1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/BinaryFormat/MachO.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DIBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstVisitor.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/MDBuilder.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/MC/MCSectionMachO.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Instrumentation.h" 72 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/ModuleUtils.h" 76 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iomanip> 82 #include <limits> 83 #include <memory> 84 #include <sstream> 85 #include <string> 86 #include <tuple> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "asan" 91 92 static const uint64_t kDefaultShadowScale = 3; 93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 95 static const uint64_t kDynamicShadowSentinel = 96 std::numeric_limits<uint64_t>::max(); 97 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 98 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 99 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 100 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 101 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 102 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 103 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 104 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 105 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 106 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 107 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 108 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 109 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 110 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 111 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 112 static const uint64_t kEmscriptenShadowOffset = 0; 113 114 static const uint64_t kMyriadShadowScale = 5; 115 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 116 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 117 static const uint64_t kMyriadTagShift = 29; 118 static const uint64_t kMyriadDDRTag = 4; 119 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 120 121 // The shadow memory space is dynamically allocated. 122 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 123 124 static const size_t kMinStackMallocSize = 1 << 6; // 64B 125 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 126 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 127 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 128 129 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 130 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 131 static const uint64_t kAsanCtorAndDtorPriority = 1; 132 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 133 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 134 static const char *const kAsanUnregisterGlobalsName = 135 "__asan_unregister_globals"; 136 static const char *const kAsanRegisterImageGlobalsName = 137 "__asan_register_image_globals"; 138 static const char *const kAsanUnregisterImageGlobalsName = 139 "__asan_unregister_image_globals"; 140 static const char *const kAsanRegisterElfGlobalsName = 141 "__asan_register_elf_globals"; 142 static const char *const kAsanUnregisterElfGlobalsName = 143 "__asan_unregister_elf_globals"; 144 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 145 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 146 static const char *const kAsanInitName = "__asan_init"; 147 static const char *const kAsanVersionCheckNamePrefix = 148 "__asan_version_mismatch_check_v"; 149 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 150 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 151 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 152 static const int kMaxAsanStackMallocSizeClass = 10; 153 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 154 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 155 static const char *const kAsanGenPrefix = "___asan_gen_"; 156 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 157 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 158 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 159 static const char *const kAsanPoisonStackMemoryName = 160 "__asan_poison_stack_memory"; 161 static const char *const kAsanUnpoisonStackMemoryName = 162 "__asan_unpoison_stack_memory"; 163 164 // ASan version script has __asan_* wildcard. Triple underscore prevents a 165 // linker (gold) warning about attempting to export a local symbol. 166 static const char *const kAsanGlobalsRegisteredFlagName = 167 "___asan_globals_registered"; 168 169 static const char *const kAsanOptionDetectUseAfterReturn = 170 "__asan_option_detect_stack_use_after_return"; 171 172 static const char *const kAsanShadowMemoryDynamicAddress = 173 "__asan_shadow_memory_dynamic_address"; 174 175 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 176 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 177 178 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 179 static const size_t kNumberOfAccessSizes = 5; 180 181 static const unsigned kAllocaRzSize = 32; 182 183 // Command-line flags. 184 185 static cl::opt<bool> ClEnableKasan( 186 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 187 cl::Hidden, cl::init(false)); 188 189 static cl::opt<bool> ClRecover( 190 "asan-recover", 191 cl::desc("Enable recovery mode (continue-after-error)."), 192 cl::Hidden, cl::init(false)); 193 194 // This flag may need to be replaced with -f[no-]asan-reads. 195 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 196 cl::desc("instrument read instructions"), 197 cl::Hidden, cl::init(true)); 198 199 static cl::opt<bool> ClInstrumentWrites( 200 "asan-instrument-writes", cl::desc("instrument write instructions"), 201 cl::Hidden, cl::init(true)); 202 203 static cl::opt<bool> ClInstrumentAtomics( 204 "asan-instrument-atomics", 205 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 206 cl::init(true)); 207 208 static cl::opt<bool> ClAlwaysSlowPath( 209 "asan-always-slow-path", 210 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 211 cl::init(false)); 212 213 static cl::opt<bool> ClForceDynamicShadow( 214 "asan-force-dynamic-shadow", 215 cl::desc("Load shadow address into a local variable for each function"), 216 cl::Hidden, cl::init(false)); 217 218 static cl::opt<bool> 219 ClWithIfunc("asan-with-ifunc", 220 cl::desc("Access dynamic shadow through an ifunc global on " 221 "platforms that support this"), 222 cl::Hidden, cl::init(true)); 223 224 static cl::opt<bool> ClWithIfuncSuppressRemat( 225 "asan-with-ifunc-suppress-remat", 226 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 227 "it through inline asm in prologue."), 228 cl::Hidden, cl::init(true)); 229 230 // This flag limits the number of instructions to be instrumented 231 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 232 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 233 // set it to 10000. 234 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 235 "asan-max-ins-per-bb", cl::init(10000), 236 cl::desc("maximal number of instructions to instrument in any given BB"), 237 cl::Hidden); 238 239 // This flag may need to be replaced with -f[no]asan-stack. 240 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 241 cl::Hidden, cl::init(true)); 242 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 243 "asan-max-inline-poisoning-size", 244 cl::desc( 245 "Inline shadow poisoning for blocks up to the given size in bytes."), 246 cl::Hidden, cl::init(64)); 247 248 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 249 cl::desc("Check stack-use-after-return"), 250 cl::Hidden, cl::init(true)); 251 252 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 253 cl::desc("Create redzones for byval " 254 "arguments (extra copy " 255 "required)"), cl::Hidden, 256 cl::init(true)); 257 258 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 259 cl::desc("Check stack-use-after-scope"), 260 cl::Hidden, cl::init(false)); 261 262 // This flag may need to be replaced with -f[no]asan-globals. 263 static cl::opt<bool> ClGlobals("asan-globals", 264 cl::desc("Handle global objects"), cl::Hidden, 265 cl::init(true)); 266 267 static cl::opt<bool> ClInitializers("asan-initialization-order", 268 cl::desc("Handle C++ initializer order"), 269 cl::Hidden, cl::init(true)); 270 271 static cl::opt<bool> ClInvalidPointerPairs( 272 "asan-detect-invalid-pointer-pair", 273 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 274 cl::init(false)); 275 276 static cl::opt<bool> ClInvalidPointerCmp( 277 "asan-detect-invalid-pointer-cmp", 278 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 279 cl::init(false)); 280 281 static cl::opt<bool> ClInvalidPointerSub( 282 "asan-detect-invalid-pointer-sub", 283 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 284 cl::init(false)); 285 286 static cl::opt<unsigned> ClRealignStack( 287 "asan-realign-stack", 288 cl::desc("Realign stack to the value of this flag (power of two)"), 289 cl::Hidden, cl::init(32)); 290 291 static cl::opt<int> ClInstrumentationWithCallsThreshold( 292 "asan-instrumentation-with-call-threshold", 293 cl::desc( 294 "If the function being instrumented contains more than " 295 "this number of memory accesses, use callbacks instead of " 296 "inline checks (-1 means never use callbacks)."), 297 cl::Hidden, cl::init(7000)); 298 299 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 300 "asan-memory-access-callback-prefix", 301 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 302 cl::init("__asan_")); 303 304 static cl::opt<bool> 305 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 306 cl::desc("instrument dynamic allocas"), 307 cl::Hidden, cl::init(true)); 308 309 static cl::opt<bool> ClSkipPromotableAllocas( 310 "asan-skip-promotable-allocas", 311 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 312 cl::init(true)); 313 314 // These flags allow to change the shadow mapping. 315 // The shadow mapping looks like 316 // Shadow = (Mem >> scale) + offset 317 318 static cl::opt<int> ClMappingScale("asan-mapping-scale", 319 cl::desc("scale of asan shadow mapping"), 320 cl::Hidden, cl::init(0)); 321 322 static cl::opt<uint64_t> 323 ClMappingOffset("asan-mapping-offset", 324 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 325 cl::Hidden, cl::init(0)); 326 327 // Optimization flags. Not user visible, used mostly for testing 328 // and benchmarking the tool. 329 330 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 331 cl::Hidden, cl::init(true)); 332 333 static cl::opt<bool> ClOptSameTemp( 334 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 335 cl::Hidden, cl::init(true)); 336 337 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 338 cl::desc("Don't instrument scalar globals"), 339 cl::Hidden, cl::init(true)); 340 341 static cl::opt<bool> ClOptStack( 342 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 343 cl::Hidden, cl::init(false)); 344 345 static cl::opt<bool> ClDynamicAllocaStack( 346 "asan-stack-dynamic-alloca", 347 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 348 cl::init(true)); 349 350 static cl::opt<uint32_t> ClForceExperiment( 351 "asan-force-experiment", 352 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 353 cl::init(0)); 354 355 static cl::opt<bool> 356 ClUsePrivateAlias("asan-use-private-alias", 357 cl::desc("Use private aliases for global variables"), 358 cl::Hidden, cl::init(false)); 359 360 static cl::opt<bool> 361 ClUseOdrIndicator("asan-use-odr-indicator", 362 cl::desc("Use odr indicators to improve ODR reporting"), 363 cl::Hidden, cl::init(false)); 364 365 static cl::opt<bool> 366 ClUseGlobalsGC("asan-globals-live-support", 367 cl::desc("Use linker features to support dead " 368 "code stripping of globals"), 369 cl::Hidden, cl::init(true)); 370 371 // This is on by default even though there is a bug in gold: 372 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 373 static cl::opt<bool> 374 ClWithComdat("asan-with-comdat", 375 cl::desc("Place ASan constructors in comdat sections"), 376 cl::Hidden, cl::init(true)); 377 378 // Debug flags. 379 380 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 381 cl::init(0)); 382 383 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 384 cl::Hidden, cl::init(0)); 385 386 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 387 cl::desc("Debug func")); 388 389 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 390 cl::Hidden, cl::init(-1)); 391 392 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 393 cl::Hidden, cl::init(-1)); 394 395 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 396 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 397 STATISTIC(NumOptimizedAccessesToGlobalVar, 398 "Number of optimized accesses to global vars"); 399 STATISTIC(NumOptimizedAccessesToStackVar, 400 "Number of optimized accesses to stack vars"); 401 402 namespace { 403 404 /// This struct defines the shadow mapping using the rule: 405 /// shadow = (mem >> Scale) ADD-or-OR Offset. 406 /// If InGlobal is true, then 407 /// extern char __asan_shadow[]; 408 /// shadow = (mem >> Scale) + &__asan_shadow 409 struct ShadowMapping { 410 int Scale; 411 uint64_t Offset; 412 bool OrShadowOffset; 413 bool InGlobal; 414 }; 415 416 } // end anonymous namespace 417 418 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 419 bool IsKasan) { 420 bool IsAndroid = TargetTriple.isAndroid(); 421 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 422 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 423 bool IsNetBSD = TargetTriple.isOSNetBSD(); 424 bool IsPS4CPU = TargetTriple.isPS4CPU(); 425 bool IsLinux = TargetTriple.isOSLinux(); 426 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 427 TargetTriple.getArch() == Triple::ppc64le; 428 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 429 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 430 bool IsMIPS32 = TargetTriple.isMIPS32(); 431 bool IsMIPS64 = TargetTriple.isMIPS64(); 432 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 433 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 434 bool IsWindows = TargetTriple.isOSWindows(); 435 bool IsFuchsia = TargetTriple.isOSFuchsia(); 436 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 437 bool IsEmscripten = TargetTriple.isOSEmscripten(); 438 439 ShadowMapping Mapping; 440 441 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 442 if (ClMappingScale.getNumOccurrences() > 0) { 443 Mapping.Scale = ClMappingScale; 444 } 445 446 if (LongSize == 32) { 447 if (IsAndroid) 448 Mapping.Offset = kDynamicShadowSentinel; 449 else if (IsMIPS32) 450 Mapping.Offset = kMIPS32_ShadowOffset32; 451 else if (IsFreeBSD) 452 Mapping.Offset = kFreeBSD_ShadowOffset32; 453 else if (IsNetBSD) 454 Mapping.Offset = kNetBSD_ShadowOffset32; 455 else if (IsIOS) 456 Mapping.Offset = kDynamicShadowSentinel; 457 else if (IsWindows) 458 Mapping.Offset = kWindowsShadowOffset32; 459 else if (IsEmscripten) 460 Mapping.Offset = kEmscriptenShadowOffset; 461 else if (IsMyriad) { 462 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 463 (kMyriadMemorySize32 >> Mapping.Scale)); 464 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 465 } 466 else 467 Mapping.Offset = kDefaultShadowOffset32; 468 } else { // LongSize == 64 469 // Fuchsia is always PIE, which means that the beginning of the address 470 // space is always available. 471 if (IsFuchsia) 472 Mapping.Offset = 0; 473 else if (IsPPC64) 474 Mapping.Offset = kPPC64_ShadowOffset64; 475 else if (IsSystemZ) 476 Mapping.Offset = kSystemZ_ShadowOffset64; 477 else if (IsFreeBSD && !IsMIPS64) 478 Mapping.Offset = kFreeBSD_ShadowOffset64; 479 else if (IsNetBSD) { 480 if (IsKasan) 481 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 482 else 483 Mapping.Offset = kNetBSD_ShadowOffset64; 484 } else if (IsPS4CPU) 485 Mapping.Offset = kPS4CPU_ShadowOffset64; 486 else if (IsLinux && IsX86_64) { 487 if (IsKasan) 488 Mapping.Offset = kLinuxKasan_ShadowOffset64; 489 else 490 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 491 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 492 } else if (IsWindows && IsX86_64) { 493 Mapping.Offset = kWindowsShadowOffset64; 494 } else if (IsMIPS64) 495 Mapping.Offset = kMIPS64_ShadowOffset64; 496 else if (IsIOS) 497 Mapping.Offset = kDynamicShadowSentinel; 498 else if (IsAArch64) 499 Mapping.Offset = kAArch64_ShadowOffset64; 500 else 501 Mapping.Offset = kDefaultShadowOffset64; 502 } 503 504 if (ClForceDynamicShadow) { 505 Mapping.Offset = kDynamicShadowSentinel; 506 } 507 508 if (ClMappingOffset.getNumOccurrences() > 0) { 509 Mapping.Offset = ClMappingOffset; 510 } 511 512 // OR-ing shadow offset if more efficient (at least on x86) if the offset 513 // is a power of two, but on ppc64 we have to use add since the shadow 514 // offset is not necessary 1/8-th of the address space. On SystemZ, 515 // we could OR the constant in a single instruction, but it's more 516 // efficient to load it once and use indexed addressing. 517 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 518 !(Mapping.Offset & (Mapping.Offset - 1)) && 519 Mapping.Offset != kDynamicShadowSentinel; 520 bool IsAndroidWithIfuncSupport = 521 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 522 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 523 524 return Mapping; 525 } 526 527 static size_t RedzoneSizeForScale(int MappingScale) { 528 // Redzone used for stack and globals is at least 32 bytes. 529 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 530 return std::max(32U, 1U << MappingScale); 531 } 532 533 namespace { 534 535 /// Module analysis for getting various metadata about the module. 536 class ASanGlobalsMetadataWrapperPass : public ModulePass { 537 public: 538 static char ID; 539 540 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 541 initializeASanGlobalsMetadataWrapperPassPass( 542 *PassRegistry::getPassRegistry()); 543 } 544 545 bool runOnModule(Module &M) override { 546 GlobalsMD = GlobalsMetadata(M); 547 return false; 548 } 549 550 StringRef getPassName() const override { 551 return "ASanGlobalsMetadataWrapperPass"; 552 } 553 554 void getAnalysisUsage(AnalysisUsage &AU) const override { 555 AU.setPreservesAll(); 556 } 557 558 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 559 560 private: 561 GlobalsMetadata GlobalsMD; 562 }; 563 564 char ASanGlobalsMetadataWrapperPass::ID = 0; 565 566 /// AddressSanitizer: instrument the code in module to find memory bugs. 567 struct AddressSanitizer { 568 AddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD, 569 bool CompileKernel = false, bool Recover = false, 570 bool UseAfterScope = false) 571 : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(GlobalsMD) { 572 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 573 this->CompileKernel = 574 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; 575 576 C = &(M.getContext()); 577 LongSize = M.getDataLayout().getPointerSizeInBits(); 578 IntptrTy = Type::getIntNTy(*C, LongSize); 579 TargetTriple = Triple(M.getTargetTriple()); 580 581 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 582 } 583 584 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 585 uint64_t ArraySize = 1; 586 if (AI.isArrayAllocation()) { 587 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 588 assert(CI && "non-constant array size"); 589 ArraySize = CI->getZExtValue(); 590 } 591 Type *Ty = AI.getAllocatedType(); 592 uint64_t SizeInBytes = 593 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 594 return SizeInBytes * ArraySize; 595 } 596 597 /// Check if we want (and can) handle this alloca. 598 bool isInterestingAlloca(const AllocaInst &AI); 599 600 /// If it is an interesting memory access, return the PointerOperand 601 /// and set IsWrite/Alignment. Otherwise return nullptr. 602 /// MaybeMask is an output parameter for the mask Value, if we're looking at a 603 /// masked load/store. 604 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, 605 uint64_t *TypeSize, unsigned *Alignment, 606 Value **MaybeMask = nullptr); 607 608 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, 609 bool UseCalls, const DataLayout &DL); 610 void instrumentPointerComparisonOrSubtraction(Instruction *I); 611 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 612 Value *Addr, uint32_t TypeSize, bool IsWrite, 613 Value *SizeArgument, bool UseCalls, uint32_t Exp); 614 void instrumentUnusualSizeOrAlignment(Instruction *I, 615 Instruction *InsertBefore, Value *Addr, 616 uint32_t TypeSize, bool IsWrite, 617 Value *SizeArgument, bool UseCalls, 618 uint32_t Exp); 619 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 620 Value *ShadowValue, uint32_t TypeSize); 621 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 622 bool IsWrite, size_t AccessSizeIndex, 623 Value *SizeArgument, uint32_t Exp); 624 void instrumentMemIntrinsic(MemIntrinsic *MI); 625 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 626 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 627 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 628 void maybeInsertDynamicShadowAtFunctionEntry(Function &F); 629 void markEscapedLocalAllocas(Function &F); 630 631 private: 632 friend struct FunctionStackPoisoner; 633 634 void initializeCallbacks(Module &M); 635 636 bool LooksLikeCodeInBug11395(Instruction *I); 637 bool GlobalIsLinkerInitialized(GlobalVariable *G); 638 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 639 uint64_t TypeSize) const; 640 641 /// Helper to cleanup per-function state. 642 struct FunctionStateRAII { 643 AddressSanitizer *Pass; 644 645 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 646 assert(Pass->ProcessedAllocas.empty() && 647 "last pass forgot to clear cache"); 648 assert(!Pass->LocalDynamicShadow); 649 } 650 651 ~FunctionStateRAII() { 652 Pass->LocalDynamicShadow = nullptr; 653 Pass->ProcessedAllocas.clear(); 654 } 655 }; 656 657 LLVMContext *C; 658 Triple TargetTriple; 659 int LongSize; 660 bool CompileKernel; 661 bool Recover; 662 bool UseAfterScope; 663 Type *IntptrTy; 664 ShadowMapping Mapping; 665 FunctionCallee AsanHandleNoReturnFunc; 666 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 667 Constant *AsanShadowGlobal; 668 669 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 670 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 671 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 672 673 // These arrays is indexed by AccessIsWrite and Experiment. 674 FunctionCallee AsanErrorCallbackSized[2][2]; 675 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 676 677 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 678 InlineAsm *EmptyAsm; 679 Value *LocalDynamicShadow = nullptr; 680 const GlobalsMetadata &GlobalsMD; 681 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 682 }; 683 684 class AddressSanitizerLegacyPass : public FunctionPass { 685 public: 686 static char ID; 687 688 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 689 bool Recover = false, 690 bool UseAfterScope = false) 691 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 692 UseAfterScope(UseAfterScope) { 693 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 694 } 695 696 StringRef getPassName() const override { 697 return "AddressSanitizerFunctionPass"; 698 } 699 700 void getAnalysisUsage(AnalysisUsage &AU) const override { 701 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 702 AU.addRequired<TargetLibraryInfoWrapperPass>(); 703 } 704 705 bool runOnFunction(Function &F) override { 706 GlobalsMetadata &GlobalsMD = 707 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 708 const TargetLibraryInfo *TLI = 709 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 710 AddressSanitizer ASan(*F.getParent(), GlobalsMD, CompileKernel, Recover, 711 UseAfterScope); 712 return ASan.instrumentFunction(F, TLI); 713 } 714 715 private: 716 bool CompileKernel; 717 bool Recover; 718 bool UseAfterScope; 719 }; 720 721 class ModuleAddressSanitizer { 722 public: 723 ModuleAddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD, 724 bool CompileKernel = false, bool Recover = false, 725 bool UseGlobalsGC = true, bool UseOdrIndicator = false) 726 : GlobalsMD(GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC), 727 // Enable aliases as they should have no downside with ODR indicators. 728 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 729 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 730 // Not a typo: ClWithComdat is almost completely pointless without 731 // ClUseGlobalsGC (because then it only works on modules without 732 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 733 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 734 // argument is designed as workaround. Therefore, disable both 735 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 736 // do globals-gc. 737 UseCtorComdat(UseGlobalsGC && ClWithComdat) { 738 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 739 this->CompileKernel = 740 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; 741 742 C = &(M.getContext()); 743 int LongSize = M.getDataLayout().getPointerSizeInBits(); 744 IntptrTy = Type::getIntNTy(*C, LongSize); 745 TargetTriple = Triple(M.getTargetTriple()); 746 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 747 } 748 749 bool instrumentModule(Module &); 750 751 private: 752 void initializeCallbacks(Module &M); 753 754 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 755 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 756 ArrayRef<GlobalVariable *> ExtendedGlobals, 757 ArrayRef<Constant *> MetadataInitializers); 758 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 759 ArrayRef<GlobalVariable *> ExtendedGlobals, 760 ArrayRef<Constant *> MetadataInitializers, 761 const std::string &UniqueModuleId); 762 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 763 ArrayRef<GlobalVariable *> ExtendedGlobals, 764 ArrayRef<Constant *> MetadataInitializers); 765 void 766 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 767 ArrayRef<GlobalVariable *> ExtendedGlobals, 768 ArrayRef<Constant *> MetadataInitializers); 769 770 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 771 StringRef OriginalName); 772 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 773 StringRef InternalSuffix); 774 IRBuilder<> CreateAsanModuleDtor(Module &M); 775 776 bool ShouldInstrumentGlobal(GlobalVariable *G); 777 bool ShouldUseMachOGlobalsSection() const; 778 StringRef getGlobalMetadataSection() const; 779 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 780 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 781 size_t MinRedzoneSizeForGlobal() const { 782 return RedzoneSizeForScale(Mapping.Scale); 783 } 784 int GetAsanVersion(const Module &M) const; 785 786 const GlobalsMetadata &GlobalsMD; 787 bool CompileKernel; 788 bool Recover; 789 bool UseGlobalsGC; 790 bool UsePrivateAlias; 791 bool UseOdrIndicator; 792 bool UseCtorComdat; 793 Type *IntptrTy; 794 LLVMContext *C; 795 Triple TargetTriple; 796 ShadowMapping Mapping; 797 FunctionCallee AsanPoisonGlobals; 798 FunctionCallee AsanUnpoisonGlobals; 799 FunctionCallee AsanRegisterGlobals; 800 FunctionCallee AsanUnregisterGlobals; 801 FunctionCallee AsanRegisterImageGlobals; 802 FunctionCallee AsanUnregisterImageGlobals; 803 FunctionCallee AsanRegisterElfGlobals; 804 FunctionCallee AsanUnregisterElfGlobals; 805 806 Function *AsanCtorFunction = nullptr; 807 Function *AsanDtorFunction = nullptr; 808 }; 809 810 class ModuleAddressSanitizerLegacyPass : public ModulePass { 811 public: 812 static char ID; 813 814 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, 815 bool Recover = false, 816 bool UseGlobalGC = true, 817 bool UseOdrIndicator = false) 818 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 819 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { 820 initializeModuleAddressSanitizerLegacyPassPass( 821 *PassRegistry::getPassRegistry()); 822 } 823 824 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 825 826 void getAnalysisUsage(AnalysisUsage &AU) const override { 827 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 828 } 829 830 bool runOnModule(Module &M) override { 831 GlobalsMetadata &GlobalsMD = 832 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 833 ModuleAddressSanitizer ASanModule(M, GlobalsMD, CompileKernel, Recover, 834 UseGlobalGC, UseOdrIndicator); 835 return ASanModule.instrumentModule(M); 836 } 837 838 private: 839 bool CompileKernel; 840 bool Recover; 841 bool UseGlobalGC; 842 bool UseOdrIndicator; 843 }; 844 845 // Stack poisoning does not play well with exception handling. 846 // When an exception is thrown, we essentially bypass the code 847 // that unpoisones the stack. This is why the run-time library has 848 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 849 // stack in the interceptor. This however does not work inside the 850 // actual function which catches the exception. Most likely because the 851 // compiler hoists the load of the shadow value somewhere too high. 852 // This causes asan to report a non-existing bug on 453.povray. 853 // It sounds like an LLVM bug. 854 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 855 Function &F; 856 AddressSanitizer &ASan; 857 DIBuilder DIB; 858 LLVMContext *C; 859 Type *IntptrTy; 860 Type *IntptrPtrTy; 861 ShadowMapping Mapping; 862 863 SmallVector<AllocaInst *, 16> AllocaVec; 864 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 865 SmallVector<Instruction *, 8> RetVec; 866 unsigned StackAlignment; 867 868 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 869 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 870 FunctionCallee AsanSetShadowFunc[0x100] = {}; 871 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 872 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 873 874 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 875 struct AllocaPoisonCall { 876 IntrinsicInst *InsBefore; 877 AllocaInst *AI; 878 uint64_t Size; 879 bool DoPoison; 880 }; 881 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 882 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 883 bool HasUntracedLifetimeIntrinsic = false; 884 885 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 886 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 887 AllocaInst *DynamicAllocaLayout = nullptr; 888 IntrinsicInst *LocalEscapeCall = nullptr; 889 890 // Maps Value to an AllocaInst from which the Value is originated. 891 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 892 AllocaForValueMapTy AllocaForValue; 893 894 bool HasNonEmptyInlineAsm = false; 895 bool HasReturnsTwiceCall = false; 896 std::unique_ptr<CallInst> EmptyInlineAsm; 897 898 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 899 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 900 C(ASan.C), IntptrTy(ASan.IntptrTy), 901 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 902 StackAlignment(1 << Mapping.Scale), 903 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 904 905 bool runOnFunction() { 906 if (!ClStack) return false; 907 908 if (ClRedzoneByvalArgs) 909 copyArgsPassedByValToAllocas(); 910 911 // Collect alloca, ret, lifetime instructions etc. 912 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 913 914 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 915 916 initializeCallbacks(*F.getParent()); 917 918 if (HasUntracedLifetimeIntrinsic) { 919 // If there are lifetime intrinsics which couldn't be traced back to an 920 // alloca, we may not know exactly when a variable enters scope, and 921 // therefore should "fail safe" by not poisoning them. 922 StaticAllocaPoisonCallVec.clear(); 923 DynamicAllocaPoisonCallVec.clear(); 924 } 925 926 processDynamicAllocas(); 927 processStaticAllocas(); 928 929 if (ClDebugStack) { 930 LLVM_DEBUG(dbgs() << F); 931 } 932 return true; 933 } 934 935 // Arguments marked with the "byval" attribute are implicitly copied without 936 // using an alloca instruction. To produce redzones for those arguments, we 937 // copy them a second time into memory allocated with an alloca instruction. 938 void copyArgsPassedByValToAllocas(); 939 940 // Finds all Alloca instructions and puts 941 // poisoned red zones around all of them. 942 // Then unpoison everything back before the function returns. 943 void processStaticAllocas(); 944 void processDynamicAllocas(); 945 946 void createDynamicAllocasInitStorage(); 947 948 // ----------------------- Visitors. 949 /// Collect all Ret instructions. 950 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 951 952 /// Collect all Resume instructions. 953 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 954 955 /// Collect all CatchReturnInst instructions. 956 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 957 958 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 959 Value *SavedStack) { 960 IRBuilder<> IRB(InstBefore); 961 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 962 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 963 // need to adjust extracted SP to compute the address of the most recent 964 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 965 // this purpose. 966 if (!isa<ReturnInst>(InstBefore)) { 967 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 968 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 969 {IntptrTy}); 970 971 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 972 973 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 974 DynamicAreaOffset); 975 } 976 977 IRB.CreateCall( 978 AsanAllocasUnpoisonFunc, 979 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 980 } 981 982 // Unpoison dynamic allocas redzones. 983 void unpoisonDynamicAllocas() { 984 for (auto &Ret : RetVec) 985 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 986 987 for (auto &StackRestoreInst : StackRestoreVec) 988 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 989 StackRestoreInst->getOperand(0)); 990 } 991 992 // Deploy and poison redzones around dynamic alloca call. To do this, we 993 // should replace this call with another one with changed parameters and 994 // replace all its uses with new address, so 995 // addr = alloca type, old_size, align 996 // is replaced by 997 // new_size = (old_size + additional_size) * sizeof(type) 998 // tmp = alloca i8, new_size, max(align, 32) 999 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1000 // Additional_size is added to make new memory allocation contain not only 1001 // requested memory, but also left, partial and right redzones. 1002 void handleDynamicAllocaCall(AllocaInst *AI); 1003 1004 /// Collect Alloca instructions we want (and can) handle. 1005 void visitAllocaInst(AllocaInst &AI) { 1006 if (!ASan.isInterestingAlloca(AI)) { 1007 if (AI.isStaticAlloca()) { 1008 // Skip over allocas that are present *before* the first instrumented 1009 // alloca, we don't want to move those around. 1010 if (AllocaVec.empty()) 1011 return; 1012 1013 StaticAllocasToMoveUp.push_back(&AI); 1014 } 1015 return; 1016 } 1017 1018 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1019 if (!AI.isStaticAlloca()) 1020 DynamicAllocaVec.push_back(&AI); 1021 else 1022 AllocaVec.push_back(&AI); 1023 } 1024 1025 /// Collect lifetime intrinsic calls to check for use-after-scope 1026 /// errors. 1027 void visitIntrinsicInst(IntrinsicInst &II) { 1028 Intrinsic::ID ID = II.getIntrinsicID(); 1029 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1030 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1031 if (!ASan.UseAfterScope) 1032 return; 1033 if (!II.isLifetimeStartOrEnd()) 1034 return; 1035 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1036 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); 1037 // If size argument is undefined, don't do anything. 1038 if (Size->isMinusOne()) return; 1039 // Check that size doesn't saturate uint64_t and can 1040 // be stored in IntptrTy. 1041 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1042 if (SizeValue == ~0ULL || 1043 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1044 return; 1045 // Find alloca instruction that corresponds to llvm.lifetime argument. 1046 AllocaInst *AI = 1047 llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue); 1048 if (!AI) { 1049 HasUntracedLifetimeIntrinsic = true; 1050 return; 1051 } 1052 // We're interested only in allocas we can handle. 1053 if (!ASan.isInterestingAlloca(*AI)) 1054 return; 1055 bool DoPoison = (ID == Intrinsic::lifetime_end); 1056 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1057 if (AI->isStaticAlloca()) 1058 StaticAllocaPoisonCallVec.push_back(APC); 1059 else if (ClInstrumentDynamicAllocas) 1060 DynamicAllocaPoisonCallVec.push_back(APC); 1061 } 1062 1063 void visitCallSite(CallSite CS) { 1064 Instruction *I = CS.getInstruction(); 1065 if (CallInst *CI = dyn_cast<CallInst>(I)) { 1066 HasNonEmptyInlineAsm |= CI->isInlineAsm() && 1067 !CI->isIdenticalTo(EmptyInlineAsm.get()) && 1068 I != ASan.LocalDynamicShadow; 1069 HasReturnsTwiceCall |= CI->canReturnTwice(); 1070 } 1071 } 1072 1073 // ---------------------- Helpers. 1074 void initializeCallbacks(Module &M); 1075 1076 // Copies bytes from ShadowBytes into shadow memory for indexes where 1077 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1078 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1079 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1080 IRBuilder<> &IRB, Value *ShadowBase); 1081 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1082 size_t Begin, size_t End, IRBuilder<> &IRB, 1083 Value *ShadowBase); 1084 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1085 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1086 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1087 1088 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1089 1090 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1091 bool Dynamic); 1092 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1093 Instruction *ThenTerm, Value *ValueIfFalse); 1094 }; 1095 1096 } // end anonymous namespace 1097 1098 void LocationMetadata::parse(MDNode *MDN) { 1099 assert(MDN->getNumOperands() == 3); 1100 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1101 Filename = DIFilename->getString(); 1102 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1103 ColumnNo = 1104 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1105 } 1106 1107 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1108 // we want to sanitize instead and reading this metadata on each pass over a 1109 // function instead of reading module level metadata at first. 1110 GlobalsMetadata::GlobalsMetadata(Module &M) { 1111 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1112 if (!Globals) 1113 return; 1114 for (auto MDN : Globals->operands()) { 1115 // Metadata node contains the global and the fields of "Entry". 1116 assert(MDN->getNumOperands() == 5); 1117 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1118 // The optimizer may optimize away a global entirely. 1119 if (!V) 1120 continue; 1121 auto *StrippedV = V->stripPointerCasts(); 1122 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1123 if (!GV) 1124 continue; 1125 // We can already have an entry for GV if it was merged with another 1126 // global. 1127 Entry &E = Entries[GV]; 1128 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1129 E.SourceLoc.parse(Loc); 1130 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1131 E.Name = Name->getString(); 1132 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1133 E.IsDynInit |= IsDynInit->isOne(); 1134 ConstantInt *IsBlacklisted = 1135 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1136 E.IsBlacklisted |= IsBlacklisted->isOne(); 1137 } 1138 } 1139 1140 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1141 1142 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1143 ModuleAnalysisManager &AM) { 1144 return GlobalsMetadata(M); 1145 } 1146 1147 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1148 bool UseAfterScope) 1149 : CompileKernel(CompileKernel), Recover(Recover), 1150 UseAfterScope(UseAfterScope) {} 1151 1152 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1153 AnalysisManager<Function> &AM) { 1154 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1155 auto &MAM = MAMProxy.getManager(); 1156 Module &M = *F.getParent(); 1157 if (auto *R = MAM.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1158 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1159 AddressSanitizer Sanitizer(M, *R, CompileKernel, Recover, UseAfterScope); 1160 if (Sanitizer.instrumentFunction(F, TLI)) 1161 return PreservedAnalyses::none(); 1162 return PreservedAnalyses::all(); 1163 } 1164 1165 report_fatal_error( 1166 "The ASanGlobalsMetadataAnalysis is required to run before " 1167 "AddressSanitizer can run"); 1168 return PreservedAnalyses::all(); 1169 } 1170 1171 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, 1172 bool Recover, 1173 bool UseGlobalGC, 1174 bool UseOdrIndicator) 1175 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1176 UseOdrIndicator(UseOdrIndicator) {} 1177 1178 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1179 AnalysisManager<Module> &AM) { 1180 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1181 ModuleAddressSanitizer Sanitizer(M, GlobalsMD, CompileKernel, Recover, 1182 UseGlobalGC, UseOdrIndicator); 1183 if (Sanitizer.instrumentModule(M)) 1184 return PreservedAnalyses::none(); 1185 return PreservedAnalyses::all(); 1186 } 1187 1188 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1189 "Read metadata to mark which globals should be instrumented " 1190 "when running ASan.", 1191 false, true) 1192 1193 char AddressSanitizerLegacyPass::ID = 0; 1194 1195 INITIALIZE_PASS_BEGIN( 1196 AddressSanitizerLegacyPass, "asan", 1197 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1198 false) 1199 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1200 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1201 INITIALIZE_PASS_END( 1202 AddressSanitizerLegacyPass, "asan", 1203 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1204 false) 1205 1206 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1207 bool Recover, 1208 bool UseAfterScope) { 1209 assert(!CompileKernel || Recover); 1210 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1211 } 1212 1213 char ModuleAddressSanitizerLegacyPass::ID = 0; 1214 1215 INITIALIZE_PASS( 1216 ModuleAddressSanitizerLegacyPass, "asan-module", 1217 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1218 "ModulePass", 1219 false, false) 1220 1221 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1222 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { 1223 assert(!CompileKernel || Recover); 1224 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, 1225 UseGlobalsGC, UseOdrIndicator); 1226 } 1227 1228 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1229 size_t Res = countTrailingZeros(TypeSize / 8); 1230 assert(Res < kNumberOfAccessSizes); 1231 return Res; 1232 } 1233 1234 /// Create a global describing a source location. 1235 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1236 LocationMetadata MD) { 1237 Constant *LocData[] = { 1238 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1239 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1240 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1241 }; 1242 auto LocStruct = ConstantStruct::getAnon(LocData); 1243 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1244 GlobalValue::PrivateLinkage, LocStruct, 1245 kAsanGenPrefix); 1246 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1247 return GV; 1248 } 1249 1250 /// Check if \p G has been created by a trusted compiler pass. 1251 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1252 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1253 if (G->getName().startswith("llvm.")) 1254 return true; 1255 1256 // Do not instrument asan globals. 1257 if (G->getName().startswith(kAsanGenPrefix) || 1258 G->getName().startswith(kSanCovGenPrefix) || 1259 G->getName().startswith(kODRGenPrefix)) 1260 return true; 1261 1262 // Do not instrument gcov counter arrays. 1263 if (G->getName() == "__llvm_gcov_ctr") 1264 return true; 1265 1266 return false; 1267 } 1268 1269 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1270 // Shadow >> scale 1271 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1272 if (Mapping.Offset == 0) return Shadow; 1273 // (Shadow >> scale) | offset 1274 Value *ShadowBase; 1275 if (LocalDynamicShadow) 1276 ShadowBase = LocalDynamicShadow; 1277 else 1278 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1279 if (Mapping.OrShadowOffset) 1280 return IRB.CreateOr(Shadow, ShadowBase); 1281 else 1282 return IRB.CreateAdd(Shadow, ShadowBase); 1283 } 1284 1285 // Instrument memset/memmove/memcpy 1286 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1287 IRBuilder<> IRB(MI); 1288 if (isa<MemTransferInst>(MI)) { 1289 IRB.CreateCall( 1290 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1291 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1292 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1293 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1294 } else if (isa<MemSetInst>(MI)) { 1295 IRB.CreateCall( 1296 AsanMemset, 1297 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1298 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1299 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1300 } 1301 MI->eraseFromParent(); 1302 } 1303 1304 /// Check if we want (and can) handle this alloca. 1305 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1306 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1307 1308 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1309 return PreviouslySeenAllocaInfo->getSecond(); 1310 1311 bool IsInteresting = 1312 (AI.getAllocatedType()->isSized() && 1313 // alloca() may be called with 0 size, ignore it. 1314 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1315 // We are only interested in allocas not promotable to registers. 1316 // Promotable allocas are common under -O0. 1317 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1318 // inalloca allocas are not treated as static, and we don't want 1319 // dynamic alloca instrumentation for them as well. 1320 !AI.isUsedWithInAlloca() && 1321 // swifterror allocas are register promoted by ISel 1322 !AI.isSwiftError()); 1323 1324 ProcessedAllocas[&AI] = IsInteresting; 1325 return IsInteresting; 1326 } 1327 1328 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, 1329 bool *IsWrite, 1330 uint64_t *TypeSize, 1331 unsigned *Alignment, 1332 Value **MaybeMask) { 1333 // Skip memory accesses inserted by another instrumentation. 1334 if (I->getMetadata("nosanitize")) return nullptr; 1335 1336 // Do not instrument the load fetching the dynamic shadow address. 1337 if (LocalDynamicShadow == I) 1338 return nullptr; 1339 1340 Value *PtrOperand = nullptr; 1341 const DataLayout &DL = I->getModule()->getDataLayout(); 1342 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1343 if (!ClInstrumentReads) return nullptr; 1344 *IsWrite = false; 1345 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 1346 *Alignment = LI->getAlignment(); 1347 PtrOperand = LI->getPointerOperand(); 1348 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1349 if (!ClInstrumentWrites) return nullptr; 1350 *IsWrite = true; 1351 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 1352 *Alignment = SI->getAlignment(); 1353 PtrOperand = SI->getPointerOperand(); 1354 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1355 if (!ClInstrumentAtomics) return nullptr; 1356 *IsWrite = true; 1357 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 1358 *Alignment = 0; 1359 PtrOperand = RMW->getPointerOperand(); 1360 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1361 if (!ClInstrumentAtomics) return nullptr; 1362 *IsWrite = true; 1363 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 1364 *Alignment = 0; 1365 PtrOperand = XCHG->getPointerOperand(); 1366 } else if (auto CI = dyn_cast<CallInst>(I)) { 1367 auto *F = dyn_cast<Function>(CI->getCalledValue()); 1368 if (F && (F->getName().startswith("llvm.masked.load.") || 1369 F->getName().startswith("llvm.masked.store."))) { 1370 unsigned OpOffset = 0; 1371 if (F->getName().startswith("llvm.masked.store.")) { 1372 if (!ClInstrumentWrites) 1373 return nullptr; 1374 // Masked store has an initial operand for the value. 1375 OpOffset = 1; 1376 *IsWrite = true; 1377 } else { 1378 if (!ClInstrumentReads) 1379 return nullptr; 1380 *IsWrite = false; 1381 } 1382 1383 auto BasePtr = CI->getOperand(0 + OpOffset); 1384 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1385 *TypeSize = DL.getTypeStoreSizeInBits(Ty); 1386 if (auto AlignmentConstant = 1387 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1388 *Alignment = (unsigned)AlignmentConstant->getZExtValue(); 1389 else 1390 *Alignment = 1; // No alignment guarantees. We probably got Undef 1391 if (MaybeMask) 1392 *MaybeMask = CI->getOperand(2 + OpOffset); 1393 PtrOperand = BasePtr; 1394 } 1395 } 1396 1397 if (PtrOperand) { 1398 // Do not instrument acesses from different address spaces; we cannot deal 1399 // with them. 1400 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); 1401 if (PtrTy->getPointerAddressSpace() != 0) 1402 return nullptr; 1403 1404 // Ignore swifterror addresses. 1405 // swifterror memory addresses are mem2reg promoted by instruction 1406 // selection. As such they cannot have regular uses like an instrumentation 1407 // function and it makes no sense to track them as memory. 1408 if (PtrOperand->isSwiftError()) 1409 return nullptr; 1410 } 1411 1412 // Treat memory accesses to promotable allocas as non-interesting since they 1413 // will not cause memory violations. This greatly speeds up the instrumented 1414 // executable at -O0. 1415 if (ClSkipPromotableAllocas) 1416 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) 1417 return isInterestingAlloca(*AI) ? AI : nullptr; 1418 1419 return PtrOperand; 1420 } 1421 1422 static bool isPointerOperand(Value *V) { 1423 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1424 } 1425 1426 // This is a rough heuristic; it may cause both false positives and 1427 // false negatives. The proper implementation requires cooperation with 1428 // the frontend. 1429 static bool isInterestingPointerComparison(Instruction *I) { 1430 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1431 if (!Cmp->isRelational()) 1432 return false; 1433 } else { 1434 return false; 1435 } 1436 return isPointerOperand(I->getOperand(0)) && 1437 isPointerOperand(I->getOperand(1)); 1438 } 1439 1440 // This is a rough heuristic; it may cause both false positives and 1441 // false negatives. The proper implementation requires cooperation with 1442 // the frontend. 1443 static bool isInterestingPointerSubtraction(Instruction *I) { 1444 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1445 if (BO->getOpcode() != Instruction::Sub) 1446 return false; 1447 } else { 1448 return false; 1449 } 1450 return isPointerOperand(I->getOperand(0)) && 1451 isPointerOperand(I->getOperand(1)); 1452 } 1453 1454 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1455 // If a global variable does not have dynamic initialization we don't 1456 // have to instrument it. However, if a global does not have initializer 1457 // at all, we assume it has dynamic initializer (in other TU). 1458 // 1459 // FIXME: Metadata should be attched directly to the global directly instead 1460 // of being added to llvm.asan.globals. 1461 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1462 } 1463 1464 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1465 Instruction *I) { 1466 IRBuilder<> IRB(I); 1467 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1468 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1469 for (Value *&i : Param) { 1470 if (i->getType()->isPointerTy()) 1471 i = IRB.CreatePointerCast(i, IntptrTy); 1472 } 1473 IRB.CreateCall(F, Param); 1474 } 1475 1476 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1477 Instruction *InsertBefore, Value *Addr, 1478 unsigned Alignment, unsigned Granularity, 1479 uint32_t TypeSize, bool IsWrite, 1480 Value *SizeArgument, bool UseCalls, 1481 uint32_t Exp) { 1482 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1483 // if the data is properly aligned. 1484 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1485 TypeSize == 128) && 1486 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1487 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1488 nullptr, UseCalls, Exp); 1489 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1490 IsWrite, nullptr, UseCalls, Exp); 1491 } 1492 1493 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1494 const DataLayout &DL, Type *IntptrTy, 1495 Value *Mask, Instruction *I, 1496 Value *Addr, unsigned Alignment, 1497 unsigned Granularity, uint32_t TypeSize, 1498 bool IsWrite, Value *SizeArgument, 1499 bool UseCalls, uint32_t Exp) { 1500 auto *VTy = cast<PointerType>(Addr->getType())->getElementType(); 1501 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1502 unsigned Num = VTy->getVectorNumElements(); 1503 auto Zero = ConstantInt::get(IntptrTy, 0); 1504 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1505 Value *InstrumentedAddress = nullptr; 1506 Instruction *InsertBefore = I; 1507 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1508 // dyn_cast as we might get UndefValue 1509 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1510 if (Masked->isZero()) 1511 // Mask is constant false, so no instrumentation needed. 1512 continue; 1513 // If we have a true or undef value, fall through to doInstrumentAddress 1514 // with InsertBefore == I 1515 } 1516 } else { 1517 IRBuilder<> IRB(I); 1518 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1519 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1520 InsertBefore = ThenTerm; 1521 } 1522 1523 IRBuilder<> IRB(InsertBefore); 1524 InstrumentedAddress = 1525 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1526 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1527 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1528 UseCalls, Exp); 1529 } 1530 } 1531 1532 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1533 Instruction *I, bool UseCalls, 1534 const DataLayout &DL) { 1535 bool IsWrite = false; 1536 unsigned Alignment = 0; 1537 uint64_t TypeSize = 0; 1538 Value *MaybeMask = nullptr; 1539 Value *Addr = 1540 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask); 1541 assert(Addr); 1542 1543 // Optimization experiments. 1544 // The experiments can be used to evaluate potential optimizations that remove 1545 // instrumentation (assess false negatives). Instead of completely removing 1546 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1547 // experiments that want to remove instrumentation of this instruction). 1548 // If Exp is non-zero, this pass will emit special calls into runtime 1549 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1550 // make runtime terminate the program in a special way (with a different 1551 // exit status). Then you run the new compiler on a buggy corpus, collect 1552 // the special terminations (ideally, you don't see them at all -- no false 1553 // negatives) and make the decision on the optimization. 1554 uint32_t Exp = ClForceExperiment; 1555 1556 if (ClOpt && ClOptGlobals) { 1557 // If initialization order checking is disabled, a simple access to a 1558 // dynamically initialized global is always valid. 1559 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1560 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1561 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1562 NumOptimizedAccessesToGlobalVar++; 1563 return; 1564 } 1565 } 1566 1567 if (ClOpt && ClOptStack) { 1568 // A direct inbounds access to a stack variable is always valid. 1569 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1570 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1571 NumOptimizedAccessesToStackVar++; 1572 return; 1573 } 1574 } 1575 1576 if (IsWrite) 1577 NumInstrumentedWrites++; 1578 else 1579 NumInstrumentedReads++; 1580 1581 unsigned Granularity = 1 << Mapping.Scale; 1582 if (MaybeMask) { 1583 instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr, 1584 Alignment, Granularity, TypeSize, IsWrite, 1585 nullptr, UseCalls, Exp); 1586 } else { 1587 doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize, 1588 IsWrite, nullptr, UseCalls, Exp); 1589 } 1590 } 1591 1592 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1593 Value *Addr, bool IsWrite, 1594 size_t AccessSizeIndex, 1595 Value *SizeArgument, 1596 uint32_t Exp) { 1597 IRBuilder<> IRB(InsertBefore); 1598 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1599 CallInst *Call = nullptr; 1600 if (SizeArgument) { 1601 if (Exp == 0) 1602 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1603 {Addr, SizeArgument}); 1604 else 1605 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1606 {Addr, SizeArgument, ExpVal}); 1607 } else { 1608 if (Exp == 0) 1609 Call = 1610 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1611 else 1612 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1613 {Addr, ExpVal}); 1614 } 1615 1616 // We don't do Call->setDoesNotReturn() because the BB already has 1617 // UnreachableInst at the end. 1618 // This EmptyAsm is required to avoid callback merge. 1619 IRB.CreateCall(EmptyAsm, {}); 1620 return Call; 1621 } 1622 1623 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1624 Value *ShadowValue, 1625 uint32_t TypeSize) { 1626 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1627 // Addr & (Granularity - 1) 1628 Value *LastAccessedByte = 1629 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1630 // (Addr & (Granularity - 1)) + size - 1 1631 if (TypeSize / 8 > 1) 1632 LastAccessedByte = IRB.CreateAdd( 1633 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1634 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1635 LastAccessedByte = 1636 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1637 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1638 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1639 } 1640 1641 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1642 Instruction *InsertBefore, Value *Addr, 1643 uint32_t TypeSize, bool IsWrite, 1644 Value *SizeArgument, bool UseCalls, 1645 uint32_t Exp) { 1646 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1647 1648 IRBuilder<> IRB(InsertBefore); 1649 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1650 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1651 1652 if (UseCalls) { 1653 if (Exp == 0) 1654 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1655 AddrLong); 1656 else 1657 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1658 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1659 return; 1660 } 1661 1662 if (IsMyriad) { 1663 // Strip the cache bit and do range check. 1664 // AddrLong &= ~kMyriadCacheBitMask32 1665 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1666 // Tag = AddrLong >> kMyriadTagShift 1667 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1668 // Tag == kMyriadDDRTag 1669 Value *TagCheck = 1670 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1671 1672 Instruction *TagCheckTerm = 1673 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1674 MDBuilder(*C).createBranchWeights(1, 100000)); 1675 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1676 IRB.SetInsertPoint(TagCheckTerm); 1677 InsertBefore = TagCheckTerm; 1678 } 1679 1680 Type *ShadowTy = 1681 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1682 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1683 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1684 Value *CmpVal = Constant::getNullValue(ShadowTy); 1685 Value *ShadowValue = 1686 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1687 1688 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1689 size_t Granularity = 1ULL << Mapping.Scale; 1690 Instruction *CrashTerm = nullptr; 1691 1692 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1693 // We use branch weights for the slow path check, to indicate that the slow 1694 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1695 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1696 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1697 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1698 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1699 IRB.SetInsertPoint(CheckTerm); 1700 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1701 if (Recover) { 1702 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1703 } else { 1704 BasicBlock *CrashBlock = 1705 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1706 CrashTerm = new UnreachableInst(*C, CrashBlock); 1707 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1708 ReplaceInstWithInst(CheckTerm, NewTerm); 1709 } 1710 } else { 1711 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1712 } 1713 1714 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1715 AccessSizeIndex, SizeArgument, Exp); 1716 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1717 } 1718 1719 // Instrument unusual size or unusual alignment. 1720 // We can not do it with a single check, so we do 1-byte check for the first 1721 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1722 // to report the actual access size. 1723 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1724 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1725 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1726 IRBuilder<> IRB(InsertBefore); 1727 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1728 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1729 if (UseCalls) { 1730 if (Exp == 0) 1731 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1732 {AddrLong, Size}); 1733 else 1734 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1735 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1736 } else { 1737 Value *LastByte = IRB.CreateIntToPtr( 1738 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1739 Addr->getType()); 1740 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1741 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1742 } 1743 } 1744 1745 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1746 GlobalValue *ModuleName) { 1747 // Set up the arguments to our poison/unpoison functions. 1748 IRBuilder<> IRB(&GlobalInit.front(), 1749 GlobalInit.front().getFirstInsertionPt()); 1750 1751 // Add a call to poison all external globals before the given function starts. 1752 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1753 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1754 1755 // Add calls to unpoison all globals before each return instruction. 1756 for (auto &BB : GlobalInit.getBasicBlockList()) 1757 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1758 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1759 } 1760 1761 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1762 Module &M, GlobalValue *ModuleName) { 1763 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1764 if (!GV) 1765 return; 1766 1767 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1768 if (!CA) 1769 return; 1770 1771 for (Use &OP : CA->operands()) { 1772 if (isa<ConstantAggregateZero>(OP)) continue; 1773 ConstantStruct *CS = cast<ConstantStruct>(OP); 1774 1775 // Must have a function or null ptr. 1776 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1777 if (F->getName() == kAsanModuleCtorName) continue; 1778 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1779 // Don't instrument CTORs that will run before asan.module_ctor. 1780 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; 1781 poisonOneInitializer(*F, ModuleName); 1782 } 1783 } 1784 } 1785 1786 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) { 1787 Type *Ty = G->getValueType(); 1788 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1789 1790 // FIXME: Metadata should be attched directly to the global directly instead 1791 // of being added to llvm.asan.globals. 1792 if (GlobalsMD.get(G).IsBlacklisted) return false; 1793 if (!Ty->isSized()) return false; 1794 if (!G->hasInitializer()) return false; 1795 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1796 // Two problems with thread-locals: 1797 // - The address of the main thread's copy can't be computed at link-time. 1798 // - Need to poison all copies, not just the main thread's one. 1799 if (G->isThreadLocal()) return false; 1800 // For now, just ignore this Global if the alignment is large. 1801 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1802 1803 // For non-COFF targets, only instrument globals known to be defined by this 1804 // TU. 1805 // FIXME: We can instrument comdat globals on ELF if we are using the 1806 // GC-friendly metadata scheme. 1807 if (!TargetTriple.isOSBinFormatCOFF()) { 1808 if (!G->hasExactDefinition() || G->hasComdat()) 1809 return false; 1810 } else { 1811 // On COFF, don't instrument non-ODR linkages. 1812 if (G->isInterposable()) 1813 return false; 1814 } 1815 1816 // If a comdat is present, it must have a selection kind that implies ODR 1817 // semantics: no duplicates, any, or exact match. 1818 if (Comdat *C = G->getComdat()) { 1819 switch (C->getSelectionKind()) { 1820 case Comdat::Any: 1821 case Comdat::ExactMatch: 1822 case Comdat::NoDuplicates: 1823 break; 1824 case Comdat::Largest: 1825 case Comdat::SameSize: 1826 return false; 1827 } 1828 } 1829 1830 if (G->hasSection()) { 1831 StringRef Section = G->getSection(); 1832 1833 // Globals from llvm.metadata aren't emitted, do not instrument them. 1834 if (Section == "llvm.metadata") return false; 1835 // Do not instrument globals from special LLVM sections. 1836 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1837 1838 // Do not instrument function pointers to initialization and termination 1839 // routines: dynamic linker will not properly handle redzones. 1840 if (Section.startswith(".preinit_array") || 1841 Section.startswith(".init_array") || 1842 Section.startswith(".fini_array")) { 1843 return false; 1844 } 1845 1846 // On COFF, if the section name contains '$', it is highly likely that the 1847 // user is using section sorting to create an array of globals similar to 1848 // the way initialization callbacks are registered in .init_array and 1849 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1850 // to such globals is counterproductive, because the intent is that they 1851 // will form an array, and out-of-bounds accesses are expected. 1852 // See https://github.com/google/sanitizers/issues/305 1853 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1854 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1855 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1856 << *G << "\n"); 1857 return false; 1858 } 1859 1860 if (TargetTriple.isOSBinFormatMachO()) { 1861 StringRef ParsedSegment, ParsedSection; 1862 unsigned TAA = 0, StubSize = 0; 1863 bool TAAParsed; 1864 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1865 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1866 assert(ErrorCode.empty() && "Invalid section specifier."); 1867 1868 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1869 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1870 // them. 1871 if (ParsedSegment == "__OBJC" || 1872 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1873 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1874 return false; 1875 } 1876 // See https://github.com/google/sanitizers/issues/32 1877 // Constant CFString instances are compiled in the following way: 1878 // -- the string buffer is emitted into 1879 // __TEXT,__cstring,cstring_literals 1880 // -- the constant NSConstantString structure referencing that buffer 1881 // is placed into __DATA,__cfstring 1882 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1883 // Moreover, it causes the linker to crash on OS X 10.7 1884 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1885 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1886 return false; 1887 } 1888 // The linker merges the contents of cstring_literals and removes the 1889 // trailing zeroes. 1890 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1891 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1892 return false; 1893 } 1894 } 1895 } 1896 1897 return true; 1898 } 1899 1900 // On Mach-O platforms, we emit global metadata in a separate section of the 1901 // binary in order to allow the linker to properly dead strip. This is only 1902 // supported on recent versions of ld64. 1903 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1904 if (!TargetTriple.isOSBinFormatMachO()) 1905 return false; 1906 1907 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1908 return true; 1909 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1910 return true; 1911 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1912 return true; 1913 1914 return false; 1915 } 1916 1917 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1918 switch (TargetTriple.getObjectFormat()) { 1919 case Triple::COFF: return ".ASAN$GL"; 1920 case Triple::ELF: return "asan_globals"; 1921 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1922 default: break; 1923 } 1924 llvm_unreachable("unsupported object format"); 1925 } 1926 1927 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1928 IRBuilder<> IRB(*C); 1929 1930 // Declare our poisoning and unpoisoning functions. 1931 AsanPoisonGlobals = 1932 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1933 AsanUnpoisonGlobals = 1934 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1935 1936 // Declare functions that register/unregister globals. 1937 AsanRegisterGlobals = M.getOrInsertFunction( 1938 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1939 AsanUnregisterGlobals = M.getOrInsertFunction( 1940 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1941 1942 // Declare the functions that find globals in a shared object and then invoke 1943 // the (un)register function on them. 1944 AsanRegisterImageGlobals = M.getOrInsertFunction( 1945 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1946 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1947 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1948 1949 AsanRegisterElfGlobals = 1950 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1951 IntptrTy, IntptrTy, IntptrTy); 1952 AsanUnregisterElfGlobals = 1953 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1954 IntptrTy, IntptrTy, IntptrTy); 1955 } 1956 1957 // Put the metadata and the instrumented global in the same group. This ensures 1958 // that the metadata is discarded if the instrumented global is discarded. 1959 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 1960 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1961 Module &M = *G->getParent(); 1962 Comdat *C = G->getComdat(); 1963 if (!C) { 1964 if (!G->hasName()) { 1965 // If G is unnamed, it must be internal. Give it an artificial name 1966 // so we can put it in a comdat. 1967 assert(G->hasLocalLinkage()); 1968 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 1969 } 1970 1971 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 1972 std::string Name = G->getName(); 1973 Name += InternalSuffix; 1974 C = M.getOrInsertComdat(Name); 1975 } else { 1976 C = M.getOrInsertComdat(G->getName()); 1977 } 1978 1979 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 1980 // linkage to internal linkage so that a symbol table entry is emitted. This 1981 // is necessary in order to create the comdat group. 1982 if (TargetTriple.isOSBinFormatCOFF()) { 1983 C->setSelectionKind(Comdat::NoDuplicates); 1984 if (G->hasPrivateLinkage()) 1985 G->setLinkage(GlobalValue::InternalLinkage); 1986 } 1987 G->setComdat(C); 1988 } 1989 1990 assert(G->hasComdat()); 1991 Metadata->setComdat(G->getComdat()); 1992 } 1993 1994 // Create a separate metadata global and put it in the appropriate ASan 1995 // global registration section. 1996 GlobalVariable * 1997 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 1998 StringRef OriginalName) { 1999 auto Linkage = TargetTriple.isOSBinFormatMachO() 2000 ? GlobalVariable::InternalLinkage 2001 : GlobalVariable::PrivateLinkage; 2002 GlobalVariable *Metadata = new GlobalVariable( 2003 M, Initializer->getType(), false, Linkage, Initializer, 2004 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2005 Metadata->setSection(getGlobalMetadataSection()); 2006 return Metadata; 2007 } 2008 2009 IRBuilder<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2010 AsanDtorFunction = 2011 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 2012 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 2013 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2014 2015 return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB)); 2016 } 2017 2018 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2019 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2020 ArrayRef<Constant *> MetadataInitializers) { 2021 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2022 auto &DL = M.getDataLayout(); 2023 2024 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2025 Constant *Initializer = MetadataInitializers[i]; 2026 GlobalVariable *G = ExtendedGlobals[i]; 2027 GlobalVariable *Metadata = 2028 CreateMetadataGlobal(M, Initializer, G->getName()); 2029 2030 // The MSVC linker always inserts padding when linking incrementally. We 2031 // cope with that by aligning each struct to its size, which must be a power 2032 // of two. 2033 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2034 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2035 "global metadata will not be padded appropriately"); 2036 Metadata->setAlignment(SizeOfGlobalStruct); 2037 2038 SetComdatForGlobalMetadata(G, Metadata, ""); 2039 } 2040 } 2041 2042 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2043 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2044 ArrayRef<Constant *> MetadataInitializers, 2045 const std::string &UniqueModuleId) { 2046 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2047 2048 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2049 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2050 GlobalVariable *G = ExtendedGlobals[i]; 2051 GlobalVariable *Metadata = 2052 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2053 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2054 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2055 MetadataGlobals[i] = Metadata; 2056 2057 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2058 } 2059 2060 // Update llvm.compiler.used, adding the new metadata globals. This is 2061 // needed so that during LTO these variables stay alive. 2062 if (!MetadataGlobals.empty()) 2063 appendToCompilerUsed(M, MetadataGlobals); 2064 2065 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2066 // to look up the loaded image that contains it. Second, we can store in it 2067 // whether registration has already occurred, to prevent duplicate 2068 // registration. 2069 // 2070 // Common linkage ensures that there is only one global per shared library. 2071 GlobalVariable *RegisteredFlag = new GlobalVariable( 2072 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2073 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2074 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2075 2076 // Create start and stop symbols. 2077 GlobalVariable *StartELFMetadata = new GlobalVariable( 2078 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2079 "__start_" + getGlobalMetadataSection()); 2080 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2081 GlobalVariable *StopELFMetadata = new GlobalVariable( 2082 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2083 "__stop_" + getGlobalMetadataSection()); 2084 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2085 2086 // Create a call to register the globals with the runtime. 2087 IRB.CreateCall(AsanRegisterElfGlobals, 2088 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2089 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2090 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2091 2092 // We also need to unregister globals at the end, e.g., when a shared library 2093 // gets closed. 2094 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2095 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 2096 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2097 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2098 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2099 } 2100 2101 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2102 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2103 ArrayRef<Constant *> MetadataInitializers) { 2104 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2105 2106 // On recent Mach-O platforms, use a structure which binds the liveness of 2107 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2108 // created to be added to llvm.compiler.used 2109 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2110 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2111 2112 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2113 Constant *Initializer = MetadataInitializers[i]; 2114 GlobalVariable *G = ExtendedGlobals[i]; 2115 GlobalVariable *Metadata = 2116 CreateMetadataGlobal(M, Initializer, G->getName()); 2117 2118 // On recent Mach-O platforms, we emit the global metadata in a way that 2119 // allows the linker to properly strip dead globals. 2120 auto LivenessBinder = 2121 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2122 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2123 GlobalVariable *Liveness = new GlobalVariable( 2124 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2125 Twine("__asan_binder_") + G->getName()); 2126 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2127 LivenessGlobals[i] = Liveness; 2128 } 2129 2130 // Update llvm.compiler.used, adding the new liveness globals. This is 2131 // needed so that during LTO these variables stay alive. The alternative 2132 // would be to have the linker handling the LTO symbols, but libLTO 2133 // current API does not expose access to the section for each symbol. 2134 if (!LivenessGlobals.empty()) 2135 appendToCompilerUsed(M, LivenessGlobals); 2136 2137 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2138 // to look up the loaded image that contains it. Second, we can store in it 2139 // whether registration has already occurred, to prevent duplicate 2140 // registration. 2141 // 2142 // common linkage ensures that there is only one global per shared library. 2143 GlobalVariable *RegisteredFlag = new GlobalVariable( 2144 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2145 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2146 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2147 2148 IRB.CreateCall(AsanRegisterImageGlobals, 2149 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2150 2151 // We also need to unregister globals at the end, e.g., when a shared library 2152 // gets closed. 2153 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2154 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 2155 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2156 } 2157 2158 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2159 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2160 ArrayRef<Constant *> MetadataInitializers) { 2161 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2162 unsigned N = ExtendedGlobals.size(); 2163 assert(N > 0); 2164 2165 // On platforms that don't have a custom metadata section, we emit an array 2166 // of global metadata structures. 2167 ArrayType *ArrayOfGlobalStructTy = 2168 ArrayType::get(MetadataInitializers[0]->getType(), N); 2169 auto AllGlobals = new GlobalVariable( 2170 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2171 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2172 if (Mapping.Scale > 3) 2173 AllGlobals->setAlignment(1ULL << Mapping.Scale); 2174 2175 IRB.CreateCall(AsanRegisterGlobals, 2176 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2177 ConstantInt::get(IntptrTy, N)}); 2178 2179 // We also need to unregister globals at the end, e.g., when a shared library 2180 // gets closed. 2181 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2182 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 2183 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2184 ConstantInt::get(IntptrTy, N)}); 2185 } 2186 2187 // This function replaces all global variables with new variables that have 2188 // trailing redzones. It also creates a function that poisons 2189 // redzones and inserts this function into llvm.global_ctors. 2190 // Sets *CtorComdat to true if the global registration code emitted into the 2191 // asan constructor is comdat-compatible. 2192 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2193 bool *CtorComdat) { 2194 *CtorComdat = false; 2195 2196 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2197 2198 for (auto &G : M.globals()) { 2199 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 2200 } 2201 2202 size_t n = GlobalsToChange.size(); 2203 if (n == 0) { 2204 *CtorComdat = true; 2205 return false; 2206 } 2207 2208 auto &DL = M.getDataLayout(); 2209 2210 // A global is described by a structure 2211 // size_t beg; 2212 // size_t size; 2213 // size_t size_with_redzone; 2214 // const char *name; 2215 // const char *module_name; 2216 // size_t has_dynamic_init; 2217 // void *source_location; 2218 // size_t odr_indicator; 2219 // We initialize an array of such structures and pass it to a run-time call. 2220 StructType *GlobalStructTy = 2221 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2222 IntptrTy, IntptrTy, IntptrTy); 2223 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2224 SmallVector<Constant *, 16> Initializers(n); 2225 2226 bool HasDynamicallyInitializedGlobals = false; 2227 2228 // We shouldn't merge same module names, as this string serves as unique 2229 // module ID in runtime. 2230 GlobalVariable *ModuleName = createPrivateGlobalForString( 2231 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2232 2233 for (size_t i = 0; i < n; i++) { 2234 static const uint64_t kMaxGlobalRedzone = 1 << 18; 2235 GlobalVariable *G = GlobalsToChange[i]; 2236 2237 // FIXME: Metadata should be attched directly to the global directly instead 2238 // of being added to llvm.asan.globals. 2239 auto MD = GlobalsMD.get(G); 2240 StringRef NameForGlobal = G->getName(); 2241 // Create string holding the global name (use global name from metadata 2242 // if it's available, otherwise just write the name of global variable). 2243 GlobalVariable *Name = createPrivateGlobalForString( 2244 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2245 /*AllowMerging*/ true, kAsanGenPrefix); 2246 2247 Type *Ty = G->getValueType(); 2248 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2249 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 2250 // MinRZ <= RZ <= kMaxGlobalRedzone 2251 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 2252 uint64_t RZ = std::max( 2253 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 2254 uint64_t RightRedzoneSize = RZ; 2255 // Round up to MinRZ 2256 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 2257 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 2258 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2259 2260 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2261 Constant *NewInitializer = ConstantStruct::get( 2262 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2263 2264 // Create a new global variable with enough space for a redzone. 2265 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2266 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2267 Linkage = GlobalValue::InternalLinkage; 2268 GlobalVariable *NewGlobal = 2269 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2270 "", G, G->getThreadLocalMode()); 2271 NewGlobal->copyAttributesFrom(G); 2272 NewGlobal->setComdat(G->getComdat()); 2273 NewGlobal->setAlignment(MinRZ); 2274 // Don't fold globals with redzones. ODR violation detector and redzone 2275 // poisoning implicitly creates a dependence on the global's address, so it 2276 // is no longer valid for it to be marked unnamed_addr. 2277 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2278 2279 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2280 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2281 G->isConstant()) { 2282 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2283 if (Seq && Seq->isCString()) 2284 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2285 } 2286 2287 // Transfer the debug info. The payload starts at offset zero so we can 2288 // copy the debug info over as is. 2289 SmallVector<DIGlobalVariableExpression *, 1> GVs; 2290 G->getDebugInfo(GVs); 2291 for (auto *GV : GVs) 2292 NewGlobal->addDebugInfo(GV); 2293 2294 Value *Indices2[2]; 2295 Indices2[0] = IRB.getInt32(0); 2296 Indices2[1] = IRB.getInt32(0); 2297 2298 G->replaceAllUsesWith( 2299 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2300 NewGlobal->takeName(G); 2301 G->eraseFromParent(); 2302 NewGlobals[i] = NewGlobal; 2303 2304 Constant *SourceLoc; 2305 if (!MD.SourceLoc.empty()) { 2306 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2307 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2308 } else { 2309 SourceLoc = ConstantInt::get(IntptrTy, 0); 2310 } 2311 2312 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2313 GlobalValue *InstrumentedGlobal = NewGlobal; 2314 2315 bool CanUsePrivateAliases = 2316 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2317 TargetTriple.isOSBinFormatWasm(); 2318 if (CanUsePrivateAliases && UsePrivateAlias) { 2319 // Create local alias for NewGlobal to avoid crash on ODR between 2320 // instrumented and non-instrumented libraries. 2321 InstrumentedGlobal = 2322 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2323 } 2324 2325 // ODR should not happen for local linkage. 2326 if (NewGlobal->hasLocalLinkage()) { 2327 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2328 IRB.getInt8PtrTy()); 2329 } else if (UseOdrIndicator) { 2330 // With local aliases, we need to provide another externally visible 2331 // symbol __odr_asan_XXX to detect ODR violation. 2332 auto *ODRIndicatorSym = 2333 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2334 Constant::getNullValue(IRB.getInt8Ty()), 2335 kODRGenPrefix + NameForGlobal, nullptr, 2336 NewGlobal->getThreadLocalMode()); 2337 2338 // Set meaningful attributes for indicator symbol. 2339 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2340 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2341 ODRIndicatorSym->setAlignment(1); 2342 ODRIndicator = ODRIndicatorSym; 2343 } 2344 2345 Constant *Initializer = ConstantStruct::get( 2346 GlobalStructTy, 2347 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2348 ConstantInt::get(IntptrTy, SizeInBytes), 2349 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2350 ConstantExpr::getPointerCast(Name, IntptrTy), 2351 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2352 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2353 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2354 2355 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2356 2357 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2358 2359 Initializers[i] = Initializer; 2360 } 2361 2362 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2363 // ConstantMerge'ing them. 2364 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2365 for (size_t i = 0; i < n; i++) { 2366 GlobalVariable *G = NewGlobals[i]; 2367 if (G->getName().empty()) continue; 2368 GlobalsToAddToUsedList.push_back(G); 2369 } 2370 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2371 2372 std::string ELFUniqueModuleId = 2373 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2374 : ""; 2375 2376 if (!ELFUniqueModuleId.empty()) { 2377 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2378 *CtorComdat = true; 2379 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2380 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2381 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2382 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2383 } else { 2384 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2385 } 2386 2387 // Create calls for poisoning before initializers run and unpoisoning after. 2388 if (HasDynamicallyInitializedGlobals) 2389 createInitializerPoisonCalls(M, ModuleName); 2390 2391 LLVM_DEBUG(dbgs() << M); 2392 return true; 2393 } 2394 2395 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2396 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2397 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2398 int Version = 8; 2399 // 32-bit Android is one version ahead because of the switch to dynamic 2400 // shadow. 2401 Version += (LongSize == 32 && isAndroid); 2402 return Version; 2403 } 2404 2405 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2406 initializeCallbacks(M); 2407 2408 if (CompileKernel) 2409 return false; 2410 2411 // Create a module constructor. A destructor is created lazily because not all 2412 // platforms, and not all modules need it. 2413 std::string VersionCheckName = 2414 kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M)); 2415 std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 2416 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, 2417 /*InitArgs=*/{}, VersionCheckName); 2418 2419 bool CtorComdat = true; 2420 bool Changed = false; 2421 // TODO(glider): temporarily disabled globals instrumentation for KASan. 2422 if (ClGlobals) { 2423 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2424 Changed |= InstrumentGlobals(IRB, M, &CtorComdat); 2425 } 2426 2427 // Put the constructor and destructor in comdat if both 2428 // (1) global instrumentation is not TU-specific 2429 // (2) target is ELF. 2430 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2431 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2432 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority, 2433 AsanCtorFunction); 2434 if (AsanDtorFunction) { 2435 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2436 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority, 2437 AsanDtorFunction); 2438 } 2439 } else { 2440 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); 2441 if (AsanDtorFunction) 2442 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); 2443 } 2444 2445 return Changed; 2446 } 2447 2448 void AddressSanitizer::initializeCallbacks(Module &M) { 2449 IRBuilder<> IRB(*C); 2450 // Create __asan_report* callbacks. 2451 // IsWrite, TypeSize and Exp are encoded in the function name. 2452 for (int Exp = 0; Exp < 2; Exp++) { 2453 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2454 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2455 const std::string ExpStr = Exp ? "exp_" : ""; 2456 const std::string EndingStr = Recover ? "_noabort" : ""; 2457 2458 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2459 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2460 if (Exp) { 2461 Type *ExpType = Type::getInt32Ty(*C); 2462 Args2.push_back(ExpType); 2463 Args1.push_back(ExpType); 2464 } 2465 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2466 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2467 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2468 2469 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2470 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2471 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2472 2473 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2474 AccessSizeIndex++) { 2475 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2476 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2477 M.getOrInsertFunction( 2478 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2479 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2480 2481 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2482 M.getOrInsertFunction( 2483 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2484 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2485 } 2486 } 2487 } 2488 2489 const std::string MemIntrinCallbackPrefix = 2490 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2491 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2492 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2493 IRB.getInt8PtrTy(), IntptrTy); 2494 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2495 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2496 IRB.getInt8PtrTy(), IntptrTy); 2497 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2498 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2499 IRB.getInt32Ty(), IntptrTy); 2500 2501 AsanHandleNoReturnFunc = 2502 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2503 2504 AsanPtrCmpFunction = 2505 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2506 AsanPtrSubFunction = 2507 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2508 // We insert an empty inline asm after __asan_report* to avoid callback merge. 2509 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 2510 StringRef(""), StringRef(""), 2511 /*hasSideEffects=*/true); 2512 if (Mapping.InGlobal) 2513 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2514 ArrayType::get(IRB.getInt8Ty(), 0)); 2515 } 2516 2517 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2518 // For each NSObject descendant having a +load method, this method is invoked 2519 // by the ObjC runtime before any of the static constructors is called. 2520 // Therefore we need to instrument such methods with a call to __asan_init 2521 // at the beginning in order to initialize our runtime before any access to 2522 // the shadow memory. 2523 // We cannot just ignore these methods, because they may call other 2524 // instrumented functions. 2525 if (F.getName().find(" load]") != std::string::npos) { 2526 FunctionCallee AsanInitFunction = 2527 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2528 IRBuilder<> IRB(&F.front(), F.front().begin()); 2529 IRB.CreateCall(AsanInitFunction, {}); 2530 return true; 2531 } 2532 return false; 2533 } 2534 2535 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2536 // Generate code only when dynamic addressing is needed. 2537 if (Mapping.Offset != kDynamicShadowSentinel) 2538 return; 2539 2540 IRBuilder<> IRB(&F.front().front()); 2541 if (Mapping.InGlobal) { 2542 if (ClWithIfuncSuppressRemat) { 2543 // An empty inline asm with input reg == output reg. 2544 // An opaque pointer-to-int cast, basically. 2545 InlineAsm *Asm = InlineAsm::get( 2546 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2547 StringRef(""), StringRef("=r,0"), 2548 /*hasSideEffects=*/false); 2549 LocalDynamicShadow = 2550 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2551 } else { 2552 LocalDynamicShadow = 2553 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2554 } 2555 } else { 2556 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2557 kAsanShadowMemoryDynamicAddress, IntptrTy); 2558 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2559 } 2560 } 2561 2562 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2563 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2564 // to it as uninteresting. This assumes we haven't started processing allocas 2565 // yet. This check is done up front because iterating the use list in 2566 // isInterestingAlloca would be algorithmically slower. 2567 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2568 2569 // Try to get the declaration of llvm.localescape. If it's not in the module, 2570 // we can exit early. 2571 if (!F.getParent()->getFunction("llvm.localescape")) return; 2572 2573 // Look for a call to llvm.localescape call in the entry block. It can't be in 2574 // any other block. 2575 for (Instruction &I : F.getEntryBlock()) { 2576 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2577 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2578 // We found a call. Mark all the allocas passed in as uninteresting. 2579 for (Value *Arg : II->arg_operands()) { 2580 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2581 assert(AI && AI->isStaticAlloca() && 2582 "non-static alloca arg to localescape"); 2583 ProcessedAllocas[AI] = false; 2584 } 2585 break; 2586 } 2587 } 2588 } 2589 2590 bool AddressSanitizer::instrumentFunction(Function &F, 2591 const TargetLibraryInfo *TLI) { 2592 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2593 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2594 if (F.getName().startswith("__asan_")) return false; 2595 2596 bool FunctionModified = false; 2597 2598 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2599 // This function needs to be called even if the function body is not 2600 // instrumented. 2601 if (maybeInsertAsanInitAtFunctionEntry(F)) 2602 FunctionModified = true; 2603 2604 // Leave if the function doesn't need instrumentation. 2605 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2606 2607 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2608 2609 initializeCallbacks(*F.getParent()); 2610 2611 FunctionStateRAII CleanupObj(this); 2612 2613 maybeInsertDynamicShadowAtFunctionEntry(F); 2614 2615 // We can't instrument allocas used with llvm.localescape. Only static allocas 2616 // can be passed to that intrinsic. 2617 markEscapedLocalAllocas(F); 2618 2619 // We want to instrument every address only once per basic block (unless there 2620 // are calls between uses). 2621 SmallPtrSet<Value *, 16> TempsToInstrument; 2622 SmallVector<Instruction *, 16> ToInstrument; 2623 SmallVector<Instruction *, 8> NoReturnCalls; 2624 SmallVector<BasicBlock *, 16> AllBlocks; 2625 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2626 int NumAllocas = 0; 2627 bool IsWrite; 2628 unsigned Alignment; 2629 uint64_t TypeSize; 2630 2631 // Fill the set of memory operations to instrument. 2632 for (auto &BB : F) { 2633 AllBlocks.push_back(&BB); 2634 TempsToInstrument.clear(); 2635 int NumInsnsPerBB = 0; 2636 for (auto &Inst : BB) { 2637 if (LooksLikeCodeInBug11395(&Inst)) return false; 2638 Value *MaybeMask = nullptr; 2639 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, 2640 &Alignment, &MaybeMask)) { 2641 if (ClOpt && ClOptSameTemp) { 2642 // If we have a mask, skip instrumentation if we've already 2643 // instrumented the full object. But don't add to TempsToInstrument 2644 // because we might get another load/store with a different mask. 2645 if (MaybeMask) { 2646 if (TempsToInstrument.count(Addr)) 2647 continue; // We've seen this (whole) temp in the current BB. 2648 } else { 2649 if (!TempsToInstrument.insert(Addr).second) 2650 continue; // We've seen this temp in the current BB. 2651 } 2652 } 2653 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2654 isInterestingPointerComparison(&Inst)) || 2655 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2656 isInterestingPointerSubtraction(&Inst))) { 2657 PointerComparisonsOrSubtracts.push_back(&Inst); 2658 continue; 2659 } else if (isa<MemIntrinsic>(Inst)) { 2660 // ok, take it. 2661 } else { 2662 if (isa<AllocaInst>(Inst)) NumAllocas++; 2663 CallSite CS(&Inst); 2664 if (CS) { 2665 // A call inside BB. 2666 TempsToInstrument.clear(); 2667 if (CS.doesNotReturn() && !CS->getMetadata("nosanitize")) 2668 NoReturnCalls.push_back(CS.getInstruction()); 2669 } 2670 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2671 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2672 continue; 2673 } 2674 ToInstrument.push_back(&Inst); 2675 NumInsnsPerBB++; 2676 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2677 } 2678 } 2679 2680 bool UseCalls = 2681 (ClInstrumentationWithCallsThreshold >= 0 && 2682 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); 2683 const DataLayout &DL = F.getParent()->getDataLayout(); 2684 ObjectSizeOpts ObjSizeOpts; 2685 ObjSizeOpts.RoundToAlign = true; 2686 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2687 2688 // Instrument. 2689 int NumInstrumented = 0; 2690 for (auto Inst : ToInstrument) { 2691 if (ClDebugMin < 0 || ClDebugMax < 0 || 2692 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 2693 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) 2694 instrumentMop(ObjSizeVis, Inst, UseCalls, 2695 F.getParent()->getDataLayout()); 2696 else 2697 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 2698 } 2699 NumInstrumented++; 2700 } 2701 2702 FunctionStackPoisoner FSP(F, *this); 2703 bool ChangedStack = FSP.runOnFunction(); 2704 2705 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2706 // See e.g. https://github.com/google/sanitizers/issues/37 2707 for (auto CI : NoReturnCalls) { 2708 IRBuilder<> IRB(CI); 2709 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2710 } 2711 2712 for (auto Inst : PointerComparisonsOrSubtracts) { 2713 instrumentPointerComparisonOrSubtraction(Inst); 2714 NumInstrumented++; 2715 } 2716 2717 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty()) 2718 FunctionModified = true; 2719 2720 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2721 << F << "\n"); 2722 2723 return FunctionModified; 2724 } 2725 2726 // Workaround for bug 11395: we don't want to instrument stack in functions 2727 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2728 // FIXME: remove once the bug 11395 is fixed. 2729 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2730 if (LongSize != 32) return false; 2731 CallInst *CI = dyn_cast<CallInst>(I); 2732 if (!CI || !CI->isInlineAsm()) return false; 2733 if (CI->getNumArgOperands() <= 5) return false; 2734 // We have inline assembly with quite a few arguments. 2735 return true; 2736 } 2737 2738 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2739 IRBuilder<> IRB(*C); 2740 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2741 std::string Suffix = itostr(i); 2742 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2743 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2744 AsanStackFreeFunc[i] = 2745 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2746 IRB.getVoidTy(), IntptrTy, IntptrTy); 2747 } 2748 if (ASan.UseAfterScope) { 2749 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2750 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2751 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2752 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2753 } 2754 2755 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2756 std::ostringstream Name; 2757 Name << kAsanSetShadowPrefix; 2758 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2759 AsanSetShadowFunc[Val] = 2760 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2761 } 2762 2763 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2764 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2765 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2766 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2767 } 2768 2769 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2770 ArrayRef<uint8_t> ShadowBytes, 2771 size_t Begin, size_t End, 2772 IRBuilder<> &IRB, 2773 Value *ShadowBase) { 2774 if (Begin >= End) 2775 return; 2776 2777 const size_t LargestStoreSizeInBytes = 2778 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2779 2780 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2781 2782 // Poison given range in shadow using larges store size with out leading and 2783 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2784 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2785 // middle of a store. 2786 for (size_t i = Begin; i < End;) { 2787 if (!ShadowMask[i]) { 2788 assert(!ShadowBytes[i]); 2789 ++i; 2790 continue; 2791 } 2792 2793 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2794 // Fit store size into the range. 2795 while (StoreSizeInBytes > End - i) 2796 StoreSizeInBytes /= 2; 2797 2798 // Minimize store size by trimming trailing zeros. 2799 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2800 while (j <= StoreSizeInBytes / 2) 2801 StoreSizeInBytes /= 2; 2802 } 2803 2804 uint64_t Val = 0; 2805 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2806 if (IsLittleEndian) 2807 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2808 else 2809 Val = (Val << 8) | ShadowBytes[i + j]; 2810 } 2811 2812 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2813 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2814 IRB.CreateAlignedStore( 2815 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1); 2816 2817 i += StoreSizeInBytes; 2818 } 2819 } 2820 2821 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2822 ArrayRef<uint8_t> ShadowBytes, 2823 IRBuilder<> &IRB, Value *ShadowBase) { 2824 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2825 } 2826 2827 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2828 ArrayRef<uint8_t> ShadowBytes, 2829 size_t Begin, size_t End, 2830 IRBuilder<> &IRB, Value *ShadowBase) { 2831 assert(ShadowMask.size() == ShadowBytes.size()); 2832 size_t Done = Begin; 2833 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2834 if (!ShadowMask[i]) { 2835 assert(!ShadowBytes[i]); 2836 continue; 2837 } 2838 uint8_t Val = ShadowBytes[i]; 2839 if (!AsanSetShadowFunc[Val]) 2840 continue; 2841 2842 // Skip same values. 2843 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2844 } 2845 2846 if (j - i >= ClMaxInlinePoisoningSize) { 2847 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2848 IRB.CreateCall(AsanSetShadowFunc[Val], 2849 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2850 ConstantInt::get(IntptrTy, j - i)}); 2851 Done = j; 2852 } 2853 } 2854 2855 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2856 } 2857 2858 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2859 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2860 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2861 assert(LocalStackSize <= kMaxStackMallocSize); 2862 uint64_t MaxSize = kMinStackMallocSize; 2863 for (int i = 0;; i++, MaxSize *= 2) 2864 if (LocalStackSize <= MaxSize) return i; 2865 llvm_unreachable("impossible LocalStackSize"); 2866 } 2867 2868 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2869 Instruction *CopyInsertPoint = &F.front().front(); 2870 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2871 // Insert after the dynamic shadow location is determined 2872 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2873 assert(CopyInsertPoint); 2874 } 2875 IRBuilder<> IRB(CopyInsertPoint); 2876 const DataLayout &DL = F.getParent()->getDataLayout(); 2877 for (Argument &Arg : F.args()) { 2878 if (Arg.hasByValAttr()) { 2879 Type *Ty = Arg.getType()->getPointerElementType(); 2880 unsigned Align = Arg.getParamAlignment(); 2881 if (Align == 0) Align = DL.getABITypeAlignment(Ty); 2882 2883 AllocaInst *AI = IRB.CreateAlloca( 2884 Ty, nullptr, 2885 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2886 ".byval"); 2887 AI->setAlignment(Align); 2888 Arg.replaceAllUsesWith(AI); 2889 2890 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2891 IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize); 2892 } 2893 } 2894 } 2895 2896 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2897 Value *ValueIfTrue, 2898 Instruction *ThenTerm, 2899 Value *ValueIfFalse) { 2900 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2901 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2902 PHI->addIncoming(ValueIfFalse, CondBlock); 2903 BasicBlock *ThenBlock = ThenTerm->getParent(); 2904 PHI->addIncoming(ValueIfTrue, ThenBlock); 2905 return PHI; 2906 } 2907 2908 Value *FunctionStackPoisoner::createAllocaForLayout( 2909 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2910 AllocaInst *Alloca; 2911 if (Dynamic) { 2912 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2913 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2914 "MyAlloca"); 2915 } else { 2916 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2917 nullptr, "MyAlloca"); 2918 assert(Alloca->isStaticAlloca()); 2919 } 2920 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2921 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 2922 Alloca->setAlignment(FrameAlignment); 2923 return IRB.CreatePointerCast(Alloca, IntptrTy); 2924 } 2925 2926 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2927 BasicBlock &FirstBB = *F.begin(); 2928 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2929 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2930 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2931 DynamicAllocaLayout->setAlignment(32); 2932 } 2933 2934 void FunctionStackPoisoner::processDynamicAllocas() { 2935 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 2936 assert(DynamicAllocaPoisonCallVec.empty()); 2937 return; 2938 } 2939 2940 // Insert poison calls for lifetime intrinsics for dynamic allocas. 2941 for (const auto &APC : DynamicAllocaPoisonCallVec) { 2942 assert(APC.InsBefore); 2943 assert(APC.AI); 2944 assert(ASan.isInterestingAlloca(*APC.AI)); 2945 assert(!APC.AI->isStaticAlloca()); 2946 2947 IRBuilder<> IRB(APC.InsBefore); 2948 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2949 // Dynamic allocas will be unpoisoned unconditionally below in 2950 // unpoisonDynamicAllocas. 2951 // Flag that we need unpoison static allocas. 2952 } 2953 2954 // Handle dynamic allocas. 2955 createDynamicAllocasInitStorage(); 2956 for (auto &AI : DynamicAllocaVec) 2957 handleDynamicAllocaCall(AI); 2958 unpoisonDynamicAllocas(); 2959 } 2960 2961 void FunctionStackPoisoner::processStaticAllocas() { 2962 if (AllocaVec.empty()) { 2963 assert(StaticAllocaPoisonCallVec.empty()); 2964 return; 2965 } 2966 2967 int StackMallocIdx = -1; 2968 DebugLoc EntryDebugLocation; 2969 if (auto SP = F.getSubprogram()) 2970 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 2971 2972 Instruction *InsBefore = AllocaVec[0]; 2973 IRBuilder<> IRB(InsBefore); 2974 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2975 2976 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 2977 // debug info is broken, because only entry-block allocas are treated as 2978 // regular stack slots. 2979 auto InsBeforeB = InsBefore->getParent(); 2980 assert(InsBeforeB == &F.getEntryBlock()); 2981 for (auto *AI : StaticAllocasToMoveUp) 2982 if (AI->getParent() == InsBeforeB) 2983 AI->moveBefore(InsBefore); 2984 2985 // If we have a call to llvm.localescape, keep it in the entry block. 2986 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 2987 2988 SmallVector<ASanStackVariableDescription, 16> SVD; 2989 SVD.reserve(AllocaVec.size()); 2990 for (AllocaInst *AI : AllocaVec) { 2991 ASanStackVariableDescription D = {AI->getName().data(), 2992 ASan.getAllocaSizeInBytes(*AI), 2993 0, 2994 AI->getAlignment(), 2995 AI, 2996 0, 2997 0}; 2998 SVD.push_back(D); 2999 } 3000 3001 // Minimal header size (left redzone) is 4 pointers, 3002 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3003 size_t Granularity = 1ULL << Mapping.Scale; 3004 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3005 const ASanStackFrameLayout &L = 3006 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3007 3008 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3009 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3010 for (auto &Desc : SVD) 3011 AllocaToSVDMap[Desc.AI] = &Desc; 3012 3013 // Update SVD with information from lifetime intrinsics. 3014 for (const auto &APC : StaticAllocaPoisonCallVec) { 3015 assert(APC.InsBefore); 3016 assert(APC.AI); 3017 assert(ASan.isInterestingAlloca(*APC.AI)); 3018 assert(APC.AI->isStaticAlloca()); 3019 3020 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3021 Desc.LifetimeSize = Desc.Size; 3022 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3023 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3024 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3025 if (unsigned Line = LifetimeLoc->getLine()) 3026 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3027 } 3028 } 3029 } 3030 3031 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3032 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3033 uint64_t LocalStackSize = L.FrameSize; 3034 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3035 LocalStackSize <= kMaxStackMallocSize; 3036 bool DoDynamicAlloca = ClDynamicAllocaStack; 3037 // Don't do dynamic alloca or stack malloc if: 3038 // 1) There is inline asm: too often it makes assumptions on which registers 3039 // are available. 3040 // 2) There is a returns_twice call (typically setjmp), which is 3041 // optimization-hostile, and doesn't play well with introduced indirect 3042 // register-relative calculation of local variable addresses. 3043 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3044 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3045 3046 Value *StaticAlloca = 3047 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3048 3049 Value *FakeStack; 3050 Value *LocalStackBase; 3051 Value *LocalStackBaseAlloca; 3052 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3053 3054 if (DoStackMalloc) { 3055 LocalStackBaseAlloca = 3056 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3057 // void *FakeStack = __asan_option_detect_stack_use_after_return 3058 // ? __asan_stack_malloc_N(LocalStackSize) 3059 // : nullptr; 3060 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3061 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3062 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3063 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3064 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3065 Constant::getNullValue(IRB.getInt32Ty())); 3066 Instruction *Term = 3067 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3068 IRBuilder<> IRBIf(Term); 3069 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 3070 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3071 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3072 Value *FakeStackValue = 3073 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3074 ConstantInt::get(IntptrTy, LocalStackSize)); 3075 IRB.SetInsertPoint(InsBefore); 3076 IRB.SetCurrentDebugLocation(EntryDebugLocation); 3077 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3078 ConstantInt::get(IntptrTy, 0)); 3079 3080 Value *NoFakeStack = 3081 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3082 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3083 IRBIf.SetInsertPoint(Term); 3084 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 3085 Value *AllocaValue = 3086 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3087 3088 IRB.SetInsertPoint(InsBefore); 3089 IRB.SetCurrentDebugLocation(EntryDebugLocation); 3090 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3091 IRB.SetCurrentDebugLocation(EntryDebugLocation); 3092 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3093 DIExprFlags |= DIExpression::DerefBefore; 3094 } else { 3095 // void *FakeStack = nullptr; 3096 // void *LocalStackBase = alloca(LocalStackSize); 3097 FakeStack = ConstantInt::get(IntptrTy, 0); 3098 LocalStackBase = 3099 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3100 LocalStackBaseAlloca = LocalStackBase; 3101 } 3102 3103 // Replace Alloca instructions with base+offset. 3104 for (const auto &Desc : SVD) { 3105 AllocaInst *AI = Desc.AI; 3106 replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, DIExprFlags, 3107 Desc.Offset); 3108 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3109 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3110 AI->getType()); 3111 AI->replaceAllUsesWith(NewAllocaPtr); 3112 } 3113 3114 // The left-most redzone has enough space for at least 4 pointers. 3115 // Write the Magic value to redzone[0]. 3116 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3117 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3118 BasePlus0); 3119 // Write the frame description constant to redzone[1]. 3120 Value *BasePlus1 = IRB.CreateIntToPtr( 3121 IRB.CreateAdd(LocalStackBase, 3122 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3123 IntptrPtrTy); 3124 GlobalVariable *StackDescriptionGlobal = 3125 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3126 /*AllowMerging*/ true, kAsanGenPrefix); 3127 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3128 IRB.CreateStore(Description, BasePlus1); 3129 // Write the PC to redzone[2]. 3130 Value *BasePlus2 = IRB.CreateIntToPtr( 3131 IRB.CreateAdd(LocalStackBase, 3132 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3133 IntptrPtrTy); 3134 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3135 3136 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3137 3138 // Poison the stack red zones at the entry. 3139 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3140 // As mask we must use most poisoned case: red zones and after scope. 3141 // As bytes we can use either the same or just red zones only. 3142 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3143 3144 if (!StaticAllocaPoisonCallVec.empty()) { 3145 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3146 3147 // Poison static allocas near lifetime intrinsics. 3148 for (const auto &APC : StaticAllocaPoisonCallVec) { 3149 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3150 assert(Desc.Offset % L.Granularity == 0); 3151 size_t Begin = Desc.Offset / L.Granularity; 3152 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3153 3154 IRBuilder<> IRB(APC.InsBefore); 3155 copyToShadow(ShadowAfterScope, 3156 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3157 IRB, ShadowBase); 3158 } 3159 } 3160 3161 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3162 SmallVector<uint8_t, 64> ShadowAfterReturn; 3163 3164 // (Un)poison the stack before all ret instructions. 3165 for (auto Ret : RetVec) { 3166 IRBuilder<> IRBRet(Ret); 3167 // Mark the current frame as retired. 3168 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3169 BasePlus0); 3170 if (DoStackMalloc) { 3171 assert(StackMallocIdx >= 0); 3172 // if FakeStack != 0 // LocalStackBase == FakeStack 3173 // // In use-after-return mode, poison the whole stack frame. 3174 // if StackMallocIdx <= 4 3175 // // For small sizes inline the whole thing: 3176 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3177 // **SavedFlagPtr(FakeStack) = 0 3178 // else 3179 // __asan_stack_free_N(FakeStack, LocalStackSize) 3180 // else 3181 // <This is not a fake stack; unpoison the redzones> 3182 Value *Cmp = 3183 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3184 Instruction *ThenTerm, *ElseTerm; 3185 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3186 3187 IRBuilder<> IRBPoison(ThenTerm); 3188 if (StackMallocIdx <= 4) { 3189 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3190 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3191 kAsanStackUseAfterReturnMagic); 3192 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3193 ShadowBase); 3194 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3195 FakeStack, 3196 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3197 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3198 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3199 IRBPoison.CreateStore( 3200 Constant::getNullValue(IRBPoison.getInt8Ty()), 3201 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3202 } else { 3203 // For larger frames call __asan_stack_free_*. 3204 IRBPoison.CreateCall( 3205 AsanStackFreeFunc[StackMallocIdx], 3206 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3207 } 3208 3209 IRBuilder<> IRBElse(ElseTerm); 3210 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3211 } else { 3212 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3213 } 3214 } 3215 3216 // We are done. Remove the old unused alloca instructions. 3217 for (auto AI : AllocaVec) AI->eraseFromParent(); 3218 } 3219 3220 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3221 IRBuilder<> &IRB, bool DoPoison) { 3222 // For now just insert the call to ASan runtime. 3223 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3224 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3225 IRB.CreateCall( 3226 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3227 {AddrArg, SizeArg}); 3228 } 3229 3230 // Handling llvm.lifetime intrinsics for a given %alloca: 3231 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3232 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3233 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3234 // could be poisoned by previous llvm.lifetime.end instruction, as the 3235 // variable may go in and out of scope several times, e.g. in loops). 3236 // (3) if we poisoned at least one %alloca in a function, 3237 // unpoison the whole stack frame at function exit. 3238 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3239 IRBuilder<> IRB(AI); 3240 3241 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 3242 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3243 3244 Value *Zero = Constant::getNullValue(IntptrTy); 3245 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3246 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3247 3248 // Since we need to extend alloca with additional memory to locate 3249 // redzones, and OldSize is number of allocated blocks with 3250 // ElementSize size, get allocated memory size in bytes by 3251 // OldSize * ElementSize. 3252 const unsigned ElementSize = 3253 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3254 Value *OldSize = 3255 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3256 ConstantInt::get(IntptrTy, ElementSize)); 3257 3258 // PartialSize = OldSize % 32 3259 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3260 3261 // Misalign = kAllocaRzSize - PartialSize; 3262 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3263 3264 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3265 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3266 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3267 3268 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 3269 // Align is added to locate left redzone, PartialPadding for possible 3270 // partial redzone and kAllocaRzSize for right redzone respectively. 3271 Value *AdditionalChunkSize = IRB.CreateAdd( 3272 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 3273 3274 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3275 3276 // Insert new alloca with new NewSize and Align params. 3277 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3278 NewAlloca->setAlignment(Align); 3279 3280 // NewAddress = Address + Align 3281 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3282 ConstantInt::get(IntptrTy, Align)); 3283 3284 // Insert __asan_alloca_poison call for new created alloca. 3285 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3286 3287 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3288 // for unpoisoning stuff. 3289 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3290 3291 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3292 3293 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3294 AI->replaceAllUsesWith(NewAddressPtr); 3295 3296 // We are done. Erase old alloca from parent. 3297 AI->eraseFromParent(); 3298 } 3299 3300 // isSafeAccess returns true if Addr is always inbounds with respect to its 3301 // base object. For example, it is a field access or an array access with 3302 // constant inbounds index. 3303 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3304 Value *Addr, uint64_t TypeSize) const { 3305 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3306 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3307 uint64_t Size = SizeOffset.first.getZExtValue(); 3308 int64_t Offset = SizeOffset.second.getSExtValue(); 3309 // Three checks are required to ensure safety: 3310 // . Offset >= 0 (since the offset is given from the base ptr) 3311 // . Size >= Offset (unsigned) 3312 // . Size - Offset >= NeededSize (unsigned) 3313 return Offset >= 0 && Size >= uint64_t(Offset) && 3314 Size - uint64_t(Offset) >= TypeSize / 8; 3315 } 3316