1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/AliasAnalysis.h" 46 #include "llvm/Analysis/AssumptionCache.h" 47 #include "llvm/Analysis/BasicAliasAnalysis.h" 48 #include "llvm/Analysis/BlockFrequencyInfo.h" 49 #include "llvm/Analysis/CFG.h" 50 #include "llvm/Analysis/ConstantFolding.h" 51 #include "llvm/Analysis/EHPersonalities.h" 52 #include "llvm/Analysis/GlobalsModRef.h" 53 #include "llvm/Analysis/InstructionSimplify.h" 54 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemoryBuiltins.h" 57 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 58 #include "llvm/Analysis/ProfileSummaryInfo.h" 59 #include "llvm/Analysis/TargetFolder.h" 60 #include "llvm/Analysis/TargetLibraryInfo.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/Utils/Local.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/Dominators.h" 74 #include "llvm/IR/Function.h" 75 #include "llvm/IR/GetElementPtrTypeIterator.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/IntrinsicInst.h" 81 #include "llvm/IR/Intrinsics.h" 82 #include "llvm/IR/LegacyPassManager.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PassManager.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/Use.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/InitializePasses.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/DebugCounter.h" 98 #include "llvm/Support/ErrorHandling.h" 99 #include "llvm/Support/KnownBits.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Transforms/InstCombine/InstCombine.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 110 #define DEBUG_TYPE "instcombine" 111 #include "llvm/Transforms/Utils/InstructionWorklist.h" 112 113 using namespace llvm; 114 using namespace llvm::PatternMatch; 115 116 STATISTIC(NumWorklistIterations, 117 "Number of instruction combining iterations performed"); 118 119 STATISTIC(NumCombined , "Number of insts combined"); 120 STATISTIC(NumConstProp, "Number of constant folds"); 121 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 122 STATISTIC(NumSunkInst , "Number of instructions sunk"); 123 STATISTIC(NumExpand, "Number of expansions"); 124 STATISTIC(NumFactor , "Number of factorizations"); 125 STATISTIC(NumReassoc , "Number of reassociations"); 126 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 127 "Controls which instructions are visited"); 128 129 // FIXME: these limits eventually should be as low as 2. 130 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 131 #ifndef NDEBUG 132 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 133 #else 134 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 135 #endif 136 137 static cl::opt<bool> 138 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 139 cl::init(true)); 140 141 static cl::opt<unsigned> MaxSinkNumUsers( 142 "instcombine-max-sink-users", cl::init(32), 143 cl::desc("Maximum number of undroppable users for instruction sinking")); 144 145 static cl::opt<unsigned> LimitMaxIterations( 146 "instcombine-max-iterations", 147 cl::desc("Limit the maximum number of instruction combining iterations"), 148 cl::init(InstCombineDefaultMaxIterations)); 149 150 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 151 "instcombine-infinite-loop-threshold", 152 cl::desc("Number of instruction combining iterations considered an " 153 "infinite loop"), 154 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 155 156 static cl::opt<unsigned> 157 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 158 cl::desc("Maximum array size considered when doing a combine")); 159 160 // FIXME: Remove this flag when it is no longer necessary to convert 161 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 162 // increases variable availability at the cost of accuracy. Variables that 163 // cannot be promoted by mem2reg or SROA will be described as living in memory 164 // for their entire lifetime. However, passes like DSE and instcombine can 165 // delete stores to the alloca, leading to misleading and inaccurate debug 166 // information. This flag can be removed when those passes are fixed. 167 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 168 cl::Hidden, cl::init(true)); 169 170 Optional<Instruction *> 171 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 172 // Handle target specific intrinsics 173 if (II.getCalledFunction()->isTargetIntrinsic()) { 174 return TTI.instCombineIntrinsic(*this, II); 175 } 176 return None; 177 } 178 179 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 180 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 181 bool &KnownBitsComputed) { 182 // Handle target specific intrinsics 183 if (II.getCalledFunction()->isTargetIntrinsic()) { 184 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 185 KnownBitsComputed); 186 } 187 return None; 188 } 189 190 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 191 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 192 APInt &UndefElts3, 193 std::function<void(Instruction *, unsigned, APInt, APInt &)> 194 SimplifyAndSetOp) { 195 // Handle target specific intrinsics 196 if (II.getCalledFunction()->isTargetIntrinsic()) { 197 return TTI.simplifyDemandedVectorEltsIntrinsic( 198 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 199 SimplifyAndSetOp); 200 } 201 return None; 202 } 203 204 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 205 return llvm::EmitGEPOffset(&Builder, DL, GEP); 206 } 207 208 /// Legal integers and common types are considered desirable. This is used to 209 /// avoid creating instructions with types that may not be supported well by the 210 /// the backend. 211 /// NOTE: This treats i8, i16 and i32 specially because they are common 212 /// types in frontend languages. 213 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 214 switch (BitWidth) { 215 case 8: 216 case 16: 217 case 32: 218 return true; 219 default: 220 return DL.isLegalInteger(BitWidth); 221 } 222 } 223 224 /// Return true if it is desirable to convert an integer computation from a 225 /// given bit width to a new bit width. 226 /// We don't want to convert from a legal to an illegal type or from a smaller 227 /// to a larger illegal type. A width of '1' is always treated as a desirable 228 /// type because i1 is a fundamental type in IR, and there are many specialized 229 /// optimizations for i1 types. Common/desirable widths are equally treated as 230 /// legal to convert to, in order to open up more combining opportunities. 231 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 232 unsigned ToWidth) const { 233 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 234 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 235 236 // Convert to desirable widths even if they are not legal types. 237 // Only shrink types, to prevent infinite loops. 238 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 239 return true; 240 241 // If this is a legal integer from type, and the result would be an illegal 242 // type, don't do the transformation. 243 if (FromLegal && !ToLegal) 244 return false; 245 246 // Otherwise, if both are illegal, do not increase the size of the result. We 247 // do allow things like i160 -> i64, but not i64 -> i160. 248 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 249 return false; 250 251 return true; 252 } 253 254 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 255 /// We don't want to convert from a legal to an illegal type or from a smaller 256 /// to a larger illegal type. i1 is always treated as a legal type because it is 257 /// a fundamental type in IR, and there are many specialized optimizations for 258 /// i1 types. 259 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 260 // TODO: This could be extended to allow vectors. Datalayout changes might be 261 // needed to properly support that. 262 if (!From->isIntegerTy() || !To->isIntegerTy()) 263 return false; 264 265 unsigned FromWidth = From->getPrimitiveSizeInBits(); 266 unsigned ToWidth = To->getPrimitiveSizeInBits(); 267 return shouldChangeType(FromWidth, ToWidth); 268 } 269 270 // Return true, if No Signed Wrap should be maintained for I. 271 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 272 // where both B and C should be ConstantInts, results in a constant that does 273 // not overflow. This function only handles the Add and Sub opcodes. For 274 // all other opcodes, the function conservatively returns false. 275 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 276 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 277 if (!OBO || !OBO->hasNoSignedWrap()) 278 return false; 279 280 // We reason about Add and Sub Only. 281 Instruction::BinaryOps Opcode = I.getOpcode(); 282 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 283 return false; 284 285 const APInt *BVal, *CVal; 286 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 287 return false; 288 289 bool Overflow = false; 290 if (Opcode == Instruction::Add) 291 (void)BVal->sadd_ov(*CVal, Overflow); 292 else 293 (void)BVal->ssub_ov(*CVal, Overflow); 294 295 return !Overflow; 296 } 297 298 static bool hasNoUnsignedWrap(BinaryOperator &I) { 299 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 300 return OBO && OBO->hasNoUnsignedWrap(); 301 } 302 303 static bool hasNoSignedWrap(BinaryOperator &I) { 304 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 305 return OBO && OBO->hasNoSignedWrap(); 306 } 307 308 /// Conservatively clears subclassOptionalData after a reassociation or 309 /// commutation. We preserve fast-math flags when applicable as they can be 310 /// preserved. 311 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 312 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 313 if (!FPMO) { 314 I.clearSubclassOptionalData(); 315 return; 316 } 317 318 FastMathFlags FMF = I.getFastMathFlags(); 319 I.clearSubclassOptionalData(); 320 I.setFastMathFlags(FMF); 321 } 322 323 /// Combine constant operands of associative operations either before or after a 324 /// cast to eliminate one of the associative operations: 325 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 326 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 327 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 328 InstCombinerImpl &IC) { 329 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 330 if (!Cast || !Cast->hasOneUse()) 331 return false; 332 333 // TODO: Enhance logic for other casts and remove this check. 334 auto CastOpcode = Cast->getOpcode(); 335 if (CastOpcode != Instruction::ZExt) 336 return false; 337 338 // TODO: Enhance logic for other BinOps and remove this check. 339 if (!BinOp1->isBitwiseLogicOp()) 340 return false; 341 342 auto AssocOpcode = BinOp1->getOpcode(); 343 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 344 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 345 return false; 346 347 Constant *C1, *C2; 348 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 349 !match(BinOp2->getOperand(1), m_Constant(C2))) 350 return false; 351 352 // TODO: This assumes a zext cast. 353 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 354 // to the destination type might lose bits. 355 356 // Fold the constants together in the destination type: 357 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 358 Type *DestTy = C1->getType(); 359 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 360 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 361 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 362 IC.replaceOperand(*BinOp1, 1, FoldedC); 363 return true; 364 } 365 366 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 367 // inttoptr ( ptrtoint (x) ) --> x 368 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 369 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 370 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 371 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 372 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 373 Type *CastTy = IntToPtr->getDestTy(); 374 if (PtrToInt && 375 CastTy->getPointerAddressSpace() == 376 PtrToInt->getSrcTy()->getPointerAddressSpace() && 377 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 378 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 379 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 380 "", PtrToInt); 381 } 382 } 383 return nullptr; 384 } 385 386 /// This performs a few simplifications for operators that are associative or 387 /// commutative: 388 /// 389 /// Commutative operators: 390 /// 391 /// 1. Order operands such that they are listed from right (least complex) to 392 /// left (most complex). This puts constants before unary operators before 393 /// binary operators. 394 /// 395 /// Associative operators: 396 /// 397 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 398 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 399 /// 400 /// Associative and commutative operators: 401 /// 402 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 403 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 404 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 405 /// if C1 and C2 are constants. 406 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 407 Instruction::BinaryOps Opcode = I.getOpcode(); 408 bool Changed = false; 409 410 do { 411 // Order operands such that they are listed from right (least complex) to 412 // left (most complex). This puts constants before unary operators before 413 // binary operators. 414 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 415 getComplexity(I.getOperand(1))) 416 Changed = !I.swapOperands(); 417 418 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 419 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 420 421 if (I.isAssociative()) { 422 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 423 if (Op0 && Op0->getOpcode() == Opcode) { 424 Value *A = Op0->getOperand(0); 425 Value *B = Op0->getOperand(1); 426 Value *C = I.getOperand(1); 427 428 // Does "B op C" simplify? 429 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 430 // It simplifies to V. Form "A op V". 431 replaceOperand(I, 0, A); 432 replaceOperand(I, 1, V); 433 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 434 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 435 436 // Conservatively clear all optional flags since they may not be 437 // preserved by the reassociation. Reset nsw/nuw based on the above 438 // analysis. 439 ClearSubclassDataAfterReassociation(I); 440 441 // Note: this is only valid because SimplifyBinOp doesn't look at 442 // the operands to Op0. 443 if (IsNUW) 444 I.setHasNoUnsignedWrap(true); 445 446 if (IsNSW) 447 I.setHasNoSignedWrap(true); 448 449 Changed = true; 450 ++NumReassoc; 451 continue; 452 } 453 } 454 455 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 456 if (Op1 && Op1->getOpcode() == Opcode) { 457 Value *A = I.getOperand(0); 458 Value *B = Op1->getOperand(0); 459 Value *C = Op1->getOperand(1); 460 461 // Does "A op B" simplify? 462 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 463 // It simplifies to V. Form "V op C". 464 replaceOperand(I, 0, V); 465 replaceOperand(I, 1, C); 466 // Conservatively clear the optional flags, since they may not be 467 // preserved by the reassociation. 468 ClearSubclassDataAfterReassociation(I); 469 Changed = true; 470 ++NumReassoc; 471 continue; 472 } 473 } 474 } 475 476 if (I.isAssociative() && I.isCommutative()) { 477 if (simplifyAssocCastAssoc(&I, *this)) { 478 Changed = true; 479 ++NumReassoc; 480 continue; 481 } 482 483 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 484 if (Op0 && Op0->getOpcode() == Opcode) { 485 Value *A = Op0->getOperand(0); 486 Value *B = Op0->getOperand(1); 487 Value *C = I.getOperand(1); 488 489 // Does "C op A" simplify? 490 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 491 // It simplifies to V. Form "V op B". 492 replaceOperand(I, 0, V); 493 replaceOperand(I, 1, B); 494 // Conservatively clear the optional flags, since they may not be 495 // preserved by the reassociation. 496 ClearSubclassDataAfterReassociation(I); 497 Changed = true; 498 ++NumReassoc; 499 continue; 500 } 501 } 502 503 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 504 if (Op1 && Op1->getOpcode() == Opcode) { 505 Value *A = I.getOperand(0); 506 Value *B = Op1->getOperand(0); 507 Value *C = Op1->getOperand(1); 508 509 // Does "C op A" simplify? 510 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 511 // It simplifies to V. Form "B op V". 512 replaceOperand(I, 0, B); 513 replaceOperand(I, 1, V); 514 // Conservatively clear the optional flags, since they may not be 515 // preserved by the reassociation. 516 ClearSubclassDataAfterReassociation(I); 517 Changed = true; 518 ++NumReassoc; 519 continue; 520 } 521 } 522 523 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 524 // if C1 and C2 are constants. 525 Value *A, *B; 526 Constant *C1, *C2, *CRes; 527 if (Op0 && Op1 && 528 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 529 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 530 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) && 531 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) { 532 bool IsNUW = hasNoUnsignedWrap(I) && 533 hasNoUnsignedWrap(*Op0) && 534 hasNoUnsignedWrap(*Op1); 535 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 536 BinaryOperator::CreateNUW(Opcode, A, B) : 537 BinaryOperator::Create(Opcode, A, B); 538 539 if (isa<FPMathOperator>(NewBO)) { 540 FastMathFlags Flags = I.getFastMathFlags(); 541 Flags &= Op0->getFastMathFlags(); 542 Flags &= Op1->getFastMathFlags(); 543 NewBO->setFastMathFlags(Flags); 544 } 545 InsertNewInstWith(NewBO, I); 546 NewBO->takeName(Op1); 547 replaceOperand(I, 0, NewBO); 548 replaceOperand(I, 1, CRes); 549 // Conservatively clear the optional flags, since they may not be 550 // preserved by the reassociation. 551 ClearSubclassDataAfterReassociation(I); 552 if (IsNUW) 553 I.setHasNoUnsignedWrap(true); 554 555 Changed = true; 556 continue; 557 } 558 } 559 560 // No further simplifications. 561 return Changed; 562 } while (true); 563 } 564 565 /// Return whether "X LOp (Y ROp Z)" is always equal to 566 /// "(X LOp Y) ROp (X LOp Z)". 567 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 568 Instruction::BinaryOps ROp) { 569 // X & (Y | Z) <--> (X & Y) | (X & Z) 570 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 571 if (LOp == Instruction::And) 572 return ROp == Instruction::Or || ROp == Instruction::Xor; 573 574 // X | (Y & Z) <--> (X | Y) & (X | Z) 575 if (LOp == Instruction::Or) 576 return ROp == Instruction::And; 577 578 // X * (Y + Z) <--> (X * Y) + (X * Z) 579 // X * (Y - Z) <--> (X * Y) - (X * Z) 580 if (LOp == Instruction::Mul) 581 return ROp == Instruction::Add || ROp == Instruction::Sub; 582 583 return false; 584 } 585 586 /// Return whether "(X LOp Y) ROp Z" is always equal to 587 /// "(X ROp Z) LOp (Y ROp Z)". 588 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 589 Instruction::BinaryOps ROp) { 590 if (Instruction::isCommutative(ROp)) 591 return leftDistributesOverRight(ROp, LOp); 592 593 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 594 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 595 596 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 597 // but this requires knowing that the addition does not overflow and other 598 // such subtleties. 599 } 600 601 /// This function returns identity value for given opcode, which can be used to 602 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 603 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 604 if (isa<Constant>(V)) 605 return nullptr; 606 607 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 608 } 609 610 /// This function predicates factorization using distributive laws. By default, 611 /// it just returns the 'Op' inputs. But for special-cases like 612 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 613 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 614 /// allow more factorization opportunities. 615 static Instruction::BinaryOps 616 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 617 Value *&LHS, Value *&RHS) { 618 assert(Op && "Expected a binary operator"); 619 LHS = Op->getOperand(0); 620 RHS = Op->getOperand(1); 621 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 622 Constant *C; 623 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 624 // X << C --> X * (1 << C) 625 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 626 return Instruction::Mul; 627 } 628 // TODO: We can add other conversions e.g. shr => div etc. 629 } 630 return Op->getOpcode(); 631 } 632 633 /// This tries to simplify binary operations by factorizing out common terms 634 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 635 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 636 Instruction::BinaryOps InnerOpcode, 637 Value *A, Value *B, Value *C, 638 Value *D) { 639 assert(A && B && C && D && "All values must be provided"); 640 641 Value *V = nullptr; 642 Value *SimplifiedInst = nullptr; 643 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 644 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 645 646 // Does "X op' Y" always equal "Y op' X"? 647 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 648 649 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 650 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 651 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 652 // commutative case, "(A op' B) op (C op' A)"? 653 if (A == C || (InnerCommutative && A == D)) { 654 if (A != C) 655 std::swap(C, D); 656 // Consider forming "A op' (B op D)". 657 // If "B op D" simplifies then it can be formed with no cost. 658 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 659 // If "B op D" doesn't simplify then only go on if both of the existing 660 // operations "A op' B" and "C op' D" will be zapped as no longer used. 661 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 662 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 663 if (V) { 664 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 665 } 666 } 667 668 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 669 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 670 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 671 // commutative case, "(A op' B) op (B op' D)"? 672 if (B == D || (InnerCommutative && B == C)) { 673 if (B != D) 674 std::swap(C, D); 675 // Consider forming "(A op C) op' B". 676 // If "A op C" simplifies then it can be formed with no cost. 677 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 678 679 // If "A op C" doesn't simplify then only go on if both of the existing 680 // operations "A op' B" and "C op' D" will be zapped as no longer used. 681 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 682 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 683 if (V) { 684 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 685 } 686 } 687 688 if (SimplifiedInst) { 689 ++NumFactor; 690 SimplifiedInst->takeName(&I); 691 692 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 693 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 694 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 695 bool HasNSW = false; 696 bool HasNUW = false; 697 if (isa<OverflowingBinaryOperator>(&I)) { 698 HasNSW = I.hasNoSignedWrap(); 699 HasNUW = I.hasNoUnsignedWrap(); 700 } 701 702 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 703 HasNSW &= LOBO->hasNoSignedWrap(); 704 HasNUW &= LOBO->hasNoUnsignedWrap(); 705 } 706 707 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 708 HasNSW &= ROBO->hasNoSignedWrap(); 709 HasNUW &= ROBO->hasNoUnsignedWrap(); 710 } 711 712 if (TopLevelOpcode == Instruction::Add && 713 InnerOpcode == Instruction::Mul) { 714 // We can propagate 'nsw' if we know that 715 // %Y = mul nsw i16 %X, C 716 // %Z = add nsw i16 %Y, %X 717 // => 718 // %Z = mul nsw i16 %X, C+1 719 // 720 // iff C+1 isn't INT_MIN 721 const APInt *CInt; 722 if (match(V, m_APInt(CInt))) { 723 if (!CInt->isMinSignedValue()) 724 BO->setHasNoSignedWrap(HasNSW); 725 } 726 727 // nuw can be propagated with any constant or nuw value. 728 BO->setHasNoUnsignedWrap(HasNUW); 729 } 730 } 731 } 732 } 733 return SimplifiedInst; 734 } 735 736 /// This tries to simplify binary operations which some other binary operation 737 /// distributes over either by factorizing out common terms 738 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 739 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 740 /// Returns the simplified value, or null if it didn't simplify. 741 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 742 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 743 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 744 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 745 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 746 747 { 748 // Factorization. 749 Value *A, *B, *C, *D; 750 Instruction::BinaryOps LHSOpcode, RHSOpcode; 751 if (Op0) 752 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 753 if (Op1) 754 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 755 756 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 757 // a common term. 758 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 759 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 760 return V; 761 762 // The instruction has the form "(A op' B) op (C)". Try to factorize common 763 // term. 764 if (Op0) 765 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 766 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 767 return V; 768 769 // The instruction has the form "(B) op (C op' D)". Try to factorize common 770 // term. 771 if (Op1) 772 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 773 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 774 return V; 775 } 776 777 // Expansion. 778 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 779 // The instruction has the form "(A op' B) op C". See if expanding it out 780 // to "(A op C) op' (B op C)" results in simplifications. 781 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 782 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 783 784 // Disable the use of undef because it's not safe to distribute undef. 785 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 786 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 787 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 788 789 // Do "A op C" and "B op C" both simplify? 790 if (L && R) { 791 // They do! Return "L op' R". 792 ++NumExpand; 793 C = Builder.CreateBinOp(InnerOpcode, L, R); 794 C->takeName(&I); 795 return C; 796 } 797 798 // Does "A op C" simplify to the identity value for the inner opcode? 799 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 800 // They do! Return "B op C". 801 ++NumExpand; 802 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 803 C->takeName(&I); 804 return C; 805 } 806 807 // Does "B op C" simplify to the identity value for the inner opcode? 808 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 809 // They do! Return "A op C". 810 ++NumExpand; 811 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 812 C->takeName(&I); 813 return C; 814 } 815 } 816 817 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 818 // The instruction has the form "A op (B op' C)". See if expanding it out 819 // to "(A op B) op' (A op C)" results in simplifications. 820 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 821 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 822 823 // Disable the use of undef because it's not safe to distribute undef. 824 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 825 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 826 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 827 828 // Do "A op B" and "A op C" both simplify? 829 if (L && R) { 830 // They do! Return "L op' R". 831 ++NumExpand; 832 A = Builder.CreateBinOp(InnerOpcode, L, R); 833 A->takeName(&I); 834 return A; 835 } 836 837 // Does "A op B" simplify to the identity value for the inner opcode? 838 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 839 // They do! Return "A op C". 840 ++NumExpand; 841 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 842 A->takeName(&I); 843 return A; 844 } 845 846 // Does "A op C" simplify to the identity value for the inner opcode? 847 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 848 // They do! Return "A op B". 849 ++NumExpand; 850 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 851 A->takeName(&I); 852 return A; 853 } 854 } 855 856 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 857 } 858 859 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 860 Value *LHS, 861 Value *RHS) { 862 Value *A, *B, *C, *D, *E, *F; 863 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 864 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 865 if (!LHSIsSelect && !RHSIsSelect) 866 return nullptr; 867 868 FastMathFlags FMF; 869 BuilderTy::FastMathFlagGuard Guard(Builder); 870 if (isa<FPMathOperator>(&I)) { 871 FMF = I.getFastMathFlags(); 872 Builder.setFastMathFlags(FMF); 873 } 874 875 Instruction::BinaryOps Opcode = I.getOpcode(); 876 SimplifyQuery Q = SQ.getWithInstruction(&I); 877 878 Value *Cond, *True = nullptr, *False = nullptr; 879 if (LHSIsSelect && RHSIsSelect && A == D) { 880 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 881 Cond = A; 882 True = simplifyBinOp(Opcode, B, E, FMF, Q); 883 False = simplifyBinOp(Opcode, C, F, FMF, Q); 884 885 if (LHS->hasOneUse() && RHS->hasOneUse()) { 886 if (False && !True) 887 True = Builder.CreateBinOp(Opcode, B, E); 888 else if (True && !False) 889 False = Builder.CreateBinOp(Opcode, C, F); 890 } 891 } else if (LHSIsSelect && LHS->hasOneUse()) { 892 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 893 Cond = A; 894 True = simplifyBinOp(Opcode, B, RHS, FMF, Q); 895 False = simplifyBinOp(Opcode, C, RHS, FMF, Q); 896 } else if (RHSIsSelect && RHS->hasOneUse()) { 897 // X op (D ? E : F) -> D ? (X op E) : (X op F) 898 Cond = D; 899 True = simplifyBinOp(Opcode, LHS, E, FMF, Q); 900 False = simplifyBinOp(Opcode, LHS, F, FMF, Q); 901 } 902 903 if (!True || !False) 904 return nullptr; 905 906 Value *SI = Builder.CreateSelect(Cond, True, False); 907 SI->takeName(&I); 908 return SI; 909 } 910 911 /// Freely adapt every user of V as-if V was changed to !V. 912 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 913 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 914 for (User *U : I->users()) { 915 switch (cast<Instruction>(U)->getOpcode()) { 916 case Instruction::Select: { 917 auto *SI = cast<SelectInst>(U); 918 SI->swapValues(); 919 SI->swapProfMetadata(); 920 break; 921 } 922 case Instruction::Br: 923 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 924 break; 925 case Instruction::Xor: 926 replaceInstUsesWith(cast<Instruction>(*U), I); 927 break; 928 default: 929 llvm_unreachable("Got unexpected user - out of sync with " 930 "canFreelyInvertAllUsersOf() ?"); 931 } 932 } 933 } 934 935 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 936 /// constant zero (which is the 'negate' form). 937 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 938 Value *NegV; 939 if (match(V, m_Neg(m_Value(NegV)))) 940 return NegV; 941 942 // Constants can be considered to be negated values if they can be folded. 943 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 944 return ConstantExpr::getNeg(C); 945 946 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 947 if (C->getType()->getElementType()->isIntegerTy()) 948 return ConstantExpr::getNeg(C); 949 950 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 951 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 952 Constant *Elt = CV->getAggregateElement(i); 953 if (!Elt) 954 return nullptr; 955 956 if (isa<UndefValue>(Elt)) 957 continue; 958 959 if (!isa<ConstantInt>(Elt)) 960 return nullptr; 961 } 962 return ConstantExpr::getNeg(CV); 963 } 964 965 // Negate integer vector splats. 966 if (auto *CV = dyn_cast<Constant>(V)) 967 if (CV->getType()->isVectorTy() && 968 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 969 return ConstantExpr::getNeg(CV); 970 971 return nullptr; 972 } 973 974 /// A binop with a constant operand and a sign-extended boolean operand may be 975 /// converted into a select of constants by applying the binary operation to 976 /// the constant with the two possible values of the extended boolean (0 or -1). 977 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 978 // TODO: Handle non-commutative binop (constant is operand 0). 979 // TODO: Handle zext. 980 // TODO: Peek through 'not' of cast. 981 Value *BO0 = BO.getOperand(0); 982 Value *BO1 = BO.getOperand(1); 983 Value *X; 984 Constant *C; 985 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 986 !X->getType()->isIntOrIntVectorTy(1)) 987 return nullptr; 988 989 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 990 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 991 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 992 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C); 993 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C); 994 return SelectInst::Create(X, TVal, FVal); 995 } 996 997 static Constant *constantFoldOperationIntoSelectOperand( 998 Instruction &I, SelectInst *SI, Value *SO) { 999 auto *ConstSO = dyn_cast<Constant>(SO); 1000 if (!ConstSO) 1001 return nullptr; 1002 1003 SmallVector<Constant *> ConstOps; 1004 for (Value *Op : I.operands()) { 1005 if (Op == SI) 1006 ConstOps.push_back(ConstSO); 1007 else if (auto *C = dyn_cast<Constant>(Op)) 1008 ConstOps.push_back(C); 1009 else 1010 llvm_unreachable("Operands should be select or constant"); 1011 } 1012 return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout()); 1013 } 1014 1015 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 1016 InstCombiner::BuilderTy &Builder) { 1017 if (auto *Cast = dyn_cast<CastInst>(&I)) 1018 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 1019 1020 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1021 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 1022 "Expected constant-foldable intrinsic"); 1023 Intrinsic::ID IID = II->getIntrinsicID(); 1024 if (II->arg_size() == 1) 1025 return Builder.CreateUnaryIntrinsic(IID, SO); 1026 1027 // This works for real binary ops like min/max (where we always expect the 1028 // constant operand to be canonicalized as op1) and unary ops with a bonus 1029 // constant argument like ctlz/cttz. 1030 // TODO: Handle non-commutative binary intrinsics as below for binops. 1031 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 1032 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 1033 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 1034 } 1035 1036 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 1037 1038 // Figure out if the constant is the left or the right argument. 1039 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 1040 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 1041 1042 Value *Op0 = SO, *Op1 = ConstOperand; 1043 if (!ConstIsRHS) 1044 std::swap(Op0, Op1); 1045 1046 Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0, 1047 Op1, SO->getName() + ".op"); 1048 if (auto *NewBOI = dyn_cast<Instruction>(NewBO)) 1049 NewBOI->copyIRFlags(&I); 1050 return NewBO; 1051 } 1052 1053 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, 1054 bool FoldWithMultiUse) { 1055 // Don't modify shared select instructions unless set FoldWithMultiUse 1056 if (!SI->hasOneUse() && !FoldWithMultiUse) 1057 return nullptr; 1058 1059 Value *TV = SI->getTrueValue(); 1060 Value *FV = SI->getFalseValue(); 1061 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1062 return nullptr; 1063 1064 // Bool selects with constant operands can be folded to logical ops. 1065 if (SI->getType()->isIntOrIntVectorTy(1)) 1066 return nullptr; 1067 1068 // If it's a bitcast involving vectors, make sure it has the same number of 1069 // elements on both sides. 1070 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1071 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1072 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1073 1074 // Verify that either both or neither are vectors. 1075 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1076 return nullptr; 1077 1078 // If vectors, verify that they have the same number of elements. 1079 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1080 return nullptr; 1081 } 1082 1083 // Test if a CmpInst instruction is used exclusively by a select as 1084 // part of a minimum or maximum operation. If so, refrain from doing 1085 // any other folding. This helps out other analyses which understand 1086 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1087 // and CodeGen. And in this case, at least one of the comparison 1088 // operands has at least one user besides the compare (the select), 1089 // which would often largely negate the benefit of folding anyway. 1090 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1091 if (CI->hasOneUse()) { 1092 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1093 1094 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1095 // We have to ensure that vector constants that only differ with 1096 // undef elements are treated as equivalent. 1097 auto areLooselyEqual = [](Value *A, Value *B) { 1098 if (A == B) 1099 return true; 1100 1101 // Test for vector constants. 1102 Constant *ConstA, *ConstB; 1103 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1104 return false; 1105 1106 // TODO: Deal with FP constants? 1107 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1108 return false; 1109 1110 // Compare for equality including undefs as equal. 1111 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1112 const APInt *C; 1113 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1114 }; 1115 1116 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1117 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1118 return nullptr; 1119 } 1120 } 1121 1122 // Make sure that one of the select arms constant folds successfully. 1123 Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, TV); 1124 Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, FV); 1125 if (!NewTV && !NewFV) 1126 return nullptr; 1127 1128 // Create an instruction for the arm that did not fold. 1129 if (!NewTV) 1130 NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1131 if (!NewFV) 1132 NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1133 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1134 } 1135 1136 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1137 InstCombiner::BuilderTy &Builder) { 1138 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1139 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1140 1141 Value *Op0 = InV, *Op1 = C; 1142 if (!ConstIsRHS) 1143 std::swap(Op0, Op1); 1144 1145 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1146 auto *FPInst = dyn_cast<Instruction>(RI); 1147 if (FPInst && isa<FPMathOperator>(FPInst)) 1148 FPInst->copyFastMathFlags(I); 1149 return RI; 1150 } 1151 1152 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1153 unsigned NumPHIValues = PN->getNumIncomingValues(); 1154 if (NumPHIValues == 0) 1155 return nullptr; 1156 1157 // We normally only transform phis with a single use. However, if a PHI has 1158 // multiple uses and they are all the same operation, we can fold *all* of the 1159 // uses into the PHI. 1160 if (!PN->hasOneUse()) { 1161 // Walk the use list for the instruction, comparing them to I. 1162 for (User *U : PN->users()) { 1163 Instruction *UI = cast<Instruction>(U); 1164 if (UI != &I && !I.isIdenticalTo(UI)) 1165 return nullptr; 1166 } 1167 // Otherwise, we can replace *all* users with the new PHI we form. 1168 } 1169 1170 // Check to see if all of the operands of the PHI are simple constants 1171 // (constantint/constantfp/undef). If there is one non-constant value, 1172 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1173 // bail out. We don't do arbitrary constant expressions here because moving 1174 // their computation can be expensive without a cost model. 1175 BasicBlock *NonConstBB = nullptr; 1176 for (unsigned i = 0; i != NumPHIValues; ++i) { 1177 Value *InVal = PN->getIncomingValue(i); 1178 // For non-freeze, require constant operand 1179 // For freeze, require non-undef, non-poison operand 1180 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) 1181 continue; 1182 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) 1183 continue; 1184 1185 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1186 if (NonConstBB) return nullptr; // More than one non-const value. 1187 1188 NonConstBB = PN->getIncomingBlock(i); 1189 1190 // If the InVal is an invoke at the end of the pred block, then we can't 1191 // insert a computation after it without breaking the edge. 1192 if (isa<InvokeInst>(InVal)) 1193 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1194 return nullptr; 1195 1196 // If the incoming non-constant value is reachable from the phis block, 1197 // we'll push the operation across a loop backedge. This could result in 1198 // an infinite combine loop, and is generally non-profitable (especially 1199 // if the operation was originally outside the loop). 1200 if (isPotentiallyReachable(PN->getParent(), NonConstBB, nullptr, &DT, LI)) 1201 return nullptr; 1202 } 1203 1204 // If there is exactly one non-constant value, we can insert a copy of the 1205 // operation in that block. However, if this is a critical edge, we would be 1206 // inserting the computation on some other paths (e.g. inside a loop). Only 1207 // do this if the pred block is unconditionally branching into the phi block. 1208 // Also, make sure that the pred block is not dead code. 1209 if (NonConstBB != nullptr) { 1210 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1211 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1212 return nullptr; 1213 } 1214 1215 // Okay, we can do the transformation: create the new PHI node. 1216 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1217 InsertNewInstBefore(NewPN, *PN); 1218 NewPN->takeName(PN); 1219 1220 // If we are going to have to insert a new computation, do so right before the 1221 // predecessor's terminator. 1222 if (NonConstBB) 1223 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1224 1225 // Next, add all of the operands to the PHI. 1226 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1227 // We only currently try to fold the condition of a select when it is a phi, 1228 // not the true/false values. 1229 Value *TrueV = SI->getTrueValue(); 1230 Value *FalseV = SI->getFalseValue(); 1231 BasicBlock *PhiTransBB = PN->getParent(); 1232 for (unsigned i = 0; i != NumPHIValues; ++i) { 1233 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1234 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1235 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1236 Value *InV = nullptr; 1237 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1238 // even if currently isNullValue gives false. 1239 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1240 // For vector constants, we cannot use isNullValue to fold into 1241 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1242 // elements in the vector, we will incorrectly fold InC to 1243 // `TrueVInPred`. 1244 if (InC && isa<ConstantInt>(InC)) 1245 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1246 else { 1247 // Generate the select in the same block as PN's current incoming block. 1248 // Note: ThisBB need not be the NonConstBB because vector constants 1249 // which are constants by definition are handled here. 1250 // FIXME: This can lead to an increase in IR generation because we might 1251 // generate selects for vector constant phi operand, that could not be 1252 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1253 // non-vector phis, this transformation was always profitable because 1254 // the select would be generated exactly once in the NonConstBB. 1255 Builder.SetInsertPoint(ThisBB->getTerminator()); 1256 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1257 FalseVInPred, "phi.sel"); 1258 } 1259 NewPN->addIncoming(InV, ThisBB); 1260 } 1261 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1262 Constant *C = cast<Constant>(I.getOperand(1)); 1263 for (unsigned i = 0; i != NumPHIValues; ++i) { 1264 Value *InV = nullptr; 1265 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1266 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1267 else 1268 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1269 C, "phi.cmp"); 1270 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1271 } 1272 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1273 for (unsigned i = 0; i != NumPHIValues; ++i) { 1274 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1275 Builder); 1276 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1277 } 1278 } else if (isa<FreezeInst>(&I)) { 1279 for (unsigned i = 0; i != NumPHIValues; ++i) { 1280 Value *InV; 1281 if (NonConstBB == PN->getIncomingBlock(i)) 1282 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1283 else 1284 InV = PN->getIncomingValue(i); 1285 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1286 } 1287 } else { 1288 CastInst *CI = cast<CastInst>(&I); 1289 Type *RetTy = CI->getType(); 1290 for (unsigned i = 0; i != NumPHIValues; ++i) { 1291 Value *InV; 1292 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1293 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1294 else 1295 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1296 I.getType(), "phi.cast"); 1297 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1298 } 1299 } 1300 1301 for (User *U : make_early_inc_range(PN->users())) { 1302 Instruction *User = cast<Instruction>(U); 1303 if (User == &I) continue; 1304 replaceInstUsesWith(*User, NewPN); 1305 eraseInstFromFunction(*User); 1306 } 1307 return replaceInstUsesWith(I, NewPN); 1308 } 1309 1310 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1311 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1312 // we are guarding against replicating the binop in >1 predecessor. 1313 // This could miss matching a phi with 2 constant incoming values. 1314 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1315 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1316 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1317 Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1318 return nullptr; 1319 1320 // TODO: Remove the restriction for binop being in the same block as the phis. 1321 if (BO.getParent() != Phi0->getParent() || 1322 BO.getParent() != Phi1->getParent()) 1323 return nullptr; 1324 1325 // Match a pair of incoming constants for one of the predecessor blocks. 1326 BasicBlock *ConstBB, *OtherBB; 1327 Constant *C0, *C1; 1328 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 1329 ConstBB = Phi0->getIncomingBlock(0); 1330 OtherBB = Phi0->getIncomingBlock(1); 1331 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 1332 ConstBB = Phi0->getIncomingBlock(1); 1333 OtherBB = Phi0->getIncomingBlock(0); 1334 } else { 1335 return nullptr; 1336 } 1337 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 1338 return nullptr; 1339 1340 // The block that we are hoisting to must reach here unconditionally. 1341 // Otherwise, we could be speculatively executing an expensive or 1342 // non-speculative op. 1343 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 1344 if (!PredBlockBranch || PredBlockBranch->isConditional() || 1345 !DT.isReachableFromEntry(OtherBB)) 1346 return nullptr; 1347 1348 // TODO: This check could be tightened to only apply to binops (div/rem) that 1349 // are not safe to speculatively execute. But that could allow hoisting 1350 // potentially expensive instructions (fdiv for example). 1351 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 1352 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 1353 return nullptr; 1354 1355 // Fold constants for the predecessor block with constant incoming values. 1356 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL); 1357 if (!NewC) 1358 return nullptr; 1359 1360 // Make a new binop in the predecessor block with the non-constant incoming 1361 // values. 1362 Builder.SetInsertPoint(PredBlockBranch); 1363 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 1364 Phi0->getIncomingValueForBlock(OtherBB), 1365 Phi1->getIncomingValueForBlock(OtherBB)); 1366 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 1367 NotFoldedNewBO->copyIRFlags(&BO); 1368 1369 // Replace the binop with a phi of the new values. The old phis are dead. 1370 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 1371 NewPhi->addIncoming(NewBO, OtherBB); 1372 NewPhi->addIncoming(NewC, ConstBB); 1373 return NewPhi; 1374 } 1375 1376 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1377 if (!isa<Constant>(I.getOperand(1))) 1378 return nullptr; 1379 1380 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1381 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1382 return NewSel; 1383 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1384 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1385 return NewPhi; 1386 } 1387 return nullptr; 1388 } 1389 1390 /// Given a pointer type and a constant offset, determine whether or not there 1391 /// is a sequence of GEP indices into the pointed type that will land us at the 1392 /// specified offset. If so, fill them into NewIndices and return the resultant 1393 /// element type, otherwise return null. 1394 static Type *findElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1395 SmallVectorImpl<Value *> &NewIndices, 1396 const DataLayout &DL) { 1397 // Only used by visitGEPOfBitcast(), which is skipped for opaque pointers. 1398 Type *Ty = PtrTy->getNonOpaquePointerElementType(); 1399 if (!Ty->isSized()) 1400 return nullptr; 1401 1402 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1403 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1404 if (!Offset.isZero()) 1405 return nullptr; 1406 1407 for (const APInt &Index : Indices) 1408 NewIndices.push_back(ConstantInt::get(PtrTy->getContext(), Index)); 1409 return Ty; 1410 } 1411 1412 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1413 // If this GEP has only 0 indices, it is the same pointer as 1414 // Src. If Src is not a trivial GEP too, don't combine 1415 // the indices. 1416 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1417 !Src.hasOneUse()) 1418 return false; 1419 return true; 1420 } 1421 1422 /// Return a value X such that Val = X * Scale, or null if none. 1423 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1424 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1425 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1426 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1427 Scale.getBitWidth() && "Scale not compatible with value!"); 1428 1429 // If Val is zero or Scale is one then Val = Val * Scale. 1430 if (match(Val, m_Zero()) || Scale == 1) { 1431 NoSignedWrap = true; 1432 return Val; 1433 } 1434 1435 // If Scale is zero then it does not divide Val. 1436 if (Scale.isMinValue()) 1437 return nullptr; 1438 1439 // Look through chains of multiplications, searching for a constant that is 1440 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1441 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1442 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1443 // down from Val: 1444 // 1445 // Val = M1 * X || Analysis starts here and works down 1446 // M1 = M2 * Y || Doesn't descend into terms with more 1447 // M2 = Z * 4 \/ than one use 1448 // 1449 // Then to modify a term at the bottom: 1450 // 1451 // Val = M1 * X 1452 // M1 = Z * Y || Replaced M2 with Z 1453 // 1454 // Then to work back up correcting nsw flags. 1455 1456 // Op - the term we are currently analyzing. Starts at Val then drills down. 1457 // Replaced with its descaled value before exiting from the drill down loop. 1458 Value *Op = Val; 1459 1460 // Parent - initially null, but after drilling down notes where Op came from. 1461 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1462 // 0'th operand of Val. 1463 std::pair<Instruction *, unsigned> Parent; 1464 1465 // Set if the transform requires a descaling at deeper levels that doesn't 1466 // overflow. 1467 bool RequireNoSignedWrap = false; 1468 1469 // Log base 2 of the scale. Negative if not a power of 2. 1470 int32_t logScale = Scale.exactLogBase2(); 1471 1472 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1473 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1474 // If Op is a constant divisible by Scale then descale to the quotient. 1475 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1476 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1477 if (!Remainder.isMinValue()) 1478 // Not divisible by Scale. 1479 return nullptr; 1480 // Replace with the quotient in the parent. 1481 Op = ConstantInt::get(CI->getType(), Quotient); 1482 NoSignedWrap = true; 1483 break; 1484 } 1485 1486 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1487 if (BO->getOpcode() == Instruction::Mul) { 1488 // Multiplication. 1489 NoSignedWrap = BO->hasNoSignedWrap(); 1490 if (RequireNoSignedWrap && !NoSignedWrap) 1491 return nullptr; 1492 1493 // There are three cases for multiplication: multiplication by exactly 1494 // the scale, multiplication by a constant different to the scale, and 1495 // multiplication by something else. 1496 Value *LHS = BO->getOperand(0); 1497 Value *RHS = BO->getOperand(1); 1498 1499 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1500 // Multiplication by a constant. 1501 if (CI->getValue() == Scale) { 1502 // Multiplication by exactly the scale, replace the multiplication 1503 // by its left-hand side in the parent. 1504 Op = LHS; 1505 break; 1506 } 1507 1508 // Otherwise drill down into the constant. 1509 if (!Op->hasOneUse()) 1510 return nullptr; 1511 1512 Parent = std::make_pair(BO, 1); 1513 continue; 1514 } 1515 1516 // Multiplication by something else. Drill down into the left-hand side 1517 // since that's where the reassociate pass puts the good stuff. 1518 if (!Op->hasOneUse()) 1519 return nullptr; 1520 1521 Parent = std::make_pair(BO, 0); 1522 continue; 1523 } 1524 1525 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1526 isa<ConstantInt>(BO->getOperand(1))) { 1527 // Multiplication by a power of 2. 1528 NoSignedWrap = BO->hasNoSignedWrap(); 1529 if (RequireNoSignedWrap && !NoSignedWrap) 1530 return nullptr; 1531 1532 Value *LHS = BO->getOperand(0); 1533 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1534 getLimitedValue(Scale.getBitWidth()); 1535 // Op = LHS << Amt. 1536 1537 if (Amt == logScale) { 1538 // Multiplication by exactly the scale, replace the multiplication 1539 // by its left-hand side in the parent. 1540 Op = LHS; 1541 break; 1542 } 1543 if (Amt < logScale || !Op->hasOneUse()) 1544 return nullptr; 1545 1546 // Multiplication by more than the scale. Reduce the multiplying amount 1547 // by the scale in the parent. 1548 Parent = std::make_pair(BO, 1); 1549 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1550 break; 1551 } 1552 } 1553 1554 if (!Op->hasOneUse()) 1555 return nullptr; 1556 1557 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1558 if (Cast->getOpcode() == Instruction::SExt) { 1559 // Op is sign-extended from a smaller type, descale in the smaller type. 1560 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1561 APInt SmallScale = Scale.trunc(SmallSize); 1562 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1563 // descale Op as (sext Y) * Scale. In order to have 1564 // sext (Y * SmallScale) = (sext Y) * Scale 1565 // some conditions need to hold however: SmallScale must sign-extend to 1566 // Scale and the multiplication Y * SmallScale should not overflow. 1567 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1568 // SmallScale does not sign-extend to Scale. 1569 return nullptr; 1570 assert(SmallScale.exactLogBase2() == logScale); 1571 // Require that Y * SmallScale must not overflow. 1572 RequireNoSignedWrap = true; 1573 1574 // Drill down through the cast. 1575 Parent = std::make_pair(Cast, 0); 1576 Scale = SmallScale; 1577 continue; 1578 } 1579 1580 if (Cast->getOpcode() == Instruction::Trunc) { 1581 // Op is truncated from a larger type, descale in the larger type. 1582 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1583 // trunc (Y * sext Scale) = (trunc Y) * Scale 1584 // always holds. However (trunc Y) * Scale may overflow even if 1585 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1586 // from this point up in the expression (see later). 1587 if (RequireNoSignedWrap) 1588 return nullptr; 1589 1590 // Drill down through the cast. 1591 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1592 Parent = std::make_pair(Cast, 0); 1593 Scale = Scale.sext(LargeSize); 1594 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1595 logScale = -1; 1596 assert(Scale.exactLogBase2() == logScale); 1597 continue; 1598 } 1599 } 1600 1601 // Unsupported expression, bail out. 1602 return nullptr; 1603 } 1604 1605 // If Op is zero then Val = Op * Scale. 1606 if (match(Op, m_Zero())) { 1607 NoSignedWrap = true; 1608 return Op; 1609 } 1610 1611 // We know that we can successfully descale, so from here on we can safely 1612 // modify the IR. Op holds the descaled version of the deepest term in the 1613 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1614 // not to overflow. 1615 1616 if (!Parent.first) 1617 // The expression only had one term. 1618 return Op; 1619 1620 // Rewrite the parent using the descaled version of its operand. 1621 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1622 assert(Op != Parent.first->getOperand(Parent.second) && 1623 "Descaling was a no-op?"); 1624 replaceOperand(*Parent.first, Parent.second, Op); 1625 Worklist.push(Parent.first); 1626 1627 // Now work back up the expression correcting nsw flags. The logic is based 1628 // on the following observation: if X * Y is known not to overflow as a signed 1629 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1630 // then X * Z will not overflow as a signed multiplication either. As we work 1631 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1632 // current level has strictly smaller absolute value than the original. 1633 Instruction *Ancestor = Parent.first; 1634 do { 1635 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1636 // If the multiplication wasn't nsw then we can't say anything about the 1637 // value of the descaled multiplication, and we have to clear nsw flags 1638 // from this point on up. 1639 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1640 NoSignedWrap &= OpNoSignedWrap; 1641 if (NoSignedWrap != OpNoSignedWrap) { 1642 BO->setHasNoSignedWrap(NoSignedWrap); 1643 Worklist.push(Ancestor); 1644 } 1645 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1646 // The fact that the descaled input to the trunc has smaller absolute 1647 // value than the original input doesn't tell us anything useful about 1648 // the absolute values of the truncations. 1649 NoSignedWrap = false; 1650 } 1651 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1652 "Failed to keep proper track of nsw flags while drilling down?"); 1653 1654 if (Ancestor == Val) 1655 // Got to the top, all done! 1656 return Val; 1657 1658 // Move up one level in the expression. 1659 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1660 Ancestor = Ancestor->user_back(); 1661 } while (true); 1662 } 1663 1664 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1665 if (!isa<VectorType>(Inst.getType())) 1666 return nullptr; 1667 1668 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1669 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1670 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1671 cast<VectorType>(Inst.getType())->getElementCount()); 1672 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1673 cast<VectorType>(Inst.getType())->getElementCount()); 1674 1675 // If both operands of the binop are vector concatenations, then perform the 1676 // narrow binop on each pair of the source operands followed by concatenation 1677 // of the results. 1678 Value *L0, *L1, *R0, *R1; 1679 ArrayRef<int> Mask; 1680 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1681 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1682 LHS->hasOneUse() && RHS->hasOneUse() && 1683 cast<ShuffleVectorInst>(LHS)->isConcat() && 1684 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1685 // This transform does not have the speculative execution constraint as 1686 // below because the shuffle is a concatenation. The new binops are 1687 // operating on exactly the same elements as the existing binop. 1688 // TODO: We could ease the mask requirement to allow different undef lanes, 1689 // but that requires an analysis of the binop-with-undef output value. 1690 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1691 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1692 BO->copyIRFlags(&Inst); 1693 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1694 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1695 BO->copyIRFlags(&Inst); 1696 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1697 } 1698 1699 // It may not be safe to reorder shuffles and things like div, urem, etc. 1700 // because we may trap when executing those ops on unknown vector elements. 1701 // See PR20059. 1702 if (!isSafeToSpeculativelyExecute(&Inst)) 1703 return nullptr; 1704 1705 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1706 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1707 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1708 BO->copyIRFlags(&Inst); 1709 return new ShuffleVectorInst(XY, M); 1710 }; 1711 1712 // If both arguments of the binary operation are shuffles that use the same 1713 // mask and shuffle within a single vector, move the shuffle after the binop. 1714 Value *V1, *V2; 1715 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1716 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1717 V1->getType() == V2->getType() && 1718 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1719 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1720 return createBinOpShuffle(V1, V2, Mask); 1721 } 1722 1723 // If both arguments of a commutative binop are select-shuffles that use the 1724 // same mask with commuted operands, the shuffles are unnecessary. 1725 if (Inst.isCommutative() && 1726 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1727 match(RHS, 1728 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1729 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1730 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1731 // TODO: Allow shuffles that contain undefs in the mask? 1732 // That is legal, but it reduces undef knowledge. 1733 // TODO: Allow arbitrary shuffles by shuffling after binop? 1734 // That might be legal, but we have to deal with poison. 1735 if (LShuf->isSelect() && 1736 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1737 RShuf->isSelect() && 1738 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1739 // Example: 1740 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1741 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1742 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1743 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1744 NewBO->copyIRFlags(&Inst); 1745 return NewBO; 1746 } 1747 } 1748 1749 // If one argument is a shuffle within one vector and the other is a constant, 1750 // try moving the shuffle after the binary operation. This canonicalization 1751 // intends to move shuffles closer to other shuffles and binops closer to 1752 // other binops, so they can be folded. It may also enable demanded elements 1753 // transforms. 1754 Constant *C; 1755 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1756 if (InstVTy && 1757 match(&Inst, 1758 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1759 m_ImmConstant(C))) && 1760 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1761 InstVTy->getNumElements()) { 1762 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1763 "Shuffle should not change scalar type"); 1764 1765 // Find constant NewC that has property: 1766 // shuffle(NewC, ShMask) = C 1767 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1768 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1769 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1770 bool ConstOp1 = isa<Constant>(RHS); 1771 ArrayRef<int> ShMask = Mask; 1772 unsigned SrcVecNumElts = 1773 cast<FixedVectorType>(V1->getType())->getNumElements(); 1774 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1775 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1776 bool MayChange = true; 1777 unsigned NumElts = InstVTy->getNumElements(); 1778 for (unsigned I = 0; I < NumElts; ++I) { 1779 Constant *CElt = C->getAggregateElement(I); 1780 if (ShMask[I] >= 0) { 1781 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1782 Constant *NewCElt = NewVecC[ShMask[I]]; 1783 // Bail out if: 1784 // 1. The constant vector contains a constant expression. 1785 // 2. The shuffle needs an element of the constant vector that can't 1786 // be mapped to a new constant vector. 1787 // 3. This is a widening shuffle that copies elements of V1 into the 1788 // extended elements (extending with undef is allowed). 1789 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1790 I >= SrcVecNumElts) { 1791 MayChange = false; 1792 break; 1793 } 1794 NewVecC[ShMask[I]] = CElt; 1795 } 1796 // If this is a widening shuffle, we must be able to extend with undef 1797 // elements. If the original binop does not produce an undef in the high 1798 // lanes, then this transform is not safe. 1799 // Similarly for undef lanes due to the shuffle mask, we can only 1800 // transform binops that preserve undef. 1801 // TODO: We could shuffle those non-undef constant values into the 1802 // result by using a constant vector (rather than an undef vector) 1803 // as operand 1 of the new binop, but that might be too aggressive 1804 // for target-independent shuffle creation. 1805 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1806 Constant *MaybeUndef = 1807 ConstOp1 1808 ? ConstantFoldBinaryOpOperands(Opcode, UndefScalar, CElt, DL) 1809 : ConstantFoldBinaryOpOperands(Opcode, CElt, UndefScalar, DL); 1810 if (!MaybeUndef || !match(MaybeUndef, m_Undef())) { 1811 MayChange = false; 1812 break; 1813 } 1814 } 1815 } 1816 if (MayChange) { 1817 Constant *NewC = ConstantVector::get(NewVecC); 1818 // It may not be safe to execute a binop on a vector with undef elements 1819 // because the entire instruction can be folded to undef or create poison 1820 // that did not exist in the original code. 1821 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1822 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1823 1824 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1825 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1826 Value *NewLHS = ConstOp1 ? V1 : NewC; 1827 Value *NewRHS = ConstOp1 ? NewC : V1; 1828 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1829 } 1830 } 1831 1832 // Try to reassociate to sink a splat shuffle after a binary operation. 1833 if (Inst.isAssociative() && Inst.isCommutative()) { 1834 // Canonicalize shuffle operand as LHS. 1835 if (isa<ShuffleVectorInst>(RHS)) 1836 std::swap(LHS, RHS); 1837 1838 Value *X; 1839 ArrayRef<int> MaskC; 1840 int SplatIndex; 1841 Value *Y, *OtherOp; 1842 if (!match(LHS, 1843 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1844 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1845 X->getType() != Inst.getType() || 1846 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1847 return nullptr; 1848 1849 // FIXME: This may not be safe if the analysis allows undef elements. By 1850 // moving 'Y' before the splat shuffle, we are implicitly assuming 1851 // that it is not undef/poison at the splat index. 1852 if (isSplatValue(OtherOp, SplatIndex)) { 1853 std::swap(Y, OtherOp); 1854 } else if (!isSplatValue(Y, SplatIndex)) { 1855 return nullptr; 1856 } 1857 1858 // X and Y are splatted values, so perform the binary operation on those 1859 // values followed by a splat followed by the 2nd binary operation: 1860 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1861 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1862 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1863 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1864 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1865 1866 // Intersect FMF on both new binops. Other (poison-generating) flags are 1867 // dropped to be safe. 1868 if (isa<FPMathOperator>(R)) { 1869 R->copyFastMathFlags(&Inst); 1870 R->andIRFlags(RHS); 1871 } 1872 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1873 NewInstBO->copyIRFlags(R); 1874 return R; 1875 } 1876 1877 return nullptr; 1878 } 1879 1880 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1881 /// of a value. This requires a potentially expensive known bits check to make 1882 /// sure the narrow op does not overflow. 1883 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1884 // We need at least one extended operand. 1885 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1886 1887 // If this is a sub, we swap the operands since we always want an extension 1888 // on the RHS. The LHS can be an extension or a constant. 1889 if (BO.getOpcode() == Instruction::Sub) 1890 std::swap(Op0, Op1); 1891 1892 Value *X; 1893 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1894 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1895 return nullptr; 1896 1897 // If both operands are the same extension from the same source type and we 1898 // can eliminate at least one (hasOneUse), this might work. 1899 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1900 Value *Y; 1901 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1902 cast<Operator>(Op1)->getOpcode() == CastOpc && 1903 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1904 // If that did not match, see if we have a suitable constant operand. 1905 // Truncating and extending must produce the same constant. 1906 Constant *WideC; 1907 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1908 return nullptr; 1909 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1910 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1911 return nullptr; 1912 Y = NarrowC; 1913 } 1914 1915 // Swap back now that we found our operands. 1916 if (BO.getOpcode() == Instruction::Sub) 1917 std::swap(X, Y); 1918 1919 // Both operands have narrow versions. Last step: the math must not overflow 1920 // in the narrow width. 1921 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1922 return nullptr; 1923 1924 // bo (ext X), (ext Y) --> ext (bo X, Y) 1925 // bo (ext X), C --> ext (bo X, C') 1926 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1927 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1928 if (IsSext) 1929 NewBinOp->setHasNoSignedWrap(); 1930 else 1931 NewBinOp->setHasNoUnsignedWrap(); 1932 } 1933 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1934 } 1935 1936 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1937 // At least one GEP must be inbounds. 1938 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1939 return false; 1940 1941 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1942 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1943 } 1944 1945 /// Thread a GEP operation with constant indices through the constant true/false 1946 /// arms of a select. 1947 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1948 InstCombiner::BuilderTy &Builder) { 1949 if (!GEP.hasAllConstantIndices()) 1950 return nullptr; 1951 1952 Instruction *Sel; 1953 Value *Cond; 1954 Constant *TrueC, *FalseC; 1955 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1956 !match(Sel, 1957 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1958 return nullptr; 1959 1960 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1961 // Propagate 'inbounds' and metadata from existing instructions. 1962 // Note: using IRBuilder to create the constants for efficiency. 1963 SmallVector<Value *, 4> IndexC(GEP.indices()); 1964 bool IsInBounds = GEP.isInBounds(); 1965 Type *Ty = GEP.getSourceElementType(); 1966 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds); 1967 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds); 1968 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1969 } 1970 1971 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 1972 GEPOperator *Src) { 1973 // Combine Indices - If the source pointer to this getelementptr instruction 1974 // is a getelementptr instruction with matching element type, combine the 1975 // indices of the two getelementptr instructions into a single instruction. 1976 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1977 return nullptr; 1978 1979 if (Src->getResultElementType() == GEP.getSourceElementType() && 1980 Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1981 Src->hasOneUse()) { 1982 Value *GO1 = GEP.getOperand(1); 1983 Value *SO1 = Src->getOperand(1); 1984 1985 if (LI) { 1986 // Try to reassociate loop invariant GEP chains to enable LICM. 1987 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1988 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1989 // invariant: this breaks the dependence between GEPs and allows LICM 1990 // to hoist the invariant part out of the loop. 1991 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1992 // The swapped GEPs are inbounds if both original GEPs are inbounds 1993 // and the sign of the offsets is the same. For simplicity, only 1994 // handle both offsets being non-negative. 1995 bool IsInBounds = Src->isInBounds() && GEP.isInBounds() && 1996 isKnownNonNegative(SO1, DL, 0, &AC, &GEP, &DT) && 1997 isKnownNonNegative(GO1, DL, 0, &AC, &GEP, &DT); 1998 // Put NewSrc at same location as %src. 1999 Builder.SetInsertPoint(cast<Instruction>(Src)); 2000 Value *NewSrc = Builder.CreateGEP(GEP.getSourceElementType(), 2001 Src->getPointerOperand(), GO1, 2002 Src->getName(), IsInBounds); 2003 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 2004 GEP.getSourceElementType(), NewSrc, {SO1}); 2005 NewGEP->setIsInBounds(IsInBounds); 2006 return NewGEP; 2007 } 2008 } 2009 } 2010 } 2011 2012 // Note that if our source is a gep chain itself then we wait for that 2013 // chain to be resolved before we perform this transformation. This 2014 // avoids us creating a TON of code in some cases. 2015 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 2016 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 2017 return nullptr; // Wait until our source is folded to completion. 2018 2019 // For constant GEPs, use a more general offset-based folding approach. 2020 // Only do this for opaque pointers, as the result element type may change. 2021 Type *PtrTy = Src->getType()->getScalarType(); 2022 if (PtrTy->isOpaquePointerTy() && GEP.hasAllConstantIndices() && 2023 (Src->hasOneUse() || Src->hasAllConstantIndices())) { 2024 // Split Src into a variable part and a constant suffix. 2025 gep_type_iterator GTI = gep_type_begin(*Src); 2026 Type *BaseType = GTI.getIndexedType(); 2027 bool IsFirstType = true; 2028 unsigned NumVarIndices = 0; 2029 for (auto Pair : enumerate(Src->indices())) { 2030 if (!isa<ConstantInt>(Pair.value())) { 2031 BaseType = GTI.getIndexedType(); 2032 IsFirstType = false; 2033 NumVarIndices = Pair.index() + 1; 2034 } 2035 ++GTI; 2036 } 2037 2038 // Determine the offset for the constant suffix of Src. 2039 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); 2040 if (NumVarIndices != Src->getNumIndices()) { 2041 // FIXME: getIndexedOffsetInType() does not handled scalable vectors. 2042 if (isa<ScalableVectorType>(BaseType)) 2043 return nullptr; 2044 2045 SmallVector<Value *> ConstantIndices; 2046 if (!IsFirstType) 2047 ConstantIndices.push_back( 2048 Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); 2049 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); 2050 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); 2051 } 2052 2053 // Add the offset for GEP (which is fully constant). 2054 if (!GEP.accumulateConstantOffset(DL, Offset)) 2055 return nullptr; 2056 2057 APInt OffsetOld = Offset; 2058 // Convert the total offset back into indices. 2059 SmallVector<APInt> ConstIndices = 2060 DL.getGEPIndicesForOffset(BaseType, Offset); 2061 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) { 2062 // If both GEP are constant-indexed, and cannot be merged in either way, 2063 // convert them to a GEP of i8. 2064 if (Src->hasAllConstantIndices()) 2065 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2066 ? GetElementPtrInst::CreateInBounds( 2067 Builder.getInt8Ty(), Src->getOperand(0), 2068 Builder.getInt(OffsetOld), GEP.getName()) 2069 : GetElementPtrInst::Create( 2070 Builder.getInt8Ty(), Src->getOperand(0), 2071 Builder.getInt(OffsetOld), GEP.getName()); 2072 return nullptr; 2073 } 2074 2075 bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)); 2076 SmallVector<Value *> Indices; 2077 append_range(Indices, drop_end(Src->indices(), 2078 Src->getNumIndices() - NumVarIndices)); 2079 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { 2080 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); 2081 // Even if the total offset is inbounds, we may end up representing it 2082 // by first performing a larger negative offset, and then a smaller 2083 // positive one. The large negative offset might go out of bounds. Only 2084 // preserve inbounds if all signs are the same. 2085 IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative(); 2086 } 2087 2088 return IsInBounds 2089 ? GetElementPtrInst::CreateInBounds(Src->getSourceElementType(), 2090 Src->getOperand(0), Indices, 2091 GEP.getName()) 2092 : GetElementPtrInst::Create(Src->getSourceElementType(), 2093 Src->getOperand(0), Indices, 2094 GEP.getName()); 2095 } 2096 2097 if (Src->getResultElementType() != GEP.getSourceElementType()) 2098 return nullptr; 2099 2100 SmallVector<Value*, 8> Indices; 2101 2102 // Find out whether the last index in the source GEP is a sequential idx. 2103 bool EndsWithSequential = false; 2104 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2105 I != E; ++I) 2106 EndsWithSequential = I.isSequential(); 2107 2108 // Can we combine the two pointer arithmetics offsets? 2109 if (EndsWithSequential) { 2110 // Replace: gep (gep %P, long B), long A, ... 2111 // With: T = long A+B; gep %P, T, ... 2112 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2113 Value *GO1 = GEP.getOperand(1); 2114 2115 // If they aren't the same type, then the input hasn't been processed 2116 // by the loop above yet (which canonicalizes sequential index types to 2117 // intptr_t). Just avoid transforming this until the input has been 2118 // normalized. 2119 if (SO1->getType() != GO1->getType()) 2120 return nullptr; 2121 2122 Value *Sum = 2123 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2124 // Only do the combine when we are sure the cost after the 2125 // merge is never more than that before the merge. 2126 if (Sum == nullptr) 2127 return nullptr; 2128 2129 // Update the GEP in place if possible. 2130 if (Src->getNumOperands() == 2) { 2131 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2132 replaceOperand(GEP, 0, Src->getOperand(0)); 2133 replaceOperand(GEP, 1, Sum); 2134 return &GEP; 2135 } 2136 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2137 Indices.push_back(Sum); 2138 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2139 } else if (isa<Constant>(*GEP.idx_begin()) && 2140 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2141 Src->getNumOperands() != 1) { 2142 // Otherwise we can do the fold if the first index of the GEP is a zero 2143 Indices.append(Src->op_begin()+1, Src->op_end()); 2144 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2145 } 2146 2147 if (!Indices.empty()) 2148 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2149 ? GetElementPtrInst::CreateInBounds( 2150 Src->getSourceElementType(), Src->getOperand(0), Indices, 2151 GEP.getName()) 2152 : GetElementPtrInst::Create(Src->getSourceElementType(), 2153 Src->getOperand(0), Indices, 2154 GEP.getName()); 2155 2156 return nullptr; 2157 } 2158 2159 // Note that we may have also stripped an address space cast in between. 2160 Instruction *InstCombinerImpl::visitGEPOfBitcast(BitCastInst *BCI, 2161 GetElementPtrInst &GEP) { 2162 // With opaque pointers, there is no pointer element type we can use to 2163 // adjust the GEP type. 2164 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2165 if (SrcType->isOpaque()) 2166 return nullptr; 2167 2168 Type *GEPEltType = GEP.getSourceElementType(); 2169 Type *SrcEltType = SrcType->getNonOpaquePointerElementType(); 2170 Value *SrcOp = BCI->getOperand(0); 2171 2172 // GEP directly using the source operand if this GEP is accessing an element 2173 // of a bitcasted pointer to vector or array of the same dimensions: 2174 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2175 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2176 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2177 const DataLayout &DL) { 2178 auto *VecVTy = cast<FixedVectorType>(VecTy); 2179 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2180 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2181 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2182 }; 2183 if (GEP.getNumOperands() == 3 && 2184 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2185 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2186 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2187 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2188 2189 // Create a new GEP here, as using `setOperand()` followed by 2190 // `setSourceElementType()` won't actually update the type of the 2191 // existing GEP Value. Causing issues if this Value is accessed when 2192 // constructing an AddrSpaceCastInst 2193 SmallVector<Value *, 8> Indices(GEP.indices()); 2194 Value *NGEP = 2195 Builder.CreateGEP(SrcEltType, SrcOp, Indices, "", GEP.isInBounds()); 2196 NGEP->takeName(&GEP); 2197 2198 // Preserve GEP address space to satisfy users 2199 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2200 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2201 2202 return replaceInstUsesWith(GEP, NGEP); 2203 } 2204 2205 // See if we can simplify: 2206 // X = bitcast A* to B* 2207 // Y = gep X, <...constant indices...> 2208 // into a gep of the original struct. This is important for SROA and alias 2209 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2210 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEP.getType()); 2211 APInt Offset(OffsetBits, 0); 2212 2213 // If the bitcast argument is an allocation, The bitcast is for convertion 2214 // to actual type of allocation. Removing such bitcasts, results in having 2215 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2216 // struct or array hierarchy. 2217 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2218 // a better chance to succeed. 2219 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2220 !isAllocationFn(SrcOp, &TLI)) { 2221 // If this GEP instruction doesn't move the pointer, just replace the GEP 2222 // with a bitcast of the real input to the dest type. 2223 if (!Offset) { 2224 // If the bitcast is of an allocation, and the allocation will be 2225 // converted to match the type of the cast, don't touch this. 2226 if (isa<AllocaInst>(SrcOp)) { 2227 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2228 if (Instruction *I = visitBitCast(*BCI)) { 2229 if (I != BCI) { 2230 I->takeName(BCI); 2231 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2232 replaceInstUsesWith(*BCI, I); 2233 } 2234 return &GEP; 2235 } 2236 } 2237 2238 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2239 return new AddrSpaceCastInst(SrcOp, GEP.getType()); 2240 return new BitCastInst(SrcOp, GEP.getType()); 2241 } 2242 2243 // Otherwise, if the offset is non-zero, we need to find out if there is a 2244 // field at Offset in 'A's type. If so, we can pull the cast through the 2245 // GEP. 2246 SmallVector<Value *, 8> NewIndices; 2247 if (findElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices, DL)) { 2248 Value *NGEP = Builder.CreateGEP(SrcEltType, SrcOp, NewIndices, "", 2249 GEP.isInBounds()); 2250 2251 if (NGEP->getType() == GEP.getType()) 2252 return replaceInstUsesWith(GEP, NGEP); 2253 NGEP->takeName(&GEP); 2254 2255 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2256 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2257 return new BitCastInst(NGEP, GEP.getType()); 2258 } 2259 } 2260 2261 return nullptr; 2262 } 2263 2264 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2265 Value *PtrOp = GEP.getOperand(0); 2266 SmallVector<Value *, 8> Indices(GEP.indices()); 2267 Type *GEPType = GEP.getType(); 2268 Type *GEPEltType = GEP.getSourceElementType(); 2269 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 2270 if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2271 SQ.getWithInstruction(&GEP))) 2272 return replaceInstUsesWith(GEP, V); 2273 2274 // For vector geps, use the generic demanded vector support. 2275 // Skip if GEP return type is scalable. The number of elements is unknown at 2276 // compile-time. 2277 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2278 auto VWidth = GEPFVTy->getNumElements(); 2279 APInt UndefElts(VWidth, 0); 2280 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2281 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2282 UndefElts)) { 2283 if (V != &GEP) 2284 return replaceInstUsesWith(GEP, V); 2285 return &GEP; 2286 } 2287 2288 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2289 // possible (decide on canonical form for pointer broadcast), 3) exploit 2290 // undef elements to decrease demanded bits 2291 } 2292 2293 // Eliminate unneeded casts for indices, and replace indices which displace 2294 // by multiples of a zero size type with zero. 2295 bool MadeChange = false; 2296 2297 // Index width may not be the same width as pointer width. 2298 // Data layout chooses the right type based on supported integer types. 2299 Type *NewScalarIndexTy = 2300 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2301 2302 gep_type_iterator GTI = gep_type_begin(GEP); 2303 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2304 ++I, ++GTI) { 2305 // Skip indices into struct types. 2306 if (GTI.isStruct()) 2307 continue; 2308 2309 Type *IndexTy = (*I)->getType(); 2310 Type *NewIndexType = 2311 IndexTy->isVectorTy() 2312 ? VectorType::get(NewScalarIndexTy, 2313 cast<VectorType>(IndexTy)->getElementCount()) 2314 : NewScalarIndexTy; 2315 2316 // If the element type has zero size then any index over it is equivalent 2317 // to an index of zero, so replace it with zero if it is not zero already. 2318 Type *EltTy = GTI.getIndexedType(); 2319 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2320 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2321 *I = Constant::getNullValue(NewIndexType); 2322 MadeChange = true; 2323 } 2324 2325 if (IndexTy != NewIndexType) { 2326 // If we are using a wider index than needed for this platform, shrink 2327 // it to what we need. If narrower, sign-extend it to what we need. 2328 // This explicit cast can make subsequent optimizations more obvious. 2329 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2330 MadeChange = true; 2331 } 2332 } 2333 if (MadeChange) 2334 return &GEP; 2335 2336 // Check to see if the inputs to the PHI node are getelementptr instructions. 2337 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2338 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2339 if (!Op1) 2340 return nullptr; 2341 2342 // Don't fold a GEP into itself through a PHI node. This can only happen 2343 // through the back-edge of a loop. Folding a GEP into itself means that 2344 // the value of the previous iteration needs to be stored in the meantime, 2345 // thus requiring an additional register variable to be live, but not 2346 // actually achieving anything (the GEP still needs to be executed once per 2347 // loop iteration). 2348 if (Op1 == &GEP) 2349 return nullptr; 2350 2351 int DI = -1; 2352 2353 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2354 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2355 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || 2356 Op1->getSourceElementType() != Op2->getSourceElementType()) 2357 return nullptr; 2358 2359 // As for Op1 above, don't try to fold a GEP into itself. 2360 if (Op2 == &GEP) 2361 return nullptr; 2362 2363 // Keep track of the type as we walk the GEP. 2364 Type *CurTy = nullptr; 2365 2366 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2367 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2368 return nullptr; 2369 2370 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2371 if (DI == -1) { 2372 // We have not seen any differences yet in the GEPs feeding the 2373 // PHI yet, so we record this one if it is allowed to be a 2374 // variable. 2375 2376 // The first two arguments can vary for any GEP, the rest have to be 2377 // static for struct slots 2378 if (J > 1) { 2379 assert(CurTy && "No current type?"); 2380 if (CurTy->isStructTy()) 2381 return nullptr; 2382 } 2383 2384 DI = J; 2385 } else { 2386 // The GEP is different by more than one input. While this could be 2387 // extended to support GEPs that vary by more than one variable it 2388 // doesn't make sense since it greatly increases the complexity and 2389 // would result in an R+R+R addressing mode which no backend 2390 // directly supports and would need to be broken into several 2391 // simpler instructions anyway. 2392 return nullptr; 2393 } 2394 } 2395 2396 // Sink down a layer of the type for the next iteration. 2397 if (J > 0) { 2398 if (J == 1) { 2399 CurTy = Op1->getSourceElementType(); 2400 } else { 2401 CurTy = 2402 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2403 } 2404 } 2405 } 2406 } 2407 2408 // If not all GEPs are identical we'll have to create a new PHI node. 2409 // Check that the old PHI node has only one use so that it will get 2410 // removed. 2411 if (DI != -1 && !PN->hasOneUse()) 2412 return nullptr; 2413 2414 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2415 if (DI == -1) { 2416 // All the GEPs feeding the PHI are identical. Clone one down into our 2417 // BB so that it can be merged with the current GEP. 2418 } else { 2419 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2420 // into the current block so it can be merged, and create a new PHI to 2421 // set that index. 2422 PHINode *NewPN; 2423 { 2424 IRBuilderBase::InsertPointGuard Guard(Builder); 2425 Builder.SetInsertPoint(PN); 2426 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2427 PN->getNumOperands()); 2428 } 2429 2430 for (auto &I : PN->operands()) 2431 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2432 PN->getIncomingBlock(I)); 2433 2434 NewGEP->setOperand(DI, NewPN); 2435 } 2436 2437 GEP.getParent()->getInstList().insert( 2438 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2439 replaceOperand(GEP, 0, NewGEP); 2440 PtrOp = NewGEP; 2441 } 2442 2443 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2444 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2445 return I; 2446 2447 // Skip if GEP source element type is scalable. The type alloc size is unknown 2448 // at compile-time. 2449 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2450 unsigned AS = GEP.getPointerAddressSpace(); 2451 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2452 DL.getIndexSizeInBits(AS)) { 2453 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2454 2455 bool Matched = false; 2456 uint64_t C; 2457 Value *V = nullptr; 2458 if (TyAllocSize == 1) { 2459 V = GEP.getOperand(1); 2460 Matched = true; 2461 } else if (match(GEP.getOperand(1), 2462 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2463 if (TyAllocSize == 1ULL << C) 2464 Matched = true; 2465 } else if (match(GEP.getOperand(1), 2466 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2467 if (TyAllocSize == C) 2468 Matched = true; 2469 } 2470 2471 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2472 // only if both point to the same underlying object (otherwise provenance 2473 // is not necessarily retained). 2474 Value *Y; 2475 Value *X = GEP.getOperand(0); 2476 if (Matched && 2477 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2478 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2479 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2480 } 2481 } 2482 2483 // We do not handle pointer-vector geps here. 2484 if (GEPType->isVectorTy()) 2485 return nullptr; 2486 2487 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2488 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2489 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2490 2491 // TODO: The basic approach of these folds is not compatible with opaque 2492 // pointers, because we can't use bitcasts as a hint for a desirable GEP 2493 // type. Instead, we should perform canonicalization directly on the GEP 2494 // type. For now, skip these. 2495 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) { 2496 bool HasZeroPointerIndex = false; 2497 Type *StrippedPtrEltTy = StrippedPtrTy->getNonOpaquePointerElementType(); 2498 2499 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2500 HasZeroPointerIndex = C->isZero(); 2501 2502 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2503 // into : GEP [10 x i8]* X, i32 0, ... 2504 // 2505 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2506 // into : GEP i8* X, ... 2507 // 2508 // This occurs when the program declares an array extern like "int X[];" 2509 if (HasZeroPointerIndex) { 2510 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2511 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2512 if (CATy->getElementType() == StrippedPtrEltTy) { 2513 // -> GEP i8* X, ... 2514 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2515 GetElementPtrInst *Res = GetElementPtrInst::Create( 2516 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2517 Res->setIsInBounds(GEP.isInBounds()); 2518 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2519 return Res; 2520 // Insert Res, and create an addrspacecast. 2521 // e.g., 2522 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2523 // -> 2524 // %0 = GEP i8 addrspace(1)* X, ... 2525 // addrspacecast i8 addrspace(1)* %0 to i8* 2526 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2527 } 2528 2529 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2530 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2531 if (CATy->getElementType() == XATy->getElementType()) { 2532 // -> GEP [10 x i8]* X, i32 0, ... 2533 // At this point, we know that the cast source type is a pointer 2534 // to an array of the same type as the destination pointer 2535 // array. Because the array type is never stepped over (there 2536 // is a leading zero) we can fold the cast into this GEP. 2537 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2538 GEP.setSourceElementType(XATy); 2539 return replaceOperand(GEP, 0, StrippedPtr); 2540 } 2541 // Cannot replace the base pointer directly because StrippedPtr's 2542 // address space is different. Instead, create a new GEP followed by 2543 // an addrspacecast. 2544 // e.g., 2545 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2546 // i32 0, ... 2547 // -> 2548 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2549 // addrspacecast i8 addrspace(1)* %0 to i8* 2550 SmallVector<Value *, 8> Idx(GEP.indices()); 2551 Value *NewGEP = 2552 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2553 GEP.getName(), GEP.isInBounds()); 2554 return new AddrSpaceCastInst(NewGEP, GEPType); 2555 } 2556 } 2557 } 2558 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2559 // Skip if GEP source element type is scalable. The type alloc size is 2560 // unknown at compile-time. 2561 // Transform things like: %t = getelementptr i32* 2562 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2563 // x i32]* %str, i32 0, i32 %V; bitcast 2564 if (StrippedPtrEltTy->isArrayTy() && 2565 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2566 DL.getTypeAllocSize(GEPEltType)) { 2567 Type *IdxType = DL.getIndexType(GEPType); 2568 Value *Idx[2] = {Constant::getNullValue(IdxType), GEP.getOperand(1)}; 2569 Value *NewGEP = Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2570 GEP.getName(), GEP.isInBounds()); 2571 2572 // V and GEP are both pointer types --> BitCast 2573 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2574 } 2575 2576 // Transform things like: 2577 // %V = mul i64 %N, 4 2578 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2579 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2580 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2581 // Check that changing the type amounts to dividing the index by a scale 2582 // factor. 2583 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2584 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2585 if (ResSize && SrcSize % ResSize == 0) { 2586 Value *Idx = GEP.getOperand(1); 2587 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2588 uint64_t Scale = SrcSize / ResSize; 2589 2590 // Earlier transforms ensure that the index has the right type 2591 // according to Data Layout, which considerably simplifies the 2592 // logic by eliminating implicit casts. 2593 assert(Idx->getType() == DL.getIndexType(GEPType) && 2594 "Index type does not match the Data Layout preferences"); 2595 2596 bool NSW; 2597 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2598 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2599 // If the multiplication NewIdx * Scale may overflow then the new 2600 // GEP may not be "inbounds". 2601 Value *NewGEP = 2602 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2603 GEP.getName(), GEP.isInBounds() && NSW); 2604 2605 // The NewGEP must be pointer typed, so must the old one -> BitCast 2606 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2607 GEPType); 2608 } 2609 } 2610 } 2611 2612 // Similarly, transform things like: 2613 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2614 // (where tmp = 8*tmp2) into: 2615 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2616 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2617 StrippedPtrEltTy->isArrayTy()) { 2618 // Check that changing to the array element type amounts to dividing the 2619 // index by a scale factor. 2620 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2621 uint64_t ArrayEltSize = 2622 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2623 .getFixedSize(); 2624 if (ResSize && ArrayEltSize % ResSize == 0) { 2625 Value *Idx = GEP.getOperand(1); 2626 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2627 uint64_t Scale = ArrayEltSize / ResSize; 2628 2629 // Earlier transforms ensure that the index has the right type 2630 // according to the Data Layout, which considerably simplifies 2631 // the logic by eliminating implicit casts. 2632 assert(Idx->getType() == DL.getIndexType(GEPType) && 2633 "Index type does not match the Data Layout preferences"); 2634 2635 bool NSW; 2636 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2637 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2638 // If the multiplication NewIdx * Scale may overflow then the new 2639 // GEP may not be "inbounds". 2640 Type *IndTy = DL.getIndexType(GEPType); 2641 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2642 2643 Value *NewGEP = 2644 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2645 GEP.getName(), GEP.isInBounds() && NSW); 2646 // The NewGEP must be pointer typed, so must the old one -> BitCast 2647 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2648 GEPType); 2649 } 2650 } 2651 } 2652 } 2653 } 2654 2655 // addrspacecast between types is canonicalized as a bitcast, then an 2656 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2657 // through the addrspacecast. 2658 Value *ASCStrippedPtrOp = PtrOp; 2659 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2660 // X = bitcast A addrspace(1)* to B addrspace(1)* 2661 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2662 // Z = gep Y, <...constant indices...> 2663 // Into an addrspacecasted GEP of the struct. 2664 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2665 ASCStrippedPtrOp = BC; 2666 } 2667 2668 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) 2669 if (Instruction *I = visitGEPOfBitcast(BCI, GEP)) 2670 return I; 2671 2672 if (!GEP.isInBounds()) { 2673 unsigned IdxWidth = 2674 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2675 APInt BasePtrOffset(IdxWidth, 0); 2676 Value *UnderlyingPtrOp = 2677 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2678 BasePtrOffset); 2679 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2680 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2681 BasePtrOffset.isNonNegative()) { 2682 APInt AllocSize( 2683 IdxWidth, 2684 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2685 if (BasePtrOffset.ule(AllocSize)) { 2686 return GetElementPtrInst::CreateInBounds( 2687 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2688 } 2689 } 2690 } 2691 } 2692 2693 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2694 return R; 2695 2696 return nullptr; 2697 } 2698 2699 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2700 Instruction *AI) { 2701 if (isa<ConstantPointerNull>(V)) 2702 return true; 2703 if (auto *LI = dyn_cast<LoadInst>(V)) 2704 return isa<GlobalVariable>(LI->getPointerOperand()); 2705 // Two distinct allocations will never be equal. 2706 return isAllocLikeFn(V, &TLI) && V != AI; 2707 } 2708 2709 /// Given a call CB which uses an address UsedV, return true if we can prove the 2710 /// call's only possible effect is storing to V. 2711 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2712 const TargetLibraryInfo &TLI) { 2713 if (!CB.use_empty()) 2714 // TODO: add recursion if returned attribute is present 2715 return false; 2716 2717 if (CB.isTerminator()) 2718 // TODO: remove implementation restriction 2719 return false; 2720 2721 if (!CB.willReturn() || !CB.doesNotThrow()) 2722 return false; 2723 2724 // If the only possible side effect of the call is writing to the alloca, 2725 // and the result isn't used, we can safely remove any reads implied by the 2726 // call including those which might read the alloca itself. 2727 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2728 return Dest && Dest->Ptr == UsedV; 2729 } 2730 2731 static bool isAllocSiteRemovable(Instruction *AI, 2732 SmallVectorImpl<WeakTrackingVH> &Users, 2733 const TargetLibraryInfo &TLI) { 2734 SmallVector<Instruction*, 4> Worklist; 2735 const Optional<StringRef> Family = getAllocationFamily(AI, &TLI); 2736 Worklist.push_back(AI); 2737 2738 do { 2739 Instruction *PI = Worklist.pop_back_val(); 2740 for (User *U : PI->users()) { 2741 Instruction *I = cast<Instruction>(U); 2742 switch (I->getOpcode()) { 2743 default: 2744 // Give up the moment we see something we can't handle. 2745 return false; 2746 2747 case Instruction::AddrSpaceCast: 2748 case Instruction::BitCast: 2749 case Instruction::GetElementPtr: 2750 Users.emplace_back(I); 2751 Worklist.push_back(I); 2752 continue; 2753 2754 case Instruction::ICmp: { 2755 ICmpInst *ICI = cast<ICmpInst>(I); 2756 // We can fold eq/ne comparisons with null to false/true, respectively. 2757 // We also fold comparisons in some conditions provided the alloc has 2758 // not escaped (see isNeverEqualToUnescapedAlloc). 2759 if (!ICI->isEquality()) 2760 return false; 2761 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2762 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2763 return false; 2764 Users.emplace_back(I); 2765 continue; 2766 } 2767 2768 case Instruction::Call: 2769 // Ignore no-op and store intrinsics. 2770 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2771 switch (II->getIntrinsicID()) { 2772 default: 2773 return false; 2774 2775 case Intrinsic::memmove: 2776 case Intrinsic::memcpy: 2777 case Intrinsic::memset: { 2778 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2779 if (MI->isVolatile() || MI->getRawDest() != PI) 2780 return false; 2781 LLVM_FALLTHROUGH; 2782 } 2783 case Intrinsic::assume: 2784 case Intrinsic::invariant_start: 2785 case Intrinsic::invariant_end: 2786 case Intrinsic::lifetime_start: 2787 case Intrinsic::lifetime_end: 2788 case Intrinsic::objectsize: 2789 Users.emplace_back(I); 2790 continue; 2791 case Intrinsic::launder_invariant_group: 2792 case Intrinsic::strip_invariant_group: 2793 Users.emplace_back(I); 2794 Worklist.push_back(I); 2795 continue; 2796 } 2797 } 2798 2799 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2800 Users.emplace_back(I); 2801 continue; 2802 } 2803 2804 if (getFreedOperand(cast<CallBase>(I), &TLI) == PI && 2805 getAllocationFamily(I, &TLI) == Family) { 2806 assert(Family); 2807 Users.emplace_back(I); 2808 continue; 2809 } 2810 2811 if (getReallocatedOperand(cast<CallBase>(I), &TLI) == PI && 2812 getAllocationFamily(I, &TLI) == Family) { 2813 assert(Family); 2814 Users.emplace_back(I); 2815 Worklist.push_back(I); 2816 continue; 2817 } 2818 2819 return false; 2820 2821 case Instruction::Store: { 2822 StoreInst *SI = cast<StoreInst>(I); 2823 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2824 return false; 2825 Users.emplace_back(I); 2826 continue; 2827 } 2828 } 2829 llvm_unreachable("missing a return?"); 2830 } 2831 } while (!Worklist.empty()); 2832 return true; 2833 } 2834 2835 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2836 assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI)); 2837 2838 // If we have a malloc call which is only used in any amount of comparisons to 2839 // null and free calls, delete the calls and replace the comparisons with true 2840 // or false as appropriate. 2841 2842 // This is based on the principle that we can substitute our own allocation 2843 // function (which will never return null) rather than knowledge of the 2844 // specific function being called. In some sense this can change the permitted 2845 // outputs of a program (when we convert a malloc to an alloca, the fact that 2846 // the allocation is now on the stack is potentially visible, for example), 2847 // but we believe in a permissible manner. 2848 SmallVector<WeakTrackingVH, 64> Users; 2849 2850 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2851 // before each store. 2852 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2853 std::unique_ptr<DIBuilder> DIB; 2854 if (isa<AllocaInst>(MI)) { 2855 findDbgUsers(DVIs, &MI); 2856 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2857 } 2858 2859 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2860 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2861 // Lowering all @llvm.objectsize calls first because they may 2862 // use a bitcast/GEP of the alloca we are removing. 2863 if (!Users[i]) 2864 continue; 2865 2866 Instruction *I = cast<Instruction>(&*Users[i]); 2867 2868 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2869 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2870 Value *Result = 2871 lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/true); 2872 replaceInstUsesWith(*I, Result); 2873 eraseInstFromFunction(*I); 2874 Users[i] = nullptr; // Skip examining in the next loop. 2875 } 2876 } 2877 } 2878 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2879 if (!Users[i]) 2880 continue; 2881 2882 Instruction *I = cast<Instruction>(&*Users[i]); 2883 2884 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2885 replaceInstUsesWith(*C, 2886 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2887 C->isFalseWhenEqual())); 2888 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2889 for (auto *DVI : DVIs) 2890 if (DVI->isAddressOfVariable()) 2891 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2892 } else { 2893 // Casts, GEP, or anything else: we're about to delete this instruction, 2894 // so it can not have any valid uses. 2895 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2896 } 2897 eraseInstFromFunction(*I); 2898 } 2899 2900 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2901 // Replace invoke with a NOP intrinsic to maintain the original CFG 2902 Module *M = II->getModule(); 2903 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2904 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2905 None, "", II->getParent()); 2906 } 2907 2908 // Remove debug intrinsics which describe the value contained within the 2909 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2910 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2911 // 2912 // ``` 2913 // define void @foo(i32 %0) { 2914 // %a = alloca i32 ; Deleted. 2915 // store i32 %0, i32* %a 2916 // dbg.value(i32 %0, "arg0") ; Not deleted. 2917 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2918 // call void @trivially_inlinable_no_op(i32* %a) 2919 // ret void 2920 // } 2921 // ``` 2922 // 2923 // This may not be required if we stop describing the contents of allocas 2924 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2925 // the LowerDbgDeclare utility. 2926 // 2927 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2928 // "arg0" dbg.value may be stale after the call. However, failing to remove 2929 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2930 for (auto *DVI : DVIs) 2931 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2932 DVI->eraseFromParent(); 2933 2934 return eraseInstFromFunction(MI); 2935 } 2936 return nullptr; 2937 } 2938 2939 /// Move the call to free before a NULL test. 2940 /// 2941 /// Check if this free is accessed after its argument has been test 2942 /// against NULL (property 0). 2943 /// If yes, it is legal to move this call in its predecessor block. 2944 /// 2945 /// The move is performed only if the block containing the call to free 2946 /// will be removed, i.e.: 2947 /// 1. it has only one predecessor P, and P has two successors 2948 /// 2. it contains the call, noops, and an unconditional branch 2949 /// 3. its successor is the same as its predecessor's successor 2950 /// 2951 /// The profitability is out-of concern here and this function should 2952 /// be called only if the caller knows this transformation would be 2953 /// profitable (e.g., for code size). 2954 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2955 const DataLayout &DL) { 2956 Value *Op = FI.getArgOperand(0); 2957 BasicBlock *FreeInstrBB = FI.getParent(); 2958 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2959 2960 // Validate part of constraint #1: Only one predecessor 2961 // FIXME: We can extend the number of predecessor, but in that case, we 2962 // would duplicate the call to free in each predecessor and it may 2963 // not be profitable even for code size. 2964 if (!PredBB) 2965 return nullptr; 2966 2967 // Validate constraint #2: Does this block contains only the call to 2968 // free, noops, and an unconditional branch? 2969 BasicBlock *SuccBB; 2970 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2971 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2972 return nullptr; 2973 2974 // If there are only 2 instructions in the block, at this point, 2975 // this is the call to free and unconditional. 2976 // If there are more than 2 instructions, check that they are noops 2977 // i.e., they won't hurt the performance of the generated code. 2978 if (FreeInstrBB->size() != 2) { 2979 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2980 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2981 continue; 2982 auto *Cast = dyn_cast<CastInst>(&Inst); 2983 if (!Cast || !Cast->isNoopCast(DL)) 2984 return nullptr; 2985 } 2986 } 2987 // Validate the rest of constraint #1 by matching on the pred branch. 2988 Instruction *TI = PredBB->getTerminator(); 2989 BasicBlock *TrueBB, *FalseBB; 2990 ICmpInst::Predicate Pred; 2991 if (!match(TI, m_Br(m_ICmp(Pred, 2992 m_CombineOr(m_Specific(Op), 2993 m_Specific(Op->stripPointerCasts())), 2994 m_Zero()), 2995 TrueBB, FalseBB))) 2996 return nullptr; 2997 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2998 return nullptr; 2999 3000 // Validate constraint #3: Ensure the null case just falls through. 3001 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 3002 return nullptr; 3003 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 3004 "Broken CFG: missing edge from predecessor to successor"); 3005 3006 // At this point, we know that everything in FreeInstrBB can be moved 3007 // before TI. 3008 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 3009 if (&Instr == FreeInstrBBTerminator) 3010 break; 3011 Instr.moveBefore(TI); 3012 } 3013 assert(FreeInstrBB->size() == 1 && 3014 "Only the branch instruction should remain"); 3015 3016 // Now that we've moved the call to free before the NULL check, we have to 3017 // remove any attributes on its parameter that imply it's non-null, because 3018 // those attributes might have only been valid because of the NULL check, and 3019 // we can get miscompiles if we keep them. This is conservative if non-null is 3020 // also implied by something other than the NULL check, but it's guaranteed to 3021 // be correct, and the conservativeness won't matter in practice, since the 3022 // attributes are irrelevant for the call to free itself and the pointer 3023 // shouldn't be used after the call. 3024 AttributeList Attrs = FI.getAttributes(); 3025 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 3026 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 3027 if (Dereferenceable.isValid()) { 3028 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 3029 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 3030 Attribute::Dereferenceable); 3031 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 3032 } 3033 FI.setAttributes(Attrs); 3034 3035 return &FI; 3036 } 3037 3038 Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) { 3039 // free undef -> unreachable. 3040 if (isa<UndefValue>(Op)) { 3041 // Leave a marker since we can't modify the CFG here. 3042 CreateNonTerminatorUnreachable(&FI); 3043 return eraseInstFromFunction(FI); 3044 } 3045 3046 // If we have 'free null' delete the instruction. This can happen in stl code 3047 // when lots of inlining happens. 3048 if (isa<ConstantPointerNull>(Op)) 3049 return eraseInstFromFunction(FI); 3050 3051 // If we had free(realloc(...)) with no intervening uses, then eliminate the 3052 // realloc() entirely. 3053 CallInst *CI = dyn_cast<CallInst>(Op); 3054 if (CI && CI->hasOneUse()) 3055 if (Value *ReallocatedOp = getReallocatedOperand(CI, &TLI)) 3056 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp)); 3057 3058 // If we optimize for code size, try to move the call to free before the null 3059 // test so that simplify cfg can remove the empty block and dead code 3060 // elimination the branch. I.e., helps to turn something like: 3061 // if (foo) free(foo); 3062 // into 3063 // free(foo); 3064 // 3065 // Note that we can only do this for 'free' and not for any flavor of 3066 // 'operator delete'; there is no 'operator delete' symbol for which we are 3067 // permitted to invent a call, even if we're passing in a null pointer. 3068 if (MinimizeSize) { 3069 LibFunc Func; 3070 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 3071 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 3072 return I; 3073 } 3074 3075 return nullptr; 3076 } 3077 3078 static bool isMustTailCall(Value *V) { 3079 if (auto *CI = dyn_cast<CallInst>(V)) 3080 return CI->isMustTailCall(); 3081 return false; 3082 } 3083 3084 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3085 if (RI.getNumOperands() == 0) // ret void 3086 return nullptr; 3087 3088 Value *ResultOp = RI.getOperand(0); 3089 Type *VTy = ResultOp->getType(); 3090 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 3091 return nullptr; 3092 3093 // Don't replace result of musttail calls. 3094 if (isMustTailCall(ResultOp)) 3095 return nullptr; 3096 3097 // There might be assume intrinsics dominating this return that completely 3098 // determine the value. If so, constant fold it. 3099 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 3100 if (Known.isConstant()) 3101 return replaceOperand(RI, 0, 3102 Constant::getIntegerValue(VTy, Known.getConstant())); 3103 3104 return nullptr; 3105 } 3106 3107 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 3108 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3109 // Try to remove the previous instruction if it must lead to unreachable. 3110 // This includes instructions like stores and "llvm.assume" that may not get 3111 // removed by simple dead code elimination. 3112 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3113 // While we theoretically can erase EH, that would result in a block that 3114 // used to start with an EH no longer starting with EH, which is invalid. 3115 // To make it valid, we'd need to fixup predecessors to no longer refer to 3116 // this block, but that changes CFG, which is not allowed in InstCombine. 3117 if (Prev->isEHPad()) 3118 return nullptr; // Can not drop any more instructions. We're done here. 3119 3120 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3121 return nullptr; // Can not drop any more instructions. We're done here. 3122 // Otherwise, this instruction can be freely erased, 3123 // even if it is not side-effect free. 3124 3125 // A value may still have uses before we process it here (for example, in 3126 // another unreachable block), so convert those to poison. 3127 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3128 eraseInstFromFunction(*Prev); 3129 } 3130 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 3131 // FIXME: recurse into unconditional predecessors? 3132 return nullptr; 3133 } 3134 3135 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3136 assert(BI.isUnconditional() && "Only for unconditional branches."); 3137 3138 // If this store is the second-to-last instruction in the basic block 3139 // (excluding debug info and bitcasts of pointers) and if the block ends with 3140 // an unconditional branch, try to move the store to the successor block. 3141 3142 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3143 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3144 return BBI->isDebugOrPseudoInst() || 3145 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3146 }; 3147 3148 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3149 do { 3150 if (BBI != FirstInstr) 3151 --BBI; 3152 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3153 3154 return dyn_cast<StoreInst>(BBI); 3155 }; 3156 3157 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3158 if (mergeStoreIntoSuccessor(*SI)) 3159 return &BI; 3160 3161 return nullptr; 3162 } 3163 3164 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3165 if (BI.isUnconditional()) 3166 return visitUnconditionalBranchInst(BI); 3167 3168 // Change br (not X), label True, label False to: br X, label False, True 3169 Value *X = nullptr; 3170 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 3171 !isa<Constant>(X)) { 3172 // Swap Destinations and condition... 3173 BI.swapSuccessors(); 3174 return replaceOperand(BI, 0, X); 3175 } 3176 3177 // If the condition is irrelevant, remove the use so that other 3178 // transforms on the condition become more effective. 3179 if (!isa<ConstantInt>(BI.getCondition()) && 3180 BI.getSuccessor(0) == BI.getSuccessor(1)) 3181 return replaceOperand( 3182 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 3183 3184 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3185 CmpInst::Predicate Pred; 3186 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 3187 m_BasicBlock(), m_BasicBlock())) && 3188 !isCanonicalPredicate(Pred)) { 3189 // Swap destinations and condition. 3190 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 3191 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 3192 BI.swapSuccessors(); 3193 Worklist.push(Cond); 3194 return &BI; 3195 } 3196 3197 return nullptr; 3198 } 3199 3200 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3201 Value *Cond = SI.getCondition(); 3202 Value *Op0; 3203 ConstantInt *AddRHS; 3204 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3205 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3206 for (auto Case : SI.cases()) { 3207 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3208 assert(isa<ConstantInt>(NewCase) && 3209 "Result of expression should be constant"); 3210 Case.setValue(cast<ConstantInt>(NewCase)); 3211 } 3212 return replaceOperand(SI, 0, Op0); 3213 } 3214 3215 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3216 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3217 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3218 3219 // Compute the number of leading bits we can ignore. 3220 // TODO: A better way to determine this would use ComputeNumSignBits(). 3221 for (auto &C : SI.cases()) { 3222 LeadingKnownZeros = std::min( 3223 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3224 LeadingKnownOnes = std::min( 3225 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3226 } 3227 3228 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3229 3230 // Shrink the condition operand if the new type is smaller than the old type. 3231 // But do not shrink to a non-standard type, because backend can't generate 3232 // good code for that yet. 3233 // TODO: We can make it aggressive again after fixing PR39569. 3234 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3235 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3236 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3237 Builder.SetInsertPoint(&SI); 3238 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3239 3240 for (auto Case : SI.cases()) { 3241 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3242 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3243 } 3244 return replaceOperand(SI, 0, NewCond); 3245 } 3246 3247 return nullptr; 3248 } 3249 3250 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3251 Value *Agg = EV.getAggregateOperand(); 3252 3253 if (!EV.hasIndices()) 3254 return replaceInstUsesWith(EV, Agg); 3255 3256 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), 3257 SQ.getWithInstruction(&EV))) 3258 return replaceInstUsesWith(EV, V); 3259 3260 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3261 // We're extracting from an insertvalue instruction, compare the indices 3262 const unsigned *exti, *exte, *insi, *inse; 3263 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3264 exte = EV.idx_end(), inse = IV->idx_end(); 3265 exti != exte && insi != inse; 3266 ++exti, ++insi) { 3267 if (*insi != *exti) 3268 // The insert and extract both reference distinctly different elements. 3269 // This means the extract is not influenced by the insert, and we can 3270 // replace the aggregate operand of the extract with the aggregate 3271 // operand of the insert. i.e., replace 3272 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3273 // %E = extractvalue { i32, { i32 } } %I, 0 3274 // with 3275 // %E = extractvalue { i32, { i32 } } %A, 0 3276 return ExtractValueInst::Create(IV->getAggregateOperand(), 3277 EV.getIndices()); 3278 } 3279 if (exti == exte && insi == inse) 3280 // Both iterators are at the end: Index lists are identical. Replace 3281 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3282 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3283 // with "i32 42" 3284 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3285 if (exti == exte) { 3286 // The extract list is a prefix of the insert list. i.e. replace 3287 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3288 // %E = extractvalue { i32, { i32 } } %I, 1 3289 // with 3290 // %X = extractvalue { i32, { i32 } } %A, 1 3291 // %E = insertvalue { i32 } %X, i32 42, 0 3292 // by switching the order of the insert and extract (though the 3293 // insertvalue should be left in, since it may have other uses). 3294 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3295 EV.getIndices()); 3296 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3297 makeArrayRef(insi, inse)); 3298 } 3299 if (insi == inse) 3300 // The insert list is a prefix of the extract list 3301 // We can simply remove the common indices from the extract and make it 3302 // operate on the inserted value instead of the insertvalue result. 3303 // i.e., replace 3304 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3305 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3306 // with 3307 // %E extractvalue { i32 } { i32 42 }, 0 3308 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3309 makeArrayRef(exti, exte)); 3310 } 3311 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3312 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X 3313 Intrinsic::ID OvID = WO->getIntrinsicID(); 3314 if (*EV.idx_begin() == 0 && 3315 (OvID == Intrinsic::smul_with_overflow || 3316 OvID == Intrinsic::umul_with_overflow) && 3317 match(WO->getArgOperand(1), m_AllOnes())) { 3318 return BinaryOperator::CreateNeg(WO->getArgOperand(0)); 3319 } 3320 3321 // We're extracting from an overflow intrinsic, see if we're the only user, 3322 // which allows us to simplify multiple result intrinsics to simpler 3323 // things that just get one value. 3324 if (WO->hasOneUse()) { 3325 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3326 // and replace it with a traditional binary instruction. 3327 if (*EV.idx_begin() == 0) { 3328 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3329 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3330 // Replace the old instruction's uses with poison. 3331 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3332 eraseInstFromFunction(*WO); 3333 return BinaryOperator::Create(BinOp, LHS, RHS); 3334 } 3335 3336 assert(*EV.idx_begin() == 1 && 3337 "unexpected extract index for overflow inst"); 3338 3339 // If only the overflow result is used, and the right hand side is a 3340 // constant (or constant splat), we can remove the intrinsic by directly 3341 // checking for overflow. 3342 const APInt *C; 3343 if (match(WO->getRHS(), m_APInt(C))) { 3344 // Compute the no-wrap range for LHS given RHS=C, then construct an 3345 // equivalent icmp, potentially using an offset. 3346 ConstantRange NWR = 3347 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3348 WO->getNoWrapKind()); 3349 3350 CmpInst::Predicate Pred; 3351 APInt NewRHSC, Offset; 3352 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3353 auto *OpTy = WO->getRHS()->getType(); 3354 auto *NewLHS = WO->getLHS(); 3355 if (Offset != 0) 3356 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3357 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3358 ConstantInt::get(OpTy, NewRHSC)); 3359 } 3360 } 3361 } 3362 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3363 // If the (non-volatile) load only has one use, we can rewrite this to a 3364 // load from a GEP. This reduces the size of the load. If a load is used 3365 // only by extractvalue instructions then this either must have been 3366 // optimized before, or it is a struct with padding, in which case we 3367 // don't want to do the transformation as it loses padding knowledge. 3368 if (L->isSimple() && L->hasOneUse()) { 3369 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3370 SmallVector<Value*, 4> Indices; 3371 // Prefix an i32 0 since we need the first element. 3372 Indices.push_back(Builder.getInt32(0)); 3373 for (unsigned Idx : EV.indices()) 3374 Indices.push_back(Builder.getInt32(Idx)); 3375 3376 // We need to insert these at the location of the old load, not at that of 3377 // the extractvalue. 3378 Builder.SetInsertPoint(L); 3379 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3380 L->getPointerOperand(), Indices); 3381 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3382 // Whatever aliasing information we had for the orignal load must also 3383 // hold for the smaller load, so propagate the annotations. 3384 NL->setAAMetadata(L->getAAMetadata()); 3385 // Returning the load directly will cause the main loop to insert it in 3386 // the wrong spot, so use replaceInstUsesWith(). 3387 return replaceInstUsesWith(EV, NL); 3388 } 3389 // We could simplify extracts from other values. Note that nested extracts may 3390 // already be simplified implicitly by the above: extract (extract (insert) ) 3391 // will be translated into extract ( insert ( extract ) ) first and then just 3392 // the value inserted, if appropriate. Similarly for extracts from single-use 3393 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3394 // and if again single-use then via load (gep (gep)) to load (gep). 3395 // However, double extracts from e.g. function arguments or return values 3396 // aren't handled yet. 3397 return nullptr; 3398 } 3399 3400 /// Return 'true' if the given typeinfo will match anything. 3401 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3402 switch (Personality) { 3403 case EHPersonality::GNU_C: 3404 case EHPersonality::GNU_C_SjLj: 3405 case EHPersonality::Rust: 3406 // The GCC C EH and Rust personality only exists to support cleanups, so 3407 // it's not clear what the semantics of catch clauses are. 3408 return false; 3409 case EHPersonality::Unknown: 3410 return false; 3411 case EHPersonality::GNU_Ada: 3412 // While __gnat_all_others_value will match any Ada exception, it doesn't 3413 // match foreign exceptions (or didn't, before gcc-4.7). 3414 return false; 3415 case EHPersonality::GNU_CXX: 3416 case EHPersonality::GNU_CXX_SjLj: 3417 case EHPersonality::GNU_ObjC: 3418 case EHPersonality::MSVC_X86SEH: 3419 case EHPersonality::MSVC_TableSEH: 3420 case EHPersonality::MSVC_CXX: 3421 case EHPersonality::CoreCLR: 3422 case EHPersonality::Wasm_CXX: 3423 case EHPersonality::XL_CXX: 3424 return TypeInfo->isNullValue(); 3425 } 3426 llvm_unreachable("invalid enum"); 3427 } 3428 3429 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3430 return 3431 cast<ArrayType>(LHS->getType())->getNumElements() 3432 < 3433 cast<ArrayType>(RHS->getType())->getNumElements(); 3434 } 3435 3436 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3437 // The logic here should be correct for any real-world personality function. 3438 // However if that turns out not to be true, the offending logic can always 3439 // be conditioned on the personality function, like the catch-all logic is. 3440 EHPersonality Personality = 3441 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3442 3443 // Simplify the list of clauses, eg by removing repeated catch clauses 3444 // (these are often created by inlining). 3445 bool MakeNewInstruction = false; // If true, recreate using the following: 3446 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3447 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3448 3449 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3450 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3451 bool isLastClause = i + 1 == e; 3452 if (LI.isCatch(i)) { 3453 // A catch clause. 3454 Constant *CatchClause = LI.getClause(i); 3455 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3456 3457 // If we already saw this clause, there is no point in having a second 3458 // copy of it. 3459 if (AlreadyCaught.insert(TypeInfo).second) { 3460 // This catch clause was not already seen. 3461 NewClauses.push_back(CatchClause); 3462 } else { 3463 // Repeated catch clause - drop the redundant copy. 3464 MakeNewInstruction = true; 3465 } 3466 3467 // If this is a catch-all then there is no point in keeping any following 3468 // clauses or marking the landingpad as having a cleanup. 3469 if (isCatchAll(Personality, TypeInfo)) { 3470 if (!isLastClause) 3471 MakeNewInstruction = true; 3472 CleanupFlag = false; 3473 break; 3474 } 3475 } else { 3476 // A filter clause. If any of the filter elements were already caught 3477 // then they can be dropped from the filter. It is tempting to try to 3478 // exploit the filter further by saying that any typeinfo that does not 3479 // occur in the filter can't be caught later (and thus can be dropped). 3480 // However this would be wrong, since typeinfos can match without being 3481 // equal (for example if one represents a C++ class, and the other some 3482 // class derived from it). 3483 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3484 Constant *FilterClause = LI.getClause(i); 3485 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3486 unsigned NumTypeInfos = FilterType->getNumElements(); 3487 3488 // An empty filter catches everything, so there is no point in keeping any 3489 // following clauses or marking the landingpad as having a cleanup. By 3490 // dealing with this case here the following code is made a bit simpler. 3491 if (!NumTypeInfos) { 3492 NewClauses.push_back(FilterClause); 3493 if (!isLastClause) 3494 MakeNewInstruction = true; 3495 CleanupFlag = false; 3496 break; 3497 } 3498 3499 bool MakeNewFilter = false; // If true, make a new filter. 3500 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3501 if (isa<ConstantAggregateZero>(FilterClause)) { 3502 // Not an empty filter - it contains at least one null typeinfo. 3503 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3504 Constant *TypeInfo = 3505 Constant::getNullValue(FilterType->getElementType()); 3506 // If this typeinfo is a catch-all then the filter can never match. 3507 if (isCatchAll(Personality, TypeInfo)) { 3508 // Throw the filter away. 3509 MakeNewInstruction = true; 3510 continue; 3511 } 3512 3513 // There is no point in having multiple copies of this typeinfo, so 3514 // discard all but the first copy if there is more than one. 3515 NewFilterElts.push_back(TypeInfo); 3516 if (NumTypeInfos > 1) 3517 MakeNewFilter = true; 3518 } else { 3519 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3520 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3521 NewFilterElts.reserve(NumTypeInfos); 3522 3523 // Remove any filter elements that were already caught or that already 3524 // occurred in the filter. While there, see if any of the elements are 3525 // catch-alls. If so, the filter can be discarded. 3526 bool SawCatchAll = false; 3527 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3528 Constant *Elt = Filter->getOperand(j); 3529 Constant *TypeInfo = Elt->stripPointerCasts(); 3530 if (isCatchAll(Personality, TypeInfo)) { 3531 // This element is a catch-all. Bail out, noting this fact. 3532 SawCatchAll = true; 3533 break; 3534 } 3535 3536 // Even if we've seen a type in a catch clause, we don't want to 3537 // remove it from the filter. An unexpected type handler may be 3538 // set up for a call site which throws an exception of the same 3539 // type caught. In order for the exception thrown by the unexpected 3540 // handler to propagate correctly, the filter must be correctly 3541 // described for the call site. 3542 // 3543 // Example: 3544 // 3545 // void unexpected() { throw 1;} 3546 // void foo() throw (int) { 3547 // std::set_unexpected(unexpected); 3548 // try { 3549 // throw 2.0; 3550 // } catch (int i) {} 3551 // } 3552 3553 // There is no point in having multiple copies of the same typeinfo in 3554 // a filter, so only add it if we didn't already. 3555 if (SeenInFilter.insert(TypeInfo).second) 3556 NewFilterElts.push_back(cast<Constant>(Elt)); 3557 } 3558 // A filter containing a catch-all cannot match anything by definition. 3559 if (SawCatchAll) { 3560 // Throw the filter away. 3561 MakeNewInstruction = true; 3562 continue; 3563 } 3564 3565 // If we dropped something from the filter, make a new one. 3566 if (NewFilterElts.size() < NumTypeInfos) 3567 MakeNewFilter = true; 3568 } 3569 if (MakeNewFilter) { 3570 FilterType = ArrayType::get(FilterType->getElementType(), 3571 NewFilterElts.size()); 3572 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3573 MakeNewInstruction = true; 3574 } 3575 3576 NewClauses.push_back(FilterClause); 3577 3578 // If the new filter is empty then it will catch everything so there is 3579 // no point in keeping any following clauses or marking the landingpad 3580 // as having a cleanup. The case of the original filter being empty was 3581 // already handled above. 3582 if (MakeNewFilter && !NewFilterElts.size()) { 3583 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3584 CleanupFlag = false; 3585 break; 3586 } 3587 } 3588 } 3589 3590 // If several filters occur in a row then reorder them so that the shortest 3591 // filters come first (those with the smallest number of elements). This is 3592 // advantageous because shorter filters are more likely to match, speeding up 3593 // unwinding, but mostly because it increases the effectiveness of the other 3594 // filter optimizations below. 3595 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3596 unsigned j; 3597 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3598 for (j = i; j != e; ++j) 3599 if (!isa<ArrayType>(NewClauses[j]->getType())) 3600 break; 3601 3602 // Check whether the filters are already sorted by length. We need to know 3603 // if sorting them is actually going to do anything so that we only make a 3604 // new landingpad instruction if it does. 3605 for (unsigned k = i; k + 1 < j; ++k) 3606 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3607 // Not sorted, so sort the filters now. Doing an unstable sort would be 3608 // correct too but reordering filters pointlessly might confuse users. 3609 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3610 shorter_filter); 3611 MakeNewInstruction = true; 3612 break; 3613 } 3614 3615 // Look for the next batch of filters. 3616 i = j + 1; 3617 } 3618 3619 // If typeinfos matched if and only if equal, then the elements of a filter L 3620 // that occurs later than a filter F could be replaced by the intersection of 3621 // the elements of F and L. In reality two typeinfos can match without being 3622 // equal (for example if one represents a C++ class, and the other some class 3623 // derived from it) so it would be wrong to perform this transform in general. 3624 // However the transform is correct and useful if F is a subset of L. In that 3625 // case L can be replaced by F, and thus removed altogether since repeating a 3626 // filter is pointless. So here we look at all pairs of filters F and L where 3627 // L follows F in the list of clauses, and remove L if every element of F is 3628 // an element of L. This can occur when inlining C++ functions with exception 3629 // specifications. 3630 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3631 // Examine each filter in turn. 3632 Value *Filter = NewClauses[i]; 3633 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3634 if (!FTy) 3635 // Not a filter - skip it. 3636 continue; 3637 unsigned FElts = FTy->getNumElements(); 3638 // Examine each filter following this one. Doing this backwards means that 3639 // we don't have to worry about filters disappearing under us when removed. 3640 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3641 Value *LFilter = NewClauses[j]; 3642 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3643 if (!LTy) 3644 // Not a filter - skip it. 3645 continue; 3646 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3647 // an element of LFilter, then discard LFilter. 3648 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3649 // If Filter is empty then it is a subset of LFilter. 3650 if (!FElts) { 3651 // Discard LFilter. 3652 NewClauses.erase(J); 3653 MakeNewInstruction = true; 3654 // Move on to the next filter. 3655 continue; 3656 } 3657 unsigned LElts = LTy->getNumElements(); 3658 // If Filter is longer than LFilter then it cannot be a subset of it. 3659 if (FElts > LElts) 3660 // Move on to the next filter. 3661 continue; 3662 // At this point we know that LFilter has at least one element. 3663 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3664 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3665 // already know that Filter is not longer than LFilter). 3666 if (isa<ConstantAggregateZero>(Filter)) { 3667 assert(FElts <= LElts && "Should have handled this case earlier!"); 3668 // Discard LFilter. 3669 NewClauses.erase(J); 3670 MakeNewInstruction = true; 3671 } 3672 // Move on to the next filter. 3673 continue; 3674 } 3675 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3676 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3677 // Since Filter is non-empty and contains only zeros, it is a subset of 3678 // LFilter iff LFilter contains a zero. 3679 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3680 for (unsigned l = 0; l != LElts; ++l) 3681 if (LArray->getOperand(l)->isNullValue()) { 3682 // LFilter contains a zero - discard it. 3683 NewClauses.erase(J); 3684 MakeNewInstruction = true; 3685 break; 3686 } 3687 // Move on to the next filter. 3688 continue; 3689 } 3690 // At this point we know that both filters are ConstantArrays. Loop over 3691 // operands to see whether every element of Filter is also an element of 3692 // LFilter. Since filters tend to be short this is probably faster than 3693 // using a method that scales nicely. 3694 ConstantArray *FArray = cast<ConstantArray>(Filter); 3695 bool AllFound = true; 3696 for (unsigned f = 0; f != FElts; ++f) { 3697 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3698 AllFound = false; 3699 for (unsigned l = 0; l != LElts; ++l) { 3700 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3701 if (LTypeInfo == FTypeInfo) { 3702 AllFound = true; 3703 break; 3704 } 3705 } 3706 if (!AllFound) 3707 break; 3708 } 3709 if (AllFound) { 3710 // Discard LFilter. 3711 NewClauses.erase(J); 3712 MakeNewInstruction = true; 3713 } 3714 // Move on to the next filter. 3715 } 3716 } 3717 3718 // If we changed any of the clauses, replace the old landingpad instruction 3719 // with a new one. 3720 if (MakeNewInstruction) { 3721 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3722 NewClauses.size()); 3723 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3724 NLI->addClause(NewClauses[i]); 3725 // A landing pad with no clauses must have the cleanup flag set. It is 3726 // theoretically possible, though highly unlikely, that we eliminated all 3727 // clauses. If so, force the cleanup flag to true. 3728 if (NewClauses.empty()) 3729 CleanupFlag = true; 3730 NLI->setCleanup(CleanupFlag); 3731 return NLI; 3732 } 3733 3734 // Even if none of the clauses changed, we may nonetheless have understood 3735 // that the cleanup flag is pointless. Clear it if so. 3736 if (LI.isCleanup() != CleanupFlag) { 3737 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3738 LI.setCleanup(CleanupFlag); 3739 return &LI; 3740 } 3741 3742 return nullptr; 3743 } 3744 3745 Value * 3746 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3747 // Try to push freeze through instructions that propagate but don't produce 3748 // poison as far as possible. If an operand of freeze follows three 3749 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3750 // guaranteed-non-poison operands then push the freeze through to the one 3751 // operand that is not guaranteed non-poison. The actual transform is as 3752 // follows. 3753 // Op1 = ... ; Op1 can be posion 3754 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3755 // ; single guaranteed-non-poison operands 3756 // ... = Freeze(Op0) 3757 // => 3758 // Op1 = ... 3759 // Op1.fr = Freeze(Op1) 3760 // ... = Inst(Op1.fr, NonPoisonOps...) 3761 auto *OrigOp = OrigFI.getOperand(0); 3762 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3763 3764 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3765 // potentially reduces their optimization potential, so let's only do this iff 3766 // the OrigOp is only used by the freeze. 3767 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3768 return nullptr; 3769 3770 // We can't push the freeze through an instruction which can itself create 3771 // poison. If the only source of new poison is flags, we can simply 3772 // strip them (since we know the only use is the freeze and nothing can 3773 // benefit from them.) 3774 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3775 return nullptr; 3776 3777 // If operand is guaranteed not to be poison, there is no need to add freeze 3778 // to the operand. So we first find the operand that is not guaranteed to be 3779 // poison. 3780 Use *MaybePoisonOperand = nullptr; 3781 for (Use &U : OrigOpInst->operands()) { 3782 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3783 continue; 3784 if (!MaybePoisonOperand) 3785 MaybePoisonOperand = &U; 3786 else 3787 return nullptr; 3788 } 3789 3790 OrigOpInst->dropPoisonGeneratingFlags(); 3791 3792 // If all operands are guaranteed to be non-poison, we can drop freeze. 3793 if (!MaybePoisonOperand) 3794 return OrigOp; 3795 3796 Builder.SetInsertPoint(OrigOpInst); 3797 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( 3798 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3799 3800 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3801 return OrigOp; 3802 } 3803 3804 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, 3805 PHINode *PN) { 3806 // Detect whether this is a recurrence with a start value and some number of 3807 // backedge values. We'll check whether we can push the freeze through the 3808 // backedge values (possibly dropping poison flags along the way) until we 3809 // reach the phi again. In that case, we can move the freeze to the start 3810 // value. 3811 Use *StartU = nullptr; 3812 SmallVector<Value *> Worklist; 3813 for (Use &U : PN->incoming_values()) { 3814 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { 3815 // Add backedge value to worklist. 3816 Worklist.push_back(U.get()); 3817 continue; 3818 } 3819 3820 // Don't bother handling multiple start values. 3821 if (StartU) 3822 return nullptr; 3823 StartU = &U; 3824 } 3825 3826 if (!StartU || Worklist.empty()) 3827 return nullptr; // Not a recurrence. 3828 3829 Value *StartV = StartU->get(); 3830 BasicBlock *StartBB = PN->getIncomingBlock(*StartU); 3831 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); 3832 // We can't insert freeze if the the start value is the result of the 3833 // terminator (e.g. an invoke). 3834 if (StartNeedsFreeze && StartBB->getTerminator() == StartV) 3835 return nullptr; 3836 3837 SmallPtrSet<Value *, 32> Visited; 3838 SmallVector<Instruction *> DropFlags; 3839 while (!Worklist.empty()) { 3840 Value *V = Worklist.pop_back_val(); 3841 if (!Visited.insert(V).second) 3842 continue; 3843 3844 if (Visited.size() > 32) 3845 return nullptr; // Limit the total number of values we inspect. 3846 3847 // Assume that PN is non-poison, because it will be after the transform. 3848 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) 3849 continue; 3850 3851 Instruction *I = dyn_cast<Instruction>(V); 3852 if (!I || canCreateUndefOrPoison(cast<Operator>(I), 3853 /*ConsiderFlags*/ false)) 3854 return nullptr; 3855 3856 DropFlags.push_back(I); 3857 append_range(Worklist, I->operands()); 3858 } 3859 3860 for (Instruction *I : DropFlags) 3861 I->dropPoisonGeneratingFlags(); 3862 3863 if (StartNeedsFreeze) { 3864 Builder.SetInsertPoint(StartBB->getTerminator()); 3865 Value *FrozenStartV = Builder.CreateFreeze(StartV, 3866 StartV->getName() + ".fr"); 3867 replaceUse(*StartU, FrozenStartV); 3868 } 3869 return replaceInstUsesWith(FI, PN); 3870 } 3871 3872 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { 3873 Value *Op = FI.getOperand(0); 3874 3875 if (isa<Constant>(Op) || Op->hasOneUse()) 3876 return false; 3877 3878 // Move the freeze directly after the definition of its operand, so that 3879 // it dominates the maximum number of uses. Note that it may not dominate 3880 // *all* uses if the operand is an invoke/callbr and the use is in a phi on 3881 // the normal/default destination. This is why the domination check in the 3882 // replacement below is still necessary. 3883 Instruction *MoveBefore = nullptr; 3884 if (isa<Argument>(Op)) { 3885 MoveBefore = &FI.getFunction()->getEntryBlock().front(); 3886 while (isa<AllocaInst>(MoveBefore)) 3887 MoveBefore = MoveBefore->getNextNode(); 3888 } else if (auto *PN = dyn_cast<PHINode>(Op)) { 3889 MoveBefore = PN->getParent()->getFirstNonPHI(); 3890 } else if (auto *II = dyn_cast<InvokeInst>(Op)) { 3891 MoveBefore = II->getNormalDest()->getFirstNonPHI(); 3892 } else if (auto *CB = dyn_cast<CallBrInst>(Op)) { 3893 MoveBefore = CB->getDefaultDest()->getFirstNonPHI(); 3894 } else { 3895 auto *I = cast<Instruction>(Op); 3896 assert(!I->isTerminator() && "Cannot be a terminator"); 3897 MoveBefore = I->getNextNode(); 3898 } 3899 3900 bool Changed = false; 3901 if (&FI != MoveBefore) { 3902 FI.moveBefore(MoveBefore); 3903 Changed = true; 3904 } 3905 3906 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3907 bool Dominates = DT.dominates(&FI, U); 3908 Changed |= Dominates; 3909 return Dominates; 3910 }); 3911 3912 return Changed; 3913 } 3914 3915 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3916 Value *Op0 = I.getOperand(0); 3917 3918 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3919 return replaceInstUsesWith(I, V); 3920 3921 // freeze (phi const, x) --> phi const, (freeze x) 3922 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3923 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3924 return NV; 3925 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) 3926 return NV; 3927 } 3928 3929 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3930 return replaceInstUsesWith(I, NI); 3931 3932 // If I is freeze(undef), check its uses and fold it to a fixed constant. 3933 // - or: pick -1 3934 // - select's condition: if the true value is constant, choose it by making 3935 // the condition true. 3936 // - default: pick 0 3937 // 3938 // Note that this transform is intentionally done here rather than 3939 // via an analysis in InstSimplify or at individual user sites. That is 3940 // because we must produce the same value for all uses of the freeze - 3941 // it's the reason "freeze" exists! 3942 // 3943 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid 3944 // duplicating logic for binops at least. 3945 auto getUndefReplacement = [&I](Type *Ty) { 3946 Constant *BestValue = nullptr; 3947 Constant *NullValue = Constant::getNullValue(Ty); 3948 for (const auto *U : I.users()) { 3949 Constant *C = NullValue; 3950 if (match(U, m_Or(m_Value(), m_Value()))) 3951 C = ConstantInt::getAllOnesValue(Ty); 3952 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) 3953 C = ConstantInt::getTrue(Ty); 3954 3955 if (!BestValue) 3956 BestValue = C; 3957 else if (BestValue != C) 3958 BestValue = NullValue; 3959 } 3960 assert(BestValue && "Must have at least one use"); 3961 return BestValue; 3962 }; 3963 3964 if (match(Op0, m_Undef())) 3965 return replaceInstUsesWith(I, getUndefReplacement(I.getType())); 3966 3967 Constant *C; 3968 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { 3969 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); 3970 return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); 3971 } 3972 3973 // Replace uses of Op with freeze(Op). 3974 if (freezeOtherUses(I)) 3975 return &I; 3976 3977 return nullptr; 3978 } 3979 3980 /// Check for case where the call writes to an otherwise dead alloca. This 3981 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 3982 /// helper *only* analyzes the write; doesn't check any other legality aspect. 3983 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 3984 auto *CB = dyn_cast<CallBase>(I); 3985 if (!CB) 3986 // TODO: handle e.g. store to alloca here - only worth doing if we extend 3987 // to allow reload along used path as described below. Otherwise, this 3988 // is simply a store to a dead allocation which will be removed. 3989 return false; 3990 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 3991 if (!Dest) 3992 return false; 3993 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 3994 if (!AI) 3995 // TODO: allow malloc? 3996 return false; 3997 // TODO: allow memory access dominated by move point? Note that since AI 3998 // could have a reference to itself captured by the call, we would need to 3999 // account for cycles in doing so. 4000 SmallVector<const User *> AllocaUsers; 4001 SmallPtrSet<const User *, 4> Visited; 4002 auto pushUsers = [&](const Instruction &I) { 4003 for (const User *U : I.users()) { 4004 if (Visited.insert(U).second) 4005 AllocaUsers.push_back(U); 4006 } 4007 }; 4008 pushUsers(*AI); 4009 while (!AllocaUsers.empty()) { 4010 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 4011 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 4012 isa<AddrSpaceCastInst>(UserI)) { 4013 pushUsers(*UserI); 4014 continue; 4015 } 4016 if (UserI == CB) 4017 continue; 4018 // TODO: support lifetime.start/end here 4019 return false; 4020 } 4021 return true; 4022 } 4023 4024 /// Try to move the specified instruction from its current block into the 4025 /// beginning of DestBlock, which can only happen if it's safe to move the 4026 /// instruction past all of the instructions between it and the end of its 4027 /// block. 4028 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 4029 TargetLibraryInfo &TLI) { 4030 BasicBlock *SrcBlock = I->getParent(); 4031 4032 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 4033 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 4034 I->isTerminator()) 4035 return false; 4036 4037 // Do not sink static or dynamic alloca instructions. Static allocas must 4038 // remain in the entry block, and dynamic allocas must not be sunk in between 4039 // a stacksave / stackrestore pair, which would incorrectly shorten its 4040 // lifetime. 4041 if (isa<AllocaInst>(I)) 4042 return false; 4043 4044 // Do not sink into catchswitch blocks. 4045 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 4046 return false; 4047 4048 // Do not sink convergent call instructions. 4049 if (auto *CI = dyn_cast<CallInst>(I)) { 4050 if (CI->isConvergent()) 4051 return false; 4052 } 4053 4054 // Unless we can prove that the memory write isn't visibile except on the 4055 // path we're sinking to, we must bail. 4056 if (I->mayWriteToMemory()) { 4057 if (!SoleWriteToDeadLocal(I, TLI)) 4058 return false; 4059 } 4060 4061 // We can only sink load instructions if there is nothing between the load and 4062 // the end of block that could change the value. 4063 if (I->mayReadFromMemory()) { 4064 // We don't want to do any sophisticated alias analysis, so we only check 4065 // the instructions after I in I's parent block if we try to sink to its 4066 // successor block. 4067 if (DestBlock->getUniquePredecessor() != I->getParent()) 4068 return false; 4069 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 4070 E = I->getParent()->end(); 4071 Scan != E; ++Scan) 4072 if (Scan->mayWriteToMemory()) 4073 return false; 4074 } 4075 4076 I->dropDroppableUses([DestBlock](const Use *U) { 4077 if (auto *I = dyn_cast<Instruction>(U->getUser())) 4078 return I->getParent() != DestBlock; 4079 return true; 4080 }); 4081 /// FIXME: We could remove droppable uses that are not dominated by 4082 /// the new position. 4083 4084 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 4085 I->moveBefore(&*InsertPos); 4086 ++NumSunkInst; 4087 4088 // Also sink all related debug uses from the source basic block. Otherwise we 4089 // get debug use before the def. Attempt to salvage debug uses first, to 4090 // maximise the range variables have location for. If we cannot salvage, then 4091 // mark the location undef: we know it was supposed to receive a new location 4092 // here, but that computation has been sunk. 4093 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 4094 findDbgUsers(DbgUsers, I); 4095 // Process the sinking DbgUsers in reverse order, as we only want to clone the 4096 // last appearing debug intrinsic for each given variable. 4097 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 4098 for (DbgVariableIntrinsic *DVI : DbgUsers) 4099 if (DVI->getParent() == SrcBlock) 4100 DbgUsersToSink.push_back(DVI); 4101 llvm::sort(DbgUsersToSink, 4102 [](auto *A, auto *B) { return B->comesBefore(A); }); 4103 4104 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 4105 SmallSet<DebugVariable, 4> SunkVariables; 4106 for (auto User : DbgUsersToSink) { 4107 // A dbg.declare instruction should not be cloned, since there can only be 4108 // one per variable fragment. It should be left in the original place 4109 // because the sunk instruction is not an alloca (otherwise we could not be 4110 // here). 4111 if (isa<DbgDeclareInst>(User)) 4112 continue; 4113 4114 DebugVariable DbgUserVariable = 4115 DebugVariable(User->getVariable(), User->getExpression(), 4116 User->getDebugLoc()->getInlinedAt()); 4117 4118 if (!SunkVariables.insert(DbgUserVariable).second) 4119 continue; 4120 4121 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 4122 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 4123 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 4124 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 4125 } 4126 4127 // Perform salvaging without the clones, then sink the clones. 4128 if (!DIIClones.empty()) { 4129 salvageDebugInfoForDbgValues(*I, DbgUsers); 4130 // The clones are in reverse order of original appearance, reverse again to 4131 // maintain the original order. 4132 for (auto &DIIClone : llvm::reverse(DIIClones)) { 4133 DIIClone->insertBefore(&*InsertPos); 4134 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 4135 } 4136 } 4137 4138 return true; 4139 } 4140 4141 bool InstCombinerImpl::run() { 4142 while (!Worklist.isEmpty()) { 4143 // Walk deferred instructions in reverse order, and push them to the 4144 // worklist, which means they'll end up popped from the worklist in-order. 4145 while (Instruction *I = Worklist.popDeferred()) { 4146 // Check to see if we can DCE the instruction. We do this already here to 4147 // reduce the number of uses and thus allow other folds to trigger. 4148 // Note that eraseInstFromFunction() may push additional instructions on 4149 // the deferred worklist, so this will DCE whole instruction chains. 4150 if (isInstructionTriviallyDead(I, &TLI)) { 4151 eraseInstFromFunction(*I); 4152 ++NumDeadInst; 4153 continue; 4154 } 4155 4156 Worklist.push(I); 4157 } 4158 4159 Instruction *I = Worklist.removeOne(); 4160 if (I == nullptr) continue; // skip null values. 4161 4162 // Check to see if we can DCE the instruction. 4163 if (isInstructionTriviallyDead(I, &TLI)) { 4164 eraseInstFromFunction(*I); 4165 ++NumDeadInst; 4166 continue; 4167 } 4168 4169 if (!DebugCounter::shouldExecute(VisitCounter)) 4170 continue; 4171 4172 // Instruction isn't dead, see if we can constant propagate it. 4173 if (!I->use_empty() && 4174 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 4175 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 4176 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 4177 << '\n'); 4178 4179 // Add operands to the worklist. 4180 replaceInstUsesWith(*I, C); 4181 ++NumConstProp; 4182 if (isInstructionTriviallyDead(I, &TLI)) 4183 eraseInstFromFunction(*I); 4184 MadeIRChange = true; 4185 continue; 4186 } 4187 } 4188 4189 // See if we can trivially sink this instruction to its user if we can 4190 // prove that the successor is not executed more frequently than our block. 4191 // Return the UserBlock if successful. 4192 auto getOptionalSinkBlockForInst = 4193 [this](Instruction *I) -> Optional<BasicBlock *> { 4194 if (!EnableCodeSinking) 4195 return None; 4196 4197 BasicBlock *BB = I->getParent(); 4198 BasicBlock *UserParent = nullptr; 4199 unsigned NumUsers = 0; 4200 4201 for (auto *U : I->users()) { 4202 if (U->isDroppable()) 4203 continue; 4204 if (NumUsers > MaxSinkNumUsers) 4205 return None; 4206 4207 Instruction *UserInst = cast<Instruction>(U); 4208 // Special handling for Phi nodes - get the block the use occurs in. 4209 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 4210 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 4211 if (PN->getIncomingValue(i) == I) { 4212 // Bail out if we have uses in different blocks. We don't do any 4213 // sophisticated analysis (i.e finding NearestCommonDominator of 4214 // these use blocks). 4215 if (UserParent && UserParent != PN->getIncomingBlock(i)) 4216 return None; 4217 UserParent = PN->getIncomingBlock(i); 4218 } 4219 } 4220 assert(UserParent && "expected to find user block!"); 4221 } else { 4222 if (UserParent && UserParent != UserInst->getParent()) 4223 return None; 4224 UserParent = UserInst->getParent(); 4225 } 4226 4227 // Make sure these checks are done only once, naturally we do the checks 4228 // the first time we get the userparent, this will save compile time. 4229 if (NumUsers == 0) { 4230 // Try sinking to another block. If that block is unreachable, then do 4231 // not bother. SimplifyCFG should handle it. 4232 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 4233 return None; 4234 4235 auto *Term = UserParent->getTerminator(); 4236 // See if the user is one of our successors that has only one 4237 // predecessor, so that we don't have to split the critical edge. 4238 // Another option where we can sink is a block that ends with a 4239 // terminator that does not pass control to other block (such as 4240 // return or unreachable or resume). In this case: 4241 // - I dominates the User (by SSA form); 4242 // - the User will be executed at most once. 4243 // So sinking I down to User is always profitable or neutral. 4244 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) 4245 return None; 4246 4247 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 4248 } 4249 4250 NumUsers++; 4251 } 4252 4253 // No user or only has droppable users. 4254 if (!UserParent) 4255 return None; 4256 4257 return UserParent; 4258 }; 4259 4260 auto OptBB = getOptionalSinkBlockForInst(I); 4261 if (OptBB) { 4262 auto *UserParent = *OptBB; 4263 // Okay, the CFG is simple enough, try to sink this instruction. 4264 if (TryToSinkInstruction(I, UserParent, TLI)) { 4265 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 4266 MadeIRChange = true; 4267 // We'll add uses of the sunk instruction below, but since 4268 // sinking can expose opportunities for it's *operands* add 4269 // them to the worklist 4270 for (Use &U : I->operands()) 4271 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 4272 Worklist.push(OpI); 4273 } 4274 } 4275 4276 // Now that we have an instruction, try combining it to simplify it. 4277 Builder.SetInsertPoint(I); 4278 Builder.CollectMetadataToCopy( 4279 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4280 4281 #ifndef NDEBUG 4282 std::string OrigI; 4283 #endif 4284 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4285 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4286 4287 if (Instruction *Result = visit(*I)) { 4288 ++NumCombined; 4289 // Should we replace the old instruction with a new one? 4290 if (Result != I) { 4291 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4292 << " New = " << *Result << '\n'); 4293 4294 Result->copyMetadata(*I, 4295 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4296 // Everything uses the new instruction now. 4297 I->replaceAllUsesWith(Result); 4298 4299 // Move the name to the new instruction first. 4300 Result->takeName(I); 4301 4302 // Insert the new instruction into the basic block... 4303 BasicBlock *InstParent = I->getParent(); 4304 BasicBlock::iterator InsertPos = I->getIterator(); 4305 4306 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4307 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4308 // We need to fix up the insertion point. 4309 if (isa<PHINode>(I)) // PHI -> Non-PHI 4310 InsertPos = InstParent->getFirstInsertionPt(); 4311 else // Non-PHI -> PHI 4312 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 4313 } 4314 4315 InstParent->getInstList().insert(InsertPos, Result); 4316 4317 // Push the new instruction and any users onto the worklist. 4318 Worklist.pushUsersToWorkList(*Result); 4319 Worklist.push(Result); 4320 4321 eraseInstFromFunction(*I); 4322 } else { 4323 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4324 << " New = " << *I << '\n'); 4325 4326 // If the instruction was modified, it's possible that it is now dead. 4327 // if so, remove it. 4328 if (isInstructionTriviallyDead(I, &TLI)) { 4329 eraseInstFromFunction(*I); 4330 } else { 4331 Worklist.pushUsersToWorkList(*I); 4332 Worklist.push(I); 4333 } 4334 } 4335 MadeIRChange = true; 4336 } 4337 } 4338 4339 Worklist.zap(); 4340 return MadeIRChange; 4341 } 4342 4343 // Track the scopes used by !alias.scope and !noalias. In a function, a 4344 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4345 // by both sets. If not, the declaration of the scope can be safely omitted. 4346 // The MDNode of the scope can be omitted as well for the instructions that are 4347 // part of this function. We do not do that at this point, as this might become 4348 // too time consuming to do. 4349 class AliasScopeTracker { 4350 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4351 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4352 4353 public: 4354 void analyse(Instruction *I) { 4355 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4356 if (!I->hasMetadataOtherThanDebugLoc()) 4357 return; 4358 4359 auto Track = [](Metadata *ScopeList, auto &Container) { 4360 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4361 if (!MDScopeList || !Container.insert(MDScopeList).second) 4362 return; 4363 for (auto &MDOperand : MDScopeList->operands()) 4364 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4365 Container.insert(MDScope); 4366 }; 4367 4368 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4369 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4370 } 4371 4372 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4373 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4374 if (!Decl) 4375 return false; 4376 4377 assert(Decl->use_empty() && 4378 "llvm.experimental.noalias.scope.decl in use ?"); 4379 const MDNode *MDSL = Decl->getScopeList(); 4380 assert(MDSL->getNumOperands() == 1 && 4381 "llvm.experimental.noalias.scope should refer to a single scope"); 4382 auto &MDOperand = MDSL->getOperand(0); 4383 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4384 return !UsedAliasScopesAndLists.contains(MD) || 4385 !UsedNoAliasScopesAndLists.contains(MD); 4386 4387 // Not an MDNode ? throw away. 4388 return true; 4389 } 4390 }; 4391 4392 /// Populate the IC worklist from a function, by walking it in depth-first 4393 /// order and adding all reachable code to the worklist. 4394 /// 4395 /// This has a couple of tricks to make the code faster and more powerful. In 4396 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4397 /// them to the worklist (this significantly speeds up instcombine on code where 4398 /// many instructions are dead or constant). Additionally, if we find a branch 4399 /// whose condition is a known constant, we only visit the reachable successors. 4400 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4401 const TargetLibraryInfo *TLI, 4402 InstructionWorklist &ICWorklist) { 4403 bool MadeIRChange = false; 4404 SmallPtrSet<BasicBlock *, 32> Visited; 4405 SmallVector<BasicBlock*, 256> Worklist; 4406 Worklist.push_back(&F.front()); 4407 4408 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4409 DenseMap<Constant *, Constant *> FoldedConstants; 4410 AliasScopeTracker SeenAliasScopes; 4411 4412 do { 4413 BasicBlock *BB = Worklist.pop_back_val(); 4414 4415 // We have now visited this block! If we've already been here, ignore it. 4416 if (!Visited.insert(BB).second) 4417 continue; 4418 4419 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4420 // ConstantProp instruction if trivially constant. 4421 if (!Inst.use_empty() && 4422 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4423 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4424 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4425 << '\n'); 4426 Inst.replaceAllUsesWith(C); 4427 ++NumConstProp; 4428 if (isInstructionTriviallyDead(&Inst, TLI)) 4429 Inst.eraseFromParent(); 4430 MadeIRChange = true; 4431 continue; 4432 } 4433 4434 // See if we can constant fold its operands. 4435 for (Use &U : Inst.operands()) { 4436 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4437 continue; 4438 4439 auto *C = cast<Constant>(U); 4440 Constant *&FoldRes = FoldedConstants[C]; 4441 if (!FoldRes) 4442 FoldRes = ConstantFoldConstant(C, DL, TLI); 4443 4444 if (FoldRes != C) { 4445 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4446 << "\n Old = " << *C 4447 << "\n New = " << *FoldRes << '\n'); 4448 U = FoldRes; 4449 MadeIRChange = true; 4450 } 4451 } 4452 4453 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4454 // these call instructions consumes non-trivial amount of time and 4455 // provides no value for the optimization. 4456 if (!Inst.isDebugOrPseudoInst()) { 4457 InstrsForInstructionWorklist.push_back(&Inst); 4458 SeenAliasScopes.analyse(&Inst); 4459 } 4460 } 4461 4462 // Recursively visit successors. If this is a branch or switch on a 4463 // constant, only visit the reachable successor. 4464 Instruction *TI = BB->getTerminator(); 4465 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4466 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4467 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4468 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4469 Worklist.push_back(ReachableBB); 4470 continue; 4471 } 4472 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4473 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4474 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4475 continue; 4476 } 4477 } 4478 4479 append_range(Worklist, successors(TI)); 4480 } while (!Worklist.empty()); 4481 4482 // Remove instructions inside unreachable blocks. This prevents the 4483 // instcombine code from having to deal with some bad special cases, and 4484 // reduces use counts of instructions. 4485 for (BasicBlock &BB : F) { 4486 if (Visited.count(&BB)) 4487 continue; 4488 4489 unsigned NumDeadInstInBB; 4490 unsigned NumDeadDbgInstInBB; 4491 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4492 removeAllNonTerminatorAndEHPadInstructions(&BB); 4493 4494 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4495 NumDeadInst += NumDeadInstInBB; 4496 } 4497 4498 // Once we've found all of the instructions to add to instcombine's worklist, 4499 // add them in reverse order. This way instcombine will visit from the top 4500 // of the function down. This jives well with the way that it adds all uses 4501 // of instructions to the worklist after doing a transformation, thus avoiding 4502 // some N^2 behavior in pathological cases. 4503 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4504 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4505 // DCE instruction if trivially dead. As we iterate in reverse program 4506 // order here, we will clean up whole chains of dead instructions. 4507 if (isInstructionTriviallyDead(Inst, TLI) || 4508 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4509 ++NumDeadInst; 4510 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4511 salvageDebugInfo(*Inst); 4512 Inst->eraseFromParent(); 4513 MadeIRChange = true; 4514 continue; 4515 } 4516 4517 ICWorklist.push(Inst); 4518 } 4519 4520 return MadeIRChange; 4521 } 4522 4523 static bool combineInstructionsOverFunction( 4524 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4525 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4526 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4527 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4528 auto &DL = F.getParent()->getDataLayout(); 4529 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4530 4531 /// Builder - This is an IRBuilder that automatically inserts new 4532 /// instructions into the worklist when they are created. 4533 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4534 F.getContext(), TargetFolder(DL), 4535 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4536 Worklist.add(I); 4537 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4538 AC.registerAssumption(Assume); 4539 })); 4540 4541 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4542 // by instcombiner. 4543 bool MadeIRChange = false; 4544 if (ShouldLowerDbgDeclare) 4545 MadeIRChange = LowerDbgDeclare(F); 4546 4547 // Iterate while there is work to do. 4548 unsigned Iteration = 0; 4549 while (true) { 4550 ++NumWorklistIterations; 4551 ++Iteration; 4552 4553 if (Iteration > InfiniteLoopDetectionThreshold) { 4554 report_fatal_error( 4555 "Instruction Combining seems stuck in an infinite loop after " + 4556 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4557 } 4558 4559 if (Iteration > MaxIterations) { 4560 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4561 << " on " << F.getName() 4562 << " reached; stopping before reaching a fixpoint\n"); 4563 break; 4564 } 4565 4566 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4567 << F.getName() << "\n"); 4568 4569 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4570 4571 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4572 ORE, BFI, PSI, DL, LI); 4573 IC.MaxArraySizeForCombine = MaxArraySize; 4574 4575 if (!IC.run()) 4576 break; 4577 4578 MadeIRChange = true; 4579 } 4580 4581 return MadeIRChange; 4582 } 4583 4584 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4585 4586 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4587 : MaxIterations(MaxIterations) {} 4588 4589 PreservedAnalyses InstCombinePass::run(Function &F, 4590 FunctionAnalysisManager &AM) { 4591 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4592 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4593 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4594 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4595 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4596 4597 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4598 4599 auto *AA = &AM.getResult<AAManager>(F); 4600 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4601 ProfileSummaryInfo *PSI = 4602 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4603 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4604 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4605 4606 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4607 BFI, PSI, MaxIterations, LI)) 4608 // No changes, all analyses are preserved. 4609 return PreservedAnalyses::all(); 4610 4611 // Mark all the analyses that instcombine updates as preserved. 4612 PreservedAnalyses PA; 4613 PA.preserveSet<CFGAnalyses>(); 4614 return PA; 4615 } 4616 4617 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4618 AU.setPreservesCFG(); 4619 AU.addRequired<AAResultsWrapperPass>(); 4620 AU.addRequired<AssumptionCacheTracker>(); 4621 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4622 AU.addRequired<TargetTransformInfoWrapperPass>(); 4623 AU.addRequired<DominatorTreeWrapperPass>(); 4624 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4625 AU.addPreserved<DominatorTreeWrapperPass>(); 4626 AU.addPreserved<AAResultsWrapperPass>(); 4627 AU.addPreserved<BasicAAWrapperPass>(); 4628 AU.addPreserved<GlobalsAAWrapperPass>(); 4629 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4630 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4631 } 4632 4633 bool InstructionCombiningPass::runOnFunction(Function &F) { 4634 if (skipFunction(F)) 4635 return false; 4636 4637 // Required analyses. 4638 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4639 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4640 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4641 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4642 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4643 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4644 4645 // Optional analyses. 4646 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4647 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4648 ProfileSummaryInfo *PSI = 4649 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4650 BlockFrequencyInfo *BFI = 4651 (PSI && PSI->hasProfileSummary()) ? 4652 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4653 nullptr; 4654 4655 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4656 BFI, PSI, MaxIterations, LI); 4657 } 4658 4659 char InstructionCombiningPass::ID = 0; 4660 4661 InstructionCombiningPass::InstructionCombiningPass() 4662 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4663 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4664 } 4665 4666 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4667 : FunctionPass(ID), MaxIterations(MaxIterations) { 4668 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4669 } 4670 4671 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4672 "Combine redundant instructions", false, false) 4673 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4674 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4675 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4676 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4677 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4678 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4679 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4680 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4681 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4682 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4683 "Combine redundant instructions", false, false) 4684 4685 // Initialization Routines 4686 void llvm::initializeInstCombine(PassRegistry &Registry) { 4687 initializeInstructionCombiningPassPass(Registry); 4688 } 4689 4690 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4691 initializeInstructionCombiningPassPass(*unwrap(R)); 4692 } 4693 4694 FunctionPass *llvm::createInstructionCombiningPass() { 4695 return new InstructionCombiningPass(); 4696 } 4697 4698 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4699 return new InstructionCombiningPass(MaxIterations); 4700 } 4701 4702 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4703 unwrap(PM)->add(createInstructionCombiningPass()); 4704 } 4705