1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address basic correctness 10 // checker. 11 // Details of the algorithm: 12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 13 // 14 // FIXME: This sanitizer does not yet handle scalable vectors 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/StackSafetyAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/BinaryFormat/MachO.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Comdat.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/IRBuilder.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/InstIterator.h" 53 #include "llvm/IR/InstVisitor.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/MDBuilder.h" 61 #include "llvm/IR/Metadata.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/Use.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/InitializePasses.h" 67 #include "llvm/MC/MCSectionMachO.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/ErrorHandling.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/ScopedPrinter.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Instrumentation.h" 77 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 78 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 79 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 80 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 81 #include "llvm/Transforms/Utils/Local.h" 82 #include "llvm/Transforms/Utils/ModuleUtils.h" 83 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <cstddef> 87 #include <cstdint> 88 #include <iomanip> 89 #include <limits> 90 #include <memory> 91 #include <sstream> 92 #include <string> 93 #include <tuple> 94 95 using namespace llvm; 96 97 #define DEBUG_TYPE "asan" 98 99 static const uint64_t kDefaultShadowScale = 3; 100 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 101 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 102 static const uint64_t kDynamicShadowSentinel = 103 std::numeric_limits<uint64_t>::max(); 104 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 105 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 106 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 107 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 108 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 109 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 110 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 111 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 112 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; 113 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 114 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 115 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 116 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 117 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 118 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 119 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; 120 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 121 static const uint64_t kEmscriptenShadowOffset = 0; 122 123 // The shadow memory space is dynamically allocated. 124 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 125 126 static const size_t kMinStackMallocSize = 1 << 6; // 64B 127 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 128 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 129 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 130 131 const char kAsanModuleCtorName[] = "asan.module_ctor"; 132 const char kAsanModuleDtorName[] = "asan.module_dtor"; 133 static const uint64_t kAsanCtorAndDtorPriority = 1; 134 // On Emscripten, the system needs more than one priorities for constructors. 135 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 136 const char kAsanReportErrorTemplate[] = "__asan_report_"; 137 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 138 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 139 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 140 const char kAsanUnregisterImageGlobalsName[] = 141 "__asan_unregister_image_globals"; 142 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 143 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 144 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 145 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 146 const char kAsanInitName[] = "__asan_init"; 147 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 148 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 149 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 150 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 151 static const int kMaxAsanStackMallocSizeClass = 10; 152 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 153 const char kAsanStackMallocAlwaysNameTemplate[] = 154 "__asan_stack_malloc_always_"; 155 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 156 const char kAsanGenPrefix[] = "___asan_gen_"; 157 const char kODRGenPrefix[] = "__odr_asan_gen_"; 158 const char kSanCovGenPrefix[] = "__sancov_gen_"; 159 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 160 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 161 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 162 163 // ASan version script has __asan_* wildcard. Triple underscore prevents a 164 // linker (gold) warning about attempting to export a local symbol. 165 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 166 167 const char kAsanOptionDetectUseAfterReturn[] = 168 "__asan_option_detect_stack_use_after_return"; 169 170 const char kAsanShadowMemoryDynamicAddress[] = 171 "__asan_shadow_memory_dynamic_address"; 172 173 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 174 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 175 176 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 177 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 178 179 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 180 static const size_t kNumberOfAccessSizes = 5; 181 182 static const uint64_t kAllocaRzSize = 32; 183 184 // ASanAccessInfo implementation constants. 185 constexpr size_t kCompileKernelShift = 0; 186 constexpr size_t kCompileKernelMask = 0x1; 187 constexpr size_t kAccessSizeIndexShift = 1; 188 constexpr size_t kAccessSizeIndexMask = 0xf; 189 constexpr size_t kIsWriteShift = 5; 190 constexpr size_t kIsWriteMask = 0x1; 191 192 // Command-line flags. 193 194 static cl::opt<bool> ClEnableKasan( 195 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 196 cl::Hidden, cl::init(false)); 197 198 static cl::opt<bool> ClRecover( 199 "asan-recover", 200 cl::desc("Enable recovery mode (continue-after-error)."), 201 cl::Hidden, cl::init(false)); 202 203 static cl::opt<bool> ClInsertVersionCheck( 204 "asan-guard-against-version-mismatch", 205 cl::desc("Guard against compiler/runtime version mismatch."), 206 cl::Hidden, cl::init(true)); 207 208 // This flag may need to be replaced with -f[no-]asan-reads. 209 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 210 cl::desc("instrument read instructions"), 211 cl::Hidden, cl::init(true)); 212 213 static cl::opt<bool> ClInstrumentWrites( 214 "asan-instrument-writes", cl::desc("instrument write instructions"), 215 cl::Hidden, cl::init(true)); 216 217 static cl::opt<bool> 218 ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false), 219 cl::Hidden, cl::desc("Use Stack Safety analysis results"), 220 cl::Optional); 221 222 static cl::opt<bool> ClInstrumentAtomics( 223 "asan-instrument-atomics", 224 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 225 cl::init(true)); 226 227 static cl::opt<bool> 228 ClInstrumentByval("asan-instrument-byval", 229 cl::desc("instrument byval call arguments"), cl::Hidden, 230 cl::init(true)); 231 232 static cl::opt<bool> ClAlwaysSlowPath( 233 "asan-always-slow-path", 234 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 235 cl::init(false)); 236 237 static cl::opt<bool> ClForceDynamicShadow( 238 "asan-force-dynamic-shadow", 239 cl::desc("Load shadow address into a local variable for each function"), 240 cl::Hidden, cl::init(false)); 241 242 static cl::opt<bool> 243 ClWithIfunc("asan-with-ifunc", 244 cl::desc("Access dynamic shadow through an ifunc global on " 245 "platforms that support this"), 246 cl::Hidden, cl::init(true)); 247 248 static cl::opt<bool> ClWithIfuncSuppressRemat( 249 "asan-with-ifunc-suppress-remat", 250 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 251 "it through inline asm in prologue."), 252 cl::Hidden, cl::init(true)); 253 254 // This flag limits the number of instructions to be instrumented 255 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 256 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 257 // set it to 10000. 258 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 259 "asan-max-ins-per-bb", cl::init(10000), 260 cl::desc("maximal number of instructions to instrument in any given BB"), 261 cl::Hidden); 262 263 // This flag may need to be replaced with -f[no]asan-stack. 264 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 265 cl::Hidden, cl::init(true)); 266 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 267 "asan-max-inline-poisoning-size", 268 cl::desc( 269 "Inline shadow poisoning for blocks up to the given size in bytes."), 270 cl::Hidden, cl::init(64)); 271 272 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 273 "asan-use-after-return", 274 cl::desc("Sets the mode of detection for stack-use-after-return."), 275 cl::values( 276 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 277 "Never detect stack use after return."), 278 clEnumValN( 279 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 280 "Detect stack use after return if " 281 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 282 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 283 "Always detect stack use after return.")), 284 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 285 286 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 287 cl::desc("Create redzones for byval " 288 "arguments (extra copy " 289 "required)"), cl::Hidden, 290 cl::init(true)); 291 292 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 293 cl::desc("Check stack-use-after-scope"), 294 cl::Hidden, cl::init(false)); 295 296 // This flag may need to be replaced with -f[no]asan-globals. 297 static cl::opt<bool> ClGlobals("asan-globals", 298 cl::desc("Handle global objects"), cl::Hidden, 299 cl::init(true)); 300 301 static cl::opt<bool> ClInitializers("asan-initialization-order", 302 cl::desc("Handle C++ initializer order"), 303 cl::Hidden, cl::init(true)); 304 305 static cl::opt<bool> ClInvalidPointerPairs( 306 "asan-detect-invalid-pointer-pair", 307 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 308 cl::init(false)); 309 310 static cl::opt<bool> ClInvalidPointerCmp( 311 "asan-detect-invalid-pointer-cmp", 312 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 313 cl::init(false)); 314 315 static cl::opt<bool> ClInvalidPointerSub( 316 "asan-detect-invalid-pointer-sub", 317 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 318 cl::init(false)); 319 320 static cl::opt<unsigned> ClRealignStack( 321 "asan-realign-stack", 322 cl::desc("Realign stack to the value of this flag (power of two)"), 323 cl::Hidden, cl::init(32)); 324 325 static cl::opt<int> ClInstrumentationWithCallsThreshold( 326 "asan-instrumentation-with-call-threshold", 327 cl::desc( 328 "If the function being instrumented contains more than " 329 "this number of memory accesses, use callbacks instead of " 330 "inline checks (-1 means never use callbacks)."), 331 cl::Hidden, cl::init(7000)); 332 333 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 334 "asan-memory-access-callback-prefix", 335 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 336 cl::init("__asan_")); 337 338 static cl::opt<bool> 339 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 340 cl::desc("instrument dynamic allocas"), 341 cl::Hidden, cl::init(true)); 342 343 static cl::opt<bool> ClSkipPromotableAllocas( 344 "asan-skip-promotable-allocas", 345 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 346 cl::init(true)); 347 348 // These flags allow to change the shadow mapping. 349 // The shadow mapping looks like 350 // Shadow = (Mem >> scale) + offset 351 352 static cl::opt<int> ClMappingScale("asan-mapping-scale", 353 cl::desc("scale of asan shadow mapping"), 354 cl::Hidden, cl::init(0)); 355 356 static cl::opt<uint64_t> 357 ClMappingOffset("asan-mapping-offset", 358 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 359 cl::Hidden, cl::init(0)); 360 361 // Optimization flags. Not user visible, used mostly for testing 362 // and benchmarking the tool. 363 364 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 365 cl::Hidden, cl::init(true)); 366 367 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", 368 cl::desc("Optimize callbacks"), 369 cl::Hidden, cl::init(false)); 370 371 static cl::opt<bool> ClOptSameTemp( 372 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 373 cl::Hidden, cl::init(true)); 374 375 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 376 cl::desc("Don't instrument scalar globals"), 377 cl::Hidden, cl::init(true)); 378 379 static cl::opt<bool> ClOptStack( 380 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 381 cl::Hidden, cl::init(false)); 382 383 static cl::opt<bool> ClDynamicAllocaStack( 384 "asan-stack-dynamic-alloca", 385 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 386 cl::init(true)); 387 388 static cl::opt<uint32_t> ClForceExperiment( 389 "asan-force-experiment", 390 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 391 cl::init(0)); 392 393 static cl::opt<bool> 394 ClUsePrivateAlias("asan-use-private-alias", 395 cl::desc("Use private aliases for global variables"), 396 cl::Hidden, cl::init(false)); 397 398 static cl::opt<bool> 399 ClUseOdrIndicator("asan-use-odr-indicator", 400 cl::desc("Use odr indicators to improve ODR reporting"), 401 cl::Hidden, cl::init(false)); 402 403 static cl::opt<bool> 404 ClUseGlobalsGC("asan-globals-live-support", 405 cl::desc("Use linker features to support dead " 406 "code stripping of globals"), 407 cl::Hidden, cl::init(true)); 408 409 // This is on by default even though there is a bug in gold: 410 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 411 static cl::opt<bool> 412 ClWithComdat("asan-with-comdat", 413 cl::desc("Place ASan constructors in comdat sections"), 414 cl::Hidden, cl::init(true)); 415 416 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 417 "asan-destructor-kind", 418 cl::desc("Sets the ASan destructor kind. The default is to use the value " 419 "provided to the pass constructor"), 420 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 421 clEnumValN(AsanDtorKind::Global, "global", 422 "Use global destructors")), 423 cl::init(AsanDtorKind::Invalid), cl::Hidden); 424 425 // Debug flags. 426 427 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 428 cl::init(0)); 429 430 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 431 cl::Hidden, cl::init(0)); 432 433 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 434 cl::desc("Debug func")); 435 436 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 437 cl::Hidden, cl::init(-1)); 438 439 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 440 cl::Hidden, cl::init(-1)); 441 442 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 443 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 444 STATISTIC(NumOptimizedAccessesToGlobalVar, 445 "Number of optimized accesses to global vars"); 446 STATISTIC(NumOptimizedAccessesToStackVar, 447 "Number of optimized accesses to stack vars"); 448 449 namespace { 450 451 /// This struct defines the shadow mapping using the rule: 452 /// shadow = (mem >> Scale) ADD-or-OR Offset. 453 /// If InGlobal is true, then 454 /// extern char __asan_shadow[]; 455 /// shadow = (mem >> Scale) + &__asan_shadow 456 struct ShadowMapping { 457 int Scale; 458 uint64_t Offset; 459 bool OrShadowOffset; 460 bool InGlobal; 461 }; 462 463 } // end anonymous namespace 464 465 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, 466 bool IsKasan) { 467 bool IsAndroid = TargetTriple.isAndroid(); 468 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 469 bool IsMacOS = TargetTriple.isMacOSX(); 470 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 471 bool IsNetBSD = TargetTriple.isOSNetBSD(); 472 bool IsPS4CPU = TargetTriple.isPS4CPU(); 473 bool IsLinux = TargetTriple.isOSLinux(); 474 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 475 TargetTriple.getArch() == Triple::ppc64le; 476 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 477 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 478 bool IsMIPS32 = TargetTriple.isMIPS32(); 479 bool IsMIPS64 = TargetTriple.isMIPS64(); 480 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 481 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; 482 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 483 bool IsWindows = TargetTriple.isOSWindows(); 484 bool IsFuchsia = TargetTriple.isOSFuchsia(); 485 bool IsEmscripten = TargetTriple.isOSEmscripten(); 486 bool IsAMDGPU = TargetTriple.isAMDGPU(); 487 488 ShadowMapping Mapping; 489 490 Mapping.Scale = kDefaultShadowScale; 491 if (ClMappingScale.getNumOccurrences() > 0) { 492 Mapping.Scale = ClMappingScale; 493 } 494 495 if (LongSize == 32) { 496 if (IsAndroid) 497 Mapping.Offset = kDynamicShadowSentinel; 498 else if (IsMIPS32) 499 Mapping.Offset = kMIPS32_ShadowOffset32; 500 else if (IsFreeBSD) 501 Mapping.Offset = kFreeBSD_ShadowOffset32; 502 else if (IsNetBSD) 503 Mapping.Offset = kNetBSD_ShadowOffset32; 504 else if (IsIOS) 505 Mapping.Offset = kDynamicShadowSentinel; 506 else if (IsWindows) 507 Mapping.Offset = kWindowsShadowOffset32; 508 else if (IsEmscripten) 509 Mapping.Offset = kEmscriptenShadowOffset; 510 else 511 Mapping.Offset = kDefaultShadowOffset32; 512 } else { // LongSize == 64 513 // Fuchsia is always PIE, which means that the beginning of the address 514 // space is always available. 515 if (IsFuchsia) 516 Mapping.Offset = 0; 517 else if (IsPPC64) 518 Mapping.Offset = kPPC64_ShadowOffset64; 519 else if (IsSystemZ) 520 Mapping.Offset = kSystemZ_ShadowOffset64; 521 else if (IsFreeBSD && !IsMIPS64) { 522 if (IsKasan) 523 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 524 else 525 Mapping.Offset = kFreeBSD_ShadowOffset64; 526 } else if (IsNetBSD) { 527 if (IsKasan) 528 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 529 else 530 Mapping.Offset = kNetBSD_ShadowOffset64; 531 } else if (IsPS4CPU) 532 Mapping.Offset = kPS4CPU_ShadowOffset64; 533 else if (IsLinux && IsX86_64) { 534 if (IsKasan) 535 Mapping.Offset = kLinuxKasan_ShadowOffset64; 536 else 537 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 538 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 539 } else if (IsWindows && IsX86_64) { 540 Mapping.Offset = kWindowsShadowOffset64; 541 } else if (IsMIPS64) 542 Mapping.Offset = kMIPS64_ShadowOffset64; 543 else if (IsIOS) 544 Mapping.Offset = kDynamicShadowSentinel; 545 else if (IsMacOS && IsAArch64) 546 Mapping.Offset = kDynamicShadowSentinel; 547 else if (IsAArch64) 548 Mapping.Offset = kAArch64_ShadowOffset64; 549 else if (IsRISCV64) 550 Mapping.Offset = kRISCV64_ShadowOffset64; 551 else if (IsAMDGPU) 552 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 553 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 554 else 555 Mapping.Offset = kDefaultShadowOffset64; 556 } 557 558 if (ClForceDynamicShadow) { 559 Mapping.Offset = kDynamicShadowSentinel; 560 } 561 562 if (ClMappingOffset.getNumOccurrences() > 0) { 563 Mapping.Offset = ClMappingOffset; 564 } 565 566 // OR-ing shadow offset if more efficient (at least on x86) if the offset 567 // is a power of two, but on ppc64 we have to use add since the shadow 568 // offset is not necessary 1/8-th of the address space. On SystemZ, 569 // we could OR the constant in a single instruction, but it's more 570 // efficient to load it once and use indexed addressing. 571 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && 572 !IsRISCV64 && 573 !(Mapping.Offset & (Mapping.Offset - 1)) && 574 Mapping.Offset != kDynamicShadowSentinel; 575 bool IsAndroidWithIfuncSupport = 576 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 577 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 578 579 return Mapping; 580 } 581 582 namespace llvm { 583 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, 584 bool IsKasan, uint64_t *ShadowBase, 585 int *MappingScale, bool *OrShadowOffset) { 586 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); 587 *ShadowBase = Mapping.Offset; 588 *MappingScale = Mapping.Scale; 589 *OrShadowOffset = Mapping.OrShadowOffset; 590 } 591 592 ASanAccessInfo::ASanAccessInfo(int32_t Packed) 593 : Packed(Packed), 594 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), 595 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), 596 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} 597 598 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, 599 uint8_t AccessSizeIndex) 600 : Packed((IsWrite << kIsWriteShift) + 601 (CompileKernel << kCompileKernelShift) + 602 (AccessSizeIndex << kAccessSizeIndexShift)), 603 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), 604 CompileKernel(CompileKernel) {} 605 606 } // namespace llvm 607 608 static uint64_t getRedzoneSizeForScale(int MappingScale) { 609 // Redzone used for stack and globals is at least 32 bytes. 610 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 611 return std::max(32U, 1U << MappingScale); 612 } 613 614 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 615 if (TargetTriple.isOSEmscripten()) { 616 return kAsanEmscriptenCtorAndDtorPriority; 617 } else { 618 return kAsanCtorAndDtorPriority; 619 } 620 } 621 622 namespace { 623 624 /// Module analysis for getting various metadata about the module. 625 class ASanGlobalsMetadataWrapperPass : public ModulePass { 626 public: 627 static char ID; 628 629 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { 630 initializeASanGlobalsMetadataWrapperPassPass( 631 *PassRegistry::getPassRegistry()); 632 } 633 634 bool runOnModule(Module &M) override { 635 GlobalsMD = GlobalsMetadata(M); 636 return false; 637 } 638 639 StringRef getPassName() const override { 640 return "ASanGlobalsMetadataWrapperPass"; 641 } 642 643 void getAnalysisUsage(AnalysisUsage &AU) const override { 644 AU.setPreservesAll(); 645 } 646 647 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } 648 649 private: 650 GlobalsMetadata GlobalsMD; 651 }; 652 653 char ASanGlobalsMetadataWrapperPass::ID = 0; 654 655 /// AddressSanitizer: instrument the code in module to find memory bugs. 656 struct AddressSanitizer { 657 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 658 const StackSafetyGlobalInfo *SSGI, 659 bool CompileKernel = false, bool Recover = false, 660 bool UseAfterScope = false, 661 AsanDetectStackUseAfterReturnMode UseAfterReturn = 662 AsanDetectStackUseAfterReturnMode::Runtime) 663 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 664 : CompileKernel), 665 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 666 UseAfterScope(UseAfterScope || ClUseAfterScope), 667 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn 668 : UseAfterReturn), 669 GlobalsMD(*GlobalsMD), SSGI(SSGI) { 670 C = &(M.getContext()); 671 LongSize = M.getDataLayout().getPointerSizeInBits(); 672 IntptrTy = Type::getIntNTy(*C, LongSize); 673 Int8PtrTy = Type::getInt8PtrTy(*C); 674 Int32Ty = Type::getInt32Ty(*C); 675 TargetTriple = Triple(M.getTargetTriple()); 676 677 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 678 679 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); 680 } 681 682 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { 683 uint64_t ArraySize = 1; 684 if (AI.isArrayAllocation()) { 685 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); 686 assert(CI && "non-constant array size"); 687 ArraySize = CI->getZExtValue(); 688 } 689 Type *Ty = AI.getAllocatedType(); 690 uint64_t SizeInBytes = 691 AI.getModule()->getDataLayout().getTypeAllocSize(Ty); 692 return SizeInBytes * ArraySize; 693 } 694 695 /// Check if we want (and can) handle this alloca. 696 bool isInterestingAlloca(const AllocaInst &AI); 697 698 bool ignoreAccess(Instruction *Inst, Value *Ptr); 699 void getInterestingMemoryOperands( 700 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 701 702 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 703 InterestingMemoryOperand &O, bool UseCalls, 704 const DataLayout &DL); 705 void instrumentPointerComparisonOrSubtraction(Instruction *I); 706 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 707 Value *Addr, uint32_t TypeSize, bool IsWrite, 708 Value *SizeArgument, bool UseCalls, uint32_t Exp); 709 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 710 Instruction *InsertBefore, Value *Addr, 711 uint32_t TypeSize, bool IsWrite, 712 Value *SizeArgument); 713 void instrumentUnusualSizeOrAlignment(Instruction *I, 714 Instruction *InsertBefore, Value *Addr, 715 uint32_t TypeSize, bool IsWrite, 716 Value *SizeArgument, bool UseCalls, 717 uint32_t Exp); 718 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 719 Value *ShadowValue, uint32_t TypeSize); 720 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 721 bool IsWrite, size_t AccessSizeIndex, 722 Value *SizeArgument, uint32_t Exp); 723 void instrumentMemIntrinsic(MemIntrinsic *MI); 724 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 725 bool suppressInstrumentationSiteForDebug(int &Instrumented); 726 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 727 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 728 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 729 void markEscapedLocalAllocas(Function &F); 730 731 private: 732 friend struct FunctionStackPoisoner; 733 734 void initializeCallbacks(Module &M); 735 736 bool LooksLikeCodeInBug11395(Instruction *I); 737 bool GlobalIsLinkerInitialized(GlobalVariable *G); 738 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 739 uint64_t TypeSize) const; 740 741 /// Helper to cleanup per-function state. 742 struct FunctionStateRAII { 743 AddressSanitizer *Pass; 744 745 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 746 assert(Pass->ProcessedAllocas.empty() && 747 "last pass forgot to clear cache"); 748 assert(!Pass->LocalDynamicShadow); 749 } 750 751 ~FunctionStateRAII() { 752 Pass->LocalDynamicShadow = nullptr; 753 Pass->ProcessedAllocas.clear(); 754 } 755 }; 756 757 LLVMContext *C; 758 Triple TargetTriple; 759 int LongSize; 760 bool CompileKernel; 761 bool Recover; 762 bool UseAfterScope; 763 AsanDetectStackUseAfterReturnMode UseAfterReturn; 764 Type *IntptrTy; 765 Type *Int8PtrTy; 766 Type *Int32Ty; 767 ShadowMapping Mapping; 768 FunctionCallee AsanHandleNoReturnFunc; 769 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 770 Constant *AsanShadowGlobal; 771 772 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 773 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 774 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 775 776 // These arrays is indexed by AccessIsWrite and Experiment. 777 FunctionCallee AsanErrorCallbackSized[2][2]; 778 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 779 780 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 781 Value *LocalDynamicShadow = nullptr; 782 const GlobalsMetadata &GlobalsMD; 783 const StackSafetyGlobalInfo *SSGI; 784 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 785 786 FunctionCallee AMDGPUAddressShared; 787 FunctionCallee AMDGPUAddressPrivate; 788 }; 789 790 class AddressSanitizerLegacyPass : public FunctionPass { 791 public: 792 static char ID; 793 794 explicit AddressSanitizerLegacyPass( 795 bool CompileKernel = false, bool Recover = false, 796 bool UseAfterScope = false, 797 AsanDetectStackUseAfterReturnMode UseAfterReturn = 798 AsanDetectStackUseAfterReturnMode::Runtime) 799 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), 800 UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) { 801 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); 802 } 803 804 StringRef getPassName() const override { 805 return "AddressSanitizerFunctionPass"; 806 } 807 808 void getAnalysisUsage(AnalysisUsage &AU) const override { 809 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 810 if (ClUseStackSafety) 811 AU.addRequired<StackSafetyGlobalInfoWrapperPass>(); 812 AU.addRequired<TargetLibraryInfoWrapperPass>(); 813 } 814 815 bool runOnFunction(Function &F) override { 816 GlobalsMetadata &GlobalsMD = 817 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 818 const StackSafetyGlobalInfo *const SSGI = 819 ClUseStackSafety 820 ? &getAnalysis<StackSafetyGlobalInfoWrapperPass>().getResult() 821 : nullptr; 822 const TargetLibraryInfo *TLI = 823 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 824 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, SSGI, CompileKernel, 825 Recover, UseAfterScope, UseAfterReturn); 826 return ASan.instrumentFunction(F, TLI); 827 } 828 829 private: 830 bool CompileKernel; 831 bool Recover; 832 bool UseAfterScope; 833 AsanDetectStackUseAfterReturnMode UseAfterReturn; 834 }; 835 836 class ModuleAddressSanitizer { 837 public: 838 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, 839 bool CompileKernel = false, bool Recover = false, 840 bool UseGlobalsGC = true, bool UseOdrIndicator = false, 841 AsanDtorKind DestructorKind = AsanDtorKind::Global) 842 : GlobalsMD(*GlobalsMD), 843 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 844 : CompileKernel), 845 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 846 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 847 // Enable aliases as they should have no downside with ODR indicators. 848 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), 849 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), 850 // Not a typo: ClWithComdat is almost completely pointless without 851 // ClUseGlobalsGC (because then it only works on modules without 852 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 853 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 854 // argument is designed as workaround. Therefore, disable both 855 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 856 // do globals-gc. 857 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 858 DestructorKind(DestructorKind) { 859 C = &(M.getContext()); 860 int LongSize = M.getDataLayout().getPointerSizeInBits(); 861 IntptrTy = Type::getIntNTy(*C, LongSize); 862 TargetTriple = Triple(M.getTargetTriple()); 863 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 864 865 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 866 this->DestructorKind = ClOverrideDestructorKind; 867 assert(this->DestructorKind != AsanDtorKind::Invalid); 868 } 869 870 bool instrumentModule(Module &); 871 872 private: 873 void initializeCallbacks(Module &M); 874 875 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); 876 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, 877 ArrayRef<GlobalVariable *> ExtendedGlobals, 878 ArrayRef<Constant *> MetadataInitializers); 879 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, 880 ArrayRef<GlobalVariable *> ExtendedGlobals, 881 ArrayRef<Constant *> MetadataInitializers, 882 const std::string &UniqueModuleId); 883 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, 884 ArrayRef<GlobalVariable *> ExtendedGlobals, 885 ArrayRef<Constant *> MetadataInitializers); 886 void 887 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, 888 ArrayRef<GlobalVariable *> ExtendedGlobals, 889 ArrayRef<Constant *> MetadataInitializers); 890 891 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, 892 StringRef OriginalName); 893 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 894 StringRef InternalSuffix); 895 Instruction *CreateAsanModuleDtor(Module &M); 896 897 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 898 bool shouldInstrumentGlobal(GlobalVariable *G) const; 899 bool ShouldUseMachOGlobalsSection() const; 900 StringRef getGlobalMetadataSection() const; 901 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 902 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 903 uint64_t getMinRedzoneSizeForGlobal() const { 904 return getRedzoneSizeForScale(Mapping.Scale); 905 } 906 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 907 int GetAsanVersion(const Module &M) const; 908 909 const GlobalsMetadata &GlobalsMD; 910 bool CompileKernel; 911 bool Recover; 912 bool UseGlobalsGC; 913 bool UsePrivateAlias; 914 bool UseOdrIndicator; 915 bool UseCtorComdat; 916 AsanDtorKind DestructorKind; 917 Type *IntptrTy; 918 LLVMContext *C; 919 Triple TargetTriple; 920 ShadowMapping Mapping; 921 FunctionCallee AsanPoisonGlobals; 922 FunctionCallee AsanUnpoisonGlobals; 923 FunctionCallee AsanRegisterGlobals; 924 FunctionCallee AsanUnregisterGlobals; 925 FunctionCallee AsanRegisterImageGlobals; 926 FunctionCallee AsanUnregisterImageGlobals; 927 FunctionCallee AsanRegisterElfGlobals; 928 FunctionCallee AsanUnregisterElfGlobals; 929 930 Function *AsanCtorFunction = nullptr; 931 Function *AsanDtorFunction = nullptr; 932 }; 933 934 class ModuleAddressSanitizerLegacyPass : public ModulePass { 935 public: 936 static char ID; 937 938 explicit ModuleAddressSanitizerLegacyPass( 939 bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true, 940 bool UseOdrIndicator = false, 941 AsanDtorKind DestructorKind = AsanDtorKind::Global) 942 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), 943 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator), 944 DestructorKind(DestructorKind) { 945 initializeModuleAddressSanitizerLegacyPassPass( 946 *PassRegistry::getPassRegistry()); 947 } 948 949 StringRef getPassName() const override { return "ModuleAddressSanitizer"; } 950 951 void getAnalysisUsage(AnalysisUsage &AU) const override { 952 AU.addRequired<ASanGlobalsMetadataWrapperPass>(); 953 } 954 955 bool runOnModule(Module &M) override { 956 GlobalsMetadata &GlobalsMD = 957 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); 958 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, 959 UseGlobalGC, UseOdrIndicator, 960 DestructorKind); 961 return ASanModule.instrumentModule(M); 962 } 963 964 private: 965 bool CompileKernel; 966 bool Recover; 967 bool UseGlobalGC; 968 bool UseOdrIndicator; 969 AsanDtorKind DestructorKind; 970 }; 971 972 // Stack poisoning does not play well with exception handling. 973 // When an exception is thrown, we essentially bypass the code 974 // that unpoisones the stack. This is why the run-time library has 975 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 976 // stack in the interceptor. This however does not work inside the 977 // actual function which catches the exception. Most likely because the 978 // compiler hoists the load of the shadow value somewhere too high. 979 // This causes asan to report a non-existing bug on 453.povray. 980 // It sounds like an LLVM bug. 981 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 982 Function &F; 983 AddressSanitizer &ASan; 984 DIBuilder DIB; 985 LLVMContext *C; 986 Type *IntptrTy; 987 Type *IntptrPtrTy; 988 ShadowMapping Mapping; 989 990 SmallVector<AllocaInst *, 16> AllocaVec; 991 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 992 SmallVector<Instruction *, 8> RetVec; 993 994 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 995 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 996 FunctionCallee AsanSetShadowFunc[0x100] = {}; 997 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 998 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 999 1000 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 1001 struct AllocaPoisonCall { 1002 IntrinsicInst *InsBefore; 1003 AllocaInst *AI; 1004 uint64_t Size; 1005 bool DoPoison; 1006 }; 1007 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 1008 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 1009 bool HasUntracedLifetimeIntrinsic = false; 1010 1011 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 1012 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 1013 AllocaInst *DynamicAllocaLayout = nullptr; 1014 IntrinsicInst *LocalEscapeCall = nullptr; 1015 1016 bool HasInlineAsm = false; 1017 bool HasReturnsTwiceCall = false; 1018 bool PoisonStack; 1019 1020 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 1021 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), 1022 C(ASan.C), IntptrTy(ASan.IntptrTy), 1023 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), 1024 PoisonStack(ClStack && 1025 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 1026 1027 bool runOnFunction() { 1028 if (!PoisonStack) 1029 return false; 1030 1031 if (ClRedzoneByvalArgs) 1032 copyArgsPassedByValToAllocas(); 1033 1034 // Collect alloca, ret, lifetime instructions etc. 1035 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 1036 1037 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 1038 1039 initializeCallbacks(*F.getParent()); 1040 1041 if (HasUntracedLifetimeIntrinsic) { 1042 // If there are lifetime intrinsics which couldn't be traced back to an 1043 // alloca, we may not know exactly when a variable enters scope, and 1044 // therefore should "fail safe" by not poisoning them. 1045 StaticAllocaPoisonCallVec.clear(); 1046 DynamicAllocaPoisonCallVec.clear(); 1047 } 1048 1049 processDynamicAllocas(); 1050 processStaticAllocas(); 1051 1052 if (ClDebugStack) { 1053 LLVM_DEBUG(dbgs() << F); 1054 } 1055 return true; 1056 } 1057 1058 // Arguments marked with the "byval" attribute are implicitly copied without 1059 // using an alloca instruction. To produce redzones for those arguments, we 1060 // copy them a second time into memory allocated with an alloca instruction. 1061 void copyArgsPassedByValToAllocas(); 1062 1063 // Finds all Alloca instructions and puts 1064 // poisoned red zones around all of them. 1065 // Then unpoison everything back before the function returns. 1066 void processStaticAllocas(); 1067 void processDynamicAllocas(); 1068 1069 void createDynamicAllocasInitStorage(); 1070 1071 // ----------------------- Visitors. 1072 /// Collect all Ret instructions, or the musttail call instruction if it 1073 /// precedes the return instruction. 1074 void visitReturnInst(ReturnInst &RI) { 1075 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 1076 RetVec.push_back(CI); 1077 else 1078 RetVec.push_back(&RI); 1079 } 1080 1081 /// Collect all Resume instructions. 1082 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 1083 1084 /// Collect all CatchReturnInst instructions. 1085 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 1086 1087 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 1088 Value *SavedStack) { 1089 IRBuilder<> IRB(InstBefore); 1090 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 1091 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1092 // need to adjust extracted SP to compute the address of the most recent 1093 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1094 // this purpose. 1095 if (!isa<ReturnInst>(InstBefore)) { 1096 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 1097 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 1098 {IntptrTy}); 1099 1100 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 1101 1102 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1103 DynamicAreaOffset); 1104 } 1105 1106 IRB.CreateCall( 1107 AsanAllocasUnpoisonFunc, 1108 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1109 } 1110 1111 // Unpoison dynamic allocas redzones. 1112 void unpoisonDynamicAllocas() { 1113 for (Instruction *Ret : RetVec) 1114 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1115 1116 for (Instruction *StackRestoreInst : StackRestoreVec) 1117 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1118 StackRestoreInst->getOperand(0)); 1119 } 1120 1121 // Deploy and poison redzones around dynamic alloca call. To do this, we 1122 // should replace this call with another one with changed parameters and 1123 // replace all its uses with new address, so 1124 // addr = alloca type, old_size, align 1125 // is replaced by 1126 // new_size = (old_size + additional_size) * sizeof(type) 1127 // tmp = alloca i8, new_size, max(align, 32) 1128 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1129 // Additional_size is added to make new memory allocation contain not only 1130 // requested memory, but also left, partial and right redzones. 1131 void handleDynamicAllocaCall(AllocaInst *AI); 1132 1133 /// Collect Alloca instructions we want (and can) handle. 1134 void visitAllocaInst(AllocaInst &AI) { 1135 if (!ASan.isInterestingAlloca(AI)) { 1136 if (AI.isStaticAlloca()) { 1137 // Skip over allocas that are present *before* the first instrumented 1138 // alloca, we don't want to move those around. 1139 if (AllocaVec.empty()) 1140 return; 1141 1142 StaticAllocasToMoveUp.push_back(&AI); 1143 } 1144 return; 1145 } 1146 1147 if (!AI.isStaticAlloca()) 1148 DynamicAllocaVec.push_back(&AI); 1149 else 1150 AllocaVec.push_back(&AI); 1151 } 1152 1153 /// Collect lifetime intrinsic calls to check for use-after-scope 1154 /// errors. 1155 void visitIntrinsicInst(IntrinsicInst &II) { 1156 Intrinsic::ID ID = II.getIntrinsicID(); 1157 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1158 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1159 if (!ASan.UseAfterScope) 1160 return; 1161 if (!II.isLifetimeStartOrEnd()) 1162 return; 1163 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1164 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1165 // If size argument is undefined, don't do anything. 1166 if (Size->isMinusOne()) return; 1167 // Check that size doesn't saturate uint64_t and can 1168 // be stored in IntptrTy. 1169 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1170 if (SizeValue == ~0ULL || 1171 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1172 return; 1173 // Find alloca instruction that corresponds to llvm.lifetime argument. 1174 // Currently we can only handle lifetime markers pointing to the 1175 // beginning of the alloca. 1176 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1177 if (!AI) { 1178 HasUntracedLifetimeIntrinsic = true; 1179 return; 1180 } 1181 // We're interested only in allocas we can handle. 1182 if (!ASan.isInterestingAlloca(*AI)) 1183 return; 1184 bool DoPoison = (ID == Intrinsic::lifetime_end); 1185 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1186 if (AI->isStaticAlloca()) 1187 StaticAllocaPoisonCallVec.push_back(APC); 1188 else if (ClInstrumentDynamicAllocas) 1189 DynamicAllocaPoisonCallVec.push_back(APC); 1190 } 1191 1192 void visitCallBase(CallBase &CB) { 1193 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1194 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1195 HasReturnsTwiceCall |= CI->canReturnTwice(); 1196 } 1197 } 1198 1199 // ---------------------- Helpers. 1200 void initializeCallbacks(Module &M); 1201 1202 // Copies bytes from ShadowBytes into shadow memory for indexes where 1203 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1204 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1205 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1206 IRBuilder<> &IRB, Value *ShadowBase); 1207 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1208 size_t Begin, size_t End, IRBuilder<> &IRB, 1209 Value *ShadowBase); 1210 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1211 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1212 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1213 1214 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1215 1216 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1217 bool Dynamic); 1218 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1219 Instruction *ThenTerm, Value *ValueIfFalse); 1220 }; 1221 1222 } // end anonymous namespace 1223 1224 void LocationMetadata::parse(MDNode *MDN) { 1225 assert(MDN->getNumOperands() == 3); 1226 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 1227 Filename = DIFilename->getString(); 1228 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 1229 ColumnNo = 1230 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 1231 } 1232 1233 // FIXME: It would be cleaner to instead attach relevant metadata to the globals 1234 // we want to sanitize instead and reading this metadata on each pass over a 1235 // function instead of reading module level metadata at first. 1236 GlobalsMetadata::GlobalsMetadata(Module &M) { 1237 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 1238 if (!Globals) 1239 return; 1240 for (auto MDN : Globals->operands()) { 1241 // Metadata node contains the global and the fields of "Entry". 1242 assert(MDN->getNumOperands() == 5); 1243 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); 1244 // The optimizer may optimize away a global entirely. 1245 if (!V) 1246 continue; 1247 auto *StrippedV = V->stripPointerCasts(); 1248 auto *GV = dyn_cast<GlobalVariable>(StrippedV); 1249 if (!GV) 1250 continue; 1251 // We can already have an entry for GV if it was merged with another 1252 // global. 1253 Entry &E = Entries[GV]; 1254 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 1255 E.SourceLoc.parse(Loc); 1256 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 1257 E.Name = Name->getString(); 1258 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); 1259 E.IsDynInit |= IsDynInit->isOne(); 1260 ConstantInt *IsExcluded = 1261 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 1262 E.IsExcluded |= IsExcluded->isOne(); 1263 } 1264 } 1265 1266 AnalysisKey ASanGlobalsMetadataAnalysis::Key; 1267 1268 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, 1269 ModuleAnalysisManager &AM) { 1270 return GlobalsMetadata(M); 1271 } 1272 1273 PreservedAnalyses AddressSanitizerPass::run(Function &F, 1274 AnalysisManager<Function> &AM) { 1275 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1276 Module &M = *F.getParent(); 1277 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { 1278 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1279 AddressSanitizer Sanitizer(M, R, nullptr, Options.CompileKernel, 1280 Options.Recover, Options.UseAfterScope, 1281 Options.UseAfterReturn); 1282 if (Sanitizer.instrumentFunction(F, TLI)) 1283 return PreservedAnalyses::none(); 1284 return PreservedAnalyses::all(); 1285 } 1286 1287 report_fatal_error( 1288 "The ASanGlobalsMetadataAnalysis is required to run before " 1289 "AddressSanitizer can run"); 1290 return PreservedAnalyses::all(); 1291 } 1292 1293 void AddressSanitizerPass::printPipeline( 1294 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1295 static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline( 1296 OS, MapClassName2PassName); 1297 OS << "<"; 1298 if (Options.CompileKernel) 1299 OS << "kernel"; 1300 OS << ">"; 1301 } 1302 1303 void ModuleAddressSanitizerPass::printPipeline( 1304 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1305 static_cast<PassInfoMixin<ModuleAddressSanitizerPass> *>(this)->printPipeline( 1306 OS, MapClassName2PassName); 1307 OS << "<"; 1308 if (Options.CompileKernel) 1309 OS << "kernel"; 1310 OS << ">"; 1311 } 1312 1313 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( 1314 const AddressSanitizerOptions &Options, bool UseGlobalGC, 1315 bool UseOdrIndicator, AsanDtorKind DestructorKind) 1316 : Options(Options), UseGlobalGC(UseGlobalGC), 1317 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} 1318 1319 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, 1320 ModuleAnalysisManager &MAM) { 1321 GlobalsMetadata &GlobalsMD = MAM.getResult<ASanGlobalsMetadataAnalysis>(M); 1322 ModuleAddressSanitizer ModuleSanitizer(M, &GlobalsMD, Options.CompileKernel, 1323 Options.Recover, UseGlobalGC, 1324 UseOdrIndicator, DestructorKind); 1325 bool Modified = false; 1326 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1327 const StackSafetyGlobalInfo *const SSGI = 1328 ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr; 1329 for (Function &F : M) { 1330 AddressSanitizer FunctionSanitizer( 1331 M, &GlobalsMD, SSGI, Options.CompileKernel, Options.Recover, 1332 Options.UseAfterScope, Options.UseAfterReturn); 1333 const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1334 Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); 1335 } 1336 Modified |= ModuleSanitizer.instrumentModule(M); 1337 return Modified ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1338 } 1339 1340 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", 1341 "Read metadata to mark which globals should be instrumented " 1342 "when running ASan.", 1343 false, true) 1344 1345 char AddressSanitizerLegacyPass::ID = 0; 1346 1347 INITIALIZE_PASS_BEGIN( 1348 AddressSanitizerLegacyPass, "asan", 1349 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1350 false) 1351 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) 1352 INITIALIZE_PASS_DEPENDENCY(StackSafetyGlobalInfoWrapperPass) 1353 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1354 INITIALIZE_PASS_END( 1355 AddressSanitizerLegacyPass, "asan", 1356 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 1357 false) 1358 1359 FunctionPass *llvm::createAddressSanitizerFunctionPass( 1360 bool CompileKernel, bool Recover, bool UseAfterScope, 1361 AsanDetectStackUseAfterReturnMode UseAfterReturn) { 1362 assert(!CompileKernel || Recover); 1363 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope, 1364 UseAfterReturn); 1365 } 1366 1367 char ModuleAddressSanitizerLegacyPass::ID = 0; 1368 1369 INITIALIZE_PASS( 1370 ModuleAddressSanitizerLegacyPass, "asan-module", 1371 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 1372 "ModulePass", 1373 false, false) 1374 1375 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( 1376 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator, 1377 AsanDtorKind Destructor) { 1378 assert(!CompileKernel || Recover); 1379 return new ModuleAddressSanitizerLegacyPass( 1380 CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor); 1381 } 1382 1383 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 1384 size_t Res = countTrailingZeros(TypeSize / 8); 1385 assert(Res < kNumberOfAccessSizes); 1386 return Res; 1387 } 1388 1389 /// Create a global describing a source location. 1390 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 1391 LocationMetadata MD) { 1392 Constant *LocData[] = { 1393 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), 1394 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 1395 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 1396 }; 1397 auto LocStruct = ConstantStruct::getAnon(LocData); 1398 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 1399 GlobalValue::PrivateLinkage, LocStruct, 1400 kAsanGenPrefix); 1401 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1402 return GV; 1403 } 1404 1405 /// Check if \p G has been created by a trusted compiler pass. 1406 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1407 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1408 if (G->getName().startswith("llvm.")) 1409 return true; 1410 1411 // Do not instrument asan globals. 1412 if (G->getName().startswith(kAsanGenPrefix) || 1413 G->getName().startswith(kSanCovGenPrefix) || 1414 G->getName().startswith(kODRGenPrefix)) 1415 return true; 1416 1417 // Do not instrument gcov counter arrays. 1418 if (G->getName() == "__llvm_gcov_ctr") 1419 return true; 1420 1421 return false; 1422 } 1423 1424 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1425 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1426 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1427 if (AddrSpace == 3 || AddrSpace == 5) 1428 return true; 1429 return false; 1430 } 1431 1432 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1433 // Shadow >> scale 1434 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1435 if (Mapping.Offset == 0) return Shadow; 1436 // (Shadow >> scale) | offset 1437 Value *ShadowBase; 1438 if (LocalDynamicShadow) 1439 ShadowBase = LocalDynamicShadow; 1440 else 1441 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1442 if (Mapping.OrShadowOffset) 1443 return IRB.CreateOr(Shadow, ShadowBase); 1444 else 1445 return IRB.CreateAdd(Shadow, ShadowBase); 1446 } 1447 1448 // Instrument memset/memmove/memcpy 1449 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 1450 IRBuilder<> IRB(MI); 1451 if (isa<MemTransferInst>(MI)) { 1452 IRB.CreateCall( 1453 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1454 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1455 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 1456 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1457 } else if (isa<MemSetInst>(MI)) { 1458 IRB.CreateCall( 1459 AsanMemset, 1460 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 1461 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1462 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1463 } 1464 MI->eraseFromParent(); 1465 } 1466 1467 /// Check if we want (and can) handle this alloca. 1468 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1469 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1470 1471 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1472 return PreviouslySeenAllocaInfo->getSecond(); 1473 1474 bool IsInteresting = 1475 (AI.getAllocatedType()->isSized() && 1476 // alloca() may be called with 0 size, ignore it. 1477 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && 1478 // We are only interested in allocas not promotable to registers. 1479 // Promotable allocas are common under -O0. 1480 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1481 // inalloca allocas are not treated as static, and we don't want 1482 // dynamic alloca instrumentation for them as well. 1483 !AI.isUsedWithInAlloca() && 1484 // swifterror allocas are register promoted by ISel 1485 !AI.isSwiftError()); 1486 1487 ProcessedAllocas[&AI] = IsInteresting; 1488 return IsInteresting; 1489 } 1490 1491 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { 1492 // Instrument acesses from different address spaces only for AMDGPU. 1493 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1494 if (PtrTy->getPointerAddressSpace() != 0 && 1495 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1496 return true; 1497 1498 // Ignore swifterror addresses. 1499 // swifterror memory addresses are mem2reg promoted by instruction 1500 // selection. As such they cannot have regular uses like an instrumentation 1501 // function and it makes no sense to track them as memory. 1502 if (Ptr->isSwiftError()) 1503 return true; 1504 1505 // Treat memory accesses to promotable allocas as non-interesting since they 1506 // will not cause memory violations. This greatly speeds up the instrumented 1507 // executable at -O0. 1508 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1509 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1510 return true; 1511 1512 if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && 1513 findAllocaForValue(Ptr)) 1514 return true; 1515 1516 return false; 1517 } 1518 1519 void AddressSanitizer::getInterestingMemoryOperands( 1520 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1521 // Skip memory accesses inserted by another instrumentation. 1522 if (I->hasMetadata("nosanitize")) 1523 return; 1524 1525 // Do not instrument the load fetching the dynamic shadow address. 1526 if (LocalDynamicShadow == I) 1527 return; 1528 1529 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1530 if (!ClInstrumentReads || ignoreAccess(LI, LI->getPointerOperand())) 1531 return; 1532 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1533 LI->getType(), LI->getAlign()); 1534 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1535 if (!ClInstrumentWrites || ignoreAccess(LI, SI->getPointerOperand())) 1536 return; 1537 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1538 SI->getValueOperand()->getType(), SI->getAlign()); 1539 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1540 if (!ClInstrumentAtomics || ignoreAccess(LI, RMW->getPointerOperand())) 1541 return; 1542 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1543 RMW->getValOperand()->getType(), None); 1544 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1545 if (!ClInstrumentAtomics || ignoreAccess(LI, XCHG->getPointerOperand())) 1546 return; 1547 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1548 XCHG->getCompareOperand()->getType(), None); 1549 } else if (auto CI = dyn_cast<CallInst>(I)) { 1550 auto *F = CI->getCalledFunction(); 1551 if (F && (F->getName().startswith("llvm.masked.load.") || 1552 F->getName().startswith("llvm.masked.store."))) { 1553 bool IsWrite = F->getName().startswith("llvm.masked.store."); 1554 // Masked store has an initial operand for the value. 1555 unsigned OpOffset = IsWrite ? 1 : 0; 1556 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1557 return; 1558 1559 auto BasePtr = CI->getOperand(OpOffset); 1560 if (ignoreAccess(LI, BasePtr)) 1561 return; 1562 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 1563 MaybeAlign Alignment = Align(1); 1564 // Otherwise no alignment guarantees. We probably got Undef. 1565 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1566 Alignment = Op->getMaybeAlignValue(); 1567 Value *Mask = CI->getOperand(2 + OpOffset); 1568 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1569 } else { 1570 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { 1571 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1572 ignoreAccess(LI, CI->getArgOperand(ArgNo))) 1573 continue; 1574 Type *Ty = CI->getParamByValType(ArgNo); 1575 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1576 } 1577 } 1578 } 1579 } 1580 1581 static bool isPointerOperand(Value *V) { 1582 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1583 } 1584 1585 // This is a rough heuristic; it may cause both false positives and 1586 // false negatives. The proper implementation requires cooperation with 1587 // the frontend. 1588 static bool isInterestingPointerComparison(Instruction *I) { 1589 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1590 if (!Cmp->isRelational()) 1591 return false; 1592 } else { 1593 return false; 1594 } 1595 return isPointerOperand(I->getOperand(0)) && 1596 isPointerOperand(I->getOperand(1)); 1597 } 1598 1599 // This is a rough heuristic; it may cause both false positives and 1600 // false negatives. The proper implementation requires cooperation with 1601 // the frontend. 1602 static bool isInterestingPointerSubtraction(Instruction *I) { 1603 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1604 if (BO->getOpcode() != Instruction::Sub) 1605 return false; 1606 } else { 1607 return false; 1608 } 1609 return isPointerOperand(I->getOperand(0)) && 1610 isPointerOperand(I->getOperand(1)); 1611 } 1612 1613 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1614 // If a global variable does not have dynamic initialization we don't 1615 // have to instrument it. However, if a global does not have initializer 1616 // at all, we assume it has dynamic initializer (in other TU). 1617 // 1618 // FIXME: Metadata should be attched directly to the global directly instead 1619 // of being added to llvm.asan.globals. 1620 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1621 } 1622 1623 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1624 Instruction *I) { 1625 IRBuilder<> IRB(I); 1626 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1627 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1628 for (Value *&i : Param) { 1629 if (i->getType()->isPointerTy()) 1630 i = IRB.CreatePointerCast(i, IntptrTy); 1631 } 1632 IRB.CreateCall(F, Param); 1633 } 1634 1635 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1636 Instruction *InsertBefore, Value *Addr, 1637 MaybeAlign Alignment, unsigned Granularity, 1638 uint32_t TypeSize, bool IsWrite, 1639 Value *SizeArgument, bool UseCalls, 1640 uint32_t Exp) { 1641 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1642 // if the data is properly aligned. 1643 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1644 TypeSize == 128) && 1645 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) 1646 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, 1647 nullptr, UseCalls, Exp); 1648 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, 1649 IsWrite, nullptr, UseCalls, Exp); 1650 } 1651 1652 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, 1653 const DataLayout &DL, Type *IntptrTy, 1654 Value *Mask, Instruction *I, 1655 Value *Addr, MaybeAlign Alignment, 1656 unsigned Granularity, uint32_t TypeSize, 1657 bool IsWrite, Value *SizeArgument, 1658 bool UseCalls, uint32_t Exp) { 1659 auto *VTy = cast<FixedVectorType>( 1660 cast<PointerType>(Addr->getType())->getElementType()); 1661 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1662 unsigned Num = VTy->getNumElements(); 1663 auto Zero = ConstantInt::get(IntptrTy, 0); 1664 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1665 Value *InstrumentedAddress = nullptr; 1666 Instruction *InsertBefore = I; 1667 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 1668 // dyn_cast as we might get UndefValue 1669 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 1670 if (Masked->isZero()) 1671 // Mask is constant false, so no instrumentation needed. 1672 continue; 1673 // If we have a true or undef value, fall through to doInstrumentAddress 1674 // with InsertBefore == I 1675 } 1676 } else { 1677 IRBuilder<> IRB(I); 1678 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 1679 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 1680 InsertBefore = ThenTerm; 1681 } 1682 1683 IRBuilder<> IRB(InsertBefore); 1684 InstrumentedAddress = 1685 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 1686 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, 1687 Granularity, ElemTypeSize, IsWrite, SizeArgument, 1688 UseCalls, Exp); 1689 } 1690 } 1691 1692 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1693 InterestingMemoryOperand &O, bool UseCalls, 1694 const DataLayout &DL) { 1695 Value *Addr = O.getPtr(); 1696 1697 // Optimization experiments. 1698 // The experiments can be used to evaluate potential optimizations that remove 1699 // instrumentation (assess false negatives). Instead of completely removing 1700 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1701 // experiments that want to remove instrumentation of this instruction). 1702 // If Exp is non-zero, this pass will emit special calls into runtime 1703 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1704 // make runtime terminate the program in a special way (with a different 1705 // exit status). Then you run the new compiler on a buggy corpus, collect 1706 // the special terminations (ideally, you don't see them at all -- no false 1707 // negatives) and make the decision on the optimization. 1708 uint32_t Exp = ClForceExperiment; 1709 1710 if (ClOpt && ClOptGlobals) { 1711 // If initialization order checking is disabled, a simple access to a 1712 // dynamically initialized global is always valid. 1713 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1714 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1715 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1716 NumOptimizedAccessesToGlobalVar++; 1717 return; 1718 } 1719 } 1720 1721 if (ClOpt && ClOptStack) { 1722 // A direct inbounds access to a stack variable is always valid. 1723 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1724 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { 1725 NumOptimizedAccessesToStackVar++; 1726 return; 1727 } 1728 } 1729 1730 if (O.IsWrite) 1731 NumInstrumentedWrites++; 1732 else 1733 NumInstrumentedReads++; 1734 1735 unsigned Granularity = 1 << Mapping.Scale; 1736 if (O.MaybeMask) { 1737 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), 1738 Addr, O.Alignment, Granularity, O.TypeSize, 1739 O.IsWrite, nullptr, UseCalls, Exp); 1740 } else { 1741 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1742 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, 1743 Exp); 1744 } 1745 } 1746 1747 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1748 Value *Addr, bool IsWrite, 1749 size_t AccessSizeIndex, 1750 Value *SizeArgument, 1751 uint32_t Exp) { 1752 IRBuilder<> IRB(InsertBefore); 1753 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1754 CallInst *Call = nullptr; 1755 if (SizeArgument) { 1756 if (Exp == 0) 1757 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1758 {Addr, SizeArgument}); 1759 else 1760 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1761 {Addr, SizeArgument, ExpVal}); 1762 } else { 1763 if (Exp == 0) 1764 Call = 1765 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1766 else 1767 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1768 {Addr, ExpVal}); 1769 } 1770 1771 Call->setCannotMerge(); 1772 return Call; 1773 } 1774 1775 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1776 Value *ShadowValue, 1777 uint32_t TypeSize) { 1778 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1779 // Addr & (Granularity - 1) 1780 Value *LastAccessedByte = 1781 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1782 // (Addr & (Granularity - 1)) + size - 1 1783 if (TypeSize / 8 > 1) 1784 LastAccessedByte = IRB.CreateAdd( 1785 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1786 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1787 LastAccessedByte = 1788 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1789 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1790 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1791 } 1792 1793 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1794 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1795 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { 1796 // Do not instrument unsupported addrspaces. 1797 if (isUnsupportedAMDGPUAddrspace(Addr)) 1798 return nullptr; 1799 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1800 // Follow host instrumentation for global and constant addresses. 1801 if (PtrTy->getPointerAddressSpace() != 0) 1802 return InsertBefore; 1803 // Instrument generic addresses in supported addressspaces. 1804 IRBuilder<> IRB(InsertBefore); 1805 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); 1806 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); 1807 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); 1808 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1809 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); 1810 Value *AddrSpaceZeroLanding = 1811 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1812 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1813 return InsertBefore; 1814 } 1815 1816 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1817 Instruction *InsertBefore, Value *Addr, 1818 uint32_t TypeSize, bool IsWrite, 1819 Value *SizeArgument, bool UseCalls, 1820 uint32_t Exp) { 1821 if (TargetTriple.isAMDGPU()) { 1822 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1823 TypeSize, IsWrite, SizeArgument); 1824 if (!InsertBefore) 1825 return; 1826 } 1827 1828 IRBuilder<> IRB(InsertBefore); 1829 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1830 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1831 1832 if (UseCalls && ClOptimizeCallbacks) { 1833 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1834 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1835 IRB.CreateCall( 1836 Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), 1837 {IRB.CreatePointerCast(Addr, Int8PtrTy), 1838 ConstantInt::get(Int32Ty, AccessInfo.Packed)}); 1839 return; 1840 } 1841 1842 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1843 if (UseCalls) { 1844 if (Exp == 0) 1845 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1846 AddrLong); 1847 else 1848 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1849 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1850 return; 1851 } 1852 1853 Type *ShadowTy = 1854 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1855 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1856 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1857 Value *CmpVal = Constant::getNullValue(ShadowTy); 1858 Value *ShadowValue = 1859 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1860 1861 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1862 size_t Granularity = 1ULL << Mapping.Scale; 1863 Instruction *CrashTerm = nullptr; 1864 1865 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1866 // We use branch weights for the slow path check, to indicate that the slow 1867 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1868 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1869 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1870 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1871 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1872 IRB.SetInsertPoint(CheckTerm); 1873 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1874 if (Recover) { 1875 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1876 } else { 1877 BasicBlock *CrashBlock = 1878 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1879 CrashTerm = new UnreachableInst(*C, CrashBlock); 1880 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1881 ReplaceInstWithInst(CheckTerm, NewTerm); 1882 } 1883 } else { 1884 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1885 } 1886 1887 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1888 AccessSizeIndex, SizeArgument, Exp); 1889 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1890 } 1891 1892 // Instrument unusual size or unusual alignment. 1893 // We can not do it with a single check, so we do 1-byte check for the first 1894 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1895 // to report the actual access size. 1896 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1897 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, 1898 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1899 IRBuilder<> IRB(InsertBefore); 1900 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1901 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1902 if (UseCalls) { 1903 if (Exp == 0) 1904 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1905 {AddrLong, Size}); 1906 else 1907 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1908 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1909 } else { 1910 Value *LastByte = IRB.CreateIntToPtr( 1911 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1912 Addr->getType()); 1913 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); 1914 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); 1915 } 1916 } 1917 1918 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, 1919 GlobalValue *ModuleName) { 1920 // Set up the arguments to our poison/unpoison functions. 1921 IRBuilder<> IRB(&GlobalInit.front(), 1922 GlobalInit.front().getFirstInsertionPt()); 1923 1924 // Add a call to poison all external globals before the given function starts. 1925 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1926 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1927 1928 // Add calls to unpoison all globals before each return instruction. 1929 for (auto &BB : GlobalInit.getBasicBlockList()) 1930 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1931 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1932 } 1933 1934 void ModuleAddressSanitizer::createInitializerPoisonCalls( 1935 Module &M, GlobalValue *ModuleName) { 1936 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1937 if (!GV) 1938 return; 1939 1940 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1941 if (!CA) 1942 return; 1943 1944 for (Use &OP : CA->operands()) { 1945 if (isa<ConstantAggregateZero>(OP)) continue; 1946 ConstantStruct *CS = cast<ConstantStruct>(OP); 1947 1948 // Must have a function or null ptr. 1949 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1950 if (F->getName() == kAsanModuleCtorName) continue; 1951 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1952 // Don't instrument CTORs that will run before asan.module_ctor. 1953 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 1954 continue; 1955 poisonOneInitializer(*F, ModuleName); 1956 } 1957 } 1958 } 1959 1960 const GlobalVariable * 1961 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 1962 // In case this function should be expanded to include rules that do not just 1963 // apply when CompileKernel is true, either guard all existing rules with an 1964 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 1965 // should also apply to user space. 1966 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 1967 1968 const Constant *C = GA.getAliasee(); 1969 1970 // When compiling the kernel, globals that are aliased by symbols prefixed 1971 // by "__" are special and cannot be padded with a redzone. 1972 if (GA.getName().startswith("__")) 1973 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 1974 1975 return nullptr; 1976 } 1977 1978 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 1979 Type *Ty = G->getValueType(); 1980 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1981 1982 // FIXME: Metadata should be attched directly to the global directly instead 1983 // of being added to llvm.asan.globals. 1984 if (GlobalsMD.get(G).IsExcluded) return false; 1985 if (!Ty->isSized()) return false; 1986 if (!G->hasInitializer()) return false; 1987 // Globals in address space 1 and 4 are supported for AMDGPU. 1988 if (G->getAddressSpace() && 1989 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 1990 return false; 1991 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1992 // Two problems with thread-locals: 1993 // - The address of the main thread's copy can't be computed at link-time. 1994 // - Need to poison all copies, not just the main thread's one. 1995 if (G->isThreadLocal()) return false; 1996 // For now, just ignore this Global if the alignment is large. 1997 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; 1998 1999 // For non-COFF targets, only instrument globals known to be defined by this 2000 // TU. 2001 // FIXME: We can instrument comdat globals on ELF if we are using the 2002 // GC-friendly metadata scheme. 2003 if (!TargetTriple.isOSBinFormatCOFF()) { 2004 if (!G->hasExactDefinition() || G->hasComdat()) 2005 return false; 2006 } else { 2007 // On COFF, don't instrument non-ODR linkages. 2008 if (G->isInterposable()) 2009 return false; 2010 } 2011 2012 // If a comdat is present, it must have a selection kind that implies ODR 2013 // semantics: no duplicates, any, or exact match. 2014 if (Comdat *C = G->getComdat()) { 2015 switch (C->getSelectionKind()) { 2016 case Comdat::Any: 2017 case Comdat::ExactMatch: 2018 case Comdat::NoDeduplicate: 2019 break; 2020 case Comdat::Largest: 2021 case Comdat::SameSize: 2022 return false; 2023 } 2024 } 2025 2026 if (G->hasSection()) { 2027 // The kernel uses explicit sections for mostly special global variables 2028 // that we should not instrument. E.g. the kernel may rely on their layout 2029 // without redzones, or remove them at link time ("discard.*"), etc. 2030 if (CompileKernel) 2031 return false; 2032 2033 StringRef Section = G->getSection(); 2034 2035 // Globals from llvm.metadata aren't emitted, do not instrument them. 2036 if (Section == "llvm.metadata") return false; 2037 // Do not instrument globals from special LLVM sections. 2038 if (Section.contains("__llvm") || Section.contains("__LLVM")) 2039 return false; 2040 2041 // Do not instrument function pointers to initialization and termination 2042 // routines: dynamic linker will not properly handle redzones. 2043 if (Section.startswith(".preinit_array") || 2044 Section.startswith(".init_array") || 2045 Section.startswith(".fini_array")) { 2046 return false; 2047 } 2048 2049 // Do not instrument user-defined sections (with names resembling 2050 // valid C identifiers) 2051 if (TargetTriple.isOSBinFormatELF()) { 2052 if (llvm::all_of(Section, 2053 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 2054 return false; 2055 } 2056 2057 // On COFF, if the section name contains '$', it is highly likely that the 2058 // user is using section sorting to create an array of globals similar to 2059 // the way initialization callbacks are registered in .init_array and 2060 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 2061 // to such globals is counterproductive, because the intent is that they 2062 // will form an array, and out-of-bounds accesses are expected. 2063 // See https://github.com/google/sanitizers/issues/305 2064 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 2065 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 2066 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 2067 << *G << "\n"); 2068 return false; 2069 } 2070 2071 if (TargetTriple.isOSBinFormatMachO()) { 2072 StringRef ParsedSegment, ParsedSection; 2073 unsigned TAA = 0, StubSize = 0; 2074 bool TAAParsed; 2075 cantFail(MCSectionMachO::ParseSectionSpecifier( 2076 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 2077 2078 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 2079 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 2080 // them. 2081 if (ParsedSegment == "__OBJC" || 2082 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 2083 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 2084 return false; 2085 } 2086 // See https://github.com/google/sanitizers/issues/32 2087 // Constant CFString instances are compiled in the following way: 2088 // -- the string buffer is emitted into 2089 // __TEXT,__cstring,cstring_literals 2090 // -- the constant NSConstantString structure referencing that buffer 2091 // is placed into __DATA,__cfstring 2092 // Therefore there's no point in placing redzones into __DATA,__cfstring. 2093 // Moreover, it causes the linker to crash on OS X 10.7 2094 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 2095 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 2096 return false; 2097 } 2098 // The linker merges the contents of cstring_literals and removes the 2099 // trailing zeroes. 2100 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 2101 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 2102 return false; 2103 } 2104 } 2105 } 2106 2107 if (CompileKernel) { 2108 // Globals that prefixed by "__" are special and cannot be padded with a 2109 // redzone. 2110 if (G->getName().startswith("__")) 2111 return false; 2112 } 2113 2114 return true; 2115 } 2116 2117 // On Mach-O platforms, we emit global metadata in a separate section of the 2118 // binary in order to allow the linker to properly dead strip. This is only 2119 // supported on recent versions of ld64. 2120 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 2121 if (!TargetTriple.isOSBinFormatMachO()) 2122 return false; 2123 2124 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 2125 return true; 2126 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 2127 return true; 2128 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 2129 return true; 2130 2131 return false; 2132 } 2133 2134 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 2135 switch (TargetTriple.getObjectFormat()) { 2136 case Triple::COFF: return ".ASAN$GL"; 2137 case Triple::ELF: return "asan_globals"; 2138 case Triple::MachO: return "__DATA,__asan_globals,regular"; 2139 case Triple::Wasm: 2140 case Triple::GOFF: 2141 case Triple::XCOFF: 2142 report_fatal_error( 2143 "ModuleAddressSanitizer not implemented for object file format"); 2144 case Triple::UnknownObjectFormat: 2145 break; 2146 } 2147 llvm_unreachable("unsupported object format"); 2148 } 2149 2150 void ModuleAddressSanitizer::initializeCallbacks(Module &M) { 2151 IRBuilder<> IRB(*C); 2152 2153 // Declare our poisoning and unpoisoning functions. 2154 AsanPoisonGlobals = 2155 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 2156 AsanUnpoisonGlobals = 2157 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 2158 2159 // Declare functions that register/unregister globals. 2160 AsanRegisterGlobals = M.getOrInsertFunction( 2161 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2162 AsanUnregisterGlobals = M.getOrInsertFunction( 2163 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2164 2165 // Declare the functions that find globals in a shared object and then invoke 2166 // the (un)register function on them. 2167 AsanRegisterImageGlobals = M.getOrInsertFunction( 2168 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2169 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2170 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2171 2172 AsanRegisterElfGlobals = 2173 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2174 IntptrTy, IntptrTy, IntptrTy); 2175 AsanUnregisterElfGlobals = 2176 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2177 IntptrTy, IntptrTy, IntptrTy); 2178 } 2179 2180 // Put the metadata and the instrumented global in the same group. This ensures 2181 // that the metadata is discarded if the instrumented global is discarded. 2182 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2183 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2184 Module &M = *G->getParent(); 2185 Comdat *C = G->getComdat(); 2186 if (!C) { 2187 if (!G->hasName()) { 2188 // If G is unnamed, it must be internal. Give it an artificial name 2189 // so we can put it in a comdat. 2190 assert(G->hasLocalLinkage()); 2191 G->setName(Twine(kAsanGenPrefix) + "_anon_global"); 2192 } 2193 2194 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2195 std::string Name = std::string(G->getName()); 2196 Name += InternalSuffix; 2197 C = M.getOrInsertComdat(Name); 2198 } else { 2199 C = M.getOrInsertComdat(G->getName()); 2200 } 2201 2202 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2203 // linkage to internal linkage so that a symbol table entry is emitted. This 2204 // is necessary in order to create the comdat group. 2205 if (TargetTriple.isOSBinFormatCOFF()) { 2206 C->setSelectionKind(Comdat::NoDeduplicate); 2207 if (G->hasPrivateLinkage()) 2208 G->setLinkage(GlobalValue::InternalLinkage); 2209 } 2210 G->setComdat(C); 2211 } 2212 2213 assert(G->hasComdat()); 2214 Metadata->setComdat(G->getComdat()); 2215 } 2216 2217 // Create a separate metadata global and put it in the appropriate ASan 2218 // global registration section. 2219 GlobalVariable * 2220 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, 2221 StringRef OriginalName) { 2222 auto Linkage = TargetTriple.isOSBinFormatMachO() 2223 ? GlobalVariable::InternalLinkage 2224 : GlobalVariable::PrivateLinkage; 2225 GlobalVariable *Metadata = new GlobalVariable( 2226 M, Initializer->getType(), false, Linkage, Initializer, 2227 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2228 Metadata->setSection(getGlobalMetadataSection()); 2229 return Metadata; 2230 } 2231 2232 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { 2233 AsanDtorFunction = Function::createWithDefaultAttr( 2234 FunctionType::get(Type::getVoidTy(*C), false), 2235 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2236 AsanDtorFunction->addFnAttr(Attribute::NoUnwind); 2237 // Ensure Dtor cannot be discarded, even if in a comdat. 2238 appendToUsed(M, {AsanDtorFunction}); 2239 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2240 2241 return ReturnInst::Create(*C, AsanDtorBB); 2242 } 2243 2244 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2245 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2246 ArrayRef<Constant *> MetadataInitializers) { 2247 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2248 auto &DL = M.getDataLayout(); 2249 2250 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2251 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2252 Constant *Initializer = MetadataInitializers[i]; 2253 GlobalVariable *G = ExtendedGlobals[i]; 2254 GlobalVariable *Metadata = 2255 CreateMetadataGlobal(M, Initializer, G->getName()); 2256 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2257 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2258 MetadataGlobals[i] = Metadata; 2259 2260 // The MSVC linker always inserts padding when linking incrementally. We 2261 // cope with that by aligning each struct to its size, which must be a power 2262 // of two. 2263 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2264 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2265 "global metadata will not be padded appropriately"); 2266 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2267 2268 SetComdatForGlobalMetadata(G, Metadata, ""); 2269 } 2270 2271 // Update llvm.compiler.used, adding the new metadata globals. This is 2272 // needed so that during LTO these variables stay alive. 2273 if (!MetadataGlobals.empty()) 2274 appendToCompilerUsed(M, MetadataGlobals); 2275 } 2276 2277 void ModuleAddressSanitizer::InstrumentGlobalsELF( 2278 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2279 ArrayRef<Constant *> MetadataInitializers, 2280 const std::string &UniqueModuleId) { 2281 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2282 2283 // Putting globals in a comdat changes the semantic and potentially cause 2284 // false negative odr violations at link time. If odr indicators are used, we 2285 // keep the comdat sections, as link time odr violations will be dectected on 2286 // the odr indicator symbols. 2287 bool UseComdatForGlobalsGC = UseOdrIndicator; 2288 2289 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2290 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2291 GlobalVariable *G = ExtendedGlobals[i]; 2292 GlobalVariable *Metadata = 2293 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); 2294 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2295 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2296 MetadataGlobals[i] = Metadata; 2297 2298 if (UseComdatForGlobalsGC) 2299 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2300 } 2301 2302 // Update llvm.compiler.used, adding the new metadata globals. This is 2303 // needed so that during LTO these variables stay alive. 2304 if (!MetadataGlobals.empty()) 2305 appendToCompilerUsed(M, MetadataGlobals); 2306 2307 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2308 // to look up the loaded image that contains it. Second, we can store in it 2309 // whether registration has already occurred, to prevent duplicate 2310 // registration. 2311 // 2312 // Common linkage ensures that there is only one global per shared library. 2313 GlobalVariable *RegisteredFlag = new GlobalVariable( 2314 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2315 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2316 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2317 2318 // Create start and stop symbols. 2319 GlobalVariable *StartELFMetadata = new GlobalVariable( 2320 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2321 "__start_" + getGlobalMetadataSection()); 2322 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2323 GlobalVariable *StopELFMetadata = new GlobalVariable( 2324 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2325 "__stop_" + getGlobalMetadataSection()); 2326 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2327 2328 // Create a call to register the globals with the runtime. 2329 IRB.CreateCall(AsanRegisterElfGlobals, 2330 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2331 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2332 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2333 2334 // We also need to unregister globals at the end, e.g., when a shared library 2335 // gets closed. 2336 if (DestructorKind != AsanDtorKind::None) { 2337 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2338 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2339 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2340 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2341 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2342 } 2343 } 2344 2345 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2346 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2347 ArrayRef<Constant *> MetadataInitializers) { 2348 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2349 2350 // On recent Mach-O platforms, use a structure which binds the liveness of 2351 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2352 // created to be added to llvm.compiler.used 2353 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2354 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2355 2356 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2357 Constant *Initializer = MetadataInitializers[i]; 2358 GlobalVariable *G = ExtendedGlobals[i]; 2359 GlobalVariable *Metadata = 2360 CreateMetadataGlobal(M, Initializer, G->getName()); 2361 2362 // On recent Mach-O platforms, we emit the global metadata in a way that 2363 // allows the linker to properly strip dead globals. 2364 auto LivenessBinder = 2365 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2366 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2367 GlobalVariable *Liveness = new GlobalVariable( 2368 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2369 Twine("__asan_binder_") + G->getName()); 2370 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2371 LivenessGlobals[i] = Liveness; 2372 } 2373 2374 // Update llvm.compiler.used, adding the new liveness globals. This is 2375 // needed so that during LTO these variables stay alive. The alternative 2376 // would be to have the linker handling the LTO symbols, but libLTO 2377 // current API does not expose access to the section for each symbol. 2378 if (!LivenessGlobals.empty()) 2379 appendToCompilerUsed(M, LivenessGlobals); 2380 2381 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2382 // to look up the loaded image that contains it. Second, we can store in it 2383 // whether registration has already occurred, to prevent duplicate 2384 // registration. 2385 // 2386 // common linkage ensures that there is only one global per shared library. 2387 GlobalVariable *RegisteredFlag = new GlobalVariable( 2388 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2389 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2390 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2391 2392 IRB.CreateCall(AsanRegisterImageGlobals, 2393 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2394 2395 // We also need to unregister globals at the end, e.g., when a shared library 2396 // gets closed. 2397 if (DestructorKind != AsanDtorKind::None) { 2398 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2399 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2400 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2401 } 2402 } 2403 2404 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2405 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, 2406 ArrayRef<Constant *> MetadataInitializers) { 2407 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2408 unsigned N = ExtendedGlobals.size(); 2409 assert(N > 0); 2410 2411 // On platforms that don't have a custom metadata section, we emit an array 2412 // of global metadata structures. 2413 ArrayType *ArrayOfGlobalStructTy = 2414 ArrayType::get(MetadataInitializers[0]->getType(), N); 2415 auto AllGlobals = new GlobalVariable( 2416 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2417 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2418 if (Mapping.Scale > 3) 2419 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2420 2421 IRB.CreateCall(AsanRegisterGlobals, 2422 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2423 ConstantInt::get(IntptrTy, N)}); 2424 2425 // We also need to unregister globals at the end, e.g., when a shared library 2426 // gets closed. 2427 if (DestructorKind != AsanDtorKind::None) { 2428 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); 2429 IrbDtor.CreateCall(AsanUnregisterGlobals, 2430 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2431 ConstantInt::get(IntptrTy, N)}); 2432 } 2433 } 2434 2435 // This function replaces all global variables with new variables that have 2436 // trailing redzones. It also creates a function that poisons 2437 // redzones and inserts this function into llvm.global_ctors. 2438 // Sets *CtorComdat to true if the global registration code emitted into the 2439 // asan constructor is comdat-compatible. 2440 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, 2441 bool *CtorComdat) { 2442 *CtorComdat = false; 2443 2444 // Build set of globals that are aliased by some GA, where 2445 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2446 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2447 if (CompileKernel) { 2448 for (auto &GA : M.aliases()) { 2449 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2450 AliasedGlobalExclusions.insert(GV); 2451 } 2452 } 2453 2454 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2455 for (auto &G : M.globals()) { 2456 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2457 GlobalsToChange.push_back(&G); 2458 } 2459 2460 size_t n = GlobalsToChange.size(); 2461 if (n == 0) { 2462 *CtorComdat = true; 2463 return false; 2464 } 2465 2466 auto &DL = M.getDataLayout(); 2467 2468 // A global is described by a structure 2469 // size_t beg; 2470 // size_t size; 2471 // size_t size_with_redzone; 2472 // const char *name; 2473 // const char *module_name; 2474 // size_t has_dynamic_init; 2475 // void *source_location; 2476 // size_t odr_indicator; 2477 // We initialize an array of such structures and pass it to a run-time call. 2478 StructType *GlobalStructTy = 2479 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2480 IntptrTy, IntptrTy, IntptrTy); 2481 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2482 SmallVector<Constant *, 16> Initializers(n); 2483 2484 bool HasDynamicallyInitializedGlobals = false; 2485 2486 // We shouldn't merge same module names, as this string serves as unique 2487 // module ID in runtime. 2488 GlobalVariable *ModuleName = createPrivateGlobalForString( 2489 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); 2490 2491 for (size_t i = 0; i < n; i++) { 2492 GlobalVariable *G = GlobalsToChange[i]; 2493 2494 // FIXME: Metadata should be attched directly to the global directly instead 2495 // of being added to llvm.asan.globals. 2496 auto MD = GlobalsMD.get(G); 2497 StringRef NameForGlobal = G->getName(); 2498 // Create string holding the global name (use global name from metadata 2499 // if it's available, otherwise just write the name of global variable). 2500 GlobalVariable *Name = createPrivateGlobalForString( 2501 M, MD.Name.empty() ? NameForGlobal : MD.Name, 2502 /*AllowMerging*/ true, kAsanGenPrefix); 2503 2504 Type *Ty = G->getValueType(); 2505 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2506 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2507 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2508 2509 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2510 Constant *NewInitializer = ConstantStruct::get( 2511 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2512 2513 // Create a new global variable with enough space for a redzone. 2514 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2515 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2516 Linkage = GlobalValue::InternalLinkage; 2517 GlobalVariable *NewGlobal = new GlobalVariable( 2518 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2519 G->getThreadLocalMode(), G->getAddressSpace()); 2520 NewGlobal->copyAttributesFrom(G); 2521 NewGlobal->setComdat(G->getComdat()); 2522 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); 2523 // Don't fold globals with redzones. ODR violation detector and redzone 2524 // poisoning implicitly creates a dependence on the global's address, so it 2525 // is no longer valid for it to be marked unnamed_addr. 2526 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2527 2528 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2529 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2530 G->isConstant()) { 2531 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2532 if (Seq && Seq->isCString()) 2533 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2534 } 2535 2536 // Transfer the debug info and type metadata. The payload starts at offset 2537 // zero so we can copy the metadata over as is. 2538 NewGlobal->copyMetadata(G, 0); 2539 2540 Value *Indices2[2]; 2541 Indices2[0] = IRB.getInt32(0); 2542 Indices2[1] = IRB.getInt32(0); 2543 2544 G->replaceAllUsesWith( 2545 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2546 NewGlobal->takeName(G); 2547 G->eraseFromParent(); 2548 NewGlobals[i] = NewGlobal; 2549 2550 Constant *SourceLoc; 2551 if (!MD.SourceLoc.empty()) { 2552 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 2553 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 2554 } else { 2555 SourceLoc = ConstantInt::get(IntptrTy, 0); 2556 } 2557 2558 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 2559 GlobalValue *InstrumentedGlobal = NewGlobal; 2560 2561 bool CanUsePrivateAliases = 2562 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2563 TargetTriple.isOSBinFormatWasm(); 2564 if (CanUsePrivateAliases && UsePrivateAlias) { 2565 // Create local alias for NewGlobal to avoid crash on ODR between 2566 // instrumented and non-instrumented libraries. 2567 InstrumentedGlobal = 2568 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2569 } 2570 2571 // ODR should not happen for local linkage. 2572 if (NewGlobal->hasLocalLinkage()) { 2573 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), 2574 IRB.getInt8PtrTy()); 2575 } else if (UseOdrIndicator) { 2576 // With local aliases, we need to provide another externally visible 2577 // symbol __odr_asan_XXX to detect ODR violation. 2578 auto *ODRIndicatorSym = 2579 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2580 Constant::getNullValue(IRB.getInt8Ty()), 2581 kODRGenPrefix + NameForGlobal, nullptr, 2582 NewGlobal->getThreadLocalMode()); 2583 2584 // Set meaningful attributes for indicator symbol. 2585 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2586 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2587 ODRIndicatorSym->setAlignment(Align(1)); 2588 ODRIndicator = ODRIndicatorSym; 2589 } 2590 2591 Constant *Initializer = ConstantStruct::get( 2592 GlobalStructTy, 2593 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2594 ConstantInt::get(IntptrTy, SizeInBytes), 2595 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2596 ConstantExpr::getPointerCast(Name, IntptrTy), 2597 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 2598 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 2599 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2600 2601 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 2602 2603 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2604 2605 Initializers[i] = Initializer; 2606 } 2607 2608 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2609 // ConstantMerge'ing them. 2610 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2611 for (size_t i = 0; i < n; i++) { 2612 GlobalVariable *G = NewGlobals[i]; 2613 if (G->getName().empty()) continue; 2614 GlobalsToAddToUsedList.push_back(G); 2615 } 2616 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2617 2618 std::string ELFUniqueModuleId = 2619 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) 2620 : ""; 2621 2622 if (!ELFUniqueModuleId.empty()) { 2623 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); 2624 *CtorComdat = true; 2625 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2626 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); 2627 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2628 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); 2629 } else { 2630 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); 2631 } 2632 2633 // Create calls for poisoning before initializers run and unpoisoning after. 2634 if (HasDynamicallyInitializedGlobals) 2635 createInitializerPoisonCalls(M, ModuleName); 2636 2637 LLVM_DEBUG(dbgs() << M); 2638 return true; 2639 } 2640 2641 uint64_t 2642 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2643 constexpr uint64_t kMaxRZ = 1 << 18; 2644 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2645 2646 uint64_t RZ = 0; 2647 if (SizeInBytes <= MinRZ / 2) { 2648 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2649 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2650 // half of MinRZ. 2651 RZ = MinRZ - SizeInBytes; 2652 } else { 2653 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2654 RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); 2655 2656 // Round up to multiple of MinRZ. 2657 if (SizeInBytes % MinRZ) 2658 RZ += MinRZ - (SizeInBytes % MinRZ); 2659 } 2660 2661 assert((RZ + SizeInBytes) % MinRZ == 0); 2662 2663 return RZ; 2664 } 2665 2666 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { 2667 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2668 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2669 int Version = 8; 2670 // 32-bit Android is one version ahead because of the switch to dynamic 2671 // shadow. 2672 Version += (LongSize == 32 && isAndroid); 2673 return Version; 2674 } 2675 2676 bool ModuleAddressSanitizer::instrumentModule(Module &M) { 2677 initializeCallbacks(M); 2678 2679 // Create a module constructor. A destructor is created lazily because not all 2680 // platforms, and not all modules need it. 2681 if (CompileKernel) { 2682 // The kernel always builds with its own runtime, and therefore does not 2683 // need the init and version check calls. 2684 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2685 } else { 2686 std::string AsanVersion = std::to_string(GetAsanVersion(M)); 2687 std::string VersionCheckName = 2688 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2689 std::tie(AsanCtorFunction, std::ignore) = 2690 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, 2691 kAsanInitName, /*InitArgTypes=*/{}, 2692 /*InitArgs=*/{}, VersionCheckName); 2693 } 2694 2695 bool CtorComdat = true; 2696 if (ClGlobals) { 2697 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2698 InstrumentGlobals(IRB, M, &CtorComdat); 2699 } 2700 2701 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2702 2703 // Put the constructor and destructor in comdat if both 2704 // (1) global instrumentation is not TU-specific 2705 // (2) target is ELF. 2706 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2707 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2708 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2709 if (AsanDtorFunction) { 2710 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2711 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2712 } 2713 } else { 2714 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2715 if (AsanDtorFunction) 2716 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2717 } 2718 2719 return true; 2720 } 2721 2722 void AddressSanitizer::initializeCallbacks(Module &M) { 2723 IRBuilder<> IRB(*C); 2724 // Create __asan_report* callbacks. 2725 // IsWrite, TypeSize and Exp are encoded in the function name. 2726 for (int Exp = 0; Exp < 2; Exp++) { 2727 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2728 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2729 const std::string ExpStr = Exp ? "exp_" : ""; 2730 const std::string EndingStr = Recover ? "_noabort" : ""; 2731 2732 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2733 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2734 if (Exp) { 2735 Type *ExpType = Type::getInt32Ty(*C); 2736 Args2.push_back(ExpType); 2737 Args1.push_back(ExpType); 2738 } 2739 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2740 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2741 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2742 2743 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2744 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2745 FunctionType::get(IRB.getVoidTy(), Args2, false)); 2746 2747 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2748 AccessSizeIndex++) { 2749 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2750 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2751 M.getOrInsertFunction( 2752 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2753 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2754 2755 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2756 M.getOrInsertFunction( 2757 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2758 FunctionType::get(IRB.getVoidTy(), Args1, false)); 2759 } 2760 } 2761 } 2762 2763 const std::string MemIntrinCallbackPrefix = 2764 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 2765 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2766 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2767 IRB.getInt8PtrTy(), IntptrTy); 2768 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", 2769 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2770 IRB.getInt8PtrTy(), IntptrTy); 2771 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2772 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 2773 IRB.getInt32Ty(), IntptrTy); 2774 2775 AsanHandleNoReturnFunc = 2776 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2777 2778 AsanPtrCmpFunction = 2779 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2780 AsanPtrSubFunction = 2781 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2782 if (Mapping.InGlobal) 2783 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2784 ArrayType::get(IRB.getInt8Ty(), 0)); 2785 2786 AMDGPUAddressShared = M.getOrInsertFunction( 2787 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2788 AMDGPUAddressPrivate = M.getOrInsertFunction( 2789 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); 2790 } 2791 2792 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2793 // For each NSObject descendant having a +load method, this method is invoked 2794 // by the ObjC runtime before any of the static constructors is called. 2795 // Therefore we need to instrument such methods with a call to __asan_init 2796 // at the beginning in order to initialize our runtime before any access to 2797 // the shadow memory. 2798 // We cannot just ignore these methods, because they may call other 2799 // instrumented functions. 2800 if (F.getName().find(" load]") != std::string::npos) { 2801 FunctionCallee AsanInitFunction = 2802 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2803 IRBuilder<> IRB(&F.front(), F.front().begin()); 2804 IRB.CreateCall(AsanInitFunction, {}); 2805 return true; 2806 } 2807 return false; 2808 } 2809 2810 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2811 // Generate code only when dynamic addressing is needed. 2812 if (Mapping.Offset != kDynamicShadowSentinel) 2813 return false; 2814 2815 IRBuilder<> IRB(&F.front().front()); 2816 if (Mapping.InGlobal) { 2817 if (ClWithIfuncSuppressRemat) { 2818 // An empty inline asm with input reg == output reg. 2819 // An opaque pointer-to-int cast, basically. 2820 InlineAsm *Asm = InlineAsm::get( 2821 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2822 StringRef(""), StringRef("=r,0"), 2823 /*hasSideEffects=*/false); 2824 LocalDynamicShadow = 2825 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2826 } else { 2827 LocalDynamicShadow = 2828 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2829 } 2830 } else { 2831 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2832 kAsanShadowMemoryDynamicAddress, IntptrTy); 2833 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2834 } 2835 return true; 2836 } 2837 2838 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2839 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2840 // to it as uninteresting. This assumes we haven't started processing allocas 2841 // yet. This check is done up front because iterating the use list in 2842 // isInterestingAlloca would be algorithmically slower. 2843 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2844 2845 // Try to get the declaration of llvm.localescape. If it's not in the module, 2846 // we can exit early. 2847 if (!F.getParent()->getFunction("llvm.localescape")) return; 2848 2849 // Look for a call to llvm.localescape call in the entry block. It can't be in 2850 // any other block. 2851 for (Instruction &I : F.getEntryBlock()) { 2852 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2853 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2854 // We found a call. Mark all the allocas passed in as uninteresting. 2855 for (Value *Arg : II->args()) { 2856 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2857 assert(AI && AI->isStaticAlloca() && 2858 "non-static alloca arg to localescape"); 2859 ProcessedAllocas[AI] = false; 2860 } 2861 break; 2862 } 2863 } 2864 } 2865 2866 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2867 bool ShouldInstrument = 2868 ClDebugMin < 0 || ClDebugMax < 0 || 2869 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2870 Instrumented++; 2871 return !ShouldInstrument; 2872 } 2873 2874 bool AddressSanitizer::instrumentFunction(Function &F, 2875 const TargetLibraryInfo *TLI) { 2876 if (F.empty()) 2877 return false; 2878 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2879 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2880 if (F.getName().startswith("__asan_")) return false; 2881 2882 bool FunctionModified = false; 2883 2884 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2885 // This function needs to be called even if the function body is not 2886 // instrumented. 2887 if (maybeInsertAsanInitAtFunctionEntry(F)) 2888 FunctionModified = true; 2889 2890 // Leave if the function doesn't need instrumentation. 2891 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2892 2893 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2894 2895 initializeCallbacks(*F.getParent()); 2896 2897 FunctionStateRAII CleanupObj(this); 2898 2899 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2900 2901 // We can't instrument allocas used with llvm.localescape. Only static allocas 2902 // can be passed to that intrinsic. 2903 markEscapedLocalAllocas(F); 2904 2905 // We want to instrument every address only once per basic block (unless there 2906 // are calls between uses). 2907 SmallPtrSet<Value *, 16> TempsToInstrument; 2908 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2909 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2910 SmallVector<Instruction *, 8> NoReturnCalls; 2911 SmallVector<BasicBlock *, 16> AllBlocks; 2912 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2913 int NumAllocas = 0; 2914 2915 // Fill the set of memory operations to instrument. 2916 for (auto &BB : F) { 2917 AllBlocks.push_back(&BB); 2918 TempsToInstrument.clear(); 2919 int NumInsnsPerBB = 0; 2920 for (auto &Inst : BB) { 2921 if (LooksLikeCodeInBug11395(&Inst)) return false; 2922 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 2923 getInterestingMemoryOperands(&Inst, InterestingOperands); 2924 2925 if (!InterestingOperands.empty()) { 2926 for (auto &Operand : InterestingOperands) { 2927 if (ClOpt && ClOptSameTemp) { 2928 Value *Ptr = Operand.getPtr(); 2929 // If we have a mask, skip instrumentation if we've already 2930 // instrumented the full object. But don't add to TempsToInstrument 2931 // because we might get another load/store with a different mask. 2932 if (Operand.MaybeMask) { 2933 if (TempsToInstrument.count(Ptr)) 2934 continue; // We've seen this (whole) temp in the current BB. 2935 } else { 2936 if (!TempsToInstrument.insert(Ptr).second) 2937 continue; // We've seen this temp in the current BB. 2938 } 2939 } 2940 OperandsToInstrument.push_back(Operand); 2941 NumInsnsPerBB++; 2942 } 2943 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 2944 isInterestingPointerComparison(&Inst)) || 2945 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 2946 isInterestingPointerSubtraction(&Inst))) { 2947 PointerComparisonsOrSubtracts.push_back(&Inst); 2948 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 2949 // ok, take it. 2950 IntrinToInstrument.push_back(MI); 2951 NumInsnsPerBB++; 2952 } else { 2953 if (isa<AllocaInst>(Inst)) NumAllocas++; 2954 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 2955 // A call inside BB. 2956 TempsToInstrument.clear(); 2957 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) 2958 NoReturnCalls.push_back(CB); 2959 } 2960 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 2961 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 2962 } 2963 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 2964 } 2965 } 2966 2967 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && 2968 OperandsToInstrument.size() + IntrinToInstrument.size() > 2969 (unsigned)ClInstrumentationWithCallsThreshold); 2970 const DataLayout &DL = F.getParent()->getDataLayout(); 2971 ObjectSizeOpts ObjSizeOpts; 2972 ObjSizeOpts.RoundToAlign = true; 2973 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); 2974 2975 // Instrument. 2976 int NumInstrumented = 0; 2977 for (auto &Operand : OperandsToInstrument) { 2978 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2979 instrumentMop(ObjSizeVis, Operand, UseCalls, 2980 F.getParent()->getDataLayout()); 2981 FunctionModified = true; 2982 } 2983 for (auto Inst : IntrinToInstrument) { 2984 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 2985 instrumentMemIntrinsic(Inst); 2986 FunctionModified = true; 2987 } 2988 2989 FunctionStackPoisoner FSP(F, *this); 2990 bool ChangedStack = FSP.runOnFunction(); 2991 2992 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 2993 // See e.g. https://github.com/google/sanitizers/issues/37 2994 for (auto CI : NoReturnCalls) { 2995 IRBuilder<> IRB(CI); 2996 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 2997 } 2998 2999 for (auto Inst : PointerComparisonsOrSubtracts) { 3000 instrumentPointerComparisonOrSubtraction(Inst); 3001 FunctionModified = true; 3002 } 3003 3004 if (ChangedStack || !NoReturnCalls.empty()) 3005 FunctionModified = true; 3006 3007 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 3008 << F << "\n"); 3009 3010 return FunctionModified; 3011 } 3012 3013 // Workaround for bug 11395: we don't want to instrument stack in functions 3014 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 3015 // FIXME: remove once the bug 11395 is fixed. 3016 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 3017 if (LongSize != 32) return false; 3018 CallInst *CI = dyn_cast<CallInst>(I); 3019 if (!CI || !CI->isInlineAsm()) return false; 3020 if (CI->arg_size() <= 5) 3021 return false; 3022 // We have inline assembly with quite a few arguments. 3023 return true; 3024 } 3025 3026 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 3027 IRBuilder<> IRB(*C); 3028 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || 3029 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3030 const char *MallocNameTemplate = 3031 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always 3032 ? kAsanStackMallocAlwaysNameTemplate 3033 : kAsanStackMallocNameTemplate; 3034 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { 3035 std::string Suffix = itostr(Index); 3036 AsanStackMallocFunc[Index] = M.getOrInsertFunction( 3037 MallocNameTemplate + Suffix, IntptrTy, IntptrTy); 3038 AsanStackFreeFunc[Index] = 3039 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 3040 IRB.getVoidTy(), IntptrTy, IntptrTy); 3041 } 3042 } 3043 if (ASan.UseAfterScope) { 3044 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 3045 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3046 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 3047 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3048 } 3049 3050 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { 3051 std::ostringstream Name; 3052 Name << kAsanSetShadowPrefix; 3053 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 3054 AsanSetShadowFunc[Val] = 3055 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 3056 } 3057 3058 AsanAllocaPoisonFunc = M.getOrInsertFunction( 3059 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3060 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 3061 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3062 } 3063 3064 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 3065 ArrayRef<uint8_t> ShadowBytes, 3066 size_t Begin, size_t End, 3067 IRBuilder<> &IRB, 3068 Value *ShadowBase) { 3069 if (Begin >= End) 3070 return; 3071 3072 const size_t LargestStoreSizeInBytes = 3073 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 3074 3075 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); 3076 3077 // Poison given range in shadow using larges store size with out leading and 3078 // trailing zeros in ShadowMask. Zeros never change, so they need neither 3079 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 3080 // middle of a store. 3081 for (size_t i = Begin; i < End;) { 3082 if (!ShadowMask[i]) { 3083 assert(!ShadowBytes[i]); 3084 ++i; 3085 continue; 3086 } 3087 3088 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 3089 // Fit store size into the range. 3090 while (StoreSizeInBytes > End - i) 3091 StoreSizeInBytes /= 2; 3092 3093 // Minimize store size by trimming trailing zeros. 3094 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 3095 while (j <= StoreSizeInBytes / 2) 3096 StoreSizeInBytes /= 2; 3097 } 3098 3099 uint64_t Val = 0; 3100 for (size_t j = 0; j < StoreSizeInBytes; j++) { 3101 if (IsLittleEndian) 3102 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 3103 else 3104 Val = (Val << 8) | ShadowBytes[i + j]; 3105 } 3106 3107 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 3108 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 3109 IRB.CreateAlignedStore( 3110 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 3111 Align(1)); 3112 3113 i += StoreSizeInBytes; 3114 } 3115 } 3116 3117 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3118 ArrayRef<uint8_t> ShadowBytes, 3119 IRBuilder<> &IRB, Value *ShadowBase) { 3120 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 3121 } 3122 3123 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3124 ArrayRef<uint8_t> ShadowBytes, 3125 size_t Begin, size_t End, 3126 IRBuilder<> &IRB, Value *ShadowBase) { 3127 assert(ShadowMask.size() == ShadowBytes.size()); 3128 size_t Done = Begin; 3129 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 3130 if (!ShadowMask[i]) { 3131 assert(!ShadowBytes[i]); 3132 continue; 3133 } 3134 uint8_t Val = ShadowBytes[i]; 3135 if (!AsanSetShadowFunc[Val]) 3136 continue; 3137 3138 // Skip same values. 3139 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 3140 } 3141 3142 if (j - i >= ClMaxInlinePoisoningSize) { 3143 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 3144 IRB.CreateCall(AsanSetShadowFunc[Val], 3145 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 3146 ConstantInt::get(IntptrTy, j - i)}); 3147 Done = j; 3148 } 3149 } 3150 3151 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 3152 } 3153 3154 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 3155 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 3156 static int StackMallocSizeClass(uint64_t LocalStackSize) { 3157 assert(LocalStackSize <= kMaxStackMallocSize); 3158 uint64_t MaxSize = kMinStackMallocSize; 3159 for (int i = 0;; i++, MaxSize *= 2) 3160 if (LocalStackSize <= MaxSize) return i; 3161 llvm_unreachable("impossible LocalStackSize"); 3162 } 3163 3164 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 3165 Instruction *CopyInsertPoint = &F.front().front(); 3166 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 3167 // Insert after the dynamic shadow location is determined 3168 CopyInsertPoint = CopyInsertPoint->getNextNode(); 3169 assert(CopyInsertPoint); 3170 } 3171 IRBuilder<> IRB(CopyInsertPoint); 3172 const DataLayout &DL = F.getParent()->getDataLayout(); 3173 for (Argument &Arg : F.args()) { 3174 if (Arg.hasByValAttr()) { 3175 Type *Ty = Arg.getParamByValType(); 3176 const Align Alignment = 3177 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 3178 3179 AllocaInst *AI = IRB.CreateAlloca( 3180 Ty, nullptr, 3181 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 3182 ".byval"); 3183 AI->setAlignment(Alignment); 3184 Arg.replaceAllUsesWith(AI); 3185 3186 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3187 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 3188 } 3189 } 3190 } 3191 3192 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3193 Value *ValueIfTrue, 3194 Instruction *ThenTerm, 3195 Value *ValueIfFalse) { 3196 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3197 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3198 PHI->addIncoming(ValueIfFalse, CondBlock); 3199 BasicBlock *ThenBlock = ThenTerm->getParent(); 3200 PHI->addIncoming(ValueIfTrue, ThenBlock); 3201 return PHI; 3202 } 3203 3204 Value *FunctionStackPoisoner::createAllocaForLayout( 3205 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3206 AllocaInst *Alloca; 3207 if (Dynamic) { 3208 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3209 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3210 "MyAlloca"); 3211 } else { 3212 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3213 nullptr, "MyAlloca"); 3214 assert(Alloca->isStaticAlloca()); 3215 } 3216 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3217 uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); 3218 Alloca->setAlignment(Align(FrameAlignment)); 3219 return IRB.CreatePointerCast(Alloca, IntptrTy); 3220 } 3221 3222 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3223 BasicBlock &FirstBB = *F.begin(); 3224 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3225 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3226 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3227 DynamicAllocaLayout->setAlignment(Align(32)); 3228 } 3229 3230 void FunctionStackPoisoner::processDynamicAllocas() { 3231 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3232 assert(DynamicAllocaPoisonCallVec.empty()); 3233 return; 3234 } 3235 3236 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3237 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3238 assert(APC.InsBefore); 3239 assert(APC.AI); 3240 assert(ASan.isInterestingAlloca(*APC.AI)); 3241 assert(!APC.AI->isStaticAlloca()); 3242 3243 IRBuilder<> IRB(APC.InsBefore); 3244 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3245 // Dynamic allocas will be unpoisoned unconditionally below in 3246 // unpoisonDynamicAllocas. 3247 // Flag that we need unpoison static allocas. 3248 } 3249 3250 // Handle dynamic allocas. 3251 createDynamicAllocasInitStorage(); 3252 for (auto &AI : DynamicAllocaVec) 3253 handleDynamicAllocaCall(AI); 3254 unpoisonDynamicAllocas(); 3255 } 3256 3257 /// Collect instructions in the entry block after \p InsBefore which initialize 3258 /// permanent storage for a function argument. These instructions must remain in 3259 /// the entry block so that uninitialized values do not appear in backtraces. An 3260 /// added benefit is that this conserves spill slots. This does not move stores 3261 /// before instrumented / "interesting" allocas. 3262 static void findStoresToUninstrumentedArgAllocas( 3263 AddressSanitizer &ASan, Instruction &InsBefore, 3264 SmallVectorImpl<Instruction *> &InitInsts) { 3265 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3266 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3267 // Argument initialization looks like: 3268 // 1) store <Argument>, <Alloca> OR 3269 // 2) <CastArgument> = cast <Argument> to ... 3270 // store <CastArgument> to <Alloca> 3271 // Do not consider any other kind of instruction. 3272 // 3273 // Note: This covers all known cases, but may not be exhaustive. An 3274 // alternative to pattern-matching stores is to DFS over all Argument uses: 3275 // this might be more general, but is probably much more complicated. 3276 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3277 continue; 3278 if (auto *Store = dyn_cast<StoreInst>(It)) { 3279 // The store destination must be an alloca that isn't interesting for 3280 // ASan to instrument. These are moved up before InsBefore, and they're 3281 // not interesting because allocas for arguments can be mem2reg'd. 3282 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3283 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3284 continue; 3285 3286 Value *Val = Store->getValueOperand(); 3287 bool IsDirectArgInit = isa<Argument>(Val); 3288 bool IsArgInitViaCast = 3289 isa<CastInst>(Val) && 3290 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3291 // Check that the cast appears directly before the store. Otherwise 3292 // moving the cast before InsBefore may break the IR. 3293 Val == It->getPrevNonDebugInstruction(); 3294 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3295 if (!IsArgInit) 3296 continue; 3297 3298 if (IsArgInitViaCast) 3299 InitInsts.push_back(cast<Instruction>(Val)); 3300 InitInsts.push_back(Store); 3301 continue; 3302 } 3303 3304 // Do not reorder past unknown instructions: argument initialization should 3305 // only involve casts and stores. 3306 return; 3307 } 3308 } 3309 3310 void FunctionStackPoisoner::processStaticAllocas() { 3311 if (AllocaVec.empty()) { 3312 assert(StaticAllocaPoisonCallVec.empty()); 3313 return; 3314 } 3315 3316 int StackMallocIdx = -1; 3317 DebugLoc EntryDebugLocation; 3318 if (auto SP = F.getSubprogram()) 3319 EntryDebugLocation = 3320 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3321 3322 Instruction *InsBefore = AllocaVec[0]; 3323 IRBuilder<> IRB(InsBefore); 3324 3325 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3326 // debug info is broken, because only entry-block allocas are treated as 3327 // regular stack slots. 3328 auto InsBeforeB = InsBefore->getParent(); 3329 assert(InsBeforeB == &F.getEntryBlock()); 3330 for (auto *AI : StaticAllocasToMoveUp) 3331 if (AI->getParent() == InsBeforeB) 3332 AI->moveBefore(InsBefore); 3333 3334 // Move stores of arguments into entry-block allocas as well. This prevents 3335 // extra stack slots from being generated (to house the argument values until 3336 // they can be stored into the allocas). This also prevents uninitialized 3337 // values from being shown in backtraces. 3338 SmallVector<Instruction *, 8> ArgInitInsts; 3339 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3340 for (Instruction *ArgInitInst : ArgInitInsts) 3341 ArgInitInst->moveBefore(InsBefore); 3342 3343 // If we have a call to llvm.localescape, keep it in the entry block. 3344 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 3345 3346 SmallVector<ASanStackVariableDescription, 16> SVD; 3347 SVD.reserve(AllocaVec.size()); 3348 for (AllocaInst *AI : AllocaVec) { 3349 ASanStackVariableDescription D = {AI->getName().data(), 3350 ASan.getAllocaSizeInBytes(*AI), 3351 0, 3352 AI->getAlignment(), 3353 AI, 3354 0, 3355 0}; 3356 SVD.push_back(D); 3357 } 3358 3359 // Minimal header size (left redzone) is 4 pointers, 3360 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3361 uint64_t Granularity = 1ULL << Mapping.Scale; 3362 uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); 3363 const ASanStackFrameLayout &L = 3364 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3365 3366 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3367 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3368 for (auto &Desc : SVD) 3369 AllocaToSVDMap[Desc.AI] = &Desc; 3370 3371 // Update SVD with information from lifetime intrinsics. 3372 for (const auto &APC : StaticAllocaPoisonCallVec) { 3373 assert(APC.InsBefore); 3374 assert(APC.AI); 3375 assert(ASan.isInterestingAlloca(*APC.AI)); 3376 assert(APC.AI->isStaticAlloca()); 3377 3378 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3379 Desc.LifetimeSize = Desc.Size; 3380 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3381 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3382 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3383 if (unsigned Line = LifetimeLoc->getLine()) 3384 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3385 } 3386 } 3387 } 3388 3389 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3390 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3391 uint64_t LocalStackSize = L.FrameSize; 3392 bool DoStackMalloc = 3393 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3394 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3395 bool DoDynamicAlloca = ClDynamicAllocaStack; 3396 // Don't do dynamic alloca or stack malloc if: 3397 // 1) There is inline asm: too often it makes assumptions on which registers 3398 // are available. 3399 // 2) There is a returns_twice call (typically setjmp), which is 3400 // optimization-hostile, and doesn't play well with introduced indirect 3401 // register-relative calculation of local variable addresses. 3402 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3403 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3404 3405 Value *StaticAlloca = 3406 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3407 3408 Value *FakeStack; 3409 Value *LocalStackBase; 3410 Value *LocalStackBaseAlloca; 3411 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3412 3413 if (DoStackMalloc) { 3414 LocalStackBaseAlloca = 3415 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3416 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3417 // void *FakeStack = __asan_option_detect_stack_use_after_return 3418 // ? __asan_stack_malloc_N(LocalStackSize) 3419 // : nullptr; 3420 // void *LocalStackBase = (FakeStack) ? FakeStack : 3421 // alloca(LocalStackSize); 3422 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3423 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3424 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3425 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3426 Constant::getNullValue(IRB.getInt32Ty())); 3427 Instruction *Term = 3428 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3429 IRBuilder<> IRBIf(Term); 3430 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3431 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3432 Value *FakeStackValue = 3433 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3434 ConstantInt::get(IntptrTy, LocalStackSize)); 3435 IRB.SetInsertPoint(InsBefore); 3436 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3437 ConstantInt::get(IntptrTy, 0)); 3438 } else { 3439 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3440 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3441 // void *LocalStackBase = (FakeStack) ? FakeStack : 3442 // alloca(LocalStackSize); 3443 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3444 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], 3445 ConstantInt::get(IntptrTy, LocalStackSize)); 3446 } 3447 Value *NoFakeStack = 3448 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3449 Instruction *Term = 3450 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3451 IRBuilder<> IRBIf(Term); 3452 Value *AllocaValue = 3453 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3454 3455 IRB.SetInsertPoint(InsBefore); 3456 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3457 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3458 DIExprFlags |= DIExpression::DerefBefore; 3459 } else { 3460 // void *FakeStack = nullptr; 3461 // void *LocalStackBase = alloca(LocalStackSize); 3462 FakeStack = ConstantInt::get(IntptrTy, 0); 3463 LocalStackBase = 3464 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3465 LocalStackBaseAlloca = LocalStackBase; 3466 } 3467 3468 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3469 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3470 // later passes and can result in dropped variable coverage in debug info. 3471 Value *LocalStackBaseAllocaPtr = 3472 isa<PtrToIntInst>(LocalStackBaseAlloca) 3473 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3474 : LocalStackBaseAlloca; 3475 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3476 "Variable descriptions relative to ASan stack base will be dropped"); 3477 3478 // Replace Alloca instructions with base+offset. 3479 for (const auto &Desc : SVD) { 3480 AllocaInst *AI = Desc.AI; 3481 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3482 Desc.Offset); 3483 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3484 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3485 AI->getType()); 3486 AI->replaceAllUsesWith(NewAllocaPtr); 3487 } 3488 3489 // The left-most redzone has enough space for at least 4 pointers. 3490 // Write the Magic value to redzone[0]. 3491 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3492 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3493 BasePlus0); 3494 // Write the frame description constant to redzone[1]. 3495 Value *BasePlus1 = IRB.CreateIntToPtr( 3496 IRB.CreateAdd(LocalStackBase, 3497 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3498 IntptrPtrTy); 3499 GlobalVariable *StackDescriptionGlobal = 3500 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3501 /*AllowMerging*/ true, kAsanGenPrefix); 3502 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3503 IRB.CreateStore(Description, BasePlus1); 3504 // Write the PC to redzone[2]. 3505 Value *BasePlus2 = IRB.CreateIntToPtr( 3506 IRB.CreateAdd(LocalStackBase, 3507 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3508 IntptrPtrTy); 3509 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3510 3511 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3512 3513 // Poison the stack red zones at the entry. 3514 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3515 // As mask we must use most poisoned case: red zones and after scope. 3516 // As bytes we can use either the same or just red zones only. 3517 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3518 3519 if (!StaticAllocaPoisonCallVec.empty()) { 3520 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3521 3522 // Poison static allocas near lifetime intrinsics. 3523 for (const auto &APC : StaticAllocaPoisonCallVec) { 3524 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3525 assert(Desc.Offset % L.Granularity == 0); 3526 size_t Begin = Desc.Offset / L.Granularity; 3527 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3528 3529 IRBuilder<> IRB(APC.InsBefore); 3530 copyToShadow(ShadowAfterScope, 3531 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3532 IRB, ShadowBase); 3533 } 3534 } 3535 3536 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3537 SmallVector<uint8_t, 64> ShadowAfterReturn; 3538 3539 // (Un)poison the stack before all ret instructions. 3540 for (Instruction *Ret : RetVec) { 3541 IRBuilder<> IRBRet(Ret); 3542 // Mark the current frame as retired. 3543 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3544 BasePlus0); 3545 if (DoStackMalloc) { 3546 assert(StackMallocIdx >= 0); 3547 // if FakeStack != 0 // LocalStackBase == FakeStack 3548 // // In use-after-return mode, poison the whole stack frame. 3549 // if StackMallocIdx <= 4 3550 // // For small sizes inline the whole thing: 3551 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3552 // **SavedFlagPtr(FakeStack) = 0 3553 // else 3554 // __asan_stack_free_N(FakeStack, LocalStackSize) 3555 // else 3556 // <This is not a fake stack; unpoison the redzones> 3557 Value *Cmp = 3558 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3559 Instruction *ThenTerm, *ElseTerm; 3560 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3561 3562 IRBuilder<> IRBPoison(ThenTerm); 3563 if (StackMallocIdx <= 4) { 3564 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3565 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3566 kAsanStackUseAfterReturnMagic); 3567 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3568 ShadowBase); 3569 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3570 FakeStack, 3571 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3572 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3573 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3574 IRBPoison.CreateStore( 3575 Constant::getNullValue(IRBPoison.getInt8Ty()), 3576 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 3577 } else { 3578 // For larger frames call __asan_stack_free_*. 3579 IRBPoison.CreateCall( 3580 AsanStackFreeFunc[StackMallocIdx], 3581 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3582 } 3583 3584 IRBuilder<> IRBElse(ElseTerm); 3585 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3586 } else { 3587 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3588 } 3589 } 3590 3591 // We are done. Remove the old unused alloca instructions. 3592 for (auto AI : AllocaVec) AI->eraseFromParent(); 3593 } 3594 3595 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3596 IRBuilder<> &IRB, bool DoPoison) { 3597 // For now just insert the call to ASan runtime. 3598 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3599 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3600 IRB.CreateCall( 3601 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3602 {AddrArg, SizeArg}); 3603 } 3604 3605 // Handling llvm.lifetime intrinsics for a given %alloca: 3606 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3607 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3608 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3609 // could be poisoned by previous llvm.lifetime.end instruction, as the 3610 // variable may go in and out of scope several times, e.g. in loops). 3611 // (3) if we poisoned at least one %alloca in a function, 3612 // unpoison the whole stack frame at function exit. 3613 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3614 IRBuilder<> IRB(AI); 3615 3616 const uint64_t Alignment = std::max(kAllocaRzSize, AI->getAlignment()); 3617 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3618 3619 Value *Zero = Constant::getNullValue(IntptrTy); 3620 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3621 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3622 3623 // Since we need to extend alloca with additional memory to locate 3624 // redzones, and OldSize is number of allocated blocks with 3625 // ElementSize size, get allocated memory size in bytes by 3626 // OldSize * ElementSize. 3627 const unsigned ElementSize = 3628 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3629 Value *OldSize = 3630 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3631 ConstantInt::get(IntptrTy, ElementSize)); 3632 3633 // PartialSize = OldSize % 32 3634 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3635 3636 // Misalign = kAllocaRzSize - PartialSize; 3637 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3638 3639 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3640 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3641 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3642 3643 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3644 // Alignment is added to locate left redzone, PartialPadding for possible 3645 // partial redzone and kAllocaRzSize for right redzone respectively. 3646 Value *AdditionalChunkSize = IRB.CreateAdd( 3647 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); 3648 3649 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3650 3651 // Insert new alloca with new NewSize and Alignment params. 3652 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3653 NewAlloca->setAlignment(Align(Alignment)); 3654 3655 // NewAddress = Address + Alignment 3656 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3657 ConstantInt::get(IntptrTy, Alignment)); 3658 3659 // Insert __asan_alloca_poison call for new created alloca. 3660 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3661 3662 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3663 // for unpoisoning stuff. 3664 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3665 3666 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3667 3668 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3669 AI->replaceAllUsesWith(NewAddressPtr); 3670 3671 // We are done. Erase old alloca from parent. 3672 AI->eraseFromParent(); 3673 } 3674 3675 // isSafeAccess returns true if Addr is always inbounds with respect to its 3676 // base object. For example, it is a field access or an array access with 3677 // constant inbounds index. 3678 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3679 Value *Addr, uint64_t TypeSize) const { 3680 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 3681 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 3682 uint64_t Size = SizeOffset.first.getZExtValue(); 3683 int64_t Offset = SizeOffset.second.getSExtValue(); 3684 // Three checks are required to ensure safety: 3685 // . Offset >= 0 (since the offset is given from the base ptr) 3686 // . Size >= Offset (unsigned) 3687 // . Size - Offset >= NeededSize (unsigned) 3688 return Offset >= 0 && Size >= uint64_t(Offset) && 3689 Size - uint64_t(Offset) >= TypeSize / 8; 3690 } 3691