1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // Details of the algorithm: 11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/BinaryFormat/MachO.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DIBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstVisitor.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/MDBuilder.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/InitializePasses.h" 63 #include "llvm/MC/MCSectionMachO.h" 64 #include "llvm/Pass.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/ScopedPrinter.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Instrumentation.h" 73 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/ModuleUtils.h" 77 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iomanip> 83 #include <limits> 84 #include <memory> 85 #include <sstream> 86 #include <string> 87 #include <tuple> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "asan" 92 93 static const uint64_t kDefaultShadowScale = 3; 94 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 95 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 96 static const uint64_t kDynamicShadowSentinel = 97 std::numeric_limits<uint64_t>::max(); 98 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 99 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 100 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 101 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 102 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 103 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 104 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 105 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 106 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 107 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 108 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 109 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 111 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 112 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 113 static const uint64_t kEmscriptenShadowOffset = 0; 114 115 static const uint64_t kMyriadShadowScale = 5; 116 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; 117 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; 118 static const uint64_t kMyriadTagShift = 29; 119 static const uint64_t kMyriadDDRTag = 4; 120 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; 121 122 // The shadow memory space is dynamically allocated. 123 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 124 125 static const size_t kMinStackMallocSize = 1 << 6; // 64B 126 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 127 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 128 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 129 130 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 131 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 132 static const uint64_t kAsanCtorAndDtorPriority = 1; 133 // On Emscripten, the system needs more than one priorities for constructors. 134 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 135 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 136 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 137 static const char *const kAsanUnregisterGlobalsName = 138 "__asan_unregister_globals"; 139 static const char *const kAsanRegisterImageGlobalsName = 140 "__asan_register_image_globals"; 141 static const char *const kAsanUnregisterImageGlobalsName = 142 "__asan_unregister_image_globals"; 143 static const char *const kAsanRegisterElfGlobalsName = 144 "__asan_register_elf_globals"; 145 static const char *const kAsanUnregisterElfGlobalsName = 146 "__asan_unregister_elf_globals"; 147 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 148 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 149 static const char *const kAsanInitName = "__asan_init"; 150 static const char *const kAsanVersionCheckNamePrefix = 151 "__asan_version_mismatch_check_v"; 152 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 153 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 154 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 155 static const int kMaxAsanStackMallocSizeClass = 10; 156 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 157 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 158 static const char *const kAsanGenPrefix = "___asan_gen_"; 159 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 160 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 161 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; 162 static const char *const kAsanPoisonStackMemoryName = 163 "__asan_poison_stack_memory"; 164 static const char *const kAsanUnpoisonStackMemoryName = 165 "__asan_unpoison_stack_memory"; 166 167 // ASan version script has __asan_* wildcard. Triple underscore prevents a 168 // linker (gold) warning about attempting to export a local symbol. 169 static const char *const kAsanGlobalsRegisteredFlagName = 170 "___asan_globals_registered"; 171 172 static const char *const kAsanOptionDetectUseAfterReturn = 173 "__asan_option_detect_stack_use_after_return"; 174 175 static const char *const kAsanShadowMemoryDynamicAddress = 176 "__asan_shadow_memory_dynamic_address"; 177 178 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 179 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 180 181 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 182 static const size_t kNumberOfAccessSizes = 5; 183 184 static const unsigned kAllocaRzSize = 32; 185 186 // Command-line flags. 187 188 static cl::opt<bool> ClEnableKasan( 189 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 190 cl::Hidden, cl::init(false)); 191 192 static cl::opt<bool> ClRecover( 193 "asan-recover", 194 cl::desc("Enable recovery mode (continue-after-error)."), 195 cl::Hidden, cl::init(false)); 196 197 static cl::opt<bool> ClInsertVersionCheck( 198 "asan-guard-against-version-mismatch", 199 cl::desc("Guard against compiler/runtime version mismatch."), 200 cl::Hidden, cl::init(true)); 201 202 // This flag may need to be replaced with -f[no-]asan-reads. 203 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 204 cl::desc("instrument read instructions"), 205 cl::Hidden, cl::init(true)); 206 207 static cl::opt<bool> ClInstrumentWrites( 208 "asan-instrument-writes", cl::desc("instrument write instructions"), 209 cl::Hidden, cl::init(true)); 210 211 static cl::opt<bool> ClInstrumentAtomics( 212 "asan-instrument-atomics", 213 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 214 cl::init(true)); 215 216 static cl::opt<bool> ClAlwaysSlowPath( 217 "asan-always-slow-path", 218 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 219 cl::init(false)); 220 221 static cl::opt<bool> ClForceDynamicShadow( 222 "asan-force-dynamic-shadow", 223 cl::desc("Load shadow address into a local variable for each function"), 224 cl::Hidden, cl::init(false)); 225 226 static cl::opt<bool> 227 ClWithIfunc("asan-with-ifunc", 228 cl::desc("Access dynamic shadow through an ifunc global on " 229 "platforms that support this"), 230 cl::Hidden, cl::init(true)); 231 232 static cl::opt<bool> ClWithIfuncSuppressRemat( 233 "asan-with-ifunc-suppress-remat", 234 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 235 "it through inline asm in prologue."), 236 cl::Hidden, cl::init(true)); 237 238 // This flag limits the number of instructions to be instrumented 239 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 240 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 241 // set it to 10000. 242 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 243 "asan-max-ins-per-bb", cl::init(10000), 244 cl::desc("maximal number of instructions to instrument in any given BB"), 245 cl::Hidden); 246 247 // This flag may need to be replaced with -f[no]asan-stack. 248 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 249 cl::Hidden, cl::init(true)); 250 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 251 "asan-max-inline-poisoning-size", 252 cl::desc( 253 "Inline shadow poisoning for blocks up to the given size in bytes."), 254 cl::Hidden, cl::init(64)); 255 256 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 257 cl::desc("Check stack-use-after-return"), 258 cl::Hidden, cl::init(true)); 259 260 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 261 cl::desc("Create redzones for byval " 262 "arguments (extra copy " 263 "required)"), cl::Hidden, 264 cl::init(true)); 265 266 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 267 cl::desc("Check stack-use-after-scope"), 268 cl::Hidden, cl::init(false)); 269 270 // This flag may need to be replaced with -f[no]asan-globals. 271 static cl::opt<bool> ClGlobals("asan-globals", 272 cl::desc("Handle global objects"), cl::Hidden, 273 cl::init(true)); 274 275 static cl::opt<bool> ClInitializers("asan-initialization-order", 276 cl::desc("Handle C++ initializer order"), 277 cl::Hidden, cl::init(true)); 278 279 static cl::opt<bool> ClInvalidPointerPairs( 280 "asan-detect-invalid-pointer-pair", 281 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 282 cl::init(false)); 283 284 static cl::opt<bool> ClInvalidPointerCmp( 285 "asan-detect-invalid-pointer-cmp", 286 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 287 cl::init(false)); 288 289 static cl::opt<bool> ClInvalidPointerSub( 290 "asan-detect-invalid-pointer-sub", 291 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 292 cl::init(false)); 293 294 static cl::opt<unsigned> ClRealignStack( 295 "asan-realign-stack", 296 cl::desc("Realign stack to the value of this flag (power of two)"), 297 cl::Hidden, cl::init(32)); 298 299 static cl::opt<int> ClInstrumentationWithCallsThreshold( 300 "asan-instrumentation-with-call-threshold", 301 cl::desc( 302 "If the function being instrumented contains more than " 303 "this number of memory accesses, use callbacks instead of " 304 "inline checks (-1 means never use callbacks)."), 305 cl::Hidden, cl::init(7000)); 306 307 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 308 "asan-memory-access-callback-prefix", 309 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 310 cl::init("__asan_")); 311 312 static cl::opt<bool> 313 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 314 cl::desc("instrument dynamic allocas"), 315 cl::Hidden, cl::init(true)); 316 317 static cl::opt<bool> ClSkipPromotableAllocas( 318 "asan-skip-promotable-allocas", 319 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 320 cl::init(true)); 321 322 // These flags allow to change the shadow mapping. 323 // The shadow mapping looks like 324 // Shadow = (Mem >> scale) + offset 325 326 static cl::opt<int> ClMappingScale("asan-mapping-scale", 327 cl::desc("scale of asan shadow mapping"), 328 cl::Hidden, cl::init(0)); 329 330 static cl::opt<uint64_t> 331 ClMappingOffset("asan-mapping-offset", 332 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 333 cl::Hidden, cl::init(0)); 334 335 // Optimization flags. Not user visible, used mostly for testing 336 // and benchmarking the tool. 337 338 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 339 cl::Hidden, cl::init(true)); 340 341 static cl::opt<bool> ClOptSameTemp( 342 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 343 cl::Hidden, cl::init(true)); 344 345 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 346 cl::desc("Don't instrument scalar globals"), 347 cl::Hidden, cl::init(true)); 348 349 static cl::opt<bool> ClOptStack( 350 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 351 cl::Hidden, cl::init(false)); 352 353 static cl::opt<bool> ClDynamicAllocaStack( 354 "asan-stack-dynamic-alloca", 355 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 356 cl::init(true)); 357 358 static cl::opt<uint32_t> ClForceExperiment( 359 "asan-force-experiment", 360 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 361 cl::init(0)); 362 363 static cl::opt<bool> 364 ClUsePrivateAlias("asan-use-private-alias", 365 cl::desc("Use private aliases for global variables"), 366 cl::Hidden, cl::init(false)); 367 368 static cl::opt<bool> 369 ClUseOdrIndicator("asan-use-odr-indicator", 370 cl::desc("Use odr indicators to improve ODR reporting"), 371 cl::Hidden, cl::init(false)); 372 373 static cl::opt<bool> 374 ClUseGlobalsGC("asan-globals-live-support", 375 cl::desc("Use linker features to support dead " 376 "code stripping of globals"), 377 cl::Hidden, cl::init(true)); 378 379 // This is on by default even though there is a bug in gold: 380 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 381 static cl::opt<bool> 382 ClWithComdat("asan-with-comdat", 383 cl::desc("Place ASan constructors in comdat sections"), 384 cl::Hidden, cl::init(true)); 385 386 // Debug flags. 387 388 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 389 cl::init(0)); 390 391 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 392 cl::Hidden, cl::init(0)); 393 394 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 395 cl::desc("Debug func")); 396 397 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 398 cl::Hidden, cl::init(-1)); 399 400 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 401 cl::Hidden, cl::init(-1)); 402 403 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 404 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 405 STATISTIC(NumOptimizedAccessesToGlobalVar, 406 "Number of optimized accesses to global vars"); 407 STATISTIC(NumOptimizedAccessesToStackVar, 408 "Number of optimized accesses to stack vars"); 409 410 namespace { 411 412 /// This struct defines the shadow mapping using the rule: 413 /// shadow = (mem >> Scale) ADD-or-OR Offset. 414 /// If InGlobal is true, then 415 /// extern char __asan_shadow[]; 416 /// shadow = (mem >> Scale) + &__asan_shadow 417 struct ShadowMapping { 418 int Scale; 419 uint64_t Offset; 420 bool OrShadowOffset; 421 bool InGlobal; 422 }; 423 424 } // end anonymous namespace 425 426 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 427 bool IsKasan) { 428 bool IsAndroid = TargetTriple.isAndroid(); 429 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 430 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 431 bool IsNetBSD = TargetTriple.isOSNetBSD(); 432 bool IsPS4CPU = TargetTriple.isPS4CPU(); 433 bool IsLinux = TargetTriple.isOSLinux(); 434 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 435 TargetTriple.getArch() == Triple::ppc64le; 436 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 437 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 438 bool IsMIPS32 = TargetTriple.isMIPS32(); 439 bool IsMIPS64 = TargetTriple.isMIPS64(); 440 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 441 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 442 bool IsWindows = TargetTriple.isOSWindows(); 443 bool IsFuchsia = TargetTriple.isOSFuchsia(); 444 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 445 bool IsEmscripten = TargetTriple.isOSEmscripten(); 446 447 ShadowMapping Mapping; 448 449 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; 450 if (ClMappingScale.getNumOccurrences() > 0) { 451 Mapping.Scale = ClMappingScale; 452 } 453 454 if (LongSize == 32) { 455 if (IsAndroid) 456 Mapping.Offset = kDynamicShadowSentinel; 457 else if (IsMIPS32) 458 Mapping.Offset = kMIPS32_ShadowOffset32; 459 else if (IsFreeBSD) 460 Mapping.Offset = kFreeBSD_ShadowOffset32; 461 else if (IsNetBSD) 462 Mapping.Offset = kNetBSD_ShadowOffset32; 463 else if (IsIOS) 464 Mapping.Offset = kDynamicShadowSentinel; 465 else if (IsWindows) 466 Mapping.Offset = kWindowsShadowOffset32; 467 else if (IsEmscripten) 468 Mapping.Offset = kEmscriptenShadowOffset; 469 else if (IsMyriad) { 470 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - 471 (kMyriadMemorySize32 >> Mapping.Scale)); 472 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); 473 } 474 else 475 Mapping.Offset = kDefaultShadowOffset32; 476 } else { // LongSize == 64 477 // Fuchsia is always PIE, which means that the beginning of the address 478 // space is always available. 479 if (IsFuchsia) 480 Mapping.Offset = 0; 481 else if (IsPPC64) 482 Mapping.Offset = kPPC64_ShadowOffset64; 483 else if (IsSystemZ) 484 Mapping.Offset = kSystemZ_ShadowOffset64; 485 else if (IsFreeBSD && !IsMIPS64) 486 Mapping.Offset = kFreeBSD_ShadowOffset64; 487 else if (IsNetBSD) { 488 if (IsKasan) 489 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 490 else 491 Mapping.Offset = kNetBSD_ShadowOffset64; 492 } else if (IsPS4CPU) 493 Mapping.Offset = kPS4CPU_ShadowOffset64; 494 else if (IsLinux && IsX86_64) { 495 if (IsKasan) 496 Mapping.Offset = kLinuxKasan_ShadowOffset64; 497 else 498 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 499 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 500 } else if (IsWindows && IsX86_64) { 501 Mapping.Offset = kWindowsShadowOffset64; 502 } else if (IsMIPS64) 503 Mapping.Offset = kMIPS64_ShadowOffset64; 504 else if (IsIOS) 505 Mapping.Offset = kDynamicShadowSentinel; 506 else if (IsAArch64) 507 Mapping.Offset = kAArch64_ShadowOffset64; 508 else 509 Mapping.Offset = kDefaultShadowOffset64; 510 } 511 512 if (ClForceDynamicShadow) { 513 Mapping.Offset = kDynamicShadowSentinel; 514 } 515 516 if (ClMappingOffset.getNumOccurrences() > 0) { 517 Mapping.Offset = ClMappingOffset; 518 } 519 520 // OR-ing shadow offset if more efficient (at least on x86) if the offset 521 // is a power of two, but on ppc64 we have to use add since the shadow 522 // offset is not necessary 1/8-th of the address space. On SystemZ, 523 // we could OR the constant in a single instruction, but it's more 524 // efficient to load it once and use indexed addressing. 525 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 526 !(Mapping.Offset & (Mapping.Offset - 1)) && 527 Mapping.Offset != kDynamicShadowSentinel; 528 bool IsAndroidWithIfuncSupport = 529 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 530 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 531 532 return Mapping; 533 } 534 535 static size_t RedzoneSizeForScale(int MappingScale) { 536 // Redzone used for stack and globals is at least 32 bytes. 537 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 538 return std::max(32U, 1U << MappingScale); 539 } 540 541 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 542 if (TargetTriple.isOSEmscripten()) { 543 return kAsanEmscriptenCtorAndDtorPriority; 544 } else { 545 return kAsanCtorAndDtorPriority; 546 } 547 } 548 549 namespace { 550 551 /// Module analysis for getting various metadata about the module. 552 class ASanGlobalsMetadataWrapperPass : public ModulePass { 553 public: 554 static char ID; 555 556 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 557 initializeASanGlobalsMetadataWrapperPassPass( 558 *PassRegistry::getPassRegistry()); 559 } 560 561 bool runOnModule(Module &M) override { 562 GlobalsMD = GlobalsMetadata(M); 563 return false; 564 } 565 566 StringRef getPassName() const override { 567 return "ASanGlobalsMetadataWrapperPass"; 568 } 569 570 void getAnalysisUsage(AnalysisUsage &AU) const override { 571 AU.setPreservesAll(); 572 } 573 574 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 575 576 private: 577 GlobalsMetadata GlobalsMD; 578 }; 579 580 char ASanGlobalsMetadataWrapperPass::ID = 0; 581 582 /// AddressSanitizer: instrument the code in module to find memory bugs. 583 struct AddressSanitizer { 584 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 585 bool CompileKernel = false, bool Recover = false, 586 bool UseAfterScope = false) 587 : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { 588 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 589 this->CompileKernel = 590 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; 591 592 C = &(M.getContext()); 593 LongSize = M.getDataLayout().getPointerSizeInBits(); 594 IntptrTy = Type::getIntNTy(*C, LongSize); 595 TargetTriple = Triple(M.getTargetTriple()); 596 597 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 598 } 599 600 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 601 uint64_t ArraySize = 1; 602 if (AI.isArrayAllocation()) { 603 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 604 assert(CI && "non-constant array size"); 605 ArraySize = CI->getZExtValue(); 606 } 607 Type *Ty = AI.getAllocatedType(); 608 uint64_t SizeInBytes = 609 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 610 return SizeInBytes * ArraySize; 611 } 612 613 /// Check if we want (and can) handle this alloca. 614 bool isInterestingAlloca(const AllocaInst &AI); 615 616 /// If it is an interesting memory access, return the PointerOperand 617 /// and set IsWrite/Alignment. Otherwise return nullptr. 618 /// MaybeMask is an output parameter for the mask Value, if we're looking at a 619 /// masked load/store. 620 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, 621 uint64_t *TypeSize, unsigned *Alignment, 622 Value **MaybeMask = nullptr); 623 624 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, 625 bool UseCalls, const DataLayout &DL); 626 void instrumentPointerComparisonOrSubtraction(Instruction *I); 627 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 628 Value *Addr, uint32_t TypeSize, bool IsWrite, 629 Value *SizeArgument, bool UseCalls, uint32_t Exp); 630 void instrumentUnusualSizeOrAlignment(Instruction *I, 631 Instruction *InsertBefore, Value *Addr, 632 uint32_t TypeSize, bool IsWrite, 633 Value *SizeArgument, bool UseCalls, 634 uint32_t Exp); 635 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 636 Value *ShadowValue, uint32_t TypeSize); 637 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 638 bool IsWrite, size_t AccessSizeIndex, 639 Value *SizeArgument, uint32_t Exp); 640 void instrumentMemIntrinsic(MemIntrinsic *MI); 641 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 642 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 643 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 644 void maybeInsertDynamicShadowAtFunctionEntry(Function &F); 645 void markEscapedLocalAllocas(Function &F); 646 647 private: 648 friend struct FunctionStackPoisoner; 649 650 void initializeCallbacks(Module &M); 651 652 bool LooksLikeCodeInBug11395(Instruction *I); 653 bool GlobalIsLinkerInitialized(GlobalVariable *G); 654 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 655 uint64_t TypeSize) const; 656 657 /// Helper to cleanup per-function state. 658 struct FunctionStateRAII { 659 AddressSanitizer *Pass; 660 661 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 662 assert(Pass->ProcessedAllocas.empty() && 663 "last pass forgot to clear cache"); 664 assert(!Pass->LocalDynamicShadow); 665 } 666 667 ~FunctionStateRAII() { 668 Pass->LocalDynamicShadow = nullptr; 669 Pass->ProcessedAllocas.clear(); 670 } 671 }; 672 673 LLVMContext *C; 674 Triple TargetTriple; 675 int LongSize; 676 bool CompileKernel; 677 bool Recover; 678 bool UseAfterScope; 679 Type *IntptrTy; 680 ShadowMapping Mapping; 681 FunctionCallee AsanHandleNoReturnFunc; 682 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 683 Constant *AsanShadowGlobal; 684 685 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 686 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 687 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 688 689 // These arrays is indexed by AccessIsWrite and Experiment. 690 FunctionCallee AsanErrorCallbackSized[2][2]; 691 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 692 693 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 694 InlineAsm *EmptyAsm; 695 Value *LocalDynamicShadow = nullptr; 696 const GlobalsMetadata &GlobalsMD; 697 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 698 }; 699 700 class AddressSanitizerLegacyPass : public FunctionPass { 701 public: 702 static char ID; 703 704 explicit AddressSanitizerLegacyPass(bool CompileKernel = false, 705 bool Recover = false, 706 bool UseAfterScope = false) 707 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 708 UseAfterScope(UseAfterScope) { 709 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 710 } 711 712 StringRef getPassName() const override { 713 return "AddressSanitizerFunctionPass"; 714 } 715 716 void getAnalysisUsage(AnalysisUsage &AU) const override { 717 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 718 AU.addRequired<TargetLibraryInfoWrapperPass>(); 719 } 720 721 bool runOnFunction(Function &F) override { 722 GlobalsMetadata &GlobalsMD = 723 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 724 const TargetLibraryInfo *TLI = 725 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 726 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, 727 UseAfterScope); 728 return ASan.instrumentFunction(F, TLI); 729 } 730 731 private: 732 bool CompileKernel; 733 bool Recover; 734 bool UseAfterScope; 735 }; 736 737 class ModuleAddressSanitizer { 738 public: 739 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 740 bool CompileKernel = false, bool Recover = false, 741 bool UseGlobalsGC = true, bool UseOdrIndicator = false) 742 : GlobalsMD(*GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC), 743 // Enable aliases as they should have no downside with ODR indicators. 744 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 745 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 746 // Not a typo: ClWithComdat is almost completely pointless without 747 // ClUseGlobalsGC (because then it only works on modules without 748 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 749 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 750 // argument is designed as workaround. Therefore, disable both 751 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 752 // do globals-gc. 753 UseCtorComdat(UseGlobalsGC && ClWithComdat) { 754 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; 755 this->CompileKernel = 756 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; 757 758 C = &(M.getContext()); 759 int LongSize = M.getDataLayout().getPointerSizeInBits(); 760 IntptrTy = Type::getIntNTy(*C, LongSize); 761 TargetTriple = Triple(M.getTargetTriple()); 762 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 763 } 764 765 bool instrumentModule(Module &); 766 767 private: 768 void initializeCallbacks(Module &M); 769 770 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 771 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 772 ArrayRef<GlobalVariable *> ExtendedGlobals, 773 ArrayRef<Constant *> MetadataInitializers); 774 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 775 ArrayRef<GlobalVariable *> ExtendedGlobals, 776 ArrayRef<Constant *> MetadataInitializers, 777 const std::string &UniqueModuleId); 778 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 779 ArrayRef<GlobalVariable *> ExtendedGlobals, 780 ArrayRef<Constant *> MetadataInitializers); 781 void 782 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 783 ArrayRef<GlobalVariable *> ExtendedGlobals, 784 ArrayRef<Constant *> MetadataInitializers); 785 786 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 787 StringRef OriginalName); 788 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 789 StringRef InternalSuffix); 790 IRBuilder<> CreateAsanModuleDtor(Module &M); 791 792 bool ShouldInstrumentGlobal(GlobalVariable *G); 793 bool ShouldUseMachOGlobalsSection() const; 794 StringRef getGlobalMetadataSection() const; 795 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 796 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 797 size_t MinRedzoneSizeForGlobal() const { 798 return RedzoneSizeForScale(Mapping.Scale); 799 } 800 int GetAsanVersion(const Module &M) const; 801 802 const GlobalsMetadata &GlobalsMD; 803 bool CompileKernel; 804 bool Recover; 805 bool UseGlobalsGC; 806 bool UsePrivateAlias; 807 bool UseOdrIndicator; 808 bool UseCtorComdat; 809 Type *IntptrTy; 810 LLVMContext *C; 811 Triple TargetTriple; 812 ShadowMapping Mapping; 813 FunctionCallee AsanPoisonGlobals; 814 FunctionCallee AsanUnpoisonGlobals; 815 FunctionCallee AsanRegisterGlobals; 816 FunctionCallee AsanUnregisterGlobals; 817 FunctionCallee AsanRegisterImageGlobals; 818 FunctionCallee AsanUnregisterImageGlobals; 819 FunctionCallee AsanRegisterElfGlobals; 820 FunctionCallee AsanUnregisterElfGlobals; 821 822 Function *AsanCtorFunction = nullptr; 823 Function *AsanDtorFunction = nullptr; 824 }; 825 826 class ModuleAddressSanitizerLegacyPass : public ModulePass { 827 public: 828 static char ID; 829 830 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, 831 bool Recover = false, 832 bool UseGlobalGC = true, 833 bool UseOdrIndicator = false) 834 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 835 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { 836 initializeModuleAddressSanitizerLegacyPassPass( 837 *PassRegistry::getPassRegistry()); 838 } 839 840 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 841 842 void getAnalysisUsage(AnalysisUsage &AU) const override { 843 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 844 } 845 846 bool runOnModule(Module &M) override { 847 GlobalsMetadata &GlobalsMD = 848 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 849 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 850 UseGlobalGC, UseOdrIndicator); 851 return ASanModule.instrumentModule(M); 852 } 853 854 private: 855 bool CompileKernel; 856 bool Recover; 857 bool UseGlobalGC; 858 bool UseOdrIndicator; 859 }; 860 861 // Stack poisoning does not play well with exception handling. 862 // When an exception is thrown, we essentially bypass the code 863 // that unpoisones the stack. This is why the run-time library has 864 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 865 // stack in the interceptor. This however does not work inside the 866 // actual function which catches the exception. Most likely because the 867 // compiler hoists the load of the shadow value somewhere too high. 868 // This causes asan to report a non-existing bug on 453.povray. 869 // It sounds like an LLVM bug. 870 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 871 Function &F; 872 AddressSanitizer &ASan; 873 DIBuilder DIB; 874 LLVMContext *C; 875 Type *IntptrTy; 876 Type *IntptrPtrTy; 877 ShadowMapping Mapping; 878 879 SmallVector<AllocaInst *, 16> AllocaVec; 880 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 881 SmallVector<Instruction *, 8> RetVec; 882 unsigned StackAlignment; 883 884 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 885 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 886 FunctionCallee AsanSetShadowFunc[0x100] = {}; 887 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 888 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 889 890 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 891 struct AllocaPoisonCall { 892 IntrinsicInst *InsBefore; 893 AllocaInst *AI; 894 uint64_t Size; 895 bool DoPoison; 896 }; 897 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 898 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 899 bool HasUntracedLifetimeIntrinsic = false; 900 901 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 902 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 903 AllocaInst *DynamicAllocaLayout = nullptr; 904 IntrinsicInst *LocalEscapeCall = nullptr; 905 906 // Maps Value to an AllocaInst from which the Value is originated. 907 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 908 AllocaForValueMapTy AllocaForValue; 909 910 bool HasNonEmptyInlineAsm = false; 911 bool HasReturnsTwiceCall = false; 912 std::unique_ptr<CallInst> EmptyInlineAsm; 913 914 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 915 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 916 C(ASan.C), IntptrTy(ASan.IntptrTy), 917 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 918 StackAlignment(1 << Mapping.Scale), 919 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 920 921 bool runOnFunction() { 922 if (!ClStack) return false; 923 924 if (ClRedzoneByvalArgs) 925 copyArgsPassedByValToAllocas(); 926 927 // Collect alloca, ret, lifetime instructions etc. 928 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 929 930 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 931 932 initializeCallbacks(*F.getParent()); 933 934 if (HasUntracedLifetimeIntrinsic) { 935 // If there are lifetime intrinsics which couldn't be traced back to an 936 // alloca, we may not know exactly when a variable enters scope, and 937 // therefore should "fail safe" by not poisoning them. 938 StaticAllocaPoisonCallVec.clear(); 939 DynamicAllocaPoisonCallVec.clear(); 940 } 941 942 processDynamicAllocas(); 943 processStaticAllocas(); 944 945 if (ClDebugStack) { 946 LLVM_DEBUG(dbgs() << F); 947 } 948 return true; 949 } 950 951 // Arguments marked with the "byval" attribute are implicitly copied without 952 // using an alloca instruction. To produce redzones for those arguments, we 953 // copy them a second time into memory allocated with an alloca instruction. 954 void copyArgsPassedByValToAllocas(); 955 956 // Finds all Alloca instructions and puts 957 // poisoned red zones around all of them. 958 // Then unpoison everything back before the function returns. 959 void processStaticAllocas(); 960 void processDynamicAllocas(); 961 962 void createDynamicAllocasInitStorage(); 963 964 // ----------------------- Visitors. 965 /// Collect all Ret instructions. 966 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 967 968 /// Collect all Resume instructions. 969 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 970 971 /// Collect all CatchReturnInst instructions. 972 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 973 974 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 975 Value *SavedStack) { 976 IRBuilder<> IRB(InstBefore); 977 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 978 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 979 // need to adjust extracted SP to compute the address of the most recent 980 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 981 // this purpose. 982 if (!isa<ReturnInst>(InstBefore)) { 983 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 984 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 985 {IntptrTy}); 986 987 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 988 989 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 990 DynamicAreaOffset); 991 } 992 993 IRB.CreateCall( 994 AsanAllocasUnpoisonFunc, 995 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 996 } 997 998 // Unpoison dynamic allocas redzones. 999 void unpoisonDynamicAllocas() { 1000 for (auto &Ret : RetVec) 1001 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1002 1003 for (auto &StackRestoreInst : StackRestoreVec) 1004 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1005 StackRestoreInst->getOperand(0)); 1006 } 1007 1008 // Deploy and poison redzones around dynamic alloca call. To do this, we 1009 // should replace this call with another one with changed parameters and 1010 // replace all its uses with new address, so 1011 // addr = alloca type, old_size, align 1012 // is replaced by 1013 // new_size = (old_size + additional_size) * sizeof(type) 1014 // tmp = alloca i8, new_size, max(align, 32) 1015 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1016 // Additional_size is added to make new memory allocation contain not only 1017 // requested memory, but also left, partial and right redzones. 1018 void handleDynamicAllocaCall(AllocaInst *AI); 1019 1020 /// Collect Alloca instructions we want (and can) handle. 1021 void visitAllocaInst(AllocaInst &AI) { 1022 if (!ASan.isInterestingAlloca(AI)) { 1023 if (AI.isStaticAlloca()) { 1024 // Skip over allocas that are present *before* the first instrumented 1025 // alloca, we don't want to move those around. 1026 if (AllocaVec.empty()) 1027 return; 1028 1029 StaticAllocasToMoveUp.push_back(&AI); 1030 } 1031 return; 1032 } 1033 1034 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 1035 if (!AI.isStaticAlloca()) 1036 DynamicAllocaVec.push_back(&AI); 1037 else 1038 AllocaVec.push_back(&AI); 1039 } 1040 1041 /// Collect lifetime intrinsic calls to check for use-after-scope 1042 /// errors. 1043 void visitIntrinsicInst(IntrinsicInst &II) { 1044 Intrinsic::ID ID = II.getIntrinsicID(); 1045 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1046 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1047 if (!ASan.UseAfterScope) 1048 return; 1049 if (!II.isLifetimeStartOrEnd()) 1050 return; 1051 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1052 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1053 // If size argument is undefined, don't do anything. 1054 if (Size->isMinusOne()) return; 1055 // Check that size doesn't saturate uint64_t and can 1056 // be stored in IntptrTy. 1057 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1058 if (SizeValue == ~0ULL || 1059 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1060 return; 1061 // Find alloca instruction that corresponds to llvm.lifetime argument. 1062 AllocaInst *AI = 1063 llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue); 1064 if (!AI) { 1065 HasUntracedLifetimeIntrinsic = true; 1066 return; 1067 } 1068 // We're interested only in allocas we can handle. 1069 if (!ASan.isInterestingAlloca(*AI)) 1070 return; 1071 bool DoPoison = (ID == Intrinsic::lifetime_end); 1072 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1073 if (AI->isStaticAlloca()) 1074 StaticAllocaPoisonCallVec.push_back(APC); 1075 else if (ClInstrumentDynamicAllocas) 1076 DynamicAllocaPoisonCallVec.push_back(APC); 1077 } 1078 1079 void visitCallSite(CallSite CS) { 1080 Instruction *I = CS.getInstruction(); 1081 if (CallInst *CI = dyn_cast<CallInst>(I)) { 1082 HasNonEmptyInlineAsm |= CI->isInlineAsm() && 1083 !CI->isIdenticalTo(EmptyInlineAsm.get()) && 1084 I != ASan.LocalDynamicShadow; 1085 HasReturnsTwiceCall |= CI->canReturnTwice(); 1086 } 1087 } 1088 1089 // ---------------------- Helpers. 1090 void initializeCallbacks(Module &M); 1091 1092 // Copies bytes from ShadowBytes into shadow memory for indexes where 1093 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1094 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1095 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1096 IRBuilder<> &IRB, Value *ShadowBase); 1097 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1098 size_t Begin, size_t End, IRBuilder<> &IRB, 1099 Value *ShadowBase); 1100 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1101 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1102 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1103 1104 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1105 1106 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1107 bool Dynamic); 1108 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1109 Instruction *ThenTerm, Value *ValueIfFalse); 1110 }; 1111 1112 } // end anonymous namespace 1113 1114 void LocationMetadata::parse(MDNode *MDN) { 1115 assert(MDN->getNumOperands() == 3); 1116 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1117 Filename = DIFilename->getString(); 1118 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1119 ColumnNo = 1120 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1121 } 1122 1123 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1124 // we want to sanitize instead and reading this metadata on each pass over a 1125 // function instead of reading module level metadata at first. 1126 GlobalsMetadata::GlobalsMetadata(Module &M) { 1127 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1128 if (!Globals) 1129 return; 1130 for (auto MDN : Globals->operands()) { 1131 // Metadata node contains the global and the fields of "Entry". 1132 assert(MDN->getNumOperands() == 5); 1133 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1134 // The optimizer may optimize away a global entirely. 1135 if (!V) 1136 continue; 1137 auto *StrippedV = V->stripPointerCasts(); 1138 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1139 if (!GV) 1140 continue; 1141 // We can already have an entry for GV if it was merged with another 1142 // global. 1143 Entry &E = Entries[GV]; 1144 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1145 E.SourceLoc.parse(Loc); 1146 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1147 E.Name = Name->getString(); 1148 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1149 E.IsDynInit |= IsDynInit->isOne(); 1150 ConstantInt *IsBlacklisted = 1151 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1152 E.IsBlacklisted |= IsBlacklisted->isOne(); 1153 } 1154 } 1155 1156 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1157 1158 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1159 ModuleAnalysisManager &AM) { 1160 return GlobalsMetadata(M); 1161 } 1162 1163 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, 1164 bool UseAfterScope) 1165 : CompileKernel(CompileKernel), Recover(Recover), 1166 UseAfterScope(UseAfterScope) {} 1167 1168 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1169 AnalysisManager<Function> &AM) { 1170 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1171 auto &MAM = MAMProxy.getManager(); 1172 Module &M = *F.getParent(); 1173 if (auto *R = MAM.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1174 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1175 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); 1176 if (Sanitizer.instrumentFunction(F, TLI)) 1177 return PreservedAnalyses::none(); 1178 return PreservedAnalyses::all(); 1179 } 1180 1181 report_fatal_error( 1182 "The ASanGlobalsMetadataAnalysis is required to run before " 1183 "AddressSanitizer can run"); 1184 return PreservedAnalyses::all(); 1185 } 1186 1187 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, 1188 bool Recover, 1189 bool UseGlobalGC, 1190 bool UseOdrIndicator) 1191 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), 1192 UseOdrIndicator(UseOdrIndicator) {} 1193 1194 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1195 AnalysisManager<Module> &AM) { 1196 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); 1197 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, 1198 UseGlobalGC, UseOdrIndicator); 1199 if (Sanitizer.instrumentModule(M)) 1200 return PreservedAnalyses::none(); 1201 return PreservedAnalyses::all(); 1202 } 1203 1204 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1205 "Read metadata to mark which globals should be instrumented " 1206 "when running ASan.", 1207 false, true) 1208 1209 char AddressSanitizerLegacyPass::ID = 0; 1210 1211 INITIALIZE_PASS_BEGIN( 1212 AddressSanitizerLegacyPass, "asan", 1213 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1214 false) 1215 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1216 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1217 INITIALIZE_PASS_END( 1218 AddressSanitizerLegacyPass, "asan", 1219 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1220 false) 1221 1222 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 1223 bool Recover, 1224 bool UseAfterScope) { 1225 assert(!CompileKernel || Recover); 1226 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); 1227 } 1228 1229 char ModuleAddressSanitizerLegacyPass::ID = 0; 1230 1231 INITIALIZE_PASS( 1232 ModuleAddressSanitizerLegacyPass, "asan-module", 1233 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1234 "ModulePass", 1235 false, false) 1236 1237 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1238 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { 1239 assert(!CompileKernel || Recover); 1240 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, 1241 UseGlobalsGC, UseOdrIndicator); 1242 } 1243 1244 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1245 size_t Res = countTrailingZeros(TypeSize / 8); 1246 assert(Res < kNumberOfAccessSizes); 1247 return Res; 1248 } 1249 1250 /// Create a global describing a source location. 1251 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1252 LocationMetadata MD) { 1253 Constant *LocData[] = { 1254 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1255 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1256 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1257 }; 1258 auto LocStruct = ConstantStruct::getAnon(LocData); 1259 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1260 GlobalValue::PrivateLinkage, LocStruct, 1261 kAsanGenPrefix); 1262 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1263 return GV; 1264 } 1265 1266 /// Check if \p G has been created by a trusted compiler pass. 1267 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1268 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1269 if (G->getName().startswith("llvm.")) 1270 return true; 1271 1272 // Do not instrument asan globals. 1273 if (G->getName().startswith(kAsanGenPrefix) || 1274 G->getName().startswith(kSanCovGenPrefix) || 1275 G->getName().startswith(kODRGenPrefix)) 1276 return true; 1277 1278 // Do not instrument gcov counter arrays. 1279 if (G->getName() == "__llvm_gcov_ctr") 1280 return true; 1281 1282 return false; 1283 } 1284 1285 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1286 // Shadow >> scale 1287 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1288 if (Mapping.Offset == 0) return Shadow; 1289 // (Shadow >> scale) | offset 1290 Value *ShadowBase; 1291 if (LocalDynamicShadow) 1292 ShadowBase = LocalDynamicShadow; 1293 else 1294 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1295 if (Mapping.OrShadowOffset) 1296 return IRB.CreateOr(Shadow, ShadowBase); 1297 else 1298 return IRB.CreateAdd(Shadow, ShadowBase); 1299 } 1300 1301 // Instrument memset/memmove/memcpy 1302 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1303 IRBuilder<> IRB(MI); 1304 if (isa<MemTransferInst>(MI)) { 1305 IRB.CreateCall( 1306 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1307 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1308 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1309 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1310 } else if (isa<MemSetInst>(MI)) { 1311 IRB.CreateCall( 1312 AsanMemset, 1313 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1314 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1315 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1316 } 1317 MI->eraseFromParent(); 1318 } 1319 1320 /// Check if we want (and can) handle this alloca. 1321 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1322 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1323 1324 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1325 return PreviouslySeenAllocaInfo->getSecond(); 1326 1327 bool IsInteresting = 1328 (AI.getAllocatedType()->isSized() && 1329 // alloca() may be called with 0 size, ignore it. 1330 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1331 // We are only interested in allocas not promotable to registers. 1332 // Promotable allocas are common under -O0. 1333 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1334 // inalloca allocas are not treated as static, and we don't want 1335 // dynamic alloca instrumentation for them as well. 1336 !AI.isUsedWithInAlloca() && 1337 // swifterror allocas are register promoted by ISel 1338 !AI.isSwiftError()); 1339 1340 ProcessedAllocas[&AI] = IsInteresting; 1341 return IsInteresting; 1342 } 1343 1344 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, 1345 bool *IsWrite, 1346 uint64_t *TypeSize, 1347 unsigned *Alignment, 1348 Value **MaybeMask) { 1349 // Skip memory accesses inserted by another instrumentation. 1350 if (I->hasMetadata("nosanitize")) return nullptr; 1351 1352 // Do not instrument the load fetching the dynamic shadow address. 1353 if (LocalDynamicShadow == I) 1354 return nullptr; 1355 1356 Value *PtrOperand = nullptr; 1357 const DataLayout &DL = I->getModule()->getDataLayout(); 1358 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1359 if (!ClInstrumentReads) return nullptr; 1360 *IsWrite = false; 1361 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 1362 *Alignment = LI->getAlignment(); 1363 PtrOperand = LI->getPointerOperand(); 1364 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1365 if (!ClInstrumentWrites) return nullptr; 1366 *IsWrite = true; 1367 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 1368 *Alignment = SI->getAlignment(); 1369 PtrOperand = SI->getPointerOperand(); 1370 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1371 if (!ClInstrumentAtomics) return nullptr; 1372 *IsWrite = true; 1373 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 1374 *Alignment = 0; 1375 PtrOperand = RMW->getPointerOperand(); 1376 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1377 if (!ClInstrumentAtomics) return nullptr; 1378 *IsWrite = true; 1379 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 1380 *Alignment = 0; 1381 PtrOperand = XCHG->getPointerOperand(); 1382 } else if (auto CI = dyn_cast<CallInst>(I)) { 1383 auto *F = dyn_cast<Function>(CI->getCalledValue()); 1384 if (F && (F->getName().startswith("llvm.masked.load.") || 1385 F->getName().startswith("llvm.masked.store."))) { 1386 unsigned OpOffset = 0; 1387 if (F->getName().startswith("llvm.masked.store.")) { 1388 if (!ClInstrumentWrites) 1389 return nullptr; 1390 // Masked store has an initial operand for the value. 1391 OpOffset = 1; 1392 *IsWrite = true; 1393 } else { 1394 if (!ClInstrumentReads) 1395 return nullptr; 1396 *IsWrite = false; 1397 } 1398 1399 auto BasePtr = CI->getOperand(0 + OpOffset); 1400 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1401 *TypeSize = DL.getTypeStoreSizeInBits(Ty); 1402 if (auto AlignmentConstant = 1403 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1404 *Alignment = (unsigned)AlignmentConstant->getZExtValue(); 1405 else 1406 *Alignment = 1; // No alignment guarantees. We probably got Undef 1407 if (MaybeMask) 1408 *MaybeMask = CI->getOperand(2 + OpOffset); 1409 PtrOperand = BasePtr; 1410 } 1411 } 1412 1413 if (PtrOperand) { 1414 // Do not instrument acesses from different address spaces; we cannot deal 1415 // with them. 1416 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); 1417 if (PtrTy->getPointerAddressSpace() != 0) 1418 return nullptr; 1419 1420 // Ignore swifterror addresses. 1421 // swifterror memory addresses are mem2reg promoted by instruction 1422 // selection. As such they cannot have regular uses like an instrumentation 1423 // function and it makes no sense to track them as memory. 1424 if (PtrOperand->isSwiftError()) 1425 return nullptr; 1426 } 1427 1428 // Treat memory accesses to promotable allocas as non-interesting since they 1429 // will not cause memory violations. This greatly speeds up the instrumented 1430 // executable at -O0. 1431 if (ClSkipPromotableAllocas) 1432 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) 1433 return isInterestingAlloca(*AI) ? AI : nullptr; 1434 1435 return PtrOperand; 1436 } 1437 1438 static bool isPointerOperand(Value *V) { 1439 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1440 } 1441 1442 // This is a rough heuristic; it may cause both false positives and 1443 // false negatives. The proper implementation requires cooperation with 1444 // the frontend. 1445 static bool isInterestingPointerComparison(Instruction *I) { 1446 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1447 if (!Cmp->isRelational()) 1448 return false; 1449 } else { 1450 return false; 1451 } 1452 return isPointerOperand(I->getOperand(0)) && 1453 isPointerOperand(I->getOperand(1)); 1454 } 1455 1456 // This is a rough heuristic; it may cause both false positives and 1457 // false negatives. The proper implementation requires cooperation with 1458 // the frontend. 1459 static bool isInterestingPointerSubtraction(Instruction *I) { 1460 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1461 if (BO->getOpcode() != Instruction::Sub) 1462 return false; 1463 } else { 1464 return false; 1465 } 1466 return isPointerOperand(I->getOperand(0)) && 1467 isPointerOperand(I->getOperand(1)); 1468 } 1469 1470 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1471 // If a global variable does not have dynamic initialization we don't 1472 // have to instrument it. However, if a global does not have initializer 1473 // at all, we assume it has dynamic initializer (in other TU). 1474 // 1475 // FIXME: Metadata should be attched directly to the global directly instead 1476 // of being added to llvm.asan.globals. 1477 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1478 } 1479 1480 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1481 Instruction *I) { 1482 IRBuilder<> IRB(I); 1483 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1484 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1485 for (Value *&i : Param) { 1486 if (i->getType()->isPointerTy()) 1487 i = IRB.CreatePointerCast(i, IntptrTy); 1488 } 1489 IRB.CreateCall(F, Param); 1490 } 1491 1492 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1493 Instruction *InsertBefore, Value *Addr, 1494 unsigned Alignment, unsigned Granularity, 1495 uint32_t TypeSize, bool IsWrite, 1496 Value *SizeArgument, bool UseCalls, 1497 uint32_t Exp) { 1498 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1499 // if the data is properly aligned. 1500 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1501 TypeSize == 128) && 1502 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1503 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1504 nullptr, UseCalls, Exp); 1505 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1506 IsWrite, nullptr, UseCalls, Exp); 1507 } 1508 1509 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1510 const DataLayout &DL, Type *IntptrTy, 1511 Value *Mask, Instruction *I, 1512 Value *Addr, unsigned Alignment, 1513 unsigned Granularity, uint32_t TypeSize, 1514 bool IsWrite, Value *SizeArgument, 1515 bool UseCalls, uint32_t Exp) { 1516 auto *VTy = cast<PointerType>(Addr->getType())->getElementType(); 1517 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1518 unsigned Num = VTy->getVectorNumElements(); 1519 auto Zero = ConstantInt::get(IntptrTy, 0); 1520 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1521 Value *InstrumentedAddress = nullptr; 1522 Instruction *InsertBefore = I; 1523 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1524 // dyn_cast as we might get UndefValue 1525 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1526 if (Masked->isZero()) 1527 // Mask is constant false, so no instrumentation needed. 1528 continue; 1529 // If we have a true or undef value, fall through to doInstrumentAddress 1530 // with InsertBefore == I 1531 } 1532 } else { 1533 IRBuilder<> IRB(I); 1534 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1535 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1536 InsertBefore = ThenTerm; 1537 } 1538 1539 IRBuilder<> IRB(InsertBefore); 1540 InstrumentedAddress = 1541 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1542 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1543 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1544 UseCalls, Exp); 1545 } 1546 } 1547 1548 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1549 Instruction *I, bool UseCalls, 1550 const DataLayout &DL) { 1551 bool IsWrite = false; 1552 unsigned Alignment = 0; 1553 uint64_t TypeSize = 0; 1554 Value *MaybeMask = nullptr; 1555 Value *Addr = 1556 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask); 1557 assert(Addr); 1558 1559 // Optimization experiments. 1560 // The experiments can be used to evaluate potential optimizations that remove 1561 // instrumentation (assess false negatives). Instead of completely removing 1562 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1563 // experiments that want to remove instrumentation of this instruction). 1564 // If Exp is non-zero, this pass will emit special calls into runtime 1565 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1566 // make runtime terminate the program in a special way (with a different 1567 // exit status). Then you run the new compiler on a buggy corpus, collect 1568 // the special terminations (ideally, you don't see them at all -- no false 1569 // negatives) and make the decision on the optimization. 1570 uint32_t Exp = ClForceExperiment; 1571 1572 if (ClOpt && ClOptGlobals) { 1573 // If initialization order checking is disabled, a simple access to a 1574 // dynamically initialized global is always valid. 1575 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1576 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1577 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1578 NumOptimizedAccessesToGlobalVar++; 1579 return; 1580 } 1581 } 1582 1583 if (ClOpt && ClOptStack) { 1584 // A direct inbounds access to a stack variable is always valid. 1585 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1586 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1587 NumOptimizedAccessesToStackVar++; 1588 return; 1589 } 1590 } 1591 1592 if (IsWrite) 1593 NumInstrumentedWrites++; 1594 else 1595 NumInstrumentedReads++; 1596 1597 unsigned Granularity = 1 << Mapping.Scale; 1598 if (MaybeMask) { 1599 instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr, 1600 Alignment, Granularity, TypeSize, IsWrite, 1601 nullptr, UseCalls, Exp); 1602 } else { 1603 doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize, 1604 IsWrite, nullptr, UseCalls, Exp); 1605 } 1606 } 1607 1608 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1609 Value *Addr, bool IsWrite, 1610 size_t AccessSizeIndex, 1611 Value *SizeArgument, 1612 uint32_t Exp) { 1613 IRBuilder<> IRB(InsertBefore); 1614 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1615 CallInst *Call = nullptr; 1616 if (SizeArgument) { 1617 if (Exp == 0) 1618 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1619 {Addr, SizeArgument}); 1620 else 1621 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1622 {Addr, SizeArgument, ExpVal}); 1623 } else { 1624 if (Exp == 0) 1625 Call = 1626 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1627 else 1628 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1629 {Addr, ExpVal}); 1630 } 1631 1632 // We don't do Call->setDoesNotReturn() because the BB already has 1633 // UnreachableInst at the end. 1634 // This EmptyAsm is required to avoid callback merge. 1635 IRB.CreateCall(EmptyAsm, {}); 1636 return Call; 1637 } 1638 1639 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1640 Value *ShadowValue, 1641 uint32_t TypeSize) { 1642 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1643 // Addr & (Granularity - 1) 1644 Value *LastAccessedByte = 1645 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1646 // (Addr & (Granularity - 1)) + size - 1 1647 if (TypeSize / 8 > 1) 1648 LastAccessedByte = IRB.CreateAdd( 1649 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1650 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1651 LastAccessedByte = 1652 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1653 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1654 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1655 } 1656 1657 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1658 Instruction *InsertBefore, Value *Addr, 1659 uint32_t TypeSize, bool IsWrite, 1660 Value *SizeArgument, bool UseCalls, 1661 uint32_t Exp) { 1662 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; 1663 1664 IRBuilder<> IRB(InsertBefore); 1665 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1666 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1667 1668 if (UseCalls) { 1669 if (Exp == 0) 1670 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1671 AddrLong); 1672 else 1673 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1674 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1675 return; 1676 } 1677 1678 if (IsMyriad) { 1679 // Strip the cache bit and do range check. 1680 // AddrLong &= ~kMyriadCacheBitMask32 1681 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); 1682 // Tag = AddrLong >> kMyriadTagShift 1683 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); 1684 // Tag == kMyriadDDRTag 1685 Value *TagCheck = 1686 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); 1687 1688 Instruction *TagCheckTerm = 1689 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, 1690 MDBuilder(*C).createBranchWeights(1, 100000)); 1691 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); 1692 IRB.SetInsertPoint(TagCheckTerm); 1693 InsertBefore = TagCheckTerm; 1694 } 1695 1696 Type *ShadowTy = 1697 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1698 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1699 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1700 Value *CmpVal = Constant::getNullValue(ShadowTy); 1701 Value *ShadowValue = 1702 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1703 1704 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1705 size_t Granularity = 1ULL << Mapping.Scale; 1706 Instruction *CrashTerm = nullptr; 1707 1708 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1709 // We use branch weights for the slow path check, to indicate that the slow 1710 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1711 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1712 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1713 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1714 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1715 IRB.SetInsertPoint(CheckTerm); 1716 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1717 if (Recover) { 1718 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1719 } else { 1720 BasicBlock *CrashBlock = 1721 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1722 CrashTerm = new UnreachableInst(*C, CrashBlock); 1723 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1724 ReplaceInstWithInst(CheckTerm, NewTerm); 1725 } 1726 } else { 1727 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1728 } 1729 1730 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1731 AccessSizeIndex, SizeArgument, Exp); 1732 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1733 } 1734 1735 // Instrument unusual size or unusual alignment. 1736 // We can not do it with a single check, so we do 1-byte check for the first 1737 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1738 // to report the actual access size. 1739 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1740 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1741 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1742 IRBuilder<> IRB(InsertBefore); 1743 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1744 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1745 if (UseCalls) { 1746 if (Exp == 0) 1747 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1748 {AddrLong, Size}); 1749 else 1750 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1751 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1752 } else { 1753 Value *LastByte = IRB.CreateIntToPtr( 1754 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1755 Addr->getType()); 1756 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1757 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1758 } 1759 } 1760 1761 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1762 GlobalValue *ModuleName) { 1763 // Set up the arguments to our poison/unpoison functions. 1764 IRBuilder<> IRB(&GlobalInit.front(), 1765 GlobalInit.front().getFirstInsertionPt()); 1766 1767 // Add a call to poison all external globals before the given function starts. 1768 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1769 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1770 1771 // Add calls to unpoison all globals before each return instruction. 1772 for (auto &BB : GlobalInit.getBasicBlockList()) 1773 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1774 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1775 } 1776 1777 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1778 Module &M, GlobalValue *ModuleName) { 1779 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1780 if (!GV) 1781 return; 1782 1783 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1784 if (!CA) 1785 return; 1786 1787 for (Use &OP : CA->operands()) { 1788 if (isa<ConstantAggregateZero>(OP)) continue; 1789 ConstantStruct *CS = cast<ConstantStruct>(OP); 1790 1791 // Must have a function or null ptr. 1792 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1793 if (F->getName() == kAsanModuleCtorName) continue; 1794 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1795 // Don't instrument CTORs that will run before asan.module_ctor. 1796 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1797 continue; 1798 poisonOneInitializer(*F, ModuleName); 1799 } 1800 } 1801 } 1802 1803 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) { 1804 Type *Ty = G->getValueType(); 1805 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1806 1807 // FIXME: Metadata should be attched directly to the global directly instead 1808 // of being added to llvm.asan.globals. 1809 if (GlobalsMD.get(G).IsBlacklisted) return false; 1810 if (!Ty->isSized()) return false; 1811 if (!G->hasInitializer()) return false; 1812 // Only instrument globals of default address spaces 1813 if (G->getAddressSpace()) return false; 1814 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1815 // Two problems with thread-locals: 1816 // - The address of the main thread's copy can't be computed at link-time. 1817 // - Need to poison all copies, not just the main thread's one. 1818 if (G->isThreadLocal()) return false; 1819 // For now, just ignore this Global if the alignment is large. 1820 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1821 1822 // For non-COFF targets, only instrument globals known to be defined by this 1823 // TU. 1824 // FIXME: We can instrument comdat globals on ELF if we are using the 1825 // GC-friendly metadata scheme. 1826 if (!TargetTriple.isOSBinFormatCOFF()) { 1827 if (!G->hasExactDefinition() || G->hasComdat()) 1828 return false; 1829 } else { 1830 // On COFF, don't instrument non-ODR linkages. 1831 if (G->isInterposable()) 1832 return false; 1833 } 1834 1835 // If a comdat is present, it must have a selection kind that implies ODR 1836 // semantics: no duplicates, any, or exact match. 1837 if (Comdat *C = G->getComdat()) { 1838 switch (C->getSelectionKind()) { 1839 case Comdat::Any: 1840 case Comdat::ExactMatch: 1841 case Comdat::NoDuplicates: 1842 break; 1843 case Comdat::Largest: 1844 case Comdat::SameSize: 1845 return false; 1846 } 1847 } 1848 1849 if (G->hasSection()) { 1850 StringRef Section = G->getSection(); 1851 1852 // Globals from llvm.metadata aren't emitted, do not instrument them. 1853 if (Section == "llvm.metadata") return false; 1854 // Do not instrument globals from special LLVM sections. 1855 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1856 1857 // Do not instrument function pointers to initialization and termination 1858 // routines: dynamic linker will not properly handle redzones. 1859 if (Section.startswith(".preinit_array") || 1860 Section.startswith(".init_array") || 1861 Section.startswith(".fini_array")) { 1862 return false; 1863 } 1864 1865 // On COFF, if the section name contains '$', it is highly likely that the 1866 // user is using section sorting to create an array of globals similar to 1867 // the way initialization callbacks are registered in .init_array and 1868 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 1869 // to such globals is counterproductive, because the intent is that they 1870 // will form an array, and out-of-bounds accesses are expected. 1871 // See https://github.com/google/sanitizers/issues/305 1872 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1873 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 1874 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 1875 << *G << "\n"); 1876 return false; 1877 } 1878 1879 if (TargetTriple.isOSBinFormatMachO()) { 1880 StringRef ParsedSegment, ParsedSection; 1881 unsigned TAA = 0, StubSize = 0; 1882 bool TAAParsed; 1883 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1884 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1885 assert(ErrorCode.empty() && "Invalid section specifier."); 1886 1887 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1888 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1889 // them. 1890 if (ParsedSegment == "__OBJC" || 1891 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1892 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1893 return false; 1894 } 1895 // See https://github.com/google/sanitizers/issues/32 1896 // Constant CFString instances are compiled in the following way: 1897 // -- the string buffer is emitted into 1898 // __TEXT,__cstring,cstring_literals 1899 // -- the constant NSConstantString structure referencing that buffer 1900 // is placed into __DATA,__cfstring 1901 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1902 // Moreover, it causes the linker to crash on OS X 10.7 1903 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1904 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1905 return false; 1906 } 1907 // The linker merges the contents of cstring_literals and removes the 1908 // trailing zeroes. 1909 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1910 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1911 return false; 1912 } 1913 } 1914 } 1915 1916 return true; 1917 } 1918 1919 // On Mach-O platforms, we emit global metadata in a separate section of the 1920 // binary in order to allow the linker to properly dead strip. This is only 1921 // supported on recent versions of ld64. 1922 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 1923 if (!TargetTriple.isOSBinFormatMachO()) 1924 return false; 1925 1926 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1927 return true; 1928 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1929 return true; 1930 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1931 return true; 1932 1933 return false; 1934 } 1935 1936 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 1937 switch (TargetTriple.getObjectFormat()) { 1938 case Triple::COFF: return ".ASAN$GL"; 1939 case Triple::ELF: return "asan_globals"; 1940 case Triple::MachO: return "__DATA,__asan_globals,regular"; 1941 case Triple::Wasm: 1942 case Triple::XCOFF: 1943 report_fatal_error( 1944 "ModuleAddressSanitizer not implemented for object file format."); 1945 case Triple::UnknownObjectFormat: 1946 break; 1947 } 1948 llvm_unreachable("unsupported object format"); 1949 } 1950 1951 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 1952 IRBuilder<> IRB(*C); 1953 1954 // Declare our poisoning and unpoisoning functions. 1955 AsanPoisonGlobals = 1956 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 1957 AsanUnpoisonGlobals = 1958 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 1959 1960 // Declare functions that register/unregister globals. 1961 AsanRegisterGlobals = M.getOrInsertFunction( 1962 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1963 AsanUnregisterGlobals = M.getOrInsertFunction( 1964 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 1965 1966 // Declare the functions that find globals in a shared object and then invoke 1967 // the (un)register function on them. 1968 AsanRegisterImageGlobals = M.getOrInsertFunction( 1969 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1970 AsanUnregisterImageGlobals = M.getOrInsertFunction( 1971 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 1972 1973 AsanRegisterElfGlobals = 1974 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 1975 IntptrTy, IntptrTy, IntptrTy); 1976 AsanUnregisterElfGlobals = 1977 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 1978 IntptrTy, IntptrTy, IntptrTy); 1979 } 1980 1981 // Put the metadata and the instrumented global in the same group. This ensures 1982 // that the metadata is discarded if the instrumented global is discarded. 1983 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 1984 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 1985 Module &M = *G->getParent(); 1986 Comdat *C = G->getComdat(); 1987 if (!C) { 1988 if (!G->hasName()) { 1989 // If G is unnamed, it must be internal. Give it an artificial name 1990 // so we can put it in a comdat. 1991 assert(G->hasLocalLinkage()); 1992 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 1993 } 1994 1995 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 1996 std::string Name = G->getName(); 1997 Name += InternalSuffix; 1998 C = M.getOrInsertComdat(Name); 1999 } else { 2000 C = M.getOrInsertComdat(G->getName()); 2001 } 2002 2003 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2004 // linkage to internal linkage so that a symbol table entry is emitted. This 2005 // is necessary in order to create the comdat group. 2006 if (TargetTriple.isOSBinFormatCOFF()) { 2007 C->setSelectionKind(Comdat::NoDuplicates); 2008 if (G->hasPrivateLinkage()) 2009 G->setLinkage(GlobalValue::InternalLinkage); 2010 } 2011 G->setComdat(C); 2012 } 2013 2014 assert(G->hasComdat()); 2015 Metadata->setComdat(G->getComdat()); 2016 } 2017 2018 // Create a separate metadata global and put it in the appropriate ASan 2019 // global registration section. 2020 GlobalVariable * 2021 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2022 StringRef OriginalName) { 2023 auto Linkage = TargetTriple.isOSBinFormatMachO() 2024 ? GlobalVariable::InternalLinkage 2025 : GlobalVariable::PrivateLinkage; 2026 GlobalVariable *Metadata = new GlobalVariable( 2027 M, Initializer->getType(), false, Linkage, Initializer, 2028 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2029 Metadata->setSection(getGlobalMetadataSection()); 2030 return Metadata; 2031 } 2032 2033 IRBuilder<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2034 AsanDtorFunction = 2035 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 2036 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 2037 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2038 2039 return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB)); 2040 } 2041 2042 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2043 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2044 ArrayRef<Constant *> MetadataInitializers) { 2045 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2046 auto &DL = M.getDataLayout(); 2047 2048 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2049 Constant *Initializer = MetadataInitializers[i]; 2050 GlobalVariable *G = ExtendedGlobals[i]; 2051 GlobalVariable *Metadata = 2052 CreateMetadataGlobal(M, Initializer, G->getName()); 2053 2054 // The MSVC linker always inserts padding when linking incrementally. We 2055 // cope with that by aligning each struct to its size, which must be a power 2056 // of two. 2057 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2058 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2059 "global metadata will not be padded appropriately"); 2060 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2061 2062 SetComdatForGlobalMetadata(G, Metadata, ""); 2063 } 2064 } 2065 2066 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2067 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2068 ArrayRef<Constant *> MetadataInitializers, 2069 const std::string &UniqueModuleId) { 2070 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2071 2072 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2073 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2074 GlobalVariable *G = ExtendedGlobals[i]; 2075 GlobalVariable *Metadata = 2076 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2077 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2078 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2079 MetadataGlobals[i] = Metadata; 2080 2081 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2082 } 2083 2084 // Update llvm.compiler.used, adding the new metadata globals. This is 2085 // needed so that during LTO these variables stay alive. 2086 if (!MetadataGlobals.empty()) 2087 appendToCompilerUsed(M, MetadataGlobals); 2088 2089 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2090 // to look up the loaded image that contains it. Second, we can store in it 2091 // whether registration has already occurred, to prevent duplicate 2092 // registration. 2093 // 2094 // Common linkage ensures that there is only one global per shared library. 2095 GlobalVariable *RegisteredFlag = new GlobalVariable( 2096 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2097 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2098 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2099 2100 // Create start and stop symbols. 2101 GlobalVariable *StartELFMetadata = new GlobalVariable( 2102 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2103 "__start_" + getGlobalMetadataSection()); 2104 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2105 GlobalVariable *StopELFMetadata = new GlobalVariable( 2106 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2107 "__stop_" + getGlobalMetadataSection()); 2108 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2109 2110 // Create a call to register the globals with the runtime. 2111 IRB.CreateCall(AsanRegisterElfGlobals, 2112 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2113 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2114 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2115 2116 // We also need to unregister globals at the end, e.g., when a shared library 2117 // gets closed. 2118 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2119 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, 2120 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2121 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2122 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2123 } 2124 2125 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2126 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2127 ArrayRef<Constant *> MetadataInitializers) { 2128 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2129 2130 // On recent Mach-O platforms, use a structure which binds the liveness of 2131 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2132 // created to be added to llvm.compiler.used 2133 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2134 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2135 2136 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2137 Constant *Initializer = MetadataInitializers[i]; 2138 GlobalVariable *G = ExtendedGlobals[i]; 2139 GlobalVariable *Metadata = 2140 CreateMetadataGlobal(M, Initializer, G->getName()); 2141 2142 // On recent Mach-O platforms, we emit the global metadata in a way that 2143 // allows the linker to properly strip dead globals. 2144 auto LivenessBinder = 2145 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2146 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2147 GlobalVariable *Liveness = new GlobalVariable( 2148 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2149 Twine("__asan_binder_") + G->getName()); 2150 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2151 LivenessGlobals[i] = Liveness; 2152 } 2153 2154 // Update llvm.compiler.used, adding the new liveness globals. This is 2155 // needed so that during LTO these variables stay alive. The alternative 2156 // would be to have the linker handling the LTO symbols, but libLTO 2157 // current API does not expose access to the section for each symbol. 2158 if (!LivenessGlobals.empty()) 2159 appendToCompilerUsed(M, LivenessGlobals); 2160 2161 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2162 // to look up the loaded image that contains it. Second, we can store in it 2163 // whether registration has already occurred, to prevent duplicate 2164 // registration. 2165 // 2166 // common linkage ensures that there is only one global per shared library. 2167 GlobalVariable *RegisteredFlag = new GlobalVariable( 2168 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2169 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2170 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2171 2172 IRB.CreateCall(AsanRegisterImageGlobals, 2173 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2174 2175 // We also need to unregister globals at the end, e.g., when a shared library 2176 // gets closed. 2177 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2178 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 2179 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2180 } 2181 2182 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2183 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2184 ArrayRef<Constant *> MetadataInitializers) { 2185 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2186 unsigned N = ExtendedGlobals.size(); 2187 assert(N > 0); 2188 2189 // On platforms that don't have a custom metadata section, we emit an array 2190 // of global metadata structures. 2191 ArrayType *ArrayOfGlobalStructTy = 2192 ArrayType::get(MetadataInitializers[0]->getType(), N); 2193 auto AllGlobals = new GlobalVariable( 2194 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2195 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2196 if (Mapping.Scale > 3) 2197 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2198 2199 IRB.CreateCall(AsanRegisterGlobals, 2200 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2201 ConstantInt::get(IntptrTy, N)}); 2202 2203 // We also need to unregister globals at the end, e.g., when a shared library 2204 // gets closed. 2205 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); 2206 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 2207 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2208 ConstantInt::get(IntptrTy, N)}); 2209 } 2210 2211 // This function replaces all global variables with new variables that have 2212 // trailing redzones. It also creates a function that poisons 2213 // redzones and inserts this function into llvm.global_ctors. 2214 // Sets *CtorComdat to true if the global registration code emitted into the 2215 // asan constructor is comdat-compatible. 2216 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2217 bool *CtorComdat) { 2218 *CtorComdat = false; 2219 2220 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2221 2222 for (auto &G : M.globals()) { 2223 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 2224 } 2225 2226 size_t n = GlobalsToChange.size(); 2227 if (n == 0) { 2228 *CtorComdat = true; 2229 return false; 2230 } 2231 2232 auto &DL = M.getDataLayout(); 2233 2234 // A global is described by a structure 2235 // size_t beg; 2236 // size_t size; 2237 // size_t size_with_redzone; 2238 // const char *name; 2239 // const char *module_name; 2240 // size_t has_dynamic_init; 2241 // void *source_location; 2242 // size_t odr_indicator; 2243 // We initialize an array of such structures and pass it to a run-time call. 2244 StructType *GlobalStructTy = 2245 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2246 IntptrTy, IntptrTy, IntptrTy); 2247 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2248 SmallVector<Constant *, 16> Initializers(n); 2249 2250 bool HasDynamicallyInitializedGlobals = false; 2251 2252 // We shouldn't merge same module names, as this string serves as unique 2253 // module ID in runtime. 2254 GlobalVariable *ModuleName = createPrivateGlobalForString( 2255 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2256 2257 for (size_t i = 0; i < n; i++) { 2258 static const uint64_t kMaxGlobalRedzone = 1 << 18; 2259 GlobalVariable *G = GlobalsToChange[i]; 2260 2261 // FIXME: Metadata should be attched directly to the global directly instead 2262 // of being added to llvm.asan.globals. 2263 auto MD = GlobalsMD.get(G); 2264 StringRef NameForGlobal = G->getName(); 2265 // Create string holding the global name (use global name from metadata 2266 // if it's available, otherwise just write the name of global variable). 2267 GlobalVariable *Name = createPrivateGlobalForString( 2268 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2269 /*AllowMerging*/ true, kAsanGenPrefix); 2270 2271 Type *Ty = G->getValueType(); 2272 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2273 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 2274 // MinRZ <= RZ <= kMaxGlobalRedzone 2275 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 2276 uint64_t RZ = std::max( 2277 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 2278 uint64_t RightRedzoneSize = RZ; 2279 // Round up to MinRZ 2280 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 2281 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 2282 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2283 2284 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2285 Constant *NewInitializer = ConstantStruct::get( 2286 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2287 2288 // Create a new global variable with enough space for a redzone. 2289 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2290 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2291 Linkage = GlobalValue::InternalLinkage; 2292 GlobalVariable *NewGlobal = 2293 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 2294 "", G, G->getThreadLocalMode()); 2295 NewGlobal->copyAttributesFrom(G); 2296 NewGlobal->setComdat(G->getComdat()); 2297 NewGlobal->setAlignment(MaybeAlign(MinRZ)); 2298 // Don't fold globals with redzones. ODR violation detector and redzone 2299 // poisoning implicitly creates a dependence on the global's address, so it 2300 // is no longer valid for it to be marked unnamed_addr. 2301 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2302 2303 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2304 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2305 G->isConstant()) { 2306 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2307 if (Seq && Seq->isCString()) 2308 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2309 } 2310 2311 // Transfer the debug info. The payload starts at offset zero so we can 2312 // copy the debug info over as is. 2313 SmallVector<DIGlobalVariableExpression *, 1> GVs; 2314 G->getDebugInfo(GVs); 2315 for (auto *GV : GVs) 2316 NewGlobal->addDebugInfo(GV); 2317 2318 Value *Indices2[2]; 2319 Indices2[0] = IRB.getInt32(0); 2320 Indices2[1] = IRB.getInt32(0); 2321 2322 G->replaceAllUsesWith( 2323 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2324 NewGlobal->takeName(G); 2325 G->eraseFromParent(); 2326 NewGlobals[i] = NewGlobal; 2327 2328 Constant *SourceLoc; 2329 if (!MD.SourceLoc.empty()) { 2330 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2331 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2332 } else { 2333 SourceLoc = ConstantInt::get(IntptrTy, 0); 2334 } 2335 2336 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2337 GlobalValue *InstrumentedGlobal = NewGlobal; 2338 2339 bool CanUsePrivateAliases = 2340 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2341 TargetTriple.isOSBinFormatWasm(); 2342 if (CanUsePrivateAliases && UsePrivateAlias) { 2343 // Create local alias for NewGlobal to avoid crash on ODR between 2344 // instrumented and non-instrumented libraries. 2345 InstrumentedGlobal = 2346 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2347 } 2348 2349 // ODR should not happen for local linkage. 2350 if (NewGlobal->hasLocalLinkage()) { 2351 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2352 IRB.getInt8PtrTy()); 2353 } else if (UseOdrIndicator) { 2354 // With local aliases, we need to provide another externally visible 2355 // symbol __odr_asan_XXX to detect ODR violation. 2356 auto *ODRIndicatorSym = 2357 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2358 Constant::getNullValue(IRB.getInt8Ty()), 2359 kODRGenPrefix + NameForGlobal, nullptr, 2360 NewGlobal->getThreadLocalMode()); 2361 2362 // Set meaningful attributes for indicator symbol. 2363 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2364 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2365 ODRIndicatorSym->setAlignment(Align::None()); 2366 ODRIndicator = ODRIndicatorSym; 2367 } 2368 2369 Constant *Initializer = ConstantStruct::get( 2370 GlobalStructTy, 2371 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2372 ConstantInt::get(IntptrTy, SizeInBytes), 2373 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2374 ConstantExpr::getPointerCast(Name, IntptrTy), 2375 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2376 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2377 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2378 2379 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2380 2381 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2382 2383 Initializers[i] = Initializer; 2384 } 2385 2386 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2387 // ConstantMerge'ing them. 2388 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2389 for (size_t i = 0; i < n; i++) { 2390 GlobalVariable *G = NewGlobals[i]; 2391 if (G->getName().empty()) continue; 2392 GlobalsToAddToUsedList.push_back(G); 2393 } 2394 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2395 2396 std::string ELFUniqueModuleId = 2397 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2398 : ""; 2399 2400 if (!ELFUniqueModuleId.empty()) { 2401 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2402 *CtorComdat = true; 2403 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2404 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2405 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2406 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2407 } else { 2408 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2409 } 2410 2411 // Create calls for poisoning before initializers run and unpoisoning after. 2412 if (HasDynamicallyInitializedGlobals) 2413 createInitializerPoisonCalls(M, ModuleName); 2414 2415 LLVM_DEBUG(dbgs() << M); 2416 return true; 2417 } 2418 2419 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2420 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2421 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2422 int Version = 8; 2423 // 32-bit Android is one version ahead because of the switch to dynamic 2424 // shadow. 2425 Version += (LongSize == 32 && isAndroid); 2426 return Version; 2427 } 2428 2429 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2430 initializeCallbacks(M); 2431 2432 if (CompileKernel) 2433 return false; 2434 2435 // Create a module constructor. A destructor is created lazily because not all 2436 // platforms, and not all modules need it. 2437 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2438 std::string VersionCheckName = 2439 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2440 std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 2441 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, 2442 /*InitArgs=*/{}, VersionCheckName); 2443 2444 bool CtorComdat = true; 2445 // TODO(glider): temporarily disabled globals instrumentation for KASan. 2446 if (ClGlobals) { 2447 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2448 InstrumentGlobals(IRB, M, &CtorComdat); 2449 } 2450 2451 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2452 2453 // Put the constructor and destructor in comdat if both 2454 // (1) global instrumentation is not TU-specific 2455 // (2) target is ELF. 2456 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2457 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2458 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2459 if (AsanDtorFunction) { 2460 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2461 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2462 } 2463 } else { 2464 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2465 if (AsanDtorFunction) 2466 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2467 } 2468 2469 return true; 2470 } 2471 2472 void AddressSanitizer::initializeCallbacks(Module &M) { 2473 IRBuilder<> IRB(*C); 2474 // Create __asan_report* callbacks. 2475 // IsWrite, TypeSize and Exp are encoded in the function name. 2476 for (int Exp = 0; Exp < 2; Exp++) { 2477 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2478 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2479 const std::string ExpStr = Exp ? "exp_" : ""; 2480 const std::string EndingStr = Recover ? "_noabort" : ""; 2481 2482 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2483 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2484 if (Exp) { 2485 Type *ExpType = Type::getInt32Ty(*C); 2486 Args2.push_back(ExpType); 2487 Args1.push_back(ExpType); 2488 } 2489 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2490 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2491 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2492 2493 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2494 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2495 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2496 2497 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2498 AccessSizeIndex++) { 2499 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2500 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2501 M.getOrInsertFunction( 2502 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2503 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2504 2505 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2506 M.getOrInsertFunction( 2507 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2508 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2509 } 2510 } 2511 } 2512 2513 const std::string MemIntrinCallbackPrefix = 2514 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2515 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2516 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2517 IRB.getInt8PtrTy(), IntptrTy); 2518 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2519 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2520 IRB.getInt8PtrTy(), IntptrTy); 2521 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2522 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2523 IRB.getInt32Ty(), IntptrTy); 2524 2525 AsanHandleNoReturnFunc = 2526 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2527 2528 AsanPtrCmpFunction = 2529 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2530 AsanPtrSubFunction = 2531 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2532 // We insert an empty inline asm after __asan_report* to avoid callback merge. 2533 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 2534 StringRef(""), StringRef(""), 2535 /*hasSideEffects=*/true); 2536 if (Mapping.InGlobal) 2537 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2538 ArrayType::get(IRB.getInt8Ty(), 0)); 2539 } 2540 2541 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2542 // For each NSObject descendant having a +load method, this method is invoked 2543 // by the ObjC runtime before any of the static constructors is called. 2544 // Therefore we need to instrument such methods with a call to __asan_init 2545 // at the beginning in order to initialize our runtime before any access to 2546 // the shadow memory. 2547 // We cannot just ignore these methods, because they may call other 2548 // instrumented functions. 2549 if (F.getName().find(" load]") != std::string::npos) { 2550 FunctionCallee AsanInitFunction = 2551 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2552 IRBuilder<> IRB(&F.front(), F.front().begin()); 2553 IRB.CreateCall(AsanInitFunction, {}); 2554 return true; 2555 } 2556 return false; 2557 } 2558 2559 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2560 // Generate code only when dynamic addressing is needed. 2561 if (Mapping.Offset != kDynamicShadowSentinel) 2562 return; 2563 2564 IRBuilder<> IRB(&F.front().front()); 2565 if (Mapping.InGlobal) { 2566 if (ClWithIfuncSuppressRemat) { 2567 // An empty inline asm with input reg == output reg. 2568 // An opaque pointer-to-int cast, basically. 2569 InlineAsm *Asm = InlineAsm::get( 2570 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2571 StringRef(""), StringRef("=r,0"), 2572 /*hasSideEffects=*/false); 2573 LocalDynamicShadow = 2574 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2575 } else { 2576 LocalDynamicShadow = 2577 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2578 } 2579 } else { 2580 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2581 kAsanShadowMemoryDynamicAddress, IntptrTy); 2582 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2583 } 2584 } 2585 2586 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2587 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2588 // to it as uninteresting. This assumes we haven't started processing allocas 2589 // yet. This check is done up front because iterating the use list in 2590 // isInterestingAlloca would be algorithmically slower. 2591 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2592 2593 // Try to get the declaration of llvm.localescape. If it's not in the module, 2594 // we can exit early. 2595 if (!F.getParent()->getFunction("llvm.localescape")) return; 2596 2597 // Look for a call to llvm.localescape call in the entry block. It can't be in 2598 // any other block. 2599 for (Instruction &I : F.getEntryBlock()) { 2600 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2601 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2602 // We found a call. Mark all the allocas passed in as uninteresting. 2603 for (Value *Arg : II->arg_operands()) { 2604 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2605 assert(AI && AI->isStaticAlloca() && 2606 "non-static alloca arg to localescape"); 2607 ProcessedAllocas[AI] = false; 2608 } 2609 break; 2610 } 2611 } 2612 } 2613 2614 bool AddressSanitizer::instrumentFunction(Function &F, 2615 const TargetLibraryInfo *TLI) { 2616 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2617 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2618 if (F.getName().startswith("__asan_")) return false; 2619 2620 bool FunctionModified = false; 2621 2622 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2623 // This function needs to be called even if the function body is not 2624 // instrumented. 2625 if (maybeInsertAsanInitAtFunctionEntry(F)) 2626 FunctionModified = true; 2627 2628 // Leave if the function doesn't need instrumentation. 2629 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2630 2631 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2632 2633 initializeCallbacks(*F.getParent()); 2634 2635 FunctionStateRAII CleanupObj(this); 2636 2637 maybeInsertDynamicShadowAtFunctionEntry(F); 2638 2639 // We can't instrument allocas used with llvm.localescape. Only static allocas 2640 // can be passed to that intrinsic. 2641 markEscapedLocalAllocas(F); 2642 2643 // We want to instrument every address only once per basic block (unless there 2644 // are calls between uses). 2645 SmallPtrSet<Value *, 16> TempsToInstrument; 2646 SmallVector<Instruction *, 16> ToInstrument; 2647 SmallVector<Instruction *, 8> NoReturnCalls; 2648 SmallVector<BasicBlock *, 16> AllBlocks; 2649 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2650 int NumAllocas = 0; 2651 bool IsWrite; 2652 unsigned Alignment; 2653 uint64_t TypeSize; 2654 2655 // Fill the set of memory operations to instrument. 2656 for (auto &BB : F) { 2657 AllBlocks.push_back(&BB); 2658 TempsToInstrument.clear(); 2659 int NumInsnsPerBB = 0; 2660 for (auto &Inst : BB) { 2661 if (LooksLikeCodeInBug11395(&Inst)) return false; 2662 Value *MaybeMask = nullptr; 2663 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, 2664 &Alignment, &MaybeMask)) { 2665 if (ClOpt && ClOptSameTemp) { 2666 // If we have a mask, skip instrumentation if we've already 2667 // instrumented the full object. But don't add to TempsToInstrument 2668 // because we might get another load/store with a different mask. 2669 if (MaybeMask) { 2670 if (TempsToInstrument.count(Addr)) 2671 continue; // We've seen this (whole) temp in the current BB. 2672 } else { 2673 if (!TempsToInstrument.insert(Addr).second) 2674 continue; // We've seen this temp in the current BB. 2675 } 2676 } 2677 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2678 isInterestingPointerComparison(&Inst)) || 2679 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2680 isInterestingPointerSubtraction(&Inst))) { 2681 PointerComparisonsOrSubtracts.push_back(&Inst); 2682 continue; 2683 } else if (isa<MemIntrinsic>(Inst)) { 2684 // ok, take it. 2685 } else { 2686 if (isa<AllocaInst>(Inst)) NumAllocas++; 2687 CallSite CS(&Inst); 2688 if (CS) { 2689 // A call inside BB. 2690 TempsToInstrument.clear(); 2691 if (CS.doesNotReturn() && !CS->hasMetadata("nosanitize")) 2692 NoReturnCalls.push_back(CS.getInstruction()); 2693 } 2694 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2695 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2696 continue; 2697 } 2698 ToInstrument.push_back(&Inst); 2699 NumInsnsPerBB++; 2700 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2701 } 2702 } 2703 2704 bool UseCalls = 2705 (ClInstrumentationWithCallsThreshold >= 0 && 2706 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); 2707 const DataLayout &DL = F.getParent()->getDataLayout(); 2708 ObjectSizeOpts ObjSizeOpts; 2709 ObjSizeOpts.RoundToAlign = true; 2710 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2711 2712 // Instrument. 2713 int NumInstrumented = 0; 2714 for (auto Inst : ToInstrument) { 2715 if (ClDebugMin < 0 || ClDebugMax < 0 || 2716 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 2717 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) 2718 instrumentMop(ObjSizeVis, Inst, UseCalls, 2719 F.getParent()->getDataLayout()); 2720 else 2721 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 2722 } 2723 NumInstrumented++; 2724 } 2725 2726 FunctionStackPoisoner FSP(F, *this); 2727 bool ChangedStack = FSP.runOnFunction(); 2728 2729 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2730 // See e.g. https://github.com/google/sanitizers/issues/37 2731 for (auto CI : NoReturnCalls) { 2732 IRBuilder<> IRB(CI); 2733 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2734 } 2735 2736 for (auto Inst : PointerComparisonsOrSubtracts) { 2737 instrumentPointerComparisonOrSubtraction(Inst); 2738 NumInstrumented++; 2739 } 2740 2741 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty()) 2742 FunctionModified = true; 2743 2744 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2745 << F << "\n"); 2746 2747 return FunctionModified; 2748 } 2749 2750 // Workaround for bug 11395: we don't want to instrument stack in functions 2751 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2752 // FIXME: remove once the bug 11395 is fixed. 2753 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2754 if (LongSize != 32) return false; 2755 CallInst *CI = dyn_cast<CallInst>(I); 2756 if (!CI || !CI->isInlineAsm()) return false; 2757 if (CI->getNumArgOperands() <= 5) return false; 2758 // We have inline assembly with quite a few arguments. 2759 return true; 2760 } 2761 2762 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 2763 IRBuilder<> IRB(*C); 2764 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 2765 std::string Suffix = itostr(i); 2766 AsanStackMallocFunc[i] = M.getOrInsertFunction( 2767 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); 2768 AsanStackFreeFunc[i] = 2769 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 2770 IRB.getVoidTy(), IntptrTy, IntptrTy); 2771 } 2772 if (ASan.UseAfterScope) { 2773 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 2774 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2775 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 2776 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2777 } 2778 2779 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 2780 std::ostringstream Name; 2781 Name << kAsanSetShadowPrefix; 2782 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 2783 AsanSetShadowFunc[Val] = 2784 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 2785 } 2786 2787 AsanAllocaPoisonFunc = M.getOrInsertFunction( 2788 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2789 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 2790 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 2791 } 2792 2793 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 2794 ArrayRef<uint8_t> ShadowBytes, 2795 size_t Begin, size_t End, 2796 IRBuilder<> &IRB, 2797 Value *ShadowBase) { 2798 if (Begin >= End) 2799 return; 2800 2801 const size_t LargestStoreSizeInBytes = 2802 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 2803 2804 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 2805 2806 // Poison given range in shadow using larges store size with out leading and 2807 // trailing zeros in ShadowMask. Zeros never change, so they need neither 2808 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 2809 // middle of a store. 2810 for (size_t i = Begin; i < End;) { 2811 if (!ShadowMask[i]) { 2812 assert(!ShadowBytes[i]); 2813 ++i; 2814 continue; 2815 } 2816 2817 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 2818 // Fit store size into the range. 2819 while (StoreSizeInBytes > End - i) 2820 StoreSizeInBytes /= 2; 2821 2822 // Minimize store size by trimming trailing zeros. 2823 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 2824 while (j <= StoreSizeInBytes / 2) 2825 StoreSizeInBytes /= 2; 2826 } 2827 2828 uint64_t Val = 0; 2829 for (size_t j = 0; j < StoreSizeInBytes; j++) { 2830 if (IsLittleEndian) 2831 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 2832 else 2833 Val = (Val << 8) | ShadowBytes[i + j]; 2834 } 2835 2836 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 2837 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 2838 IRB.CreateAlignedStore( 2839 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1); 2840 2841 i += StoreSizeInBytes; 2842 } 2843 } 2844 2845 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2846 ArrayRef<uint8_t> ShadowBytes, 2847 IRBuilder<> &IRB, Value *ShadowBase) { 2848 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 2849 } 2850 2851 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 2852 ArrayRef<uint8_t> ShadowBytes, 2853 size_t Begin, size_t End, 2854 IRBuilder<> &IRB, Value *ShadowBase) { 2855 assert(ShadowMask.size() == ShadowBytes.size()); 2856 size_t Done = Begin; 2857 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 2858 if (!ShadowMask[i]) { 2859 assert(!ShadowBytes[i]); 2860 continue; 2861 } 2862 uint8_t Val = ShadowBytes[i]; 2863 if (!AsanSetShadowFunc[Val]) 2864 continue; 2865 2866 // Skip same values. 2867 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 2868 } 2869 2870 if (j - i >= ClMaxInlinePoisoningSize) { 2871 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 2872 IRB.CreateCall(AsanSetShadowFunc[Val], 2873 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 2874 ConstantInt::get(IntptrTy, j - i)}); 2875 Done = j; 2876 } 2877 } 2878 2879 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 2880 } 2881 2882 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 2883 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 2884 static int StackMallocSizeClass(uint64_t LocalStackSize) { 2885 assert(LocalStackSize <= kMaxStackMallocSize); 2886 uint64_t MaxSize = kMinStackMallocSize; 2887 for (int i = 0;; i++, MaxSize *= 2) 2888 if (LocalStackSize <= MaxSize) return i; 2889 llvm_unreachable("impossible LocalStackSize"); 2890 } 2891 2892 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 2893 Instruction *CopyInsertPoint = &F.front().front(); 2894 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 2895 // Insert after the dynamic shadow location is determined 2896 CopyInsertPoint = CopyInsertPoint->getNextNode(); 2897 assert(CopyInsertPoint); 2898 } 2899 IRBuilder<> IRB(CopyInsertPoint); 2900 const DataLayout &DL = F.getParent()->getDataLayout(); 2901 for (Argument &Arg : F.args()) { 2902 if (Arg.hasByValAttr()) { 2903 Type *Ty = Arg.getType()->getPointerElementType(); 2904 const Align Alignment = 2905 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 2906 2907 AllocaInst *AI = IRB.CreateAlloca( 2908 Ty, nullptr, 2909 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 2910 ".byval"); 2911 AI->setAlignment(Alignment); 2912 Arg.replaceAllUsesWith(AI); 2913 2914 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2915 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 2916 } 2917 } 2918 } 2919 2920 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 2921 Value *ValueIfTrue, 2922 Instruction *ThenTerm, 2923 Value *ValueIfFalse) { 2924 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 2925 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 2926 PHI->addIncoming(ValueIfFalse, CondBlock); 2927 BasicBlock *ThenBlock = ThenTerm->getParent(); 2928 PHI->addIncoming(ValueIfTrue, ThenBlock); 2929 return PHI; 2930 } 2931 2932 Value *FunctionStackPoisoner::createAllocaForLayout( 2933 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 2934 AllocaInst *Alloca; 2935 if (Dynamic) { 2936 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 2937 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 2938 "MyAlloca"); 2939 } else { 2940 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2941 nullptr, "MyAlloca"); 2942 assert(Alloca->isStaticAlloca()); 2943 } 2944 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2945 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 2946 Alloca->setAlignment(MaybeAlign(FrameAlignment)); 2947 return IRB.CreatePointerCast(Alloca, IntptrTy); 2948 } 2949 2950 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2951 BasicBlock &FirstBB = *F.begin(); 2952 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2953 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2954 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2955 DynamicAllocaLayout->setAlignment(Align(32)); 2956 } 2957 2958 void FunctionStackPoisoner::processDynamicAllocas() { 2959 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 2960 assert(DynamicAllocaPoisonCallVec.empty()); 2961 return; 2962 } 2963 2964 // Insert poison calls for lifetime intrinsics for dynamic allocas. 2965 for (const auto &APC : DynamicAllocaPoisonCallVec) { 2966 assert(APC.InsBefore); 2967 assert(APC.AI); 2968 assert(ASan.isInterestingAlloca(*APC.AI)); 2969 assert(!APC.AI->isStaticAlloca()); 2970 2971 IRBuilder<> IRB(APC.InsBefore); 2972 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2973 // Dynamic allocas will be unpoisoned unconditionally below in 2974 // unpoisonDynamicAllocas. 2975 // Flag that we need unpoison static allocas. 2976 } 2977 2978 // Handle dynamic allocas. 2979 createDynamicAllocasInitStorage(); 2980 for (auto &AI : DynamicAllocaVec) 2981 handleDynamicAllocaCall(AI); 2982 unpoisonDynamicAllocas(); 2983 } 2984 2985 void FunctionStackPoisoner::processStaticAllocas() { 2986 if (AllocaVec.empty()) { 2987 assert(StaticAllocaPoisonCallVec.empty()); 2988 return; 2989 } 2990 2991 int StackMallocIdx = -1; 2992 DebugLoc EntryDebugLocation; 2993 if (auto SP = F.getSubprogram()) 2994 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 2995 2996 Instruction *InsBefore = AllocaVec[0]; 2997 IRBuilder<> IRB(InsBefore); 2998 2999 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3000 // debug info is broken, because only entry-block allocas are treated as 3001 // regular stack slots. 3002 auto InsBeforeB = InsBefore->getParent(); 3003 assert(InsBeforeB == &F.getEntryBlock()); 3004 for (auto *AI : StaticAllocasToMoveUp) 3005 if (AI->getParent() == InsBeforeB) 3006 AI->moveBefore(InsBefore); 3007 3008 // If we have a call to llvm.localescape, keep it in the entry block. 3009 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3010 3011 SmallVector<ASanStackVariableDescription, 16> SVD; 3012 SVD.reserve(AllocaVec.size()); 3013 for (AllocaInst *AI : AllocaVec) { 3014 ASanStackVariableDescription D = {AI->getName().data(), 3015 ASan.getAllocaSizeInBytes(*AI), 3016 0, 3017 AI->getAlignment(), 3018 AI, 3019 0, 3020 0}; 3021 SVD.push_back(D); 3022 } 3023 3024 // Minimal header size (left redzone) is 4 pointers, 3025 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3026 size_t Granularity = 1ULL << Mapping.Scale; 3027 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); 3028 const ASanStackFrameLayout &L = 3029 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3030 3031 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3032 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3033 for (auto &Desc : SVD) 3034 AllocaToSVDMap[Desc.AI] = &Desc; 3035 3036 // Update SVD with information from lifetime intrinsics. 3037 for (const auto &APC : StaticAllocaPoisonCallVec) { 3038 assert(APC.InsBefore); 3039 assert(APC.AI); 3040 assert(ASan.isInterestingAlloca(*APC.AI)); 3041 assert(APC.AI->isStaticAlloca()); 3042 3043 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3044 Desc.LifetimeSize = Desc.Size; 3045 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3046 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3047 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3048 if (unsigned Line = LifetimeLoc->getLine()) 3049 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3050 } 3051 } 3052 } 3053 3054 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3055 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3056 uint64_t LocalStackSize = L.FrameSize; 3057 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 3058 LocalStackSize <= kMaxStackMallocSize; 3059 bool DoDynamicAlloca = ClDynamicAllocaStack; 3060 // Don't do dynamic alloca or stack malloc if: 3061 // 1) There is inline asm: too often it makes assumptions on which registers 3062 // are available. 3063 // 2) There is a returns_twice call (typically setjmp), which is 3064 // optimization-hostile, and doesn't play well with introduced indirect 3065 // register-relative calculation of local variable addresses. 3066 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3067 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 3068 3069 Value *StaticAlloca = 3070 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3071 3072 Value *FakeStack; 3073 Value *LocalStackBase; 3074 Value *LocalStackBaseAlloca; 3075 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3076 3077 if (DoStackMalloc) { 3078 LocalStackBaseAlloca = 3079 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3080 // void *FakeStack = __asan_option_detect_stack_use_after_return 3081 // ? __asan_stack_malloc_N(LocalStackSize) 3082 // : nullptr; 3083 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 3084 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3085 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3086 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3087 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3088 Constant::getNullValue(IRB.getInt32Ty())); 3089 Instruction *Term = 3090 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3091 IRBuilder<> IRBIf(Term); 3092 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3093 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3094 Value *FakeStackValue = 3095 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3096 ConstantInt::get(IntptrTy, LocalStackSize)); 3097 IRB.SetInsertPoint(InsBefore); 3098 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3099 ConstantInt::get(IntptrTy, 0)); 3100 3101 Value *NoFakeStack = 3102 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3103 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3104 IRBIf.SetInsertPoint(Term); 3105 Value *AllocaValue = 3106 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3107 3108 IRB.SetInsertPoint(InsBefore); 3109 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3110 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3111 DIExprFlags |= DIExpression::DerefBefore; 3112 } else { 3113 // void *FakeStack = nullptr; 3114 // void *LocalStackBase = alloca(LocalStackSize); 3115 FakeStack = ConstantInt::get(IntptrTy, 0); 3116 LocalStackBase = 3117 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3118 LocalStackBaseAlloca = LocalStackBase; 3119 } 3120 3121 // Replace Alloca instructions with base+offset. 3122 for (const auto &Desc : SVD) { 3123 AllocaInst *AI = Desc.AI; 3124 replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, DIExprFlags, 3125 Desc.Offset); 3126 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3127 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3128 AI->getType()); 3129 AI->replaceAllUsesWith(NewAllocaPtr); 3130 } 3131 3132 // The left-most redzone has enough space for at least 4 pointers. 3133 // Write the Magic value to redzone[0]. 3134 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3135 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3136 BasePlus0); 3137 // Write the frame description constant to redzone[1]. 3138 Value *BasePlus1 = IRB.CreateIntToPtr( 3139 IRB.CreateAdd(LocalStackBase, 3140 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3141 IntptrPtrTy); 3142 GlobalVariable *StackDescriptionGlobal = 3143 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3144 /*AllowMerging*/ true, kAsanGenPrefix); 3145 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3146 IRB.CreateStore(Description, BasePlus1); 3147 // Write the PC to redzone[2]. 3148 Value *BasePlus2 = IRB.CreateIntToPtr( 3149 IRB.CreateAdd(LocalStackBase, 3150 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3151 IntptrPtrTy); 3152 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3153 3154 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3155 3156 // Poison the stack red zones at the entry. 3157 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3158 // As mask we must use most poisoned case: red zones and after scope. 3159 // As bytes we can use either the same or just red zones only. 3160 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3161 3162 if (!StaticAllocaPoisonCallVec.empty()) { 3163 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3164 3165 // Poison static allocas near lifetime intrinsics. 3166 for (const auto &APC : StaticAllocaPoisonCallVec) { 3167 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3168 assert(Desc.Offset % L.Granularity == 0); 3169 size_t Begin = Desc.Offset / L.Granularity; 3170 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3171 3172 IRBuilder<> IRB(APC.InsBefore); 3173 copyToShadow(ShadowAfterScope, 3174 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3175 IRB, ShadowBase); 3176 } 3177 } 3178 3179 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3180 SmallVector<uint8_t, 64> ShadowAfterReturn; 3181 3182 // (Un)poison the stack before all ret instructions. 3183 for (auto Ret : RetVec) { 3184 IRBuilder<> IRBRet(Ret); 3185 // Mark the current frame as retired. 3186 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3187 BasePlus0); 3188 if (DoStackMalloc) { 3189 assert(StackMallocIdx >= 0); 3190 // if FakeStack != 0 // LocalStackBase == FakeStack 3191 // // In use-after-return mode, poison the whole stack frame. 3192 // if StackMallocIdx <= 4 3193 // // For small sizes inline the whole thing: 3194 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3195 // **SavedFlagPtr(FakeStack) = 0 3196 // else 3197 // __asan_stack_free_N(FakeStack, LocalStackSize) 3198 // else 3199 // <This is not a fake stack; unpoison the redzones> 3200 Value *Cmp = 3201 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3202 Instruction *ThenTerm, *ElseTerm; 3203 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3204 3205 IRBuilder<> IRBPoison(ThenTerm); 3206 if (StackMallocIdx <= 4) { 3207 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3208 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3209 kAsanStackUseAfterReturnMagic); 3210 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3211 ShadowBase); 3212 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3213 FakeStack, 3214 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3215 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3216 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3217 IRBPoison.CreateStore( 3218 Constant::getNullValue(IRBPoison.getInt8Ty()), 3219 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3220 } else { 3221 // For larger frames call __asan_stack_free_*. 3222 IRBPoison.CreateCall( 3223 AsanStackFreeFunc[StackMallocIdx], 3224 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3225 } 3226 3227 IRBuilder<> IRBElse(ElseTerm); 3228 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3229 } else { 3230 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3231 } 3232 } 3233 3234 // We are done. Remove the old unused alloca instructions. 3235 for (auto AI : AllocaVec) AI->eraseFromParent(); 3236 } 3237 3238 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3239 IRBuilder<> &IRB, bool DoPoison) { 3240 // For now just insert the call to ASan runtime. 3241 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3242 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3243 IRB.CreateCall( 3244 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3245 {AddrArg, SizeArg}); 3246 } 3247 3248 // Handling llvm.lifetime intrinsics for a given %alloca: 3249 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3250 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3251 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3252 // could be poisoned by previous llvm.lifetime.end instruction, as the 3253 // variable may go in and out of scope several times, e.g. in loops). 3254 // (3) if we poisoned at least one %alloca in a function, 3255 // unpoison the whole stack frame at function exit. 3256 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3257 IRBuilder<> IRB(AI); 3258 3259 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 3260 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3261 3262 Value *Zero = Constant::getNullValue(IntptrTy); 3263 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3264 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3265 3266 // Since we need to extend alloca with additional memory to locate 3267 // redzones, and OldSize is number of allocated blocks with 3268 // ElementSize size, get allocated memory size in bytes by 3269 // OldSize * ElementSize. 3270 const unsigned ElementSize = 3271 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3272 Value *OldSize = 3273 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3274 ConstantInt::get(IntptrTy, ElementSize)); 3275 3276 // PartialSize = OldSize % 32 3277 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3278 3279 // Misalign = kAllocaRzSize - PartialSize; 3280 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3281 3282 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3283 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3284 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3285 3286 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 3287 // Align is added to locate left redzone, PartialPadding for possible 3288 // partial redzone and kAllocaRzSize for right redzone respectively. 3289 Value *AdditionalChunkSize = IRB.CreateAdd( 3290 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 3291 3292 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3293 3294 // Insert new alloca with new NewSize and Align params. 3295 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3296 NewAlloca->setAlignment(MaybeAlign(Align)); 3297 3298 // NewAddress = Address + Align 3299 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3300 ConstantInt::get(IntptrTy, Align)); 3301 3302 // Insert __asan_alloca_poison call for new created alloca. 3303 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3304 3305 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3306 // for unpoisoning stuff. 3307 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3308 3309 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3310 3311 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3312 AI->replaceAllUsesWith(NewAddressPtr); 3313 3314 // We are done. Erase old alloca from parent. 3315 AI->eraseFromParent(); 3316 } 3317 3318 // isSafeAccess returns true if Addr is always inbounds with respect to its 3319 // base object. For example, it is a field access or an array access with 3320 // constant inbounds index. 3321 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3322 Value *Addr, uint64_t TypeSize) const { 3323 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3324 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3325 uint64_t Size = SizeOffset.first.getZExtValue(); 3326 int64_t Offset = SizeOffset.second.getSExtValue(); 3327 // Three checks are required to ensure safety: 3328 // . Offset >= 0 (since the offset is given from the base ptr) 3329 // . Size >= Offset (unsigned) 3330 // . Size - Offset >= NeededSize (unsigned) 3331 return Offset >= 0 && Size >= uint64_t(Offset) && 3332 Size - uint64_t(Offset) >= TypeSize / 8; 3333 } 3334