xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp (revision 397e83df75e0fcd0d3fcb95ae4d794cb7600fc89)
1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address basic correctness
10 // checker.
11 // Details of the algorithm:
12 //  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 //
14 // FIXME: This sanitizer does not yet handle scalable vectors
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/StackSafetyAnalysis.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/BinaryFormat/MachO.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Comdat.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DIBuilder.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GlobalAlias.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/IRBuilder.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/InstVisitor.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/MDBuilder.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/MC/MCSectionMachO.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/TargetParser/Triple.h"
73 #include "llvm/Transforms/Instrumentation.h"
74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
75 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
76 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include "llvm/Transforms/Utils/ModuleUtils.h"
80 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cstddef>
84 #include <cstdint>
85 #include <iomanip>
86 #include <limits>
87 #include <sstream>
88 #include <string>
89 #include <tuple>
90 
91 using namespace llvm;
92 
93 #define DEBUG_TYPE "asan"
94 
95 static const uint64_t kDefaultShadowScale = 3;
96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
98 static const uint64_t kDynamicShadowSentinel =
99     std::numeric_limits<uint64_t>::max();
100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
105 static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29;
106 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
107 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
108 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
109 static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46;
110 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000;
111 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
112 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
113 static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47;
114 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
115 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
116 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
117 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
118 static const uint64_t kPS_ShadowOffset64 = 1ULL << 40;
119 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
120 static const uint64_t kEmscriptenShadowOffset = 0;
121 
122 // The shadow memory space is dynamically allocated.
123 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
124 
125 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
126 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
127 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
128 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
129 
130 const char kAsanModuleCtorName[] = "asan.module_ctor";
131 const char kAsanModuleDtorName[] = "asan.module_dtor";
132 static const uint64_t kAsanCtorAndDtorPriority = 1;
133 // On Emscripten, the system needs more than one priorities for constructors.
134 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
135 const char kAsanReportErrorTemplate[] = "__asan_report_";
136 const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
137 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
138 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
139 const char kAsanUnregisterImageGlobalsName[] =
140     "__asan_unregister_image_globals";
141 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
142 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
143 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
144 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
145 const char kAsanInitName[] = "__asan_init";
146 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
147 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
148 const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
149 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
150 static const int kMaxAsanStackMallocSizeClass = 10;
151 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
152 const char kAsanStackMallocAlwaysNameTemplate[] =
153     "__asan_stack_malloc_always_";
154 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
155 const char kAsanGenPrefix[] = "___asan_gen_";
156 const char kODRGenPrefix[] = "__odr_asan_gen_";
157 const char kSanCovGenPrefix[] = "__sancov_gen_";
158 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
159 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
160 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
161 
162 // ASan version script has __asan_* wildcard. Triple underscore prevents a
163 // linker (gold) warning about attempting to export a local symbol.
164 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
165 
166 const char kAsanOptionDetectUseAfterReturn[] =
167     "__asan_option_detect_stack_use_after_return";
168 
169 const char kAsanShadowMemoryDynamicAddress[] =
170     "__asan_shadow_memory_dynamic_address";
171 
172 const char kAsanAllocaPoison[] = "__asan_alloca_poison";
173 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
174 
175 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
176 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
177 const char kAMDGPUBallotName[] = "llvm.amdgcn.ballot.i64";
178 const char kAMDGPUUnreachableName[] = "llvm.amdgcn.unreachable";
179 
180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
181 static const size_t kNumberOfAccessSizes = 5;
182 
183 static const uint64_t kAllocaRzSize = 32;
184 
185 // ASanAccessInfo implementation constants.
186 constexpr size_t kCompileKernelShift = 0;
187 constexpr size_t kCompileKernelMask = 0x1;
188 constexpr size_t kAccessSizeIndexShift = 1;
189 constexpr size_t kAccessSizeIndexMask = 0xf;
190 constexpr size_t kIsWriteShift = 5;
191 constexpr size_t kIsWriteMask = 0x1;
192 
193 // Command-line flags.
194 
195 static cl::opt<bool> ClEnableKasan(
196     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
197     cl::Hidden, cl::init(false));
198 
199 static cl::opt<bool> ClRecover(
200     "asan-recover",
201     cl::desc("Enable recovery mode (continue-after-error)."),
202     cl::Hidden, cl::init(false));
203 
204 static cl::opt<bool> ClInsertVersionCheck(
205     "asan-guard-against-version-mismatch",
206     cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
207     cl::init(true));
208 
209 // This flag may need to be replaced with -f[no-]asan-reads.
210 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
211                                        cl::desc("instrument read instructions"),
212                                        cl::Hidden, cl::init(true));
213 
214 static cl::opt<bool> ClInstrumentWrites(
215     "asan-instrument-writes", cl::desc("instrument write instructions"),
216     cl::Hidden, cl::init(true));
217 
218 static cl::opt<bool>
219     ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(true),
220                      cl::Hidden, cl::desc("Use Stack Safety analysis results"),
221                      cl::Optional);
222 
223 static cl::opt<bool> ClInstrumentAtomics(
224     "asan-instrument-atomics",
225     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
226     cl::init(true));
227 
228 static cl::opt<bool>
229     ClInstrumentByval("asan-instrument-byval",
230                       cl::desc("instrument byval call arguments"), cl::Hidden,
231                       cl::init(true));
232 
233 static cl::opt<bool> ClAlwaysSlowPath(
234     "asan-always-slow-path",
235     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
236     cl::init(false));
237 
238 static cl::opt<bool> ClForceDynamicShadow(
239     "asan-force-dynamic-shadow",
240     cl::desc("Load shadow address into a local variable for each function"),
241     cl::Hidden, cl::init(false));
242 
243 static cl::opt<bool>
244     ClWithIfunc("asan-with-ifunc",
245                 cl::desc("Access dynamic shadow through an ifunc global on "
246                          "platforms that support this"),
247                 cl::Hidden, cl::init(true));
248 
249 static cl::opt<bool> ClWithIfuncSuppressRemat(
250     "asan-with-ifunc-suppress-remat",
251     cl::desc("Suppress rematerialization of dynamic shadow address by passing "
252              "it through inline asm in prologue."),
253     cl::Hidden, cl::init(true));
254 
255 // This flag limits the number of instructions to be instrumented
256 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
257 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
258 // set it to 10000.
259 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
260     "asan-max-ins-per-bb", cl::init(10000),
261     cl::desc("maximal number of instructions to instrument in any given BB"),
262     cl::Hidden);
263 
264 // This flag may need to be replaced with -f[no]asan-stack.
265 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
266                              cl::Hidden, cl::init(true));
267 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
268     "asan-max-inline-poisoning-size",
269     cl::desc(
270         "Inline shadow poisoning for blocks up to the given size in bytes."),
271     cl::Hidden, cl::init(64));
272 
273 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn(
274     "asan-use-after-return",
275     cl::desc("Sets the mode of detection for stack-use-after-return."),
276     cl::values(
277         clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",
278                    "Never detect stack use after return."),
279         clEnumValN(
280             AsanDetectStackUseAfterReturnMode::Runtime, "runtime",
281             "Detect stack use after return if "
282             "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."),
283         clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",
284                    "Always detect stack use after return.")),
285     cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));
286 
287 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
288                                         cl::desc("Create redzones for byval "
289                                                  "arguments (extra copy "
290                                                  "required)"), cl::Hidden,
291                                         cl::init(true));
292 
293 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
294                                      cl::desc("Check stack-use-after-scope"),
295                                      cl::Hidden, cl::init(false));
296 
297 // This flag may need to be replaced with -f[no]asan-globals.
298 static cl::opt<bool> ClGlobals("asan-globals",
299                                cl::desc("Handle global objects"), cl::Hidden,
300                                cl::init(true));
301 
302 static cl::opt<bool> ClInitializers("asan-initialization-order",
303                                     cl::desc("Handle C++ initializer order"),
304                                     cl::Hidden, cl::init(true));
305 
306 static cl::opt<bool> ClInvalidPointerPairs(
307     "asan-detect-invalid-pointer-pair",
308     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
309     cl::init(false));
310 
311 static cl::opt<bool> ClInvalidPointerCmp(
312     "asan-detect-invalid-pointer-cmp",
313     cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
314     cl::init(false));
315 
316 static cl::opt<bool> ClInvalidPointerSub(
317     "asan-detect-invalid-pointer-sub",
318     cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
319     cl::init(false));
320 
321 static cl::opt<unsigned> ClRealignStack(
322     "asan-realign-stack",
323     cl::desc("Realign stack to the value of this flag (power of two)"),
324     cl::Hidden, cl::init(32));
325 
326 static cl::opt<int> ClInstrumentationWithCallsThreshold(
327     "asan-instrumentation-with-call-threshold",
328     cl::desc("If the function being instrumented contains more than "
329              "this number of memory accesses, use callbacks instead of "
330              "inline checks (-1 means never use callbacks)."),
331     cl::Hidden, cl::init(7000));
332 
333 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
334     "asan-memory-access-callback-prefix",
335     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
336     cl::init("__asan_"));
337 
338 static cl::opt<bool> ClKasanMemIntrinCallbackPrefix(
339     "asan-kernel-mem-intrinsic-prefix",
340     cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden,
341     cl::init(false));
342 
343 static cl::opt<bool>
344     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
345                                cl::desc("instrument dynamic allocas"),
346                                cl::Hidden, cl::init(true));
347 
348 static cl::opt<bool> ClSkipPromotableAllocas(
349     "asan-skip-promotable-allocas",
350     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
351     cl::init(true));
352 
353 static cl::opt<AsanCtorKind> ClConstructorKind(
354     "asan-constructor-kind",
355     cl::desc("Sets the ASan constructor kind"),
356     cl::values(clEnumValN(AsanCtorKind::None, "none", "No constructors"),
357                clEnumValN(AsanCtorKind::Global, "global",
358                           "Use global constructors")),
359     cl::init(AsanCtorKind::Global), cl::Hidden);
360 // These flags allow to change the shadow mapping.
361 // The shadow mapping looks like
362 //    Shadow = (Mem >> scale) + offset
363 
364 static cl::opt<int> ClMappingScale("asan-mapping-scale",
365                                    cl::desc("scale of asan shadow mapping"),
366                                    cl::Hidden, cl::init(0));
367 
368 static cl::opt<uint64_t>
369     ClMappingOffset("asan-mapping-offset",
370                     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
371                     cl::Hidden, cl::init(0));
372 
373 // Optimization flags. Not user visible, used mostly for testing
374 // and benchmarking the tool.
375 
376 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
377                            cl::Hidden, cl::init(true));
378 
379 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks",
380                                          cl::desc("Optimize callbacks"),
381                                          cl::Hidden, cl::init(false));
382 
383 static cl::opt<bool> ClOptSameTemp(
384     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
385     cl::Hidden, cl::init(true));
386 
387 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
388                                   cl::desc("Don't instrument scalar globals"),
389                                   cl::Hidden, cl::init(true));
390 
391 static cl::opt<bool> ClOptStack(
392     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
393     cl::Hidden, cl::init(false));
394 
395 static cl::opt<bool> ClDynamicAllocaStack(
396     "asan-stack-dynamic-alloca",
397     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
398     cl::init(true));
399 
400 static cl::opt<uint32_t> ClForceExperiment(
401     "asan-force-experiment",
402     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
403     cl::init(0));
404 
405 static cl::opt<bool>
406     ClUsePrivateAlias("asan-use-private-alias",
407                       cl::desc("Use private aliases for global variables"),
408                       cl::Hidden, cl::init(true));
409 
410 static cl::opt<bool>
411     ClUseOdrIndicator("asan-use-odr-indicator",
412                       cl::desc("Use odr indicators to improve ODR reporting"),
413                       cl::Hidden, cl::init(true));
414 
415 static cl::opt<bool>
416     ClUseGlobalsGC("asan-globals-live-support",
417                    cl::desc("Use linker features to support dead "
418                             "code stripping of globals"),
419                    cl::Hidden, cl::init(true));
420 
421 // This is on by default even though there is a bug in gold:
422 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
423 static cl::opt<bool>
424     ClWithComdat("asan-with-comdat",
425                  cl::desc("Place ASan constructors in comdat sections"),
426                  cl::Hidden, cl::init(true));
427 
428 static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
429     "asan-destructor-kind",
430     cl::desc("Sets the ASan destructor kind. The default is to use the value "
431              "provided to the pass constructor"),
432     cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
433                clEnumValN(AsanDtorKind::Global, "global",
434                           "Use global destructors")),
435     cl::init(AsanDtorKind::Invalid), cl::Hidden);
436 
437 // Debug flags.
438 
439 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
440                             cl::init(0));
441 
442 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
443                                  cl::Hidden, cl::init(0));
444 
445 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
446                                         cl::desc("Debug func"));
447 
448 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
449                                cl::Hidden, cl::init(-1));
450 
451 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
452                                cl::Hidden, cl::init(-1));
453 
454 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
455 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
456 STATISTIC(NumOptimizedAccessesToGlobalVar,
457           "Number of optimized accesses to global vars");
458 STATISTIC(NumOptimizedAccessesToStackVar,
459           "Number of optimized accesses to stack vars");
460 
461 namespace {
462 
463 /// This struct defines the shadow mapping using the rule:
464 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
465 /// If InGlobal is true, then
466 ///   extern char __asan_shadow[];
467 ///   shadow = (mem >> Scale) + &__asan_shadow
468 struct ShadowMapping {
469   int Scale;
470   uint64_t Offset;
471   bool OrShadowOffset;
472   bool InGlobal;
473 };
474 
475 } // end anonymous namespace
476 
477 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize,
478                                       bool IsKasan) {
479   bool IsAndroid = TargetTriple.isAndroid();
480   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() ||
481                TargetTriple.isDriverKit();
482   bool IsMacOS = TargetTriple.isMacOSX();
483   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
484   bool IsNetBSD = TargetTriple.isOSNetBSD();
485   bool IsPS = TargetTriple.isPS();
486   bool IsLinux = TargetTriple.isOSLinux();
487   bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
488                  TargetTriple.getArch() == Triple::ppc64le;
489   bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
490   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
491   bool IsMIPSN32ABI = TargetTriple.getEnvironment() == Triple::GNUABIN32;
492   bool IsMIPS32 = TargetTriple.isMIPS32();
493   bool IsMIPS64 = TargetTriple.isMIPS64();
494   bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
495   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
496                    TargetTriple.getArch() == Triple::aarch64_be;
497   bool IsLoongArch64 = TargetTriple.isLoongArch64();
498   bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
499   bool IsWindows = TargetTriple.isOSWindows();
500   bool IsFuchsia = TargetTriple.isOSFuchsia();
501   bool IsEmscripten = TargetTriple.isOSEmscripten();
502   bool IsAMDGPU = TargetTriple.isAMDGPU();
503 
504   ShadowMapping Mapping;
505 
506   Mapping.Scale = kDefaultShadowScale;
507   if (ClMappingScale.getNumOccurrences() > 0) {
508     Mapping.Scale = ClMappingScale;
509   }
510 
511   if (LongSize == 32) {
512     if (IsAndroid)
513       Mapping.Offset = kDynamicShadowSentinel;
514     else if (IsMIPSN32ABI)
515       Mapping.Offset = kMIPS_ShadowOffsetN32;
516     else if (IsMIPS32)
517       Mapping.Offset = kMIPS32_ShadowOffset32;
518     else if (IsFreeBSD)
519       Mapping.Offset = kFreeBSD_ShadowOffset32;
520     else if (IsNetBSD)
521       Mapping.Offset = kNetBSD_ShadowOffset32;
522     else if (IsIOS)
523       Mapping.Offset = kDynamicShadowSentinel;
524     else if (IsWindows)
525       Mapping.Offset = kWindowsShadowOffset32;
526     else if (IsEmscripten)
527       Mapping.Offset = kEmscriptenShadowOffset;
528     else
529       Mapping.Offset = kDefaultShadowOffset32;
530   } else {  // LongSize == 64
531     // Fuchsia is always PIE, which means that the beginning of the address
532     // space is always available.
533     if (IsFuchsia)
534       Mapping.Offset = 0;
535     else if (IsPPC64)
536       Mapping.Offset = kPPC64_ShadowOffset64;
537     else if (IsSystemZ)
538       Mapping.Offset = kSystemZ_ShadowOffset64;
539     else if (IsFreeBSD && IsAArch64)
540         Mapping.Offset = kFreeBSDAArch64_ShadowOffset64;
541     else if (IsFreeBSD && !IsMIPS64) {
542       if (IsKasan)
543         Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
544       else
545         Mapping.Offset = kFreeBSD_ShadowOffset64;
546     } else if (IsNetBSD) {
547       if (IsKasan)
548         Mapping.Offset = kNetBSDKasan_ShadowOffset64;
549       else
550         Mapping.Offset = kNetBSD_ShadowOffset64;
551     } else if (IsPS)
552       Mapping.Offset = kPS_ShadowOffset64;
553     else if (IsLinux && IsX86_64) {
554       if (IsKasan)
555         Mapping.Offset = kLinuxKasan_ShadowOffset64;
556       else
557         Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
558                           (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
559     } else if (IsWindows && IsX86_64) {
560       Mapping.Offset = kWindowsShadowOffset64;
561     } else if (IsMIPS64)
562       Mapping.Offset = kMIPS64_ShadowOffset64;
563     else if (IsIOS)
564       Mapping.Offset = kDynamicShadowSentinel;
565     else if (IsMacOS && IsAArch64)
566       Mapping.Offset = kDynamicShadowSentinel;
567     else if (IsAArch64)
568       Mapping.Offset = kAArch64_ShadowOffset64;
569     else if (IsLoongArch64)
570       Mapping.Offset = kLoongArch64_ShadowOffset64;
571     else if (IsRISCV64)
572       Mapping.Offset = kRISCV64_ShadowOffset64;
573     else if (IsAMDGPU)
574       Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
575                         (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
576     else
577       Mapping.Offset = kDefaultShadowOffset64;
578   }
579 
580   if (ClForceDynamicShadow) {
581     Mapping.Offset = kDynamicShadowSentinel;
582   }
583 
584   if (ClMappingOffset.getNumOccurrences() > 0) {
585     Mapping.Offset = ClMappingOffset;
586   }
587 
588   // OR-ing shadow offset if more efficient (at least on x86) if the offset
589   // is a power of two, but on ppc64 and loongarch64 we have to use add since
590   // the shadow offset is not necessarily 1/8-th of the address space.  On
591   // SystemZ, we could OR the constant in a single instruction, but it's more
592   // efficient to load it once and use indexed addressing.
593   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS &&
594                            !IsRISCV64 && !IsLoongArch64 &&
595                            !(Mapping.Offset & (Mapping.Offset - 1)) &&
596                            Mapping.Offset != kDynamicShadowSentinel;
597   bool IsAndroidWithIfuncSupport =
598       IsAndroid && !TargetTriple.isAndroidVersionLT(21);
599   Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
600 
601   return Mapping;
602 }
603 
604 namespace llvm {
605 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize,
606                                bool IsKasan, uint64_t *ShadowBase,
607                                int *MappingScale, bool *OrShadowOffset) {
608   auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan);
609   *ShadowBase = Mapping.Offset;
610   *MappingScale = Mapping.Scale;
611   *OrShadowOffset = Mapping.OrShadowOffset;
612 }
613 
614 ASanAccessInfo::ASanAccessInfo(int32_t Packed)
615     : Packed(Packed),
616       AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask),
617       IsWrite((Packed >> kIsWriteShift) & kIsWriteMask),
618       CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {}
619 
620 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel,
621                                uint8_t AccessSizeIndex)
622     : Packed((IsWrite << kIsWriteShift) +
623              (CompileKernel << kCompileKernelShift) +
624              (AccessSizeIndex << kAccessSizeIndexShift)),
625       AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite),
626       CompileKernel(CompileKernel) {}
627 
628 } // namespace llvm
629 
630 static uint64_t getRedzoneSizeForScale(int MappingScale) {
631   // Redzone used for stack and globals is at least 32 bytes.
632   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
633   return std::max(32U, 1U << MappingScale);
634 }
635 
636 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
637   if (TargetTriple.isOSEmscripten()) {
638     return kAsanEmscriptenCtorAndDtorPriority;
639   } else {
640     return kAsanCtorAndDtorPriority;
641   }
642 }
643 
644 namespace {
645 
646 /// AddressSanitizer: instrument the code in module to find memory bugs.
647 struct AddressSanitizer {
648   AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI,
649                    int InstrumentationWithCallsThreshold,
650                    uint32_t MaxInlinePoisoningSize, bool CompileKernel = false,
651                    bool Recover = false, bool UseAfterScope = false,
652                    AsanDetectStackUseAfterReturnMode UseAfterReturn =
653                        AsanDetectStackUseAfterReturnMode::Runtime)
654       : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
655                                                             : CompileKernel),
656         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
657         UseAfterScope(UseAfterScope || ClUseAfterScope),
658         UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
659                                                             : UseAfterReturn),
660         SSGI(SSGI),
661         InstrumentationWithCallsThreshold(
662             ClInstrumentationWithCallsThreshold.getNumOccurrences() > 0
663                 ? ClInstrumentationWithCallsThreshold
664                 : InstrumentationWithCallsThreshold),
665         MaxInlinePoisoningSize(ClMaxInlinePoisoningSize.getNumOccurrences() > 0
666                                    ? ClMaxInlinePoisoningSize
667                                    : MaxInlinePoisoningSize) {
668     C = &(M.getContext());
669     DL = &M.getDataLayout();
670     LongSize = M.getDataLayout().getPointerSizeInBits();
671     IntptrTy = Type::getIntNTy(*C, LongSize);
672     PtrTy = PointerType::getUnqual(*C);
673     Int32Ty = Type::getInt32Ty(*C);
674     TargetTriple = Triple(M.getTargetTriple());
675 
676     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
677 
678     assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid);
679   }
680 
681   TypeSize getAllocaSizeInBytes(const AllocaInst &AI) const {
682     return *AI.getAllocationSize(AI.getModule()->getDataLayout());
683   }
684 
685   /// Check if we want (and can) handle this alloca.
686   bool isInterestingAlloca(const AllocaInst &AI);
687 
688   bool ignoreAccess(Instruction *Inst, Value *Ptr);
689   void getInterestingMemoryOperands(
690       Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
691 
692   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
693                      InterestingMemoryOperand &O, bool UseCalls,
694                      const DataLayout &DL);
695   void instrumentPointerComparisonOrSubtraction(Instruction *I);
696   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
697                          Value *Addr, MaybeAlign Alignment,
698                          uint32_t TypeStoreSize, bool IsWrite,
699                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
700   Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
701                                        Instruction *InsertBefore, Value *Addr,
702                                        uint32_t TypeStoreSize, bool IsWrite,
703                                        Value *SizeArgument);
704   Instruction *genAMDGPUReportBlock(IRBuilder<> &IRB, Value *Cond,
705                                     bool Recover);
706   void instrumentUnusualSizeOrAlignment(Instruction *I,
707                                         Instruction *InsertBefore, Value *Addr,
708                                         TypeSize TypeStoreSize, bool IsWrite,
709                                         Value *SizeArgument, bool UseCalls,
710                                         uint32_t Exp);
711   void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL,
712                                    Type *IntptrTy, Value *Mask, Value *EVL,
713                                    Value *Stride, Instruction *I, Value *Addr,
714                                    MaybeAlign Alignment, unsigned Granularity,
715                                    Type *OpType, bool IsWrite,
716                                    Value *SizeArgument, bool UseCalls,
717                                    uint32_t Exp);
718   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
719                            Value *ShadowValue, uint32_t TypeStoreSize);
720   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
721                                  bool IsWrite, size_t AccessSizeIndex,
722                                  Value *SizeArgument, uint32_t Exp);
723   void instrumentMemIntrinsic(MemIntrinsic *MI);
724   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
725   bool suppressInstrumentationSiteForDebug(int &Instrumented);
726   bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
727   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
728   bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
729   void markEscapedLocalAllocas(Function &F);
730 
731 private:
732   friend struct FunctionStackPoisoner;
733 
734   void initializeCallbacks(Module &M, const TargetLibraryInfo *TLI);
735 
736   bool LooksLikeCodeInBug11395(Instruction *I);
737   bool GlobalIsLinkerInitialized(GlobalVariable *G);
738   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
739                     TypeSize TypeStoreSize) const;
740 
741   /// Helper to cleanup per-function state.
742   struct FunctionStateRAII {
743     AddressSanitizer *Pass;
744 
745     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
746       assert(Pass->ProcessedAllocas.empty() &&
747              "last pass forgot to clear cache");
748       assert(!Pass->LocalDynamicShadow);
749     }
750 
751     ~FunctionStateRAII() {
752       Pass->LocalDynamicShadow = nullptr;
753       Pass->ProcessedAllocas.clear();
754     }
755   };
756 
757   LLVMContext *C;
758   const DataLayout *DL;
759   Triple TargetTriple;
760   int LongSize;
761   bool CompileKernel;
762   bool Recover;
763   bool UseAfterScope;
764   AsanDetectStackUseAfterReturnMode UseAfterReturn;
765   Type *IntptrTy;
766   Type *Int32Ty;
767   PointerType *PtrTy;
768   ShadowMapping Mapping;
769   FunctionCallee AsanHandleNoReturnFunc;
770   FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
771   Constant *AsanShadowGlobal;
772 
773   // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
774   FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
775   FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
776 
777   // These arrays is indexed by AccessIsWrite and Experiment.
778   FunctionCallee AsanErrorCallbackSized[2][2];
779   FunctionCallee AsanMemoryAccessCallbackSized[2][2];
780 
781   FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
782   Value *LocalDynamicShadow = nullptr;
783   const StackSafetyGlobalInfo *SSGI;
784   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
785 
786   FunctionCallee AMDGPUAddressShared;
787   FunctionCallee AMDGPUAddressPrivate;
788   int InstrumentationWithCallsThreshold;
789   uint32_t MaxInlinePoisoningSize;
790 };
791 
792 class ModuleAddressSanitizer {
793 public:
794   ModuleAddressSanitizer(Module &M, bool InsertVersionCheck,
795                          bool CompileKernel = false, bool Recover = false,
796                          bool UseGlobalsGC = true, bool UseOdrIndicator = true,
797                          AsanDtorKind DestructorKind = AsanDtorKind::Global,
798                          AsanCtorKind ConstructorKind = AsanCtorKind::Global)
799       : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
800                                                             : CompileKernel),
801         InsertVersionCheck(ClInsertVersionCheck.getNumOccurrences() > 0
802                                ? ClInsertVersionCheck
803                                : InsertVersionCheck),
804         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
805         UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
806         // Enable aliases as they should have no downside with ODR indicators.
807         UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0
808                             ? ClUsePrivateAlias
809                             : UseOdrIndicator),
810         UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0
811                             ? ClUseOdrIndicator
812                             : UseOdrIndicator),
813         // Not a typo: ClWithComdat is almost completely pointless without
814         // ClUseGlobalsGC (because then it only works on modules without
815         // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
816         // and both suffer from gold PR19002 for which UseGlobalsGC constructor
817         // argument is designed as workaround. Therefore, disable both
818         // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
819         // do globals-gc.
820         UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
821         DestructorKind(DestructorKind),
822         ConstructorKind(ClConstructorKind.getNumOccurrences() > 0
823                             ? ClConstructorKind
824                             : ConstructorKind) {
825     C = &(M.getContext());
826     int LongSize = M.getDataLayout().getPointerSizeInBits();
827     IntptrTy = Type::getIntNTy(*C, LongSize);
828     PtrTy = PointerType::getUnqual(*C);
829     TargetTriple = Triple(M.getTargetTriple());
830     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
831 
832     if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
833       this->DestructorKind = ClOverrideDestructorKind;
834     assert(this->DestructorKind != AsanDtorKind::Invalid);
835   }
836 
837   bool instrumentModule(Module &);
838 
839 private:
840   void initializeCallbacks(Module &M);
841 
842   void instrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
843   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
844                              ArrayRef<GlobalVariable *> ExtendedGlobals,
845                              ArrayRef<Constant *> MetadataInitializers);
846   void instrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
847                             ArrayRef<GlobalVariable *> ExtendedGlobals,
848                             ArrayRef<Constant *> MetadataInitializers,
849                             const std::string &UniqueModuleId);
850   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
851                               ArrayRef<GlobalVariable *> ExtendedGlobals,
852                               ArrayRef<Constant *> MetadataInitializers);
853   void
854   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
855                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
856                                      ArrayRef<Constant *> MetadataInitializers);
857 
858   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
859                                        StringRef OriginalName);
860   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
861                                   StringRef InternalSuffix);
862   Instruction *CreateAsanModuleDtor(Module &M);
863 
864   const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
865   bool shouldInstrumentGlobal(GlobalVariable *G) const;
866   bool ShouldUseMachOGlobalsSection() const;
867   StringRef getGlobalMetadataSection() const;
868   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
869   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
870   uint64_t getMinRedzoneSizeForGlobal() const {
871     return getRedzoneSizeForScale(Mapping.Scale);
872   }
873   uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
874   int GetAsanVersion(const Module &M) const;
875 
876   bool CompileKernel;
877   bool InsertVersionCheck;
878   bool Recover;
879   bool UseGlobalsGC;
880   bool UsePrivateAlias;
881   bool UseOdrIndicator;
882   bool UseCtorComdat;
883   AsanDtorKind DestructorKind;
884   AsanCtorKind ConstructorKind;
885   Type *IntptrTy;
886   PointerType *PtrTy;
887   LLVMContext *C;
888   Triple TargetTriple;
889   ShadowMapping Mapping;
890   FunctionCallee AsanPoisonGlobals;
891   FunctionCallee AsanUnpoisonGlobals;
892   FunctionCallee AsanRegisterGlobals;
893   FunctionCallee AsanUnregisterGlobals;
894   FunctionCallee AsanRegisterImageGlobals;
895   FunctionCallee AsanUnregisterImageGlobals;
896   FunctionCallee AsanRegisterElfGlobals;
897   FunctionCallee AsanUnregisterElfGlobals;
898 
899   Function *AsanCtorFunction = nullptr;
900   Function *AsanDtorFunction = nullptr;
901 };
902 
903 // Stack poisoning does not play well with exception handling.
904 // When an exception is thrown, we essentially bypass the code
905 // that unpoisones the stack. This is why the run-time library has
906 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
907 // stack in the interceptor. This however does not work inside the
908 // actual function which catches the exception. Most likely because the
909 // compiler hoists the load of the shadow value somewhere too high.
910 // This causes asan to report a non-existing bug on 453.povray.
911 // It sounds like an LLVM bug.
912 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
913   Function &F;
914   AddressSanitizer &ASan;
915   DIBuilder DIB;
916   LLVMContext *C;
917   Type *IntptrTy;
918   Type *IntptrPtrTy;
919   ShadowMapping Mapping;
920 
921   SmallVector<AllocaInst *, 16> AllocaVec;
922   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
923   SmallVector<Instruction *, 8> RetVec;
924 
925   FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
926       AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
927   FunctionCallee AsanSetShadowFunc[0x100] = {};
928   FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
929   FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
930 
931   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
932   struct AllocaPoisonCall {
933     IntrinsicInst *InsBefore;
934     AllocaInst *AI;
935     uint64_t Size;
936     bool DoPoison;
937   };
938   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
939   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
940   bool HasUntracedLifetimeIntrinsic = false;
941 
942   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
943   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
944   AllocaInst *DynamicAllocaLayout = nullptr;
945   IntrinsicInst *LocalEscapeCall = nullptr;
946 
947   bool HasInlineAsm = false;
948   bool HasReturnsTwiceCall = false;
949   bool PoisonStack;
950 
951   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
952       : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
953         C(ASan.C), IntptrTy(ASan.IntptrTy),
954         IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
955         PoisonStack(ClStack &&
956                     !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
957 
958   bool runOnFunction() {
959     if (!PoisonStack)
960       return false;
961 
962     if (ClRedzoneByvalArgs)
963       copyArgsPassedByValToAllocas();
964 
965     // Collect alloca, ret, lifetime instructions etc.
966     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
967 
968     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
969 
970     initializeCallbacks(*F.getParent());
971 
972     if (HasUntracedLifetimeIntrinsic) {
973       // If there are lifetime intrinsics which couldn't be traced back to an
974       // alloca, we may not know exactly when a variable enters scope, and
975       // therefore should "fail safe" by not poisoning them.
976       StaticAllocaPoisonCallVec.clear();
977       DynamicAllocaPoisonCallVec.clear();
978     }
979 
980     processDynamicAllocas();
981     processStaticAllocas();
982 
983     if (ClDebugStack) {
984       LLVM_DEBUG(dbgs() << F);
985     }
986     return true;
987   }
988 
989   // Arguments marked with the "byval" attribute are implicitly copied without
990   // using an alloca instruction.  To produce redzones for those arguments, we
991   // copy them a second time into memory allocated with an alloca instruction.
992   void copyArgsPassedByValToAllocas();
993 
994   // Finds all Alloca instructions and puts
995   // poisoned red zones around all of them.
996   // Then unpoison everything back before the function returns.
997   void processStaticAllocas();
998   void processDynamicAllocas();
999 
1000   void createDynamicAllocasInitStorage();
1001 
1002   // ----------------------- Visitors.
1003   /// Collect all Ret instructions, or the musttail call instruction if it
1004   /// precedes the return instruction.
1005   void visitReturnInst(ReturnInst &RI) {
1006     if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
1007       RetVec.push_back(CI);
1008     else
1009       RetVec.push_back(&RI);
1010   }
1011 
1012   /// Collect all Resume instructions.
1013   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
1014 
1015   /// Collect all CatchReturnInst instructions.
1016   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
1017 
1018   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
1019                                         Value *SavedStack) {
1020     IRBuilder<> IRB(InstBefore);
1021     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1022     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1023     // need to adjust extracted SP to compute the address of the most recent
1024     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1025     // this purpose.
1026     if (!isa<ReturnInst>(InstBefore)) {
1027       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
1028           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
1029           {IntptrTy});
1030 
1031       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
1032 
1033       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1034                                      DynamicAreaOffset);
1035     }
1036 
1037     IRB.CreateCall(
1038         AsanAllocasUnpoisonFunc,
1039         {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1040   }
1041 
1042   // Unpoison dynamic allocas redzones.
1043   void unpoisonDynamicAllocas() {
1044     for (Instruction *Ret : RetVec)
1045       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1046 
1047     for (Instruction *StackRestoreInst : StackRestoreVec)
1048       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1049                                        StackRestoreInst->getOperand(0));
1050   }
1051 
1052   // Deploy and poison redzones around dynamic alloca call. To do this, we
1053   // should replace this call with another one with changed parameters and
1054   // replace all its uses with new address, so
1055   //   addr = alloca type, old_size, align
1056   // is replaced by
1057   //   new_size = (old_size + additional_size) * sizeof(type)
1058   //   tmp = alloca i8, new_size, max(align, 32)
1059   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
1060   // Additional_size is added to make new memory allocation contain not only
1061   // requested memory, but also left, partial and right redzones.
1062   void handleDynamicAllocaCall(AllocaInst *AI);
1063 
1064   /// Collect Alloca instructions we want (and can) handle.
1065   void visitAllocaInst(AllocaInst &AI) {
1066     // FIXME: Handle scalable vectors instead of ignoring them.
1067     if (!ASan.isInterestingAlloca(AI) ||
1068         isa<ScalableVectorType>(AI.getAllocatedType())) {
1069       if (AI.isStaticAlloca()) {
1070         // Skip over allocas that are present *before* the first instrumented
1071         // alloca, we don't want to move those around.
1072         if (AllocaVec.empty())
1073           return;
1074 
1075         StaticAllocasToMoveUp.push_back(&AI);
1076       }
1077       return;
1078     }
1079 
1080     if (!AI.isStaticAlloca())
1081       DynamicAllocaVec.push_back(&AI);
1082     else
1083       AllocaVec.push_back(&AI);
1084   }
1085 
1086   /// Collect lifetime intrinsic calls to check for use-after-scope
1087   /// errors.
1088   void visitIntrinsicInst(IntrinsicInst &II) {
1089     Intrinsic::ID ID = II.getIntrinsicID();
1090     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1091     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1092     if (!ASan.UseAfterScope)
1093       return;
1094     if (!II.isLifetimeStartOrEnd())
1095       return;
1096     // Found lifetime intrinsic, add ASan instrumentation if necessary.
1097     auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1098     // If size argument is undefined, don't do anything.
1099     if (Size->isMinusOne()) return;
1100     // Check that size doesn't saturate uint64_t and can
1101     // be stored in IntptrTy.
1102     const uint64_t SizeValue = Size->getValue().getLimitedValue();
1103     if (SizeValue == ~0ULL ||
1104         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1105       return;
1106     // Find alloca instruction that corresponds to llvm.lifetime argument.
1107     // Currently we can only handle lifetime markers pointing to the
1108     // beginning of the alloca.
1109     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1110     if (!AI) {
1111       HasUntracedLifetimeIntrinsic = true;
1112       return;
1113     }
1114     // We're interested only in allocas we can handle.
1115     if (!ASan.isInterestingAlloca(*AI))
1116       return;
1117     bool DoPoison = (ID == Intrinsic::lifetime_end);
1118     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1119     if (AI->isStaticAlloca())
1120       StaticAllocaPoisonCallVec.push_back(APC);
1121     else if (ClInstrumentDynamicAllocas)
1122       DynamicAllocaPoisonCallVec.push_back(APC);
1123   }
1124 
1125   void visitCallBase(CallBase &CB) {
1126     if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1127       HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1128       HasReturnsTwiceCall |= CI->canReturnTwice();
1129     }
1130   }
1131 
1132   // ---------------------- Helpers.
1133   void initializeCallbacks(Module &M);
1134 
1135   // Copies bytes from ShadowBytes into shadow memory for indexes where
1136   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1137   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1138   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1139                     IRBuilder<> &IRB, Value *ShadowBase);
1140   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1141                     size_t Begin, size_t End, IRBuilder<> &IRB,
1142                     Value *ShadowBase);
1143   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1144                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1145                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1146 
1147   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1148 
1149   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1150                                bool Dynamic);
1151   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1152                      Instruction *ThenTerm, Value *ValueIfFalse);
1153 };
1154 
1155 } // end anonymous namespace
1156 
1157 void AddressSanitizerPass::printPipeline(
1158     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1159   static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline(
1160       OS, MapClassName2PassName);
1161   OS << '<';
1162   if (Options.CompileKernel)
1163     OS << "kernel";
1164   OS << '>';
1165 }
1166 
1167 AddressSanitizerPass::AddressSanitizerPass(
1168     const AddressSanitizerOptions &Options, bool UseGlobalGC,
1169     bool UseOdrIndicator, AsanDtorKind DestructorKind,
1170     AsanCtorKind ConstructorKind)
1171     : Options(Options), UseGlobalGC(UseGlobalGC),
1172       UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind),
1173       ConstructorKind(ConstructorKind) {}
1174 
1175 PreservedAnalyses AddressSanitizerPass::run(Module &M,
1176                                             ModuleAnalysisManager &MAM) {
1177   ModuleAddressSanitizer ModuleSanitizer(
1178       M, Options.InsertVersionCheck, Options.CompileKernel, Options.Recover,
1179       UseGlobalGC, UseOdrIndicator, DestructorKind, ConstructorKind);
1180   bool Modified = false;
1181   auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1182   const StackSafetyGlobalInfo *const SSGI =
1183       ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr;
1184   for (Function &F : M) {
1185     AddressSanitizer FunctionSanitizer(
1186         M, SSGI, Options.InstrumentationWithCallsThreshold,
1187         Options.MaxInlinePoisoningSize, Options.CompileKernel, Options.Recover,
1188         Options.UseAfterScope, Options.UseAfterReturn);
1189     const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1190     Modified |= FunctionSanitizer.instrumentFunction(F, &TLI);
1191   }
1192   Modified |= ModuleSanitizer.instrumentModule(M);
1193   if (!Modified)
1194     return PreservedAnalyses::all();
1195 
1196   PreservedAnalyses PA = PreservedAnalyses::none();
1197   // GlobalsAA is considered stateless and does not get invalidated unless
1198   // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
1199   // make changes that require GlobalsAA to be invalidated.
1200   PA.abandon<GlobalsAA>();
1201   return PA;
1202 }
1203 
1204 static size_t TypeStoreSizeToSizeIndex(uint32_t TypeSize) {
1205   size_t Res = llvm::countr_zero(TypeSize / 8);
1206   assert(Res < kNumberOfAccessSizes);
1207   return Res;
1208 }
1209 
1210 /// Check if \p G has been created by a trusted compiler pass.
1211 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1212   // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1213   if (G->getName().starts_with("llvm.") ||
1214       // Do not instrument gcov counter arrays.
1215       G->getName().starts_with("__llvm_gcov_ctr") ||
1216       // Do not instrument rtti proxy symbols for function sanitizer.
1217       G->getName().starts_with("__llvm_rtti_proxy"))
1218     return true;
1219 
1220   // Do not instrument asan globals.
1221   if (G->getName().starts_with(kAsanGenPrefix) ||
1222       G->getName().starts_with(kSanCovGenPrefix) ||
1223       G->getName().starts_with(kODRGenPrefix))
1224     return true;
1225 
1226   return false;
1227 }
1228 
1229 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
1230   Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1231   unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
1232   if (AddrSpace == 3 || AddrSpace == 5)
1233     return true;
1234   return false;
1235 }
1236 
1237 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1238   // Shadow >> scale
1239   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1240   if (Mapping.Offset == 0) return Shadow;
1241   // (Shadow >> scale) | offset
1242   Value *ShadowBase;
1243   if (LocalDynamicShadow)
1244     ShadowBase = LocalDynamicShadow;
1245   else
1246     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1247   if (Mapping.OrShadowOffset)
1248     return IRB.CreateOr(Shadow, ShadowBase);
1249   else
1250     return IRB.CreateAdd(Shadow, ShadowBase);
1251 }
1252 
1253 // Instrument memset/memmove/memcpy
1254 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1255   InstrumentationIRBuilder IRB(MI);
1256   if (isa<MemTransferInst>(MI)) {
1257     IRB.CreateCall(isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1258                    {MI->getOperand(0), MI->getOperand(1),
1259                     IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1260   } else if (isa<MemSetInst>(MI)) {
1261     IRB.CreateCall(
1262         AsanMemset,
1263         {MI->getOperand(0),
1264          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1265          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1266   }
1267   MI->eraseFromParent();
1268 }
1269 
1270 /// Check if we want (and can) handle this alloca.
1271 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1272   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1273 
1274   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1275     return PreviouslySeenAllocaInfo->getSecond();
1276 
1277   bool IsInteresting =
1278       (AI.getAllocatedType()->isSized() &&
1279        // alloca() may be called with 0 size, ignore it.
1280        ((!AI.isStaticAlloca()) || !getAllocaSizeInBytes(AI).isZero()) &&
1281        // We are only interested in allocas not promotable to registers.
1282        // Promotable allocas are common under -O0.
1283        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1284        // inalloca allocas are not treated as static, and we don't want
1285        // dynamic alloca instrumentation for them as well.
1286        !AI.isUsedWithInAlloca() &&
1287        // swifterror allocas are register promoted by ISel
1288        !AI.isSwiftError() &&
1289        // safe allocas are not interesting
1290        !(SSGI && SSGI->isSafe(AI)));
1291 
1292   ProcessedAllocas[&AI] = IsInteresting;
1293   return IsInteresting;
1294 }
1295 
1296 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) {
1297   // Instrument accesses from different address spaces only for AMDGPU.
1298   Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1299   if (PtrTy->getPointerAddressSpace() != 0 &&
1300       !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
1301     return true;
1302 
1303   // Ignore swifterror addresses.
1304   // swifterror memory addresses are mem2reg promoted by instruction
1305   // selection. As such they cannot have regular uses like an instrumentation
1306   // function and it makes no sense to track them as memory.
1307   if (Ptr->isSwiftError())
1308     return true;
1309 
1310   // Treat memory accesses to promotable allocas as non-interesting since they
1311   // will not cause memory violations. This greatly speeds up the instrumented
1312   // executable at -O0.
1313   if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1314     if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1315       return true;
1316 
1317   if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) &&
1318       findAllocaForValue(Ptr))
1319     return true;
1320 
1321   return false;
1322 }
1323 
1324 void AddressSanitizer::getInterestingMemoryOperands(
1325     Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1326   // Do not instrument the load fetching the dynamic shadow address.
1327   if (LocalDynamicShadow == I)
1328     return;
1329 
1330   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1331     if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand()))
1332       return;
1333     Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1334                              LI->getType(), LI->getAlign());
1335   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1336     if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand()))
1337       return;
1338     Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1339                              SI->getValueOperand()->getType(), SI->getAlign());
1340   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1341     if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand()))
1342       return;
1343     Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1344                              RMW->getValOperand()->getType(), std::nullopt);
1345   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1346     if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand()))
1347       return;
1348     Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1349                              XCHG->getCompareOperand()->getType(),
1350                              std::nullopt);
1351   } else if (auto CI = dyn_cast<CallInst>(I)) {
1352     switch (CI->getIntrinsicID()) {
1353     case Intrinsic::masked_load:
1354     case Intrinsic::masked_store:
1355     case Intrinsic::masked_gather:
1356     case Intrinsic::masked_scatter: {
1357       bool IsWrite = CI->getType()->isVoidTy();
1358       // Masked store has an initial operand for the value.
1359       unsigned OpOffset = IsWrite ? 1 : 0;
1360       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1361         return;
1362 
1363       auto BasePtr = CI->getOperand(OpOffset);
1364       if (ignoreAccess(I, BasePtr))
1365         return;
1366       Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1367       MaybeAlign Alignment = Align(1);
1368       // Otherwise no alignment guarantees. We probably got Undef.
1369       if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1370         Alignment = Op->getMaybeAlignValue();
1371       Value *Mask = CI->getOperand(2 + OpOffset);
1372       Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1373       break;
1374     }
1375     case Intrinsic::masked_expandload:
1376     case Intrinsic::masked_compressstore: {
1377       bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_compressstore;
1378       unsigned OpOffset = IsWrite ? 1 : 0;
1379       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1380         return;
1381       auto BasePtr = CI->getOperand(OpOffset);
1382       if (ignoreAccess(I, BasePtr))
1383         return;
1384       MaybeAlign Alignment = BasePtr->getPointerAlignment(*DL);
1385       Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1386 
1387       IRBuilder IB(I);
1388       Value *Mask = CI->getOperand(1 + OpOffset);
1389       // Use the popcount of Mask as the effective vector length.
1390       Type *ExtTy = VectorType::get(IntptrTy, cast<VectorType>(Ty));
1391       Value *ExtMask = IB.CreateZExt(Mask, ExtTy);
1392       Value *EVL = IB.CreateAddReduce(ExtMask);
1393       Value *TrueMask = ConstantInt::get(Mask->getType(), 1);
1394       Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, TrueMask,
1395                                EVL);
1396       break;
1397     }
1398     case Intrinsic::vp_load:
1399     case Intrinsic::vp_store:
1400     case Intrinsic::experimental_vp_strided_load:
1401     case Intrinsic::experimental_vp_strided_store: {
1402       auto *VPI = cast<VPIntrinsic>(CI);
1403       unsigned IID = CI->getIntrinsicID();
1404       bool IsWrite = CI->getType()->isVoidTy();
1405       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1406         return;
1407       unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID);
1408       Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1409       MaybeAlign Alignment = VPI->getOperand(PtrOpNo)->getPointerAlignment(*DL);
1410       Value *Stride = nullptr;
1411       if (IID == Intrinsic::experimental_vp_strided_store ||
1412           IID == Intrinsic::experimental_vp_strided_load) {
1413         Stride = VPI->getOperand(PtrOpNo + 1);
1414         // Use the pointer alignment as the element alignment if the stride is a
1415         // mutiple of the pointer alignment. Otherwise, the element alignment
1416         // should be Align(1).
1417         unsigned PointerAlign = Alignment.valueOrOne().value();
1418         if (!isa<ConstantInt>(Stride) ||
1419             cast<ConstantInt>(Stride)->getZExtValue() % PointerAlign != 0)
1420           Alignment = Align(1);
1421       }
1422       Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment,
1423                                VPI->getMaskParam(), VPI->getVectorLengthParam(),
1424                                Stride);
1425       break;
1426     }
1427     case Intrinsic::vp_gather:
1428     case Intrinsic::vp_scatter: {
1429       auto *VPI = cast<VPIntrinsic>(CI);
1430       unsigned IID = CI->getIntrinsicID();
1431       bool IsWrite = IID == Intrinsic::vp_scatter;
1432       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1433         return;
1434       unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID);
1435       Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1436       MaybeAlign Alignment = VPI->getPointerAlignment();
1437       Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment,
1438                                VPI->getMaskParam(),
1439                                VPI->getVectorLengthParam());
1440       break;
1441     }
1442     default:
1443       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) {
1444         if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1445             ignoreAccess(I, CI->getArgOperand(ArgNo)))
1446           continue;
1447         Type *Ty = CI->getParamByValType(ArgNo);
1448         Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1449       }
1450     }
1451   }
1452 }
1453 
1454 static bool isPointerOperand(Value *V) {
1455   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1456 }
1457 
1458 // This is a rough heuristic; it may cause both false positives and
1459 // false negatives. The proper implementation requires cooperation with
1460 // the frontend.
1461 static bool isInterestingPointerComparison(Instruction *I) {
1462   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1463     if (!Cmp->isRelational())
1464       return false;
1465   } else {
1466     return false;
1467   }
1468   return isPointerOperand(I->getOperand(0)) &&
1469          isPointerOperand(I->getOperand(1));
1470 }
1471 
1472 // This is a rough heuristic; it may cause both false positives and
1473 // false negatives. The proper implementation requires cooperation with
1474 // the frontend.
1475 static bool isInterestingPointerSubtraction(Instruction *I) {
1476   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1477     if (BO->getOpcode() != Instruction::Sub)
1478       return false;
1479   } else {
1480     return false;
1481   }
1482   return isPointerOperand(I->getOperand(0)) &&
1483          isPointerOperand(I->getOperand(1));
1484 }
1485 
1486 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1487   // If a global variable does not have dynamic initialization we don't
1488   // have to instrument it.  However, if a global does not have initializer
1489   // at all, we assume it has dynamic initializer (in other TU).
1490   if (!G->hasInitializer())
1491     return false;
1492 
1493   if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit)
1494     return false;
1495 
1496   return true;
1497 }
1498 
1499 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1500     Instruction *I) {
1501   IRBuilder<> IRB(I);
1502   FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1503   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1504   for (Value *&i : Param) {
1505     if (i->getType()->isPointerTy())
1506       i = IRB.CreatePointerCast(i, IntptrTy);
1507   }
1508   IRB.CreateCall(F, Param);
1509 }
1510 
1511 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1512                                 Instruction *InsertBefore, Value *Addr,
1513                                 MaybeAlign Alignment, unsigned Granularity,
1514                                 TypeSize TypeStoreSize, bool IsWrite,
1515                                 Value *SizeArgument, bool UseCalls,
1516                                 uint32_t Exp) {
1517   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1518   // if the data is properly aligned.
1519   if (!TypeStoreSize.isScalable()) {
1520     const auto FixedSize = TypeStoreSize.getFixedValue();
1521     switch (FixedSize) {
1522     case 8:
1523     case 16:
1524     case 32:
1525     case 64:
1526     case 128:
1527       if (!Alignment || *Alignment >= Granularity ||
1528           *Alignment >= FixedSize / 8)
1529         return Pass->instrumentAddress(I, InsertBefore, Addr, Alignment,
1530                                        FixedSize, IsWrite, nullptr, UseCalls,
1531                                        Exp);
1532     }
1533   }
1534   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeStoreSize,
1535                                          IsWrite, nullptr, UseCalls, Exp);
1536 }
1537 
1538 void AddressSanitizer::instrumentMaskedLoadOrStore(
1539     AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask,
1540     Value *EVL, Value *Stride, Instruction *I, Value *Addr,
1541     MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite,
1542     Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1543   auto *VTy = cast<VectorType>(OpType);
1544   TypeSize ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1545   auto Zero = ConstantInt::get(IntptrTy, 0);
1546 
1547   IRBuilder IB(I);
1548   Instruction *LoopInsertBefore = I;
1549   if (EVL) {
1550     // The end argument of SplitBlockAndInsertForLane is assumed bigger
1551     // than zero, so we should check whether EVL is zero here.
1552     Type *EVLType = EVL->getType();
1553     Value *IsEVLZero = IB.CreateICmpNE(EVL, ConstantInt::get(EVLType, 0));
1554     LoopInsertBefore = SplitBlockAndInsertIfThen(IsEVLZero, I, false);
1555     IB.SetInsertPoint(LoopInsertBefore);
1556     // Cast EVL to IntptrTy.
1557     EVL = IB.CreateZExtOrTrunc(EVL, IntptrTy);
1558     // To avoid undefined behavior for extracting with out of range index, use
1559     // the minimum of evl and element count as trip count.
1560     Value *EC = IB.CreateElementCount(IntptrTy, VTy->getElementCount());
1561     EVL = IB.CreateBinaryIntrinsic(Intrinsic::umin, EVL, EC);
1562   } else {
1563     EVL = IB.CreateElementCount(IntptrTy, VTy->getElementCount());
1564   }
1565 
1566   // Cast Stride to IntptrTy.
1567   if (Stride)
1568     Stride = IB.CreateZExtOrTrunc(Stride, IntptrTy);
1569 
1570   SplitBlockAndInsertForEachLane(EVL, LoopInsertBefore,
1571                                  [&](IRBuilderBase &IRB, Value *Index) {
1572     Value *MaskElem = IRB.CreateExtractElement(Mask, Index);
1573     if (auto *MaskElemC = dyn_cast<ConstantInt>(MaskElem)) {
1574       if (MaskElemC->isZero())
1575         // No check
1576         return;
1577       // Unconditional check
1578     } else {
1579       // Conditional check
1580       Instruction *ThenTerm = SplitBlockAndInsertIfThen(
1581           MaskElem, &*IRB.GetInsertPoint(), false);
1582       IRB.SetInsertPoint(ThenTerm);
1583     }
1584 
1585     Value *InstrumentedAddress;
1586     if (isa<VectorType>(Addr->getType())) {
1587       assert(
1588           cast<VectorType>(Addr->getType())->getElementType()->isPointerTy() &&
1589           "Expected vector of pointer.");
1590       InstrumentedAddress = IRB.CreateExtractElement(Addr, Index);
1591     } else if (Stride) {
1592       Index = IRB.CreateMul(Index, Stride);
1593       InstrumentedAddress = IRB.CreatePtrAdd(Addr, Index);
1594     } else {
1595       InstrumentedAddress = IRB.CreateGEP(VTy, Addr, {Zero, Index});
1596     }
1597     doInstrumentAddress(Pass, I, &*IRB.GetInsertPoint(),
1598                         InstrumentedAddress, Alignment, Granularity,
1599                         ElemTypeSize, IsWrite, SizeArgument, UseCalls, Exp);
1600   });
1601 }
1602 
1603 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1604                                      InterestingMemoryOperand &O, bool UseCalls,
1605                                      const DataLayout &DL) {
1606   Value *Addr = O.getPtr();
1607 
1608   // Optimization experiments.
1609   // The experiments can be used to evaluate potential optimizations that remove
1610   // instrumentation (assess false negatives). Instead of completely removing
1611   // some instrumentation, you set Exp to a non-zero value (mask of optimization
1612   // experiments that want to remove instrumentation of this instruction).
1613   // If Exp is non-zero, this pass will emit special calls into runtime
1614   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1615   // make runtime terminate the program in a special way (with a different
1616   // exit status). Then you run the new compiler on a buggy corpus, collect
1617   // the special terminations (ideally, you don't see them at all -- no false
1618   // negatives) and make the decision on the optimization.
1619   uint32_t Exp = ClForceExperiment;
1620 
1621   if (ClOpt && ClOptGlobals) {
1622     // If initialization order checking is disabled, a simple access to a
1623     // dynamically initialized global is always valid.
1624     GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1625     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1626         isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) {
1627       NumOptimizedAccessesToGlobalVar++;
1628       return;
1629     }
1630   }
1631 
1632   if (ClOpt && ClOptStack) {
1633     // A direct inbounds access to a stack variable is always valid.
1634     if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1635         isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) {
1636       NumOptimizedAccessesToStackVar++;
1637       return;
1638     }
1639   }
1640 
1641   if (O.IsWrite)
1642     NumInstrumentedWrites++;
1643   else
1644     NumInstrumentedReads++;
1645 
1646   unsigned Granularity = 1 << Mapping.Scale;
1647   if (O.MaybeMask) {
1648     instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.MaybeEVL,
1649                                 O.MaybeStride, O.getInsn(), Addr, O.Alignment,
1650                                 Granularity, O.OpType, O.IsWrite, nullptr,
1651                                 UseCalls, Exp);
1652   } else {
1653     doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1654                         Granularity, O.TypeStoreSize, O.IsWrite, nullptr, UseCalls,
1655                         Exp);
1656   }
1657 }
1658 
1659 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1660                                                  Value *Addr, bool IsWrite,
1661                                                  size_t AccessSizeIndex,
1662                                                  Value *SizeArgument,
1663                                                  uint32_t Exp) {
1664   InstrumentationIRBuilder IRB(InsertBefore);
1665   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1666   CallInst *Call = nullptr;
1667   if (SizeArgument) {
1668     if (Exp == 0)
1669       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1670                             {Addr, SizeArgument});
1671     else
1672       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1673                             {Addr, SizeArgument, ExpVal});
1674   } else {
1675     if (Exp == 0)
1676       Call =
1677           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1678     else
1679       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1680                             {Addr, ExpVal});
1681   }
1682 
1683   Call->setCannotMerge();
1684   return Call;
1685 }
1686 
1687 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1688                                            Value *ShadowValue,
1689                                            uint32_t TypeStoreSize) {
1690   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1691   // Addr & (Granularity - 1)
1692   Value *LastAccessedByte =
1693       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1694   // (Addr & (Granularity - 1)) + size - 1
1695   if (TypeStoreSize / 8 > 1)
1696     LastAccessedByte = IRB.CreateAdd(
1697         LastAccessedByte, ConstantInt::get(IntptrTy, TypeStoreSize / 8 - 1));
1698   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1699   LastAccessedByte =
1700       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1701   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1702   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1703 }
1704 
1705 Instruction *AddressSanitizer::instrumentAMDGPUAddress(
1706     Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
1707     uint32_t TypeStoreSize, bool IsWrite, Value *SizeArgument) {
1708   // Do not instrument unsupported addrspaces.
1709   if (isUnsupportedAMDGPUAddrspace(Addr))
1710     return nullptr;
1711   Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1712   // Follow host instrumentation for global and constant addresses.
1713   if (PtrTy->getPointerAddressSpace() != 0)
1714     return InsertBefore;
1715   // Instrument generic addresses in supported addressspaces.
1716   IRBuilder<> IRB(InsertBefore);
1717   Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {Addr});
1718   Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {Addr});
1719   Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
1720   Value *Cmp = IRB.CreateNot(IsSharedOrPrivate);
1721   Value *AddrSpaceZeroLanding =
1722       SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
1723   InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
1724   return InsertBefore;
1725 }
1726 
1727 Instruction *AddressSanitizer::genAMDGPUReportBlock(IRBuilder<> &IRB,
1728                                                     Value *Cond, bool Recover) {
1729   Module &M = *IRB.GetInsertBlock()->getModule();
1730   Value *ReportCond = Cond;
1731   if (!Recover) {
1732     auto Ballot = M.getOrInsertFunction(kAMDGPUBallotName, IRB.getInt64Ty(),
1733                                         IRB.getInt1Ty());
1734     ReportCond = IRB.CreateIsNotNull(IRB.CreateCall(Ballot, {Cond}));
1735   }
1736 
1737   auto *Trm =
1738       SplitBlockAndInsertIfThen(ReportCond, &*IRB.GetInsertPoint(), false,
1739                                 MDBuilder(*C).createBranchWeights(1, 100000));
1740   Trm->getParent()->setName("asan.report");
1741 
1742   if (Recover)
1743     return Trm;
1744 
1745   Trm = SplitBlockAndInsertIfThen(Cond, Trm, false);
1746   IRB.SetInsertPoint(Trm);
1747   return IRB.CreateCall(
1748       M.getOrInsertFunction(kAMDGPUUnreachableName, IRB.getVoidTy()), {});
1749 }
1750 
1751 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1752                                          Instruction *InsertBefore, Value *Addr,
1753                                          MaybeAlign Alignment,
1754                                          uint32_t TypeStoreSize, bool IsWrite,
1755                                          Value *SizeArgument, bool UseCalls,
1756                                          uint32_t Exp) {
1757   if (TargetTriple.isAMDGPU()) {
1758     InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
1759                                            TypeStoreSize, IsWrite, SizeArgument);
1760     if (!InsertBefore)
1761       return;
1762   }
1763 
1764   InstrumentationIRBuilder IRB(InsertBefore);
1765   size_t AccessSizeIndex = TypeStoreSizeToSizeIndex(TypeStoreSize);
1766   const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1767 
1768   if (UseCalls && ClOptimizeCallbacks) {
1769     const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1770     Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1771     IRB.CreateCall(
1772         Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess),
1773         {IRB.CreatePointerCast(Addr, PtrTy),
1774          ConstantInt::get(Int32Ty, AccessInfo.Packed)});
1775     return;
1776   }
1777 
1778   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1779   if (UseCalls) {
1780     if (Exp == 0)
1781       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1782                      AddrLong);
1783     else
1784       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1785                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1786     return;
1787   }
1788 
1789   Type *ShadowTy =
1790       IntegerType::get(*C, std::max(8U, TypeStoreSize >> Mapping.Scale));
1791   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1792   Value *ShadowPtr = memToShadow(AddrLong, IRB);
1793   const uint64_t ShadowAlign =
1794       std::max<uint64_t>(Alignment.valueOrOne().value() >> Mapping.Scale, 1);
1795   Value *ShadowValue = IRB.CreateAlignedLoad(
1796       ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy), Align(ShadowAlign));
1797 
1798   Value *Cmp = IRB.CreateIsNotNull(ShadowValue);
1799   size_t Granularity = 1ULL << Mapping.Scale;
1800   Instruction *CrashTerm = nullptr;
1801 
1802   bool GenSlowPath = (ClAlwaysSlowPath || (TypeStoreSize < 8 * Granularity));
1803 
1804   if (TargetTriple.isAMDGCN()) {
1805     if (GenSlowPath) {
1806       auto *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize);
1807       Cmp = IRB.CreateAnd(Cmp, Cmp2);
1808     }
1809     CrashTerm = genAMDGPUReportBlock(IRB, Cmp, Recover);
1810   } else if (GenSlowPath) {
1811     // We use branch weights for the slow path check, to indicate that the slow
1812     // path is rarely taken. This seems to be the case for SPEC benchmarks.
1813     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1814         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1815     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1816     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1817     IRB.SetInsertPoint(CheckTerm);
1818     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize);
1819     if (Recover) {
1820       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1821     } else {
1822       BasicBlock *CrashBlock =
1823         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1824       CrashTerm = new UnreachableInst(*C, CrashBlock);
1825       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1826       ReplaceInstWithInst(CheckTerm, NewTerm);
1827     }
1828   } else {
1829     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1830   }
1831 
1832   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1833                                          AccessSizeIndex, SizeArgument, Exp);
1834   if (OrigIns->getDebugLoc())
1835     Crash->setDebugLoc(OrigIns->getDebugLoc());
1836 }
1837 
1838 // Instrument unusual size or unusual alignment.
1839 // We can not do it with a single check, so we do 1-byte check for the first
1840 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1841 // to report the actual access size.
1842 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1843     Instruction *I, Instruction *InsertBefore, Value *Addr, TypeSize TypeStoreSize,
1844     bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1845   InstrumentationIRBuilder IRB(InsertBefore);
1846   Value *NumBits = IRB.CreateTypeSize(IntptrTy, TypeStoreSize);
1847   Value *Size = IRB.CreateLShr(NumBits, ConstantInt::get(IntptrTy, 3));
1848 
1849   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1850   if (UseCalls) {
1851     if (Exp == 0)
1852       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1853                      {AddrLong, Size});
1854     else
1855       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1856                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1857   } else {
1858     Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1));
1859     Value *LastByte = IRB.CreateIntToPtr(
1860         IRB.CreateAdd(AddrLong, SizeMinusOne),
1861         Addr->getType());
1862     instrumentAddress(I, InsertBefore, Addr, {}, 8, IsWrite, Size, false, Exp);
1863     instrumentAddress(I, InsertBefore, LastByte, {}, 8, IsWrite, Size, false,
1864                       Exp);
1865   }
1866 }
1867 
1868 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1869                                                   GlobalValue *ModuleName) {
1870   // Set up the arguments to our poison/unpoison functions.
1871   IRBuilder<> IRB(&GlobalInit.front(),
1872                   GlobalInit.front().getFirstInsertionPt());
1873 
1874   // Add a call to poison all external globals before the given function starts.
1875   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1876   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1877 
1878   // Add calls to unpoison all globals before each return instruction.
1879   for (auto &BB : GlobalInit)
1880     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1881       CallInst::Create(AsanUnpoisonGlobals, "", RI);
1882 }
1883 
1884 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1885     Module &M, GlobalValue *ModuleName) {
1886   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1887   if (!GV)
1888     return;
1889 
1890   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1891   if (!CA)
1892     return;
1893 
1894   for (Use &OP : CA->operands()) {
1895     if (isa<ConstantAggregateZero>(OP)) continue;
1896     ConstantStruct *CS = cast<ConstantStruct>(OP);
1897 
1898     // Must have a function or null ptr.
1899     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1900       if (F->getName() == kAsanModuleCtorName) continue;
1901       auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1902       // Don't instrument CTORs that will run before asan.module_ctor.
1903       if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1904         continue;
1905       poisonOneInitializer(*F, ModuleName);
1906     }
1907   }
1908 }
1909 
1910 const GlobalVariable *
1911 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
1912   // In case this function should be expanded to include rules that do not just
1913   // apply when CompileKernel is true, either guard all existing rules with an
1914   // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
1915   // should also apply to user space.
1916   assert(CompileKernel && "Only expecting to be called when compiling kernel");
1917 
1918   const Constant *C = GA.getAliasee();
1919 
1920   // When compiling the kernel, globals that are aliased by symbols prefixed
1921   // by "__" are special and cannot be padded with a redzone.
1922   if (GA.getName().starts_with("__"))
1923     return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
1924 
1925   return nullptr;
1926 }
1927 
1928 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
1929   Type *Ty = G->getValueType();
1930   LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1931 
1932   if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress)
1933     return false;
1934   if (!Ty->isSized()) return false;
1935   if (!G->hasInitializer()) return false;
1936   // Globals in address space 1 and 4 are supported for AMDGPU.
1937   if (G->getAddressSpace() &&
1938       !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
1939     return false;
1940   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1941   // Two problems with thread-locals:
1942   //   - The address of the main thread's copy can't be computed at link-time.
1943   //   - Need to poison all copies, not just the main thread's one.
1944   if (G->isThreadLocal()) return false;
1945   // For now, just ignore this Global if the alignment is large.
1946   if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false;
1947 
1948   // For non-COFF targets, only instrument globals known to be defined by this
1949   // TU.
1950   // FIXME: We can instrument comdat globals on ELF if we are using the
1951   // GC-friendly metadata scheme.
1952   if (!TargetTriple.isOSBinFormatCOFF()) {
1953     if (!G->hasExactDefinition() || G->hasComdat())
1954       return false;
1955   } else {
1956     // On COFF, don't instrument non-ODR linkages.
1957     if (G->isInterposable())
1958       return false;
1959   }
1960 
1961   // If a comdat is present, it must have a selection kind that implies ODR
1962   // semantics: no duplicates, any, or exact match.
1963   if (Comdat *C = G->getComdat()) {
1964     switch (C->getSelectionKind()) {
1965     case Comdat::Any:
1966     case Comdat::ExactMatch:
1967     case Comdat::NoDeduplicate:
1968       break;
1969     case Comdat::Largest:
1970     case Comdat::SameSize:
1971       return false;
1972     }
1973   }
1974 
1975   if (G->hasSection()) {
1976     // The kernel uses explicit sections for mostly special global variables
1977     // that we should not instrument. E.g. the kernel may rely on their layout
1978     // without redzones, or remove them at link time ("discard.*"), etc.
1979     if (CompileKernel)
1980       return false;
1981 
1982     StringRef Section = G->getSection();
1983 
1984     // Globals from llvm.metadata aren't emitted, do not instrument them.
1985     if (Section == "llvm.metadata") return false;
1986     // Do not instrument globals from special LLVM sections.
1987     if (Section.contains("__llvm") || Section.contains("__LLVM"))
1988       return false;
1989 
1990     // Do not instrument function pointers to initialization and termination
1991     // routines: dynamic linker will not properly handle redzones.
1992     if (Section.starts_with(".preinit_array") ||
1993         Section.starts_with(".init_array") ||
1994         Section.starts_with(".fini_array")) {
1995       return false;
1996     }
1997 
1998     // Do not instrument user-defined sections (with names resembling
1999     // valid C identifiers)
2000     if (TargetTriple.isOSBinFormatELF()) {
2001       if (llvm::all_of(Section,
2002                        [](char c) { return llvm::isAlnum(c) || c == '_'; }))
2003         return false;
2004     }
2005 
2006     // On COFF, if the section name contains '$', it is highly likely that the
2007     // user is using section sorting to create an array of globals similar to
2008     // the way initialization callbacks are registered in .init_array and
2009     // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
2010     // to such globals is counterproductive, because the intent is that they
2011     // will form an array, and out-of-bounds accesses are expected.
2012     // See https://github.com/google/sanitizers/issues/305
2013     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
2014     if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
2015       LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
2016                         << *G << "\n");
2017       return false;
2018     }
2019 
2020     if (TargetTriple.isOSBinFormatMachO()) {
2021       StringRef ParsedSegment, ParsedSection;
2022       unsigned TAA = 0, StubSize = 0;
2023       bool TAAParsed;
2024       cantFail(MCSectionMachO::ParseSectionSpecifier(
2025           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
2026 
2027       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
2028       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
2029       // them.
2030       if (ParsedSegment == "__OBJC" ||
2031           (ParsedSegment == "__DATA" && ParsedSection.starts_with("__objc_"))) {
2032         LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
2033         return false;
2034       }
2035       // See https://github.com/google/sanitizers/issues/32
2036       // Constant CFString instances are compiled in the following way:
2037       //  -- the string buffer is emitted into
2038       //     __TEXT,__cstring,cstring_literals
2039       //  -- the constant NSConstantString structure referencing that buffer
2040       //     is placed into __DATA,__cfstring
2041       // Therefore there's no point in placing redzones into __DATA,__cfstring.
2042       // Moreover, it causes the linker to crash on OS X 10.7
2043       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
2044         LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
2045         return false;
2046       }
2047       // The linker merges the contents of cstring_literals and removes the
2048       // trailing zeroes.
2049       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
2050         LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
2051         return false;
2052       }
2053     }
2054   }
2055 
2056   if (CompileKernel) {
2057     // Globals that prefixed by "__" are special and cannot be padded with a
2058     // redzone.
2059     if (G->getName().starts_with("__"))
2060       return false;
2061   }
2062 
2063   return true;
2064 }
2065 
2066 // On Mach-O platforms, we emit global metadata in a separate section of the
2067 // binary in order to allow the linker to properly dead strip. This is only
2068 // supported on recent versions of ld64.
2069 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2070   if (!TargetTriple.isOSBinFormatMachO())
2071     return false;
2072 
2073   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
2074     return true;
2075   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
2076     return true;
2077   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
2078     return true;
2079   if (TargetTriple.isDriverKit())
2080     return true;
2081   if (TargetTriple.isXROS())
2082     return true;
2083 
2084   return false;
2085 }
2086 
2087 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
2088   switch (TargetTriple.getObjectFormat()) {
2089   case Triple::COFF:  return ".ASAN$GL";
2090   case Triple::ELF:   return "asan_globals";
2091   case Triple::MachO: return "__DATA,__asan_globals,regular";
2092   case Triple::Wasm:
2093   case Triple::GOFF:
2094   case Triple::SPIRV:
2095   case Triple::XCOFF:
2096   case Triple::DXContainer:
2097     report_fatal_error(
2098         "ModuleAddressSanitizer not implemented for object file format");
2099   case Triple::UnknownObjectFormat:
2100     break;
2101   }
2102   llvm_unreachable("unsupported object format");
2103 }
2104 
2105 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
2106   IRBuilder<> IRB(*C);
2107 
2108   // Declare our poisoning and unpoisoning functions.
2109   AsanPoisonGlobals =
2110       M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2111   AsanUnpoisonGlobals =
2112       M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2113 
2114   // Declare functions that register/unregister globals.
2115   AsanRegisterGlobals = M.getOrInsertFunction(
2116       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2117   AsanUnregisterGlobals = M.getOrInsertFunction(
2118       kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2119 
2120   // Declare the functions that find globals in a shared object and then invoke
2121   // the (un)register function on them.
2122   AsanRegisterImageGlobals = M.getOrInsertFunction(
2123       kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2124   AsanUnregisterImageGlobals = M.getOrInsertFunction(
2125       kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2126 
2127   AsanRegisterElfGlobals =
2128       M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2129                             IntptrTy, IntptrTy, IntptrTy);
2130   AsanUnregisterElfGlobals =
2131       M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2132                             IntptrTy, IntptrTy, IntptrTy);
2133 }
2134 
2135 // Put the metadata and the instrumented global in the same group. This ensures
2136 // that the metadata is discarded if the instrumented global is discarded.
2137 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2138     GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2139   Module &M = *G->getParent();
2140   Comdat *C = G->getComdat();
2141   if (!C) {
2142     if (!G->hasName()) {
2143       // If G is unnamed, it must be internal. Give it an artificial name
2144       // so we can put it in a comdat.
2145       assert(G->hasLocalLinkage());
2146       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2147     }
2148 
2149     if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2150       std::string Name = std::string(G->getName());
2151       Name += InternalSuffix;
2152       C = M.getOrInsertComdat(Name);
2153     } else {
2154       C = M.getOrInsertComdat(G->getName());
2155     }
2156 
2157     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2158     // linkage to internal linkage so that a symbol table entry is emitted. This
2159     // is necessary in order to create the comdat group.
2160     if (TargetTriple.isOSBinFormatCOFF()) {
2161       C->setSelectionKind(Comdat::NoDeduplicate);
2162       if (G->hasPrivateLinkage())
2163         G->setLinkage(GlobalValue::InternalLinkage);
2164     }
2165     G->setComdat(C);
2166   }
2167 
2168   assert(G->hasComdat());
2169   Metadata->setComdat(G->getComdat());
2170 }
2171 
2172 // Create a separate metadata global and put it in the appropriate ASan
2173 // global registration section.
2174 GlobalVariable *
2175 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2176                                              StringRef OriginalName) {
2177   auto Linkage = TargetTriple.isOSBinFormatMachO()
2178                      ? GlobalVariable::InternalLinkage
2179                      : GlobalVariable::PrivateLinkage;
2180   GlobalVariable *Metadata = new GlobalVariable(
2181       M, Initializer->getType(), false, Linkage, Initializer,
2182       Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2183   Metadata->setSection(getGlobalMetadataSection());
2184   // Place metadata in a large section for x86-64 ELF binaries to mitigate
2185   // relocation pressure.
2186   setGlobalVariableLargeSection(TargetTriple, *Metadata);
2187   return Metadata;
2188 }
2189 
2190 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2191   AsanDtorFunction = Function::createWithDefaultAttr(
2192       FunctionType::get(Type::getVoidTy(*C), false),
2193       GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
2194   AsanDtorFunction->addFnAttr(Attribute::NoUnwind);
2195   // Ensure Dtor cannot be discarded, even if in a comdat.
2196   appendToUsed(M, {AsanDtorFunction});
2197   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2198 
2199   return ReturnInst::Create(*C, AsanDtorBB);
2200 }
2201 
2202 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2203     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2204     ArrayRef<Constant *> MetadataInitializers) {
2205   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2206   auto &DL = M.getDataLayout();
2207 
2208   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2209   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2210     Constant *Initializer = MetadataInitializers[i];
2211     GlobalVariable *G = ExtendedGlobals[i];
2212     GlobalVariable *Metadata =
2213         CreateMetadataGlobal(M, Initializer, G->getName());
2214     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2215     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2216     MetadataGlobals[i] = Metadata;
2217 
2218     // The MSVC linker always inserts padding when linking incrementally. We
2219     // cope with that by aligning each struct to its size, which must be a power
2220     // of two.
2221     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2222     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2223            "global metadata will not be padded appropriately");
2224     Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2225 
2226     SetComdatForGlobalMetadata(G, Metadata, "");
2227   }
2228 
2229   // Update llvm.compiler.used, adding the new metadata globals. This is
2230   // needed so that during LTO these variables stay alive.
2231   if (!MetadataGlobals.empty())
2232     appendToCompilerUsed(M, MetadataGlobals);
2233 }
2234 
2235 void ModuleAddressSanitizer::instrumentGlobalsELF(
2236     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2237     ArrayRef<Constant *> MetadataInitializers,
2238     const std::string &UniqueModuleId) {
2239   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2240 
2241   // Putting globals in a comdat changes the semantic and potentially cause
2242   // false negative odr violations at link time. If odr indicators are used, we
2243   // keep the comdat sections, as link time odr violations will be dectected on
2244   // the odr indicator symbols.
2245   bool UseComdatForGlobalsGC = UseOdrIndicator && !UniqueModuleId.empty();
2246 
2247   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2248   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2249     GlobalVariable *G = ExtendedGlobals[i];
2250     GlobalVariable *Metadata =
2251         CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2252     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2253     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2254     MetadataGlobals[i] = Metadata;
2255 
2256     if (UseComdatForGlobalsGC)
2257       SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2258   }
2259 
2260   // Update llvm.compiler.used, adding the new metadata globals. This is
2261   // needed so that during LTO these variables stay alive.
2262   if (!MetadataGlobals.empty())
2263     appendToCompilerUsed(M, MetadataGlobals);
2264 
2265   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2266   // to look up the loaded image that contains it. Second, we can store in it
2267   // whether registration has already occurred, to prevent duplicate
2268   // registration.
2269   //
2270   // Common linkage ensures that there is only one global per shared library.
2271   GlobalVariable *RegisteredFlag = new GlobalVariable(
2272       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2273       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2274   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2275 
2276   // Create start and stop symbols.
2277   GlobalVariable *StartELFMetadata = new GlobalVariable(
2278       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2279       "__start_" + getGlobalMetadataSection());
2280   StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2281   GlobalVariable *StopELFMetadata = new GlobalVariable(
2282       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2283       "__stop_" + getGlobalMetadataSection());
2284   StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2285 
2286   // Create a call to register the globals with the runtime.
2287   if (ConstructorKind == AsanCtorKind::Global)
2288     IRB.CreateCall(AsanRegisterElfGlobals,
2289                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2290                   IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2291                   IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2292 
2293   // We also need to unregister globals at the end, e.g., when a shared library
2294   // gets closed.
2295   if (DestructorKind != AsanDtorKind::None && !MetadataGlobals.empty()) {
2296     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2297     IrbDtor.CreateCall(AsanUnregisterElfGlobals,
2298                        {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2299                         IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2300                         IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2301   }
2302 }
2303 
2304 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2305     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2306     ArrayRef<Constant *> MetadataInitializers) {
2307   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2308 
2309   // On recent Mach-O platforms, use a structure which binds the liveness of
2310   // the global variable to the metadata struct. Keep the list of "Liveness" GV
2311   // created to be added to llvm.compiler.used
2312   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2313   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2314 
2315   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2316     Constant *Initializer = MetadataInitializers[i];
2317     GlobalVariable *G = ExtendedGlobals[i];
2318     GlobalVariable *Metadata =
2319         CreateMetadataGlobal(M, Initializer, G->getName());
2320 
2321     // On recent Mach-O platforms, we emit the global metadata in a way that
2322     // allows the linker to properly strip dead globals.
2323     auto LivenessBinder =
2324         ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2325                             ConstantExpr::getPointerCast(Metadata, IntptrTy));
2326     GlobalVariable *Liveness = new GlobalVariable(
2327         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2328         Twine("__asan_binder_") + G->getName());
2329     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2330     LivenessGlobals[i] = Liveness;
2331   }
2332 
2333   // Update llvm.compiler.used, adding the new liveness globals. This is
2334   // needed so that during LTO these variables stay alive. The alternative
2335   // would be to have the linker handling the LTO symbols, but libLTO
2336   // current API does not expose access to the section for each symbol.
2337   if (!LivenessGlobals.empty())
2338     appendToCompilerUsed(M, LivenessGlobals);
2339 
2340   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2341   // to look up the loaded image that contains it. Second, we can store in it
2342   // whether registration has already occurred, to prevent duplicate
2343   // registration.
2344   //
2345   // common linkage ensures that there is only one global per shared library.
2346   GlobalVariable *RegisteredFlag = new GlobalVariable(
2347       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2348       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2349   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2350 
2351   if (ConstructorKind == AsanCtorKind::Global)
2352     IRB.CreateCall(AsanRegisterImageGlobals,
2353                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2354 
2355   // We also need to unregister globals at the end, e.g., when a shared library
2356   // gets closed.
2357   if (DestructorKind != AsanDtorKind::None) {
2358     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2359     IrbDtor.CreateCall(AsanUnregisterImageGlobals,
2360                        {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2361   }
2362 }
2363 
2364 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2365     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2366     ArrayRef<Constant *> MetadataInitializers) {
2367   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2368   unsigned N = ExtendedGlobals.size();
2369   assert(N > 0);
2370 
2371   // On platforms that don't have a custom metadata section, we emit an array
2372   // of global metadata structures.
2373   ArrayType *ArrayOfGlobalStructTy =
2374       ArrayType::get(MetadataInitializers[0]->getType(), N);
2375   auto AllGlobals = new GlobalVariable(
2376       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2377       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2378   if (Mapping.Scale > 3)
2379     AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2380 
2381   if (ConstructorKind == AsanCtorKind::Global)
2382     IRB.CreateCall(AsanRegisterGlobals,
2383                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2384                   ConstantInt::get(IntptrTy, N)});
2385 
2386   // We also need to unregister globals at the end, e.g., when a shared library
2387   // gets closed.
2388   if (DestructorKind != AsanDtorKind::None) {
2389     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2390     IrbDtor.CreateCall(AsanUnregisterGlobals,
2391                        {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2392                         ConstantInt::get(IntptrTy, N)});
2393   }
2394 }
2395 
2396 // This function replaces all global variables with new variables that have
2397 // trailing redzones. It also creates a function that poisons
2398 // redzones and inserts this function into llvm.global_ctors.
2399 // Sets *CtorComdat to true if the global registration code emitted into the
2400 // asan constructor is comdat-compatible.
2401 void ModuleAddressSanitizer::instrumentGlobals(IRBuilder<> &IRB, Module &M,
2402                                                bool *CtorComdat) {
2403   // Build set of globals that are aliased by some GA, where
2404   // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2405   SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2406   if (CompileKernel) {
2407     for (auto &GA : M.aliases()) {
2408       if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
2409         AliasedGlobalExclusions.insert(GV);
2410     }
2411   }
2412 
2413   SmallVector<GlobalVariable *, 16> GlobalsToChange;
2414   for (auto &G : M.globals()) {
2415     if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2416       GlobalsToChange.push_back(&G);
2417   }
2418 
2419   size_t n = GlobalsToChange.size();
2420   auto &DL = M.getDataLayout();
2421 
2422   // A global is described by a structure
2423   //   size_t beg;
2424   //   size_t size;
2425   //   size_t size_with_redzone;
2426   //   const char *name;
2427   //   const char *module_name;
2428   //   size_t has_dynamic_init;
2429   //   size_t padding_for_windows_msvc_incremental_link;
2430   //   size_t odr_indicator;
2431   // We initialize an array of such structures and pass it to a run-time call.
2432   StructType *GlobalStructTy =
2433       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2434                       IntptrTy, IntptrTy, IntptrTy);
2435   SmallVector<GlobalVariable *, 16> NewGlobals(n);
2436   SmallVector<Constant *, 16> Initializers(n);
2437 
2438   bool HasDynamicallyInitializedGlobals = false;
2439 
2440   // We shouldn't merge same module names, as this string serves as unique
2441   // module ID in runtime.
2442   GlobalVariable *ModuleName =
2443       n != 0
2444           ? createPrivateGlobalForString(M, M.getModuleIdentifier(),
2445                                          /*AllowMerging*/ false, kAsanGenPrefix)
2446           : nullptr;
2447 
2448   for (size_t i = 0; i < n; i++) {
2449     GlobalVariable *G = GlobalsToChange[i];
2450 
2451     GlobalValue::SanitizerMetadata MD;
2452     if (G->hasSanitizerMetadata())
2453       MD = G->getSanitizerMetadata();
2454 
2455     // The runtime library tries demangling symbol names in the descriptor but
2456     // functionality like __cxa_demangle may be unavailable (e.g.
2457     // -static-libstdc++). So we demangle the symbol names here.
2458     std::string NameForGlobal = G->getName().str();
2459     GlobalVariable *Name =
2460         createPrivateGlobalForString(M, llvm::demangle(NameForGlobal),
2461                                      /*AllowMerging*/ true, kAsanGenPrefix);
2462 
2463     Type *Ty = G->getValueType();
2464     const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2465     const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2466     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2467 
2468     StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2469     Constant *NewInitializer = ConstantStruct::get(
2470         NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2471 
2472     // Create a new global variable with enough space for a redzone.
2473     GlobalValue::LinkageTypes Linkage = G->getLinkage();
2474     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2475       Linkage = GlobalValue::InternalLinkage;
2476     GlobalVariable *NewGlobal = new GlobalVariable(
2477         M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
2478         G->getThreadLocalMode(), G->getAddressSpace());
2479     NewGlobal->copyAttributesFrom(G);
2480     NewGlobal->setComdat(G->getComdat());
2481     NewGlobal->setAlignment(Align(getMinRedzoneSizeForGlobal()));
2482     // Don't fold globals with redzones. ODR violation detector and redzone
2483     // poisoning implicitly creates a dependence on the global's address, so it
2484     // is no longer valid for it to be marked unnamed_addr.
2485     NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2486 
2487     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2488     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2489         G->isConstant()) {
2490       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2491       if (Seq && Seq->isCString())
2492         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2493     }
2494 
2495     // Transfer the debug info and type metadata.  The payload starts at offset
2496     // zero so we can copy the metadata over as is.
2497     NewGlobal->copyMetadata(G, 0);
2498 
2499     Value *Indices2[2];
2500     Indices2[0] = IRB.getInt32(0);
2501     Indices2[1] = IRB.getInt32(0);
2502 
2503     G->replaceAllUsesWith(
2504         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2505     NewGlobal->takeName(G);
2506     G->eraseFromParent();
2507     NewGlobals[i] = NewGlobal;
2508 
2509     Constant *ODRIndicator = ConstantPointerNull::get(PtrTy);
2510     GlobalValue *InstrumentedGlobal = NewGlobal;
2511 
2512     bool CanUsePrivateAliases =
2513         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2514         TargetTriple.isOSBinFormatWasm();
2515     if (CanUsePrivateAliases && UsePrivateAlias) {
2516       // Create local alias for NewGlobal to avoid crash on ODR between
2517       // instrumented and non-instrumented libraries.
2518       InstrumentedGlobal =
2519           GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2520     }
2521 
2522     // ODR should not happen for local linkage.
2523     if (NewGlobal->hasLocalLinkage()) {
2524       ODRIndicator =
2525           ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), PtrTy);
2526     } else if (UseOdrIndicator) {
2527       // With local aliases, we need to provide another externally visible
2528       // symbol __odr_asan_XXX to detect ODR violation.
2529       auto *ODRIndicatorSym =
2530           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2531                              Constant::getNullValue(IRB.getInt8Ty()),
2532                              kODRGenPrefix + NameForGlobal, nullptr,
2533                              NewGlobal->getThreadLocalMode());
2534 
2535       // Set meaningful attributes for indicator symbol.
2536       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2537       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2538       ODRIndicatorSym->setAlignment(Align(1));
2539       ODRIndicator = ODRIndicatorSym;
2540     }
2541 
2542     Constant *Initializer = ConstantStruct::get(
2543         GlobalStructTy,
2544         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2545         ConstantInt::get(IntptrTy, SizeInBytes),
2546         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2547         ConstantExpr::getPointerCast(Name, IntptrTy),
2548         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2549         ConstantInt::get(IntptrTy, MD.IsDynInit),
2550         Constant::getNullValue(IntptrTy),
2551         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2552 
2553     if (ClInitializers && MD.IsDynInit)
2554       HasDynamicallyInitializedGlobals = true;
2555 
2556     LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2557 
2558     Initializers[i] = Initializer;
2559   }
2560 
2561   // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2562   // ConstantMerge'ing them.
2563   SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2564   for (size_t i = 0; i < n; i++) {
2565     GlobalVariable *G = NewGlobals[i];
2566     if (G->getName().empty()) continue;
2567     GlobalsToAddToUsedList.push_back(G);
2568   }
2569   appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2570 
2571   if (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) {
2572     // Use COMDAT and register globals even if n == 0 to ensure that (a) the
2573     // linkage unit will only have one module constructor, and (b) the register
2574     // function will be called. The module destructor is not created when n ==
2575     // 0.
2576     *CtorComdat = true;
2577     instrumentGlobalsELF(IRB, M, NewGlobals, Initializers,
2578                          getUniqueModuleId(&M));
2579   } else if (n == 0) {
2580     // When UseGlobalsGC is false, COMDAT can still be used if n == 0, because
2581     // all compile units will have identical module constructor/destructor.
2582     *CtorComdat = TargetTriple.isOSBinFormatELF();
2583   } else {
2584     *CtorComdat = false;
2585     if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2586       InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2587     } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2588       InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2589     } else {
2590       InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2591     }
2592   }
2593 
2594   // Create calls for poisoning before initializers run and unpoisoning after.
2595   if (HasDynamicallyInitializedGlobals)
2596     createInitializerPoisonCalls(M, ModuleName);
2597 
2598   LLVM_DEBUG(dbgs() << M);
2599 }
2600 
2601 uint64_t
2602 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2603   constexpr uint64_t kMaxRZ = 1 << 18;
2604   const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2605 
2606   uint64_t RZ = 0;
2607   if (SizeInBytes <= MinRZ / 2) {
2608     // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2609     // at least 32 bytes, optimize when SizeInBytes is less than or equal to
2610     // half of MinRZ.
2611     RZ = MinRZ - SizeInBytes;
2612   } else {
2613     // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2614     RZ = std::clamp((SizeInBytes / MinRZ / 4) * MinRZ, MinRZ, kMaxRZ);
2615 
2616     // Round up to multiple of MinRZ.
2617     if (SizeInBytes % MinRZ)
2618       RZ += MinRZ - (SizeInBytes % MinRZ);
2619   }
2620 
2621   assert((RZ + SizeInBytes) % MinRZ == 0);
2622 
2623   return RZ;
2624 }
2625 
2626 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2627   int LongSize = M.getDataLayout().getPointerSizeInBits();
2628   bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2629   int Version = 8;
2630   // 32-bit Android is one version ahead because of the switch to dynamic
2631   // shadow.
2632   Version += (LongSize == 32 && isAndroid);
2633   return Version;
2634 }
2635 
2636 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2637   initializeCallbacks(M);
2638 
2639   // Create a module constructor. A destructor is created lazily because not all
2640   // platforms, and not all modules need it.
2641   if (ConstructorKind == AsanCtorKind::Global) {
2642     if (CompileKernel) {
2643       // The kernel always builds with its own runtime, and therefore does not
2644       // need the init and version check calls.
2645       AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2646     } else {
2647       std::string AsanVersion = std::to_string(GetAsanVersion(M));
2648       std::string VersionCheckName =
2649           InsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2650       std::tie(AsanCtorFunction, std::ignore) =
2651           createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2652                                               kAsanInitName, /*InitArgTypes=*/{},
2653                                               /*InitArgs=*/{}, VersionCheckName);
2654     }
2655   }
2656 
2657   bool CtorComdat = true;
2658   if (ClGlobals) {
2659     assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None);
2660     if (AsanCtorFunction) {
2661       IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2662       instrumentGlobals(IRB, M, &CtorComdat);
2663     } else {
2664       IRBuilder<> IRB(*C);
2665       instrumentGlobals(IRB, M, &CtorComdat);
2666     }
2667   }
2668 
2669   const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2670 
2671   // Put the constructor and destructor in comdat if both
2672   // (1) global instrumentation is not TU-specific
2673   // (2) target is ELF.
2674   if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2675     if (AsanCtorFunction) {
2676       AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2677       appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2678     }
2679     if (AsanDtorFunction) {
2680       AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2681       appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2682     }
2683   } else {
2684     if (AsanCtorFunction)
2685       appendToGlobalCtors(M, AsanCtorFunction, Priority);
2686     if (AsanDtorFunction)
2687       appendToGlobalDtors(M, AsanDtorFunction, Priority);
2688   }
2689 
2690   return true;
2691 }
2692 
2693 void AddressSanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo *TLI) {
2694   IRBuilder<> IRB(*C);
2695   // Create __asan_report* callbacks.
2696   // IsWrite, TypeSize and Exp are encoded in the function name.
2697   for (int Exp = 0; Exp < 2; Exp++) {
2698     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2699       const std::string TypeStr = AccessIsWrite ? "store" : "load";
2700       const std::string ExpStr = Exp ? "exp_" : "";
2701       const std::string EndingStr = Recover ? "_noabort" : "";
2702 
2703       SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2704       SmallVector<Type *, 2> Args1{1, IntptrTy};
2705       AttributeList AL2;
2706       AttributeList AL1;
2707       if (Exp) {
2708         Type *ExpType = Type::getInt32Ty(*C);
2709         Args2.push_back(ExpType);
2710         Args1.push_back(ExpType);
2711         if (auto AK = TLI->getExtAttrForI32Param(false)) {
2712           AL2 = AL2.addParamAttribute(*C, 2, AK);
2713           AL1 = AL1.addParamAttribute(*C, 1, AK);
2714         }
2715       }
2716       AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2717           kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2718           FunctionType::get(IRB.getVoidTy(), Args2, false), AL2);
2719 
2720       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2721           ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2722           FunctionType::get(IRB.getVoidTy(), Args2, false), AL2);
2723 
2724       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2725            AccessSizeIndex++) {
2726         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2727         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2728             M.getOrInsertFunction(
2729                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2730                 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1);
2731 
2732         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2733             M.getOrInsertFunction(
2734                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2735                 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1);
2736       }
2737     }
2738   }
2739 
2740   const std::string MemIntrinCallbackPrefix =
2741       (CompileKernel && !ClKasanMemIntrinCallbackPrefix)
2742           ? std::string("")
2743           : ClMemoryAccessCallbackPrefix;
2744   AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2745                                       PtrTy, PtrTy, PtrTy, IntptrTy);
2746   AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", PtrTy,
2747                                      PtrTy, PtrTy, IntptrTy);
2748   AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2749                                      TLI->getAttrList(C, {1}, /*Signed=*/false),
2750                                      PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy);
2751 
2752   AsanHandleNoReturnFunc =
2753       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2754 
2755   AsanPtrCmpFunction =
2756       M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2757   AsanPtrSubFunction =
2758       M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2759   if (Mapping.InGlobal)
2760     AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2761                                            ArrayType::get(IRB.getInt8Ty(), 0));
2762 
2763   AMDGPUAddressShared =
2764       M.getOrInsertFunction(kAMDGPUAddressSharedName, IRB.getInt1Ty(), PtrTy);
2765   AMDGPUAddressPrivate =
2766       M.getOrInsertFunction(kAMDGPUAddressPrivateName, IRB.getInt1Ty(), PtrTy);
2767 }
2768 
2769 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2770   // For each NSObject descendant having a +load method, this method is invoked
2771   // by the ObjC runtime before any of the static constructors is called.
2772   // Therefore we need to instrument such methods with a call to __asan_init
2773   // at the beginning in order to initialize our runtime before any access to
2774   // the shadow memory.
2775   // We cannot just ignore these methods, because they may call other
2776   // instrumented functions.
2777   if (F.getName().contains(" load]")) {
2778     FunctionCallee AsanInitFunction =
2779         declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2780     IRBuilder<> IRB(&F.front(), F.front().begin());
2781     IRB.CreateCall(AsanInitFunction, {});
2782     return true;
2783   }
2784   return false;
2785 }
2786 
2787 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2788   // Generate code only when dynamic addressing is needed.
2789   if (Mapping.Offset != kDynamicShadowSentinel)
2790     return false;
2791 
2792   IRBuilder<> IRB(&F.front().front());
2793   if (Mapping.InGlobal) {
2794     if (ClWithIfuncSuppressRemat) {
2795       // An empty inline asm with input reg == output reg.
2796       // An opaque pointer-to-int cast, basically.
2797       InlineAsm *Asm = InlineAsm::get(
2798           FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2799           StringRef(""), StringRef("=r,0"),
2800           /*hasSideEffects=*/false);
2801       LocalDynamicShadow =
2802           IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2803     } else {
2804       LocalDynamicShadow =
2805           IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2806     }
2807   } else {
2808     Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2809         kAsanShadowMemoryDynamicAddress, IntptrTy);
2810     LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2811   }
2812   return true;
2813 }
2814 
2815 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2816   // Find the one possible call to llvm.localescape and pre-mark allocas passed
2817   // to it as uninteresting. This assumes we haven't started processing allocas
2818   // yet. This check is done up front because iterating the use list in
2819   // isInterestingAlloca would be algorithmically slower.
2820   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2821 
2822   // Try to get the declaration of llvm.localescape. If it's not in the module,
2823   // we can exit early.
2824   if (!F.getParent()->getFunction("llvm.localescape")) return;
2825 
2826   // Look for a call to llvm.localescape call in the entry block. It can't be in
2827   // any other block.
2828   for (Instruction &I : F.getEntryBlock()) {
2829     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2830     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2831       // We found a call. Mark all the allocas passed in as uninteresting.
2832       for (Value *Arg : II->args()) {
2833         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2834         assert(AI && AI->isStaticAlloca() &&
2835                "non-static alloca arg to localescape");
2836         ProcessedAllocas[AI] = false;
2837       }
2838       break;
2839     }
2840   }
2841 }
2842 
2843 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2844   bool ShouldInstrument =
2845       ClDebugMin < 0 || ClDebugMax < 0 ||
2846       (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2847   Instrumented++;
2848   return !ShouldInstrument;
2849 }
2850 
2851 bool AddressSanitizer::instrumentFunction(Function &F,
2852                                           const TargetLibraryInfo *TLI) {
2853   if (F.empty())
2854     return false;
2855   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2856   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2857   if (F.getName().starts_with("__asan_")) return false;
2858 
2859   bool FunctionModified = false;
2860 
2861   // If needed, insert __asan_init before checking for SanitizeAddress attr.
2862   // This function needs to be called even if the function body is not
2863   // instrumented.
2864   if (maybeInsertAsanInitAtFunctionEntry(F))
2865     FunctionModified = true;
2866 
2867   // Leave if the function doesn't need instrumentation.
2868   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2869 
2870   if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
2871     return FunctionModified;
2872 
2873   LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2874 
2875   initializeCallbacks(*F.getParent(), TLI);
2876 
2877   FunctionStateRAII CleanupObj(this);
2878 
2879   FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2880 
2881   // We can't instrument allocas used with llvm.localescape. Only static allocas
2882   // can be passed to that intrinsic.
2883   markEscapedLocalAllocas(F);
2884 
2885   // We want to instrument every address only once per basic block (unless there
2886   // are calls between uses).
2887   SmallPtrSet<Value *, 16> TempsToInstrument;
2888   SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2889   SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2890   SmallVector<Instruction *, 8> NoReturnCalls;
2891   SmallVector<BasicBlock *, 16> AllBlocks;
2892   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2893 
2894   // Fill the set of memory operations to instrument.
2895   for (auto &BB : F) {
2896     AllBlocks.push_back(&BB);
2897     TempsToInstrument.clear();
2898     int NumInsnsPerBB = 0;
2899     for (auto &Inst : BB) {
2900       if (LooksLikeCodeInBug11395(&Inst)) return false;
2901       // Skip instructions inserted by another instrumentation.
2902       if (Inst.hasMetadata(LLVMContext::MD_nosanitize))
2903         continue;
2904       SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
2905       getInterestingMemoryOperands(&Inst, InterestingOperands);
2906 
2907       if (!InterestingOperands.empty()) {
2908         for (auto &Operand : InterestingOperands) {
2909           if (ClOpt && ClOptSameTemp) {
2910             Value *Ptr = Operand.getPtr();
2911             // If we have a mask, skip instrumentation if we've already
2912             // instrumented the full object. But don't add to TempsToInstrument
2913             // because we might get another load/store with a different mask.
2914             if (Operand.MaybeMask) {
2915               if (TempsToInstrument.count(Ptr))
2916                 continue; // We've seen this (whole) temp in the current BB.
2917             } else {
2918               if (!TempsToInstrument.insert(Ptr).second)
2919                 continue; // We've seen this temp in the current BB.
2920             }
2921           }
2922           OperandsToInstrument.push_back(Operand);
2923           NumInsnsPerBB++;
2924         }
2925       } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2926                   isInterestingPointerComparison(&Inst)) ||
2927                  ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2928                   isInterestingPointerSubtraction(&Inst))) {
2929         PointerComparisonsOrSubtracts.push_back(&Inst);
2930       } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
2931         // ok, take it.
2932         IntrinToInstrument.push_back(MI);
2933         NumInsnsPerBB++;
2934       } else {
2935         if (auto *CB = dyn_cast<CallBase>(&Inst)) {
2936           // A call inside BB.
2937           TempsToInstrument.clear();
2938           if (CB->doesNotReturn())
2939             NoReturnCalls.push_back(CB);
2940         }
2941         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2942           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2943       }
2944       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2945     }
2946   }
2947 
2948   bool UseCalls = (InstrumentationWithCallsThreshold >= 0 &&
2949                    OperandsToInstrument.size() + IntrinToInstrument.size() >
2950                        (unsigned)InstrumentationWithCallsThreshold);
2951   const DataLayout &DL = F.getParent()->getDataLayout();
2952   ObjectSizeOpts ObjSizeOpts;
2953   ObjSizeOpts.RoundToAlign = true;
2954   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2955 
2956   // Instrument.
2957   int NumInstrumented = 0;
2958   for (auto &Operand : OperandsToInstrument) {
2959     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2960       instrumentMop(ObjSizeVis, Operand, UseCalls,
2961                     F.getParent()->getDataLayout());
2962     FunctionModified = true;
2963   }
2964   for (auto *Inst : IntrinToInstrument) {
2965     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2966       instrumentMemIntrinsic(Inst);
2967     FunctionModified = true;
2968   }
2969 
2970   FunctionStackPoisoner FSP(F, *this);
2971   bool ChangedStack = FSP.runOnFunction();
2972 
2973   // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2974   // See e.g. https://github.com/google/sanitizers/issues/37
2975   for (auto *CI : NoReturnCalls) {
2976     IRBuilder<> IRB(CI);
2977     IRB.CreateCall(AsanHandleNoReturnFunc, {});
2978   }
2979 
2980   for (auto *Inst : PointerComparisonsOrSubtracts) {
2981     instrumentPointerComparisonOrSubtraction(Inst);
2982     FunctionModified = true;
2983   }
2984 
2985   if (ChangedStack || !NoReturnCalls.empty())
2986     FunctionModified = true;
2987 
2988   LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2989                     << F << "\n");
2990 
2991   return FunctionModified;
2992 }
2993 
2994 // Workaround for bug 11395: we don't want to instrument stack in functions
2995 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2996 // FIXME: remove once the bug 11395 is fixed.
2997 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2998   if (LongSize != 32) return false;
2999   CallInst *CI = dyn_cast<CallInst>(I);
3000   if (!CI || !CI->isInlineAsm()) return false;
3001   if (CI->arg_size() <= 5)
3002     return false;
3003   // We have inline assembly with quite a few arguments.
3004   return true;
3005 }
3006 
3007 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
3008   IRBuilder<> IRB(*C);
3009   if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
3010       ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3011     const char *MallocNameTemplate =
3012         ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
3013             ? kAsanStackMallocAlwaysNameTemplate
3014             : kAsanStackMallocNameTemplate;
3015     for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
3016       std::string Suffix = itostr(Index);
3017       AsanStackMallocFunc[Index] = M.getOrInsertFunction(
3018           MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
3019       AsanStackFreeFunc[Index] =
3020           M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
3021                                 IRB.getVoidTy(), IntptrTy, IntptrTy);
3022     }
3023   }
3024   if (ASan.UseAfterScope) {
3025     AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
3026         kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
3027     AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
3028         kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
3029   }
3030 
3031   for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2,
3032                      0xf3, 0xf5, 0xf8}) {
3033     std::ostringstream Name;
3034     Name << kAsanSetShadowPrefix;
3035     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
3036     AsanSetShadowFunc[Val] =
3037         M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
3038   }
3039 
3040   AsanAllocaPoisonFunc = M.getOrInsertFunction(
3041       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3042   AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
3043       kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3044 }
3045 
3046 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
3047                                                ArrayRef<uint8_t> ShadowBytes,
3048                                                size_t Begin, size_t End,
3049                                                IRBuilder<> &IRB,
3050                                                Value *ShadowBase) {
3051   if (Begin >= End)
3052     return;
3053 
3054   const size_t LargestStoreSizeInBytes =
3055       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
3056 
3057   const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
3058 
3059   // Poison given range in shadow using larges store size with out leading and
3060   // trailing zeros in ShadowMask. Zeros never change, so they need neither
3061   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
3062   // middle of a store.
3063   for (size_t i = Begin; i < End;) {
3064     if (!ShadowMask[i]) {
3065       assert(!ShadowBytes[i]);
3066       ++i;
3067       continue;
3068     }
3069 
3070     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
3071     // Fit store size into the range.
3072     while (StoreSizeInBytes > End - i)
3073       StoreSizeInBytes /= 2;
3074 
3075     // Minimize store size by trimming trailing zeros.
3076     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
3077       while (j <= StoreSizeInBytes / 2)
3078         StoreSizeInBytes /= 2;
3079     }
3080 
3081     uint64_t Val = 0;
3082     for (size_t j = 0; j < StoreSizeInBytes; j++) {
3083       if (IsLittleEndian)
3084         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
3085       else
3086         Val = (Val << 8) | ShadowBytes[i + j];
3087     }
3088 
3089     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
3090     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
3091     IRB.CreateAlignedStore(
3092         Poison, IRB.CreateIntToPtr(Ptr, PointerType::getUnqual(Poison->getContext())),
3093         Align(1));
3094 
3095     i += StoreSizeInBytes;
3096   }
3097 }
3098 
3099 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3100                                          ArrayRef<uint8_t> ShadowBytes,
3101                                          IRBuilder<> &IRB, Value *ShadowBase) {
3102   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
3103 }
3104 
3105 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3106                                          ArrayRef<uint8_t> ShadowBytes,
3107                                          size_t Begin, size_t End,
3108                                          IRBuilder<> &IRB, Value *ShadowBase) {
3109   assert(ShadowMask.size() == ShadowBytes.size());
3110   size_t Done = Begin;
3111   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
3112     if (!ShadowMask[i]) {
3113       assert(!ShadowBytes[i]);
3114       continue;
3115     }
3116     uint8_t Val = ShadowBytes[i];
3117     if (!AsanSetShadowFunc[Val])
3118       continue;
3119 
3120     // Skip same values.
3121     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
3122     }
3123 
3124     if (j - i >= ASan.MaxInlinePoisoningSize) {
3125       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
3126       IRB.CreateCall(AsanSetShadowFunc[Val],
3127                      {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
3128                       ConstantInt::get(IntptrTy, j - i)});
3129       Done = j;
3130     }
3131   }
3132 
3133   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
3134 }
3135 
3136 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
3137 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
3138 static int StackMallocSizeClass(uint64_t LocalStackSize) {
3139   assert(LocalStackSize <= kMaxStackMallocSize);
3140   uint64_t MaxSize = kMinStackMallocSize;
3141   for (int i = 0;; i++, MaxSize *= 2)
3142     if (LocalStackSize <= MaxSize) return i;
3143   llvm_unreachable("impossible LocalStackSize");
3144 }
3145 
3146 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3147   Instruction *CopyInsertPoint = &F.front().front();
3148   if (CopyInsertPoint == ASan.LocalDynamicShadow) {
3149     // Insert after the dynamic shadow location is determined
3150     CopyInsertPoint = CopyInsertPoint->getNextNode();
3151     assert(CopyInsertPoint);
3152   }
3153   IRBuilder<> IRB(CopyInsertPoint);
3154   const DataLayout &DL = F.getParent()->getDataLayout();
3155   for (Argument &Arg : F.args()) {
3156     if (Arg.hasByValAttr()) {
3157       Type *Ty = Arg.getParamByValType();
3158       const Align Alignment =
3159           DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
3160 
3161       AllocaInst *AI = IRB.CreateAlloca(
3162           Ty, nullptr,
3163           (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
3164               ".byval");
3165       AI->setAlignment(Alignment);
3166       Arg.replaceAllUsesWith(AI);
3167 
3168       uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3169       IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
3170     }
3171   }
3172 }
3173 
3174 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3175                                           Value *ValueIfTrue,
3176                                           Instruction *ThenTerm,
3177                                           Value *ValueIfFalse) {
3178   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3179   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3180   PHI->addIncoming(ValueIfFalse, CondBlock);
3181   BasicBlock *ThenBlock = ThenTerm->getParent();
3182   PHI->addIncoming(ValueIfTrue, ThenBlock);
3183   return PHI;
3184 }
3185 
3186 Value *FunctionStackPoisoner::createAllocaForLayout(
3187     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3188   AllocaInst *Alloca;
3189   if (Dynamic) {
3190     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3191                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3192                               "MyAlloca");
3193   } else {
3194     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3195                               nullptr, "MyAlloca");
3196     assert(Alloca->isStaticAlloca());
3197   }
3198   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
3199   uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack));
3200   Alloca->setAlignment(Align(FrameAlignment));
3201   return IRB.CreatePointerCast(Alloca, IntptrTy);
3202 }
3203 
3204 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3205   BasicBlock &FirstBB = *F.begin();
3206   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3207   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3208   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3209   DynamicAllocaLayout->setAlignment(Align(32));
3210 }
3211 
3212 void FunctionStackPoisoner::processDynamicAllocas() {
3213   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3214     assert(DynamicAllocaPoisonCallVec.empty());
3215     return;
3216   }
3217 
3218   // Insert poison calls for lifetime intrinsics for dynamic allocas.
3219   for (const auto &APC : DynamicAllocaPoisonCallVec) {
3220     assert(APC.InsBefore);
3221     assert(APC.AI);
3222     assert(ASan.isInterestingAlloca(*APC.AI));
3223     assert(!APC.AI->isStaticAlloca());
3224 
3225     IRBuilder<> IRB(APC.InsBefore);
3226     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3227     // Dynamic allocas will be unpoisoned unconditionally below in
3228     // unpoisonDynamicAllocas.
3229     // Flag that we need unpoison static allocas.
3230   }
3231 
3232   // Handle dynamic allocas.
3233   createDynamicAllocasInitStorage();
3234   for (auto &AI : DynamicAllocaVec)
3235     handleDynamicAllocaCall(AI);
3236   unpoisonDynamicAllocas();
3237 }
3238 
3239 /// Collect instructions in the entry block after \p InsBefore which initialize
3240 /// permanent storage for a function argument. These instructions must remain in
3241 /// the entry block so that uninitialized values do not appear in backtraces. An
3242 /// added benefit is that this conserves spill slots. This does not move stores
3243 /// before instrumented / "interesting" allocas.
3244 static void findStoresToUninstrumentedArgAllocas(
3245     AddressSanitizer &ASan, Instruction &InsBefore,
3246     SmallVectorImpl<Instruction *> &InitInsts) {
3247   Instruction *Start = InsBefore.getNextNonDebugInstruction();
3248   for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3249     // Argument initialization looks like:
3250     // 1) store <Argument>, <Alloca> OR
3251     // 2) <CastArgument> = cast <Argument> to ...
3252     //    store <CastArgument> to <Alloca>
3253     // Do not consider any other kind of instruction.
3254     //
3255     // Note: This covers all known cases, but may not be exhaustive. An
3256     // alternative to pattern-matching stores is to DFS over all Argument uses:
3257     // this might be more general, but is probably much more complicated.
3258     if (isa<AllocaInst>(It) || isa<CastInst>(It))
3259       continue;
3260     if (auto *Store = dyn_cast<StoreInst>(It)) {
3261       // The store destination must be an alloca that isn't interesting for
3262       // ASan to instrument. These are moved up before InsBefore, and they're
3263       // not interesting because allocas for arguments can be mem2reg'd.
3264       auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3265       if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3266         continue;
3267 
3268       Value *Val = Store->getValueOperand();
3269       bool IsDirectArgInit = isa<Argument>(Val);
3270       bool IsArgInitViaCast =
3271           isa<CastInst>(Val) &&
3272           isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3273           // Check that the cast appears directly before the store. Otherwise
3274           // moving the cast before InsBefore may break the IR.
3275           Val == It->getPrevNonDebugInstruction();
3276       bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3277       if (!IsArgInit)
3278         continue;
3279 
3280       if (IsArgInitViaCast)
3281         InitInsts.push_back(cast<Instruction>(Val));
3282       InitInsts.push_back(Store);
3283       continue;
3284     }
3285 
3286     // Do not reorder past unknown instructions: argument initialization should
3287     // only involve casts and stores.
3288     return;
3289   }
3290 }
3291 
3292 void FunctionStackPoisoner::processStaticAllocas() {
3293   if (AllocaVec.empty()) {
3294     assert(StaticAllocaPoisonCallVec.empty());
3295     return;
3296   }
3297 
3298   int StackMallocIdx = -1;
3299   DebugLoc EntryDebugLocation;
3300   if (auto SP = F.getSubprogram())
3301     EntryDebugLocation =
3302         DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
3303 
3304   Instruction *InsBefore = AllocaVec[0];
3305   IRBuilder<> IRB(InsBefore);
3306 
3307   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3308   // debug info is broken, because only entry-block allocas are treated as
3309   // regular stack slots.
3310   auto InsBeforeB = InsBefore->getParent();
3311   assert(InsBeforeB == &F.getEntryBlock());
3312   for (auto *AI : StaticAllocasToMoveUp)
3313     if (AI->getParent() == InsBeforeB)
3314       AI->moveBefore(InsBefore);
3315 
3316   // Move stores of arguments into entry-block allocas as well. This prevents
3317   // extra stack slots from being generated (to house the argument values until
3318   // they can be stored into the allocas). This also prevents uninitialized
3319   // values from being shown in backtraces.
3320   SmallVector<Instruction *, 8> ArgInitInsts;
3321   findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3322   for (Instruction *ArgInitInst : ArgInitInsts)
3323     ArgInitInst->moveBefore(InsBefore);
3324 
3325   // If we have a call to llvm.localescape, keep it in the entry block.
3326   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3327 
3328   SmallVector<ASanStackVariableDescription, 16> SVD;
3329   SVD.reserve(AllocaVec.size());
3330   for (AllocaInst *AI : AllocaVec) {
3331     ASanStackVariableDescription D = {AI->getName().data(),
3332                                       ASan.getAllocaSizeInBytes(*AI),
3333                                       0,
3334                                       AI->getAlign().value(),
3335                                       AI,
3336                                       0,
3337                                       0};
3338     SVD.push_back(D);
3339   }
3340 
3341   // Minimal header size (left redzone) is 4 pointers,
3342   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3343   uint64_t Granularity = 1ULL << Mapping.Scale;
3344   uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity);
3345   const ASanStackFrameLayout &L =
3346       ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3347 
3348   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3349   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3350   for (auto &Desc : SVD)
3351     AllocaToSVDMap[Desc.AI] = &Desc;
3352 
3353   // Update SVD with information from lifetime intrinsics.
3354   for (const auto &APC : StaticAllocaPoisonCallVec) {
3355     assert(APC.InsBefore);
3356     assert(APC.AI);
3357     assert(ASan.isInterestingAlloca(*APC.AI));
3358     assert(APC.AI->isStaticAlloca());
3359 
3360     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3361     Desc.LifetimeSize = Desc.Size;
3362     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3363       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3364         if (LifetimeLoc->getFile() == FnLoc->getFile())
3365           if (unsigned Line = LifetimeLoc->getLine())
3366             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3367       }
3368     }
3369   }
3370 
3371   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3372   LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3373   uint64_t LocalStackSize = L.FrameSize;
3374   bool DoStackMalloc =
3375       ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
3376       !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
3377   bool DoDynamicAlloca = ClDynamicAllocaStack;
3378   // Don't do dynamic alloca or stack malloc if:
3379   // 1) There is inline asm: too often it makes assumptions on which registers
3380   //    are available.
3381   // 2) There is a returns_twice call (typically setjmp), which is
3382   //    optimization-hostile, and doesn't play well with introduced indirect
3383   //    register-relative calculation of local variable addresses.
3384   DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3385   DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3386 
3387   Value *StaticAlloca =
3388       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3389 
3390   Value *FakeStack;
3391   Value *LocalStackBase;
3392   Value *LocalStackBaseAlloca;
3393   uint8_t DIExprFlags = DIExpression::ApplyOffset;
3394 
3395   if (DoStackMalloc) {
3396     LocalStackBaseAlloca =
3397         IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3398     if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3399       // void *FakeStack = __asan_option_detect_stack_use_after_return
3400       //     ? __asan_stack_malloc_N(LocalStackSize)
3401       //     : nullptr;
3402       // void *LocalStackBase = (FakeStack) ? FakeStack :
3403       //                        alloca(LocalStackSize);
3404       Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3405           kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3406       Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3407           IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3408           Constant::getNullValue(IRB.getInt32Ty()));
3409       Instruction *Term =
3410           SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3411       IRBuilder<> IRBIf(Term);
3412       StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3413       assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3414       Value *FakeStackValue =
3415           IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3416                            ConstantInt::get(IntptrTy, LocalStackSize));
3417       IRB.SetInsertPoint(InsBefore);
3418       FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3419                             ConstantInt::get(IntptrTy, 0));
3420     } else {
3421       // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
3422       // void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
3423       // void *LocalStackBase = (FakeStack) ? FakeStack :
3424       //                        alloca(LocalStackSize);
3425       StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3426       FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3427                                  ConstantInt::get(IntptrTy, LocalStackSize));
3428     }
3429     Value *NoFakeStack =
3430         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3431     Instruction *Term =
3432         SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3433     IRBuilder<> IRBIf(Term);
3434     Value *AllocaValue =
3435         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3436 
3437     IRB.SetInsertPoint(InsBefore);
3438     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3439     IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3440     DIExprFlags |= DIExpression::DerefBefore;
3441   } else {
3442     // void *FakeStack = nullptr;
3443     // void *LocalStackBase = alloca(LocalStackSize);
3444     FakeStack = ConstantInt::get(IntptrTy, 0);
3445     LocalStackBase =
3446         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3447     LocalStackBaseAlloca = LocalStackBase;
3448   }
3449 
3450   // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3451   // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3452   // later passes and can result in dropped variable coverage in debug info.
3453   Value *LocalStackBaseAllocaPtr =
3454       isa<PtrToIntInst>(LocalStackBaseAlloca)
3455           ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3456           : LocalStackBaseAlloca;
3457   assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3458          "Variable descriptions relative to ASan stack base will be dropped");
3459 
3460   // Replace Alloca instructions with base+offset.
3461   for (const auto &Desc : SVD) {
3462     AllocaInst *AI = Desc.AI;
3463     replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3464                       Desc.Offset);
3465     Value *NewAllocaPtr = IRB.CreateIntToPtr(
3466         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3467         AI->getType());
3468     AI->replaceAllUsesWith(NewAllocaPtr);
3469   }
3470 
3471   // The left-most redzone has enough space for at least 4 pointers.
3472   // Write the Magic value to redzone[0].
3473   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3474   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3475                   BasePlus0);
3476   // Write the frame description constant to redzone[1].
3477   Value *BasePlus1 = IRB.CreateIntToPtr(
3478       IRB.CreateAdd(LocalStackBase,
3479                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3480       IntptrPtrTy);
3481   GlobalVariable *StackDescriptionGlobal =
3482       createPrivateGlobalForString(*F.getParent(), DescriptionString,
3483                                    /*AllowMerging*/ true, kAsanGenPrefix);
3484   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3485   IRB.CreateStore(Description, BasePlus1);
3486   // Write the PC to redzone[2].
3487   Value *BasePlus2 = IRB.CreateIntToPtr(
3488       IRB.CreateAdd(LocalStackBase,
3489                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3490       IntptrPtrTy);
3491   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3492 
3493   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3494 
3495   // Poison the stack red zones at the entry.
3496   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3497   // As mask we must use most poisoned case: red zones and after scope.
3498   // As bytes we can use either the same or just red zones only.
3499   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3500 
3501   if (!StaticAllocaPoisonCallVec.empty()) {
3502     const auto &ShadowInScope = GetShadowBytes(SVD, L);
3503 
3504     // Poison static allocas near lifetime intrinsics.
3505     for (const auto &APC : StaticAllocaPoisonCallVec) {
3506       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3507       assert(Desc.Offset % L.Granularity == 0);
3508       size_t Begin = Desc.Offset / L.Granularity;
3509       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3510 
3511       IRBuilder<> IRB(APC.InsBefore);
3512       copyToShadow(ShadowAfterScope,
3513                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3514                    IRB, ShadowBase);
3515     }
3516   }
3517 
3518   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3519   SmallVector<uint8_t, 64> ShadowAfterReturn;
3520 
3521   // (Un)poison the stack before all ret instructions.
3522   for (Instruction *Ret : RetVec) {
3523     IRBuilder<> IRBRet(Ret);
3524     // Mark the current frame as retired.
3525     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3526                        BasePlus0);
3527     if (DoStackMalloc) {
3528       assert(StackMallocIdx >= 0);
3529       // if FakeStack != 0  // LocalStackBase == FakeStack
3530       //     // In use-after-return mode, poison the whole stack frame.
3531       //     if StackMallocIdx <= 4
3532       //         // For small sizes inline the whole thing:
3533       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3534       //         **SavedFlagPtr(FakeStack) = 0
3535       //     else
3536       //         __asan_stack_free_N(FakeStack, LocalStackSize)
3537       // else
3538       //     <This is not a fake stack; unpoison the redzones>
3539       Value *Cmp =
3540           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3541       Instruction *ThenTerm, *ElseTerm;
3542       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3543 
3544       IRBuilder<> IRBPoison(ThenTerm);
3545       if (ASan.MaxInlinePoisoningSize != 0 && StackMallocIdx <= 4) {
3546         int ClassSize = kMinStackMallocSize << StackMallocIdx;
3547         ShadowAfterReturn.resize(ClassSize / L.Granularity,
3548                                  kAsanStackUseAfterReturnMagic);
3549         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3550                      ShadowBase);
3551         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3552             FakeStack,
3553             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3554         Value *SavedFlagPtr = IRBPoison.CreateLoad(
3555             IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3556         IRBPoison.CreateStore(
3557             Constant::getNullValue(IRBPoison.getInt8Ty()),
3558             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getPtrTy()));
3559       } else {
3560         // For larger frames call __asan_stack_free_*.
3561         IRBPoison.CreateCall(
3562             AsanStackFreeFunc[StackMallocIdx],
3563             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3564       }
3565 
3566       IRBuilder<> IRBElse(ElseTerm);
3567       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3568     } else {
3569       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3570     }
3571   }
3572 
3573   // We are done. Remove the old unused alloca instructions.
3574   for (auto *AI : AllocaVec)
3575     AI->eraseFromParent();
3576 }
3577 
3578 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3579                                          IRBuilder<> &IRB, bool DoPoison) {
3580   // For now just insert the call to ASan runtime.
3581   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3582   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3583   IRB.CreateCall(
3584       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3585       {AddrArg, SizeArg});
3586 }
3587 
3588 // Handling llvm.lifetime intrinsics for a given %alloca:
3589 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3590 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3591 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3592 //     could be poisoned by previous llvm.lifetime.end instruction, as the
3593 //     variable may go in and out of scope several times, e.g. in loops).
3594 // (3) if we poisoned at least one %alloca in a function,
3595 //     unpoison the whole stack frame at function exit.
3596 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3597   IRBuilder<> IRB(AI);
3598 
3599   const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign());
3600   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3601 
3602   Value *Zero = Constant::getNullValue(IntptrTy);
3603   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3604   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3605 
3606   // Since we need to extend alloca with additional memory to locate
3607   // redzones, and OldSize is number of allocated blocks with
3608   // ElementSize size, get allocated memory size in bytes by
3609   // OldSize * ElementSize.
3610   const unsigned ElementSize =
3611       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3612   Value *OldSize =
3613       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3614                     ConstantInt::get(IntptrTy, ElementSize));
3615 
3616   // PartialSize = OldSize % 32
3617   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3618 
3619   // Misalign = kAllocaRzSize - PartialSize;
3620   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3621 
3622   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3623   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3624   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3625 
3626   // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3627   // Alignment is added to locate left redzone, PartialPadding for possible
3628   // partial redzone and kAllocaRzSize for right redzone respectively.
3629   Value *AdditionalChunkSize = IRB.CreateAdd(
3630       ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize),
3631       PartialPadding);
3632 
3633   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3634 
3635   // Insert new alloca with new NewSize and Alignment params.
3636   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3637   NewAlloca->setAlignment(Alignment);
3638 
3639   // NewAddress = Address + Alignment
3640   Value *NewAddress =
3641       IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3642                     ConstantInt::get(IntptrTy, Alignment.value()));
3643 
3644   // Insert __asan_alloca_poison call for new created alloca.
3645   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3646 
3647   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3648   // for unpoisoning stuff.
3649   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3650 
3651   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3652 
3653   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3654   AI->replaceAllUsesWith(NewAddressPtr);
3655 
3656   // We are done. Erase old alloca from parent.
3657   AI->eraseFromParent();
3658 }
3659 
3660 // isSafeAccess returns true if Addr is always inbounds with respect to its
3661 // base object. For example, it is a field access or an array access with
3662 // constant inbounds index.
3663 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3664                                     Value *Addr, TypeSize TypeStoreSize) const {
3665   if (TypeStoreSize.isScalable())
3666     // TODO: We can use vscale_range to convert a scalable value to an
3667     // upper bound on the access size.
3668     return false;
3669 
3670   SizeOffsetAPInt SizeOffset = ObjSizeVis.compute(Addr);
3671   if (!SizeOffset.bothKnown())
3672     return false;
3673 
3674   uint64_t Size = SizeOffset.Size.getZExtValue();
3675   int64_t Offset = SizeOffset.Offset.getSExtValue();
3676 
3677   // Three checks are required to ensure safety:
3678   // . Offset >= 0  (since the offset is given from the base ptr)
3679   // . Size >= Offset  (unsigned)
3680   // . Size - Offset >= NeededSize  (unsigned)
3681   return Offset >= 0 && Size >= uint64_t(Offset) &&
3682          Size - uint64_t(Offset) >= TypeStoreSize / 8;
3683 }
3684