1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address basic correctness 10 // checker. 11 // Details of the algorithm: 12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 13 // 14 // FIXME: This sanitizer does not yet handle scalable vectors 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/StackSafetyAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/BinaryFormat/MachO.h" 34 #include "llvm/Demangle/Demangle.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Comdat.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DIBuilder.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/IRBuilder.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/InstVisitor.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/Intrinsics.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/MDBuilder.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Use.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/MC/MCSectionMachO.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include "llvm/Transforms/Instrumentation.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 76 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/ModuleUtils.h" 80 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cstddef> 84 #include <cstdint> 85 #include <iomanip> 86 #include <limits> 87 #include <sstream> 88 #include <string> 89 #include <tuple> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "asan" 94 95 static const uint64_t kDefaultShadowScale = 3; 96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 98 static const uint64_t kDynamicShadowSentinel = 99 std::numeric_limits<uint64_t>::max(); 100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 105 static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29; 106 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 107 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 108 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 109 static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46; 110 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 111 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 112 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 113 static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47; 114 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 115 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 116 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 117 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 118 static const uint64_t kPS_ShadowOffset64 = 1ULL << 40; 119 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 120 static const uint64_t kEmscriptenShadowOffset = 0; 121 122 // The shadow memory space is dynamically allocated. 123 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 124 125 static const size_t kMinStackMallocSize = 1 << 6; // 64B 126 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 127 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 128 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 129 130 const char kAsanModuleCtorName[] = "asan.module_ctor"; 131 const char kAsanModuleDtorName[] = "asan.module_dtor"; 132 static const uint64_t kAsanCtorAndDtorPriority = 1; 133 // On Emscripten, the system needs more than one priorities for constructors. 134 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 135 const char kAsanReportErrorTemplate[] = "__asan_report_"; 136 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 137 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 138 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 139 const char kAsanUnregisterImageGlobalsName[] = 140 "__asan_unregister_image_globals"; 141 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 142 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 143 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 144 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 145 const char kAsanInitName[] = "__asan_init"; 146 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 147 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 148 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 149 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 150 static const int kMaxAsanStackMallocSizeClass = 10; 151 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 152 const char kAsanStackMallocAlwaysNameTemplate[] = 153 "__asan_stack_malloc_always_"; 154 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 155 const char kAsanGenPrefix[] = "___asan_gen_"; 156 const char kODRGenPrefix[] = "__odr_asan_gen_"; 157 const char kSanCovGenPrefix[] = "__sancov_gen_"; 158 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 159 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 160 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 161 162 // ASan version script has __asan_* wildcard. Triple underscore prevents a 163 // linker (gold) warning about attempting to export a local symbol. 164 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 165 166 const char kAsanOptionDetectUseAfterReturn[] = 167 "__asan_option_detect_stack_use_after_return"; 168 169 const char kAsanShadowMemoryDynamicAddress[] = 170 "__asan_shadow_memory_dynamic_address"; 171 172 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 173 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 174 175 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 176 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 177 const char kAMDGPUBallotName[] = "llvm.amdgcn.ballot.i64"; 178 const char kAMDGPUUnreachableName[] = "llvm.amdgcn.unreachable"; 179 180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 181 static const size_t kNumberOfAccessSizes = 5; 182 183 static const uint64_t kAllocaRzSize = 32; 184 185 // ASanAccessInfo implementation constants. 186 constexpr size_t kCompileKernelShift = 0; 187 constexpr size_t kCompileKernelMask = 0x1; 188 constexpr size_t kAccessSizeIndexShift = 1; 189 constexpr size_t kAccessSizeIndexMask = 0xf; 190 constexpr size_t kIsWriteShift = 5; 191 constexpr size_t kIsWriteMask = 0x1; 192 193 // Command-line flags. 194 195 static cl::opt<bool> ClEnableKasan( 196 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 197 cl::Hidden, cl::init(false)); 198 199 static cl::opt<bool> ClRecover( 200 "asan-recover", 201 cl::desc("Enable recovery mode (continue-after-error)."), 202 cl::Hidden, cl::init(false)); 203 204 static cl::opt<bool> ClInsertVersionCheck( 205 "asan-guard-against-version-mismatch", 206 cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden, 207 cl::init(true)); 208 209 // This flag may need to be replaced with -f[no-]asan-reads. 210 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 211 cl::desc("instrument read instructions"), 212 cl::Hidden, cl::init(true)); 213 214 static cl::opt<bool> ClInstrumentWrites( 215 "asan-instrument-writes", cl::desc("instrument write instructions"), 216 cl::Hidden, cl::init(true)); 217 218 static cl::opt<bool> 219 ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false), 220 cl::Hidden, cl::desc("Use Stack Safety analysis results"), 221 cl::Optional); 222 223 static cl::opt<bool> ClInstrumentAtomics( 224 "asan-instrument-atomics", 225 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 226 cl::init(true)); 227 228 static cl::opt<bool> 229 ClInstrumentByval("asan-instrument-byval", 230 cl::desc("instrument byval call arguments"), cl::Hidden, 231 cl::init(true)); 232 233 static cl::opt<bool> ClAlwaysSlowPath( 234 "asan-always-slow-path", 235 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 236 cl::init(false)); 237 238 static cl::opt<bool> ClForceDynamicShadow( 239 "asan-force-dynamic-shadow", 240 cl::desc("Load shadow address into a local variable for each function"), 241 cl::Hidden, cl::init(false)); 242 243 static cl::opt<bool> 244 ClWithIfunc("asan-with-ifunc", 245 cl::desc("Access dynamic shadow through an ifunc global on " 246 "platforms that support this"), 247 cl::Hidden, cl::init(true)); 248 249 static cl::opt<bool> ClWithIfuncSuppressRemat( 250 "asan-with-ifunc-suppress-remat", 251 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 252 "it through inline asm in prologue."), 253 cl::Hidden, cl::init(true)); 254 255 // This flag limits the number of instructions to be instrumented 256 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 257 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 258 // set it to 10000. 259 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 260 "asan-max-ins-per-bb", cl::init(10000), 261 cl::desc("maximal number of instructions to instrument in any given BB"), 262 cl::Hidden); 263 264 // This flag may need to be replaced with -f[no]asan-stack. 265 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 266 cl::Hidden, cl::init(true)); 267 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 268 "asan-max-inline-poisoning-size", 269 cl::desc( 270 "Inline shadow poisoning for blocks up to the given size in bytes."), 271 cl::Hidden, cl::init(64)); 272 273 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 274 "asan-use-after-return", 275 cl::desc("Sets the mode of detection for stack-use-after-return."), 276 cl::values( 277 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 278 "Never detect stack use after return."), 279 clEnumValN( 280 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 281 "Detect stack use after return if " 282 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 283 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 284 "Always detect stack use after return.")), 285 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 286 287 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 288 cl::desc("Create redzones for byval " 289 "arguments (extra copy " 290 "required)"), cl::Hidden, 291 cl::init(true)); 292 293 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 294 cl::desc("Check stack-use-after-scope"), 295 cl::Hidden, cl::init(false)); 296 297 // This flag may need to be replaced with -f[no]asan-globals. 298 static cl::opt<bool> ClGlobals("asan-globals", 299 cl::desc("Handle global objects"), cl::Hidden, 300 cl::init(true)); 301 302 static cl::opt<bool> ClInitializers("asan-initialization-order", 303 cl::desc("Handle C++ initializer order"), 304 cl::Hidden, cl::init(true)); 305 306 static cl::opt<bool> ClInvalidPointerPairs( 307 "asan-detect-invalid-pointer-pair", 308 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 309 cl::init(false)); 310 311 static cl::opt<bool> ClInvalidPointerCmp( 312 "asan-detect-invalid-pointer-cmp", 313 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 314 cl::init(false)); 315 316 static cl::opt<bool> ClInvalidPointerSub( 317 "asan-detect-invalid-pointer-sub", 318 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 319 cl::init(false)); 320 321 static cl::opt<unsigned> ClRealignStack( 322 "asan-realign-stack", 323 cl::desc("Realign stack to the value of this flag (power of two)"), 324 cl::Hidden, cl::init(32)); 325 326 static cl::opt<int> ClInstrumentationWithCallsThreshold( 327 "asan-instrumentation-with-call-threshold", 328 cl::desc("If the function being instrumented contains more than " 329 "this number of memory accesses, use callbacks instead of " 330 "inline checks (-1 means never use callbacks)."), 331 cl::Hidden, cl::init(7000)); 332 333 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 334 "asan-memory-access-callback-prefix", 335 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 336 cl::init("__asan_")); 337 338 static cl::opt<bool> ClKasanMemIntrinCallbackPrefix( 339 "asan-kernel-mem-intrinsic-prefix", 340 cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden, 341 cl::init(false)); 342 343 static cl::opt<bool> 344 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 345 cl::desc("instrument dynamic allocas"), 346 cl::Hidden, cl::init(true)); 347 348 static cl::opt<bool> ClSkipPromotableAllocas( 349 "asan-skip-promotable-allocas", 350 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 351 cl::init(true)); 352 353 static cl::opt<AsanCtorKind> ClConstructorKind( 354 "asan-constructor-kind", 355 cl::desc("Sets the ASan constructor kind"), 356 cl::values(clEnumValN(AsanCtorKind::None, "none", "No constructors"), 357 clEnumValN(AsanCtorKind::Global, "global", 358 "Use global constructors")), 359 cl::init(AsanCtorKind::Global), cl::Hidden); 360 // These flags allow to change the shadow mapping. 361 // The shadow mapping looks like 362 // Shadow = (Mem >> scale) + offset 363 364 static cl::opt<int> ClMappingScale("asan-mapping-scale", 365 cl::desc("scale of asan shadow mapping"), 366 cl::Hidden, cl::init(0)); 367 368 static cl::opt<uint64_t> 369 ClMappingOffset("asan-mapping-offset", 370 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 371 cl::Hidden, cl::init(0)); 372 373 // Optimization flags. Not user visible, used mostly for testing 374 // and benchmarking the tool. 375 376 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 377 cl::Hidden, cl::init(true)); 378 379 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", 380 cl::desc("Optimize callbacks"), 381 cl::Hidden, cl::init(false)); 382 383 static cl::opt<bool> ClOptSameTemp( 384 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 385 cl::Hidden, cl::init(true)); 386 387 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 388 cl::desc("Don't instrument scalar globals"), 389 cl::Hidden, cl::init(true)); 390 391 static cl::opt<bool> ClOptStack( 392 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 393 cl::Hidden, cl::init(false)); 394 395 static cl::opt<bool> ClDynamicAllocaStack( 396 "asan-stack-dynamic-alloca", 397 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 398 cl::init(true)); 399 400 static cl::opt<uint32_t> ClForceExperiment( 401 "asan-force-experiment", 402 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 403 cl::init(0)); 404 405 static cl::opt<bool> 406 ClUsePrivateAlias("asan-use-private-alias", 407 cl::desc("Use private aliases for global variables"), 408 cl::Hidden, cl::init(true)); 409 410 static cl::opt<bool> 411 ClUseOdrIndicator("asan-use-odr-indicator", 412 cl::desc("Use odr indicators to improve ODR reporting"), 413 cl::Hidden, cl::init(true)); 414 415 static cl::opt<bool> 416 ClUseGlobalsGC("asan-globals-live-support", 417 cl::desc("Use linker features to support dead " 418 "code stripping of globals"), 419 cl::Hidden, cl::init(true)); 420 421 // This is on by default even though there is a bug in gold: 422 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 423 static cl::opt<bool> 424 ClWithComdat("asan-with-comdat", 425 cl::desc("Place ASan constructors in comdat sections"), 426 cl::Hidden, cl::init(true)); 427 428 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 429 "asan-destructor-kind", 430 cl::desc("Sets the ASan destructor kind. The default is to use the value " 431 "provided to the pass constructor"), 432 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 433 clEnumValN(AsanDtorKind::Global, "global", 434 "Use global destructors")), 435 cl::init(AsanDtorKind::Invalid), cl::Hidden); 436 437 // Debug flags. 438 439 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 440 cl::init(0)); 441 442 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 443 cl::Hidden, cl::init(0)); 444 445 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 446 cl::desc("Debug func")); 447 448 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 449 cl::Hidden, cl::init(-1)); 450 451 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 452 cl::Hidden, cl::init(-1)); 453 454 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 455 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 456 STATISTIC(NumOptimizedAccessesToGlobalVar, 457 "Number of optimized accesses to global vars"); 458 STATISTIC(NumOptimizedAccessesToStackVar, 459 "Number of optimized accesses to stack vars"); 460 461 namespace { 462 463 /// This struct defines the shadow mapping using the rule: 464 /// shadow = (mem >> Scale) ADD-or-OR Offset. 465 /// If InGlobal is true, then 466 /// extern char __asan_shadow[]; 467 /// shadow = (mem >> Scale) + &__asan_shadow 468 struct ShadowMapping { 469 int Scale; 470 uint64_t Offset; 471 bool OrShadowOffset; 472 bool InGlobal; 473 }; 474 475 } // end anonymous namespace 476 477 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, 478 bool IsKasan) { 479 bool IsAndroid = TargetTriple.isAndroid(); 480 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() || 481 TargetTriple.isDriverKit(); 482 bool IsMacOS = TargetTriple.isMacOSX(); 483 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 484 bool IsNetBSD = TargetTriple.isOSNetBSD(); 485 bool IsPS = TargetTriple.isPS(); 486 bool IsLinux = TargetTriple.isOSLinux(); 487 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 488 TargetTriple.getArch() == Triple::ppc64le; 489 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 490 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 491 bool IsMIPSN32ABI = TargetTriple.getEnvironment() == Triple::GNUABIN32; 492 bool IsMIPS32 = TargetTriple.isMIPS32(); 493 bool IsMIPS64 = TargetTriple.isMIPS64(); 494 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 495 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 496 TargetTriple.getArch() == Triple::aarch64_be; 497 bool IsLoongArch64 = TargetTriple.isLoongArch64(); 498 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 499 bool IsWindows = TargetTriple.isOSWindows(); 500 bool IsFuchsia = TargetTriple.isOSFuchsia(); 501 bool IsEmscripten = TargetTriple.isOSEmscripten(); 502 bool IsAMDGPU = TargetTriple.isAMDGPU(); 503 504 ShadowMapping Mapping; 505 506 Mapping.Scale = kDefaultShadowScale; 507 if (ClMappingScale.getNumOccurrences() > 0) { 508 Mapping.Scale = ClMappingScale; 509 } 510 511 if (LongSize == 32) { 512 if (IsAndroid) 513 Mapping.Offset = kDynamicShadowSentinel; 514 else if (IsMIPSN32ABI) 515 Mapping.Offset = kMIPS_ShadowOffsetN32; 516 else if (IsMIPS32) 517 Mapping.Offset = kMIPS32_ShadowOffset32; 518 else if (IsFreeBSD) 519 Mapping.Offset = kFreeBSD_ShadowOffset32; 520 else if (IsNetBSD) 521 Mapping.Offset = kNetBSD_ShadowOffset32; 522 else if (IsIOS) 523 Mapping.Offset = kDynamicShadowSentinel; 524 else if (IsWindows) 525 Mapping.Offset = kWindowsShadowOffset32; 526 else if (IsEmscripten) 527 Mapping.Offset = kEmscriptenShadowOffset; 528 else 529 Mapping.Offset = kDefaultShadowOffset32; 530 } else { // LongSize == 64 531 // Fuchsia is always PIE, which means that the beginning of the address 532 // space is always available. 533 if (IsFuchsia) 534 Mapping.Offset = 0; 535 else if (IsPPC64) 536 Mapping.Offset = kPPC64_ShadowOffset64; 537 else if (IsSystemZ) 538 Mapping.Offset = kSystemZ_ShadowOffset64; 539 else if (IsFreeBSD && IsAArch64) 540 Mapping.Offset = kFreeBSDAArch64_ShadowOffset64; 541 else if (IsFreeBSD && !IsMIPS64) { 542 if (IsKasan) 543 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 544 else 545 Mapping.Offset = kFreeBSD_ShadowOffset64; 546 } else if (IsNetBSD) { 547 if (IsKasan) 548 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 549 else 550 Mapping.Offset = kNetBSD_ShadowOffset64; 551 } else if (IsPS) 552 Mapping.Offset = kPS_ShadowOffset64; 553 else if (IsLinux && IsX86_64) { 554 if (IsKasan) 555 Mapping.Offset = kLinuxKasan_ShadowOffset64; 556 else 557 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 558 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 559 } else if (IsWindows && IsX86_64) { 560 Mapping.Offset = kWindowsShadowOffset64; 561 } else if (IsMIPS64) 562 Mapping.Offset = kMIPS64_ShadowOffset64; 563 else if (IsIOS) 564 Mapping.Offset = kDynamicShadowSentinel; 565 else if (IsMacOS && IsAArch64) 566 Mapping.Offset = kDynamicShadowSentinel; 567 else if (IsAArch64) 568 Mapping.Offset = kAArch64_ShadowOffset64; 569 else if (IsLoongArch64) 570 Mapping.Offset = kLoongArch64_ShadowOffset64; 571 else if (IsRISCV64) 572 Mapping.Offset = kRISCV64_ShadowOffset64; 573 else if (IsAMDGPU) 574 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 575 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 576 else 577 Mapping.Offset = kDefaultShadowOffset64; 578 } 579 580 if (ClForceDynamicShadow) { 581 Mapping.Offset = kDynamicShadowSentinel; 582 } 583 584 if (ClMappingOffset.getNumOccurrences() > 0) { 585 Mapping.Offset = ClMappingOffset; 586 } 587 588 // OR-ing shadow offset if more efficient (at least on x86) if the offset 589 // is a power of two, but on ppc64 and loongarch64 we have to use add since 590 // the shadow offset is not necessarily 1/8-th of the address space. On 591 // SystemZ, we could OR the constant in a single instruction, but it's more 592 // efficient to load it once and use indexed addressing. 593 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS && 594 !IsRISCV64 && !IsLoongArch64 && 595 !(Mapping.Offset & (Mapping.Offset - 1)) && 596 Mapping.Offset != kDynamicShadowSentinel; 597 bool IsAndroidWithIfuncSupport = 598 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 599 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 600 601 return Mapping; 602 } 603 604 namespace llvm { 605 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, 606 bool IsKasan, uint64_t *ShadowBase, 607 int *MappingScale, bool *OrShadowOffset) { 608 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); 609 *ShadowBase = Mapping.Offset; 610 *MappingScale = Mapping.Scale; 611 *OrShadowOffset = Mapping.OrShadowOffset; 612 } 613 614 ASanAccessInfo::ASanAccessInfo(int32_t Packed) 615 : Packed(Packed), 616 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), 617 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), 618 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} 619 620 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, 621 uint8_t AccessSizeIndex) 622 : Packed((IsWrite << kIsWriteShift) + 623 (CompileKernel << kCompileKernelShift) + 624 (AccessSizeIndex << kAccessSizeIndexShift)), 625 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), 626 CompileKernel(CompileKernel) {} 627 628 } // namespace llvm 629 630 static uint64_t getRedzoneSizeForScale(int MappingScale) { 631 // Redzone used for stack and globals is at least 32 bytes. 632 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 633 return std::max(32U, 1U << MappingScale); 634 } 635 636 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 637 if (TargetTriple.isOSEmscripten()) { 638 return kAsanEmscriptenCtorAndDtorPriority; 639 } else { 640 return kAsanCtorAndDtorPriority; 641 } 642 } 643 644 namespace { 645 646 /// AddressSanitizer: instrument the code in module to find memory bugs. 647 struct AddressSanitizer { 648 AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI, 649 int InstrumentationWithCallsThreshold, 650 uint32_t MaxInlinePoisoningSize, bool CompileKernel = false, 651 bool Recover = false, bool UseAfterScope = false, 652 AsanDetectStackUseAfterReturnMode UseAfterReturn = 653 AsanDetectStackUseAfterReturnMode::Runtime) 654 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 655 : CompileKernel), 656 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 657 UseAfterScope(UseAfterScope || ClUseAfterScope), 658 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn 659 : UseAfterReturn), 660 SSGI(SSGI), 661 InstrumentationWithCallsThreshold( 662 ClInstrumentationWithCallsThreshold.getNumOccurrences() > 0 663 ? ClInstrumentationWithCallsThreshold 664 : InstrumentationWithCallsThreshold), 665 MaxInlinePoisoningSize(ClMaxInlinePoisoningSize.getNumOccurrences() > 0 666 ? ClMaxInlinePoisoningSize 667 : MaxInlinePoisoningSize) { 668 C = &(M.getContext()); 669 DL = &M.getDataLayout(); 670 LongSize = M.getDataLayout().getPointerSizeInBits(); 671 IntptrTy = Type::getIntNTy(*C, LongSize); 672 PtrTy = PointerType::getUnqual(*C); 673 Int32Ty = Type::getInt32Ty(*C); 674 TargetTriple = Triple(M.getTargetTriple()); 675 676 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 677 678 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); 679 } 680 681 TypeSize getAllocaSizeInBytes(const AllocaInst &AI) const { 682 return *AI.getAllocationSize(AI.getModule()->getDataLayout()); 683 } 684 685 /// Check if we want (and can) handle this alloca. 686 bool isInterestingAlloca(const AllocaInst &AI); 687 688 bool ignoreAccess(Instruction *Inst, Value *Ptr); 689 void getInterestingMemoryOperands( 690 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 691 692 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 693 InterestingMemoryOperand &O, bool UseCalls, 694 const DataLayout &DL); 695 void instrumentPointerComparisonOrSubtraction(Instruction *I); 696 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 697 Value *Addr, MaybeAlign Alignment, 698 uint32_t TypeStoreSize, bool IsWrite, 699 Value *SizeArgument, bool UseCalls, uint32_t Exp); 700 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 701 Instruction *InsertBefore, Value *Addr, 702 uint32_t TypeStoreSize, bool IsWrite, 703 Value *SizeArgument); 704 Instruction *genAMDGPUReportBlock(IRBuilder<> &IRB, Value *Cond, 705 bool Recover); 706 void instrumentUnusualSizeOrAlignment(Instruction *I, 707 Instruction *InsertBefore, Value *Addr, 708 TypeSize TypeStoreSize, bool IsWrite, 709 Value *SizeArgument, bool UseCalls, 710 uint32_t Exp); 711 void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL, 712 Type *IntptrTy, Value *Mask, Value *EVL, 713 Value *Stride, Instruction *I, Value *Addr, 714 MaybeAlign Alignment, unsigned Granularity, 715 Type *OpType, bool IsWrite, 716 Value *SizeArgument, bool UseCalls, 717 uint32_t Exp); 718 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 719 Value *ShadowValue, uint32_t TypeStoreSize); 720 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 721 bool IsWrite, size_t AccessSizeIndex, 722 Value *SizeArgument, uint32_t Exp); 723 void instrumentMemIntrinsic(MemIntrinsic *MI); 724 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 725 bool suppressInstrumentationSiteForDebug(int &Instrumented); 726 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 727 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 728 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 729 void markEscapedLocalAllocas(Function &F); 730 731 private: 732 friend struct FunctionStackPoisoner; 733 734 void initializeCallbacks(Module &M, const TargetLibraryInfo *TLI); 735 736 bool LooksLikeCodeInBug11395(Instruction *I); 737 bool GlobalIsLinkerInitialized(GlobalVariable *G); 738 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 739 TypeSize TypeStoreSize) const; 740 741 /// Helper to cleanup per-function state. 742 struct FunctionStateRAII { 743 AddressSanitizer *Pass; 744 745 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 746 assert(Pass->ProcessedAllocas.empty() && 747 "last pass forgot to clear cache"); 748 assert(!Pass->LocalDynamicShadow); 749 } 750 751 ~FunctionStateRAII() { 752 Pass->LocalDynamicShadow = nullptr; 753 Pass->ProcessedAllocas.clear(); 754 } 755 }; 756 757 LLVMContext *C; 758 const DataLayout *DL; 759 Triple TargetTriple; 760 int LongSize; 761 bool CompileKernel; 762 bool Recover; 763 bool UseAfterScope; 764 AsanDetectStackUseAfterReturnMode UseAfterReturn; 765 Type *IntptrTy; 766 Type *Int32Ty; 767 PointerType *PtrTy; 768 ShadowMapping Mapping; 769 FunctionCallee AsanHandleNoReturnFunc; 770 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 771 Constant *AsanShadowGlobal; 772 773 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 774 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 775 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 776 777 // These arrays is indexed by AccessIsWrite and Experiment. 778 FunctionCallee AsanErrorCallbackSized[2][2]; 779 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 780 781 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 782 Value *LocalDynamicShadow = nullptr; 783 const StackSafetyGlobalInfo *SSGI; 784 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 785 786 FunctionCallee AMDGPUAddressShared; 787 FunctionCallee AMDGPUAddressPrivate; 788 int InstrumentationWithCallsThreshold; 789 uint32_t MaxInlinePoisoningSize; 790 }; 791 792 class ModuleAddressSanitizer { 793 public: 794 ModuleAddressSanitizer(Module &M, bool InsertVersionCheck, 795 bool CompileKernel = false, bool Recover = false, 796 bool UseGlobalsGC = true, bool UseOdrIndicator = true, 797 AsanDtorKind DestructorKind = AsanDtorKind::Global, 798 AsanCtorKind ConstructorKind = AsanCtorKind::Global) 799 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 800 : CompileKernel), 801 InsertVersionCheck(ClInsertVersionCheck.getNumOccurrences() > 0 802 ? ClInsertVersionCheck 803 : InsertVersionCheck), 804 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 805 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 806 // Enable aliases as they should have no downside with ODR indicators. 807 UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0 808 ? ClUsePrivateAlias 809 : UseOdrIndicator), 810 UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0 811 ? ClUseOdrIndicator 812 : UseOdrIndicator), 813 // Not a typo: ClWithComdat is almost completely pointless without 814 // ClUseGlobalsGC (because then it only works on modules without 815 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 816 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 817 // argument is designed as workaround. Therefore, disable both 818 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 819 // do globals-gc. 820 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 821 DestructorKind(DestructorKind), 822 ConstructorKind(ClConstructorKind.getNumOccurrences() > 0 823 ? ClConstructorKind 824 : ConstructorKind) { 825 C = &(M.getContext()); 826 int LongSize = M.getDataLayout().getPointerSizeInBits(); 827 IntptrTy = Type::getIntNTy(*C, LongSize); 828 PtrTy = PointerType::getUnqual(*C); 829 TargetTriple = Triple(M.getTargetTriple()); 830 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 831 832 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 833 this->DestructorKind = ClOverrideDestructorKind; 834 assert(this->DestructorKind != AsanDtorKind::Invalid); 835 } 836 837 bool instrumentModule(Module &); 838 839 private: 840 void initializeCallbacks(Module &M); 841 842 void instrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 843 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 844 ArrayRef<GlobalVariable *> ExtendedGlobals, 845 ArrayRef<Constant *> MetadataInitializers); 846 void instrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 847 ArrayRef<GlobalVariable *> ExtendedGlobals, 848 ArrayRef<Constant *> MetadataInitializers, 849 const std::string &UniqueModuleId); 850 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 851 ArrayRef<GlobalVariable *> ExtendedGlobals, 852 ArrayRef<Constant *> MetadataInitializers); 853 void 854 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 855 ArrayRef<GlobalVariable *> ExtendedGlobals, 856 ArrayRef<Constant *> MetadataInitializers); 857 858 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 859 StringRef OriginalName); 860 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 861 StringRef InternalSuffix); 862 Instruction *CreateAsanModuleDtor(Module &M); 863 864 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 865 bool shouldInstrumentGlobal(GlobalVariable *G) const; 866 bool ShouldUseMachOGlobalsSection() const; 867 StringRef getGlobalMetadataSection() const; 868 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 869 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 870 uint64_t getMinRedzoneSizeForGlobal() const { 871 return getRedzoneSizeForScale(Mapping.Scale); 872 } 873 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 874 int GetAsanVersion(const Module &M) const; 875 876 bool CompileKernel; 877 bool InsertVersionCheck; 878 bool Recover; 879 bool UseGlobalsGC; 880 bool UsePrivateAlias; 881 bool UseOdrIndicator; 882 bool UseCtorComdat; 883 AsanDtorKind DestructorKind; 884 AsanCtorKind ConstructorKind; 885 Type *IntptrTy; 886 PointerType *PtrTy; 887 LLVMContext *C; 888 Triple TargetTriple; 889 ShadowMapping Mapping; 890 FunctionCallee AsanPoisonGlobals; 891 FunctionCallee AsanUnpoisonGlobals; 892 FunctionCallee AsanRegisterGlobals; 893 FunctionCallee AsanUnregisterGlobals; 894 FunctionCallee AsanRegisterImageGlobals; 895 FunctionCallee AsanUnregisterImageGlobals; 896 FunctionCallee AsanRegisterElfGlobals; 897 FunctionCallee AsanUnregisterElfGlobals; 898 899 Function *AsanCtorFunction = nullptr; 900 Function *AsanDtorFunction = nullptr; 901 }; 902 903 // Stack poisoning does not play well with exception handling. 904 // When an exception is thrown, we essentially bypass the code 905 // that unpoisones the stack. This is why the run-time library has 906 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 907 // stack in the interceptor. This however does not work inside the 908 // actual function which catches the exception. Most likely because the 909 // compiler hoists the load of the shadow value somewhere too high. 910 // This causes asan to report a non-existing bug on 453.povray. 911 // It sounds like an LLVM bug. 912 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 913 Function &F; 914 AddressSanitizer &ASan; 915 DIBuilder DIB; 916 LLVMContext *C; 917 Type *IntptrTy; 918 Type *IntptrPtrTy; 919 ShadowMapping Mapping; 920 921 SmallVector<AllocaInst *, 16> AllocaVec; 922 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 923 SmallVector<Instruction *, 8> RetVec; 924 925 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 926 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 927 FunctionCallee AsanSetShadowFunc[0x100] = {}; 928 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 929 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 930 931 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 932 struct AllocaPoisonCall { 933 IntrinsicInst *InsBefore; 934 AllocaInst *AI; 935 uint64_t Size; 936 bool DoPoison; 937 }; 938 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 939 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 940 bool HasUntracedLifetimeIntrinsic = false; 941 942 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 943 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 944 AllocaInst *DynamicAllocaLayout = nullptr; 945 IntrinsicInst *LocalEscapeCall = nullptr; 946 947 bool HasInlineAsm = false; 948 bool HasReturnsTwiceCall = false; 949 bool PoisonStack; 950 951 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 952 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 953 C(ASan.C), IntptrTy(ASan.IntptrTy), 954 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 955 PoisonStack(ClStack && 956 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 957 958 bool runOnFunction() { 959 if (!PoisonStack) 960 return false; 961 962 if (ClRedzoneByvalArgs) 963 copyArgsPassedByValToAllocas(); 964 965 // Collect alloca, ret, lifetime instructions etc. 966 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 967 968 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 969 970 initializeCallbacks(*F.getParent()); 971 972 if (HasUntracedLifetimeIntrinsic) { 973 // If there are lifetime intrinsics which couldn't be traced back to an 974 // alloca, we may not know exactly when a variable enters scope, and 975 // therefore should "fail safe" by not poisoning them. 976 StaticAllocaPoisonCallVec.clear(); 977 DynamicAllocaPoisonCallVec.clear(); 978 } 979 980 processDynamicAllocas(); 981 processStaticAllocas(); 982 983 if (ClDebugStack) { 984 LLVM_DEBUG(dbgs() << F); 985 } 986 return true; 987 } 988 989 // Arguments marked with the "byval" attribute are implicitly copied without 990 // using an alloca instruction. To produce redzones for those arguments, we 991 // copy them a second time into memory allocated with an alloca instruction. 992 void copyArgsPassedByValToAllocas(); 993 994 // Finds all Alloca instructions and puts 995 // poisoned red zones around all of them. 996 // Then unpoison everything back before the function returns. 997 void processStaticAllocas(); 998 void processDynamicAllocas(); 999 1000 void createDynamicAllocasInitStorage(); 1001 1002 // ----------------------- Visitors. 1003 /// Collect all Ret instructions, or the musttail call instruction if it 1004 /// precedes the return instruction. 1005 void visitReturnInst(ReturnInst &RI) { 1006 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 1007 RetVec.push_back(CI); 1008 else 1009 RetVec.push_back(&RI); 1010 } 1011 1012 /// Collect all Resume instructions. 1013 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 1014 1015 /// Collect all CatchReturnInst instructions. 1016 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 1017 1018 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 1019 Value *SavedStack) { 1020 IRBuilder<> IRB(InstBefore); 1021 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 1022 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1023 // need to adjust extracted SP to compute the address of the most recent 1024 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1025 // this purpose. 1026 if (!isa<ReturnInst>(InstBefore)) { 1027 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 1028 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 1029 {IntptrTy}); 1030 1031 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 1032 1033 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1034 DynamicAreaOffset); 1035 } 1036 1037 IRB.CreateCall( 1038 AsanAllocasUnpoisonFunc, 1039 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1040 } 1041 1042 // Unpoison dynamic allocas redzones. 1043 void unpoisonDynamicAllocas() { 1044 for (Instruction *Ret : RetVec) 1045 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1046 1047 for (Instruction *StackRestoreInst : StackRestoreVec) 1048 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1049 StackRestoreInst->getOperand(0)); 1050 } 1051 1052 // Deploy and poison redzones around dynamic alloca call. To do this, we 1053 // should replace this call with another one with changed parameters and 1054 // replace all its uses with new address, so 1055 // addr = alloca type, old_size, align 1056 // is replaced by 1057 // new_size = (old_size + additional_size) * sizeof(type) 1058 // tmp = alloca i8, new_size, max(align, 32) 1059 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1060 // Additional_size is added to make new memory allocation contain not only 1061 // requested memory, but also left, partial and right redzones. 1062 void handleDynamicAllocaCall(AllocaInst *AI); 1063 1064 /// Collect Alloca instructions we want (and can) handle. 1065 void visitAllocaInst(AllocaInst &AI) { 1066 // FIXME: Handle scalable vectors instead of ignoring them. 1067 if (!ASan.isInterestingAlloca(AI) || 1068 isa<ScalableVectorType>(AI.getAllocatedType())) { 1069 if (AI.isStaticAlloca()) { 1070 // Skip over allocas that are present *before* the first instrumented 1071 // alloca, we don't want to move those around. 1072 if (AllocaVec.empty()) 1073 return; 1074 1075 StaticAllocasToMoveUp.push_back(&AI); 1076 } 1077 return; 1078 } 1079 1080 if (!AI.isStaticAlloca()) 1081 DynamicAllocaVec.push_back(&AI); 1082 else 1083 AllocaVec.push_back(&AI); 1084 } 1085 1086 /// Collect lifetime intrinsic calls to check for use-after-scope 1087 /// errors. 1088 void visitIntrinsicInst(IntrinsicInst &II) { 1089 Intrinsic::ID ID = II.getIntrinsicID(); 1090 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1091 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1092 if (!ASan.UseAfterScope) 1093 return; 1094 if (!II.isLifetimeStartOrEnd()) 1095 return; 1096 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1097 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1098 // If size argument is undefined, don't do anything. 1099 if (Size->isMinusOne()) return; 1100 // Check that size doesn't saturate uint64_t and can 1101 // be stored in IntptrTy. 1102 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1103 if (SizeValue == ~0ULL || 1104 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1105 return; 1106 // Find alloca instruction that corresponds to llvm.lifetime argument. 1107 // Currently we can only handle lifetime markers pointing to the 1108 // beginning of the alloca. 1109 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1110 if (!AI) { 1111 HasUntracedLifetimeIntrinsic = true; 1112 return; 1113 } 1114 // We're interested only in allocas we can handle. 1115 if (!ASan.isInterestingAlloca(*AI)) 1116 return; 1117 bool DoPoison = (ID == Intrinsic::lifetime_end); 1118 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1119 if (AI->isStaticAlloca()) 1120 StaticAllocaPoisonCallVec.push_back(APC); 1121 else if (ClInstrumentDynamicAllocas) 1122 DynamicAllocaPoisonCallVec.push_back(APC); 1123 } 1124 1125 void visitCallBase(CallBase &CB) { 1126 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1127 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1128 HasReturnsTwiceCall |= CI->canReturnTwice(); 1129 } 1130 } 1131 1132 // ---------------------- Helpers. 1133 void initializeCallbacks(Module &M); 1134 1135 // Copies bytes from ShadowBytes into shadow memory for indexes where 1136 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1137 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1138 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1139 IRBuilder<> &IRB, Value *ShadowBase); 1140 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1141 size_t Begin, size_t End, IRBuilder<> &IRB, 1142 Value *ShadowBase); 1143 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1144 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1145 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1146 1147 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1148 1149 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1150 bool Dynamic); 1151 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1152 Instruction *ThenTerm, Value *ValueIfFalse); 1153 }; 1154 1155 } // end anonymous namespace 1156 1157 void AddressSanitizerPass::printPipeline( 1158 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1159 static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline( 1160 OS, MapClassName2PassName); 1161 OS << '<'; 1162 if (Options.CompileKernel) 1163 OS << "kernel"; 1164 OS << '>'; 1165 } 1166 1167 AddressSanitizerPass::AddressSanitizerPass( 1168 const AddressSanitizerOptions &Options, bool UseGlobalGC, 1169 bool UseOdrIndicator, AsanDtorKind DestructorKind, 1170 AsanCtorKind ConstructorKind) 1171 : Options(Options), UseGlobalGC(UseGlobalGC), 1172 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind), 1173 ConstructorKind(ConstructorKind) {} 1174 1175 PreservedAnalyses AddressSanitizerPass::run(Module &M, 1176 ModuleAnalysisManager &MAM) { 1177 ModuleAddressSanitizer ModuleSanitizer( 1178 M, Options.InsertVersionCheck, Options.CompileKernel, Options.Recover, 1179 UseGlobalGC, UseOdrIndicator, DestructorKind, ConstructorKind); 1180 bool Modified = false; 1181 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1182 const StackSafetyGlobalInfo *const SSGI = 1183 ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr; 1184 for (Function &F : M) { 1185 AddressSanitizer FunctionSanitizer( 1186 M, SSGI, Options.InstrumentationWithCallsThreshold, 1187 Options.MaxInlinePoisoningSize, Options.CompileKernel, Options.Recover, 1188 Options.UseAfterScope, Options.UseAfterReturn); 1189 const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1190 Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); 1191 } 1192 Modified |= ModuleSanitizer.instrumentModule(M); 1193 if (!Modified) 1194 return PreservedAnalyses::all(); 1195 1196 PreservedAnalyses PA = PreservedAnalyses::none(); 1197 // GlobalsAA is considered stateless and does not get invalidated unless 1198 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 1199 // make changes that require GlobalsAA to be invalidated. 1200 PA.abandon<GlobalsAA>(); 1201 return PA; 1202 } 1203 1204 static size_t TypeStoreSizeToSizeIndex(uint32_t TypeSize) { 1205 size_t Res = llvm::countr_zero(TypeSize / 8); 1206 assert(Res < kNumberOfAccessSizes); 1207 return Res; 1208 } 1209 1210 /// Check if \p G has been created by a trusted compiler pass. 1211 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1212 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1213 if (G->getName().starts_with("llvm.") || 1214 // Do not instrument gcov counter arrays. 1215 G->getName().starts_with("__llvm_gcov_ctr") || 1216 // Do not instrument rtti proxy symbols for function sanitizer. 1217 G->getName().starts_with("__llvm_rtti_proxy")) 1218 return true; 1219 1220 // Do not instrument asan globals. 1221 if (G->getName().starts_with(kAsanGenPrefix) || 1222 G->getName().starts_with(kSanCovGenPrefix) || 1223 G->getName().starts_with(kODRGenPrefix)) 1224 return true; 1225 1226 return false; 1227 } 1228 1229 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1230 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1231 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1232 if (AddrSpace == 3 || AddrSpace == 5) 1233 return true; 1234 return false; 1235 } 1236 1237 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1238 // Shadow >> scale 1239 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1240 if (Mapping.Offset == 0) return Shadow; 1241 // (Shadow >> scale) | offset 1242 Value *ShadowBase; 1243 if (LocalDynamicShadow) 1244 ShadowBase = LocalDynamicShadow; 1245 else 1246 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1247 if (Mapping.OrShadowOffset) 1248 return IRB.CreateOr(Shadow, ShadowBase); 1249 else 1250 return IRB.CreateAdd(Shadow, ShadowBase); 1251 } 1252 1253 // Instrument memset/memmove/memcpy 1254 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1255 InstrumentationIRBuilder IRB(MI); 1256 if (isa<MemTransferInst>(MI)) { 1257 IRB.CreateCall(isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1258 {MI->getOperand(0), MI->getOperand(1), 1259 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1260 } else if (isa<MemSetInst>(MI)) { 1261 IRB.CreateCall( 1262 AsanMemset, 1263 {MI->getOperand(0), 1264 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1265 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1266 } 1267 MI->eraseFromParent(); 1268 } 1269 1270 /// Check if we want (and can) handle this alloca. 1271 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1272 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1273 1274 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1275 return PreviouslySeenAllocaInfo->getSecond(); 1276 1277 bool IsInteresting = 1278 (AI.getAllocatedType()->isSized() && 1279 // alloca() may be called with 0 size, ignore it. 1280 ((!AI.isStaticAlloca()) || !getAllocaSizeInBytes(AI).isZero()) && 1281 // We are only interested in allocas not promotable to registers. 1282 // Promotable allocas are common under -O0. 1283 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1284 // inalloca allocas are not treated as static, and we don't want 1285 // dynamic alloca instrumentation for them as well. 1286 !AI.isUsedWithInAlloca() && 1287 // swifterror allocas are register promoted by ISel 1288 !AI.isSwiftError() && 1289 // safe allocas are not interesting 1290 !(SSGI && SSGI->isSafe(AI))); 1291 1292 ProcessedAllocas[&AI] = IsInteresting; 1293 return IsInteresting; 1294 } 1295 1296 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { 1297 // Instrument accesses from different address spaces only for AMDGPU. 1298 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1299 if (PtrTy->getPointerAddressSpace() != 0 && 1300 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1301 return true; 1302 1303 // Ignore swifterror addresses. 1304 // swifterror memory addresses are mem2reg promoted by instruction 1305 // selection. As such they cannot have regular uses like an instrumentation 1306 // function and it makes no sense to track them as memory. 1307 if (Ptr->isSwiftError()) 1308 return true; 1309 1310 // Treat memory accesses to promotable allocas as non-interesting since they 1311 // will not cause memory violations. This greatly speeds up the instrumented 1312 // executable at -O0. 1313 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1314 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1315 return true; 1316 1317 if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && 1318 findAllocaForValue(Ptr)) 1319 return true; 1320 1321 return false; 1322 } 1323 1324 void AddressSanitizer::getInterestingMemoryOperands( 1325 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1326 // Do not instrument the load fetching the dynamic shadow address. 1327 if (LocalDynamicShadow == I) 1328 return; 1329 1330 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1331 if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand())) 1332 return; 1333 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1334 LI->getType(), LI->getAlign()); 1335 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1336 if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand())) 1337 return; 1338 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1339 SI->getValueOperand()->getType(), SI->getAlign()); 1340 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1341 if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand())) 1342 return; 1343 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1344 RMW->getValOperand()->getType(), std::nullopt); 1345 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1346 if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand())) 1347 return; 1348 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1349 XCHG->getCompareOperand()->getType(), 1350 std::nullopt); 1351 } else if (auto CI = dyn_cast<CallInst>(I)) { 1352 switch (CI->getIntrinsicID()) { 1353 case Intrinsic::masked_load: 1354 case Intrinsic::masked_store: 1355 case Intrinsic::masked_gather: 1356 case Intrinsic::masked_scatter: { 1357 bool IsWrite = CI->getType()->isVoidTy(); 1358 // Masked store has an initial operand for the value. 1359 unsigned OpOffset = IsWrite ? 1 : 0; 1360 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1361 return; 1362 1363 auto BasePtr = CI->getOperand(OpOffset); 1364 if (ignoreAccess(I, BasePtr)) 1365 return; 1366 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1367 MaybeAlign Alignment = Align(1); 1368 // Otherwise no alignment guarantees. We probably got Undef. 1369 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1370 Alignment = Op->getMaybeAlignValue(); 1371 Value *Mask = CI->getOperand(2 + OpOffset); 1372 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1373 break; 1374 } 1375 case Intrinsic::masked_expandload: 1376 case Intrinsic::masked_compressstore: { 1377 bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_compressstore; 1378 unsigned OpOffset = IsWrite ? 1 : 0; 1379 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1380 return; 1381 auto BasePtr = CI->getOperand(OpOffset); 1382 if (ignoreAccess(I, BasePtr)) 1383 return; 1384 MaybeAlign Alignment = BasePtr->getPointerAlignment(*DL); 1385 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1386 1387 IRBuilder IB(I); 1388 Value *Mask = CI->getOperand(1 + OpOffset); 1389 // Use the popcount of Mask as the effective vector length. 1390 Type *ExtTy = VectorType::get(IntptrTy, cast<VectorType>(Ty)); 1391 Value *ExtMask = IB.CreateZExt(Mask, ExtTy); 1392 Value *EVL = IB.CreateAddReduce(ExtMask); 1393 Value *TrueMask = ConstantInt::get(Mask->getType(), 1); 1394 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, TrueMask, 1395 EVL); 1396 break; 1397 } 1398 case Intrinsic::vp_load: 1399 case Intrinsic::vp_store: 1400 case Intrinsic::experimental_vp_strided_load: 1401 case Intrinsic::experimental_vp_strided_store: { 1402 auto *VPI = cast<VPIntrinsic>(CI); 1403 unsigned IID = CI->getIntrinsicID(); 1404 bool IsWrite = CI->getType()->isVoidTy(); 1405 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1406 return; 1407 unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID); 1408 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1409 MaybeAlign Alignment = VPI->getOperand(PtrOpNo)->getPointerAlignment(*DL); 1410 Value *Stride = nullptr; 1411 if (IID == Intrinsic::experimental_vp_strided_store || 1412 IID == Intrinsic::experimental_vp_strided_load) { 1413 Stride = VPI->getOperand(PtrOpNo + 1); 1414 // Use the pointer alignment as the element alignment if the stride is a 1415 // mutiple of the pointer alignment. Otherwise, the element alignment 1416 // should be Align(1). 1417 unsigned PointerAlign = Alignment.valueOrOne().value(); 1418 if (!isa<ConstantInt>(Stride) || 1419 cast<ConstantInt>(Stride)->getZExtValue() % PointerAlign != 0) 1420 Alignment = Align(1); 1421 } 1422 Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment, 1423 VPI->getMaskParam(), VPI->getVectorLengthParam(), 1424 Stride); 1425 break; 1426 } 1427 case Intrinsic::vp_gather: 1428 case Intrinsic::vp_scatter: { 1429 auto *VPI = cast<VPIntrinsic>(CI); 1430 unsigned IID = CI->getIntrinsicID(); 1431 bool IsWrite = IID == Intrinsic::vp_scatter; 1432 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1433 return; 1434 unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID); 1435 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1436 MaybeAlign Alignment = VPI->getPointerAlignment(); 1437 Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment, 1438 VPI->getMaskParam(), 1439 VPI->getVectorLengthParam()); 1440 break; 1441 } 1442 default: 1443 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { 1444 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1445 ignoreAccess(I, CI->getArgOperand(ArgNo))) 1446 continue; 1447 Type *Ty = CI->getParamByValType(ArgNo); 1448 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1449 } 1450 } 1451 } 1452 } 1453 1454 static bool isPointerOperand(Value *V) { 1455 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1456 } 1457 1458 // This is a rough heuristic; it may cause both false positives and 1459 // false negatives. The proper implementation requires cooperation with 1460 // the frontend. 1461 static bool isInterestingPointerComparison(Instruction *I) { 1462 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1463 if (!Cmp->isRelational()) 1464 return false; 1465 } else { 1466 return false; 1467 } 1468 return isPointerOperand(I->getOperand(0)) && 1469 isPointerOperand(I->getOperand(1)); 1470 } 1471 1472 // This is a rough heuristic; it may cause both false positives and 1473 // false negatives. The proper implementation requires cooperation with 1474 // the frontend. 1475 static bool isInterestingPointerSubtraction(Instruction *I) { 1476 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1477 if (BO->getOpcode() != Instruction::Sub) 1478 return false; 1479 } else { 1480 return false; 1481 } 1482 return isPointerOperand(I->getOperand(0)) && 1483 isPointerOperand(I->getOperand(1)); 1484 } 1485 1486 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1487 // If a global variable does not have dynamic initialization we don't 1488 // have to instrument it. However, if a global does not have initializer 1489 // at all, we assume it has dynamic initializer (in other TU). 1490 if (!G->hasInitializer()) 1491 return false; 1492 1493 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit) 1494 return false; 1495 1496 return true; 1497 } 1498 1499 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1500 Instruction *I) { 1501 IRBuilder<> IRB(I); 1502 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1503 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1504 for (Value *&i : Param) { 1505 if (i->getType()->isPointerTy()) 1506 i = IRB.CreatePointerCast(i, IntptrTy); 1507 } 1508 IRB.CreateCall(F, Param); 1509 } 1510 1511 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1512 Instruction *InsertBefore, Value *Addr, 1513 MaybeAlign Alignment, unsigned Granularity, 1514 TypeSize TypeStoreSize, bool IsWrite, 1515 Value *SizeArgument, bool UseCalls, 1516 uint32_t Exp) { 1517 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1518 // if the data is properly aligned. 1519 if (!TypeStoreSize.isScalable()) { 1520 const auto FixedSize = TypeStoreSize.getFixedValue(); 1521 switch (FixedSize) { 1522 case 8: 1523 case 16: 1524 case 32: 1525 case 64: 1526 case 128: 1527 if (!Alignment || *Alignment >= Granularity || 1528 *Alignment >= FixedSize / 8) 1529 return Pass->instrumentAddress(I, InsertBefore, Addr, Alignment, 1530 FixedSize, IsWrite, nullptr, UseCalls, 1531 Exp); 1532 } 1533 } 1534 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeStoreSize, 1535 IsWrite, nullptr, UseCalls, Exp); 1536 } 1537 1538 void AddressSanitizer::instrumentMaskedLoadOrStore( 1539 AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask, 1540 Value *EVL, Value *Stride, Instruction *I, Value *Addr, 1541 MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite, 1542 Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1543 auto *VTy = cast<VectorType>(OpType); 1544 TypeSize ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1545 auto Zero = ConstantInt::get(IntptrTy, 0); 1546 1547 IRBuilder IB(I); 1548 Instruction *LoopInsertBefore = I; 1549 if (EVL) { 1550 // The end argument of SplitBlockAndInsertForLane is assumed bigger 1551 // than zero, so we should check whether EVL is zero here. 1552 Type *EVLType = EVL->getType(); 1553 Value *IsEVLZero = IB.CreateICmpNE(EVL, ConstantInt::get(EVLType, 0)); 1554 LoopInsertBefore = SplitBlockAndInsertIfThen(IsEVLZero, I, false); 1555 IB.SetInsertPoint(LoopInsertBefore); 1556 // Cast EVL to IntptrTy. 1557 EVL = IB.CreateZExtOrTrunc(EVL, IntptrTy); 1558 // To avoid undefined behavior for extracting with out of range index, use 1559 // the minimum of evl and element count as trip count. 1560 Value *EC = IB.CreateElementCount(IntptrTy, VTy->getElementCount()); 1561 EVL = IB.CreateBinaryIntrinsic(Intrinsic::umin, EVL, EC); 1562 } else { 1563 EVL = IB.CreateElementCount(IntptrTy, VTy->getElementCount()); 1564 } 1565 1566 // Cast Stride to IntptrTy. 1567 if (Stride) 1568 Stride = IB.CreateZExtOrTrunc(Stride, IntptrTy); 1569 1570 SplitBlockAndInsertForEachLane(EVL, LoopInsertBefore, 1571 [&](IRBuilderBase &IRB, Value *Index) { 1572 Value *MaskElem = IRB.CreateExtractElement(Mask, Index); 1573 if (auto *MaskElemC = dyn_cast<ConstantInt>(MaskElem)) { 1574 if (MaskElemC->isZero()) 1575 // No check 1576 return; 1577 // Unconditional check 1578 } else { 1579 // Conditional check 1580 Instruction *ThenTerm = SplitBlockAndInsertIfThen( 1581 MaskElem, &*IRB.GetInsertPoint(), false); 1582 IRB.SetInsertPoint(ThenTerm); 1583 } 1584 1585 Value *InstrumentedAddress; 1586 if (isa<VectorType>(Addr->getType())) { 1587 assert( 1588 cast<VectorType>(Addr->getType())->getElementType()->isPointerTy() && 1589 "Expected vector of pointer."); 1590 InstrumentedAddress = IRB.CreateExtractElement(Addr, Index); 1591 } else if (Stride) { 1592 Index = IRB.CreateMul(Index, Stride); 1593 Addr = IRB.CreateBitCast(Addr, PointerType::getUnqual(*C)); 1594 InstrumentedAddress = IRB.CreateGEP(Type::getInt8Ty(*C), Addr, {Index}); 1595 } else { 1596 InstrumentedAddress = IRB.CreateGEP(VTy, Addr, {Zero, Index}); 1597 } 1598 doInstrumentAddress(Pass, I, &*IRB.GetInsertPoint(), 1599 InstrumentedAddress, Alignment, Granularity, 1600 ElemTypeSize, IsWrite, SizeArgument, UseCalls, Exp); 1601 }); 1602 } 1603 1604 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1605 InterestingMemoryOperand &O, bool UseCalls, 1606 const DataLayout &DL) { 1607 Value *Addr = O.getPtr(); 1608 1609 // Optimization experiments. 1610 // The experiments can be used to evaluate potential optimizations that remove 1611 // instrumentation (assess false negatives). Instead of completely removing 1612 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1613 // experiments that want to remove instrumentation of this instruction). 1614 // If Exp is non-zero, this pass will emit special calls into runtime 1615 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1616 // make runtime terminate the program in a special way (with a different 1617 // exit status). Then you run the new compiler on a buggy corpus, collect 1618 // the special terminations (ideally, you don't see them at all -- no false 1619 // negatives) and make the decision on the optimization. 1620 uint32_t Exp = ClForceExperiment; 1621 1622 if (ClOpt && ClOptGlobals) { 1623 // If initialization order checking is disabled, a simple access to a 1624 // dynamically initialized global is always valid. 1625 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1626 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1627 isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) { 1628 NumOptimizedAccessesToGlobalVar++; 1629 return; 1630 } 1631 } 1632 1633 if (ClOpt && ClOptStack) { 1634 // A direct inbounds access to a stack variable is always valid. 1635 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1636 isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) { 1637 NumOptimizedAccessesToStackVar++; 1638 return; 1639 } 1640 } 1641 1642 if (O.IsWrite) 1643 NumInstrumentedWrites++; 1644 else 1645 NumInstrumentedReads++; 1646 1647 unsigned Granularity = 1 << Mapping.Scale; 1648 if (O.MaybeMask) { 1649 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.MaybeEVL, 1650 O.MaybeStride, O.getInsn(), Addr, O.Alignment, 1651 Granularity, O.OpType, O.IsWrite, nullptr, 1652 UseCalls, Exp); 1653 } else { 1654 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1655 Granularity, O.TypeStoreSize, O.IsWrite, nullptr, UseCalls, 1656 Exp); 1657 } 1658 } 1659 1660 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1661 Value *Addr, bool IsWrite, 1662 size_t AccessSizeIndex, 1663 Value *SizeArgument, 1664 uint32_t Exp) { 1665 InstrumentationIRBuilder IRB(InsertBefore); 1666 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1667 CallInst *Call = nullptr; 1668 if (SizeArgument) { 1669 if (Exp == 0) 1670 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1671 {Addr, SizeArgument}); 1672 else 1673 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1674 {Addr, SizeArgument, ExpVal}); 1675 } else { 1676 if (Exp == 0) 1677 Call = 1678 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1679 else 1680 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1681 {Addr, ExpVal}); 1682 } 1683 1684 Call->setCannotMerge(); 1685 return Call; 1686 } 1687 1688 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1689 Value *ShadowValue, 1690 uint32_t TypeStoreSize) { 1691 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1692 // Addr & (Granularity - 1) 1693 Value *LastAccessedByte = 1694 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1695 // (Addr & (Granularity - 1)) + size - 1 1696 if (TypeStoreSize / 8 > 1) 1697 LastAccessedByte = IRB.CreateAdd( 1698 LastAccessedByte, ConstantInt::get(IntptrTy, TypeStoreSize / 8 - 1)); 1699 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1700 LastAccessedByte = 1701 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1702 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1703 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1704 } 1705 1706 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1707 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1708 uint32_t TypeStoreSize, bool IsWrite, Value *SizeArgument) { 1709 // Do not instrument unsupported addrspaces. 1710 if (isUnsupportedAMDGPUAddrspace(Addr)) 1711 return nullptr; 1712 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1713 // Follow host instrumentation for global and constant addresses. 1714 if (PtrTy->getPointerAddressSpace() != 0) 1715 return InsertBefore; 1716 // Instrument generic addresses in supported addressspaces. 1717 IRBuilder<> IRB(InsertBefore); 1718 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {Addr}); 1719 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {Addr}); 1720 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1721 Value *Cmp = IRB.CreateNot(IsSharedOrPrivate); 1722 Value *AddrSpaceZeroLanding = 1723 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1724 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1725 return InsertBefore; 1726 } 1727 1728 Instruction *AddressSanitizer::genAMDGPUReportBlock(IRBuilder<> &IRB, 1729 Value *Cond, bool Recover) { 1730 Module &M = *IRB.GetInsertBlock()->getModule(); 1731 Value *ReportCond = Cond; 1732 if (!Recover) { 1733 auto Ballot = M.getOrInsertFunction(kAMDGPUBallotName, IRB.getInt64Ty(), 1734 IRB.getInt1Ty()); 1735 ReportCond = IRB.CreateIsNotNull(IRB.CreateCall(Ballot, {Cond})); 1736 } 1737 1738 auto *Trm = 1739 SplitBlockAndInsertIfThen(ReportCond, &*IRB.GetInsertPoint(), false, 1740 MDBuilder(*C).createBranchWeights(1, 100000)); 1741 Trm->getParent()->setName("asan.report"); 1742 1743 if (Recover) 1744 return Trm; 1745 1746 Trm = SplitBlockAndInsertIfThen(Cond, Trm, false); 1747 IRB.SetInsertPoint(Trm); 1748 return IRB.CreateCall( 1749 M.getOrInsertFunction(kAMDGPUUnreachableName, IRB.getVoidTy()), {}); 1750 } 1751 1752 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1753 Instruction *InsertBefore, Value *Addr, 1754 MaybeAlign Alignment, 1755 uint32_t TypeStoreSize, bool IsWrite, 1756 Value *SizeArgument, bool UseCalls, 1757 uint32_t Exp) { 1758 if (TargetTriple.isAMDGPU()) { 1759 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1760 TypeStoreSize, IsWrite, SizeArgument); 1761 if (!InsertBefore) 1762 return; 1763 } 1764 1765 InstrumentationIRBuilder IRB(InsertBefore); 1766 size_t AccessSizeIndex = TypeStoreSizeToSizeIndex(TypeStoreSize); 1767 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1768 1769 if (UseCalls && ClOptimizeCallbacks) { 1770 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1771 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1772 IRB.CreateCall( 1773 Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), 1774 {IRB.CreatePointerCast(Addr, PtrTy), 1775 ConstantInt::get(Int32Ty, AccessInfo.Packed)}); 1776 return; 1777 } 1778 1779 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1780 if (UseCalls) { 1781 if (Exp == 0) 1782 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1783 AddrLong); 1784 else 1785 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1786 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1787 return; 1788 } 1789 1790 Type *ShadowTy = 1791 IntegerType::get(*C, std::max(8U, TypeStoreSize >> Mapping.Scale)); 1792 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1793 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1794 const uint64_t ShadowAlign = 1795 std::max<uint64_t>(Alignment.valueOrOne().value() >> Mapping.Scale, 1); 1796 Value *ShadowValue = IRB.CreateAlignedLoad( 1797 ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy), Align(ShadowAlign)); 1798 1799 Value *Cmp = IRB.CreateIsNotNull(ShadowValue); 1800 size_t Granularity = 1ULL << Mapping.Scale; 1801 Instruction *CrashTerm = nullptr; 1802 1803 bool GenSlowPath = (ClAlwaysSlowPath || (TypeStoreSize < 8 * Granularity)); 1804 1805 if (TargetTriple.isAMDGCN()) { 1806 if (GenSlowPath) { 1807 auto *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize); 1808 Cmp = IRB.CreateAnd(Cmp, Cmp2); 1809 } 1810 CrashTerm = genAMDGPUReportBlock(IRB, Cmp, Recover); 1811 } else if (GenSlowPath) { 1812 // We use branch weights for the slow path check, to indicate that the slow 1813 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1814 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1815 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1816 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1817 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1818 IRB.SetInsertPoint(CheckTerm); 1819 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize); 1820 if (Recover) { 1821 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1822 } else { 1823 BasicBlock *CrashBlock = 1824 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1825 CrashTerm = new UnreachableInst(*C, CrashBlock); 1826 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1827 ReplaceInstWithInst(CheckTerm, NewTerm); 1828 } 1829 } else { 1830 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1831 } 1832 1833 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1834 AccessSizeIndex, SizeArgument, Exp); 1835 if (OrigIns->getDebugLoc()) 1836 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1837 } 1838 1839 // Instrument unusual size or unusual alignment. 1840 // We can not do it with a single check, so we do 1-byte check for the first 1841 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1842 // to report the actual access size. 1843 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1844 Instruction *I, Instruction *InsertBefore, Value *Addr, TypeSize TypeStoreSize, 1845 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1846 InstrumentationIRBuilder IRB(InsertBefore); 1847 Value *NumBits = IRB.CreateTypeSize(IntptrTy, TypeStoreSize); 1848 Value *Size = IRB.CreateLShr(NumBits, ConstantInt::get(IntptrTy, 3)); 1849 1850 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1851 if (UseCalls) { 1852 if (Exp == 0) 1853 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1854 {AddrLong, Size}); 1855 else 1856 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1857 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1858 } else { 1859 Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1)); 1860 Value *LastByte = IRB.CreateIntToPtr( 1861 IRB.CreateAdd(AddrLong, SizeMinusOne), 1862 Addr->getType()); 1863 instrumentAddress(I, InsertBefore, Addr, {}, 8, IsWrite, Size, false, Exp); 1864 instrumentAddress(I, InsertBefore, LastByte, {}, 8, IsWrite, Size, false, 1865 Exp); 1866 } 1867 } 1868 1869 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1870 GlobalValue *ModuleName) { 1871 // Set up the arguments to our poison/unpoison functions. 1872 IRBuilder<> IRB(&GlobalInit.front(), 1873 GlobalInit.front().getFirstInsertionPt()); 1874 1875 // Add a call to poison all external globals before the given function starts. 1876 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1877 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1878 1879 // Add calls to unpoison all globals before each return instruction. 1880 for (auto &BB : GlobalInit) 1881 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1882 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1883 } 1884 1885 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1886 Module &M, GlobalValue *ModuleName) { 1887 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1888 if (!GV) 1889 return; 1890 1891 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1892 if (!CA) 1893 return; 1894 1895 for (Use &OP : CA->operands()) { 1896 if (isa<ConstantAggregateZero>(OP)) continue; 1897 ConstantStruct *CS = cast<ConstantStruct>(OP); 1898 1899 // Must have a function or null ptr. 1900 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1901 if (F->getName() == kAsanModuleCtorName) continue; 1902 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1903 // Don't instrument CTORs that will run before asan.module_ctor. 1904 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1905 continue; 1906 poisonOneInitializer(*F, ModuleName); 1907 } 1908 } 1909 } 1910 1911 const GlobalVariable * 1912 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1913 // In case this function should be expanded to include rules that do not just 1914 // apply when CompileKernel is true, either guard all existing rules with an 1915 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1916 // should also apply to user space. 1917 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1918 1919 const Constant *C = GA.getAliasee(); 1920 1921 // When compiling the kernel, globals that are aliased by symbols prefixed 1922 // by "__" are special and cannot be padded with a redzone. 1923 if (GA.getName().starts_with("__")) 1924 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1925 1926 return nullptr; 1927 } 1928 1929 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1930 Type *Ty = G->getValueType(); 1931 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1932 1933 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress) 1934 return false; 1935 if (!Ty->isSized()) return false; 1936 if (!G->hasInitializer()) return false; 1937 // Globals in address space 1 and 4 are supported for AMDGPU. 1938 if (G->getAddressSpace() && 1939 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 1940 return false; 1941 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1942 // Two problems with thread-locals: 1943 // - The address of the main thread's copy can't be computed at link-time. 1944 // - Need to poison all copies, not just the main thread's one. 1945 if (G->isThreadLocal()) return false; 1946 // For now, just ignore this Global if the alignment is large. 1947 if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false; 1948 1949 // For non-COFF targets, only instrument globals known to be defined by this 1950 // TU. 1951 // FIXME: We can instrument comdat globals on ELF if we are using the 1952 // GC-friendly metadata scheme. 1953 if (!TargetTriple.isOSBinFormatCOFF()) { 1954 if (!G->hasExactDefinition() || G->hasComdat()) 1955 return false; 1956 } else { 1957 // On COFF, don't instrument non-ODR linkages. 1958 if (G->isInterposable()) 1959 return false; 1960 } 1961 1962 // If a comdat is present, it must have a selection kind that implies ODR 1963 // semantics: no duplicates, any, or exact match. 1964 if (Comdat *C = G->getComdat()) { 1965 switch (C->getSelectionKind()) { 1966 case Comdat::Any: 1967 case Comdat::ExactMatch: 1968 case Comdat::NoDeduplicate: 1969 break; 1970 case Comdat::Largest: 1971 case Comdat::SameSize: 1972 return false; 1973 } 1974 } 1975 1976 if (G->hasSection()) { 1977 // The kernel uses explicit sections for mostly special global variables 1978 // that we should not instrument. E.g. the kernel may rely on their layout 1979 // without redzones, or remove them at link time ("discard.*"), etc. 1980 if (CompileKernel) 1981 return false; 1982 1983 StringRef Section = G->getSection(); 1984 1985 // Globals from llvm.metadata aren't emitted, do not instrument them. 1986 if (Section == "llvm.metadata") return false; 1987 // Do not instrument globals from special LLVM sections. 1988 if (Section.contains("__llvm") || Section.contains("__LLVM")) 1989 return false; 1990 1991 // Do not instrument function pointers to initialization and termination 1992 // routines: dynamic linker will not properly handle redzones. 1993 if (Section.starts_with(".preinit_array") || 1994 Section.starts_with(".init_array") || 1995 Section.starts_with(".fini_array")) { 1996 return false; 1997 } 1998 1999 // Do not instrument user-defined sections (with names resembling 2000 // valid C identifiers) 2001 if (TargetTriple.isOSBinFormatELF()) { 2002 if (llvm::all_of(Section, 2003 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 2004 return false; 2005 } 2006 2007 // On COFF, if the section name contains '$', it is highly likely that the 2008 // user is using section sorting to create an array of globals similar to 2009 // the way initialization callbacks are registered in .init_array and 2010 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 2011 // to such globals is counterproductive, because the intent is that they 2012 // will form an array, and out-of-bounds accesses are expected. 2013 // See https://github.com/google/sanitizers/issues/305 2014 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 2015 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 2016 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 2017 << *G << "\n"); 2018 return false; 2019 } 2020 2021 if (TargetTriple.isOSBinFormatMachO()) { 2022 StringRef ParsedSegment, ParsedSection; 2023 unsigned TAA = 0, StubSize = 0; 2024 bool TAAParsed; 2025 cantFail(MCSectionMachO::ParseSectionSpecifier( 2026 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 2027 2028 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 2029 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 2030 // them. 2031 if (ParsedSegment == "__OBJC" || 2032 (ParsedSegment == "__DATA" && ParsedSection.starts_with("__objc_"))) { 2033 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 2034 return false; 2035 } 2036 // See https://github.com/google/sanitizers/issues/32 2037 // Constant CFString instances are compiled in the following way: 2038 // -- the string buffer is emitted into 2039 // __TEXT,__cstring,cstring_literals 2040 // -- the constant NSConstantString structure referencing that buffer 2041 // is placed into __DATA,__cfstring 2042 // Therefore there's no point in placing redzones into __DATA,__cfstring. 2043 // Moreover, it causes the linker to crash on OS X 10.7 2044 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 2045 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 2046 return false; 2047 } 2048 // The linker merges the contents of cstring_literals and removes the 2049 // trailing zeroes. 2050 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 2051 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 2052 return false; 2053 } 2054 } 2055 } 2056 2057 if (CompileKernel) { 2058 // Globals that prefixed by "__" are special and cannot be padded with a 2059 // redzone. 2060 if (G->getName().starts_with("__")) 2061 return false; 2062 } 2063 2064 return true; 2065 } 2066 2067 // On Mach-O platforms, we emit global metadata in a separate section of the 2068 // binary in order to allow the linker to properly dead strip. This is only 2069 // supported on recent versions of ld64. 2070 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 2071 if (!TargetTriple.isOSBinFormatMachO()) 2072 return false; 2073 2074 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 2075 return true; 2076 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 2077 return true; 2078 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 2079 return true; 2080 if (TargetTriple.isDriverKit()) 2081 return true; 2082 2083 return false; 2084 } 2085 2086 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 2087 switch (TargetTriple.getObjectFormat()) { 2088 case Triple::COFF: return ".ASAN$GL"; 2089 case Triple::ELF: return "asan_globals"; 2090 case Triple::MachO: return "__DATA,__asan_globals,regular"; 2091 case Triple::Wasm: 2092 case Triple::GOFF: 2093 case Triple::SPIRV: 2094 case Triple::XCOFF: 2095 case Triple::DXContainer: 2096 report_fatal_error( 2097 "ModuleAddressSanitizer not implemented for object file format"); 2098 case Triple::UnknownObjectFormat: 2099 break; 2100 } 2101 llvm_unreachable("unsupported object format"); 2102 } 2103 2104 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 2105 IRBuilder<> IRB(*C); 2106 2107 // Declare our poisoning and unpoisoning functions. 2108 AsanPoisonGlobals = 2109 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 2110 AsanUnpoisonGlobals = 2111 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 2112 2113 // Declare functions that register/unregister globals. 2114 AsanRegisterGlobals = M.getOrInsertFunction( 2115 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2116 AsanUnregisterGlobals = M.getOrInsertFunction( 2117 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2118 2119 // Declare the functions that find globals in a shared object and then invoke 2120 // the (un)register function on them. 2121 AsanRegisterImageGlobals = M.getOrInsertFunction( 2122 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2123 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2124 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2125 2126 AsanRegisterElfGlobals = 2127 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2128 IntptrTy, IntptrTy, IntptrTy); 2129 AsanUnregisterElfGlobals = 2130 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2131 IntptrTy, IntptrTy, IntptrTy); 2132 } 2133 2134 // Put the metadata and the instrumented global in the same group. This ensures 2135 // that the metadata is discarded if the instrumented global is discarded. 2136 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2137 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2138 Module &M = *G->getParent(); 2139 Comdat *C = G->getComdat(); 2140 if (!C) { 2141 if (!G->hasName()) { 2142 // If G is unnamed, it must be internal. Give it an artificial name 2143 // so we can put it in a comdat. 2144 assert(G->hasLocalLinkage()); 2145 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2146 } 2147 2148 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2149 std::string Name = std::string(G->getName()); 2150 Name += InternalSuffix; 2151 C = M.getOrInsertComdat(Name); 2152 } else { 2153 C = M.getOrInsertComdat(G->getName()); 2154 } 2155 2156 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2157 // linkage to internal linkage so that a symbol table entry is emitted. This 2158 // is necessary in order to create the comdat group. 2159 if (TargetTriple.isOSBinFormatCOFF()) { 2160 C->setSelectionKind(Comdat::NoDeduplicate); 2161 if (G->hasPrivateLinkage()) 2162 G->setLinkage(GlobalValue::InternalLinkage); 2163 } 2164 G->setComdat(C); 2165 } 2166 2167 assert(G->hasComdat()); 2168 Metadata->setComdat(G->getComdat()); 2169 } 2170 2171 // Create a separate metadata global and put it in the appropriate ASan 2172 // global registration section. 2173 GlobalVariable * 2174 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2175 StringRef OriginalName) { 2176 auto Linkage = TargetTriple.isOSBinFormatMachO() 2177 ? GlobalVariable::InternalLinkage 2178 : GlobalVariable::PrivateLinkage; 2179 GlobalVariable *Metadata = new GlobalVariable( 2180 M, Initializer->getType(), false, Linkage, Initializer, 2181 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2182 Metadata->setSection(getGlobalMetadataSection()); 2183 // Place metadata in a large section for x86-64 ELF binaries to mitigate 2184 // relocation pressure. 2185 setGlobalVariableLargeSection(TargetTriple, *Metadata); 2186 return Metadata; 2187 } 2188 2189 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2190 AsanDtorFunction = Function::createWithDefaultAttr( 2191 FunctionType::get(Type::getVoidTy(*C), false), 2192 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2193 AsanDtorFunction->addFnAttr(Attribute::NoUnwind); 2194 // Ensure Dtor cannot be discarded, even if in a comdat. 2195 appendToUsed(M, {AsanDtorFunction}); 2196 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2197 2198 return ReturnInst::Create(*C, AsanDtorBB); 2199 } 2200 2201 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2202 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2203 ArrayRef<Constant *> MetadataInitializers) { 2204 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2205 auto &DL = M.getDataLayout(); 2206 2207 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2208 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2209 Constant *Initializer = MetadataInitializers[i]; 2210 GlobalVariable *G = ExtendedGlobals[i]; 2211 GlobalVariable *Metadata = 2212 CreateMetadataGlobal(M, Initializer, G->getName()); 2213 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2214 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2215 MetadataGlobals[i] = Metadata; 2216 2217 // The MSVC linker always inserts padding when linking incrementally. We 2218 // cope with that by aligning each struct to its size, which must be a power 2219 // of two. 2220 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2221 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2222 "global metadata will not be padded appropriately"); 2223 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2224 2225 SetComdatForGlobalMetadata(G, Metadata, ""); 2226 } 2227 2228 // Update llvm.compiler.used, adding the new metadata globals. This is 2229 // needed so that during LTO these variables stay alive. 2230 if (!MetadataGlobals.empty()) 2231 appendToCompilerUsed(M, MetadataGlobals); 2232 } 2233 2234 void ModuleAddressSanitizer::instrumentGlobalsELF( 2235 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2236 ArrayRef<Constant *> MetadataInitializers, 2237 const std::string &UniqueModuleId) { 2238 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2239 2240 // Putting globals in a comdat changes the semantic and potentially cause 2241 // false negative odr violations at link time. If odr indicators are used, we 2242 // keep the comdat sections, as link time odr violations will be dectected on 2243 // the odr indicator symbols. 2244 bool UseComdatForGlobalsGC = UseOdrIndicator && !UniqueModuleId.empty(); 2245 2246 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2247 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2248 GlobalVariable *G = ExtendedGlobals[i]; 2249 GlobalVariable *Metadata = 2250 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2251 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2252 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2253 MetadataGlobals[i] = Metadata; 2254 2255 if (UseComdatForGlobalsGC) 2256 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2257 } 2258 2259 // Update llvm.compiler.used, adding the new metadata globals. This is 2260 // needed so that during LTO these variables stay alive. 2261 if (!MetadataGlobals.empty()) 2262 appendToCompilerUsed(M, MetadataGlobals); 2263 2264 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2265 // to look up the loaded image that contains it. Second, we can store in it 2266 // whether registration has already occurred, to prevent duplicate 2267 // registration. 2268 // 2269 // Common linkage ensures that there is only one global per shared library. 2270 GlobalVariable *RegisteredFlag = new GlobalVariable( 2271 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2272 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2273 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2274 2275 // Create start and stop symbols. 2276 GlobalVariable *StartELFMetadata = new GlobalVariable( 2277 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2278 "__start_" + getGlobalMetadataSection()); 2279 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2280 GlobalVariable *StopELFMetadata = new GlobalVariable( 2281 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2282 "__stop_" + getGlobalMetadataSection()); 2283 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2284 2285 // Create a call to register the globals with the runtime. 2286 if (ConstructorKind == AsanCtorKind::Global) 2287 IRB.CreateCall(AsanRegisterElfGlobals, 2288 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2289 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2290 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2291 2292 // We also need to unregister globals at the end, e.g., when a shared library 2293 // gets closed. 2294 if (DestructorKind != AsanDtorKind::None && !MetadataGlobals.empty()) { 2295 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2296 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2297 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2298 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2299 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2300 } 2301 } 2302 2303 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2304 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2305 ArrayRef<Constant *> MetadataInitializers) { 2306 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2307 2308 // On recent Mach-O platforms, use a structure which binds the liveness of 2309 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2310 // created to be added to llvm.compiler.used 2311 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2312 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2313 2314 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2315 Constant *Initializer = MetadataInitializers[i]; 2316 GlobalVariable *G = ExtendedGlobals[i]; 2317 GlobalVariable *Metadata = 2318 CreateMetadataGlobal(M, Initializer, G->getName()); 2319 2320 // On recent Mach-O platforms, we emit the global metadata in a way that 2321 // allows the linker to properly strip dead globals. 2322 auto LivenessBinder = 2323 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2324 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2325 GlobalVariable *Liveness = new GlobalVariable( 2326 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2327 Twine("__asan_binder_") + G->getName()); 2328 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2329 LivenessGlobals[i] = Liveness; 2330 } 2331 2332 // Update llvm.compiler.used, adding the new liveness globals. This is 2333 // needed so that during LTO these variables stay alive. The alternative 2334 // would be to have the linker handling the LTO symbols, but libLTO 2335 // current API does not expose access to the section for each symbol. 2336 if (!LivenessGlobals.empty()) 2337 appendToCompilerUsed(M, LivenessGlobals); 2338 2339 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2340 // to look up the loaded image that contains it. Second, we can store in it 2341 // whether registration has already occurred, to prevent duplicate 2342 // registration. 2343 // 2344 // common linkage ensures that there is only one global per shared library. 2345 GlobalVariable *RegisteredFlag = new GlobalVariable( 2346 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2347 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2348 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2349 2350 if (ConstructorKind == AsanCtorKind::Global) 2351 IRB.CreateCall(AsanRegisterImageGlobals, 2352 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2353 2354 // We also need to unregister globals at the end, e.g., when a shared library 2355 // gets closed. 2356 if (DestructorKind != AsanDtorKind::None) { 2357 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2358 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2359 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2360 } 2361 } 2362 2363 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2364 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2365 ArrayRef<Constant *> MetadataInitializers) { 2366 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2367 unsigned N = ExtendedGlobals.size(); 2368 assert(N > 0); 2369 2370 // On platforms that don't have a custom metadata section, we emit an array 2371 // of global metadata structures. 2372 ArrayType *ArrayOfGlobalStructTy = 2373 ArrayType::get(MetadataInitializers[0]->getType(), N); 2374 auto AllGlobals = new GlobalVariable( 2375 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2376 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2377 if (Mapping.Scale > 3) 2378 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2379 2380 if (ConstructorKind == AsanCtorKind::Global) 2381 IRB.CreateCall(AsanRegisterGlobals, 2382 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2383 ConstantInt::get(IntptrTy, N)}); 2384 2385 // We also need to unregister globals at the end, e.g., when a shared library 2386 // gets closed. 2387 if (DestructorKind != AsanDtorKind::None) { 2388 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2389 IrbDtor.CreateCall(AsanUnregisterGlobals, 2390 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2391 ConstantInt::get(IntptrTy, N)}); 2392 } 2393 } 2394 2395 // This function replaces all global variables with new variables that have 2396 // trailing redzones. It also creates a function that poisons 2397 // redzones and inserts this function into llvm.global_ctors. 2398 // Sets *CtorComdat to true if the global registration code emitted into the 2399 // asan constructor is comdat-compatible. 2400 void ModuleAddressSanitizer::instrumentGlobals(IRBuilder<> &IRB, Module &M, 2401 bool *CtorComdat) { 2402 // Build set of globals that are aliased by some GA, where 2403 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2404 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2405 if (CompileKernel) { 2406 for (auto &GA : M.aliases()) { 2407 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2408 AliasedGlobalExclusions.insert(GV); 2409 } 2410 } 2411 2412 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2413 for (auto &G : M.globals()) { 2414 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2415 GlobalsToChange.push_back(&G); 2416 } 2417 2418 size_t n = GlobalsToChange.size(); 2419 auto &DL = M.getDataLayout(); 2420 2421 // A global is described by a structure 2422 // size_t beg; 2423 // size_t size; 2424 // size_t size_with_redzone; 2425 // const char *name; 2426 // const char *module_name; 2427 // size_t has_dynamic_init; 2428 // size_t padding_for_windows_msvc_incremental_link; 2429 // size_t odr_indicator; 2430 // We initialize an array of such structures and pass it to a run-time call. 2431 StructType *GlobalStructTy = 2432 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2433 IntptrTy, IntptrTy, IntptrTy); 2434 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2435 SmallVector<Constant *, 16> Initializers(n); 2436 2437 bool HasDynamicallyInitializedGlobals = false; 2438 2439 // We shouldn't merge same module names, as this string serves as unique 2440 // module ID in runtime. 2441 GlobalVariable *ModuleName = 2442 n != 0 2443 ? createPrivateGlobalForString(M, M.getModuleIdentifier(), 2444 /*AllowMerging*/ false, kAsanGenPrefix) 2445 : nullptr; 2446 2447 for (size_t i = 0; i < n; i++) { 2448 GlobalVariable *G = GlobalsToChange[i]; 2449 2450 GlobalValue::SanitizerMetadata MD; 2451 if (G->hasSanitizerMetadata()) 2452 MD = G->getSanitizerMetadata(); 2453 2454 // The runtime library tries demangling symbol names in the descriptor but 2455 // functionality like __cxa_demangle may be unavailable (e.g. 2456 // -static-libstdc++). So we demangle the symbol names here. 2457 std::string NameForGlobal = G->getName().str(); 2458 GlobalVariable *Name = 2459 createPrivateGlobalForString(M, llvm::demangle(NameForGlobal), 2460 /*AllowMerging*/ true, kAsanGenPrefix); 2461 2462 Type *Ty = G->getValueType(); 2463 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2464 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2465 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2466 2467 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2468 Constant *NewInitializer = ConstantStruct::get( 2469 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2470 2471 // Create a new global variable with enough space for a redzone. 2472 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2473 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2474 Linkage = GlobalValue::InternalLinkage; 2475 GlobalVariable *NewGlobal = new GlobalVariable( 2476 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2477 G->getThreadLocalMode(), G->getAddressSpace()); 2478 NewGlobal->copyAttributesFrom(G); 2479 NewGlobal->setComdat(G->getComdat()); 2480 NewGlobal->setAlignment(Align(getMinRedzoneSizeForGlobal())); 2481 // Don't fold globals with redzones. ODR violation detector and redzone 2482 // poisoning implicitly creates a dependence on the global's address, so it 2483 // is no longer valid for it to be marked unnamed_addr. 2484 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2485 2486 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2487 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2488 G->isConstant()) { 2489 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2490 if (Seq && Seq->isCString()) 2491 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2492 } 2493 2494 // Transfer the debug info and type metadata. The payload starts at offset 2495 // zero so we can copy the metadata over as is. 2496 NewGlobal->copyMetadata(G, 0); 2497 2498 Value *Indices2[2]; 2499 Indices2[0] = IRB.getInt32(0); 2500 Indices2[1] = IRB.getInt32(0); 2501 2502 G->replaceAllUsesWith( 2503 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2504 NewGlobal->takeName(G); 2505 G->eraseFromParent(); 2506 NewGlobals[i] = NewGlobal; 2507 2508 Constant *ODRIndicator = ConstantPointerNull::get(PtrTy); 2509 GlobalValue *InstrumentedGlobal = NewGlobal; 2510 2511 bool CanUsePrivateAliases = 2512 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2513 TargetTriple.isOSBinFormatWasm(); 2514 if (CanUsePrivateAliases && UsePrivateAlias) { 2515 // Create local alias for NewGlobal to avoid crash on ODR between 2516 // instrumented and non-instrumented libraries. 2517 InstrumentedGlobal = 2518 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2519 } 2520 2521 // ODR should not happen for local linkage. 2522 if (NewGlobal->hasLocalLinkage()) { 2523 ODRIndicator = 2524 ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), PtrTy); 2525 } else if (UseOdrIndicator) { 2526 // With local aliases, we need to provide another externally visible 2527 // symbol __odr_asan_XXX to detect ODR violation. 2528 auto *ODRIndicatorSym = 2529 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2530 Constant::getNullValue(IRB.getInt8Ty()), 2531 kODRGenPrefix + NameForGlobal, nullptr, 2532 NewGlobal->getThreadLocalMode()); 2533 2534 // Set meaningful attributes for indicator symbol. 2535 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2536 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2537 ODRIndicatorSym->setAlignment(Align(1)); 2538 ODRIndicator = ODRIndicatorSym; 2539 } 2540 2541 Constant *Initializer = ConstantStruct::get( 2542 GlobalStructTy, 2543 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2544 ConstantInt::get(IntptrTy, SizeInBytes), 2545 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2546 ConstantExpr::getPointerCast(Name, IntptrTy), 2547 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2548 ConstantInt::get(IntptrTy, MD.IsDynInit), 2549 Constant::getNullValue(IntptrTy), 2550 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2551 2552 if (ClInitializers && MD.IsDynInit) 2553 HasDynamicallyInitializedGlobals = true; 2554 2555 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2556 2557 Initializers[i] = Initializer; 2558 } 2559 2560 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2561 // ConstantMerge'ing them. 2562 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2563 for (size_t i = 0; i < n; i++) { 2564 GlobalVariable *G = NewGlobals[i]; 2565 if (G->getName().empty()) continue; 2566 GlobalsToAddToUsedList.push_back(G); 2567 } 2568 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2569 2570 if (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) { 2571 // Use COMDAT and register globals even if n == 0 to ensure that (a) the 2572 // linkage unit will only have one module constructor, and (b) the register 2573 // function will be called. The module destructor is not created when n == 2574 // 0. 2575 *CtorComdat = true; 2576 instrumentGlobalsELF(IRB, M, NewGlobals, Initializers, 2577 getUniqueModuleId(&M)); 2578 } else if (n == 0) { 2579 // When UseGlobalsGC is false, COMDAT can still be used if n == 0, because 2580 // all compile units will have identical module constructor/destructor. 2581 *CtorComdat = TargetTriple.isOSBinFormatELF(); 2582 } else { 2583 *CtorComdat = false; 2584 if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2585 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2586 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2587 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2588 } else { 2589 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2590 } 2591 } 2592 2593 // Create calls for poisoning before initializers run and unpoisoning after. 2594 if (HasDynamicallyInitializedGlobals) 2595 createInitializerPoisonCalls(M, ModuleName); 2596 2597 LLVM_DEBUG(dbgs() << M); 2598 } 2599 2600 uint64_t 2601 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2602 constexpr uint64_t kMaxRZ = 1 << 18; 2603 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2604 2605 uint64_t RZ = 0; 2606 if (SizeInBytes <= MinRZ / 2) { 2607 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2608 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2609 // half of MinRZ. 2610 RZ = MinRZ - SizeInBytes; 2611 } else { 2612 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2613 RZ = std::clamp((SizeInBytes / MinRZ / 4) * MinRZ, MinRZ, kMaxRZ); 2614 2615 // Round up to multiple of MinRZ. 2616 if (SizeInBytes % MinRZ) 2617 RZ += MinRZ - (SizeInBytes % MinRZ); 2618 } 2619 2620 assert((RZ + SizeInBytes) % MinRZ == 0); 2621 2622 return RZ; 2623 } 2624 2625 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2626 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2627 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2628 int Version = 8; 2629 // 32-bit Android is one version ahead because of the switch to dynamic 2630 // shadow. 2631 Version += (LongSize == 32 && isAndroid); 2632 return Version; 2633 } 2634 2635 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2636 initializeCallbacks(M); 2637 2638 // Create a module constructor. A destructor is created lazily because not all 2639 // platforms, and not all modules need it. 2640 if (ConstructorKind == AsanCtorKind::Global) { 2641 if (CompileKernel) { 2642 // The kernel always builds with its own runtime, and therefore does not 2643 // need the init and version check calls. 2644 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2645 } else { 2646 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2647 std::string VersionCheckName = 2648 InsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2649 std::tie(AsanCtorFunction, std::ignore) = 2650 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2651 kAsanInitName, /*InitArgTypes=*/{}, 2652 /*InitArgs=*/{}, VersionCheckName); 2653 } 2654 } 2655 2656 bool CtorComdat = true; 2657 if (ClGlobals) { 2658 assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None); 2659 if (AsanCtorFunction) { 2660 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2661 instrumentGlobals(IRB, M, &CtorComdat); 2662 } else { 2663 IRBuilder<> IRB(*C); 2664 instrumentGlobals(IRB, M, &CtorComdat); 2665 } 2666 } 2667 2668 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2669 2670 // Put the constructor and destructor in comdat if both 2671 // (1) global instrumentation is not TU-specific 2672 // (2) target is ELF. 2673 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2674 if (AsanCtorFunction) { 2675 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2676 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2677 } 2678 if (AsanDtorFunction) { 2679 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2680 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2681 } 2682 } else { 2683 if (AsanCtorFunction) 2684 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2685 if (AsanDtorFunction) 2686 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2687 } 2688 2689 return true; 2690 } 2691 2692 void AddressSanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo *TLI) { 2693 IRBuilder<> IRB(*C); 2694 // Create __asan_report* callbacks. 2695 // IsWrite, TypeSize and Exp are encoded in the function name. 2696 for (int Exp = 0; Exp < 2; Exp++) { 2697 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2698 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2699 const std::string ExpStr = Exp ? "exp_" : ""; 2700 const std::string EndingStr = Recover ? "_noabort" : ""; 2701 2702 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2703 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2704 AttributeList AL2; 2705 AttributeList AL1; 2706 if (Exp) { 2707 Type *ExpType = Type::getInt32Ty(*C); 2708 Args2.push_back(ExpType); 2709 Args1.push_back(ExpType); 2710 if (auto AK = TLI->getExtAttrForI32Param(false)) { 2711 AL2 = AL2.addParamAttribute(*C, 2, AK); 2712 AL1 = AL1.addParamAttribute(*C, 1, AK); 2713 } 2714 } 2715 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2716 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2717 FunctionType::get(IRB.getVoidTy(), Args2, false), AL2); 2718 2719 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2720 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2721 FunctionType::get(IRB.getVoidTy(), Args2, false), AL2); 2722 2723 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2724 AccessSizeIndex++) { 2725 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2726 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2727 M.getOrInsertFunction( 2728 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2729 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1); 2730 2731 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2732 M.getOrInsertFunction( 2733 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2734 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1); 2735 } 2736 } 2737 } 2738 2739 const std::string MemIntrinCallbackPrefix = 2740 (CompileKernel && !ClKasanMemIntrinCallbackPrefix) 2741 ? std::string("") 2742 : ClMemoryAccessCallbackPrefix; 2743 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2744 PtrTy, PtrTy, PtrTy, IntptrTy); 2745 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", PtrTy, 2746 PtrTy, PtrTy, IntptrTy); 2747 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2748 TLI->getAttrList(C, {1}, /*Signed=*/false), 2749 PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy); 2750 2751 AsanHandleNoReturnFunc = 2752 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2753 2754 AsanPtrCmpFunction = 2755 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2756 AsanPtrSubFunction = 2757 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2758 if (Mapping.InGlobal) 2759 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2760 ArrayType::get(IRB.getInt8Ty(), 0)); 2761 2762 AMDGPUAddressShared = 2763 M.getOrInsertFunction(kAMDGPUAddressSharedName, IRB.getInt1Ty(), PtrTy); 2764 AMDGPUAddressPrivate = 2765 M.getOrInsertFunction(kAMDGPUAddressPrivateName, IRB.getInt1Ty(), PtrTy); 2766 } 2767 2768 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2769 // For each NSObject descendant having a +load method, this method is invoked 2770 // by the ObjC runtime before any of the static constructors is called. 2771 // Therefore we need to instrument such methods with a call to __asan_init 2772 // at the beginning in order to initialize our runtime before any access to 2773 // the shadow memory. 2774 // We cannot just ignore these methods, because they may call other 2775 // instrumented functions. 2776 if (F.getName().contains(" load]")) { 2777 FunctionCallee AsanInitFunction = 2778 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2779 IRBuilder<> IRB(&F.front(), F.front().begin()); 2780 IRB.CreateCall(AsanInitFunction, {}); 2781 return true; 2782 } 2783 return false; 2784 } 2785 2786 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2787 // Generate code only when dynamic addressing is needed. 2788 if (Mapping.Offset != kDynamicShadowSentinel) 2789 return false; 2790 2791 IRBuilder<> IRB(&F.front().front()); 2792 if (Mapping.InGlobal) { 2793 if (ClWithIfuncSuppressRemat) { 2794 // An empty inline asm with input reg == output reg. 2795 // An opaque pointer-to-int cast, basically. 2796 InlineAsm *Asm = InlineAsm::get( 2797 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2798 StringRef(""), StringRef("=r,0"), 2799 /*hasSideEffects=*/false); 2800 LocalDynamicShadow = 2801 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2802 } else { 2803 LocalDynamicShadow = 2804 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2805 } 2806 } else { 2807 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2808 kAsanShadowMemoryDynamicAddress, IntptrTy); 2809 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2810 } 2811 return true; 2812 } 2813 2814 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2815 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2816 // to it as uninteresting. This assumes we haven't started processing allocas 2817 // yet. This check is done up front because iterating the use list in 2818 // isInterestingAlloca would be algorithmically slower. 2819 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2820 2821 // Try to get the declaration of llvm.localescape. If it's not in the module, 2822 // we can exit early. 2823 if (!F.getParent()->getFunction("llvm.localescape")) return; 2824 2825 // Look for a call to llvm.localescape call in the entry block. It can't be in 2826 // any other block. 2827 for (Instruction &I : F.getEntryBlock()) { 2828 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2829 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2830 // We found a call. Mark all the allocas passed in as uninteresting. 2831 for (Value *Arg : II->args()) { 2832 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2833 assert(AI && AI->isStaticAlloca() && 2834 "non-static alloca arg to localescape"); 2835 ProcessedAllocas[AI] = false; 2836 } 2837 break; 2838 } 2839 } 2840 } 2841 2842 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2843 bool ShouldInstrument = 2844 ClDebugMin < 0 || ClDebugMax < 0 || 2845 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2846 Instrumented++; 2847 return !ShouldInstrument; 2848 } 2849 2850 bool AddressSanitizer::instrumentFunction(Function &F, 2851 const TargetLibraryInfo *TLI) { 2852 if (F.empty()) 2853 return false; 2854 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2855 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2856 if (F.getName().starts_with("__asan_")) return false; 2857 2858 bool FunctionModified = false; 2859 2860 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2861 // This function needs to be called even if the function body is not 2862 // instrumented. 2863 if (maybeInsertAsanInitAtFunctionEntry(F)) 2864 FunctionModified = true; 2865 2866 // Leave if the function doesn't need instrumentation. 2867 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2868 2869 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 2870 return FunctionModified; 2871 2872 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2873 2874 initializeCallbacks(*F.getParent(), TLI); 2875 2876 FunctionStateRAII CleanupObj(this); 2877 2878 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2879 2880 // We can't instrument allocas used with llvm.localescape. Only static allocas 2881 // can be passed to that intrinsic. 2882 markEscapedLocalAllocas(F); 2883 2884 // We want to instrument every address only once per basic block (unless there 2885 // are calls between uses). 2886 SmallPtrSet<Value *, 16> TempsToInstrument; 2887 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2888 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2889 SmallVector<Instruction *, 8> NoReturnCalls; 2890 SmallVector<BasicBlock *, 16> AllBlocks; 2891 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2892 2893 // Fill the set of memory operations to instrument. 2894 for (auto &BB : F) { 2895 AllBlocks.push_back(&BB); 2896 TempsToInstrument.clear(); 2897 int NumInsnsPerBB = 0; 2898 for (auto &Inst : BB) { 2899 if (LooksLikeCodeInBug11395(&Inst)) return false; 2900 // Skip instructions inserted by another instrumentation. 2901 if (Inst.hasMetadata(LLVMContext::MD_nosanitize)) 2902 continue; 2903 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2904 getInterestingMemoryOperands(&Inst, InterestingOperands); 2905 2906 if (!InterestingOperands.empty()) { 2907 for (auto &Operand : InterestingOperands) { 2908 if (ClOpt && ClOptSameTemp) { 2909 Value *Ptr = Operand.getPtr(); 2910 // If we have a mask, skip instrumentation if we've already 2911 // instrumented the full object. But don't add to TempsToInstrument 2912 // because we might get another load/store with a different mask. 2913 if (Operand.MaybeMask) { 2914 if (TempsToInstrument.count(Ptr)) 2915 continue; // We've seen this (whole) temp in the current BB. 2916 } else { 2917 if (!TempsToInstrument.insert(Ptr).second) 2918 continue; // We've seen this temp in the current BB. 2919 } 2920 } 2921 OperandsToInstrument.push_back(Operand); 2922 NumInsnsPerBB++; 2923 } 2924 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2925 isInterestingPointerComparison(&Inst)) || 2926 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2927 isInterestingPointerSubtraction(&Inst))) { 2928 PointerComparisonsOrSubtracts.push_back(&Inst); 2929 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2930 // ok, take it. 2931 IntrinToInstrument.push_back(MI); 2932 NumInsnsPerBB++; 2933 } else { 2934 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2935 // A call inside BB. 2936 TempsToInstrument.clear(); 2937 if (CB->doesNotReturn()) 2938 NoReturnCalls.push_back(CB); 2939 } 2940 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2941 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2942 } 2943 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2944 } 2945 } 2946 2947 bool UseCalls = (InstrumentationWithCallsThreshold >= 0 && 2948 OperandsToInstrument.size() + IntrinToInstrument.size() > 2949 (unsigned)InstrumentationWithCallsThreshold); 2950 const DataLayout &DL = F.getParent()->getDataLayout(); 2951 ObjectSizeOpts ObjSizeOpts; 2952 ObjSizeOpts.RoundToAlign = true; 2953 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2954 2955 // Instrument. 2956 int NumInstrumented = 0; 2957 for (auto &Operand : OperandsToInstrument) { 2958 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2959 instrumentMop(ObjSizeVis, Operand, UseCalls, 2960 F.getParent()->getDataLayout()); 2961 FunctionModified = true; 2962 } 2963 for (auto *Inst : IntrinToInstrument) { 2964 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2965 instrumentMemIntrinsic(Inst); 2966 FunctionModified = true; 2967 } 2968 2969 FunctionStackPoisoner FSP(F, *this); 2970 bool ChangedStack = FSP.runOnFunction(); 2971 2972 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2973 // See e.g. https://github.com/google/sanitizers/issues/37 2974 for (auto *CI : NoReturnCalls) { 2975 IRBuilder<> IRB(CI); 2976 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2977 } 2978 2979 for (auto *Inst : PointerComparisonsOrSubtracts) { 2980 instrumentPointerComparisonOrSubtraction(Inst); 2981 FunctionModified = true; 2982 } 2983 2984 if (ChangedStack || !NoReturnCalls.empty()) 2985 FunctionModified = true; 2986 2987 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 2988 << F << "\n"); 2989 2990 return FunctionModified; 2991 } 2992 2993 // Workaround for bug 11395: we don't want to instrument stack in functions 2994 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 2995 // FIXME: remove once the bug 11395 is fixed. 2996 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 2997 if (LongSize != 32) return false; 2998 CallInst *CI = dyn_cast<CallInst>(I); 2999 if (!CI || !CI->isInlineAsm()) return false; 3000 if (CI->arg_size() <= 5) 3001 return false; 3002 // We have inline assembly with quite a few arguments. 3003 return true; 3004 } 3005 3006 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 3007 IRBuilder<> IRB(*C); 3008 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || 3009 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3010 const char *MallocNameTemplate = 3011 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always 3012 ? kAsanStackMallocAlwaysNameTemplate 3013 : kAsanStackMallocNameTemplate; 3014 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { 3015 std::string Suffix = itostr(Index); 3016 AsanStackMallocFunc[Index] = M.getOrInsertFunction( 3017 MallocNameTemplate + Suffix, IntptrTy, IntptrTy); 3018 AsanStackFreeFunc[Index] = 3019 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 3020 IRB.getVoidTy(), IntptrTy, IntptrTy); 3021 } 3022 } 3023 if (ASan.UseAfterScope) { 3024 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 3025 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3026 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 3027 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3028 } 3029 3030 for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2, 3031 0xf3, 0xf5, 0xf8}) { 3032 std::ostringstream Name; 3033 Name << kAsanSetShadowPrefix; 3034 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 3035 AsanSetShadowFunc[Val] = 3036 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 3037 } 3038 3039 AsanAllocaPoisonFunc = M.getOrInsertFunction( 3040 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3041 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 3042 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3043 } 3044 3045 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 3046 ArrayRef<uint8_t> ShadowBytes, 3047 size_t Begin, size_t End, 3048 IRBuilder<> &IRB, 3049 Value *ShadowBase) { 3050 if (Begin >= End) 3051 return; 3052 3053 const size_t LargestStoreSizeInBytes = 3054 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 3055 3056 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 3057 3058 // Poison given range in shadow using larges store size with out leading and 3059 // trailing zeros in ShadowMask. Zeros never change, so they need neither 3060 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 3061 // middle of a store. 3062 for (size_t i = Begin; i < End;) { 3063 if (!ShadowMask[i]) { 3064 assert(!ShadowBytes[i]); 3065 ++i; 3066 continue; 3067 } 3068 3069 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 3070 // Fit store size into the range. 3071 while (StoreSizeInBytes > End - i) 3072 StoreSizeInBytes /= 2; 3073 3074 // Minimize store size by trimming trailing zeros. 3075 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 3076 while (j <= StoreSizeInBytes / 2) 3077 StoreSizeInBytes /= 2; 3078 } 3079 3080 uint64_t Val = 0; 3081 for (size_t j = 0; j < StoreSizeInBytes; j++) { 3082 if (IsLittleEndian) 3083 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 3084 else 3085 Val = (Val << 8) | ShadowBytes[i + j]; 3086 } 3087 3088 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 3089 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 3090 IRB.CreateAlignedStore( 3091 Poison, IRB.CreateIntToPtr(Ptr, PointerType::getUnqual(Poison->getContext())), 3092 Align(1)); 3093 3094 i += StoreSizeInBytes; 3095 } 3096 } 3097 3098 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3099 ArrayRef<uint8_t> ShadowBytes, 3100 IRBuilder<> &IRB, Value *ShadowBase) { 3101 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 3102 } 3103 3104 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3105 ArrayRef<uint8_t> ShadowBytes, 3106 size_t Begin, size_t End, 3107 IRBuilder<> &IRB, Value *ShadowBase) { 3108 assert(ShadowMask.size() == ShadowBytes.size()); 3109 size_t Done = Begin; 3110 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 3111 if (!ShadowMask[i]) { 3112 assert(!ShadowBytes[i]); 3113 continue; 3114 } 3115 uint8_t Val = ShadowBytes[i]; 3116 if (!AsanSetShadowFunc[Val]) 3117 continue; 3118 3119 // Skip same values. 3120 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 3121 } 3122 3123 if (j - i >= ASan.MaxInlinePoisoningSize) { 3124 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 3125 IRB.CreateCall(AsanSetShadowFunc[Val], 3126 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 3127 ConstantInt::get(IntptrTy, j - i)}); 3128 Done = j; 3129 } 3130 } 3131 3132 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 3133 } 3134 3135 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 3136 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 3137 static int StackMallocSizeClass(uint64_t LocalStackSize) { 3138 assert(LocalStackSize <= kMaxStackMallocSize); 3139 uint64_t MaxSize = kMinStackMallocSize; 3140 for (int i = 0;; i++, MaxSize *= 2) 3141 if (LocalStackSize <= MaxSize) return i; 3142 llvm_unreachable("impossible LocalStackSize"); 3143 } 3144 3145 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 3146 Instruction *CopyInsertPoint = &F.front().front(); 3147 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 3148 // Insert after the dynamic shadow location is determined 3149 CopyInsertPoint = CopyInsertPoint->getNextNode(); 3150 assert(CopyInsertPoint); 3151 } 3152 IRBuilder<> IRB(CopyInsertPoint); 3153 const DataLayout &DL = F.getParent()->getDataLayout(); 3154 for (Argument &Arg : F.args()) { 3155 if (Arg.hasByValAttr()) { 3156 Type *Ty = Arg.getParamByValType(); 3157 const Align Alignment = 3158 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 3159 3160 AllocaInst *AI = IRB.CreateAlloca( 3161 Ty, nullptr, 3162 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 3163 ".byval"); 3164 AI->setAlignment(Alignment); 3165 Arg.replaceAllUsesWith(AI); 3166 3167 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3168 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 3169 } 3170 } 3171 } 3172 3173 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3174 Value *ValueIfTrue, 3175 Instruction *ThenTerm, 3176 Value *ValueIfFalse) { 3177 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3178 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3179 PHI->addIncoming(ValueIfFalse, CondBlock); 3180 BasicBlock *ThenBlock = ThenTerm->getParent(); 3181 PHI->addIncoming(ValueIfTrue, ThenBlock); 3182 return PHI; 3183 } 3184 3185 Value *FunctionStackPoisoner::createAllocaForLayout( 3186 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3187 AllocaInst *Alloca; 3188 if (Dynamic) { 3189 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3190 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3191 "MyAlloca"); 3192 } else { 3193 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3194 nullptr, "MyAlloca"); 3195 assert(Alloca->isStaticAlloca()); 3196 } 3197 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3198 uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); 3199 Alloca->setAlignment(Align(FrameAlignment)); 3200 return IRB.CreatePointerCast(Alloca, IntptrTy); 3201 } 3202 3203 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3204 BasicBlock &FirstBB = *F.begin(); 3205 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3206 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3207 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3208 DynamicAllocaLayout->setAlignment(Align(32)); 3209 } 3210 3211 void FunctionStackPoisoner::processDynamicAllocas() { 3212 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3213 assert(DynamicAllocaPoisonCallVec.empty()); 3214 return; 3215 } 3216 3217 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3218 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3219 assert(APC.InsBefore); 3220 assert(APC.AI); 3221 assert(ASan.isInterestingAlloca(*APC.AI)); 3222 assert(!APC.AI->isStaticAlloca()); 3223 3224 IRBuilder<> IRB(APC.InsBefore); 3225 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3226 // Dynamic allocas will be unpoisoned unconditionally below in 3227 // unpoisonDynamicAllocas. 3228 // Flag that we need unpoison static allocas. 3229 } 3230 3231 // Handle dynamic allocas. 3232 createDynamicAllocasInitStorage(); 3233 for (auto &AI : DynamicAllocaVec) 3234 handleDynamicAllocaCall(AI); 3235 unpoisonDynamicAllocas(); 3236 } 3237 3238 /// Collect instructions in the entry block after \p InsBefore which initialize 3239 /// permanent storage for a function argument. These instructions must remain in 3240 /// the entry block so that uninitialized values do not appear in backtraces. An 3241 /// added benefit is that this conserves spill slots. This does not move stores 3242 /// before instrumented / "interesting" allocas. 3243 static void findStoresToUninstrumentedArgAllocas( 3244 AddressSanitizer &ASan, Instruction &InsBefore, 3245 SmallVectorImpl<Instruction *> &InitInsts) { 3246 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3247 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3248 // Argument initialization looks like: 3249 // 1) store <Argument>, <Alloca> OR 3250 // 2) <CastArgument> = cast <Argument> to ... 3251 // store <CastArgument> to <Alloca> 3252 // Do not consider any other kind of instruction. 3253 // 3254 // Note: This covers all known cases, but may not be exhaustive. An 3255 // alternative to pattern-matching stores is to DFS over all Argument uses: 3256 // this might be more general, but is probably much more complicated. 3257 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3258 continue; 3259 if (auto *Store = dyn_cast<StoreInst>(It)) { 3260 // The store destination must be an alloca that isn't interesting for 3261 // ASan to instrument. These are moved up before InsBefore, and they're 3262 // not interesting because allocas for arguments can be mem2reg'd. 3263 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3264 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3265 continue; 3266 3267 Value *Val = Store->getValueOperand(); 3268 bool IsDirectArgInit = isa<Argument>(Val); 3269 bool IsArgInitViaCast = 3270 isa<CastInst>(Val) && 3271 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3272 // Check that the cast appears directly before the store. Otherwise 3273 // moving the cast before InsBefore may break the IR. 3274 Val == It->getPrevNonDebugInstruction(); 3275 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3276 if (!IsArgInit) 3277 continue; 3278 3279 if (IsArgInitViaCast) 3280 InitInsts.push_back(cast<Instruction>(Val)); 3281 InitInsts.push_back(Store); 3282 continue; 3283 } 3284 3285 // Do not reorder past unknown instructions: argument initialization should 3286 // only involve casts and stores. 3287 return; 3288 } 3289 } 3290 3291 void FunctionStackPoisoner::processStaticAllocas() { 3292 if (AllocaVec.empty()) { 3293 assert(StaticAllocaPoisonCallVec.empty()); 3294 return; 3295 } 3296 3297 int StackMallocIdx = -1; 3298 DebugLoc EntryDebugLocation; 3299 if (auto SP = F.getSubprogram()) 3300 EntryDebugLocation = 3301 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3302 3303 Instruction *InsBefore = AllocaVec[0]; 3304 IRBuilder<> IRB(InsBefore); 3305 3306 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3307 // debug info is broken, because only entry-block allocas are treated as 3308 // regular stack slots. 3309 auto InsBeforeB = InsBefore->getParent(); 3310 assert(InsBeforeB == &F.getEntryBlock()); 3311 for (auto *AI : StaticAllocasToMoveUp) 3312 if (AI->getParent() == InsBeforeB) 3313 AI->moveBefore(InsBefore); 3314 3315 // Move stores of arguments into entry-block allocas as well. This prevents 3316 // extra stack slots from being generated (to house the argument values until 3317 // they can be stored into the allocas). This also prevents uninitialized 3318 // values from being shown in backtraces. 3319 SmallVector<Instruction *, 8> ArgInitInsts; 3320 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3321 for (Instruction *ArgInitInst : ArgInitInsts) 3322 ArgInitInst->moveBefore(InsBefore); 3323 3324 // If we have a call to llvm.localescape, keep it in the entry block. 3325 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3326 3327 SmallVector<ASanStackVariableDescription, 16> SVD; 3328 SVD.reserve(AllocaVec.size()); 3329 for (AllocaInst *AI : AllocaVec) { 3330 ASanStackVariableDescription D = {AI->getName().data(), 3331 ASan.getAllocaSizeInBytes(*AI), 3332 0, 3333 AI->getAlign().value(), 3334 AI, 3335 0, 3336 0}; 3337 SVD.push_back(D); 3338 } 3339 3340 // Minimal header size (left redzone) is 4 pointers, 3341 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3342 uint64_t Granularity = 1ULL << Mapping.Scale; 3343 uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); 3344 const ASanStackFrameLayout &L = 3345 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3346 3347 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3348 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3349 for (auto &Desc : SVD) 3350 AllocaToSVDMap[Desc.AI] = &Desc; 3351 3352 // Update SVD with information from lifetime intrinsics. 3353 for (const auto &APC : StaticAllocaPoisonCallVec) { 3354 assert(APC.InsBefore); 3355 assert(APC.AI); 3356 assert(ASan.isInterestingAlloca(*APC.AI)); 3357 assert(APC.AI->isStaticAlloca()); 3358 3359 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3360 Desc.LifetimeSize = Desc.Size; 3361 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3362 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3363 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3364 if (unsigned Line = LifetimeLoc->getLine()) 3365 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3366 } 3367 } 3368 } 3369 3370 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3371 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3372 uint64_t LocalStackSize = L.FrameSize; 3373 bool DoStackMalloc = 3374 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3375 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3376 bool DoDynamicAlloca = ClDynamicAllocaStack; 3377 // Don't do dynamic alloca or stack malloc if: 3378 // 1) There is inline asm: too often it makes assumptions on which registers 3379 // are available. 3380 // 2) There is a returns_twice call (typically setjmp), which is 3381 // optimization-hostile, and doesn't play well with introduced indirect 3382 // register-relative calculation of local variable addresses. 3383 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3384 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3385 3386 Value *StaticAlloca = 3387 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3388 3389 Value *FakeStack; 3390 Value *LocalStackBase; 3391 Value *LocalStackBaseAlloca; 3392 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3393 3394 if (DoStackMalloc) { 3395 LocalStackBaseAlloca = 3396 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3397 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3398 // void *FakeStack = __asan_option_detect_stack_use_after_return 3399 // ? __asan_stack_malloc_N(LocalStackSize) 3400 // : nullptr; 3401 // void *LocalStackBase = (FakeStack) ? FakeStack : 3402 // alloca(LocalStackSize); 3403 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3404 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3405 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3406 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3407 Constant::getNullValue(IRB.getInt32Ty())); 3408 Instruction *Term = 3409 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3410 IRBuilder<> IRBIf(Term); 3411 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3412 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3413 Value *FakeStackValue = 3414 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3415 ConstantInt::get(IntptrTy, LocalStackSize)); 3416 IRB.SetInsertPoint(InsBefore); 3417 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3418 ConstantInt::get(IntptrTy, 0)); 3419 } else { 3420 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3421 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3422 // void *LocalStackBase = (FakeStack) ? FakeStack : 3423 // alloca(LocalStackSize); 3424 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3425 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3426 ConstantInt::get(IntptrTy, LocalStackSize)); 3427 } 3428 Value *NoFakeStack = 3429 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3430 Instruction *Term = 3431 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3432 IRBuilder<> IRBIf(Term); 3433 Value *AllocaValue = 3434 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3435 3436 IRB.SetInsertPoint(InsBefore); 3437 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3438 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3439 DIExprFlags |= DIExpression::DerefBefore; 3440 } else { 3441 // void *FakeStack = nullptr; 3442 // void *LocalStackBase = alloca(LocalStackSize); 3443 FakeStack = ConstantInt::get(IntptrTy, 0); 3444 LocalStackBase = 3445 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3446 LocalStackBaseAlloca = LocalStackBase; 3447 } 3448 3449 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3450 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3451 // later passes and can result in dropped variable coverage in debug info. 3452 Value *LocalStackBaseAllocaPtr = 3453 isa<PtrToIntInst>(LocalStackBaseAlloca) 3454 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3455 : LocalStackBaseAlloca; 3456 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3457 "Variable descriptions relative to ASan stack base will be dropped"); 3458 3459 // Replace Alloca instructions with base+offset. 3460 for (const auto &Desc : SVD) { 3461 AllocaInst *AI = Desc.AI; 3462 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3463 Desc.Offset); 3464 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3465 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3466 AI->getType()); 3467 AI->replaceAllUsesWith(NewAllocaPtr); 3468 } 3469 3470 // The left-most redzone has enough space for at least 4 pointers. 3471 // Write the Magic value to redzone[0]. 3472 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3473 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3474 BasePlus0); 3475 // Write the frame description constant to redzone[1]. 3476 Value *BasePlus1 = IRB.CreateIntToPtr( 3477 IRB.CreateAdd(LocalStackBase, 3478 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3479 IntptrPtrTy); 3480 GlobalVariable *StackDescriptionGlobal = 3481 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3482 /*AllowMerging*/ true, kAsanGenPrefix); 3483 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3484 IRB.CreateStore(Description, BasePlus1); 3485 // Write the PC to redzone[2]. 3486 Value *BasePlus2 = IRB.CreateIntToPtr( 3487 IRB.CreateAdd(LocalStackBase, 3488 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3489 IntptrPtrTy); 3490 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3491 3492 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3493 3494 // Poison the stack red zones at the entry. 3495 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3496 // As mask we must use most poisoned case: red zones and after scope. 3497 // As bytes we can use either the same or just red zones only. 3498 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3499 3500 if (!StaticAllocaPoisonCallVec.empty()) { 3501 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3502 3503 // Poison static allocas near lifetime intrinsics. 3504 for (const auto &APC : StaticAllocaPoisonCallVec) { 3505 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3506 assert(Desc.Offset % L.Granularity == 0); 3507 size_t Begin = Desc.Offset / L.Granularity; 3508 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3509 3510 IRBuilder<> IRB(APC.InsBefore); 3511 copyToShadow(ShadowAfterScope, 3512 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3513 IRB, ShadowBase); 3514 } 3515 } 3516 3517 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3518 SmallVector<uint8_t, 64> ShadowAfterReturn; 3519 3520 // (Un)poison the stack before all ret instructions. 3521 for (Instruction *Ret : RetVec) { 3522 IRBuilder<> IRBRet(Ret); 3523 // Mark the current frame as retired. 3524 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3525 BasePlus0); 3526 if (DoStackMalloc) { 3527 assert(StackMallocIdx >= 0); 3528 // if FakeStack != 0 // LocalStackBase == FakeStack 3529 // // In use-after-return mode, poison the whole stack frame. 3530 // if StackMallocIdx <= 4 3531 // // For small sizes inline the whole thing: 3532 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3533 // **SavedFlagPtr(FakeStack) = 0 3534 // else 3535 // __asan_stack_free_N(FakeStack, LocalStackSize) 3536 // else 3537 // <This is not a fake stack; unpoison the redzones> 3538 Value *Cmp = 3539 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3540 Instruction *ThenTerm, *ElseTerm; 3541 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3542 3543 IRBuilder<> IRBPoison(ThenTerm); 3544 if (ASan.MaxInlinePoisoningSize != 0 && StackMallocIdx <= 4) { 3545 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3546 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3547 kAsanStackUseAfterReturnMagic); 3548 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3549 ShadowBase); 3550 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3551 FakeStack, 3552 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3553 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3554 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3555 IRBPoison.CreateStore( 3556 Constant::getNullValue(IRBPoison.getInt8Ty()), 3557 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getPtrTy())); 3558 } else { 3559 // For larger frames call __asan_stack_free_*. 3560 IRBPoison.CreateCall( 3561 AsanStackFreeFunc[StackMallocIdx], 3562 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3563 } 3564 3565 IRBuilder<> IRBElse(ElseTerm); 3566 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3567 } else { 3568 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3569 } 3570 } 3571 3572 // We are done. Remove the old unused alloca instructions. 3573 for (auto *AI : AllocaVec) 3574 AI->eraseFromParent(); 3575 } 3576 3577 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3578 IRBuilder<> &IRB, bool DoPoison) { 3579 // For now just insert the call to ASan runtime. 3580 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3581 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3582 IRB.CreateCall( 3583 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3584 {AddrArg, SizeArg}); 3585 } 3586 3587 // Handling llvm.lifetime intrinsics for a given %alloca: 3588 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3589 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3590 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3591 // could be poisoned by previous llvm.lifetime.end instruction, as the 3592 // variable may go in and out of scope several times, e.g. in loops). 3593 // (3) if we poisoned at least one %alloca in a function, 3594 // unpoison the whole stack frame at function exit. 3595 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3596 IRBuilder<> IRB(AI); 3597 3598 const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign()); 3599 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3600 3601 Value *Zero = Constant::getNullValue(IntptrTy); 3602 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3603 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3604 3605 // Since we need to extend alloca with additional memory to locate 3606 // redzones, and OldSize is number of allocated blocks with 3607 // ElementSize size, get allocated memory size in bytes by 3608 // OldSize * ElementSize. 3609 const unsigned ElementSize = 3610 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3611 Value *OldSize = 3612 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3613 ConstantInt::get(IntptrTy, ElementSize)); 3614 3615 // PartialSize = OldSize % 32 3616 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3617 3618 // Misalign = kAllocaRzSize - PartialSize; 3619 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3620 3621 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3622 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3623 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3624 3625 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3626 // Alignment is added to locate left redzone, PartialPadding for possible 3627 // partial redzone and kAllocaRzSize for right redzone respectively. 3628 Value *AdditionalChunkSize = IRB.CreateAdd( 3629 ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize), 3630 PartialPadding); 3631 3632 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3633 3634 // Insert new alloca with new NewSize and Alignment params. 3635 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3636 NewAlloca->setAlignment(Alignment); 3637 3638 // NewAddress = Address + Alignment 3639 Value *NewAddress = 3640 IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3641 ConstantInt::get(IntptrTy, Alignment.value())); 3642 3643 // Insert __asan_alloca_poison call for new created alloca. 3644 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3645 3646 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3647 // for unpoisoning stuff. 3648 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3649 3650 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3651 3652 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3653 AI->replaceAllUsesWith(NewAddressPtr); 3654 3655 // We are done. Erase old alloca from parent. 3656 AI->eraseFromParent(); 3657 } 3658 3659 // isSafeAccess returns true if Addr is always inbounds with respect to its 3660 // base object. For example, it is a field access or an array access with 3661 // constant inbounds index. 3662 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3663 Value *Addr, TypeSize TypeStoreSize) const { 3664 if (TypeStoreSize.isScalable()) 3665 // TODO: We can use vscale_range to convert a scalable value to an 3666 // upper bound on the access size. 3667 return false; 3668 3669 SizeOffsetAPInt SizeOffset = ObjSizeVis.compute(Addr); 3670 if (!SizeOffset.bothKnown()) 3671 return false; 3672 3673 uint64_t Size = SizeOffset.Size.getZExtValue(); 3674 int64_t Offset = SizeOffset.Offset.getSExtValue(); 3675 3676 // Three checks are required to ensure safety: 3677 // . Offset >= 0 (since the offset is given from the base ptr) 3678 // . Size >= Offset (unsigned) 3679 // . Size - Offset >= NeededSize (unsigned) 3680 return Offset >= 0 && Size >= uint64_t(Offset) && 3681 Size - uint64_t(Offset) >= TypeStoreSize / 8; 3682 } 3683