes, 3144 size_t Begin, size_t End, 3145 IRBuilder<> &IRB, 3146 Value *ShadowBase) { 3147 if (Begin >= End) 3148 return; 3149 3150 const size_t LargestStoreSizeInBytes = 3151 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 3152 3153 const bool IsLittleEndian = F.getDataLayout().isLittleEndian(); 3154 3155 // Poison given range in shadow using larges store size with out leading and 3156 // trailing zeros in ShadowMask. Zeros never change, so they need neither 3157 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 3158 // middle of a store. 3159 for (size_t i = Begin; i < End;) { 3160 if (!ShadowMask[i]) { 3161 assert(!ShadowBytes[i]); 3162 ++i; 3163 continue; 3164 } 3165 3166 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 3167 // Fit store size into the range. 3168 while (StoreSizeInBytes > End - i) 3169 StoreSizeInBytes /= 2; 3170 3171 // Minimize store size by trimming trailing zeros. 3172 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 3173 while (j <= StoreSizeInBytes / 2) 3174 StoreSizeInBytes /= 2; 3175 } 3176 3177 uint64_t Val = 0; 3178 for (size_t j = 0; j < StoreSizeInBytes; j++) { 3179 if (IsLittleEndian) 3180 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 3181 else 3182 Val = (Val << 8) | ShadowBytes[i + j]; 3183 } 3184 3185 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 3186 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 3187 IRB.CreateAlignedStore( 3188 Poison, IRB.CreateIntToPtr(Ptr, PointerType::getUnqual(Poison->getContext())), 3189 Align(1)); 3190 3191 i += StoreSizeInBytes; 3192 } 3193 } 3194 3195 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3196 ArrayRef<uint8_t> ShadowBytes, 3197 IRBuilder<> &IRB, Value *ShadowBase) { 3198 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 3199 } 3200 3201 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3202 ArrayRef<uint8_t> ShadowBytes, 3203 size_t Begin, size_t End, 3204 IRBuilder<> &IRB, Value *ShadowBase) { 3205 assert(ShadowMask.size() == ShadowBytes.size()); 3206 size_t Done = Begin; 3207 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 3208 if (!ShadowMask[i]) { 3209 assert(!ShadowBytes[i]); 3210 continue; 3211 } 3212 uint8_t Val = ShadowBytes[i]; 3213 if (!AsanSetShadowFunc[Val]) 3214 continue; 3215 3216 // Skip same values. 3217 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 3218 } 3219 3220 if (j - i >= ASan.MaxInlinePoisoningSize) { 3221 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 3222 RTCI.createRuntimeCall( 3223 IRB, AsanSetShadowFunc[Val], 3224 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 3225 ConstantInt::get(IntptrTy, j - i)}); 3226 Done = j; 3227 } 3228 } 3229 3230 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 3231 } 3232 3233 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 3234 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 3235 static int StackMallocSizeClass(uint64_t LocalStackSize) { 3236 assert(LocalStackSize <= kMaxStackMallocSize); 3237 uint64_t MaxSize = kMinStackMallocSize; 3238 for (int i = 0;; i++, MaxSize *= 2) 3239 if (LocalStackSize <= MaxSize) return i; 3240 llvm_unreachable("impossible LocalStackSize"); 3241 } 3242 3243 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 3244 Instruction *CopyInsertPoint = &F.front().front(); 3245 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 3246 // Insert after the dynamic shadow location is determined 3247 CopyInsertPoint = CopyInsertPoint->getNextNode(); 3248 assert(CopyInsertPoint); 3249 } 3250 IRBuilder<> IRB(CopyInsertPoint); 3251 const DataLayout &DL = F.getDataLayout(); 3252 for (Argument &Arg : F.args()) { 3253 if (Arg.hasByValAttr()) { 3254 Type *Ty = Arg.getParamByValType(); 3255 const Align Alignment = 3256 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 3257 3258 AllocaInst *AI = IRB.CreateAlloca( 3259 Ty, nullptr, 3260 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 3261 ".byval"); 3262 AI->setAlignment(Alignment); 3263 Arg.replaceAllUsesWith(AI); 3264 3265 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3266 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 3267 } 3268 } 3269 } 3270 3271 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3272 Value *ValueIfTrue, 3273 Instruction *ThenTerm, 3274 Value *ValueIfFalse) { 3275 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3276 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3277 PHI->addIncoming(ValueIfFalse, CondBlock); 3278 BasicBlock *ThenBlock = ThenTerm->getParent(); 3279 PHI->addIncoming(ValueIfTrue, ThenBlock); 3280 return PHI; 3281 } 3282 3283 Value *FunctionStackPoisoner::createAllocaForLayout( 3284 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3285 AllocaInst *Alloca; 3286 if (Dynamic) { 3287 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3288 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3289 "MyAlloca"); 3290 } else { 3291 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3292 nullptr, "MyAlloca"); 3293 assert(Alloca->isStaticAlloca()); 3294 } 3295 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3296 uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); 3297 Alloca->setAlignment(Align(FrameAlignment)); 3298 return IRB.CreatePointerCast(Alloca, IntptrTy); 3299 } 3300 3301 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3302 BasicBlock &FirstBB = *F.begin(); 3303 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3304 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3305 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3306 DynamicAllocaLayout->setAlignment(Align(32)); 3307 } 3308 3309 void FunctionStackPoisoner::processDynamicAllocas() { 3310 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3311 assert(DynamicAllocaPoisonCallVec.empty()); 3312 return; 3313 } 3314 3315 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3316 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3317 assert(APC.InsBefore); 3318 assert(APC.AI); 3319 assert(ASan.isInterestingAlloca(*APC.AI)); 3320 assert(!APC.AI->isStaticAlloca()); 3321 3322 IRBuilder<> IRB(APC.InsBefore); 3323 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3324 // Dynamic allocas will be unpoisoned unconditionally below in 3325 // unpoisonDynamicAllocas. 3326 // Flag that we need unpoison static allocas. 3327 } 3328 3329 // Handle dynamic allocas. 3330 createDynamicAllocasInitStorage(); 3331 for (auto &AI : DynamicAllocaVec) 3332 handleDynamicAllocaCall(AI); 3333 unpoisonDynamicAllocas(); 3334 } 3335 3336 /// Collect instructions in the entry block after \p InsBefore which initialize 3337 /// permanent storage for a function argument. These instructions must remain in 3338 /// the entry block so that uninitialized values do not appear in backtraces. An 3339 /// added benefit is that this conserves spill slots. This does not move stores 3340 /// before instrumented / "interesting" allocas. 3341 static void findStoresToUninstrumentedArgAllocas( 3342 AddressSanitizer &ASan, Instruction &InsBefore, 3343 SmallVectorImpl<Instruction *> &InitInsts) { 3344 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3345 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3346 // Argument initialization looks like: 3347 // 1) store <Argument>, <Alloca> OR 3348 // 2) <CastArgument> = cast <Argument> to ... 3349 // store <CastArgument> to <Alloca> 3350 // Do not consider any other kind of instruction. 3351 // 3352 // Note: This covers all known cases, but may not be exhaustive. An 3353 // alternative to pattern-matching stores is to DFS over all Argument uses: 3354 // this might be more general, but is probably much more complicated. 3355 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3356 continue; 3357 if (auto *Store = dyn_cast<StoreInst>(It)) { 3358 // The store destination must be an alloca that isn't interesting for 3359 // ASan to instrument. These are moved up before InsBefore, and they're 3360 // not interesting because allocas for arguments can be mem2reg'd. 3361 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3362 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3363 continue; 3364 3365 Value *Val = Store->getValueOperand(); 3366 bool IsDirectArgInit = isa<Argument>(Val); 3367 bool IsArgInitViaCast = 3368 isa<CastInst>(Val) && 3369 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3370 // Check that the cast appears directly before the store. Otherwise 3371 // moving the cast before InsBefore may break the IR. 3372 Val == It->getPrevNonDebugInstruction(); 3373 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3374 if (!IsArgInit) 3375 continue; 3376 3377 if (IsArgInitViaCast) 3378 InitInsts.push_back(cast<Instruction>(Val)); 3379 InitInsts.push_back(Store); 3380 continue; 3381 } 3382 3383 // Do not reorder past unknown instructions: argument initialization should 3384 // only involve casts and stores. 3385 return; 3386 } 3387 } 3388 3389 void FunctionStackPoisoner::processStaticAllocas() { 3390 if (AllocaVec.empty()) { 3391 assert(StaticAllocaPoisonCallVec.empty()); 3392 return; 3393 } 3394 3395 int StackMallocIdx = -1; 3396 DebugLoc EntryDebugLocation; 3397 if (auto SP = F.getSubprogram()) 3398 EntryDebugLocation = 3399 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3400 3401 Instruction *InsBefore = AllocaVec[0]; 3402 IRBuilder<> IRB(InsBefore); 3403 3404 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3405 // debug info is broken, because only entry-block allocas are treated as 3406 // regular stack slots. 3407 auto InsBeforeB = InsBefore->getParent(); 3408 assert(InsBeforeB == &F.getEntryBlock()); 3409 for (auto *AI : StaticAllocasToMoveUp) 3410 if (AI->getParent() == InsBeforeB) 3411 AI->moveBefore(InsBefore); 3412 3413 // Move stores of arguments into entry-block allocas as well. This prevents 3414 // extra stack slots from being generated (to house the argument values until 3415 // they can be stored into the allocas). This also prevents uninitialized 3416 // values from being shown in backtraces. 3417 SmallVector<Instruction *, 8> ArgInitInsts; 3418 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3419 for (Instruction *ArgInitInst : ArgInitInsts) 3420 ArgInitInst->moveBefore(InsBefore); 3421 3422 // If we have a call to llvm.localescape, keep it in the entry block. 3423 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3424 3425 SmallVector<ASanStackVariableDescription, 16> SVD; 3426 SVD.reserve(AllocaVec.size()); 3427 for (AllocaInst *AI : AllocaVec) { 3428 ASanStackVariableDescription D = {AI->getName().data(), 3429 ASan.getAllocaSizeInBytes(*AI), 3430 0, 3431 AI->getAlign().value(), 3432 AI, 3433 0, 3434 0}; 3435 SVD.push_back(D); 3436 } 3437 3438 // Minimal header size (left redzone) is 4 pointers, 3439 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3440 uint64_t Granularity = 1ULL << Mapping.Scale; 3441 uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); 3442 const ASanStackFrameLayout &L = 3443 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3444 3445 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3446 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3447 for (auto &Desc : SVD) 3448 AllocaToSVDMap[Desc.AI] = &Desc; 3449 3450 // Update SVD with information from lifetime intrinsics. 3451 for (const auto &APC : StaticAllocaPoisonCallVec) { 3452 assert(APC.InsBefore); 3453 assert(APC.AI); 3454 assert(ASan.isInterestingAlloca(*APC.AI)); 3455 assert(APC.AI->isStaticAlloca()); 3456 3457 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3458 Desc.LifetimeSize = Desc.Size; 3459 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3460 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3461 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3462 if (unsigned Line = LifetimeLoc->getLine()) 3463 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3464 } 3465 } 3466 } 3467 3468 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3469 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3470 uint64_t LocalStackSize = L.FrameSize; 3471 bool DoStackMalloc = 3472 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3473 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3474 bool DoDynamicAlloca = ClDynamicAllocaStack; 3475 // Don't do dynamic alloca or stack malloc if: 3476 // 1) There is inline asm: too often it makes assumptions on which registers 3477 // are available. 3478 // 2) There is a returns_twice call (typically setjmp), which is 3479 // optimization-hostile, and doesn't play well with introduced indirect 3480 // register-relative calculation of local variable addresses. 3481 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3482 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3483 3484 Value *StaticAlloca = 3485 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3486 3487 Value *FakeStack; 3488 Value *LocalStackBase; 3489 Value *LocalStackBaseAlloca; 3490 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3491 3492 if (DoStackMalloc) { 3493 LocalStackBaseAlloca = 3494 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3495 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3496 // void *FakeStack = __asan_option_detect_stack_use_after_return 3497 // ? __asan_stack_malloc_N(LocalStackSize) 3498 // : nullptr; 3499 // void *LocalStackBase = (FakeStack) ? FakeStack : 3500 // alloca(LocalStackSize); 3501 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3502 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3503 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3504 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3505 Constant::getNullValue(IRB.getInt32Ty())); 3506 Instruction *Term = 3507 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3508 IRBuilder<> IRBIf(Term); 3509 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3510 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3511 Value *FakeStackValue = 3512 RTCI.createRuntimeCall(IRBIf, AsanStackMallocFunc[StackMallocIdx], 3513 ConstantInt::get(IntptrTy, LocalStackSize)); 3514 IRB.SetInsertPoint(InsBefore); 3515 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3516 ConstantInt::get(IntptrTy, 0)); 3517 } else { 3518 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3519 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3520 // void *LocalStackBase = (FakeStack) ? FakeStack : 3521 // alloca(LocalStackSize); 3522 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3523 FakeStack = 3524 RTCI.createRuntimeCall(IRB, AsanStackMallocFunc[StackMallocIdx], 3525 ConstantInt::get(IntptrTy, LocalStackSize)); 3526 } 3527 Value *NoFakeStack = 3528 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3529 Instruction *Term = 3530 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3531 IRBuilder<> IRBIf(Term); 3532 Value *AllocaValue = 3533 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3534 3535 IRB.SetInsertPoint(InsBefore); 3536 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3537 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3538 DIExprFlags |= DIExpression::DerefBefore; 3539 } else { 3540 // void *FakeStack = nullptr; 3541 // void *LocalStackBase = alloca(LocalStackSize); 3542 FakeStack = ConstantInt::get(IntptrTy, 0); 3543 LocalStackBase = 3544 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3545 LocalStackBaseAlloca = LocalStackBase; 3546 } 3547 3548 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3549 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3550 // later passes and can result in dropped variable coverage in debug info. 3551 Value *LocalStackBaseAllocaPtr = 3552 isa<PtrToIntInst>(LocalStackBaseAlloca) 3553 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3554 : LocalStackBaseAlloca; 3555 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3556 "Variable descriptions relative to ASan stack base will be dropped"); 3557 3558 // Replace Alloca instructions with base+offset. 3559 for (const auto &Desc : SVD) { 3560 AllocaInst *AI = Desc.AI; 3561 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3562 Desc.Offset); 3563 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3564 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3565 AI->getType()); 3566 AI->replaceAllUsesWith(NewAllocaPtr); 3567 } 3568 3569 // The left-most redzone has enough space for at least 4 pointers. 3570 // Write the Magic value to redzone[0]. 3571 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3572 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3573 BasePlus0); 3574 // Write the frame description constant to redzone[1]. 3575 Value *BasePlus1 = IRB.CreateIntToPtr( 3576 IRB.CreateAdd(LocalStackBase, 3577 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3578 IntptrPtrTy); 3579 GlobalVariable *StackDescriptionGlobal = 3580 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3581 /*AllowMerging*/ true, kAsanGenPrefix); 3582 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3583 IRB.CreateStore(Description, BasePlus1); 3584 // Write the PC to redzone[2]. 3585 Value *BasePlus2 = IRB.CreateIntToPtr( 3586 IRB.CreateAdd(LocalStackBase, 3587 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3588 IntptrPtrTy); 3589 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3590 3591 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3592 3593 // Poison the stack red zones at the entry. 3594 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3595 // As mask we must use most poisoned case: red zones and after scope. 3596 // As bytes we can use either the same or just red zones only. 3597 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3598 3599 if (!StaticAllocaPoisonCallVec.empty()) { 3600 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3601 3602 // Poison static allocas near lifetime intrinsics. 3603 for (const auto &APC : StaticAllocaPoisonCallVec) { 3604 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3605 assert(Desc.Offset % L.Granularity == 0); 3606 size_t Begin = Desc.Offset / L.Granularity; 3607 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3608 3609 IRBuilder<> IRB(APC.InsBefore); 3610 copyToShadow(ShadowAfterScope, 3611 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3612 IRB, ShadowBase); 3613 } 3614 } 3615 3616 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3617 SmallVector<uint8_t, 64> ShadowAfterReturn; 3618 3619 // (Un)poison the stack before all ret instructions. 3620 for (Instruction *Ret : RetVec) { 3621 IRBuilder<> IRBRet(Ret); 3622 // Mark the current frame as retired. 3623 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3624 BasePlus0); 3625 if (DoStackMalloc) { 3626 assert(StackMallocIdx >= 0); 3627 // if FakeStack != 0 // LocalStackBase == FakeStack 3628 // // In use-after-return mode, poison the whole stack frame. 3629 // if StackMallocIdx <= 4 3630 // // For small sizes inline the whole thing: 3631 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3632 // **SavedFlagPtr(FakeStack) = 0 3633 // else 3634 // __asan_stack_free_N(FakeStack, LocalStackSize) 3635 // else 3636 // <This is not a fake stack; unpoison the redzones> 3637 Value *Cmp = 3638 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3639 Instruction *ThenTerm, *ElseTerm; 3640 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3641 3642 IRBuilder<> IRBPoison(ThenTerm); 3643 if (ASan.MaxInlinePoisoningSize != 0 && StackMallocIdx <= 4) { 3644 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3645 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3646 kAsanStackUseAfterReturnMagic); 3647 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3648 ShadowBase); 3649 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3650 FakeStack, 3651 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3652 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3653 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3654 IRBPoison.CreateStore( 3655 Constant::getNullValue(IRBPoison.getInt8Ty()), 3656 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getPtrTy())); 3657 } else { 3658 // For larger frames call __asan_stack_free_*. 3659 RTCI.createRuntimeCall( 3660 IRBPoison, AsanStackFreeFunc[StackMallocIdx], 3661 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3662 } 3663 3664 IRBuilder<> IRBElse(ElseTerm); 3665 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3666 } else { 3667 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3668 } 3669 } 3670 3671 // We are done. Remove the old unused alloca instructions. 3672 for (auto *AI : AllocaVec) 3673 AI->eraseFromParent(); 3674 } 3675 3676 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3677 IRBuilder<> &IRB, bool DoPoison) { 3678 // For now just insert the call to ASan runtime. 3679 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3680 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3681 RTCI.createRuntimeCall( 3682 IRB, DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3683 {AddrArg, SizeArg}); 3684 } 3685 3686 // Handling llvm.lifetime intrinsics for a given %alloca: 3687 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3688 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3689 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3690 // could be poisoned by previous llvm.lifetime.end instruction, as the 3691 // variable may go in and out of scope several times, e.g. in loops). 3692 // (3) if we poisoned at least one %alloca in a function, 3693 // unpoison the whole stack frame at function exit. 3694 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3695 IRBuilder<> IRB(AI); 3696 3697 const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign()); 3698 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3699 3700 Value *Zero = Constant::getNullValue(IntptrTy); 3701 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3702 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3703 3704 // Since we need to extend alloca with additional memory to locate 3705 // redzones, and OldSize is number of allocated blocks with 3706 // ElementSize size, get allocated memory size in bytes by 3707 // OldSize * ElementSize. 3708 const unsigned ElementSize = 3709 F.getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3710 Value *OldSize = 3711 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3712 ConstantInt::get(IntptrTy, ElementSize)); 3713 3714 // PartialSize = OldSize % 32 3715 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3716 3717 // Misalign = kAllocaRzSize - PartialSize; 3718 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3719 3720 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3721 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3722 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3723 3724 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3725 // Alignment is added to locate left redzone, PartialPadding for possible 3726 // partial redzone and kAllocaRzSize for right redzone respectively. 3727 Value *AdditionalChunkSize = IRB.CreateAdd( 3728 ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize), 3729 PartialPadding); 3730 3731 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3732 3733 // Insert new alloca with new NewSize and Alignment params. 3734 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3735 NewAlloca->setAlignment(Alignment); 3736 3737 // NewAddress = Address + Alignment 3738 Value *NewAddress = 3739 IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3740 ConstantInt::get(IntptrTy, Alignment.value())); 3741 3742 // Insert __asan_alloca_poison call for new created alloca. 3743 RTCI.createRuntimeCall(IRB, AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3744 3745 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3746 // for unpoisoning stuff. 3747 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3748 3749 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3750 3751 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3752 AI->replaceAllUsesWith(NewAddressPtr); 3753 3754 // We are done. Erase old alloca from parent. 3755 AI->eraseFromParent(); 3756 } 3757 3758 // isSafeAccess returns true if Addr is always inbounds with respect to its 3759 // base object. For example, it is a field access or an array access with 3760 // constant inbounds index. 3761 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3762 Value *Addr, TypeSize TypeStoreSize) const { 3763 if (TypeStoreSize.isScalable()) 3764 // TODO: We can use vscale_range to convert a scalable value to an 3765 // upper bound on the access size. 3766 return false; 3767 3768 SizeOffsetAPInt SizeOffset = ObjSizeVis.compute(Addr); 3769 if (!SizeOffset.bothKnown()) 3770 return false; 3771 3772 uint64_t Size = SizeOffset.Size.getZExtValue(); 3773 int64_t Offset = SizeOffset.Offset.getSExtValue(); 3774 3775 // Three checks are required to ensure safety: 3776 // . Offset >= 0 (since the offset is given from the base ptr) 3777 // . Size >= Offset (unsigned) 3778 // . Size - Offset >= NeededSize (unsigned) 3779 return Offset >= 0 && Size >= uint64_t(Offset) && 3780 Size - uint64_t(Offset) >= TypeStoreSize / 8; 3781 } 3782