1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address basic correctness 10 // checker. 11 // Details of the algorithm: 12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 13 // 14 // FIXME: This sanitizer does not yet handle scalable vectors 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/Analysis/StackSafetyAnalysis.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/BinaryFormat/MachO.h" 35 #include "llvm/Demangle/Demangle.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Comdat.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DIBuilder.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GlobalAlias.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/IRBuilder.h" 52 #include "llvm/IR/InlineAsm.h" 53 #include "llvm/IR/InstVisitor.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/MDBuilder.h" 61 #include "llvm/IR/Metadata.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/Use.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/MC/MCSectionMachO.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 76 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/ModuleUtils.h" 80 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cstddef> 84 #include <cstdint> 85 #include <iomanip> 86 #include <limits> 87 #include <sstream> 88 #include <string> 89 #include <tuple> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "asan" 94 95 static const uint64_t kDefaultShadowScale = 3; 96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 98 static const uint64_t kDynamicShadowSentinel = 99 std::numeric_limits<uint64_t>::max(); 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29; 106 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 107 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 108 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 109 static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 111 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 112 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 113 static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47; 114 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 115 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 116 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 117 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 118 static const uint64_t kPS_ShadowOffset64 = 1ULL << 40; 119 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 120 static const uint64_t kEmscriptenShadowOffset = 0; 121 122 // The shadow memory space is dynamically allocated. 123 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 124 125 static const size_t kMinStackMallocSize = 1 << 6; // 64B 126 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 127 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 128 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 129 130 const char kAsanModuleCtorName[] = "asan.module_ctor"; 131 const char kAsanModuleDtorName[] = "asan.module_dtor"; 132 static const uint64_t kAsanCtorAndDtorPriority = 1; 133 // On Emscripten, the system needs more than one priorities for constructors. 134 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 135 const char kAsanReportErrorTemplate[] = "__asan_report_"; 136 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 137 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 138 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 139 const char kAsanUnregisterImageGlobalsName[] = 140 "__asan_unregister_image_globals"; 141 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 142 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 143 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 144 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 145 const char kAsanInitName[] = "__asan_init"; 146 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 147 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 148 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 149 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 150 static const int kMaxAsanStackMallocSizeClass = 10; 151 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 152 const char kAsanStackMallocAlwaysNameTemplate[] = 153 "__asan_stack_malloc_always_"; 154 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 155 const char kAsanGenPrefix[] = "___asan_gen_"; 156 const char kODRGenPrefix[] = "__odr_asan_gen_"; 157 const char kSanCovGenPrefix[] = "__sancov_gen_"; 158 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 159 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 160 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 161 162 // ASan version script has __asan_* wildcard. Triple underscore prevents a 163 // linker (gold) warning about attempting to export a local symbol. 164 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 165 166 const char kAsanOptionDetectUseAfterReturn[] = 167 "__asan_option_detect_stack_use_after_return"; 168 169 const char kAsanShadowMemoryDynamicAddress[] = 170 "__asan_shadow_memory_dynamic_address"; 171 172 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 173 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 174 175 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 176 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 177 178 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 179 static const size_t kNumberOfAccessSizes = 5; 180 181 static const uint64_t kAllocaRzSize = 32; 182 183 // ASanAccessInfo implementation constants. 184 constexpr size_t kCompileKernelShift = 0; 185 constexpr size_t kCompileKernelMask = 0x1; 186 constexpr size_t kAccessSizeIndexShift = 1; 187 constexpr size_t kAccessSizeIndexMask = 0xf; 188 constexpr size_t kIsWriteShift = 5; 189 constexpr size_t kIsWriteMask = 0x1; 190 191 // Command-line flags. 192 193 static cl::opt<bool> ClEnableKasan( 194 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 195 cl::Hidden, cl::init(false)); 196 197 static cl::opt<bool> ClRecover( 198 "asan-recover", 199 cl::desc("Enable recovery mode (continue-after-error)."), 200 cl::Hidden, cl::init(false)); 201 202 static cl::opt<bool> ClInsertVersionCheck( 203 "asan-guard-against-version-mismatch", 204 cl::desc("Guard against compiler/runtime version mismatch."), 205 cl::Hidden, cl::init(true)); 206 207 // This flag may need to be replaced with -f[no-]asan-reads. 208 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 209 cl::desc("instrument read instructions"), 210 cl::Hidden, cl::init(true)); 211 212 static cl::opt<bool> ClInstrumentWrites( 213 "asan-instrument-writes", cl::desc("instrument write instructions"), 214 cl::Hidden, cl::init(true)); 215 216 static cl::opt<bool> 217 ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false), 218 cl::Hidden, cl::desc("Use Stack Safety analysis results"), 219 cl::Optional); 220 221 static cl::opt<bool> ClInstrumentAtomics( 222 "asan-instrument-atomics", 223 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 224 cl::init(true)); 225 226 static cl::opt<bool> 227 ClInstrumentByval("asan-instrument-byval", 228 cl::desc("instrument byval call arguments"), cl::Hidden, 229 cl::init(true)); 230 231 static cl::opt<bool> ClAlwaysSlowPath( 232 "asan-always-slow-path", 233 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 234 cl::init(false)); 235 236 static cl::opt<bool> ClForceDynamicShadow( 237 "asan-force-dynamic-shadow", 238 cl::desc("Load shadow address into a local variable for each function"), 239 cl::Hidden, cl::init(false)); 240 241 static cl::opt<bool> 242 ClWithIfunc("asan-with-ifunc", 243 cl::desc("Access dynamic shadow through an ifunc global on " 244 "platforms that support this"), 245 cl::Hidden, cl::init(true)); 246 247 static cl::opt<bool> ClWithIfuncSuppressRemat( 248 "asan-with-ifunc-suppress-remat", 249 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 250 "it through inline asm in prologue."), 251 cl::Hidden, cl::init(true)); 252 253 // This flag limits the number of instructions to be instrumented 254 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 255 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 256 // set it to 10000. 257 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 258 "asan-max-ins-per-bb", cl::init(10000), 259 cl::desc("maximal number of instructions to instrument in any given BB"), 260 cl::Hidden); 261 262 // This flag may need to be replaced with -f[no]asan-stack. 263 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 264 cl::Hidden, cl::init(true)); 265 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 266 "asan-max-inline-poisoning-size", 267 cl::desc( 268 "Inline shadow poisoning for blocks up to the given size in bytes."), 269 cl::Hidden, cl::init(64)); 270 271 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 272 "asan-use-after-return", 273 cl::desc("Sets the mode of detection for stack-use-after-return."), 274 cl::values( 275 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 276 "Never detect stack use after return."), 277 clEnumValN( 278 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 279 "Detect stack use after return if " 280 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 281 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 282 "Always detect stack use after return.")), 283 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 284 285 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 286 cl::desc("Create redzones for byval " 287 "arguments (extra copy " 288 "required)"), cl::Hidden, 289 cl::init(true)); 290 291 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 292 cl::desc("Check stack-use-after-scope"), 293 cl::Hidden, cl::init(false)); 294 295 // This flag may need to be replaced with -f[no]asan-globals. 296 static cl::opt<bool> ClGlobals("asan-globals", 297 cl::desc("Handle global objects"), cl::Hidden, 298 cl::init(true)); 299 300 static cl::opt<bool> ClInitializers("asan-initialization-order", 301 cl::desc("Handle C++ initializer order"), 302 cl::Hidden, cl::init(true)); 303 304 static cl::opt<bool> ClInvalidPointerPairs( 305 "asan-detect-invalid-pointer-pair", 306 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 307 cl::init(false)); 308 309 static cl::opt<bool> ClInvalidPointerCmp( 310 "asan-detect-invalid-pointer-cmp", 311 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 312 cl::init(false)); 313 314 static cl::opt<bool> ClInvalidPointerSub( 315 "asan-detect-invalid-pointer-sub", 316 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 317 cl::init(false)); 318 319 static cl::opt<unsigned> ClRealignStack( 320 "asan-realign-stack", 321 cl::desc("Realign stack to the value of this flag (power of two)"), 322 cl::Hidden, cl::init(32)); 323 324 static cl::opt<int> ClInstrumentationWithCallsThreshold( 325 "asan-instrumentation-with-call-threshold", 326 cl::desc( 327 "If the function being instrumented contains more than " 328 "this number of memory accesses, use callbacks instead of " 329 "inline checks (-1 means never use callbacks)."), 330 cl::Hidden, cl::init(7000)); 331 332 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 333 "asan-memory-access-callback-prefix", 334 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 335 cl::init("__asan_")); 336 337 static cl::opt<bool> ClKasanMemIntrinCallbackPrefix( 338 "asan-kernel-mem-intrinsic-prefix", 339 cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden, 340 cl::init(false)); 341 342 static cl::opt<bool> 343 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 344 cl::desc("instrument dynamic allocas"), 345 cl::Hidden, cl::init(true)); 346 347 static cl::opt<bool> ClSkipPromotableAllocas( 348 "asan-skip-promotable-allocas", 349 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 350 cl::init(true)); 351 352 static cl::opt<AsanCtorKind> ClConstructorKind( 353 "asan-constructor-kind", 354 cl::desc("Sets the ASan constructor kind"), 355 cl::values(clEnumValN(AsanCtorKind::None, "none", "No constructors"), 356 clEnumValN(AsanCtorKind::Global, "global", 357 "Use global constructors")), 358 cl::init(AsanCtorKind::Global), cl::Hidden); 359 // These flags allow to change the shadow mapping. 360 // The shadow mapping looks like 361 // Shadow = (Mem >> scale) + offset 362 363 static cl::opt<int> ClMappingScale("asan-mapping-scale", 364 cl::desc("scale of asan shadow mapping"), 365 cl::Hidden, cl::init(0)); 366 367 static cl::opt<uint64_t> 368 ClMappingOffset("asan-mapping-offset", 369 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 370 cl::Hidden, cl::init(0)); 371 372 // Optimization flags. Not user visible, used mostly for testing 373 // and benchmarking the tool. 374 375 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 376 cl::Hidden, cl::init(true)); 377 378 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", 379 cl::desc("Optimize callbacks"), 380 cl::Hidden, cl::init(false)); 381 382 static cl::opt<bool> ClOptSameTemp( 383 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 384 cl::Hidden, cl::init(true)); 385 386 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 387 cl::desc("Don't instrument scalar globals"), 388 cl::Hidden, cl::init(true)); 389 390 static cl::opt<bool> ClOptStack( 391 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 392 cl::Hidden, cl::init(false)); 393 394 static cl::opt<bool> ClDynamicAllocaStack( 395 "asan-stack-dynamic-alloca", 396 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 397 cl::init(true)); 398 399 static cl::opt<uint32_t> ClForceExperiment( 400 "asan-force-experiment", 401 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 402 cl::init(0)); 403 404 static cl::opt<bool> 405 ClUsePrivateAlias("asan-use-private-alias", 406 cl::desc("Use private aliases for global variables"), 407 cl::Hidden, cl::init(true)); 408 409 static cl::opt<bool> 410 ClUseOdrIndicator("asan-use-odr-indicator", 411 cl::desc("Use odr indicators to improve ODR reporting"), 412 cl::Hidden, cl::init(true)); 413 414 static cl::opt<bool> 415 ClUseGlobalsGC("asan-globals-live-support", 416 cl::desc("Use linker features to support dead " 417 "code stripping of globals"), 418 cl::Hidden, cl::init(true)); 419 420 // This is on by default even though there is a bug in gold: 421 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 422 static cl::opt<bool> 423 ClWithComdat("asan-with-comdat", 424 cl::desc("Place ASan constructors in comdat sections"), 425 cl::Hidden, cl::init(true)); 426 427 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 428 "asan-destructor-kind", 429 cl::desc("Sets the ASan destructor kind. The default is to use the value " 430 "provided to the pass constructor"), 431 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 432 clEnumValN(AsanDtorKind::Global, "global", 433 "Use global destructors")), 434 cl::init(AsanDtorKind::Invalid), cl::Hidden); 435 436 // Debug flags. 437 438 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 439 cl::init(0)); 440 441 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 442 cl::Hidden, cl::init(0)); 443 444 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 445 cl::desc("Debug func")); 446 447 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 448 cl::Hidden, cl::init(-1)); 449 450 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 451 cl::Hidden, cl::init(-1)); 452 453 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 454 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 455 STATISTIC(NumOptimizedAccessesToGlobalVar, 456 "Number of optimized accesses to global vars"); 457 STATISTIC(NumOptimizedAccessesToStackVar, 458 "Number of optimized accesses to stack vars"); 459 460 namespace { 461 462 /// This struct defines the shadow mapping using the rule: 463 /// shadow = (mem >> Scale) ADD-or-OR Offset. 464 /// If InGlobal is true, then 465 /// extern char __asan_shadow[]; 466 /// shadow = (mem >> Scale) + &__asan_shadow 467 struct ShadowMapping { 468 int Scale; 469 uint64_t Offset; 470 bool OrShadowOffset; 471 bool InGlobal; 472 }; 473 474 } // end anonymous namespace 475 476 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, 477 bool IsKasan) { 478 bool IsAndroid = TargetTriple.isAndroid(); 479 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() || 480 TargetTriple.isDriverKit(); 481 bool IsMacOS = TargetTriple.isMacOSX(); 482 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 483 bool IsNetBSD = TargetTriple.isOSNetBSD(); 484 bool IsPS = TargetTriple.isPS(); 485 bool IsLinux = TargetTriple.isOSLinux(); 486 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 487 TargetTriple.getArch() == Triple::ppc64le; 488 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 489 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 490 bool IsMIPSN32ABI = TargetTriple.getEnvironment() == Triple::GNUABIN32; 491 bool IsMIPS32 = TargetTriple.isMIPS32(); 492 bool IsMIPS64 = TargetTriple.isMIPS64(); 493 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 494 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 495 bool IsLoongArch64 = TargetTriple.getArch() == Triple::loongarch64; 496 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 497 bool IsWindows = TargetTriple.isOSWindows(); 498 bool IsFuchsia = TargetTriple.isOSFuchsia(); 499 bool IsEmscripten = TargetTriple.isOSEmscripten(); 500 bool IsAMDGPU = TargetTriple.isAMDGPU(); 501 502 ShadowMapping Mapping; 503 504 Mapping.Scale = kDefaultShadowScale; 505 if (ClMappingScale.getNumOccurrences() > 0) { 506 Mapping.Scale = ClMappingScale; 507 } 508 509 if (LongSize == 32) { 510 if (IsAndroid) 511 Mapping.Offset = kDynamicShadowSentinel; 512 else if (IsMIPSN32ABI) 513 Mapping.Offset = kMIPS_ShadowOffsetN32; 514 else if (IsMIPS32) 515 Mapping.Offset = kMIPS32_ShadowOffset32; 516 else if (IsFreeBSD) 517 Mapping.Offset = kFreeBSD_ShadowOffset32; 518 else if (IsNetBSD) 519 Mapping.Offset = kNetBSD_ShadowOffset32; 520 else if (IsIOS) 521 Mapping.Offset = kDynamicShadowSentinel; 522 else if (IsWindows) 523 Mapping.Offset = kWindowsShadowOffset32; 524 else if (IsEmscripten) 525 Mapping.Offset = kEmscriptenShadowOffset; 526 else 527 Mapping.Offset = kDefaultShadowOffset32; 528 } else { // LongSize == 64 529 // Fuchsia is always PIE, which means that the beginning of the address 530 // space is always available. 531 if (IsFuchsia) 532 Mapping.Offset = 0; 533 else if (IsPPC64) 534 Mapping.Offset = kPPC64_ShadowOffset64; 535 else if (IsSystemZ) 536 Mapping.Offset = kSystemZ_ShadowOffset64; 537 else if (IsFreeBSD && IsAArch64) 538 Mapping.Offset = kFreeBSDAArch64_ShadowOffset64; 539 else if (IsFreeBSD && !IsMIPS64) { 540 if (IsKasan) 541 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 542 else 543 Mapping.Offset = kFreeBSD_ShadowOffset64; 544 } else if (IsNetBSD) { 545 if (IsKasan) 546 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 547 else 548 Mapping.Offset = kNetBSD_ShadowOffset64; 549 } else if (IsPS) 550 Mapping.Offset = kPS_ShadowOffset64; 551 else if (IsLinux && IsX86_64) { 552 if (IsKasan) 553 Mapping.Offset = kLinuxKasan_ShadowOffset64; 554 else 555 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 556 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 557 } else if (IsWindows && IsX86_64) { 558 Mapping.Offset = kWindowsShadowOffset64; 559 } else if (IsMIPS64) 560 Mapping.Offset = kMIPS64_ShadowOffset64; 561 else if (IsIOS) 562 Mapping.Offset = kDynamicShadowSentinel; 563 else if (IsMacOS && IsAArch64) 564 Mapping.Offset = kDynamicShadowSentinel; 565 else if (IsAArch64) 566 Mapping.Offset = kAArch64_ShadowOffset64; 567 else if (IsLoongArch64) 568 Mapping.Offset = kLoongArch64_ShadowOffset64; 569 else if (IsRISCV64) 570 Mapping.Offset = kRISCV64_ShadowOffset64; 571 else if (IsAMDGPU) 572 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 573 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 574 else 575 Mapping.Offset = kDefaultShadowOffset64; 576 } 577 578 if (ClForceDynamicShadow) { 579 Mapping.Offset = kDynamicShadowSentinel; 580 } 581 582 if (ClMappingOffset.getNumOccurrences() > 0) { 583 Mapping.Offset = ClMappingOffset; 584 } 585 586 // OR-ing shadow offset if more efficient (at least on x86) if the offset 587 // is a power of two, but on ppc64 and loongarch64 we have to use add since 588 // the shadow offset is not necessarily 1/8-th of the address space. On 589 // SystemZ, we could OR the constant in a single instruction, but it's more 590 // efficient to load it once and use indexed addressing. 591 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS && 592 !IsRISCV64 && !IsLoongArch64 && 593 !(Mapping.Offset & (Mapping.Offset - 1)) && 594 Mapping.Offset != kDynamicShadowSentinel; 595 bool IsAndroidWithIfuncSupport = 596 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 597 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 598 599 return Mapping; 600 } 601 602 namespace llvm { 603 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, 604 bool IsKasan, uint64_t *ShadowBase, 605 int *MappingScale, bool *OrShadowOffset) { 606 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); 607 *ShadowBase = Mapping.Offset; 608 *MappingScale = Mapping.Scale; 609 *OrShadowOffset = Mapping.OrShadowOffset; 610 } 611 612 ASanAccessInfo::ASanAccessInfo(int32_t Packed) 613 : Packed(Packed), 614 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), 615 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), 616 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} 617 618 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, 619 uint8_t AccessSizeIndex) 620 : Packed((IsWrite << kIsWriteShift) + 621 (CompileKernel << kCompileKernelShift) + 622 (AccessSizeIndex << kAccessSizeIndexShift)), 623 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), 624 CompileKernel(CompileKernel) {} 625 626 } // namespace llvm 627 628 static uint64_t getRedzoneSizeForScale(int MappingScale) { 629 // Redzone used for stack and globals is at least 32 bytes. 630 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 631 return std::max(32U, 1U << MappingScale); 632 } 633 634 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 635 if (TargetTriple.isOSEmscripten()) { 636 return kAsanEmscriptenCtorAndDtorPriority; 637 } else { 638 return kAsanCtorAndDtorPriority; 639 } 640 } 641 642 namespace { 643 644 /// AddressSanitizer: instrument the code in module to find memory bugs. 645 struct AddressSanitizer { 646 AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI, 647 bool CompileKernel = false, bool Recover = false, 648 bool UseAfterScope = false, 649 AsanDetectStackUseAfterReturnMode UseAfterReturn = 650 AsanDetectStackUseAfterReturnMode::Runtime) 651 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 652 : CompileKernel), 653 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 654 UseAfterScope(UseAfterScope || ClUseAfterScope), 655 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn 656 : UseAfterReturn), 657 SSGI(SSGI) { 658 C = &(M.getContext()); 659 LongSize = M.getDataLayout().getPointerSizeInBits(); 660 IntptrTy = Type::getIntNTy(*C, LongSize); 661 Int8PtrTy = Type::getInt8PtrTy(*C); 662 Int32Ty = Type::getInt32Ty(*C); 663 TargetTriple = Triple(M.getTargetTriple()); 664 665 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 666 667 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); 668 } 669 670 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 671 uint64_t ArraySize = 1; 672 if (AI.isArrayAllocation()) { 673 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 674 assert(CI && "non-constant array size"); 675 ArraySize = CI->getZExtValue(); 676 } 677 Type *Ty = AI.getAllocatedType(); 678 uint64_t SizeInBytes = 679 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 680 return SizeInBytes * ArraySize; 681 } 682 683 /// Check if we want (and can) handle this alloca. 684 bool isInterestingAlloca(const AllocaInst &AI); 685 686 bool ignoreAccess(Instruction *Inst, Value *Ptr); 687 void getInterestingMemoryOperands( 688 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 689 690 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 691 InterestingMemoryOperand &O, bool UseCalls, 692 const DataLayout &DL); 693 void instrumentPointerComparisonOrSubtraction(Instruction *I); 694 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 695 Value *Addr, uint32_t TypeSize, bool IsWrite, 696 Value *SizeArgument, bool UseCalls, uint32_t Exp); 697 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 698 Instruction *InsertBefore, Value *Addr, 699 uint32_t TypeSize, bool IsWrite, 700 Value *SizeArgument); 701 void instrumentUnusualSizeOrAlignment(Instruction *I, 702 Instruction *InsertBefore, Value *Addr, 703 uint32_t TypeSize, bool IsWrite, 704 Value *SizeArgument, bool UseCalls, 705 uint32_t Exp); 706 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 707 Value *ShadowValue, uint32_t TypeSize); 708 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 709 bool IsWrite, size_t AccessSizeIndex, 710 Value *SizeArgument, uint32_t Exp); 711 void instrumentMemIntrinsic(MemIntrinsic *MI); 712 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 713 bool suppressInstrumentationSiteForDebug(int &Instrumented); 714 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 715 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 716 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 717 void markEscapedLocalAllocas(Function &F); 718 719 private: 720 friend struct FunctionStackPoisoner; 721 722 void initializeCallbacks(Module &M, const TargetLibraryInfo *TLI); 723 724 bool LooksLikeCodeInBug11395(Instruction *I); 725 bool GlobalIsLinkerInitialized(GlobalVariable *G); 726 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 727 uint64_t TypeSize) const; 728 729 /// Helper to cleanup per-function state. 730 struct FunctionStateRAII { 731 AddressSanitizer *Pass; 732 733 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 734 assert(Pass->ProcessedAllocas.empty() && 735 "last pass forgot to clear cache"); 736 assert(!Pass->LocalDynamicShadow); 737 } 738 739 ~FunctionStateRAII() { 740 Pass->LocalDynamicShadow = nullptr; 741 Pass->ProcessedAllocas.clear(); 742 } 743 }; 744 745 LLVMContext *C; 746 Triple TargetTriple; 747 int LongSize; 748 bool CompileKernel; 749 bool Recover; 750 bool UseAfterScope; 751 AsanDetectStackUseAfterReturnMode UseAfterReturn; 752 Type *IntptrTy; 753 Type *Int8PtrTy; 754 Type *Int32Ty; 755 ShadowMapping Mapping; 756 FunctionCallee AsanHandleNoReturnFunc; 757 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 758 Constant *AsanShadowGlobal; 759 760 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 761 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 762 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 763 764 // These arrays is indexed by AccessIsWrite and Experiment. 765 FunctionCallee AsanErrorCallbackSized[2][2]; 766 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 767 768 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 769 Value *LocalDynamicShadow = nullptr; 770 const StackSafetyGlobalInfo *SSGI; 771 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 772 773 FunctionCallee AMDGPUAddressShared; 774 FunctionCallee AMDGPUAddressPrivate; 775 }; 776 777 class ModuleAddressSanitizer { 778 public: 779 ModuleAddressSanitizer(Module &M, bool CompileKernel = false, 780 bool Recover = false, bool UseGlobalsGC = true, 781 bool UseOdrIndicator = true, 782 AsanDtorKind DestructorKind = AsanDtorKind::Global, 783 AsanCtorKind ConstructorKind = AsanCtorKind::Global) 784 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 785 : CompileKernel), 786 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 787 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 788 // Enable aliases as they should have no downside with ODR indicators. 789 UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0 790 ? ClUsePrivateAlias 791 : UseOdrIndicator), 792 UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0 793 ? ClUseOdrIndicator 794 : UseOdrIndicator), 795 // Not a typo: ClWithComdat is almost completely pointless without 796 // ClUseGlobalsGC (because then it only works on modules without 797 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 798 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 799 // argument is designed as workaround. Therefore, disable both 800 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 801 // do globals-gc. 802 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 803 DestructorKind(DestructorKind), 804 ConstructorKind(ConstructorKind) { 805 C = &(M.getContext()); 806 int LongSize = M.getDataLayout().getPointerSizeInBits(); 807 IntptrTy = Type::getIntNTy(*C, LongSize); 808 TargetTriple = Triple(M.getTargetTriple()); 809 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 810 811 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 812 this->DestructorKind = ClOverrideDestructorKind; 813 assert(this->DestructorKind != AsanDtorKind::Invalid); 814 } 815 816 bool instrumentModule(Module &); 817 818 private: 819 void initializeCallbacks(Module &M); 820 821 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 822 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 823 ArrayRef<GlobalVariable *> ExtendedGlobals, 824 ArrayRef<Constant *> MetadataInitializers); 825 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 826 ArrayRef<GlobalVariable *> ExtendedGlobals, 827 ArrayRef<Constant *> MetadataInitializers, 828 const std::string &UniqueModuleId); 829 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 830 ArrayRef<GlobalVariable *> ExtendedGlobals, 831 ArrayRef<Constant *> MetadataInitializers); 832 void 833 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 834 ArrayRef<GlobalVariable *> ExtendedGlobals, 835 ArrayRef<Constant *> MetadataInitializers); 836 837 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 838 StringRef OriginalName); 839 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 840 StringRef InternalSuffix); 841 Instruction *CreateAsanModuleDtor(Module &M); 842 843 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 844 bool shouldInstrumentGlobal(GlobalVariable *G) const; 845 bool ShouldUseMachOGlobalsSection() const; 846 StringRef getGlobalMetadataSection() const; 847 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 848 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 849 uint64_t getMinRedzoneSizeForGlobal() const { 850 return getRedzoneSizeForScale(Mapping.Scale); 851 } 852 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 853 int GetAsanVersion(const Module &M) const; 854 855 bool CompileKernel; 856 bool Recover; 857 bool UseGlobalsGC; 858 bool UsePrivateAlias; 859 bool UseOdrIndicator; 860 bool UseCtorComdat; 861 AsanDtorKind DestructorKind; 862 AsanCtorKind ConstructorKind; 863 Type *IntptrTy; 864 LLVMContext *C; 865 Triple TargetTriple; 866 ShadowMapping Mapping; 867 FunctionCallee AsanPoisonGlobals; 868 FunctionCallee AsanUnpoisonGlobals; 869 FunctionCallee AsanRegisterGlobals; 870 FunctionCallee AsanUnregisterGlobals; 871 FunctionCallee AsanRegisterImageGlobals; 872 FunctionCallee AsanUnregisterImageGlobals; 873 FunctionCallee AsanRegisterElfGlobals; 874 FunctionCallee AsanUnregisterElfGlobals; 875 876 Function *AsanCtorFunction = nullptr; 877 Function *AsanDtorFunction = nullptr; 878 }; 879 880 // Stack poisoning does not play well with exception handling. 881 // When an exception is thrown, we essentially bypass the code 882 // that unpoisones the stack. This is why the run-time library has 883 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 884 // stack in the interceptor. This however does not work inside the 885 // actual function which catches the exception. Most likely because the 886 // compiler hoists the load of the shadow value somewhere too high. 887 // This causes asan to report a non-existing bug on 453.povray. 888 // It sounds like an LLVM bug. 889 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 890 Function &F; 891 AddressSanitizer &ASan; 892 DIBuilder DIB; 893 LLVMContext *C; 894 Type *IntptrTy; 895 Type *IntptrPtrTy; 896 ShadowMapping Mapping; 897 898 SmallVector<AllocaInst *, 16> AllocaVec; 899 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 900 SmallVector<Instruction *, 8> RetVec; 901 902 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 903 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 904 FunctionCallee AsanSetShadowFunc[0x100] = {}; 905 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 906 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 907 908 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 909 struct AllocaPoisonCall { 910 IntrinsicInst *InsBefore; 911 AllocaInst *AI; 912 uint64_t Size; 913 bool DoPoison; 914 }; 915 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 916 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 917 bool HasUntracedLifetimeIntrinsic = false; 918 919 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 920 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 921 AllocaInst *DynamicAllocaLayout = nullptr; 922 IntrinsicInst *LocalEscapeCall = nullptr; 923 924 bool HasInlineAsm = false; 925 bool HasReturnsTwiceCall = false; 926 bool PoisonStack; 927 928 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 929 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 930 C(ASan.C), IntptrTy(ASan.IntptrTy), 931 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 932 PoisonStack(ClStack && 933 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 934 935 bool runOnFunction() { 936 if (!PoisonStack) 937 return false; 938 939 if (ClRedzoneByvalArgs) 940 copyArgsPassedByValToAllocas(); 941 942 // Collect alloca, ret, lifetime instructions etc. 943 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 944 945 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 946 947 initializeCallbacks(*F.getParent()); 948 949 if (HasUntracedLifetimeIntrinsic) { 950 // If there are lifetime intrinsics which couldn't be traced back to an 951 // alloca, we may not know exactly when a variable enters scope, and 952 // therefore should "fail safe" by not poisoning them. 953 StaticAllocaPoisonCallVec.clear(); 954 DynamicAllocaPoisonCallVec.clear(); 955 } 956 957 processDynamicAllocas(); 958 processStaticAllocas(); 959 960 if (ClDebugStack) { 961 LLVM_DEBUG(dbgs() << F); 962 } 963 return true; 964 } 965 966 // Arguments marked with the "byval" attribute are implicitly copied without 967 // using an alloca instruction. To produce redzones for those arguments, we 968 // copy them a second time into memory allocated with an alloca instruction. 969 void copyArgsPassedByValToAllocas(); 970 971 // Finds all Alloca instructions and puts 972 // poisoned red zones around all of them. 973 // Then unpoison everything back before the function returns. 974 void processStaticAllocas(); 975 void processDynamicAllocas(); 976 977 void createDynamicAllocasInitStorage(); 978 979 // ----------------------- Visitors. 980 /// Collect all Ret instructions, or the musttail call instruction if it 981 /// precedes the return instruction. 982 void visitReturnInst(ReturnInst &RI) { 983 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 984 RetVec.push_back(CI); 985 else 986 RetVec.push_back(&RI); 987 } 988 989 /// Collect all Resume instructions. 990 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 991 992 /// Collect all CatchReturnInst instructions. 993 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 994 995 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 996 Value *SavedStack) { 997 IRBuilder<> IRB(InstBefore); 998 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 999 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1000 // need to adjust extracted SP to compute the address of the most recent 1001 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1002 // this purpose. 1003 if (!isa<ReturnInst>(InstBefore)) { 1004 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 1005 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 1006 {IntptrTy}); 1007 1008 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 1009 1010 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1011 DynamicAreaOffset); 1012 } 1013 1014 IRB.CreateCall( 1015 AsanAllocasUnpoisonFunc, 1016 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1017 } 1018 1019 // Unpoison dynamic allocas redzones. 1020 void unpoisonDynamicAllocas() { 1021 for (Instruction *Ret : RetVec) 1022 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1023 1024 for (Instruction *StackRestoreInst : StackRestoreVec) 1025 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1026 StackRestoreInst->getOperand(0)); 1027 } 1028 1029 // Deploy and poison redzones around dynamic alloca call. To do this, we 1030 // should replace this call with another one with changed parameters and 1031 // replace all its uses with new address, so 1032 // addr = alloca type, old_size, align 1033 // is replaced by 1034 // new_size = (old_size + additional_size) * sizeof(type) 1035 // tmp = alloca i8, new_size, max(align, 32) 1036 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1037 // Additional_size is added to make new memory allocation contain not only 1038 // requested memory, but also left, partial and right redzones. 1039 void handleDynamicAllocaCall(AllocaInst *AI); 1040 1041 /// Collect Alloca instructions we want (and can) handle. 1042 void visitAllocaInst(AllocaInst &AI) { 1043 if (!ASan.isInterestingAlloca(AI)) { 1044 if (AI.isStaticAlloca()) { 1045 // Skip over allocas that are present *before* the first instrumented 1046 // alloca, we don't want to move those around. 1047 if (AllocaVec.empty()) 1048 return; 1049 1050 StaticAllocasToMoveUp.push_back(&AI); 1051 } 1052 return; 1053 } 1054 1055 if (!AI.isStaticAlloca()) 1056 DynamicAllocaVec.push_back(&AI); 1057 else 1058 AllocaVec.push_back(&AI); 1059 } 1060 1061 /// Collect lifetime intrinsic calls to check for use-after-scope 1062 /// errors. 1063 void visitIntrinsicInst(IntrinsicInst &II) { 1064 Intrinsic::ID ID = II.getIntrinsicID(); 1065 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1066 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1067 if (!ASan.UseAfterScope) 1068 return; 1069 if (!II.isLifetimeStartOrEnd()) 1070 return; 1071 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1072 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1073 // If size argument is undefined, don't do anything. 1074 if (Size->isMinusOne()) return; 1075 // Check that size doesn't saturate uint64_t and can 1076 // be stored in IntptrTy. 1077 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1078 if (SizeValue == ~0ULL || 1079 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1080 return; 1081 // Find alloca instruction that corresponds to llvm.lifetime argument. 1082 // Currently we can only handle lifetime markers pointing to the 1083 // beginning of the alloca. 1084 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1085 if (!AI) { 1086 HasUntracedLifetimeIntrinsic = true; 1087 return; 1088 } 1089 // We're interested only in allocas we can handle. 1090 if (!ASan.isInterestingAlloca(*AI)) 1091 return; 1092 bool DoPoison = (ID == Intrinsic::lifetime_end); 1093 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1094 if (AI->isStaticAlloca()) 1095 StaticAllocaPoisonCallVec.push_back(APC); 1096 else if (ClInstrumentDynamicAllocas) 1097 DynamicAllocaPoisonCallVec.push_back(APC); 1098 } 1099 1100 void visitCallBase(CallBase &CB) { 1101 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1102 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1103 HasReturnsTwiceCall |= CI->canReturnTwice(); 1104 } 1105 } 1106 1107 // ---------------------- Helpers. 1108 void initializeCallbacks(Module &M); 1109 1110 // Copies bytes from ShadowBytes into shadow memory for indexes where 1111 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1112 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1113 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1114 IRBuilder<> &IRB, Value *ShadowBase); 1115 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1116 size_t Begin, size_t End, IRBuilder<> &IRB, 1117 Value *ShadowBase); 1118 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1119 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1120 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1121 1122 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1123 1124 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1125 bool Dynamic); 1126 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1127 Instruction *ThenTerm, Value *ValueIfFalse); 1128 }; 1129 1130 } // end anonymous namespace 1131 1132 void AddressSanitizerPass::printPipeline( 1133 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1134 static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline( 1135 OS, MapClassName2PassName); 1136 OS << "<"; 1137 if (Options.CompileKernel) 1138 OS << "kernel"; 1139 OS << ">"; 1140 } 1141 1142 AddressSanitizerPass::AddressSanitizerPass( 1143 const AddressSanitizerOptions &Options, bool UseGlobalGC, 1144 bool UseOdrIndicator, AsanDtorKind DestructorKind, 1145 AsanCtorKind ConstructorKind) 1146 : Options(Options), UseGlobalGC(UseGlobalGC), 1147 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind), 1148 ConstructorKind(ClConstructorKind) {} 1149 1150 PreservedAnalyses AddressSanitizerPass::run(Module &M, 1151 ModuleAnalysisManager &MAM) { 1152 ModuleAddressSanitizer ModuleSanitizer(M, Options.CompileKernel, 1153 Options.Recover, UseGlobalGC, 1154 UseOdrIndicator, DestructorKind, 1155 ConstructorKind); 1156 bool Modified = false; 1157 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1158 const StackSafetyGlobalInfo *const SSGI = 1159 ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr; 1160 for (Function &F : M) { 1161 AddressSanitizer FunctionSanitizer(M, SSGI, Options.CompileKernel, 1162 Options.Recover, Options.UseAfterScope, 1163 Options.UseAfterReturn); 1164 const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1165 Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); 1166 } 1167 Modified |= ModuleSanitizer.instrumentModule(M); 1168 if (!Modified) 1169 return PreservedAnalyses::all(); 1170 1171 PreservedAnalyses PA = PreservedAnalyses::none(); 1172 // GlobalsAA is considered stateless and does not get invalidated unless 1173 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 1174 // make changes that require GlobalsAA to be invalidated. 1175 PA.abandon<GlobalsAA>(); 1176 return PA; 1177 } 1178 1179 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1180 size_t Res = countTrailingZeros(TypeSize / 8); 1181 assert(Res < kNumberOfAccessSizes); 1182 return Res; 1183 } 1184 1185 /// Check if \p G has been created by a trusted compiler pass. 1186 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1187 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1188 if (G->getName().startswith("llvm.") || 1189 // Do not instrument gcov counter arrays. 1190 G->getName().startswith("__llvm_gcov_ctr") || 1191 // Do not instrument rtti proxy symbols for function sanitizer. 1192 G->getName().startswith("__llvm_rtti_proxy")) 1193 return true; 1194 1195 // Do not instrument asan globals. 1196 if (G->getName().startswith(kAsanGenPrefix) || 1197 G->getName().startswith(kSanCovGenPrefix) || 1198 G->getName().startswith(kODRGenPrefix)) 1199 return true; 1200 1201 return false; 1202 } 1203 1204 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1205 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1206 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1207 if (AddrSpace == 3 || AddrSpace == 5) 1208 return true; 1209 return false; 1210 } 1211 1212 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1213 // Shadow >> scale 1214 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1215 if (Mapping.Offset == 0) return Shadow; 1216 // (Shadow >> scale) | offset 1217 Value *ShadowBase; 1218 if (LocalDynamicShadow) 1219 ShadowBase = LocalDynamicShadow; 1220 else 1221 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1222 if (Mapping.OrShadowOffset) 1223 return IRB.CreateOr(Shadow, ShadowBase); 1224 else 1225 return IRB.CreateAdd(Shadow, ShadowBase); 1226 } 1227 1228 // Instrument memset/memmove/memcpy 1229 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1230 IRBuilder<> IRB(MI); 1231 if (isa<MemTransferInst>(MI)) { 1232 IRB.CreateCall( 1233 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1234 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1235 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1236 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1237 } else if (isa<MemSetInst>(MI)) { 1238 IRB.CreateCall( 1239 AsanMemset, 1240 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1241 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1242 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1243 } 1244 MI->eraseFromParent(); 1245 } 1246 1247 /// Check if we want (and can) handle this alloca. 1248 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1249 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1250 1251 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1252 return PreviouslySeenAllocaInfo->getSecond(); 1253 1254 bool IsInteresting = 1255 (AI.getAllocatedType()->isSized() && 1256 // alloca() may be called with 0 size, ignore it. 1257 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1258 // We are only interested in allocas not promotable to registers. 1259 // Promotable allocas are common under -O0. 1260 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1261 // inalloca allocas are not treated as static, and we don't want 1262 // dynamic alloca instrumentation for them as well. 1263 !AI.isUsedWithInAlloca() && 1264 // swifterror allocas are register promoted by ISel 1265 !AI.isSwiftError() && 1266 // safe allocas are not interesting 1267 !(SSGI && SSGI->isSafe(AI))); 1268 1269 ProcessedAllocas[&AI] = IsInteresting; 1270 return IsInteresting; 1271 } 1272 1273 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { 1274 // Instrument accesses from different address spaces only for AMDGPU. 1275 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1276 if (PtrTy->getPointerAddressSpace() != 0 && 1277 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1278 return true; 1279 1280 // Ignore swifterror addresses. 1281 // swifterror memory addresses are mem2reg promoted by instruction 1282 // selection. As such they cannot have regular uses like an instrumentation 1283 // function and it makes no sense to track them as memory. 1284 if (Ptr->isSwiftError()) 1285 return true; 1286 1287 // Treat memory accesses to promotable allocas as non-interesting since they 1288 // will not cause memory violations. This greatly speeds up the instrumented 1289 // executable at -O0. 1290 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1291 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1292 return true; 1293 1294 if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && 1295 findAllocaForValue(Ptr)) 1296 return true; 1297 1298 return false; 1299 } 1300 1301 void AddressSanitizer::getInterestingMemoryOperands( 1302 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1303 // Do not instrument the load fetching the dynamic shadow address. 1304 if (LocalDynamicShadow == I) 1305 return; 1306 1307 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1308 if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand())) 1309 return; 1310 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1311 LI->getType(), LI->getAlign()); 1312 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1313 if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand())) 1314 return; 1315 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1316 SI->getValueOperand()->getType(), SI->getAlign()); 1317 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1318 if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand())) 1319 return; 1320 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1321 RMW->getValOperand()->getType(), std::nullopt); 1322 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1323 if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand())) 1324 return; 1325 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1326 XCHG->getCompareOperand()->getType(), 1327 std::nullopt); 1328 } else if (auto CI = dyn_cast<CallInst>(I)) { 1329 if (CI->getIntrinsicID() == Intrinsic::masked_load || 1330 CI->getIntrinsicID() == Intrinsic::masked_store) { 1331 bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_store; 1332 // Masked store has an initial operand for the value. 1333 unsigned OpOffset = IsWrite ? 1 : 0; 1334 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1335 return; 1336 1337 auto BasePtr = CI->getOperand(OpOffset); 1338 if (ignoreAccess(I, BasePtr)) 1339 return; 1340 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1341 MaybeAlign Alignment = Align(1); 1342 // Otherwise no alignment guarantees. We probably got Undef. 1343 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1344 Alignment = Op->getMaybeAlignValue(); 1345 Value *Mask = CI->getOperand(2 + OpOffset); 1346 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1347 } else { 1348 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { 1349 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1350 ignoreAccess(I, CI->getArgOperand(ArgNo))) 1351 continue; 1352 Type *Ty = CI->getParamByValType(ArgNo); 1353 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1354 } 1355 } 1356 } 1357 } 1358 1359 static bool isPointerOperand(Value *V) { 1360 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1361 } 1362 1363 // This is a rough heuristic; it may cause both false positives and 1364 // false negatives. The proper implementation requires cooperation with 1365 // the frontend. 1366 static bool isInterestingPointerComparison(Instruction *I) { 1367 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1368 if (!Cmp->isRelational()) 1369 return false; 1370 } else { 1371 return false; 1372 } 1373 return isPointerOperand(I->getOperand(0)) && 1374 isPointerOperand(I->getOperand(1)); 1375 } 1376 1377 // This is a rough heuristic; it may cause both false positives and 1378 // false negatives. The proper implementation requires cooperation with 1379 // the frontend. 1380 static bool isInterestingPointerSubtraction(Instruction *I) { 1381 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1382 if (BO->getOpcode() != Instruction::Sub) 1383 return false; 1384 } else { 1385 return false; 1386 } 1387 return isPointerOperand(I->getOperand(0)) && 1388 isPointerOperand(I->getOperand(1)); 1389 } 1390 1391 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1392 // If a global variable does not have dynamic initialization we don't 1393 // have to instrument it. However, if a global does not have initializer 1394 // at all, we assume it has dynamic initializer (in other TU). 1395 if (!G->hasInitializer()) 1396 return false; 1397 1398 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit) 1399 return false; 1400 1401 return true; 1402 } 1403 1404 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1405 Instruction *I) { 1406 IRBuilder<> IRB(I); 1407 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1408 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1409 for (Value *&i : Param) { 1410 if (i->getType()->isPointerTy()) 1411 i = IRB.CreatePointerCast(i, IntptrTy); 1412 } 1413 IRB.CreateCall(F, Param); 1414 } 1415 1416 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1417 Instruction *InsertBefore, Value *Addr, 1418 MaybeAlign Alignment, unsigned Granularity, 1419 uint32_t TypeSize, bool IsWrite, 1420 Value *SizeArgument, bool UseCalls, 1421 uint32_t Exp) { 1422 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1423 // if the data is properly aligned. 1424 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1425 TypeSize == 128) && 1426 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1427 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1428 nullptr, UseCalls, Exp); 1429 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1430 IsWrite, nullptr, UseCalls, Exp); 1431 } 1432 1433 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1434 const DataLayout &DL, Type *IntptrTy, 1435 Value *Mask, Instruction *I, 1436 Value *Addr, MaybeAlign Alignment, 1437 unsigned Granularity, Type *OpType, 1438 bool IsWrite, Value *SizeArgument, 1439 bool UseCalls, uint32_t Exp) { 1440 auto *VTy = cast<FixedVectorType>(OpType); 1441 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1442 unsigned Num = VTy->getNumElements(); 1443 auto Zero = ConstantInt::get(IntptrTy, 0); 1444 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1445 Value *InstrumentedAddress = nullptr; 1446 Instruction *InsertBefore = I; 1447 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1448 // dyn_cast as we might get UndefValue 1449 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1450 if (Masked->isZero()) 1451 // Mask is constant false, so no instrumentation needed. 1452 continue; 1453 // If we have a true or undef value, fall through to doInstrumentAddress 1454 // with InsertBefore == I 1455 } 1456 } else { 1457 IRBuilder<> IRB(I); 1458 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1459 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1460 InsertBefore = ThenTerm; 1461 } 1462 1463 IRBuilder<> IRB(InsertBefore); 1464 InstrumentedAddress = 1465 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1466 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1467 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1468 UseCalls, Exp); 1469 } 1470 } 1471 1472 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1473 InterestingMemoryOperand &O, bool UseCalls, 1474 const DataLayout &DL) { 1475 Value *Addr = O.getPtr(); 1476 1477 // Optimization experiments. 1478 // The experiments can be used to evaluate potential optimizations that remove 1479 // instrumentation (assess false negatives). Instead of completely removing 1480 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1481 // experiments that want to remove instrumentation of this instruction). 1482 // If Exp is non-zero, this pass will emit special calls into runtime 1483 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1484 // make runtime terminate the program in a special way (with a different 1485 // exit status). Then you run the new compiler on a buggy corpus, collect 1486 // the special terminations (ideally, you don't see them at all -- no false 1487 // negatives) and make the decision on the optimization. 1488 uint32_t Exp = ClForceExperiment; 1489 1490 if (ClOpt && ClOptGlobals) { 1491 // If initialization order checking is disabled, a simple access to a 1492 // dynamically initialized global is always valid. 1493 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1494 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1495 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1496 NumOptimizedAccessesToGlobalVar++; 1497 return; 1498 } 1499 } 1500 1501 if (ClOpt && ClOptStack) { 1502 // A direct inbounds access to a stack variable is always valid. 1503 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1504 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1505 NumOptimizedAccessesToStackVar++; 1506 return; 1507 } 1508 } 1509 1510 if (O.IsWrite) 1511 NumInstrumentedWrites++; 1512 else 1513 NumInstrumentedReads++; 1514 1515 unsigned Granularity = 1 << Mapping.Scale; 1516 if (O.MaybeMask) { 1517 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1518 Addr, O.Alignment, Granularity, O.OpType, 1519 O.IsWrite, nullptr, UseCalls, Exp); 1520 } else { 1521 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1522 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1523 Exp); 1524 } 1525 } 1526 1527 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1528 Value *Addr, bool IsWrite, 1529 size_t AccessSizeIndex, 1530 Value *SizeArgument, 1531 uint32_t Exp) { 1532 IRBuilder<> IRB(InsertBefore); 1533 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1534 CallInst *Call = nullptr; 1535 if (SizeArgument) { 1536 if (Exp == 0) 1537 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1538 {Addr, SizeArgument}); 1539 else 1540 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1541 {Addr, SizeArgument, ExpVal}); 1542 } else { 1543 if (Exp == 0) 1544 Call = 1545 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1546 else 1547 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1548 {Addr, ExpVal}); 1549 } 1550 1551 Call->setCannotMerge(); 1552 return Call; 1553 } 1554 1555 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1556 Value *ShadowValue, 1557 uint32_t TypeSize) { 1558 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1559 // Addr & (Granularity - 1) 1560 Value *LastAccessedByte = 1561 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1562 // (Addr & (Granularity - 1)) + size - 1 1563 if (TypeSize / 8 > 1) 1564 LastAccessedByte = IRB.CreateAdd( 1565 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1566 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1567 LastAccessedByte = 1568 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1569 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1570 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1571 } 1572 1573 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1574 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1575 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { 1576 // Do not instrument unsupported addrspaces. 1577 if (isUnsupportedAMDGPUAddrspace(Addr)) 1578 return nullptr; 1579 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1580 // Follow host instrumentation for global and constant addresses. 1581 if (PtrTy->getPointerAddressSpace() != 0) 1582 return InsertBefore; 1583 // Instrument generic addresses in supported addressspaces. 1584 IRBuilder<> IRB(InsertBefore); 1585 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); 1586 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); 1587 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); 1588 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1589 Value *Cmp = IRB.CreateNot(IsSharedOrPrivate); 1590 Value *AddrSpaceZeroLanding = 1591 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1592 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1593 return InsertBefore; 1594 } 1595 1596 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1597 Instruction *InsertBefore, Value *Addr, 1598 uint32_t TypeSize, bool IsWrite, 1599 Value *SizeArgument, bool UseCalls, 1600 uint32_t Exp) { 1601 if (TargetTriple.isAMDGPU()) { 1602 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1603 TypeSize, IsWrite, SizeArgument); 1604 if (!InsertBefore) 1605 return; 1606 } 1607 1608 IRBuilder<> IRB(InsertBefore); 1609 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1610 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1611 1612 if (UseCalls && ClOptimizeCallbacks) { 1613 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1614 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1615 IRB.CreateCall( 1616 Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), 1617 {IRB.CreatePointerCast(Addr, Int8PtrTy), 1618 ConstantInt::get(Int32Ty, AccessInfo.Packed)}); 1619 return; 1620 } 1621 1622 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1623 if (UseCalls) { 1624 if (Exp == 0) 1625 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1626 AddrLong); 1627 else 1628 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1629 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1630 return; 1631 } 1632 1633 Type *ShadowTy = 1634 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1635 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1636 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1637 Value *ShadowValue = 1638 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1639 1640 Value *Cmp = IRB.CreateIsNotNull(ShadowValue); 1641 size_t Granularity = 1ULL << Mapping.Scale; 1642 Instruction *CrashTerm = nullptr; 1643 1644 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1645 // We use branch weights for the slow path check, to indicate that the slow 1646 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1647 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1648 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1649 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1650 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1651 IRB.SetInsertPoint(CheckTerm); 1652 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1653 if (Recover) { 1654 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1655 } else { 1656 BasicBlock *CrashBlock = 1657 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1658 CrashTerm = new UnreachableInst(*C, CrashBlock); 1659 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1660 ReplaceInstWithInst(CheckTerm, NewTerm); 1661 } 1662 } else { 1663 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1664 } 1665 1666 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1667 AccessSizeIndex, SizeArgument, Exp); 1668 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1669 } 1670 1671 // Instrument unusual size or unusual alignment. 1672 // We can not do it with a single check, so we do 1-byte check for the first 1673 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1674 // to report the actual access size. 1675 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1676 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1677 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1678 IRBuilder<> IRB(InsertBefore); 1679 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1680 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1681 if (UseCalls) { 1682 if (Exp == 0) 1683 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1684 {AddrLong, Size}); 1685 else 1686 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1687 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1688 } else { 1689 Value *LastByte = IRB.CreateIntToPtr( 1690 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1691 Addr->getType()); 1692 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1693 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1694 } 1695 } 1696 1697 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1698 GlobalValue *ModuleName) { 1699 // Set up the arguments to our poison/unpoison functions. 1700 IRBuilder<> IRB(&GlobalInit.front(), 1701 GlobalInit.front().getFirstInsertionPt()); 1702 1703 // Add a call to poison all external globals before the given function starts. 1704 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1705 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1706 1707 // Add calls to unpoison all globals before each return instruction. 1708 for (auto &BB : GlobalInit) 1709 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1710 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1711 } 1712 1713 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1714 Module &M, GlobalValue *ModuleName) { 1715 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1716 if (!GV) 1717 return; 1718 1719 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1720 if (!CA) 1721 return; 1722 1723 for (Use &OP : CA->operands()) { 1724 if (isa<ConstantAggregateZero>(OP)) continue; 1725 ConstantStruct *CS = cast<ConstantStruct>(OP); 1726 1727 // Must have a function or null ptr. 1728 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1729 if (F->getName() == kAsanModuleCtorName) continue; 1730 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1731 // Don't instrument CTORs that will run before asan.module_ctor. 1732 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1733 continue; 1734 poisonOneInitializer(*F, ModuleName); 1735 } 1736 } 1737 } 1738 1739 const GlobalVariable * 1740 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1741 // In case this function should be expanded to include rules that do not just 1742 // apply when CompileKernel is true, either guard all existing rules with an 1743 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1744 // should also apply to user space. 1745 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1746 1747 const Constant *C = GA.getAliasee(); 1748 1749 // When compiling the kernel, globals that are aliased by symbols prefixed 1750 // by "__" are special and cannot be padded with a redzone. 1751 if (GA.getName().startswith("__")) 1752 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1753 1754 return nullptr; 1755 } 1756 1757 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1758 Type *Ty = G->getValueType(); 1759 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1760 1761 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress) 1762 return false; 1763 if (!Ty->isSized()) return false; 1764 if (!G->hasInitializer()) return false; 1765 // Globals in address space 1 and 4 are supported for AMDGPU. 1766 if (G->getAddressSpace() && 1767 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 1768 return false; 1769 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1770 // Two problems with thread-locals: 1771 // - The address of the main thread's copy can't be computed at link-time. 1772 // - Need to poison all copies, not just the main thread's one. 1773 if (G->isThreadLocal()) return false; 1774 // For now, just ignore this Global if the alignment is large. 1775 if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false; 1776 1777 // For non-COFF targets, only instrument globals known to be defined by this 1778 // TU. 1779 // FIXME: We can instrument comdat globals on ELF if we are using the 1780 // GC-friendly metadata scheme. 1781 if (!TargetTriple.isOSBinFormatCOFF()) { 1782 if (!G->hasExactDefinition() || G->hasComdat()) 1783 return false; 1784 } else { 1785 // On COFF, don't instrument non-ODR linkages. 1786 if (G->isInterposable()) 1787 return false; 1788 } 1789 1790 // If a comdat is present, it must have a selection kind that implies ODR 1791 // semantics: no duplicates, any, or exact match. 1792 if (Comdat *C = G->getComdat()) { 1793 switch (C->getSelectionKind()) { 1794 case Comdat::Any: 1795 case Comdat::ExactMatch: 1796 case Comdat::NoDeduplicate: 1797 break; 1798 case Comdat::Largest: 1799 case Comdat::SameSize: 1800 return false; 1801 } 1802 } 1803 1804 if (G->hasSection()) { 1805 // The kernel uses explicit sections for mostly special global variables 1806 // that we should not instrument. E.g. the kernel may rely on their layout 1807 // without redzones, or remove them at link time ("discard.*"), etc. 1808 if (CompileKernel) 1809 return false; 1810 1811 StringRef Section = G->getSection(); 1812 1813 // Globals from llvm.metadata aren't emitted, do not instrument them. 1814 if (Section == "llvm.metadata") return false; 1815 // Do not instrument globals from special LLVM sections. 1816 if (Section.contains("__llvm") || Section.contains("__LLVM")) 1817 return false; 1818 1819 // Do not instrument function pointers to initialization and termination 1820 // routines: dynamic linker will not properly handle redzones. 1821 if (Section.startswith(".preinit_array") || 1822 Section.startswith(".init_array") || 1823 Section.startswith(".fini_array")) { 1824 return false; 1825 } 1826 1827 // Do not instrument user-defined sections (with names resembling 1828 // valid C identifiers) 1829 if (TargetTriple.isOSBinFormatELF()) { 1830 if (llvm::all_of(Section, 1831 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 1832 return false; 1833 } 1834 1835 // On COFF, if the section name contains '$', it is highly likely that the 1836 // user is using section sorting to create an array of globals similar to 1837 // the way initialization callbacks are registered in .init_array and 1838 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1839 // to such globals is counterproductive, because the intent is that they 1840 // will form an array, and out-of-bounds accesses are expected. 1841 // See https://github.com/google/sanitizers/issues/305 1842 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1843 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1844 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1845 << *G << "\n"); 1846 return false; 1847 } 1848 1849 if (TargetTriple.isOSBinFormatMachO()) { 1850 StringRef ParsedSegment, ParsedSection; 1851 unsigned TAA = 0, StubSize = 0; 1852 bool TAAParsed; 1853 cantFail(MCSectionMachO::ParseSectionSpecifier( 1854 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 1855 1856 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1857 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1858 // them. 1859 if (ParsedSegment == "__OBJC" || 1860 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1861 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1862 return false; 1863 } 1864 // See https://github.com/google/sanitizers/issues/32 1865 // Constant CFString instances are compiled in the following way: 1866 // -- the string buffer is emitted into 1867 // __TEXT,__cstring,cstring_literals 1868 // -- the constant NSConstantString structure referencing that buffer 1869 // is placed into __DATA,__cfstring 1870 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1871 // Moreover, it causes the linker to crash on OS X 10.7 1872 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1873 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1874 return false; 1875 } 1876 // The linker merges the contents of cstring_literals and removes the 1877 // trailing zeroes. 1878 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1879 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1880 return false; 1881 } 1882 } 1883 } 1884 1885 if (CompileKernel) { 1886 // Globals that prefixed by "__" are special and cannot be padded with a 1887 // redzone. 1888 if (G->getName().startswith("__")) 1889 return false; 1890 } 1891 1892 return true; 1893 } 1894 1895 // On Mach-O platforms, we emit global metadata in a separate section of the 1896 // binary in order to allow the linker to properly dead strip. This is only 1897 // supported on recent versions of ld64. 1898 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1899 if (!TargetTriple.isOSBinFormatMachO()) 1900 return false; 1901 1902 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1903 return true; 1904 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1905 return true; 1906 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1907 return true; 1908 if (TargetTriple.isDriverKit()) 1909 return true; 1910 1911 return false; 1912 } 1913 1914 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1915 switch (TargetTriple.getObjectFormat()) { 1916 case Triple::COFF: return ".ASAN$GL"; 1917 case Triple::ELF: return "asan_globals"; 1918 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1919 case Triple::Wasm: 1920 case Triple::GOFF: 1921 case Triple::SPIRV: 1922 case Triple::XCOFF: 1923 case Triple::DXContainer: 1924 report_fatal_error( 1925 "ModuleAddressSanitizer not implemented for object file format"); 1926 case Triple::UnknownObjectFormat: 1927 break; 1928 } 1929 llvm_unreachable("unsupported object format"); 1930 } 1931 1932 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1933 IRBuilder<> IRB(*C); 1934 1935 // Declare our poisoning and unpoisoning functions. 1936 AsanPoisonGlobals = 1937 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1938 AsanUnpoisonGlobals = 1939 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1940 1941 // Declare functions that register/unregister globals. 1942 AsanRegisterGlobals = M.getOrInsertFunction( 1943 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1944 AsanUnregisterGlobals = M.getOrInsertFunction( 1945 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1946 1947 // Declare the functions that find globals in a shared object and then invoke 1948 // the (un)register function on them. 1949 AsanRegisterImageGlobals = M.getOrInsertFunction( 1950 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1951 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1952 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1953 1954 AsanRegisterElfGlobals = 1955 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1956 IntptrTy, IntptrTy, IntptrTy); 1957 AsanUnregisterElfGlobals = 1958 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1959 IntptrTy, IntptrTy, IntptrTy); 1960 } 1961 1962 // Put the metadata and the instrumented global in the same group. This ensures 1963 // that the metadata is discarded if the instrumented global is discarded. 1964 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 1965 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1966 Module &M = *G->getParent(); 1967 Comdat *C = G->getComdat(); 1968 if (!C) { 1969 if (!G->hasName()) { 1970 // If G is unnamed, it must be internal. Give it an artificial name 1971 // so we can put it in a comdat. 1972 assert(G->hasLocalLinkage()); 1973 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 1974 } 1975 1976 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 1977 std::string Name = std::string(G->getName()); 1978 Name += InternalSuffix; 1979 C = M.getOrInsertComdat(Name); 1980 } else { 1981 C = M.getOrInsertComdat(G->getName()); 1982 } 1983 1984 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 1985 // linkage to internal linkage so that a symbol table entry is emitted. This 1986 // is necessary in order to create the comdat group. 1987 if (TargetTriple.isOSBinFormatCOFF()) { 1988 C->setSelectionKind(Comdat::NoDeduplicate); 1989 if (G->hasPrivateLinkage()) 1990 G->setLinkage(GlobalValue::InternalLinkage); 1991 } 1992 G->setComdat(C); 1993 } 1994 1995 assert(G->hasComdat()); 1996 Metadata->setComdat(G->getComdat()); 1997 } 1998 1999 // Create a separate metadata global and put it in the appropriate ASan 2000 // global registration section. 2001 GlobalVariable * 2002 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2003 StringRef OriginalName) { 2004 auto Linkage = TargetTriple.isOSBinFormatMachO() 2005 ? GlobalVariable::InternalLinkage 2006 : GlobalVariable::PrivateLinkage; 2007 GlobalVariable *Metadata = new GlobalVariable( 2008 M, Initializer->getType(), false, Linkage, Initializer, 2009 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2010 Metadata->setSection(getGlobalMetadataSection()); 2011 return Metadata; 2012 } 2013 2014 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2015 AsanDtorFunction = Function::createWithDefaultAttr( 2016 FunctionType::get(Type::getVoidTy(*C), false), 2017 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2018 AsanDtorFunction->addFnAttr(Attribute::NoUnwind); 2019 // Ensure Dtor cannot be discarded, even if in a comdat. 2020 appendToUsed(M, {AsanDtorFunction}); 2021 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2022 2023 return ReturnInst::Create(*C, AsanDtorBB); 2024 } 2025 2026 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2027 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2028 ArrayRef<Constant *> MetadataInitializers) { 2029 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2030 auto &DL = M.getDataLayout(); 2031 2032 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2033 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2034 Constant *Initializer = MetadataInitializers[i]; 2035 GlobalVariable *G = ExtendedGlobals[i]; 2036 GlobalVariable *Metadata = 2037 CreateMetadataGlobal(M, Initializer, G->getName()); 2038 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2039 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2040 MetadataGlobals[i] = Metadata; 2041 2042 // The MSVC linker always inserts padding when linking incrementally. We 2043 // cope with that by aligning each struct to its size, which must be a power 2044 // of two. 2045 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2046 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2047 "global metadata will not be padded appropriately"); 2048 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2049 2050 SetComdatForGlobalMetadata(G, Metadata, ""); 2051 } 2052 2053 // Update llvm.compiler.used, adding the new metadata globals. This is 2054 // needed so that during LTO these variables stay alive. 2055 if (!MetadataGlobals.empty()) 2056 appendToCompilerUsed(M, MetadataGlobals); 2057 } 2058 2059 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2060 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2061 ArrayRef<Constant *> MetadataInitializers, 2062 const std::string &UniqueModuleId) { 2063 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2064 2065 // Putting globals in a comdat changes the semantic and potentially cause 2066 // false negative odr violations at link time. If odr indicators are used, we 2067 // keep the comdat sections, as link time odr violations will be dectected on 2068 // the odr indicator symbols. 2069 bool UseComdatForGlobalsGC = UseOdrIndicator; 2070 2071 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2072 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2073 GlobalVariable *G = ExtendedGlobals[i]; 2074 GlobalVariable *Metadata = 2075 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2076 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2077 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2078 MetadataGlobals[i] = Metadata; 2079 2080 if (UseComdatForGlobalsGC) 2081 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2082 } 2083 2084 // Update llvm.compiler.used, adding the new metadata globals. This is 2085 // needed so that during LTO these variables stay alive. 2086 if (!MetadataGlobals.empty()) 2087 appendToCompilerUsed(M, MetadataGlobals); 2088 2089 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2090 // to look up the loaded image that contains it. Second, we can store in it 2091 // whether registration has already occurred, to prevent duplicate 2092 // registration. 2093 // 2094 // Common linkage ensures that there is only one global per shared library. 2095 GlobalVariable *RegisteredFlag = new GlobalVariable( 2096 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2097 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2098 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2099 2100 // Create start and stop symbols. 2101 GlobalVariable *StartELFMetadata = new GlobalVariable( 2102 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2103 "__start_" + getGlobalMetadataSection()); 2104 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2105 GlobalVariable *StopELFMetadata = new GlobalVariable( 2106 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2107 "__stop_" + getGlobalMetadataSection()); 2108 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2109 2110 // Create a call to register the globals with the runtime. 2111 if (ConstructorKind == AsanCtorKind::Global) 2112 IRB.CreateCall(AsanRegisterElfGlobals, 2113 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2114 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2115 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2116 2117 // We also need to unregister globals at the end, e.g., when a shared library 2118 // gets closed. 2119 if (DestructorKind != AsanDtorKind::None) { 2120 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2121 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2122 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2123 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2124 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2125 } 2126 } 2127 2128 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2129 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2130 ArrayRef<Constant *> MetadataInitializers) { 2131 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2132 2133 // On recent Mach-O platforms, use a structure which binds the liveness of 2134 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2135 // created to be added to llvm.compiler.used 2136 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2137 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2138 2139 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2140 Constant *Initializer = MetadataInitializers[i]; 2141 GlobalVariable *G = ExtendedGlobals[i]; 2142 GlobalVariable *Metadata = 2143 CreateMetadataGlobal(M, Initializer, G->getName()); 2144 2145 // On recent Mach-O platforms, we emit the global metadata in a way that 2146 // allows the linker to properly strip dead globals. 2147 auto LivenessBinder = 2148 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2149 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2150 GlobalVariable *Liveness = new GlobalVariable( 2151 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2152 Twine("__asan_binder_") + G->getName()); 2153 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2154 LivenessGlobals[i] = Liveness; 2155 } 2156 2157 // Update llvm.compiler.used, adding the new liveness globals. This is 2158 // needed so that during LTO these variables stay alive. The alternative 2159 // would be to have the linker handling the LTO symbols, but libLTO 2160 // current API does not expose access to the section for each symbol. 2161 if (!LivenessGlobals.empty()) 2162 appendToCompilerUsed(M, LivenessGlobals); 2163 2164 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2165 // to look up the loaded image that contains it. Second, we can store in it 2166 // whether registration has already occurred, to prevent duplicate 2167 // registration. 2168 // 2169 // common linkage ensures that there is only one global per shared library. 2170 GlobalVariable *RegisteredFlag = new GlobalVariable( 2171 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2172 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2173 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2174 2175 if (ConstructorKind == AsanCtorKind::Global) 2176 IRB.CreateCall(AsanRegisterImageGlobals, 2177 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2178 2179 // We also need to unregister globals at the end, e.g., when a shared library 2180 // gets closed. 2181 if (DestructorKind != AsanDtorKind::None) { 2182 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2183 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2184 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2185 } 2186 } 2187 2188 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2189 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2190 ArrayRef<Constant *> MetadataInitializers) { 2191 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2192 unsigned N = ExtendedGlobals.size(); 2193 assert(N > 0); 2194 2195 // On platforms that don't have a custom metadata section, we emit an array 2196 // of global metadata structures. 2197 ArrayType *ArrayOfGlobalStructTy = 2198 ArrayType::get(MetadataInitializers[0]->getType(), N); 2199 auto AllGlobals = new GlobalVariable( 2200 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2201 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2202 if (Mapping.Scale > 3) 2203 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2204 2205 if (ConstructorKind == AsanCtorKind::Global) 2206 IRB.CreateCall(AsanRegisterGlobals, 2207 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2208 ConstantInt::get(IntptrTy, N)}); 2209 2210 // We also need to unregister globals at the end, e.g., when a shared library 2211 // gets closed. 2212 if (DestructorKind != AsanDtorKind::None) { 2213 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2214 IrbDtor.CreateCall(AsanUnregisterGlobals, 2215 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2216 ConstantInt::get(IntptrTy, N)}); 2217 } 2218 } 2219 2220 // This function replaces all global variables with new variables that have 2221 // trailing redzones. It also creates a function that poisons 2222 // redzones and inserts this function into llvm.global_ctors. 2223 // Sets *CtorComdat to true if the global registration code emitted into the 2224 // asan constructor is comdat-compatible. 2225 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2226 bool *CtorComdat) { 2227 *CtorComdat = false; 2228 2229 // Build set of globals that are aliased by some GA, where 2230 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2231 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2232 if (CompileKernel) { 2233 for (auto &GA : M.aliases()) { 2234 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2235 AliasedGlobalExclusions.insert(GV); 2236 } 2237 } 2238 2239 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2240 for (auto &G : M.globals()) { 2241 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2242 GlobalsToChange.push_back(&G); 2243 } 2244 2245 size_t n = GlobalsToChange.size(); 2246 if (n == 0) { 2247 *CtorComdat = true; 2248 return false; 2249 } 2250 2251 auto &DL = M.getDataLayout(); 2252 2253 // A global is described by a structure 2254 // size_t beg; 2255 // size_t size; 2256 // size_t size_with_redzone; 2257 // const char *name; 2258 // const char *module_name; 2259 // size_t has_dynamic_init; 2260 // size_t padding_for_windows_msvc_incremental_link; 2261 // size_t odr_indicator; 2262 // We initialize an array of such structures and pass it to a run-time call. 2263 StructType *GlobalStructTy = 2264 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2265 IntptrTy, IntptrTy, IntptrTy); 2266 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2267 SmallVector<Constant *, 16> Initializers(n); 2268 2269 bool HasDynamicallyInitializedGlobals = false; 2270 2271 // We shouldn't merge same module names, as this string serves as unique 2272 // module ID in runtime. 2273 GlobalVariable *ModuleName = createPrivateGlobalForString( 2274 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2275 2276 for (size_t i = 0; i < n; i++) { 2277 GlobalVariable *G = GlobalsToChange[i]; 2278 2279 GlobalValue::SanitizerMetadata MD; 2280 if (G->hasSanitizerMetadata()) 2281 MD = G->getSanitizerMetadata(); 2282 2283 // The runtime library tries demangling symbol names in the descriptor but 2284 // functionality like __cxa_demangle may be unavailable (e.g. 2285 // -static-libstdc++). So we demangle the symbol names here. 2286 std::string NameForGlobal = G->getName().str(); 2287 GlobalVariable *Name = 2288 createPrivateGlobalForString(M, llvm::demangle(NameForGlobal), 2289 /*AllowMerging*/ true, kAsanGenPrefix); 2290 2291 Type *Ty = G->getValueType(); 2292 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2293 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2294 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2295 2296 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2297 Constant *NewInitializer = ConstantStruct::get( 2298 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2299 2300 // Create a new global variable with enough space for a redzone. 2301 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2302 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2303 Linkage = GlobalValue::InternalLinkage; 2304 GlobalVariable *NewGlobal = new GlobalVariable( 2305 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2306 G->getThreadLocalMode(), G->getAddressSpace()); 2307 NewGlobal->copyAttributesFrom(G); 2308 NewGlobal->setComdat(G->getComdat()); 2309 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2310 // Don't fold globals with redzones. ODR violation detector and redzone 2311 // poisoning implicitly creates a dependence on the global's address, so it 2312 // is no longer valid for it to be marked unnamed_addr. 2313 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2314 2315 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2316 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2317 G->isConstant()) { 2318 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2319 if (Seq && Seq->isCString()) 2320 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2321 } 2322 2323 // Transfer the debug info and type metadata. The payload starts at offset 2324 // zero so we can copy the metadata over as is. 2325 NewGlobal->copyMetadata(G, 0); 2326 2327 Value *Indices2[2]; 2328 Indices2[0] = IRB.getInt32(0); 2329 Indices2[1] = IRB.getInt32(0); 2330 2331 G->replaceAllUsesWith( 2332 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2333 NewGlobal->takeName(G); 2334 G->eraseFromParent(); 2335 NewGlobals[i] = NewGlobal; 2336 2337 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2338 GlobalValue *InstrumentedGlobal = NewGlobal; 2339 2340 bool CanUsePrivateAliases = 2341 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2342 TargetTriple.isOSBinFormatWasm(); 2343 if (CanUsePrivateAliases && UsePrivateAlias) { 2344 // Create local alias for NewGlobal to avoid crash on ODR between 2345 // instrumented and non-instrumented libraries. 2346 InstrumentedGlobal = 2347 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2348 } 2349 2350 // ODR should not happen for local linkage. 2351 if (NewGlobal->hasLocalLinkage()) { 2352 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2353 IRB.getInt8PtrTy()); 2354 } else if (UseOdrIndicator) { 2355 // With local aliases, we need to provide another externally visible 2356 // symbol __odr_asan_XXX to detect ODR violation. 2357 auto *ODRIndicatorSym = 2358 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2359 Constant::getNullValue(IRB.getInt8Ty()), 2360 kODRGenPrefix + NameForGlobal, nullptr, 2361 NewGlobal->getThreadLocalMode()); 2362 2363 // Set meaningful attributes for indicator symbol. 2364 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2365 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2366 ODRIndicatorSym->setAlignment(Align(1)); 2367 ODRIndicator = ODRIndicatorSym; 2368 } 2369 2370 Constant *Initializer = ConstantStruct::get( 2371 GlobalStructTy, 2372 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2373 ConstantInt::get(IntptrTy, SizeInBytes), 2374 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2375 ConstantExpr::getPointerCast(Name, IntptrTy), 2376 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2377 ConstantInt::get(IntptrTy, MD.IsDynInit), 2378 Constant::getNullValue(IntptrTy), 2379 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2380 2381 if (ClInitializers && MD.IsDynInit) 2382 HasDynamicallyInitializedGlobals = true; 2383 2384 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2385 2386 Initializers[i] = Initializer; 2387 } 2388 2389 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2390 // ConstantMerge'ing them. 2391 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2392 for (size_t i = 0; i < n; i++) { 2393 GlobalVariable *G = NewGlobals[i]; 2394 if (G->getName().empty()) continue; 2395 GlobalsToAddToUsedList.push_back(G); 2396 } 2397 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2398 2399 std::string ELFUniqueModuleId = 2400 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2401 : ""; 2402 2403 if (!ELFUniqueModuleId.empty()) { 2404 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2405 *CtorComdat = true; 2406 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2407 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2408 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2409 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2410 } else { 2411 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2412 } 2413 2414 // Create calls for poisoning before initializers run and unpoisoning after. 2415 if (HasDynamicallyInitializedGlobals) 2416 createInitializerPoisonCalls(M, ModuleName); 2417 2418 LLVM_DEBUG(dbgs() << M); 2419 return true; 2420 } 2421 2422 uint64_t 2423 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2424 constexpr uint64_t kMaxRZ = 1 << 18; 2425 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2426 2427 uint64_t RZ = 0; 2428 if (SizeInBytes <= MinRZ / 2) { 2429 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2430 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2431 // half of MinRZ. 2432 RZ = MinRZ - SizeInBytes; 2433 } else { 2434 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2435 RZ = std::clamp((SizeInBytes / MinRZ / 4) * MinRZ, MinRZ, kMaxRZ); 2436 2437 // Round up to multiple of MinRZ. 2438 if (SizeInBytes % MinRZ) 2439 RZ += MinRZ - (SizeInBytes % MinRZ); 2440 } 2441 2442 assert((RZ + SizeInBytes) % MinRZ == 0); 2443 2444 return RZ; 2445 } 2446 2447 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2448 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2449 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2450 int Version = 8; 2451 // 32-bit Android is one version ahead because of the switch to dynamic 2452 // shadow. 2453 Version += (LongSize == 32 && isAndroid); 2454 return Version; 2455 } 2456 2457 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2458 initializeCallbacks(M); 2459 2460 // Create a module constructor. A destructor is created lazily because not all 2461 // platforms, and not all modules need it. 2462 if (ConstructorKind == AsanCtorKind::Global) { 2463 if (CompileKernel) { 2464 // The kernel always builds with its own runtime, and therefore does not 2465 // need the init and version check calls. 2466 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2467 } else { 2468 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2469 std::string VersionCheckName = 2470 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2471 std::tie(AsanCtorFunction, std::ignore) = 2472 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2473 kAsanInitName, /*InitArgTypes=*/{}, 2474 /*InitArgs=*/{}, VersionCheckName); 2475 } 2476 } 2477 2478 bool CtorComdat = true; 2479 if (ClGlobals) { 2480 assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None); 2481 if (AsanCtorFunction) { 2482 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2483 InstrumentGlobals(IRB, M, &CtorComdat); 2484 } else { 2485 IRBuilder<> IRB(*C); 2486 InstrumentGlobals(IRB, M, &CtorComdat); 2487 } 2488 } 2489 2490 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2491 2492 // Put the constructor and destructor in comdat if both 2493 // (1) global instrumentation is not TU-specific 2494 // (2) target is ELF. 2495 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2496 if (AsanCtorFunction) { 2497 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2498 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2499 } 2500 if (AsanDtorFunction) { 2501 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2502 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2503 } 2504 } else { 2505 if (AsanCtorFunction) 2506 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2507 if (AsanDtorFunction) 2508 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2509 } 2510 2511 return true; 2512 } 2513 2514 void AddressSanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo *TLI) { 2515 IRBuilder<> IRB(*C); 2516 // Create __asan_report* callbacks. 2517 // IsWrite, TypeSize and Exp are encoded in the function name. 2518 for (int Exp = 0; Exp < 2; Exp++) { 2519 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2520 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2521 const std::string ExpStr = Exp ? "exp_" : ""; 2522 const std::string EndingStr = Recover ? "_noabort" : ""; 2523 2524 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2525 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2526 AttributeList AL2; 2527 AttributeList AL1; 2528 if (Exp) { 2529 Type *ExpType = Type::getInt32Ty(*C); 2530 Args2.push_back(ExpType); 2531 Args1.push_back(ExpType); 2532 if (auto AK = TLI->getExtAttrForI32Param(false)) { 2533 AL2 = AL2.addParamAttribute(*C, 2, AK); 2534 AL1 = AL1.addParamAttribute(*C, 1, AK); 2535 } 2536 } 2537 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2538 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2539 FunctionType::get(IRB.getVoidTy(), Args2, false), AL2); 2540 2541 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2542 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2543 FunctionType::get(IRB.getVoidTy(), Args2, false), AL2); 2544 2545 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2546 AccessSizeIndex++) { 2547 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2548 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2549 M.getOrInsertFunction( 2550 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2551 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1); 2552 2553 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2554 M.getOrInsertFunction( 2555 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2556 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1); 2557 } 2558 } 2559 } 2560 2561 const std::string MemIntrinCallbackPrefix = 2562 (CompileKernel && !ClKasanMemIntrinCallbackPrefix) 2563 ? std::string("") 2564 : ClMemoryAccessCallbackPrefix; 2565 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2566 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2567 IRB.getInt8PtrTy(), IntptrTy); 2568 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2569 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2570 IRB.getInt8PtrTy(), IntptrTy); 2571 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2572 TLI->getAttrList(C, {1}, /*Signed=*/false), 2573 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2574 IRB.getInt32Ty(), IntptrTy); 2575 2576 AsanHandleNoReturnFunc = 2577 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2578 2579 AsanPtrCmpFunction = 2580 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2581 AsanPtrSubFunction = 2582 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2583 if (Mapping.InGlobal) 2584 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2585 ArrayType::get(IRB.getInt8Ty(), 0)); 2586 2587 AMDGPUAddressShared = M.getOrInsertFunction( 2588 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2589 AMDGPUAddressPrivate = M.getOrInsertFunction( 2590 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2591 } 2592 2593 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2594 // For each NSObject descendant having a +load method, this method is invoked 2595 // by the ObjC runtime before any of the static constructors is called. 2596 // Therefore we need to instrument such methods with a call to __asan_init 2597 // at the beginning in order to initialize our runtime before any access to 2598 // the shadow memory. 2599 // We cannot just ignore these methods, because they may call other 2600 // instrumented functions. 2601 if (F.getName().find(" load]") != std::string::npos) { 2602 FunctionCallee AsanInitFunction = 2603 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2604 IRBuilder<> IRB(&F.front(), F.front().begin()); 2605 IRB.CreateCall(AsanInitFunction, {}); 2606 return true; 2607 } 2608 return false; 2609 } 2610 2611 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2612 // Generate code only when dynamic addressing is needed. 2613 if (Mapping.Offset != kDynamicShadowSentinel) 2614 return false; 2615 2616 IRBuilder<> IRB(&F.front().front()); 2617 if (Mapping.InGlobal) { 2618 if (ClWithIfuncSuppressRemat) { 2619 // An empty inline asm with input reg == output reg. 2620 // An opaque pointer-to-int cast, basically. 2621 InlineAsm *Asm = InlineAsm::get( 2622 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2623 StringRef(""), StringRef("=r,0"), 2624 /*hasSideEffects=*/false); 2625 LocalDynamicShadow = 2626 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2627 } else { 2628 LocalDynamicShadow = 2629 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2630 } 2631 } else { 2632 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2633 kAsanShadowMemoryDynamicAddress, IntptrTy); 2634 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2635 } 2636 return true; 2637 } 2638 2639 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2640 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2641 // to it as uninteresting. This assumes we haven't started processing allocas 2642 // yet. This check is done up front because iterating the use list in 2643 // isInterestingAlloca would be algorithmically slower. 2644 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2645 2646 // Try to get the declaration of llvm.localescape. If it's not in the module, 2647 // we can exit early. 2648 if (!F.getParent()->getFunction("llvm.localescape")) return; 2649 2650 // Look for a call to llvm.localescape call in the entry block. It can't be in 2651 // any other block. 2652 for (Instruction &I : F.getEntryBlock()) { 2653 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2654 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2655 // We found a call. Mark all the allocas passed in as uninteresting. 2656 for (Value *Arg : II->args()) { 2657 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2658 assert(AI && AI->isStaticAlloca() && 2659 "non-static alloca arg to localescape"); 2660 ProcessedAllocas[AI] = false; 2661 } 2662 break; 2663 } 2664 } 2665 } 2666 2667 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2668 bool ShouldInstrument = 2669 ClDebugMin < 0 || ClDebugMax < 0 || 2670 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2671 Instrumented++; 2672 return !ShouldInstrument; 2673 } 2674 2675 bool AddressSanitizer::instrumentFunction(Function &F, 2676 const TargetLibraryInfo *TLI) { 2677 if (F.empty()) 2678 return false; 2679 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2680 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2681 if (F.getName().startswith("__asan_")) return false; 2682 2683 bool FunctionModified = false; 2684 2685 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2686 // This function needs to be called even if the function body is not 2687 // instrumented. 2688 if (maybeInsertAsanInitAtFunctionEntry(F)) 2689 FunctionModified = true; 2690 2691 // Leave if the function doesn't need instrumentation. 2692 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2693 2694 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 2695 return FunctionModified; 2696 2697 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2698 2699 initializeCallbacks(*F.getParent(), TLI); 2700 2701 FunctionStateRAII CleanupObj(this); 2702 2703 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2704 2705 // We can't instrument allocas used with llvm.localescape. Only static allocas 2706 // can be passed to that intrinsic. 2707 markEscapedLocalAllocas(F); 2708 2709 // We want to instrument every address only once per basic block (unless there 2710 // are calls between uses). 2711 SmallPtrSet<Value *, 16> TempsToInstrument; 2712 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2713 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2714 SmallVector<Instruction *, 8> NoReturnCalls; 2715 SmallVector<BasicBlock *, 16> AllBlocks; 2716 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2717 2718 // Fill the set of memory operations to instrument. 2719 for (auto &BB : F) { 2720 AllBlocks.push_back(&BB); 2721 TempsToInstrument.clear(); 2722 int NumInsnsPerBB = 0; 2723 for (auto &Inst : BB) { 2724 if (LooksLikeCodeInBug11395(&Inst)) return false; 2725 // Skip instructions inserted by another instrumentation. 2726 if (Inst.hasMetadata(LLVMContext::MD_nosanitize)) 2727 continue; 2728 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2729 getInterestingMemoryOperands(&Inst, InterestingOperands); 2730 2731 if (!InterestingOperands.empty()) { 2732 for (auto &Operand : InterestingOperands) { 2733 if (ClOpt && ClOptSameTemp) { 2734 Value *Ptr = Operand.getPtr(); 2735 // If we have a mask, skip instrumentation if we've already 2736 // instrumented the full object. But don't add to TempsToInstrument 2737 // because we might get another load/store with a different mask. 2738 if (Operand.MaybeMask) { 2739 if (TempsToInstrument.count(Ptr)) 2740 continue; // We've seen this (whole) temp in the current BB. 2741 } else { 2742 if (!TempsToInstrument.insert(Ptr).second) 2743 continue; // We've seen this temp in the current BB. 2744 } 2745 } 2746 OperandsToInstrument.push_back(Operand); 2747 NumInsnsPerBB++; 2748 } 2749 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2750 isInterestingPointerComparison(&Inst)) || 2751 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2752 isInterestingPointerSubtraction(&Inst))) { 2753 PointerComparisonsOrSubtracts.push_back(&Inst); 2754 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2755 // ok, take it. 2756 IntrinToInstrument.push_back(MI); 2757 NumInsnsPerBB++; 2758 } else { 2759 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2760 // A call inside BB. 2761 TempsToInstrument.clear(); 2762 if (CB->doesNotReturn()) 2763 NoReturnCalls.push_back(CB); 2764 } 2765 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2766 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2767 } 2768 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2769 } 2770 } 2771 2772 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2773 OperandsToInstrument.size() + IntrinToInstrument.size() > 2774 (unsigned)ClInstrumentationWithCallsThreshold); 2775 const DataLayout &DL = F.getParent()->getDataLayout(); 2776 ObjectSizeOpts ObjSizeOpts; 2777 ObjSizeOpts.RoundToAlign = true; 2778 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2779 2780 // Instrument. 2781 int NumInstrumented = 0; 2782 for (auto &Operand : OperandsToInstrument) { 2783 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2784 instrumentMop(ObjSizeVis, Operand, UseCalls, 2785 F.getParent()->getDataLayout()); 2786 FunctionModified = true; 2787 } 2788 for (auto *Inst : IntrinToInstrument) { 2789 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2790 instrumentMemIntrinsic(Inst); 2791 FunctionModified = true; 2792 } 2793 2794 FunctionStackPoisoner FSP(F, *this); 2795 bool ChangedStack = FSP.runOnFunction(); 2796 2797 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2798 // See e.g. https://github.com/google/sanitizers/issues/37 2799 for (auto *CI : NoReturnCalls) { 2800 IRBuilder<> IRB(CI); 2801 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2802 } 2803 2804 for (auto *Inst : PointerComparisonsOrSubtracts) { 2805 instrumentPointerComparisonOrSubtraction(Inst); 2806 FunctionModified = true; 2807 } 2808 2809 if (ChangedStack || !NoReturnCalls.empty()) 2810 FunctionModified = true; 2811 2812 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2813 << F << "\n"); 2814 2815 return FunctionModified; 2816 } 2817 2818 // Workaround for bug 11395: we don't want to instrument stack in functions 2819 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2820 // FIXME: remove once the bug 11395 is fixed. 2821 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2822 if (LongSize != 32) return false; 2823 CallInst *CI = dyn_cast<CallInst>(I); 2824 if (!CI || !CI->isInlineAsm()) return false; 2825 if (CI->arg_size() <= 5) 2826 return false; 2827 // We have inline assembly with quite a few arguments. 2828 return true; 2829 } 2830 2831 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2832 IRBuilder<> IRB(*C); 2833 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || 2834 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 2835 const char *MallocNameTemplate = 2836 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always 2837 ? kAsanStackMallocAlwaysNameTemplate 2838 : kAsanStackMallocNameTemplate; 2839 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { 2840 std::string Suffix = itostr(Index); 2841 AsanStackMallocFunc[Index] = M.getOrInsertFunction( 2842 MallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2843 AsanStackFreeFunc[Index] = 2844 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2845 IRB.getVoidTy(), IntptrTy, IntptrTy); 2846 } 2847 } 2848 if (ASan.UseAfterScope) { 2849 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2850 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2851 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2852 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2853 } 2854 2855 for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2, 2856 0xf3, 0xf5, 0xf8}) { 2857 std::ostringstream Name; 2858 Name << kAsanSetShadowPrefix; 2859 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2860 AsanSetShadowFunc[Val] = 2861 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2862 } 2863 2864 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2865 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2866 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2867 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2868 } 2869 2870 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2871 ArrayRef<uint8_t> ShadowBytes, 2872 size_t Begin, size_t End, 2873 IRBuilder<> &IRB, 2874 Value *ShadowBase) { 2875 if (Begin >= End) 2876 return; 2877 2878 const size_t LargestStoreSizeInBytes = 2879 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2880 2881 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2882 2883 // Poison given range in shadow using larges store size with out leading and 2884 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2885 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2886 // middle of a store. 2887 for (size_t i = Begin; i < End;) { 2888 if (!ShadowMask[i]) { 2889 assert(!ShadowBytes[i]); 2890 ++i; 2891 continue; 2892 } 2893 2894 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2895 // Fit store size into the range. 2896 while (StoreSizeInBytes > End - i) 2897 StoreSizeInBytes /= 2; 2898 2899 // Minimize store size by trimming trailing zeros. 2900 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2901 while (j <= StoreSizeInBytes / 2) 2902 StoreSizeInBytes /= 2; 2903 } 2904 2905 uint64_t Val = 0; 2906 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2907 if (IsLittleEndian) 2908 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2909 else 2910 Val = (Val << 8) | ShadowBytes[i + j]; 2911 } 2912 2913 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2914 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2915 IRB.CreateAlignedStore( 2916 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 2917 Align(1)); 2918 2919 i += StoreSizeInBytes; 2920 } 2921 } 2922 2923 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2924 ArrayRef<uint8_t> ShadowBytes, 2925 IRBuilder<> &IRB, Value *ShadowBase) { 2926 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2927 } 2928 2929 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2930 ArrayRef<uint8_t> ShadowBytes, 2931 size_t Begin, size_t End, 2932 IRBuilder<> &IRB, Value *ShadowBase) { 2933 assert(ShadowMask.size() == ShadowBytes.size()); 2934 size_t Done = Begin; 2935 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2936 if (!ShadowMask[i]) { 2937 assert(!ShadowBytes[i]); 2938 continue; 2939 } 2940 uint8_t Val = ShadowBytes[i]; 2941 if (!AsanSetShadowFunc[Val]) 2942 continue; 2943 2944 // Skip same values. 2945 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2946 } 2947 2948 if (j - i >= ClMaxInlinePoisoningSize) { 2949 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2950 IRB.CreateCall(AsanSetShadowFunc[Val], 2951 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2952 ConstantInt::get(IntptrTy, j - i)}); 2953 Done = j; 2954 } 2955 } 2956 2957 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2958 } 2959 2960 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2961 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2962 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2963 assert(LocalStackSize <= kMaxStackMallocSize); 2964 uint64_t MaxSize = kMinStackMallocSize; 2965 for (int i = 0;; i++, MaxSize *= 2) 2966 if (LocalStackSize <= MaxSize) return i; 2967 llvm_unreachable("impossible LocalStackSize"); 2968 } 2969 2970 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2971 Instruction *CopyInsertPoint = &F.front().front(); 2972 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2973 // Insert after the dynamic shadow location is determined 2974 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2975 assert(CopyInsertPoint); 2976 } 2977 IRBuilder<> IRB(CopyInsertPoint); 2978 const DataLayout &DL = F.getParent()->getDataLayout(); 2979 for (Argument &Arg : F.args()) { 2980 if (Arg.hasByValAttr()) { 2981 Type *Ty = Arg.getParamByValType(); 2982 const Align Alignment = 2983 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 2984 2985 AllocaInst *AI = IRB.CreateAlloca( 2986 Ty, nullptr, 2987 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2988 ".byval"); 2989 AI->setAlignment(Alignment); 2990 Arg.replaceAllUsesWith(AI); 2991 2992 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2993 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 2994 } 2995 } 2996 } 2997 2998 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2999 Value *ValueIfTrue, 3000 Instruction *ThenTerm, 3001 Value *ValueIfFalse) { 3002 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3003 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3004 PHI->addIncoming(ValueIfFalse, CondBlock); 3005 BasicBlock *ThenBlock = ThenTerm->getParent(); 3006 PHI->addIncoming(ValueIfTrue, ThenBlock); 3007 return PHI; 3008 } 3009 3010 Value *FunctionStackPoisoner::createAllocaForLayout( 3011 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3012 AllocaInst *Alloca; 3013 if (Dynamic) { 3014 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3015 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3016 "MyAlloca"); 3017 } else { 3018 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3019 nullptr, "MyAlloca"); 3020 assert(Alloca->isStaticAlloca()); 3021 } 3022 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3023 uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); 3024 Alloca->setAlignment(Align(FrameAlignment)); 3025 return IRB.CreatePointerCast(Alloca, IntptrTy); 3026 } 3027 3028 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3029 BasicBlock &FirstBB = *F.begin(); 3030 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3031 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3032 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3033 DynamicAllocaLayout->setAlignment(Align(32)); 3034 } 3035 3036 void FunctionStackPoisoner::processDynamicAllocas() { 3037 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3038 assert(DynamicAllocaPoisonCallVec.empty()); 3039 return; 3040 } 3041 3042 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3043 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3044 assert(APC.InsBefore); 3045 assert(APC.AI); 3046 assert(ASan.isInterestingAlloca(*APC.AI)); 3047 assert(!APC.AI->isStaticAlloca()); 3048 3049 IRBuilder<> IRB(APC.InsBefore); 3050 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3051 // Dynamic allocas will be unpoisoned unconditionally below in 3052 // unpoisonDynamicAllocas. 3053 // Flag that we need unpoison static allocas. 3054 } 3055 3056 // Handle dynamic allocas. 3057 createDynamicAllocasInitStorage(); 3058 for (auto &AI : DynamicAllocaVec) 3059 handleDynamicAllocaCall(AI); 3060 unpoisonDynamicAllocas(); 3061 } 3062 3063 /// Collect instructions in the entry block after \p InsBefore which initialize 3064 /// permanent storage for a function argument. These instructions must remain in 3065 /// the entry block so that uninitialized values do not appear in backtraces. An 3066 /// added benefit is that this conserves spill slots. This does not move stores 3067 /// before instrumented / "interesting" allocas. 3068 static void findStoresToUninstrumentedArgAllocas( 3069 AddressSanitizer &ASan, Instruction &InsBefore, 3070 SmallVectorImpl<Instruction *> &InitInsts) { 3071 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3072 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3073 // Argument initialization looks like: 3074 // 1) store <Argument>, <Alloca> OR 3075 // 2) <CastArgument> = cast <Argument> to ... 3076 // store <CastArgument> to <Alloca> 3077 // Do not consider any other kind of instruction. 3078 // 3079 // Note: This covers all known cases, but may not be exhaustive. An 3080 // alternative to pattern-matching stores is to DFS over all Argument uses: 3081 // this might be more general, but is probably much more complicated. 3082 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3083 continue; 3084 if (auto *Store = dyn_cast<StoreInst>(It)) { 3085 // The store destination must be an alloca that isn't interesting for 3086 // ASan to instrument. These are moved up before InsBefore, and they're 3087 // not interesting because allocas for arguments can be mem2reg'd. 3088 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3089 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3090 continue; 3091 3092 Value *Val = Store->getValueOperand(); 3093 bool IsDirectArgInit = isa<Argument>(Val); 3094 bool IsArgInitViaCast = 3095 isa<CastInst>(Val) && 3096 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3097 // Check that the cast appears directly before the store. Otherwise 3098 // moving the cast before InsBefore may break the IR. 3099 Val == It->getPrevNonDebugInstruction(); 3100 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3101 if (!IsArgInit) 3102 continue; 3103 3104 if (IsArgInitViaCast) 3105 InitInsts.push_back(cast<Instruction>(Val)); 3106 InitInsts.push_back(Store); 3107 continue; 3108 } 3109 3110 // Do not reorder past unknown instructions: argument initialization should 3111 // only involve casts and stores. 3112 return; 3113 } 3114 } 3115 3116 void FunctionStackPoisoner::processStaticAllocas() { 3117 if (AllocaVec.empty()) { 3118 assert(StaticAllocaPoisonCallVec.empty()); 3119 return; 3120 } 3121 3122 int StackMallocIdx = -1; 3123 DebugLoc EntryDebugLocation; 3124 if (auto SP = F.getSubprogram()) 3125 EntryDebugLocation = 3126 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3127 3128 Instruction *InsBefore = AllocaVec[0]; 3129 IRBuilder<> IRB(InsBefore); 3130 3131 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3132 // debug info is broken, because only entry-block allocas are treated as 3133 // regular stack slots. 3134 auto InsBeforeB = InsBefore->getParent(); 3135 assert(InsBeforeB == &F.getEntryBlock()); 3136 for (auto *AI : StaticAllocasToMoveUp) 3137 if (AI->getParent() == InsBeforeB) 3138 AI->moveBefore(InsBefore); 3139 3140 // Move stores of arguments into entry-block allocas as well. This prevents 3141 // extra stack slots from being generated (to house the argument values until 3142 // they can be stored into the allocas). This also prevents uninitialized 3143 // values from being shown in backtraces. 3144 SmallVector<Instruction *, 8> ArgInitInsts; 3145 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3146 for (Instruction *ArgInitInst : ArgInitInsts) 3147 ArgInitInst->moveBefore(InsBefore); 3148 3149 // If we have a call to llvm.localescape, keep it in the entry block. 3150 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3151 3152 SmallVector<ASanStackVariableDescription, 16> SVD; 3153 SVD.reserve(AllocaVec.size()); 3154 for (AllocaInst *AI : AllocaVec) { 3155 ASanStackVariableDescription D = {AI->getName().data(), 3156 ASan.getAllocaSizeInBytes(*AI), 3157 0, 3158 AI->getAlign().value(), 3159 AI, 3160 0, 3161 0}; 3162 SVD.push_back(D); 3163 } 3164 3165 // Minimal header size (left redzone) is 4 pointers, 3166 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3167 uint64_t Granularity = 1ULL << Mapping.Scale; 3168 uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); 3169 const ASanStackFrameLayout &L = 3170 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3171 3172 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3173 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3174 for (auto &Desc : SVD) 3175 AllocaToSVDMap[Desc.AI] = &Desc; 3176 3177 // Update SVD with information from lifetime intrinsics. 3178 for (const auto &APC : StaticAllocaPoisonCallVec) { 3179 assert(APC.InsBefore); 3180 assert(APC.AI); 3181 assert(ASan.isInterestingAlloca(*APC.AI)); 3182 assert(APC.AI->isStaticAlloca()); 3183 3184 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3185 Desc.LifetimeSize = Desc.Size; 3186 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3187 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3188 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3189 if (unsigned Line = LifetimeLoc->getLine()) 3190 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3191 } 3192 } 3193 } 3194 3195 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3196 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3197 uint64_t LocalStackSize = L.FrameSize; 3198 bool DoStackMalloc = 3199 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3200 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3201 bool DoDynamicAlloca = ClDynamicAllocaStack; 3202 // Don't do dynamic alloca or stack malloc if: 3203 // 1) There is inline asm: too often it makes assumptions on which registers 3204 // are available. 3205 // 2) There is a returns_twice call (typically setjmp), which is 3206 // optimization-hostile, and doesn't play well with introduced indirect 3207 // register-relative calculation of local variable addresses. 3208 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3209 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3210 3211 Value *StaticAlloca = 3212 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3213 3214 Value *FakeStack; 3215 Value *LocalStackBase; 3216 Value *LocalStackBaseAlloca; 3217 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3218 3219 if (DoStackMalloc) { 3220 LocalStackBaseAlloca = 3221 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3222 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3223 // void *FakeStack = __asan_option_detect_stack_use_after_return 3224 // ? __asan_stack_malloc_N(LocalStackSize) 3225 // : nullptr; 3226 // void *LocalStackBase = (FakeStack) ? FakeStack : 3227 // alloca(LocalStackSize); 3228 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3229 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3230 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3231 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3232 Constant::getNullValue(IRB.getInt32Ty())); 3233 Instruction *Term = 3234 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3235 IRBuilder<> IRBIf(Term); 3236 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3237 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3238 Value *FakeStackValue = 3239 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3240 ConstantInt::get(IntptrTy, LocalStackSize)); 3241 IRB.SetInsertPoint(InsBefore); 3242 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3243 ConstantInt::get(IntptrTy, 0)); 3244 } else { 3245 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3246 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3247 // void *LocalStackBase = (FakeStack) ? FakeStack : 3248 // alloca(LocalStackSize); 3249 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3250 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3251 ConstantInt::get(IntptrTy, LocalStackSize)); 3252 } 3253 Value *NoFakeStack = 3254 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3255 Instruction *Term = 3256 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3257 IRBuilder<> IRBIf(Term); 3258 Value *AllocaValue = 3259 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3260 3261 IRB.SetInsertPoint(InsBefore); 3262 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3263 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3264 DIExprFlags |= DIExpression::DerefBefore; 3265 } else { 3266 // void *FakeStack = nullptr; 3267 // void *LocalStackBase = alloca(LocalStackSize); 3268 FakeStack = ConstantInt::get(IntptrTy, 0); 3269 LocalStackBase = 3270 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3271 LocalStackBaseAlloca = LocalStackBase; 3272 } 3273 3274 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3275 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3276 // later passes and can result in dropped variable coverage in debug info. 3277 Value *LocalStackBaseAllocaPtr = 3278 isa<PtrToIntInst>(LocalStackBaseAlloca) 3279 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3280 : LocalStackBaseAlloca; 3281 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3282 "Variable descriptions relative to ASan stack base will be dropped"); 3283 3284 // Replace Alloca instructions with base+offset. 3285 for (const auto &Desc : SVD) { 3286 AllocaInst *AI = Desc.AI; 3287 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3288 Desc.Offset); 3289 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3290 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3291 AI->getType()); 3292 AI->replaceAllUsesWith(NewAllocaPtr); 3293 } 3294 3295 // The left-most redzone has enough space for at least 4 pointers. 3296 // Write the Magic value to redzone[0]. 3297 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3298 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3299 BasePlus0); 3300 // Write the frame description constant to redzone[1]. 3301 Value *BasePlus1 = IRB.CreateIntToPtr( 3302 IRB.CreateAdd(LocalStackBase, 3303 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3304 IntptrPtrTy); 3305 GlobalVariable *StackDescriptionGlobal = 3306 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3307 /*AllowMerging*/ true, kAsanGenPrefix); 3308 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3309 IRB.CreateStore(Description, BasePlus1); 3310 // Write the PC to redzone[2]. 3311 Value *BasePlus2 = IRB.CreateIntToPtr( 3312 IRB.CreateAdd(LocalStackBase, 3313 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3314 IntptrPtrTy); 3315 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3316 3317 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3318 3319 // Poison the stack red zones at the entry. 3320 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3321 // As mask we must use most poisoned case: red zones and after scope. 3322 // As bytes we can use either the same or just red zones only. 3323 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3324 3325 if (!StaticAllocaPoisonCallVec.empty()) { 3326 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3327 3328 // Poison static allocas near lifetime intrinsics. 3329 for (const auto &APC : StaticAllocaPoisonCallVec) { 3330 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3331 assert(Desc.Offset % L.Granularity == 0); 3332 size_t Begin = Desc.Offset / L.Granularity; 3333 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3334 3335 IRBuilder<> IRB(APC.InsBefore); 3336 copyToShadow(ShadowAfterScope, 3337 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3338 IRB, ShadowBase); 3339 } 3340 } 3341 3342 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3343 SmallVector<uint8_t, 64> ShadowAfterReturn; 3344 3345 // (Un)poison the stack before all ret instructions. 3346 for (Instruction *Ret : RetVec) { 3347 IRBuilder<> IRBRet(Ret); 3348 // Mark the current frame as retired. 3349 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3350 BasePlus0); 3351 if (DoStackMalloc) { 3352 assert(StackMallocIdx >= 0); 3353 // if FakeStack != 0 // LocalStackBase == FakeStack 3354 // // In use-after-return mode, poison the whole stack frame. 3355 // if StackMallocIdx <= 4 3356 // // For small sizes inline the whole thing: 3357 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3358 // **SavedFlagPtr(FakeStack) = 0 3359 // else 3360 // __asan_stack_free_N(FakeStack, LocalStackSize) 3361 // else 3362 // <This is not a fake stack; unpoison the redzones> 3363 Value *Cmp = 3364 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3365 Instruction *ThenTerm, *ElseTerm; 3366 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3367 3368 IRBuilder<> IRBPoison(ThenTerm); 3369 if (StackMallocIdx <= 4) { 3370 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3371 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3372 kAsanStackUseAfterReturnMagic); 3373 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3374 ShadowBase); 3375 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3376 FakeStack, 3377 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3378 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3379 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3380 IRBPoison.CreateStore( 3381 Constant::getNullValue(IRBPoison.getInt8Ty()), 3382 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3383 } else { 3384 // For larger frames call __asan_stack_free_*. 3385 IRBPoison.CreateCall( 3386 AsanStackFreeFunc[StackMallocIdx], 3387 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3388 } 3389 3390 IRBuilder<> IRBElse(ElseTerm); 3391 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3392 } else { 3393 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3394 } 3395 } 3396 3397 // We are done. Remove the old unused alloca instructions. 3398 for (auto *AI : AllocaVec) 3399 AI->eraseFromParent(); 3400 } 3401 3402 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3403 IRBuilder<> &IRB, bool DoPoison) { 3404 // For now just insert the call to ASan runtime. 3405 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3406 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3407 IRB.CreateCall( 3408 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3409 {AddrArg, SizeArg}); 3410 } 3411 3412 // Handling llvm.lifetime intrinsics for a given %alloca: 3413 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3414 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3415 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3416 // could be poisoned by previous llvm.lifetime.end instruction, as the 3417 // variable may go in and out of scope several times, e.g. in loops). 3418 // (3) if we poisoned at least one %alloca in a function, 3419 // unpoison the whole stack frame at function exit. 3420 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3421 IRBuilder<> IRB(AI); 3422 3423 const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign()); 3424 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3425 3426 Value *Zero = Constant::getNullValue(IntptrTy); 3427 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3428 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3429 3430 // Since we need to extend alloca with additional memory to locate 3431 // redzones, and OldSize is number of allocated blocks with 3432 // ElementSize size, get allocated memory size in bytes by 3433 // OldSize * ElementSize. 3434 const unsigned ElementSize = 3435 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3436 Value *OldSize = 3437 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3438 ConstantInt::get(IntptrTy, ElementSize)); 3439 3440 // PartialSize = OldSize % 32 3441 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3442 3443 // Misalign = kAllocaRzSize - PartialSize; 3444 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3445 3446 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3447 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3448 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3449 3450 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3451 // Alignment is added to locate left redzone, PartialPadding for possible 3452 // partial redzone and kAllocaRzSize for right redzone respectively. 3453 Value *AdditionalChunkSize = IRB.CreateAdd( 3454 ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize), 3455 PartialPadding); 3456 3457 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3458 3459 // Insert new alloca with new NewSize and Alignment params. 3460 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3461 NewAlloca->setAlignment(Alignment); 3462 3463 // NewAddress = Address + Alignment 3464 Value *NewAddress = 3465 IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3466 ConstantInt::get(IntptrTy, Alignment.value())); 3467 3468 // Insert __asan_alloca_poison call for new created alloca. 3469 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3470 3471 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3472 // for unpoisoning stuff. 3473 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3474 3475 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3476 3477 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3478 AI->replaceAllUsesWith(NewAddressPtr); 3479 3480 // We are done. Erase old alloca from parent. 3481 AI->eraseFromParent(); 3482 } 3483 3484 // isSafeAccess returns true if Addr is always inbounds with respect to its 3485 // base object. For example, it is a field access or an array access with 3486 // constant inbounds index. 3487 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3488 Value *Addr, uint64_t TypeSize) const { 3489 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3490 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3491 uint64_t Size = SizeOffset.first.getZExtValue(); 3492 int64_t Offset = SizeOffset.second.getSExtValue(); 3493 // Three checks are required to ensure safety: 3494 // . Offset >= 0 (since the offset is given from the base ptr) 3495 // . Size >= Offset (unsigned) 3496 // . Size - Offset >= NeededSize (unsigned) 3497 return Offset >= 0 && Size >= uint64_t(Offset) && 3498 Size - uint64_t(Offset) >= TypeSize / 8; 3499 } 3500