1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/Dominators.h" 74 #include "llvm/IR/Function.h" 75 #include "llvm/IR/GetElementPtrTypeIterator.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/IntrinsicInst.h" 81 #include "llvm/IR/Intrinsics.h" 82 #include "llvm/IR/LegacyPassManager.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PassManager.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/Use.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/InitializePasses.h" 93 #include "llvm/Pass.h" 94 #include "llvm/Support/CBindingWrapping.h" 95 #include "llvm/Support/Casting.h" 96 #include "llvm/Support/CommandLine.h" 97 #include "llvm/Support/Compiler.h" 98 #include "llvm/Support/Debug.h" 99 #include "llvm/Support/DebugCounter.h" 100 #include "llvm/Support/ErrorHandling.h" 101 #include "llvm/Support/KnownBits.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Transforms/InstCombine/InstCombine.h" 104 #include "llvm/Transforms/Utils/Local.h" 105 #include <algorithm> 106 #include <cassert> 107 #include <cstdint> 108 #include <memory> 109 #include <string> 110 #include <utility> 111 112 #define DEBUG_TYPE "instcombine" 113 #include "llvm/Transforms/Utils/InstructionWorklist.h" 114 115 using namespace llvm; 116 using namespace llvm::PatternMatch; 117 118 STATISTIC(NumWorklistIterations, 119 "Number of instruction combining iterations performed"); 120 121 STATISTIC(NumCombined , "Number of insts combined"); 122 STATISTIC(NumConstProp, "Number of constant folds"); 123 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 124 STATISTIC(NumSunkInst , "Number of instructions sunk"); 125 STATISTIC(NumExpand, "Number of expansions"); 126 STATISTIC(NumFactor , "Number of factorizations"); 127 STATISTIC(NumReassoc , "Number of reassociations"); 128 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 129 "Controls which instructions are visited"); 130 131 // FIXME: these limits eventually should be as low as 2. 132 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 133 #ifndef NDEBUG 134 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 135 #else 136 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 137 #endif 138 139 static cl::opt<bool> 140 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 141 cl::init(true)); 142 143 static cl::opt<unsigned> LimitMaxIterations( 144 "instcombine-max-iterations", 145 cl::desc("Limit the maximum number of instruction combining iterations"), 146 cl::init(InstCombineDefaultMaxIterations)); 147 148 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 149 "instcombine-infinite-loop-threshold", 150 cl::desc("Number of instruction combining iterations considered an " 151 "infinite loop"), 152 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 153 154 static cl::opt<unsigned> 155 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 156 cl::desc("Maximum array size considered when doing a combine")); 157 158 // FIXME: Remove this flag when it is no longer necessary to convert 159 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 160 // increases variable availability at the cost of accuracy. Variables that 161 // cannot be promoted by mem2reg or SROA will be described as living in memory 162 // for their entire lifetime. However, passes like DSE and instcombine can 163 // delete stores to the alloca, leading to misleading and inaccurate debug 164 // information. This flag can be removed when those passes are fixed. 165 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 166 cl::Hidden, cl::init(true)); 167 168 Optional<Instruction *> 169 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 170 // Handle target specific intrinsics 171 if (II.getCalledFunction()->isTargetIntrinsic()) { 172 return TTI.instCombineIntrinsic(*this, II); 173 } 174 return None; 175 } 176 177 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 178 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 179 bool &KnownBitsComputed) { 180 // Handle target specific intrinsics 181 if (II.getCalledFunction()->isTargetIntrinsic()) { 182 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 183 KnownBitsComputed); 184 } 185 return None; 186 } 187 188 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 189 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 190 APInt &UndefElts3, 191 std::function<void(Instruction *, unsigned, APInt, APInt &)> 192 SimplifyAndSetOp) { 193 // Handle target specific intrinsics 194 if (II.getCalledFunction()->isTargetIntrinsic()) { 195 return TTI.simplifyDemandedVectorEltsIntrinsic( 196 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 197 SimplifyAndSetOp); 198 } 199 return None; 200 } 201 202 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 203 return llvm::EmitGEPOffset(&Builder, DL, GEP); 204 } 205 206 /// Legal integers and common types are considered desirable. This is used to 207 /// avoid creating instructions with types that may not be supported well by the 208 /// the backend. 209 /// NOTE: This treats i8, i16 and i32 specially because they are common 210 /// types in frontend languages. 211 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 212 switch (BitWidth) { 213 case 8: 214 case 16: 215 case 32: 216 return true; 217 default: 218 return DL.isLegalInteger(BitWidth); 219 } 220 } 221 222 /// Return true if it is desirable to convert an integer computation from a 223 /// given bit width to a new bit width. 224 /// We don't want to convert from a legal to an illegal type or from a smaller 225 /// to a larger illegal type. A width of '1' is always treated as a desirable 226 /// type because i1 is a fundamental type in IR, and there are many specialized 227 /// optimizations for i1 types. Common/desirable widths are equally treated as 228 /// legal to convert to, in order to open up more combining opportunities. 229 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 230 unsigned ToWidth) const { 231 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 232 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 233 234 // Convert to desirable widths even if they are not legal types. 235 // Only shrink types, to prevent infinite loops. 236 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 237 return true; 238 239 // If this is a legal integer from type, and the result would be an illegal 240 // type, don't do the transformation. 241 if (FromLegal && !ToLegal) 242 return false; 243 244 // Otherwise, if both are illegal, do not increase the size of the result. We 245 // do allow things like i160 -> i64, but not i64 -> i160. 246 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 247 return false; 248 249 return true; 250 } 251 252 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 253 /// We don't want to convert from a legal to an illegal type or from a smaller 254 /// to a larger illegal type. i1 is always treated as a legal type because it is 255 /// a fundamental type in IR, and there are many specialized optimizations for 256 /// i1 types. 257 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 258 // TODO: This could be extended to allow vectors. Datalayout changes might be 259 // needed to properly support that. 260 if (!From->isIntegerTy() || !To->isIntegerTy()) 261 return false; 262 263 unsigned FromWidth = From->getPrimitiveSizeInBits(); 264 unsigned ToWidth = To->getPrimitiveSizeInBits(); 265 return shouldChangeType(FromWidth, ToWidth); 266 } 267 268 // Return true, if No Signed Wrap should be maintained for I. 269 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 270 // where both B and C should be ConstantInts, results in a constant that does 271 // not overflow. This function only handles the Add and Sub opcodes. For 272 // all other opcodes, the function conservatively returns false. 273 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 274 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 275 if (!OBO || !OBO->hasNoSignedWrap()) 276 return false; 277 278 // We reason about Add and Sub Only. 279 Instruction::BinaryOps Opcode = I.getOpcode(); 280 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 281 return false; 282 283 const APInt *BVal, *CVal; 284 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 285 return false; 286 287 bool Overflow = false; 288 if (Opcode == Instruction::Add) 289 (void)BVal->sadd_ov(*CVal, Overflow); 290 else 291 (void)BVal->ssub_ov(*CVal, Overflow); 292 293 return !Overflow; 294 } 295 296 static bool hasNoUnsignedWrap(BinaryOperator &I) { 297 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 298 return OBO && OBO->hasNoUnsignedWrap(); 299 } 300 301 static bool hasNoSignedWrap(BinaryOperator &I) { 302 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 303 return OBO && OBO->hasNoSignedWrap(); 304 } 305 306 /// Conservatively clears subclassOptionalData after a reassociation or 307 /// commutation. We preserve fast-math flags when applicable as they can be 308 /// preserved. 309 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 310 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 311 if (!FPMO) { 312 I.clearSubclassOptionalData(); 313 return; 314 } 315 316 FastMathFlags FMF = I.getFastMathFlags(); 317 I.clearSubclassOptionalData(); 318 I.setFastMathFlags(FMF); 319 } 320 321 /// Combine constant operands of associative operations either before or after a 322 /// cast to eliminate one of the associative operations: 323 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 324 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 325 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 326 InstCombinerImpl &IC) { 327 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 328 if (!Cast || !Cast->hasOneUse()) 329 return false; 330 331 // TODO: Enhance logic for other casts and remove this check. 332 auto CastOpcode = Cast->getOpcode(); 333 if (CastOpcode != Instruction::ZExt) 334 return false; 335 336 // TODO: Enhance logic for other BinOps and remove this check. 337 if (!BinOp1->isBitwiseLogicOp()) 338 return false; 339 340 auto AssocOpcode = BinOp1->getOpcode(); 341 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 342 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 343 return false; 344 345 Constant *C1, *C2; 346 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 347 !match(BinOp2->getOperand(1), m_Constant(C2))) 348 return false; 349 350 // TODO: This assumes a zext cast. 351 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 352 // to the destination type might lose bits. 353 354 // Fold the constants together in the destination type: 355 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 356 Type *DestTy = C1->getType(); 357 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 358 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 359 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 360 IC.replaceOperand(*BinOp1, 1, FoldedC); 361 return true; 362 } 363 364 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 365 // inttoptr ( ptrtoint (x) ) --> x 366 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 367 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 368 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 369 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 370 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 371 Type *CastTy = IntToPtr->getDestTy(); 372 if (PtrToInt && 373 CastTy->getPointerAddressSpace() == 374 PtrToInt->getSrcTy()->getPointerAddressSpace() && 375 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 376 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 377 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 378 "", PtrToInt); 379 } 380 } 381 return nullptr; 382 } 383 384 /// This performs a few simplifications for operators that are associative or 385 /// commutative: 386 /// 387 /// Commutative operators: 388 /// 389 /// 1. Order operands such that they are listed from right (least complex) to 390 /// left (most complex). This puts constants before unary operators before 391 /// binary operators. 392 /// 393 /// Associative operators: 394 /// 395 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 396 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 397 /// 398 /// Associative and commutative operators: 399 /// 400 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 401 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 402 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 403 /// if C1 and C2 are constants. 404 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 405 Instruction::BinaryOps Opcode = I.getOpcode(); 406 bool Changed = false; 407 408 do { 409 // Order operands such that they are listed from right (least complex) to 410 // left (most complex). This puts constants before unary operators before 411 // binary operators. 412 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 413 getComplexity(I.getOperand(1))) 414 Changed = !I.swapOperands(); 415 416 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 417 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 418 419 if (I.isAssociative()) { 420 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 421 if (Op0 && Op0->getOpcode() == Opcode) { 422 Value *A = Op0->getOperand(0); 423 Value *B = Op0->getOperand(1); 424 Value *C = I.getOperand(1); 425 426 // Does "B op C" simplify? 427 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 428 // It simplifies to V. Form "A op V". 429 replaceOperand(I, 0, A); 430 replaceOperand(I, 1, V); 431 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 432 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 433 434 // Conservatively clear all optional flags since they may not be 435 // preserved by the reassociation. Reset nsw/nuw based on the above 436 // analysis. 437 ClearSubclassDataAfterReassociation(I); 438 439 // Note: this is only valid because SimplifyBinOp doesn't look at 440 // the operands to Op0. 441 if (IsNUW) 442 I.setHasNoUnsignedWrap(true); 443 444 if (IsNSW) 445 I.setHasNoSignedWrap(true); 446 447 Changed = true; 448 ++NumReassoc; 449 continue; 450 } 451 } 452 453 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 454 if (Op1 && Op1->getOpcode() == Opcode) { 455 Value *A = I.getOperand(0); 456 Value *B = Op1->getOperand(0); 457 Value *C = Op1->getOperand(1); 458 459 // Does "A op B" simplify? 460 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 461 // It simplifies to V. Form "V op C". 462 replaceOperand(I, 0, V); 463 replaceOperand(I, 1, C); 464 // Conservatively clear the optional flags, since they may not be 465 // preserved by the reassociation. 466 ClearSubclassDataAfterReassociation(I); 467 Changed = true; 468 ++NumReassoc; 469 continue; 470 } 471 } 472 } 473 474 if (I.isAssociative() && I.isCommutative()) { 475 if (simplifyAssocCastAssoc(&I, *this)) { 476 Changed = true; 477 ++NumReassoc; 478 continue; 479 } 480 481 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 482 if (Op0 && Op0->getOpcode() == Opcode) { 483 Value *A = Op0->getOperand(0); 484 Value *B = Op0->getOperand(1); 485 Value *C = I.getOperand(1); 486 487 // Does "C op A" simplify? 488 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 489 // It simplifies to V. Form "V op B". 490 replaceOperand(I, 0, V); 491 replaceOperand(I, 1, B); 492 // Conservatively clear the optional flags, since they may not be 493 // preserved by the reassociation. 494 ClearSubclassDataAfterReassociation(I); 495 Changed = true; 496 ++NumReassoc; 497 continue; 498 } 499 } 500 501 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 502 if (Op1 && Op1->getOpcode() == Opcode) { 503 Value *A = I.getOperand(0); 504 Value *B = Op1->getOperand(0); 505 Value *C = Op1->getOperand(1); 506 507 // Does "C op A" simplify? 508 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 509 // It simplifies to V. Form "B op V". 510 replaceOperand(I, 0, B); 511 replaceOperand(I, 1, V); 512 // Conservatively clear the optional flags, since they may not be 513 // preserved by the reassociation. 514 ClearSubclassDataAfterReassociation(I); 515 Changed = true; 516 ++NumReassoc; 517 continue; 518 } 519 } 520 521 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 522 // if C1 and C2 are constants. 523 Value *A, *B; 524 Constant *C1, *C2; 525 if (Op0 && Op1 && 526 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 527 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 528 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 529 bool IsNUW = hasNoUnsignedWrap(I) && 530 hasNoUnsignedWrap(*Op0) && 531 hasNoUnsignedWrap(*Op1); 532 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 533 BinaryOperator::CreateNUW(Opcode, A, B) : 534 BinaryOperator::Create(Opcode, A, B); 535 536 if (isa<FPMathOperator>(NewBO)) { 537 FastMathFlags Flags = I.getFastMathFlags(); 538 Flags &= Op0->getFastMathFlags(); 539 Flags &= Op1->getFastMathFlags(); 540 NewBO->setFastMathFlags(Flags); 541 } 542 InsertNewInstWith(NewBO, I); 543 NewBO->takeName(Op1); 544 replaceOperand(I, 0, NewBO); 545 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 546 // Conservatively clear the optional flags, since they may not be 547 // preserved by the reassociation. 548 ClearSubclassDataAfterReassociation(I); 549 if (IsNUW) 550 I.setHasNoUnsignedWrap(true); 551 552 Changed = true; 553 continue; 554 } 555 } 556 557 // No further simplifications. 558 return Changed; 559 } while (true); 560 } 561 562 /// Return whether "X LOp (Y ROp Z)" is always equal to 563 /// "(X LOp Y) ROp (X LOp Z)". 564 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 565 Instruction::BinaryOps ROp) { 566 // X & (Y | Z) <--> (X & Y) | (X & Z) 567 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 568 if (LOp == Instruction::And) 569 return ROp == Instruction::Or || ROp == Instruction::Xor; 570 571 // X | (Y & Z) <--> (X | Y) & (X | Z) 572 if (LOp == Instruction::Or) 573 return ROp == Instruction::And; 574 575 // X * (Y + Z) <--> (X * Y) + (X * Z) 576 // X * (Y - Z) <--> (X * Y) - (X * Z) 577 if (LOp == Instruction::Mul) 578 return ROp == Instruction::Add || ROp == Instruction::Sub; 579 580 return false; 581 } 582 583 /// Return whether "(X LOp Y) ROp Z" is always equal to 584 /// "(X ROp Z) LOp (Y ROp Z)". 585 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 586 Instruction::BinaryOps ROp) { 587 if (Instruction::isCommutative(ROp)) 588 return leftDistributesOverRight(ROp, LOp); 589 590 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 591 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 592 593 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 594 // but this requires knowing that the addition does not overflow and other 595 // such subtleties. 596 } 597 598 /// This function returns identity value for given opcode, which can be used to 599 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 600 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 601 if (isa<Constant>(V)) 602 return nullptr; 603 604 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 605 } 606 607 /// This function predicates factorization using distributive laws. By default, 608 /// it just returns the 'Op' inputs. But for special-cases like 609 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 610 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 611 /// allow more factorization opportunities. 612 static Instruction::BinaryOps 613 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 614 Value *&LHS, Value *&RHS) { 615 assert(Op && "Expected a binary operator"); 616 LHS = Op->getOperand(0); 617 RHS = Op->getOperand(1); 618 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 619 Constant *C; 620 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 621 // X << C --> X * (1 << C) 622 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 623 return Instruction::Mul; 624 } 625 // TODO: We can add other conversions e.g. shr => div etc. 626 } 627 return Op->getOpcode(); 628 } 629 630 /// This tries to simplify binary operations by factorizing out common terms 631 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 632 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 633 Instruction::BinaryOps InnerOpcode, 634 Value *A, Value *B, Value *C, 635 Value *D) { 636 assert(A && B && C && D && "All values must be provided"); 637 638 Value *V = nullptr; 639 Value *SimplifiedInst = nullptr; 640 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 641 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 642 643 // Does "X op' Y" always equal "Y op' X"? 644 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 645 646 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 647 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 648 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 649 // commutative case, "(A op' B) op (C op' A)"? 650 if (A == C || (InnerCommutative && A == D)) { 651 if (A != C) 652 std::swap(C, D); 653 // Consider forming "A op' (B op D)". 654 // If "B op D" simplifies then it can be formed with no cost. 655 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 656 // If "B op D" doesn't simplify then only go on if both of the existing 657 // operations "A op' B" and "C op' D" will be zapped as no longer used. 658 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 659 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 660 if (V) { 661 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 662 } 663 } 664 665 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 666 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 667 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 668 // commutative case, "(A op' B) op (B op' D)"? 669 if (B == D || (InnerCommutative && B == C)) { 670 if (B != D) 671 std::swap(C, D); 672 // Consider forming "(A op C) op' B". 673 // If "A op C" simplifies then it can be formed with no cost. 674 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 675 676 // If "A op C" doesn't simplify then only go on if both of the existing 677 // operations "A op' B" and "C op' D" will be zapped as no longer used. 678 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 679 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 680 if (V) { 681 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 682 } 683 } 684 685 if (SimplifiedInst) { 686 ++NumFactor; 687 SimplifiedInst->takeName(&I); 688 689 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 690 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 691 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 692 bool HasNSW = false; 693 bool HasNUW = false; 694 if (isa<OverflowingBinaryOperator>(&I)) { 695 HasNSW = I.hasNoSignedWrap(); 696 HasNUW = I.hasNoUnsignedWrap(); 697 } 698 699 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 700 HasNSW &= LOBO->hasNoSignedWrap(); 701 HasNUW &= LOBO->hasNoUnsignedWrap(); 702 } 703 704 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 705 HasNSW &= ROBO->hasNoSignedWrap(); 706 HasNUW &= ROBO->hasNoUnsignedWrap(); 707 } 708 709 if (TopLevelOpcode == Instruction::Add && 710 InnerOpcode == Instruction::Mul) { 711 // We can propagate 'nsw' if we know that 712 // %Y = mul nsw i16 %X, C 713 // %Z = add nsw i16 %Y, %X 714 // => 715 // %Z = mul nsw i16 %X, C+1 716 // 717 // iff C+1 isn't INT_MIN 718 const APInt *CInt; 719 if (match(V, m_APInt(CInt))) { 720 if (!CInt->isMinSignedValue()) 721 BO->setHasNoSignedWrap(HasNSW); 722 } 723 724 // nuw can be propagated with any constant or nuw value. 725 BO->setHasNoUnsignedWrap(HasNUW); 726 } 727 } 728 } 729 } 730 return SimplifiedInst; 731 } 732 733 /// This tries to simplify binary operations which some other binary operation 734 /// distributes over either by factorizing out common terms 735 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 736 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 737 /// Returns the simplified value, or null if it didn't simplify. 738 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 739 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 740 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 741 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 742 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 743 744 { 745 // Factorization. 746 Value *A, *B, *C, *D; 747 Instruction::BinaryOps LHSOpcode, RHSOpcode; 748 if (Op0) 749 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 750 if (Op1) 751 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 752 753 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 754 // a common term. 755 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 756 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 757 return V; 758 759 // The instruction has the form "(A op' B) op (C)". Try to factorize common 760 // term. 761 if (Op0) 762 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 763 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 764 return V; 765 766 // The instruction has the form "(B) op (C op' D)". Try to factorize common 767 // term. 768 if (Op1) 769 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 770 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 771 return V; 772 } 773 774 // Expansion. 775 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 776 // The instruction has the form "(A op' B) op C". See if expanding it out 777 // to "(A op C) op' (B op C)" results in simplifications. 778 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 779 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 780 781 // Disable the use of undef because it's not safe to distribute undef. 782 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 783 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 784 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 785 786 // Do "A op C" and "B op C" both simplify? 787 if (L && R) { 788 // They do! Return "L op' R". 789 ++NumExpand; 790 C = Builder.CreateBinOp(InnerOpcode, L, R); 791 C->takeName(&I); 792 return C; 793 } 794 795 // Does "A op C" simplify to the identity value for the inner opcode? 796 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 797 // They do! Return "B op C". 798 ++NumExpand; 799 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 800 C->takeName(&I); 801 return C; 802 } 803 804 // Does "B op C" simplify to the identity value for the inner opcode? 805 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 806 // They do! Return "A op C". 807 ++NumExpand; 808 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 809 C->takeName(&I); 810 return C; 811 } 812 } 813 814 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 815 // The instruction has the form "A op (B op' C)". See if expanding it out 816 // to "(A op B) op' (A op C)" results in simplifications. 817 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 818 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 819 820 // Disable the use of undef because it's not safe to distribute undef. 821 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 822 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 823 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 824 825 // Do "A op B" and "A op C" both simplify? 826 if (L && R) { 827 // They do! Return "L op' R". 828 ++NumExpand; 829 A = Builder.CreateBinOp(InnerOpcode, L, R); 830 A->takeName(&I); 831 return A; 832 } 833 834 // Does "A op B" simplify to the identity value for the inner opcode? 835 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 836 // They do! Return "A op C". 837 ++NumExpand; 838 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 839 A->takeName(&I); 840 return A; 841 } 842 843 // Does "A op C" simplify to the identity value for the inner opcode? 844 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 845 // They do! Return "A op B". 846 ++NumExpand; 847 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 848 A->takeName(&I); 849 return A; 850 } 851 } 852 853 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 854 } 855 856 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 857 Value *LHS, 858 Value *RHS) { 859 Value *A, *B, *C, *D, *E, *F; 860 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 861 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 862 if (!LHSIsSelect && !RHSIsSelect) 863 return nullptr; 864 865 FastMathFlags FMF; 866 BuilderTy::FastMathFlagGuard Guard(Builder); 867 if (isa<FPMathOperator>(&I)) { 868 FMF = I.getFastMathFlags(); 869 Builder.setFastMathFlags(FMF); 870 } 871 872 Instruction::BinaryOps Opcode = I.getOpcode(); 873 SimplifyQuery Q = SQ.getWithInstruction(&I); 874 875 Value *Cond, *True = nullptr, *False = nullptr; 876 if (LHSIsSelect && RHSIsSelect && A == D) { 877 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 878 Cond = A; 879 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 880 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 881 882 if (LHS->hasOneUse() && RHS->hasOneUse()) { 883 if (False && !True) 884 True = Builder.CreateBinOp(Opcode, B, E); 885 else if (True && !False) 886 False = Builder.CreateBinOp(Opcode, C, F); 887 } 888 } else if (LHSIsSelect && LHS->hasOneUse()) { 889 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 890 Cond = A; 891 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 892 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 893 } else if (RHSIsSelect && RHS->hasOneUse()) { 894 // X op (D ? E : F) -> D ? (X op E) : (X op F) 895 Cond = D; 896 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 897 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 898 } 899 900 if (!True || !False) 901 return nullptr; 902 903 Value *SI = Builder.CreateSelect(Cond, True, False); 904 SI->takeName(&I); 905 return SI; 906 } 907 908 /// Freely adapt every user of V as-if V was changed to !V. 909 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 910 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 911 for (User *U : I->users()) { 912 switch (cast<Instruction>(U)->getOpcode()) { 913 case Instruction::Select: { 914 auto *SI = cast<SelectInst>(U); 915 SI->swapValues(); 916 SI->swapProfMetadata(); 917 break; 918 } 919 case Instruction::Br: 920 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 921 break; 922 case Instruction::Xor: 923 replaceInstUsesWith(cast<Instruction>(*U), I); 924 break; 925 default: 926 llvm_unreachable("Got unexpected user - out of sync with " 927 "canFreelyInvertAllUsersOf() ?"); 928 } 929 } 930 } 931 932 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 933 /// constant zero (which is the 'negate' form). 934 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 935 Value *NegV; 936 if (match(V, m_Neg(m_Value(NegV)))) 937 return NegV; 938 939 // Constants can be considered to be negated values if they can be folded. 940 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 941 return ConstantExpr::getNeg(C); 942 943 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 944 if (C->getType()->getElementType()->isIntegerTy()) 945 return ConstantExpr::getNeg(C); 946 947 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 948 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 949 Constant *Elt = CV->getAggregateElement(i); 950 if (!Elt) 951 return nullptr; 952 953 if (isa<UndefValue>(Elt)) 954 continue; 955 956 if (!isa<ConstantInt>(Elt)) 957 return nullptr; 958 } 959 return ConstantExpr::getNeg(CV); 960 } 961 962 // Negate integer vector splats. 963 if (auto *CV = dyn_cast<Constant>(V)) 964 if (CV->getType()->isVectorTy() && 965 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 966 return ConstantExpr::getNeg(CV); 967 968 return nullptr; 969 } 970 971 /// A binop with a constant operand and a sign-extended boolean operand may be 972 /// converted into a select of constants by applying the binary operation to 973 /// the constant with the two possible values of the extended boolean (0 or -1). 974 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 975 // TODO: Handle non-commutative binop (constant is operand 0). 976 // TODO: Handle zext. 977 // TODO: Peek through 'not' of cast. 978 Value *BO0 = BO.getOperand(0); 979 Value *BO1 = BO.getOperand(1); 980 Value *X; 981 Constant *C; 982 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 983 !X->getType()->isIntOrIntVectorTy(1)) 984 return nullptr; 985 986 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 987 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 988 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 989 Constant *TVal = ConstantExpr::get(BO.getOpcode(), Ones, C); 990 Constant *FVal = ConstantExpr::get(BO.getOpcode(), Zero, C); 991 return SelectInst::Create(X, TVal, FVal); 992 } 993 994 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 995 InstCombiner::BuilderTy &Builder) { 996 if (auto *Cast = dyn_cast<CastInst>(&I)) 997 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 998 999 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1000 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 1001 "Expected constant-foldable intrinsic"); 1002 Intrinsic::ID IID = II->getIntrinsicID(); 1003 if (II->arg_size() == 1) 1004 return Builder.CreateUnaryIntrinsic(IID, SO); 1005 1006 // This works for real binary ops like min/max (where we always expect the 1007 // constant operand to be canonicalized as op1) and unary ops with a bonus 1008 // constant argument like ctlz/cttz. 1009 // TODO: Handle non-commutative binary intrinsics as below for binops. 1010 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 1011 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 1012 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 1013 } 1014 1015 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 1016 1017 // Figure out if the constant is the left or the right argument. 1018 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 1019 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 1020 1021 if (auto *SOC = dyn_cast<Constant>(SO)) { 1022 if (ConstIsRHS) 1023 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 1024 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 1025 } 1026 1027 Value *Op0 = SO, *Op1 = ConstOperand; 1028 if (!ConstIsRHS) 1029 std::swap(Op0, Op1); 1030 1031 Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0, 1032 Op1, SO->getName() + ".op"); 1033 if (auto *NewBOI = dyn_cast<Instruction>(NewBO)) 1034 NewBOI->copyIRFlags(&I); 1035 return NewBO; 1036 } 1037 1038 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, 1039 SelectInst *SI) { 1040 // Don't modify shared select instructions. 1041 if (!SI->hasOneUse()) 1042 return nullptr; 1043 1044 Value *TV = SI->getTrueValue(); 1045 Value *FV = SI->getFalseValue(); 1046 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1047 return nullptr; 1048 1049 // Bool selects with constant operands can be folded to logical ops. 1050 if (SI->getType()->isIntOrIntVectorTy(1)) 1051 return nullptr; 1052 1053 // If it's a bitcast involving vectors, make sure it has the same number of 1054 // elements on both sides. 1055 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1056 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1057 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1058 1059 // Verify that either both or neither are vectors. 1060 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1061 return nullptr; 1062 1063 // If vectors, verify that they have the same number of elements. 1064 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1065 return nullptr; 1066 } 1067 1068 // Test if a CmpInst instruction is used exclusively by a select as 1069 // part of a minimum or maximum operation. If so, refrain from doing 1070 // any other folding. This helps out other analyses which understand 1071 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1072 // and CodeGen. And in this case, at least one of the comparison 1073 // operands has at least one user besides the compare (the select), 1074 // which would often largely negate the benefit of folding anyway. 1075 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1076 if (CI->hasOneUse()) { 1077 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1078 1079 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1080 // We have to ensure that vector constants that only differ with 1081 // undef elements are treated as equivalent. 1082 auto areLooselyEqual = [](Value *A, Value *B) { 1083 if (A == B) 1084 return true; 1085 1086 // Test for vector constants. 1087 Constant *ConstA, *ConstB; 1088 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1089 return false; 1090 1091 // TODO: Deal with FP constants? 1092 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1093 return false; 1094 1095 // Compare for equality including undefs as equal. 1096 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1097 const APInt *C; 1098 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1099 }; 1100 1101 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1102 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1103 return nullptr; 1104 } 1105 } 1106 1107 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1108 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1109 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1110 } 1111 1112 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1113 InstCombiner::BuilderTy &Builder) { 1114 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1115 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1116 1117 if (auto *InC = dyn_cast<Constant>(InV)) { 1118 if (ConstIsRHS) 1119 return ConstantExpr::get(I->getOpcode(), InC, C); 1120 return ConstantExpr::get(I->getOpcode(), C, InC); 1121 } 1122 1123 Value *Op0 = InV, *Op1 = C; 1124 if (!ConstIsRHS) 1125 std::swap(Op0, Op1); 1126 1127 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1128 auto *FPInst = dyn_cast<Instruction>(RI); 1129 if (FPInst && isa<FPMathOperator>(FPInst)) 1130 FPInst->copyFastMathFlags(I); 1131 return RI; 1132 } 1133 1134 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1135 unsigned NumPHIValues = PN->getNumIncomingValues(); 1136 if (NumPHIValues == 0) 1137 return nullptr; 1138 1139 // We normally only transform phis with a single use. However, if a PHI has 1140 // multiple uses and they are all the same operation, we can fold *all* of the 1141 // uses into the PHI. 1142 if (!PN->hasOneUse()) { 1143 // Walk the use list for the instruction, comparing them to I. 1144 for (User *U : PN->users()) { 1145 Instruction *UI = cast<Instruction>(U); 1146 if (UI != &I && !I.isIdenticalTo(UI)) 1147 return nullptr; 1148 } 1149 // Otherwise, we can replace *all* users with the new PHI we form. 1150 } 1151 1152 // Check to see if all of the operands of the PHI are simple constants 1153 // (constantint/constantfp/undef). If there is one non-constant value, 1154 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1155 // bail out. We don't do arbitrary constant expressions here because moving 1156 // their computation can be expensive without a cost model. 1157 BasicBlock *NonConstBB = nullptr; 1158 for (unsigned i = 0; i != NumPHIValues; ++i) { 1159 Value *InVal = PN->getIncomingValue(i); 1160 // For non-freeze, require constant operand 1161 // For freeze, require non-undef, non-poison operand 1162 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) 1163 continue; 1164 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) 1165 continue; 1166 1167 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1168 if (NonConstBB) return nullptr; // More than one non-const value. 1169 1170 NonConstBB = PN->getIncomingBlock(i); 1171 1172 // If the InVal is an invoke at the end of the pred block, then we can't 1173 // insert a computation after it without breaking the edge. 1174 if (isa<InvokeInst>(InVal)) 1175 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1176 return nullptr; 1177 1178 // If the incoming non-constant value is in I's block, we will remove one 1179 // instruction, but insert another equivalent one, leading to infinite 1180 // instcombine. 1181 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI)) 1182 return nullptr; 1183 } 1184 1185 // If there is exactly one non-constant value, we can insert a copy of the 1186 // operation in that block. However, if this is a critical edge, we would be 1187 // inserting the computation on some other paths (e.g. inside a loop). Only 1188 // do this if the pred block is unconditionally branching into the phi block. 1189 // Also, make sure that the pred block is not dead code. 1190 if (NonConstBB != nullptr) { 1191 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1192 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1193 return nullptr; 1194 } 1195 1196 // Okay, we can do the transformation: create the new PHI node. 1197 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1198 InsertNewInstBefore(NewPN, *PN); 1199 NewPN->takeName(PN); 1200 1201 // If we are going to have to insert a new computation, do so right before the 1202 // predecessor's terminator. 1203 if (NonConstBB) 1204 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1205 1206 // Next, add all of the operands to the PHI. 1207 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1208 // We only currently try to fold the condition of a select when it is a phi, 1209 // not the true/false values. 1210 Value *TrueV = SI->getTrueValue(); 1211 Value *FalseV = SI->getFalseValue(); 1212 BasicBlock *PhiTransBB = PN->getParent(); 1213 for (unsigned i = 0; i != NumPHIValues; ++i) { 1214 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1215 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1216 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1217 Value *InV = nullptr; 1218 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1219 // even if currently isNullValue gives false. 1220 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1221 // For vector constants, we cannot use isNullValue to fold into 1222 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1223 // elements in the vector, we will incorrectly fold InC to 1224 // `TrueVInPred`. 1225 if (InC && isa<ConstantInt>(InC)) 1226 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1227 else { 1228 // Generate the select in the same block as PN's current incoming block. 1229 // Note: ThisBB need not be the NonConstBB because vector constants 1230 // which are constants by definition are handled here. 1231 // FIXME: This can lead to an increase in IR generation because we might 1232 // generate selects for vector constant phi operand, that could not be 1233 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1234 // non-vector phis, this transformation was always profitable because 1235 // the select would be generated exactly once in the NonConstBB. 1236 Builder.SetInsertPoint(ThisBB->getTerminator()); 1237 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1238 FalseVInPred, "phi.sel"); 1239 } 1240 NewPN->addIncoming(InV, ThisBB); 1241 } 1242 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1243 Constant *C = cast<Constant>(I.getOperand(1)); 1244 for (unsigned i = 0; i != NumPHIValues; ++i) { 1245 Value *InV = nullptr; 1246 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1247 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1248 else 1249 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1250 C, "phi.cmp"); 1251 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1252 } 1253 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1254 for (unsigned i = 0; i != NumPHIValues; ++i) { 1255 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1256 Builder); 1257 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1258 } 1259 } else if (isa<FreezeInst>(&I)) { 1260 for (unsigned i = 0; i != NumPHIValues; ++i) { 1261 Value *InV; 1262 if (NonConstBB == PN->getIncomingBlock(i)) 1263 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1264 else 1265 InV = PN->getIncomingValue(i); 1266 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1267 } 1268 } else { 1269 CastInst *CI = cast<CastInst>(&I); 1270 Type *RetTy = CI->getType(); 1271 for (unsigned i = 0; i != NumPHIValues; ++i) { 1272 Value *InV; 1273 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1274 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1275 else 1276 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1277 I.getType(), "phi.cast"); 1278 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1279 } 1280 } 1281 1282 for (User *U : make_early_inc_range(PN->users())) { 1283 Instruction *User = cast<Instruction>(U); 1284 if (User == &I) continue; 1285 replaceInstUsesWith(*User, NewPN); 1286 eraseInstFromFunction(*User); 1287 } 1288 return replaceInstUsesWith(I, NewPN); 1289 } 1290 1291 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1292 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1293 // we are guarding against replicating the binop in >1 predecessor. 1294 // This could miss matching a phi with 2 constant incoming values. 1295 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1296 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1297 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1298 Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1299 return nullptr; 1300 1301 // TODO: Remove the restriction for binop being in the same block as the phis. 1302 if (BO.getParent() != Phi0->getParent() || 1303 BO.getParent() != Phi1->getParent()) 1304 return nullptr; 1305 1306 // Match a pair of incoming constants for one of the predecessor blocks. 1307 BasicBlock *ConstBB, *OtherBB; 1308 Constant *C0, *C1; 1309 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 1310 ConstBB = Phi0->getIncomingBlock(0); 1311 OtherBB = Phi0->getIncomingBlock(1); 1312 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 1313 ConstBB = Phi0->getIncomingBlock(1); 1314 OtherBB = Phi0->getIncomingBlock(0); 1315 } else { 1316 return nullptr; 1317 } 1318 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 1319 return nullptr; 1320 1321 // The block that we are hoisting to must reach here unconditionally. 1322 // Otherwise, we could be speculatively executing an expensive or 1323 // non-speculative op. 1324 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 1325 if (!PredBlockBranch || PredBlockBranch->isConditional() || 1326 !DT.isReachableFromEntry(OtherBB)) 1327 return nullptr; 1328 1329 // TODO: This check could be tightened to only apply to binops (div/rem) that 1330 // are not safe to speculatively execute. But that could allow hoisting 1331 // potentially expensive instructions (fdiv for example). 1332 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 1333 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 1334 return nullptr; 1335 1336 // Make a new binop in the predecessor block with the non-constant incoming 1337 // values. 1338 Builder.SetInsertPoint(PredBlockBranch); 1339 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 1340 Phi0->getIncomingValueForBlock(OtherBB), 1341 Phi1->getIncomingValueForBlock(OtherBB)); 1342 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 1343 NotFoldedNewBO->copyIRFlags(&BO); 1344 1345 // Fold constants for the predecessor block with constant incoming values. 1346 Constant *NewC = ConstantExpr::get(BO.getOpcode(), C0, C1); 1347 1348 // Replace the binop with a phi of the new values. The old phis are dead. 1349 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 1350 NewPhi->addIncoming(NewBO, OtherBB); 1351 NewPhi->addIncoming(NewC, ConstBB); 1352 return NewPhi; 1353 } 1354 1355 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1356 if (!isa<Constant>(I.getOperand(1))) 1357 return nullptr; 1358 1359 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1360 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1361 return NewSel; 1362 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1363 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1364 return NewPhi; 1365 } 1366 return nullptr; 1367 } 1368 1369 /// Given a pointer type and a constant offset, determine whether or not there 1370 /// is a sequence of GEP indices into the pointed type that will land us at the 1371 /// specified offset. If so, fill them into NewIndices and return the resultant 1372 /// element type, otherwise return null. 1373 static Type *findElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1374 SmallVectorImpl<Value *> &NewIndices, 1375 const DataLayout &DL) { 1376 // Only used by visitGEPOfBitcast(), which is skipped for opaque pointers. 1377 Type *Ty = PtrTy->getNonOpaquePointerElementType(); 1378 if (!Ty->isSized()) 1379 return nullptr; 1380 1381 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1382 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1383 if (!Offset.isZero()) 1384 return nullptr; 1385 1386 for (const APInt &Index : Indices) 1387 NewIndices.push_back(ConstantInt::get(PtrTy->getContext(), Index)); 1388 return Ty; 1389 } 1390 1391 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1392 // If this GEP has only 0 indices, it is the same pointer as 1393 // Src. If Src is not a trivial GEP too, don't combine 1394 // the indices. 1395 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1396 !Src.hasOneUse()) 1397 return false; 1398 return true; 1399 } 1400 1401 /// Return a value X such that Val = X * Scale, or null if none. 1402 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1403 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1404 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1405 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1406 Scale.getBitWidth() && "Scale not compatible with value!"); 1407 1408 // If Val is zero or Scale is one then Val = Val * Scale. 1409 if (match(Val, m_Zero()) || Scale == 1) { 1410 NoSignedWrap = true; 1411 return Val; 1412 } 1413 1414 // If Scale is zero then it does not divide Val. 1415 if (Scale.isMinValue()) 1416 return nullptr; 1417 1418 // Look through chains of multiplications, searching for a constant that is 1419 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1420 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1421 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1422 // down from Val: 1423 // 1424 // Val = M1 * X || Analysis starts here and works down 1425 // M1 = M2 * Y || Doesn't descend into terms with more 1426 // M2 = Z * 4 \/ than one use 1427 // 1428 // Then to modify a term at the bottom: 1429 // 1430 // Val = M1 * X 1431 // M1 = Z * Y || Replaced M2 with Z 1432 // 1433 // Then to work back up correcting nsw flags. 1434 1435 // Op - the term we are currently analyzing. Starts at Val then drills down. 1436 // Replaced with its descaled value before exiting from the drill down loop. 1437 Value *Op = Val; 1438 1439 // Parent - initially null, but after drilling down notes where Op came from. 1440 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1441 // 0'th operand of Val. 1442 std::pair<Instruction *, unsigned> Parent; 1443 1444 // Set if the transform requires a descaling at deeper levels that doesn't 1445 // overflow. 1446 bool RequireNoSignedWrap = false; 1447 1448 // Log base 2 of the scale. Negative if not a power of 2. 1449 int32_t logScale = Scale.exactLogBase2(); 1450 1451 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1452 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1453 // If Op is a constant divisible by Scale then descale to the quotient. 1454 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1455 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1456 if (!Remainder.isMinValue()) 1457 // Not divisible by Scale. 1458 return nullptr; 1459 // Replace with the quotient in the parent. 1460 Op = ConstantInt::get(CI->getType(), Quotient); 1461 NoSignedWrap = true; 1462 break; 1463 } 1464 1465 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1466 if (BO->getOpcode() == Instruction::Mul) { 1467 // Multiplication. 1468 NoSignedWrap = BO->hasNoSignedWrap(); 1469 if (RequireNoSignedWrap && !NoSignedWrap) 1470 return nullptr; 1471 1472 // There are three cases for multiplication: multiplication by exactly 1473 // the scale, multiplication by a constant different to the scale, and 1474 // multiplication by something else. 1475 Value *LHS = BO->getOperand(0); 1476 Value *RHS = BO->getOperand(1); 1477 1478 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1479 // Multiplication by a constant. 1480 if (CI->getValue() == Scale) { 1481 // Multiplication by exactly the scale, replace the multiplication 1482 // by its left-hand side in the parent. 1483 Op = LHS; 1484 break; 1485 } 1486 1487 // Otherwise drill down into the constant. 1488 if (!Op->hasOneUse()) 1489 return nullptr; 1490 1491 Parent = std::make_pair(BO, 1); 1492 continue; 1493 } 1494 1495 // Multiplication by something else. Drill down into the left-hand side 1496 // since that's where the reassociate pass puts the good stuff. 1497 if (!Op->hasOneUse()) 1498 return nullptr; 1499 1500 Parent = std::make_pair(BO, 0); 1501 continue; 1502 } 1503 1504 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1505 isa<ConstantInt>(BO->getOperand(1))) { 1506 // Multiplication by a power of 2. 1507 NoSignedWrap = BO->hasNoSignedWrap(); 1508 if (RequireNoSignedWrap && !NoSignedWrap) 1509 return nullptr; 1510 1511 Value *LHS = BO->getOperand(0); 1512 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1513 getLimitedValue(Scale.getBitWidth()); 1514 // Op = LHS << Amt. 1515 1516 if (Amt == logScale) { 1517 // Multiplication by exactly the scale, replace the multiplication 1518 // by its left-hand side in the parent. 1519 Op = LHS; 1520 break; 1521 } 1522 if (Amt < logScale || !Op->hasOneUse()) 1523 return nullptr; 1524 1525 // Multiplication by more than the scale. Reduce the multiplying amount 1526 // by the scale in the parent. 1527 Parent = std::make_pair(BO, 1); 1528 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1529 break; 1530 } 1531 } 1532 1533 if (!Op->hasOneUse()) 1534 return nullptr; 1535 1536 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1537 if (Cast->getOpcode() == Instruction::SExt) { 1538 // Op is sign-extended from a smaller type, descale in the smaller type. 1539 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1540 APInt SmallScale = Scale.trunc(SmallSize); 1541 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1542 // descale Op as (sext Y) * Scale. In order to have 1543 // sext (Y * SmallScale) = (sext Y) * Scale 1544 // some conditions need to hold however: SmallScale must sign-extend to 1545 // Scale and the multiplication Y * SmallScale should not overflow. 1546 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1547 // SmallScale does not sign-extend to Scale. 1548 return nullptr; 1549 assert(SmallScale.exactLogBase2() == logScale); 1550 // Require that Y * SmallScale must not overflow. 1551 RequireNoSignedWrap = true; 1552 1553 // Drill down through the cast. 1554 Parent = std::make_pair(Cast, 0); 1555 Scale = SmallScale; 1556 continue; 1557 } 1558 1559 if (Cast->getOpcode() == Instruction::Trunc) { 1560 // Op is truncated from a larger type, descale in the larger type. 1561 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1562 // trunc (Y * sext Scale) = (trunc Y) * Scale 1563 // always holds. However (trunc Y) * Scale may overflow even if 1564 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1565 // from this point up in the expression (see later). 1566 if (RequireNoSignedWrap) 1567 return nullptr; 1568 1569 // Drill down through the cast. 1570 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1571 Parent = std::make_pair(Cast, 0); 1572 Scale = Scale.sext(LargeSize); 1573 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1574 logScale = -1; 1575 assert(Scale.exactLogBase2() == logScale); 1576 continue; 1577 } 1578 } 1579 1580 // Unsupported expression, bail out. 1581 return nullptr; 1582 } 1583 1584 // If Op is zero then Val = Op * Scale. 1585 if (match(Op, m_Zero())) { 1586 NoSignedWrap = true; 1587 return Op; 1588 } 1589 1590 // We know that we can successfully descale, so from here on we can safely 1591 // modify the IR. Op holds the descaled version of the deepest term in the 1592 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1593 // not to overflow. 1594 1595 if (!Parent.first) 1596 // The expression only had one term. 1597 return Op; 1598 1599 // Rewrite the parent using the descaled version of its operand. 1600 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1601 assert(Op != Parent.first->getOperand(Parent.second) && 1602 "Descaling was a no-op?"); 1603 replaceOperand(*Parent.first, Parent.second, Op); 1604 Worklist.push(Parent.first); 1605 1606 // Now work back up the expression correcting nsw flags. The logic is based 1607 // on the following observation: if X * Y is known not to overflow as a signed 1608 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1609 // then X * Z will not overflow as a signed multiplication either. As we work 1610 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1611 // current level has strictly smaller absolute value than the original. 1612 Instruction *Ancestor = Parent.first; 1613 do { 1614 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1615 // If the multiplication wasn't nsw then we can't say anything about the 1616 // value of the descaled multiplication, and we have to clear nsw flags 1617 // from this point on up. 1618 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1619 NoSignedWrap &= OpNoSignedWrap; 1620 if (NoSignedWrap != OpNoSignedWrap) { 1621 BO->setHasNoSignedWrap(NoSignedWrap); 1622 Worklist.push(Ancestor); 1623 } 1624 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1625 // The fact that the descaled input to the trunc has smaller absolute 1626 // value than the original input doesn't tell us anything useful about 1627 // the absolute values of the truncations. 1628 NoSignedWrap = false; 1629 } 1630 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1631 "Failed to keep proper track of nsw flags while drilling down?"); 1632 1633 if (Ancestor == Val) 1634 // Got to the top, all done! 1635 return Val; 1636 1637 // Move up one level in the expression. 1638 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1639 Ancestor = Ancestor->user_back(); 1640 } while (true); 1641 } 1642 1643 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1644 if (!isa<VectorType>(Inst.getType())) 1645 return nullptr; 1646 1647 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1648 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1649 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1650 cast<VectorType>(Inst.getType())->getElementCount()); 1651 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1652 cast<VectorType>(Inst.getType())->getElementCount()); 1653 1654 // If both operands of the binop are vector concatenations, then perform the 1655 // narrow binop on each pair of the source operands followed by concatenation 1656 // of the results. 1657 Value *L0, *L1, *R0, *R1; 1658 ArrayRef<int> Mask; 1659 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1660 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1661 LHS->hasOneUse() && RHS->hasOneUse() && 1662 cast<ShuffleVectorInst>(LHS)->isConcat() && 1663 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1664 // This transform does not have the speculative execution constraint as 1665 // below because the shuffle is a concatenation. The new binops are 1666 // operating on exactly the same elements as the existing binop. 1667 // TODO: We could ease the mask requirement to allow different undef lanes, 1668 // but that requires an analysis of the binop-with-undef output value. 1669 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1670 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1671 BO->copyIRFlags(&Inst); 1672 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1673 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1674 BO->copyIRFlags(&Inst); 1675 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1676 } 1677 1678 // It may not be safe to reorder shuffles and things like div, urem, etc. 1679 // because we may trap when executing those ops on unknown vector elements. 1680 // See PR20059. 1681 if (!isSafeToSpeculativelyExecute(&Inst)) 1682 return nullptr; 1683 1684 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1685 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1686 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1687 BO->copyIRFlags(&Inst); 1688 return new ShuffleVectorInst(XY, M); 1689 }; 1690 1691 // If both arguments of the binary operation are shuffles that use the same 1692 // mask and shuffle within a single vector, move the shuffle after the binop. 1693 Value *V1, *V2; 1694 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1695 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1696 V1->getType() == V2->getType() && 1697 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1698 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1699 return createBinOpShuffle(V1, V2, Mask); 1700 } 1701 1702 // If both arguments of a commutative binop are select-shuffles that use the 1703 // same mask with commuted operands, the shuffles are unnecessary. 1704 if (Inst.isCommutative() && 1705 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1706 match(RHS, 1707 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1708 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1709 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1710 // TODO: Allow shuffles that contain undefs in the mask? 1711 // That is legal, but it reduces undef knowledge. 1712 // TODO: Allow arbitrary shuffles by shuffling after binop? 1713 // That might be legal, but we have to deal with poison. 1714 if (LShuf->isSelect() && 1715 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1716 RShuf->isSelect() && 1717 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1718 // Example: 1719 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1720 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1721 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1722 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1723 NewBO->copyIRFlags(&Inst); 1724 return NewBO; 1725 } 1726 } 1727 1728 // If one argument is a shuffle within one vector and the other is a constant, 1729 // try moving the shuffle after the binary operation. This canonicalization 1730 // intends to move shuffles closer to other shuffles and binops closer to 1731 // other binops, so they can be folded. It may also enable demanded elements 1732 // transforms. 1733 Constant *C; 1734 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1735 if (InstVTy && 1736 match(&Inst, 1737 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1738 m_ImmConstant(C))) && 1739 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1740 InstVTy->getNumElements()) { 1741 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1742 "Shuffle should not change scalar type"); 1743 1744 // Find constant NewC that has property: 1745 // shuffle(NewC, ShMask) = C 1746 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1747 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1748 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1749 bool ConstOp1 = isa<Constant>(RHS); 1750 ArrayRef<int> ShMask = Mask; 1751 unsigned SrcVecNumElts = 1752 cast<FixedVectorType>(V1->getType())->getNumElements(); 1753 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1754 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1755 bool MayChange = true; 1756 unsigned NumElts = InstVTy->getNumElements(); 1757 for (unsigned I = 0; I < NumElts; ++I) { 1758 Constant *CElt = C->getAggregateElement(I); 1759 if (ShMask[I] >= 0) { 1760 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1761 Constant *NewCElt = NewVecC[ShMask[I]]; 1762 // Bail out if: 1763 // 1. The constant vector contains a constant expression. 1764 // 2. The shuffle needs an element of the constant vector that can't 1765 // be mapped to a new constant vector. 1766 // 3. This is a widening shuffle that copies elements of V1 into the 1767 // extended elements (extending with undef is allowed). 1768 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1769 I >= SrcVecNumElts) { 1770 MayChange = false; 1771 break; 1772 } 1773 NewVecC[ShMask[I]] = CElt; 1774 } 1775 // If this is a widening shuffle, we must be able to extend with undef 1776 // elements. If the original binop does not produce an undef in the high 1777 // lanes, then this transform is not safe. 1778 // Similarly for undef lanes due to the shuffle mask, we can only 1779 // transform binops that preserve undef. 1780 // TODO: We could shuffle those non-undef constant values into the 1781 // result by using a constant vector (rather than an undef vector) 1782 // as operand 1 of the new binop, but that might be too aggressive 1783 // for target-independent shuffle creation. 1784 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1785 Constant *MaybeUndef = 1786 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1787 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1788 if (!match(MaybeUndef, m_Undef())) { 1789 MayChange = false; 1790 break; 1791 } 1792 } 1793 } 1794 if (MayChange) { 1795 Constant *NewC = ConstantVector::get(NewVecC); 1796 // It may not be safe to execute a binop on a vector with undef elements 1797 // because the entire instruction can be folded to undef or create poison 1798 // that did not exist in the original code. 1799 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1800 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1801 1802 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1803 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1804 Value *NewLHS = ConstOp1 ? V1 : NewC; 1805 Value *NewRHS = ConstOp1 ? NewC : V1; 1806 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1807 } 1808 } 1809 1810 // Try to reassociate to sink a splat shuffle after a binary operation. 1811 if (Inst.isAssociative() && Inst.isCommutative()) { 1812 // Canonicalize shuffle operand as LHS. 1813 if (isa<ShuffleVectorInst>(RHS)) 1814 std::swap(LHS, RHS); 1815 1816 Value *X; 1817 ArrayRef<int> MaskC; 1818 int SplatIndex; 1819 Value *Y, *OtherOp; 1820 if (!match(LHS, 1821 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1822 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1823 X->getType() != Inst.getType() || 1824 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1825 return nullptr; 1826 1827 // FIXME: This may not be safe if the analysis allows undef elements. By 1828 // moving 'Y' before the splat shuffle, we are implicitly assuming 1829 // that it is not undef/poison at the splat index. 1830 if (isSplatValue(OtherOp, SplatIndex)) { 1831 std::swap(Y, OtherOp); 1832 } else if (!isSplatValue(Y, SplatIndex)) { 1833 return nullptr; 1834 } 1835 1836 // X and Y are splatted values, so perform the binary operation on those 1837 // values followed by a splat followed by the 2nd binary operation: 1838 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1839 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1840 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1841 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1842 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1843 1844 // Intersect FMF on both new binops. Other (poison-generating) flags are 1845 // dropped to be safe. 1846 if (isa<FPMathOperator>(R)) { 1847 R->copyFastMathFlags(&Inst); 1848 R->andIRFlags(RHS); 1849 } 1850 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1851 NewInstBO->copyIRFlags(R); 1852 return R; 1853 } 1854 1855 return nullptr; 1856 } 1857 1858 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1859 /// of a value. This requires a potentially expensive known bits check to make 1860 /// sure the narrow op does not overflow. 1861 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1862 // We need at least one extended operand. 1863 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1864 1865 // If this is a sub, we swap the operands since we always want an extension 1866 // on the RHS. The LHS can be an extension or a constant. 1867 if (BO.getOpcode() == Instruction::Sub) 1868 std::swap(Op0, Op1); 1869 1870 Value *X; 1871 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1872 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1873 return nullptr; 1874 1875 // If both operands are the same extension from the same source type and we 1876 // can eliminate at least one (hasOneUse), this might work. 1877 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1878 Value *Y; 1879 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1880 cast<Operator>(Op1)->getOpcode() == CastOpc && 1881 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1882 // If that did not match, see if we have a suitable constant operand. 1883 // Truncating and extending must produce the same constant. 1884 Constant *WideC; 1885 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1886 return nullptr; 1887 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1888 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1889 return nullptr; 1890 Y = NarrowC; 1891 } 1892 1893 // Swap back now that we found our operands. 1894 if (BO.getOpcode() == Instruction::Sub) 1895 std::swap(X, Y); 1896 1897 // Both operands have narrow versions. Last step: the math must not overflow 1898 // in the narrow width. 1899 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1900 return nullptr; 1901 1902 // bo (ext X), (ext Y) --> ext (bo X, Y) 1903 // bo (ext X), C --> ext (bo X, C') 1904 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1905 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1906 if (IsSext) 1907 NewBinOp->setHasNoSignedWrap(); 1908 else 1909 NewBinOp->setHasNoUnsignedWrap(); 1910 } 1911 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1912 } 1913 1914 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1915 // At least one GEP must be inbounds. 1916 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1917 return false; 1918 1919 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1920 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1921 } 1922 1923 /// Thread a GEP operation with constant indices through the constant true/false 1924 /// arms of a select. 1925 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1926 InstCombiner::BuilderTy &Builder) { 1927 if (!GEP.hasAllConstantIndices()) 1928 return nullptr; 1929 1930 Instruction *Sel; 1931 Value *Cond; 1932 Constant *TrueC, *FalseC; 1933 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1934 !match(Sel, 1935 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1936 return nullptr; 1937 1938 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1939 // Propagate 'inbounds' and metadata from existing instructions. 1940 // Note: using IRBuilder to create the constants for efficiency. 1941 SmallVector<Value *, 4> IndexC(GEP.indices()); 1942 bool IsInBounds = GEP.isInBounds(); 1943 Type *Ty = GEP.getSourceElementType(); 1944 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC) 1945 : Builder.CreateGEP(Ty, TrueC, IndexC); 1946 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC) 1947 : Builder.CreateGEP(Ty, FalseC, IndexC); 1948 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1949 } 1950 1951 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 1952 GEPOperator *Src) { 1953 // Combine Indices - If the source pointer to this getelementptr instruction 1954 // is a getelementptr instruction with matching element type, combine the 1955 // indices of the two getelementptr instructions into a single instruction. 1956 if (Src->getResultElementType() != GEP.getSourceElementType()) 1957 return nullptr; 1958 1959 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1960 return nullptr; 1961 1962 if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1963 Src->hasOneUse()) { 1964 Value *GO1 = GEP.getOperand(1); 1965 Value *SO1 = Src->getOperand(1); 1966 1967 if (LI) { 1968 // Try to reassociate loop invariant GEP chains to enable LICM. 1969 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1970 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1971 // invariant: this breaks the dependence between GEPs and allows LICM 1972 // to hoist the invariant part out of the loop. 1973 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1974 // We have to be careful here. 1975 // We have something like: 1976 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1977 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1978 // If we just swap idx & idx2 then we could inadvertantly 1979 // change %src from a vector to a scalar, or vice versa. 1980 // Cases: 1981 // 1) %base a scalar & idx a scalar & idx2 a vector 1982 // => Swapping idx & idx2 turns %src into a vector type. 1983 // 2) %base a scalar & idx a vector & idx2 a scalar 1984 // => Swapping idx & idx2 turns %src in a scalar type 1985 // 3) %base, %idx, and %idx2 are scalars 1986 // => %src & %gep are scalars 1987 // => swapping idx & idx2 is safe 1988 // 4) %base a vector 1989 // => %src is a vector 1990 // => swapping idx & idx2 is safe. 1991 auto *SO0 = Src->getOperand(0); 1992 auto *SO0Ty = SO0->getType(); 1993 if (!isa<VectorType>(GEP.getType()) || // case 3 1994 isa<VectorType>(SO0Ty)) { // case 4 1995 Src->setOperand(1, GO1); 1996 GEP.setOperand(1, SO1); 1997 return &GEP; 1998 } else { 1999 // Case 1 or 2 2000 // -- have to recreate %src & %gep 2001 // put NewSrc at same location as %src 2002 Builder.SetInsertPoint(cast<Instruction>(Src)); 2003 Value *NewSrc = Builder.CreateGEP( 2004 GEP.getSourceElementType(), SO0, GO1, Src->getName()); 2005 // Propagate 'inbounds' if the new source was not constant-folded. 2006 if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc)) 2007 NewSrcGEPI->setIsInBounds(Src->isInBounds()); 2008 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 2009 GEP.getSourceElementType(), NewSrc, {SO1}); 2010 NewGEP->setIsInBounds(GEP.isInBounds()); 2011 return NewGEP; 2012 } 2013 } 2014 } 2015 } 2016 } 2017 2018 // Note that if our source is a gep chain itself then we wait for that 2019 // chain to be resolved before we perform this transformation. This 2020 // avoids us creating a TON of code in some cases. 2021 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 2022 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 2023 return nullptr; // Wait until our source is folded to completion. 2024 2025 SmallVector<Value*, 8> Indices; 2026 2027 // Find out whether the last index in the source GEP is a sequential idx. 2028 bool EndsWithSequential = false; 2029 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2030 I != E; ++I) 2031 EndsWithSequential = I.isSequential(); 2032 2033 // Can we combine the two pointer arithmetics offsets? 2034 if (EndsWithSequential) { 2035 // Replace: gep (gep %P, long B), long A, ... 2036 // With: T = long A+B; gep %P, T, ... 2037 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2038 Value *GO1 = GEP.getOperand(1); 2039 2040 // If they aren't the same type, then the input hasn't been processed 2041 // by the loop above yet (which canonicalizes sequential index types to 2042 // intptr_t). Just avoid transforming this until the input has been 2043 // normalized. 2044 if (SO1->getType() != GO1->getType()) 2045 return nullptr; 2046 2047 Value *Sum = 2048 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2049 // Only do the combine when we are sure the cost after the 2050 // merge is never more than that before the merge. 2051 if (Sum == nullptr) 2052 return nullptr; 2053 2054 // Update the GEP in place if possible. 2055 if (Src->getNumOperands() == 2) { 2056 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2057 replaceOperand(GEP, 0, Src->getOperand(0)); 2058 replaceOperand(GEP, 1, Sum); 2059 return &GEP; 2060 } 2061 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2062 Indices.push_back(Sum); 2063 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2064 } else if (isa<Constant>(*GEP.idx_begin()) && 2065 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2066 Src->getNumOperands() != 1) { 2067 // Otherwise we can do the fold if the first index of the GEP is a zero 2068 Indices.append(Src->op_begin()+1, Src->op_end()); 2069 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2070 } 2071 2072 if (!Indices.empty()) 2073 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2074 ? GetElementPtrInst::CreateInBounds( 2075 Src->getSourceElementType(), Src->getOperand(0), Indices, 2076 GEP.getName()) 2077 : GetElementPtrInst::Create(Src->getSourceElementType(), 2078 Src->getOperand(0), Indices, 2079 GEP.getName()); 2080 2081 return nullptr; 2082 } 2083 2084 // Note that we may have also stripped an address space cast in between. 2085 Instruction *InstCombinerImpl::visitGEPOfBitcast(BitCastInst *BCI, 2086 GetElementPtrInst &GEP) { 2087 // With opaque pointers, there is no pointer element type we can use to 2088 // adjust the GEP type. 2089 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2090 if (SrcType->isOpaque()) 2091 return nullptr; 2092 2093 Type *GEPEltType = GEP.getSourceElementType(); 2094 Type *SrcEltType = SrcType->getNonOpaquePointerElementType(); 2095 Value *SrcOp = BCI->getOperand(0); 2096 2097 // GEP directly using the source operand if this GEP is accessing an element 2098 // of a bitcasted pointer to vector or array of the same dimensions: 2099 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2100 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2101 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2102 const DataLayout &DL) { 2103 auto *VecVTy = cast<FixedVectorType>(VecTy); 2104 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2105 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2106 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2107 }; 2108 if (GEP.getNumOperands() == 3 && 2109 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2110 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2111 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2112 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2113 2114 // Create a new GEP here, as using `setOperand()` followed by 2115 // `setSourceElementType()` won't actually update the type of the 2116 // existing GEP Value. Causing issues if this Value is accessed when 2117 // constructing an AddrSpaceCastInst 2118 SmallVector<Value *, 8> Indices(GEP.indices()); 2119 Value *NGEP = GEP.isInBounds() 2120 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, Indices) 2121 : Builder.CreateGEP(SrcEltType, SrcOp, Indices); 2122 NGEP->takeName(&GEP); 2123 2124 // Preserve GEP address space to satisfy users 2125 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2126 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2127 2128 return replaceInstUsesWith(GEP, NGEP); 2129 } 2130 2131 // See if we can simplify: 2132 // X = bitcast A* to B* 2133 // Y = gep X, <...constant indices...> 2134 // into a gep of the original struct. This is important for SROA and alias 2135 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2136 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEP.getType()); 2137 APInt Offset(OffsetBits, 0); 2138 2139 // If the bitcast argument is an allocation, The bitcast is for convertion 2140 // to actual type of allocation. Removing such bitcasts, results in having 2141 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2142 // struct or array hierarchy. 2143 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2144 // a better chance to succeed. 2145 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2146 !isAllocationFn(SrcOp, &TLI)) { 2147 // If this GEP instruction doesn't move the pointer, just replace the GEP 2148 // with a bitcast of the real input to the dest type. 2149 if (!Offset) { 2150 // If the bitcast is of an allocation, and the allocation will be 2151 // converted to match the type of the cast, don't touch this. 2152 if (isa<AllocaInst>(SrcOp)) { 2153 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2154 if (Instruction *I = visitBitCast(*BCI)) { 2155 if (I != BCI) { 2156 I->takeName(BCI); 2157 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2158 replaceInstUsesWith(*BCI, I); 2159 } 2160 return &GEP; 2161 } 2162 } 2163 2164 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2165 return new AddrSpaceCastInst(SrcOp, GEP.getType()); 2166 return new BitCastInst(SrcOp, GEP.getType()); 2167 } 2168 2169 // Otherwise, if the offset is non-zero, we need to find out if there is a 2170 // field at Offset in 'A's type. If so, we can pull the cast through the 2171 // GEP. 2172 SmallVector<Value*, 8> NewIndices; 2173 if (findElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices, DL)) { 2174 Value *NGEP = 2175 GEP.isInBounds() 2176 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2177 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2178 2179 if (NGEP->getType() == GEP.getType()) 2180 return replaceInstUsesWith(GEP, NGEP); 2181 NGEP->takeName(&GEP); 2182 2183 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2184 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2185 return new BitCastInst(NGEP, GEP.getType()); 2186 } 2187 } 2188 2189 return nullptr; 2190 } 2191 2192 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2193 Value *PtrOp = GEP.getOperand(0); 2194 SmallVector<Value *, 8> Indices(GEP.indices()); 2195 Type *GEPType = GEP.getType(); 2196 Type *GEPEltType = GEP.getSourceElementType(); 2197 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 2198 if (Value *V = SimplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2199 SQ.getWithInstruction(&GEP))) 2200 return replaceInstUsesWith(GEP, V); 2201 2202 // For vector geps, use the generic demanded vector support. 2203 // Skip if GEP return type is scalable. The number of elements is unknown at 2204 // compile-time. 2205 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2206 auto VWidth = GEPFVTy->getNumElements(); 2207 APInt UndefElts(VWidth, 0); 2208 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2209 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2210 UndefElts)) { 2211 if (V != &GEP) 2212 return replaceInstUsesWith(GEP, V); 2213 return &GEP; 2214 } 2215 2216 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2217 // possible (decide on canonical form for pointer broadcast), 3) exploit 2218 // undef elements to decrease demanded bits 2219 } 2220 2221 // Eliminate unneeded casts for indices, and replace indices which displace 2222 // by multiples of a zero size type with zero. 2223 bool MadeChange = false; 2224 2225 // Index width may not be the same width as pointer width. 2226 // Data layout chooses the right type based on supported integer types. 2227 Type *NewScalarIndexTy = 2228 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2229 2230 gep_type_iterator GTI = gep_type_begin(GEP); 2231 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2232 ++I, ++GTI) { 2233 // Skip indices into struct types. 2234 if (GTI.isStruct()) 2235 continue; 2236 2237 Type *IndexTy = (*I)->getType(); 2238 Type *NewIndexType = 2239 IndexTy->isVectorTy() 2240 ? VectorType::get(NewScalarIndexTy, 2241 cast<VectorType>(IndexTy)->getElementCount()) 2242 : NewScalarIndexTy; 2243 2244 // If the element type has zero size then any index over it is equivalent 2245 // to an index of zero, so replace it with zero if it is not zero already. 2246 Type *EltTy = GTI.getIndexedType(); 2247 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2248 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2249 *I = Constant::getNullValue(NewIndexType); 2250 MadeChange = true; 2251 } 2252 2253 if (IndexTy != NewIndexType) { 2254 // If we are using a wider index than needed for this platform, shrink 2255 // it to what we need. If narrower, sign-extend it to what we need. 2256 // This explicit cast can make subsequent optimizations more obvious. 2257 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2258 MadeChange = true; 2259 } 2260 } 2261 if (MadeChange) 2262 return &GEP; 2263 2264 // Check to see if the inputs to the PHI node are getelementptr instructions. 2265 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2266 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2267 if (!Op1) 2268 return nullptr; 2269 2270 // Don't fold a GEP into itself through a PHI node. This can only happen 2271 // through the back-edge of a loop. Folding a GEP into itself means that 2272 // the value of the previous iteration needs to be stored in the meantime, 2273 // thus requiring an additional register variable to be live, but not 2274 // actually achieving anything (the GEP still needs to be executed once per 2275 // loop iteration). 2276 if (Op1 == &GEP) 2277 return nullptr; 2278 2279 int DI = -1; 2280 2281 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2282 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2283 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 2284 return nullptr; 2285 2286 // As for Op1 above, don't try to fold a GEP into itself. 2287 if (Op2 == &GEP) 2288 return nullptr; 2289 2290 // Keep track of the type as we walk the GEP. 2291 Type *CurTy = nullptr; 2292 2293 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2294 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2295 return nullptr; 2296 2297 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2298 if (DI == -1) { 2299 // We have not seen any differences yet in the GEPs feeding the 2300 // PHI yet, so we record this one if it is allowed to be a 2301 // variable. 2302 2303 // The first two arguments can vary for any GEP, the rest have to be 2304 // static for struct slots 2305 if (J > 1) { 2306 assert(CurTy && "No current type?"); 2307 if (CurTy->isStructTy()) 2308 return nullptr; 2309 } 2310 2311 DI = J; 2312 } else { 2313 // The GEP is different by more than one input. While this could be 2314 // extended to support GEPs that vary by more than one variable it 2315 // doesn't make sense since it greatly increases the complexity and 2316 // would result in an R+R+R addressing mode which no backend 2317 // directly supports and would need to be broken into several 2318 // simpler instructions anyway. 2319 return nullptr; 2320 } 2321 } 2322 2323 // Sink down a layer of the type for the next iteration. 2324 if (J > 0) { 2325 if (J == 1) { 2326 CurTy = Op1->getSourceElementType(); 2327 } else { 2328 CurTy = 2329 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2330 } 2331 } 2332 } 2333 } 2334 2335 // If not all GEPs are identical we'll have to create a new PHI node. 2336 // Check that the old PHI node has only one use so that it will get 2337 // removed. 2338 if (DI != -1 && !PN->hasOneUse()) 2339 return nullptr; 2340 2341 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2342 if (DI == -1) { 2343 // All the GEPs feeding the PHI are identical. Clone one down into our 2344 // BB so that it can be merged with the current GEP. 2345 } else { 2346 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2347 // into the current block so it can be merged, and create a new PHI to 2348 // set that index. 2349 PHINode *NewPN; 2350 { 2351 IRBuilderBase::InsertPointGuard Guard(Builder); 2352 Builder.SetInsertPoint(PN); 2353 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2354 PN->getNumOperands()); 2355 } 2356 2357 for (auto &I : PN->operands()) 2358 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2359 PN->getIncomingBlock(I)); 2360 2361 NewGEP->setOperand(DI, NewPN); 2362 } 2363 2364 GEP.getParent()->getInstList().insert( 2365 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2366 replaceOperand(GEP, 0, NewGEP); 2367 PtrOp = NewGEP; 2368 } 2369 2370 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2371 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2372 return I; 2373 2374 // Skip if GEP source element type is scalable. The type alloc size is unknown 2375 // at compile-time. 2376 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2377 unsigned AS = GEP.getPointerAddressSpace(); 2378 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2379 DL.getIndexSizeInBits(AS)) { 2380 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2381 2382 bool Matched = false; 2383 uint64_t C; 2384 Value *V = nullptr; 2385 if (TyAllocSize == 1) { 2386 V = GEP.getOperand(1); 2387 Matched = true; 2388 } else if (match(GEP.getOperand(1), 2389 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2390 if (TyAllocSize == 1ULL << C) 2391 Matched = true; 2392 } else if (match(GEP.getOperand(1), 2393 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2394 if (TyAllocSize == C) 2395 Matched = true; 2396 } 2397 2398 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2399 // only if both point to the same underlying object (otherwise provenance 2400 // is not necessarily retained). 2401 Value *Y; 2402 Value *X = GEP.getOperand(0); 2403 if (Matched && 2404 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2405 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2406 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2407 } 2408 } 2409 2410 // We do not handle pointer-vector geps here. 2411 if (GEPType->isVectorTy()) 2412 return nullptr; 2413 2414 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2415 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2416 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2417 2418 // TODO: The basic approach of these folds is not compatible with opaque 2419 // pointers, because we can't use bitcasts as a hint for a desirable GEP 2420 // type. Instead, we should perform canonicalization directly on the GEP 2421 // type. For now, skip these. 2422 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) { 2423 bool HasZeroPointerIndex = false; 2424 Type *StrippedPtrEltTy = StrippedPtrTy->getNonOpaquePointerElementType(); 2425 2426 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2427 HasZeroPointerIndex = C->isZero(); 2428 2429 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2430 // into : GEP [10 x i8]* X, i32 0, ... 2431 // 2432 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2433 // into : GEP i8* X, ... 2434 // 2435 // This occurs when the program declares an array extern like "int X[];" 2436 if (HasZeroPointerIndex) { 2437 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2438 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2439 if (CATy->getElementType() == StrippedPtrEltTy) { 2440 // -> GEP i8* X, ... 2441 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2442 GetElementPtrInst *Res = GetElementPtrInst::Create( 2443 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2444 Res->setIsInBounds(GEP.isInBounds()); 2445 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2446 return Res; 2447 // Insert Res, and create an addrspacecast. 2448 // e.g., 2449 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2450 // -> 2451 // %0 = GEP i8 addrspace(1)* X, ... 2452 // addrspacecast i8 addrspace(1)* %0 to i8* 2453 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2454 } 2455 2456 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2457 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2458 if (CATy->getElementType() == XATy->getElementType()) { 2459 // -> GEP [10 x i8]* X, i32 0, ... 2460 // At this point, we know that the cast source type is a pointer 2461 // to an array of the same type as the destination pointer 2462 // array. Because the array type is never stepped over (there 2463 // is a leading zero) we can fold the cast into this GEP. 2464 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2465 GEP.setSourceElementType(XATy); 2466 return replaceOperand(GEP, 0, StrippedPtr); 2467 } 2468 // Cannot replace the base pointer directly because StrippedPtr's 2469 // address space is different. Instead, create a new GEP followed by 2470 // an addrspacecast. 2471 // e.g., 2472 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2473 // i32 0, ... 2474 // -> 2475 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2476 // addrspacecast i8 addrspace(1)* %0 to i8* 2477 SmallVector<Value *, 8> Idx(GEP.indices()); 2478 Value *NewGEP = 2479 GEP.isInBounds() 2480 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2481 Idx, GEP.getName()) 2482 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2483 GEP.getName()); 2484 return new AddrSpaceCastInst(NewGEP, GEPType); 2485 } 2486 } 2487 } 2488 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2489 // Skip if GEP source element type is scalable. The type alloc size is 2490 // unknown at compile-time. 2491 // Transform things like: %t = getelementptr i32* 2492 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2493 // x i32]* %str, i32 0, i32 %V; bitcast 2494 if (StrippedPtrEltTy->isArrayTy() && 2495 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2496 DL.getTypeAllocSize(GEPEltType)) { 2497 Type *IdxType = DL.getIndexType(GEPType); 2498 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2499 Value *NewGEP = 2500 GEP.isInBounds() 2501 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2502 GEP.getName()) 2503 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2504 GEP.getName()); 2505 2506 // V and GEP are both pointer types --> BitCast 2507 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2508 } 2509 2510 // Transform things like: 2511 // %V = mul i64 %N, 4 2512 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2513 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2514 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2515 // Check that changing the type amounts to dividing the index by a scale 2516 // factor. 2517 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2518 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2519 if (ResSize && SrcSize % ResSize == 0) { 2520 Value *Idx = GEP.getOperand(1); 2521 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2522 uint64_t Scale = SrcSize / ResSize; 2523 2524 // Earlier transforms ensure that the index has the right type 2525 // according to Data Layout, which considerably simplifies the 2526 // logic by eliminating implicit casts. 2527 assert(Idx->getType() == DL.getIndexType(GEPType) && 2528 "Index type does not match the Data Layout preferences"); 2529 2530 bool NSW; 2531 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2532 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2533 // If the multiplication NewIdx * Scale may overflow then the new 2534 // GEP may not be "inbounds". 2535 Value *NewGEP = 2536 GEP.isInBounds() && NSW 2537 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2538 NewIdx, GEP.getName()) 2539 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2540 GEP.getName()); 2541 2542 // The NewGEP must be pointer typed, so must the old one -> BitCast 2543 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2544 GEPType); 2545 } 2546 } 2547 } 2548 2549 // Similarly, transform things like: 2550 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2551 // (where tmp = 8*tmp2) into: 2552 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2553 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2554 StrippedPtrEltTy->isArrayTy()) { 2555 // Check that changing to the array element type amounts to dividing the 2556 // index by a scale factor. 2557 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2558 uint64_t ArrayEltSize = 2559 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2560 .getFixedSize(); 2561 if (ResSize && ArrayEltSize % ResSize == 0) { 2562 Value *Idx = GEP.getOperand(1); 2563 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2564 uint64_t Scale = ArrayEltSize / ResSize; 2565 2566 // Earlier transforms ensure that the index has the right type 2567 // according to the Data Layout, which considerably simplifies 2568 // the logic by eliminating implicit casts. 2569 assert(Idx->getType() == DL.getIndexType(GEPType) && 2570 "Index type does not match the Data Layout preferences"); 2571 2572 bool NSW; 2573 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2574 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2575 // If the multiplication NewIdx * Scale may overflow then the new 2576 // GEP may not be "inbounds". 2577 Type *IndTy = DL.getIndexType(GEPType); 2578 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2579 2580 Value *NewGEP = 2581 GEP.isInBounds() && NSW 2582 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2583 Off, GEP.getName()) 2584 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2585 GEP.getName()); 2586 // The NewGEP must be pointer typed, so must the old one -> BitCast 2587 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2588 GEPType); 2589 } 2590 } 2591 } 2592 } 2593 } 2594 2595 // addrspacecast between types is canonicalized as a bitcast, then an 2596 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2597 // through the addrspacecast. 2598 Value *ASCStrippedPtrOp = PtrOp; 2599 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2600 // X = bitcast A addrspace(1)* to B addrspace(1)* 2601 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2602 // Z = gep Y, <...constant indices...> 2603 // Into an addrspacecasted GEP of the struct. 2604 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2605 ASCStrippedPtrOp = BC; 2606 } 2607 2608 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) 2609 if (Instruction *I = visitGEPOfBitcast(BCI, GEP)) 2610 return I; 2611 2612 if (!GEP.isInBounds()) { 2613 unsigned IdxWidth = 2614 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2615 APInt BasePtrOffset(IdxWidth, 0); 2616 Value *UnderlyingPtrOp = 2617 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2618 BasePtrOffset); 2619 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2620 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2621 BasePtrOffset.isNonNegative()) { 2622 APInt AllocSize( 2623 IdxWidth, 2624 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2625 if (BasePtrOffset.ule(AllocSize)) { 2626 return GetElementPtrInst::CreateInBounds( 2627 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2628 } 2629 } 2630 } 2631 } 2632 2633 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2634 return R; 2635 2636 return nullptr; 2637 } 2638 2639 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2640 Instruction *AI) { 2641 if (isa<ConstantPointerNull>(V)) 2642 return true; 2643 if (auto *LI = dyn_cast<LoadInst>(V)) 2644 return isa<GlobalVariable>(LI->getPointerOperand()); 2645 // Two distinct allocations will never be equal. 2646 return isAllocLikeFn(V, &TLI) && V != AI; 2647 } 2648 2649 /// Given a call CB which uses an address UsedV, return true if we can prove the 2650 /// call's only possible effect is storing to V. 2651 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2652 const TargetLibraryInfo &TLI) { 2653 if (!CB.use_empty()) 2654 // TODO: add recursion if returned attribute is present 2655 return false; 2656 2657 if (CB.isTerminator()) 2658 // TODO: remove implementation restriction 2659 return false; 2660 2661 if (!CB.willReturn() || !CB.doesNotThrow()) 2662 return false; 2663 2664 // If the only possible side effect of the call is writing to the alloca, 2665 // and the result isn't used, we can safely remove any reads implied by the 2666 // call including those which might read the alloca itself. 2667 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2668 return Dest && Dest->Ptr == UsedV; 2669 } 2670 2671 static bool isAllocSiteRemovable(Instruction *AI, 2672 SmallVectorImpl<WeakTrackingVH> &Users, 2673 const TargetLibraryInfo &TLI) { 2674 SmallVector<Instruction*, 4> Worklist; 2675 Worklist.push_back(AI); 2676 2677 do { 2678 Instruction *PI = Worklist.pop_back_val(); 2679 for (User *U : PI->users()) { 2680 Instruction *I = cast<Instruction>(U); 2681 switch (I->getOpcode()) { 2682 default: 2683 // Give up the moment we see something we can't handle. 2684 return false; 2685 2686 case Instruction::AddrSpaceCast: 2687 case Instruction::BitCast: 2688 case Instruction::GetElementPtr: 2689 Users.emplace_back(I); 2690 Worklist.push_back(I); 2691 continue; 2692 2693 case Instruction::ICmp: { 2694 ICmpInst *ICI = cast<ICmpInst>(I); 2695 // We can fold eq/ne comparisons with null to false/true, respectively. 2696 // We also fold comparisons in some conditions provided the alloc has 2697 // not escaped (see isNeverEqualToUnescapedAlloc). 2698 if (!ICI->isEquality()) 2699 return false; 2700 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2701 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2702 return false; 2703 Users.emplace_back(I); 2704 continue; 2705 } 2706 2707 case Instruction::Call: 2708 // Ignore no-op and store intrinsics. 2709 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2710 switch (II->getIntrinsicID()) { 2711 default: 2712 return false; 2713 2714 case Intrinsic::memmove: 2715 case Intrinsic::memcpy: 2716 case Intrinsic::memset: { 2717 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2718 if (MI->isVolatile() || MI->getRawDest() != PI) 2719 return false; 2720 LLVM_FALLTHROUGH; 2721 } 2722 case Intrinsic::assume: 2723 case Intrinsic::invariant_start: 2724 case Intrinsic::invariant_end: 2725 case Intrinsic::lifetime_start: 2726 case Intrinsic::lifetime_end: 2727 case Intrinsic::objectsize: 2728 Users.emplace_back(I); 2729 continue; 2730 case Intrinsic::launder_invariant_group: 2731 case Intrinsic::strip_invariant_group: 2732 Users.emplace_back(I); 2733 Worklist.push_back(I); 2734 continue; 2735 } 2736 } 2737 2738 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2739 Users.emplace_back(I); 2740 continue; 2741 } 2742 2743 if (isFreeCall(I, &TLI)) { 2744 Users.emplace_back(I); 2745 continue; 2746 } 2747 2748 if (isReallocLikeFn(I, &TLI)) { 2749 Users.emplace_back(I); 2750 Worklist.push_back(I); 2751 continue; 2752 } 2753 2754 return false; 2755 2756 case Instruction::Store: { 2757 StoreInst *SI = cast<StoreInst>(I); 2758 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2759 return false; 2760 Users.emplace_back(I); 2761 continue; 2762 } 2763 } 2764 llvm_unreachable("missing a return?"); 2765 } 2766 } while (!Worklist.empty()); 2767 return true; 2768 } 2769 2770 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2771 assert(isa<AllocaInst>(MI) || isAllocRemovable(&cast<CallBase>(MI), &TLI)); 2772 2773 // If we have a malloc call which is only used in any amount of comparisons to 2774 // null and free calls, delete the calls and replace the comparisons with true 2775 // or false as appropriate. 2776 2777 // This is based on the principle that we can substitute our own allocation 2778 // function (which will never return null) rather than knowledge of the 2779 // specific function being called. In some sense this can change the permitted 2780 // outputs of a program (when we convert a malloc to an alloca, the fact that 2781 // the allocation is now on the stack is potentially visible, for example), 2782 // but we believe in a permissible manner. 2783 SmallVector<WeakTrackingVH, 64> Users; 2784 2785 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2786 // before each store. 2787 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2788 std::unique_ptr<DIBuilder> DIB; 2789 if (isa<AllocaInst>(MI)) { 2790 findDbgUsers(DVIs, &MI); 2791 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2792 } 2793 2794 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2795 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2796 // Lowering all @llvm.objectsize calls first because they may 2797 // use a bitcast/GEP of the alloca we are removing. 2798 if (!Users[i]) 2799 continue; 2800 2801 Instruction *I = cast<Instruction>(&*Users[i]); 2802 2803 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2804 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2805 Value *Result = 2806 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2807 replaceInstUsesWith(*I, Result); 2808 eraseInstFromFunction(*I); 2809 Users[i] = nullptr; // Skip examining in the next loop. 2810 } 2811 } 2812 } 2813 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2814 if (!Users[i]) 2815 continue; 2816 2817 Instruction *I = cast<Instruction>(&*Users[i]); 2818 2819 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2820 replaceInstUsesWith(*C, 2821 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2822 C->isFalseWhenEqual())); 2823 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2824 for (auto *DVI : DVIs) 2825 if (DVI->isAddressOfVariable()) 2826 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2827 } else { 2828 // Casts, GEP, or anything else: we're about to delete this instruction, 2829 // so it can not have any valid uses. 2830 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2831 } 2832 eraseInstFromFunction(*I); 2833 } 2834 2835 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2836 // Replace invoke with a NOP intrinsic to maintain the original CFG 2837 Module *M = II->getModule(); 2838 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2839 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2840 None, "", II->getParent()); 2841 } 2842 2843 // Remove debug intrinsics which describe the value contained within the 2844 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2845 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2846 // 2847 // ``` 2848 // define void @foo(i32 %0) { 2849 // %a = alloca i32 ; Deleted. 2850 // store i32 %0, i32* %a 2851 // dbg.value(i32 %0, "arg0") ; Not deleted. 2852 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2853 // call void @trivially_inlinable_no_op(i32* %a) 2854 // ret void 2855 // } 2856 // ``` 2857 // 2858 // This may not be required if we stop describing the contents of allocas 2859 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2860 // the LowerDbgDeclare utility. 2861 // 2862 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2863 // "arg0" dbg.value may be stale after the call. However, failing to remove 2864 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2865 for (auto *DVI : DVIs) 2866 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2867 DVI->eraseFromParent(); 2868 2869 return eraseInstFromFunction(MI); 2870 } 2871 return nullptr; 2872 } 2873 2874 /// Move the call to free before a NULL test. 2875 /// 2876 /// Check if this free is accessed after its argument has been test 2877 /// against NULL (property 0). 2878 /// If yes, it is legal to move this call in its predecessor block. 2879 /// 2880 /// The move is performed only if the block containing the call to free 2881 /// will be removed, i.e.: 2882 /// 1. it has only one predecessor P, and P has two successors 2883 /// 2. it contains the call, noops, and an unconditional branch 2884 /// 3. its successor is the same as its predecessor's successor 2885 /// 2886 /// The profitability is out-of concern here and this function should 2887 /// be called only if the caller knows this transformation would be 2888 /// profitable (e.g., for code size). 2889 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2890 const DataLayout &DL) { 2891 Value *Op = FI.getArgOperand(0); 2892 BasicBlock *FreeInstrBB = FI.getParent(); 2893 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2894 2895 // Validate part of constraint #1: Only one predecessor 2896 // FIXME: We can extend the number of predecessor, but in that case, we 2897 // would duplicate the call to free in each predecessor and it may 2898 // not be profitable even for code size. 2899 if (!PredBB) 2900 return nullptr; 2901 2902 // Validate constraint #2: Does this block contains only the call to 2903 // free, noops, and an unconditional branch? 2904 BasicBlock *SuccBB; 2905 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2906 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2907 return nullptr; 2908 2909 // If there are only 2 instructions in the block, at this point, 2910 // this is the call to free and unconditional. 2911 // If there are more than 2 instructions, check that they are noops 2912 // i.e., they won't hurt the performance of the generated code. 2913 if (FreeInstrBB->size() != 2) { 2914 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2915 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2916 continue; 2917 auto *Cast = dyn_cast<CastInst>(&Inst); 2918 if (!Cast || !Cast->isNoopCast(DL)) 2919 return nullptr; 2920 } 2921 } 2922 // Validate the rest of constraint #1 by matching on the pred branch. 2923 Instruction *TI = PredBB->getTerminator(); 2924 BasicBlock *TrueBB, *FalseBB; 2925 ICmpInst::Predicate Pred; 2926 if (!match(TI, m_Br(m_ICmp(Pred, 2927 m_CombineOr(m_Specific(Op), 2928 m_Specific(Op->stripPointerCasts())), 2929 m_Zero()), 2930 TrueBB, FalseBB))) 2931 return nullptr; 2932 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2933 return nullptr; 2934 2935 // Validate constraint #3: Ensure the null case just falls through. 2936 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2937 return nullptr; 2938 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2939 "Broken CFG: missing edge from predecessor to successor"); 2940 2941 // At this point, we know that everything in FreeInstrBB can be moved 2942 // before TI. 2943 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2944 if (&Instr == FreeInstrBBTerminator) 2945 break; 2946 Instr.moveBefore(TI); 2947 } 2948 assert(FreeInstrBB->size() == 1 && 2949 "Only the branch instruction should remain"); 2950 2951 // Now that we've moved the call to free before the NULL check, we have to 2952 // remove any attributes on its parameter that imply it's non-null, because 2953 // those attributes might have only been valid because of the NULL check, and 2954 // we can get miscompiles if we keep them. This is conservative if non-null is 2955 // also implied by something other than the NULL check, but it's guaranteed to 2956 // be correct, and the conservativeness won't matter in practice, since the 2957 // attributes are irrelevant for the call to free itself and the pointer 2958 // shouldn't be used after the call. 2959 AttributeList Attrs = FI.getAttributes(); 2960 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 2961 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 2962 if (Dereferenceable.isValid()) { 2963 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 2964 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 2965 Attribute::Dereferenceable); 2966 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 2967 } 2968 FI.setAttributes(Attrs); 2969 2970 return &FI; 2971 } 2972 2973 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 2974 Value *Op = FI.getArgOperand(0); 2975 2976 // free undef -> unreachable. 2977 if (isa<UndefValue>(Op)) { 2978 // Leave a marker since we can't modify the CFG here. 2979 CreateNonTerminatorUnreachable(&FI); 2980 return eraseInstFromFunction(FI); 2981 } 2982 2983 // If we have 'free null' delete the instruction. This can happen in stl code 2984 // when lots of inlining happens. 2985 if (isa<ConstantPointerNull>(Op)) 2986 return eraseInstFromFunction(FI); 2987 2988 // If we had free(realloc(...)) with no intervening uses, then eliminate the 2989 // realloc() entirely. 2990 if (CallInst *CI = dyn_cast<CallInst>(Op)) { 2991 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI)) { 2992 return eraseInstFromFunction( 2993 *replaceInstUsesWith(*CI, CI->getOperand(0))); 2994 } 2995 } 2996 2997 // If we optimize for code size, try to move the call to free before the null 2998 // test so that simplify cfg can remove the empty block and dead code 2999 // elimination the branch. I.e., helps to turn something like: 3000 // if (foo) free(foo); 3001 // into 3002 // free(foo); 3003 // 3004 // Note that we can only do this for 'free' and not for any flavor of 3005 // 'operator delete'; there is no 'operator delete' symbol for which we are 3006 // permitted to invent a call, even if we're passing in a null pointer. 3007 if (MinimizeSize) { 3008 LibFunc Func; 3009 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 3010 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 3011 return I; 3012 } 3013 3014 return nullptr; 3015 } 3016 3017 static bool isMustTailCall(Value *V) { 3018 if (auto *CI = dyn_cast<CallInst>(V)) 3019 return CI->isMustTailCall(); 3020 return false; 3021 } 3022 3023 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3024 if (RI.getNumOperands() == 0) // ret void 3025 return nullptr; 3026 3027 Value *ResultOp = RI.getOperand(0); 3028 Type *VTy = ResultOp->getType(); 3029 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 3030 return nullptr; 3031 3032 // Don't replace result of musttail calls. 3033 if (isMustTailCall(ResultOp)) 3034 return nullptr; 3035 3036 // There might be assume intrinsics dominating this return that completely 3037 // determine the value. If so, constant fold it. 3038 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 3039 if (Known.isConstant()) 3040 return replaceOperand(RI, 0, 3041 Constant::getIntegerValue(VTy, Known.getConstant())); 3042 3043 return nullptr; 3044 } 3045 3046 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 3047 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3048 // Try to remove the previous instruction if it must lead to unreachable. 3049 // This includes instructions like stores and "llvm.assume" that may not get 3050 // removed by simple dead code elimination. 3051 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3052 // While we theoretically can erase EH, that would result in a block that 3053 // used to start with an EH no longer starting with EH, which is invalid. 3054 // To make it valid, we'd need to fixup predecessors to no longer refer to 3055 // this block, but that changes CFG, which is not allowed in InstCombine. 3056 if (Prev->isEHPad()) 3057 return nullptr; // Can not drop any more instructions. We're done here. 3058 3059 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3060 return nullptr; // Can not drop any more instructions. We're done here. 3061 // Otherwise, this instruction can be freely erased, 3062 // even if it is not side-effect free. 3063 3064 // A value may still have uses before we process it here (for example, in 3065 // another unreachable block), so convert those to poison. 3066 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3067 eraseInstFromFunction(*Prev); 3068 } 3069 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 3070 // FIXME: recurse into unconditional predecessors? 3071 return nullptr; 3072 } 3073 3074 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3075 assert(BI.isUnconditional() && "Only for unconditional branches."); 3076 3077 // If this store is the second-to-last instruction in the basic block 3078 // (excluding debug info and bitcasts of pointers) and if the block ends with 3079 // an unconditional branch, try to move the store to the successor block. 3080 3081 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3082 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3083 return BBI->isDebugOrPseudoInst() || 3084 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3085 }; 3086 3087 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3088 do { 3089 if (BBI != FirstInstr) 3090 --BBI; 3091 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3092 3093 return dyn_cast<StoreInst>(BBI); 3094 }; 3095 3096 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3097 if (mergeStoreIntoSuccessor(*SI)) 3098 return &BI; 3099 3100 return nullptr; 3101 } 3102 3103 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3104 if (BI.isUnconditional()) 3105 return visitUnconditionalBranchInst(BI); 3106 3107 // Change br (not X), label True, label False to: br X, label False, True 3108 Value *X = nullptr; 3109 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 3110 !isa<Constant>(X)) { 3111 // Swap Destinations and condition... 3112 BI.swapSuccessors(); 3113 return replaceOperand(BI, 0, X); 3114 } 3115 3116 // If the condition is irrelevant, remove the use so that other 3117 // transforms on the condition become more effective. 3118 if (!isa<ConstantInt>(BI.getCondition()) && 3119 BI.getSuccessor(0) == BI.getSuccessor(1)) 3120 return replaceOperand( 3121 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 3122 3123 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3124 CmpInst::Predicate Pred; 3125 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 3126 m_BasicBlock(), m_BasicBlock())) && 3127 !isCanonicalPredicate(Pred)) { 3128 // Swap destinations and condition. 3129 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 3130 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 3131 BI.swapSuccessors(); 3132 Worklist.push(Cond); 3133 return &BI; 3134 } 3135 3136 return nullptr; 3137 } 3138 3139 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3140 Value *Cond = SI.getCondition(); 3141 Value *Op0; 3142 ConstantInt *AddRHS; 3143 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3144 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3145 for (auto Case : SI.cases()) { 3146 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3147 assert(isa<ConstantInt>(NewCase) && 3148 "Result of expression should be constant"); 3149 Case.setValue(cast<ConstantInt>(NewCase)); 3150 } 3151 return replaceOperand(SI, 0, Op0); 3152 } 3153 3154 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3155 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3156 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3157 3158 // Compute the number of leading bits we can ignore. 3159 // TODO: A better way to determine this would use ComputeNumSignBits(). 3160 for (auto &C : SI.cases()) { 3161 LeadingKnownZeros = std::min( 3162 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3163 LeadingKnownOnes = std::min( 3164 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3165 } 3166 3167 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3168 3169 // Shrink the condition operand if the new type is smaller than the old type. 3170 // But do not shrink to a non-standard type, because backend can't generate 3171 // good code for that yet. 3172 // TODO: We can make it aggressive again after fixing PR39569. 3173 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3174 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3175 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3176 Builder.SetInsertPoint(&SI); 3177 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3178 3179 for (auto Case : SI.cases()) { 3180 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3181 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3182 } 3183 return replaceOperand(SI, 0, NewCond); 3184 } 3185 3186 return nullptr; 3187 } 3188 3189 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3190 Value *Agg = EV.getAggregateOperand(); 3191 3192 if (!EV.hasIndices()) 3193 return replaceInstUsesWith(EV, Agg); 3194 3195 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 3196 SQ.getWithInstruction(&EV))) 3197 return replaceInstUsesWith(EV, V); 3198 3199 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3200 // We're extracting from an insertvalue instruction, compare the indices 3201 const unsigned *exti, *exte, *insi, *inse; 3202 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3203 exte = EV.idx_end(), inse = IV->idx_end(); 3204 exti != exte && insi != inse; 3205 ++exti, ++insi) { 3206 if (*insi != *exti) 3207 // The insert and extract both reference distinctly different elements. 3208 // This means the extract is not influenced by the insert, and we can 3209 // replace the aggregate operand of the extract with the aggregate 3210 // operand of the insert. i.e., replace 3211 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3212 // %E = extractvalue { i32, { i32 } } %I, 0 3213 // with 3214 // %E = extractvalue { i32, { i32 } } %A, 0 3215 return ExtractValueInst::Create(IV->getAggregateOperand(), 3216 EV.getIndices()); 3217 } 3218 if (exti == exte && insi == inse) 3219 // Both iterators are at the end: Index lists are identical. Replace 3220 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3221 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3222 // with "i32 42" 3223 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3224 if (exti == exte) { 3225 // The extract list is a prefix of the insert list. i.e. replace 3226 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3227 // %E = extractvalue { i32, { i32 } } %I, 1 3228 // with 3229 // %X = extractvalue { i32, { i32 } } %A, 1 3230 // %E = insertvalue { i32 } %X, i32 42, 0 3231 // by switching the order of the insert and extract (though the 3232 // insertvalue should be left in, since it may have other uses). 3233 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3234 EV.getIndices()); 3235 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3236 makeArrayRef(insi, inse)); 3237 } 3238 if (insi == inse) 3239 // The insert list is a prefix of the extract list 3240 // We can simply remove the common indices from the extract and make it 3241 // operate on the inserted value instead of the insertvalue result. 3242 // i.e., replace 3243 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3244 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3245 // with 3246 // %E extractvalue { i32 } { i32 42 }, 0 3247 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3248 makeArrayRef(exti, exte)); 3249 } 3250 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3251 // We're extracting from an overflow intrinsic, see if we're the only user, 3252 // which allows us to simplify multiple result intrinsics to simpler 3253 // things that just get one value. 3254 if (WO->hasOneUse()) { 3255 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3256 // and replace it with a traditional binary instruction. 3257 if (*EV.idx_begin() == 0) { 3258 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3259 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3260 // Replace the old instruction's uses with poison. 3261 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3262 eraseInstFromFunction(*WO); 3263 return BinaryOperator::Create(BinOp, LHS, RHS); 3264 } 3265 3266 assert(*EV.idx_begin() == 1 && 3267 "unexpected extract index for overflow inst"); 3268 3269 // If only the overflow result is used, and the right hand side is a 3270 // constant (or constant splat), we can remove the intrinsic by directly 3271 // checking for overflow. 3272 const APInt *C; 3273 if (match(WO->getRHS(), m_APInt(C))) { 3274 // Compute the no-wrap range for LHS given RHS=C, then construct an 3275 // equivalent icmp, potentially using an offset. 3276 ConstantRange NWR = 3277 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3278 WO->getNoWrapKind()); 3279 3280 CmpInst::Predicate Pred; 3281 APInt NewRHSC, Offset; 3282 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3283 auto *OpTy = WO->getRHS()->getType(); 3284 auto *NewLHS = WO->getLHS(); 3285 if (Offset != 0) 3286 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3287 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3288 ConstantInt::get(OpTy, NewRHSC)); 3289 } 3290 } 3291 } 3292 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3293 // If the (non-volatile) load only has one use, we can rewrite this to a 3294 // load from a GEP. This reduces the size of the load. If a load is used 3295 // only by extractvalue instructions then this either must have been 3296 // optimized before, or it is a struct with padding, in which case we 3297 // don't want to do the transformation as it loses padding knowledge. 3298 if (L->isSimple() && L->hasOneUse()) { 3299 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3300 SmallVector<Value*, 4> Indices; 3301 // Prefix an i32 0 since we need the first element. 3302 Indices.push_back(Builder.getInt32(0)); 3303 for (unsigned Idx : EV.indices()) 3304 Indices.push_back(Builder.getInt32(Idx)); 3305 3306 // We need to insert these at the location of the old load, not at that of 3307 // the extractvalue. 3308 Builder.SetInsertPoint(L); 3309 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3310 L->getPointerOperand(), Indices); 3311 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3312 // Whatever aliasing information we had for the orignal load must also 3313 // hold for the smaller load, so propagate the annotations. 3314 NL->setAAMetadata(L->getAAMetadata()); 3315 // Returning the load directly will cause the main loop to insert it in 3316 // the wrong spot, so use replaceInstUsesWith(). 3317 return replaceInstUsesWith(EV, NL); 3318 } 3319 // We could simplify extracts from other values. Note that nested extracts may 3320 // already be simplified implicitly by the above: extract (extract (insert) ) 3321 // will be translated into extract ( insert ( extract ) ) first and then just 3322 // the value inserted, if appropriate. Similarly for extracts from single-use 3323 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3324 // and if again single-use then via load (gep (gep)) to load (gep). 3325 // However, double extracts from e.g. function arguments or return values 3326 // aren't handled yet. 3327 return nullptr; 3328 } 3329 3330 /// Return 'true' if the given typeinfo will match anything. 3331 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3332 switch (Personality) { 3333 case EHPersonality::GNU_C: 3334 case EHPersonality::GNU_C_SjLj: 3335 case EHPersonality::Rust: 3336 // The GCC C EH and Rust personality only exists to support cleanups, so 3337 // it's not clear what the semantics of catch clauses are. 3338 return false; 3339 case EHPersonality::Unknown: 3340 return false; 3341 case EHPersonality::GNU_Ada: 3342 // While __gnat_all_others_value will match any Ada exception, it doesn't 3343 // match foreign exceptions (or didn't, before gcc-4.7). 3344 return false; 3345 case EHPersonality::GNU_CXX: 3346 case EHPersonality::GNU_CXX_SjLj: 3347 case EHPersonality::GNU_ObjC: 3348 case EHPersonality::MSVC_X86SEH: 3349 case EHPersonality::MSVC_TableSEH: 3350 case EHPersonality::MSVC_CXX: 3351 case EHPersonality::CoreCLR: 3352 case EHPersonality::Wasm_CXX: 3353 case EHPersonality::XL_CXX: 3354 return TypeInfo->isNullValue(); 3355 } 3356 llvm_unreachable("invalid enum"); 3357 } 3358 3359 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3360 return 3361 cast<ArrayType>(LHS->getType())->getNumElements() 3362 < 3363 cast<ArrayType>(RHS->getType())->getNumElements(); 3364 } 3365 3366 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3367 // The logic here should be correct for any real-world personality function. 3368 // However if that turns out not to be true, the offending logic can always 3369 // be conditioned on the personality function, like the catch-all logic is. 3370 EHPersonality Personality = 3371 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3372 3373 // Simplify the list of clauses, eg by removing repeated catch clauses 3374 // (these are often created by inlining). 3375 bool MakeNewInstruction = false; // If true, recreate using the following: 3376 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3377 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3378 3379 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3380 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3381 bool isLastClause = i + 1 == e; 3382 if (LI.isCatch(i)) { 3383 // A catch clause. 3384 Constant *CatchClause = LI.getClause(i); 3385 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3386 3387 // If we already saw this clause, there is no point in having a second 3388 // copy of it. 3389 if (AlreadyCaught.insert(TypeInfo).second) { 3390 // This catch clause was not already seen. 3391 NewClauses.push_back(CatchClause); 3392 } else { 3393 // Repeated catch clause - drop the redundant copy. 3394 MakeNewInstruction = true; 3395 } 3396 3397 // If this is a catch-all then there is no point in keeping any following 3398 // clauses or marking the landingpad as having a cleanup. 3399 if (isCatchAll(Personality, TypeInfo)) { 3400 if (!isLastClause) 3401 MakeNewInstruction = true; 3402 CleanupFlag = false; 3403 break; 3404 } 3405 } else { 3406 // A filter clause. If any of the filter elements were already caught 3407 // then they can be dropped from the filter. It is tempting to try to 3408 // exploit the filter further by saying that any typeinfo that does not 3409 // occur in the filter can't be caught later (and thus can be dropped). 3410 // However this would be wrong, since typeinfos can match without being 3411 // equal (for example if one represents a C++ class, and the other some 3412 // class derived from it). 3413 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3414 Constant *FilterClause = LI.getClause(i); 3415 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3416 unsigned NumTypeInfos = FilterType->getNumElements(); 3417 3418 // An empty filter catches everything, so there is no point in keeping any 3419 // following clauses or marking the landingpad as having a cleanup. By 3420 // dealing with this case here the following code is made a bit simpler. 3421 if (!NumTypeInfos) { 3422 NewClauses.push_back(FilterClause); 3423 if (!isLastClause) 3424 MakeNewInstruction = true; 3425 CleanupFlag = false; 3426 break; 3427 } 3428 3429 bool MakeNewFilter = false; // If true, make a new filter. 3430 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3431 if (isa<ConstantAggregateZero>(FilterClause)) { 3432 // Not an empty filter - it contains at least one null typeinfo. 3433 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3434 Constant *TypeInfo = 3435 Constant::getNullValue(FilterType->getElementType()); 3436 // If this typeinfo is a catch-all then the filter can never match. 3437 if (isCatchAll(Personality, TypeInfo)) { 3438 // Throw the filter away. 3439 MakeNewInstruction = true; 3440 continue; 3441 } 3442 3443 // There is no point in having multiple copies of this typeinfo, so 3444 // discard all but the first copy if there is more than one. 3445 NewFilterElts.push_back(TypeInfo); 3446 if (NumTypeInfos > 1) 3447 MakeNewFilter = true; 3448 } else { 3449 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3450 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3451 NewFilterElts.reserve(NumTypeInfos); 3452 3453 // Remove any filter elements that were already caught or that already 3454 // occurred in the filter. While there, see if any of the elements are 3455 // catch-alls. If so, the filter can be discarded. 3456 bool SawCatchAll = false; 3457 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3458 Constant *Elt = Filter->getOperand(j); 3459 Constant *TypeInfo = Elt->stripPointerCasts(); 3460 if (isCatchAll(Personality, TypeInfo)) { 3461 // This element is a catch-all. Bail out, noting this fact. 3462 SawCatchAll = true; 3463 break; 3464 } 3465 3466 // Even if we've seen a type in a catch clause, we don't want to 3467 // remove it from the filter. An unexpected type handler may be 3468 // set up for a call site which throws an exception of the same 3469 // type caught. In order for the exception thrown by the unexpected 3470 // handler to propagate correctly, the filter must be correctly 3471 // described for the call site. 3472 // 3473 // Example: 3474 // 3475 // void unexpected() { throw 1;} 3476 // void foo() throw (int) { 3477 // std::set_unexpected(unexpected); 3478 // try { 3479 // throw 2.0; 3480 // } catch (int i) {} 3481 // } 3482 3483 // There is no point in having multiple copies of the same typeinfo in 3484 // a filter, so only add it if we didn't already. 3485 if (SeenInFilter.insert(TypeInfo).second) 3486 NewFilterElts.push_back(cast<Constant>(Elt)); 3487 } 3488 // A filter containing a catch-all cannot match anything by definition. 3489 if (SawCatchAll) { 3490 // Throw the filter away. 3491 MakeNewInstruction = true; 3492 continue; 3493 } 3494 3495 // If we dropped something from the filter, make a new one. 3496 if (NewFilterElts.size() < NumTypeInfos) 3497 MakeNewFilter = true; 3498 } 3499 if (MakeNewFilter) { 3500 FilterType = ArrayType::get(FilterType->getElementType(), 3501 NewFilterElts.size()); 3502 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3503 MakeNewInstruction = true; 3504 } 3505 3506 NewClauses.push_back(FilterClause); 3507 3508 // If the new filter is empty then it will catch everything so there is 3509 // no point in keeping any following clauses or marking the landingpad 3510 // as having a cleanup. The case of the original filter being empty was 3511 // already handled above. 3512 if (MakeNewFilter && !NewFilterElts.size()) { 3513 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3514 CleanupFlag = false; 3515 break; 3516 } 3517 } 3518 } 3519 3520 // If several filters occur in a row then reorder them so that the shortest 3521 // filters come first (those with the smallest number of elements). This is 3522 // advantageous because shorter filters are more likely to match, speeding up 3523 // unwinding, but mostly because it increases the effectiveness of the other 3524 // filter optimizations below. 3525 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3526 unsigned j; 3527 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3528 for (j = i; j != e; ++j) 3529 if (!isa<ArrayType>(NewClauses[j]->getType())) 3530 break; 3531 3532 // Check whether the filters are already sorted by length. We need to know 3533 // if sorting them is actually going to do anything so that we only make a 3534 // new landingpad instruction if it does. 3535 for (unsigned k = i; k + 1 < j; ++k) 3536 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3537 // Not sorted, so sort the filters now. Doing an unstable sort would be 3538 // correct too but reordering filters pointlessly might confuse users. 3539 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3540 shorter_filter); 3541 MakeNewInstruction = true; 3542 break; 3543 } 3544 3545 // Look for the next batch of filters. 3546 i = j + 1; 3547 } 3548 3549 // If typeinfos matched if and only if equal, then the elements of a filter L 3550 // that occurs later than a filter F could be replaced by the intersection of 3551 // the elements of F and L. In reality two typeinfos can match without being 3552 // equal (for example if one represents a C++ class, and the other some class 3553 // derived from it) so it would be wrong to perform this transform in general. 3554 // However the transform is correct and useful if F is a subset of L. In that 3555 // case L can be replaced by F, and thus removed altogether since repeating a 3556 // filter is pointless. So here we look at all pairs of filters F and L where 3557 // L follows F in the list of clauses, and remove L if every element of F is 3558 // an element of L. This can occur when inlining C++ functions with exception 3559 // specifications. 3560 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3561 // Examine each filter in turn. 3562 Value *Filter = NewClauses[i]; 3563 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3564 if (!FTy) 3565 // Not a filter - skip it. 3566 continue; 3567 unsigned FElts = FTy->getNumElements(); 3568 // Examine each filter following this one. Doing this backwards means that 3569 // we don't have to worry about filters disappearing under us when removed. 3570 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3571 Value *LFilter = NewClauses[j]; 3572 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3573 if (!LTy) 3574 // Not a filter - skip it. 3575 continue; 3576 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3577 // an element of LFilter, then discard LFilter. 3578 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3579 // If Filter is empty then it is a subset of LFilter. 3580 if (!FElts) { 3581 // Discard LFilter. 3582 NewClauses.erase(J); 3583 MakeNewInstruction = true; 3584 // Move on to the next filter. 3585 continue; 3586 } 3587 unsigned LElts = LTy->getNumElements(); 3588 // If Filter is longer than LFilter then it cannot be a subset of it. 3589 if (FElts > LElts) 3590 // Move on to the next filter. 3591 continue; 3592 // At this point we know that LFilter has at least one element. 3593 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3594 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3595 // already know that Filter is not longer than LFilter). 3596 if (isa<ConstantAggregateZero>(Filter)) { 3597 assert(FElts <= LElts && "Should have handled this case earlier!"); 3598 // Discard LFilter. 3599 NewClauses.erase(J); 3600 MakeNewInstruction = true; 3601 } 3602 // Move on to the next filter. 3603 continue; 3604 } 3605 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3606 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3607 // Since Filter is non-empty and contains only zeros, it is a subset of 3608 // LFilter iff LFilter contains a zero. 3609 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3610 for (unsigned l = 0; l != LElts; ++l) 3611 if (LArray->getOperand(l)->isNullValue()) { 3612 // LFilter contains a zero - discard it. 3613 NewClauses.erase(J); 3614 MakeNewInstruction = true; 3615 break; 3616 } 3617 // Move on to the next filter. 3618 continue; 3619 } 3620 // At this point we know that both filters are ConstantArrays. Loop over 3621 // operands to see whether every element of Filter is also an element of 3622 // LFilter. Since filters tend to be short this is probably faster than 3623 // using a method that scales nicely. 3624 ConstantArray *FArray = cast<ConstantArray>(Filter); 3625 bool AllFound = true; 3626 for (unsigned f = 0; f != FElts; ++f) { 3627 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3628 AllFound = false; 3629 for (unsigned l = 0; l != LElts; ++l) { 3630 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3631 if (LTypeInfo == FTypeInfo) { 3632 AllFound = true; 3633 break; 3634 } 3635 } 3636 if (!AllFound) 3637 break; 3638 } 3639 if (AllFound) { 3640 // Discard LFilter. 3641 NewClauses.erase(J); 3642 MakeNewInstruction = true; 3643 } 3644 // Move on to the next filter. 3645 } 3646 } 3647 3648 // If we changed any of the clauses, replace the old landingpad instruction 3649 // with a new one. 3650 if (MakeNewInstruction) { 3651 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3652 NewClauses.size()); 3653 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3654 NLI->addClause(NewClauses[i]); 3655 // A landing pad with no clauses must have the cleanup flag set. It is 3656 // theoretically possible, though highly unlikely, that we eliminated all 3657 // clauses. If so, force the cleanup flag to true. 3658 if (NewClauses.empty()) 3659 CleanupFlag = true; 3660 NLI->setCleanup(CleanupFlag); 3661 return NLI; 3662 } 3663 3664 // Even if none of the clauses changed, we may nonetheless have understood 3665 // that the cleanup flag is pointless. Clear it if so. 3666 if (LI.isCleanup() != CleanupFlag) { 3667 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3668 LI.setCleanup(CleanupFlag); 3669 return &LI; 3670 } 3671 3672 return nullptr; 3673 } 3674 3675 Value * 3676 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3677 // Try to push freeze through instructions that propagate but don't produce 3678 // poison as far as possible. If an operand of freeze follows three 3679 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3680 // guaranteed-non-poison operands then push the freeze through to the one 3681 // operand that is not guaranteed non-poison. The actual transform is as 3682 // follows. 3683 // Op1 = ... ; Op1 can be posion 3684 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3685 // ; single guaranteed-non-poison operands 3686 // ... = Freeze(Op0) 3687 // => 3688 // Op1 = ... 3689 // Op1.fr = Freeze(Op1) 3690 // ... = Inst(Op1.fr, NonPoisonOps...) 3691 auto *OrigOp = OrigFI.getOperand(0); 3692 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3693 3694 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3695 // potentially reduces their optimization potential, so let's only do this iff 3696 // the OrigOp is only used by the freeze. 3697 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3698 return nullptr; 3699 3700 // We can't push the freeze through an instruction which can itself create 3701 // poison. If the only source of new poison is flags, we can simply 3702 // strip them (since we know the only use is the freeze and nothing can 3703 // benefit from them.) 3704 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3705 return nullptr; 3706 3707 // If operand is guaranteed not to be poison, there is no need to add freeze 3708 // to the operand. So we first find the operand that is not guaranteed to be 3709 // poison. 3710 Use *MaybePoisonOperand = nullptr; 3711 for (Use &U : OrigOpInst->operands()) { 3712 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3713 continue; 3714 if (!MaybePoisonOperand) 3715 MaybePoisonOperand = &U; 3716 else 3717 return nullptr; 3718 } 3719 3720 OrigOpInst->dropPoisonGeneratingFlags(); 3721 3722 // If all operands are guaranteed to be non-poison, we can drop freeze. 3723 if (!MaybePoisonOperand) 3724 return OrigOp; 3725 3726 auto *FrozenMaybePoisonOperand = new FreezeInst( 3727 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3728 3729 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3730 FrozenMaybePoisonOperand->insertBefore(OrigOpInst); 3731 return OrigOp; 3732 } 3733 3734 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) { 3735 Value *Op = FI.getOperand(0); 3736 3737 if (isa<Constant>(Op)) 3738 return false; 3739 3740 bool Changed = false; 3741 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3742 bool Dominates = DT.dominates(&FI, U); 3743 Changed |= Dominates; 3744 return Dominates; 3745 }); 3746 3747 return Changed; 3748 } 3749 3750 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3751 Value *Op0 = I.getOperand(0); 3752 3753 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3754 return replaceInstUsesWith(I, V); 3755 3756 // freeze (phi const, x) --> phi const, (freeze x) 3757 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3758 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3759 return NV; 3760 } 3761 3762 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3763 return replaceInstUsesWith(I, NI); 3764 3765 if (match(Op0, m_Undef())) { 3766 // If I is freeze(undef), see its uses and fold it to the best constant. 3767 // - or: pick -1 3768 // - select's condition: pick the value that leads to choosing a constant 3769 // - other ops: pick 0 3770 Constant *BestValue = nullptr; 3771 Constant *NullValue = Constant::getNullValue(I.getType()); 3772 for (const auto *U : I.users()) { 3773 Constant *C = NullValue; 3774 3775 if (match(U, m_Or(m_Value(), m_Value()))) 3776 C = Constant::getAllOnesValue(I.getType()); 3777 else if (const auto *SI = dyn_cast<SelectInst>(U)) { 3778 if (SI->getCondition() == &I) { 3779 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1); 3780 C = Constant::getIntegerValue(I.getType(), CondVal); 3781 } 3782 } 3783 3784 if (!BestValue) 3785 BestValue = C; 3786 else if (BestValue != C) 3787 BestValue = NullValue; 3788 } 3789 3790 return replaceInstUsesWith(I, BestValue); 3791 } 3792 3793 // Replace all dominated uses of Op to freeze(Op). 3794 if (freezeDominatedUses(I)) 3795 return &I; 3796 3797 return nullptr; 3798 } 3799 3800 /// Check for case where the call writes to an otherwise dead alloca. This 3801 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 3802 /// helper *only* analyzes the write; doesn't check any other legality aspect. 3803 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 3804 auto *CB = dyn_cast<CallBase>(I); 3805 if (!CB) 3806 // TODO: handle e.g. store to alloca here - only worth doing if we extend 3807 // to allow reload along used path as described below. Otherwise, this 3808 // is simply a store to a dead allocation which will be removed. 3809 return false; 3810 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 3811 if (!Dest) 3812 return false; 3813 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 3814 if (!AI) 3815 // TODO: allow malloc? 3816 return false; 3817 // TODO: allow memory access dominated by move point? Note that since AI 3818 // could have a reference to itself captured by the call, we would need to 3819 // account for cycles in doing so. 3820 SmallVector<const User *> AllocaUsers; 3821 SmallPtrSet<const User *, 4> Visited; 3822 auto pushUsers = [&](const Instruction &I) { 3823 for (const User *U : I.users()) { 3824 if (Visited.insert(U).second) 3825 AllocaUsers.push_back(U); 3826 } 3827 }; 3828 pushUsers(*AI); 3829 while (!AllocaUsers.empty()) { 3830 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 3831 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 3832 isa<AddrSpaceCastInst>(UserI)) { 3833 pushUsers(*UserI); 3834 continue; 3835 } 3836 if (UserI == CB) 3837 continue; 3838 // TODO: support lifetime.start/end here 3839 return false; 3840 } 3841 return true; 3842 } 3843 3844 /// Try to move the specified instruction from its current block into the 3845 /// beginning of DestBlock, which can only happen if it's safe to move the 3846 /// instruction past all of the instructions between it and the end of its 3847 /// block. 3848 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 3849 TargetLibraryInfo &TLI) { 3850 assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!"); 3851 BasicBlock *SrcBlock = I->getParent(); 3852 3853 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3854 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 3855 I->isTerminator()) 3856 return false; 3857 3858 // Do not sink static or dynamic alloca instructions. Static allocas must 3859 // remain in the entry block, and dynamic allocas must not be sunk in between 3860 // a stacksave / stackrestore pair, which would incorrectly shorten its 3861 // lifetime. 3862 if (isa<AllocaInst>(I)) 3863 return false; 3864 3865 // Do not sink into catchswitch blocks. 3866 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3867 return false; 3868 3869 // Do not sink convergent call instructions. 3870 if (auto *CI = dyn_cast<CallInst>(I)) { 3871 if (CI->isConvergent()) 3872 return false; 3873 } 3874 3875 // Unless we can prove that the memory write isn't visibile except on the 3876 // path we're sinking to, we must bail. 3877 if (I->mayWriteToMemory()) { 3878 if (!SoleWriteToDeadLocal(I, TLI)) 3879 return false; 3880 } 3881 3882 // We can only sink load instructions if there is nothing between the load and 3883 // the end of block that could change the value. 3884 if (I->mayReadFromMemory()) { 3885 // We don't want to do any sophisticated alias analysis, so we only check 3886 // the instructions after I in I's parent block if we try to sink to its 3887 // successor block. 3888 if (DestBlock->getUniquePredecessor() != I->getParent()) 3889 return false; 3890 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 3891 E = I->getParent()->end(); 3892 Scan != E; ++Scan) 3893 if (Scan->mayWriteToMemory()) 3894 return false; 3895 } 3896 3897 I->dropDroppableUses([DestBlock](const Use *U) { 3898 if (auto *I = dyn_cast<Instruction>(U->getUser())) 3899 return I->getParent() != DestBlock; 3900 return true; 3901 }); 3902 /// FIXME: We could remove droppable uses that are not dominated by 3903 /// the new position. 3904 3905 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3906 I->moveBefore(&*InsertPos); 3907 ++NumSunkInst; 3908 3909 // Also sink all related debug uses from the source basic block. Otherwise we 3910 // get debug use before the def. Attempt to salvage debug uses first, to 3911 // maximise the range variables have location for. If we cannot salvage, then 3912 // mark the location undef: we know it was supposed to receive a new location 3913 // here, but that computation has been sunk. 3914 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3915 findDbgUsers(DbgUsers, I); 3916 // Process the sinking DbgUsers in reverse order, as we only want to clone the 3917 // last appearing debug intrinsic for each given variable. 3918 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 3919 for (DbgVariableIntrinsic *DVI : DbgUsers) 3920 if (DVI->getParent() == SrcBlock) 3921 DbgUsersToSink.push_back(DVI); 3922 llvm::sort(DbgUsersToSink, 3923 [](auto *A, auto *B) { return B->comesBefore(A); }); 3924 3925 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 3926 SmallSet<DebugVariable, 4> SunkVariables; 3927 for (auto User : DbgUsersToSink) { 3928 // A dbg.declare instruction should not be cloned, since there can only be 3929 // one per variable fragment. It should be left in the original place 3930 // because the sunk instruction is not an alloca (otherwise we could not be 3931 // here). 3932 if (isa<DbgDeclareInst>(User)) 3933 continue; 3934 3935 DebugVariable DbgUserVariable = 3936 DebugVariable(User->getVariable(), User->getExpression(), 3937 User->getDebugLoc()->getInlinedAt()); 3938 3939 if (!SunkVariables.insert(DbgUserVariable).second) 3940 continue; 3941 3942 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 3943 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 3944 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 3945 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 3946 } 3947 3948 // Perform salvaging without the clones, then sink the clones. 3949 if (!DIIClones.empty()) { 3950 salvageDebugInfoForDbgValues(*I, DbgUsers); 3951 // The clones are in reverse order of original appearance, reverse again to 3952 // maintain the original order. 3953 for (auto &DIIClone : llvm::reverse(DIIClones)) { 3954 DIIClone->insertBefore(&*InsertPos); 3955 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 3956 } 3957 } 3958 3959 return true; 3960 } 3961 3962 bool InstCombinerImpl::run() { 3963 while (!Worklist.isEmpty()) { 3964 // Walk deferred instructions in reverse order, and push them to the 3965 // worklist, which means they'll end up popped from the worklist in-order. 3966 while (Instruction *I = Worklist.popDeferred()) { 3967 // Check to see if we can DCE the instruction. We do this already here to 3968 // reduce the number of uses and thus allow other folds to trigger. 3969 // Note that eraseInstFromFunction() may push additional instructions on 3970 // the deferred worklist, so this will DCE whole instruction chains. 3971 if (isInstructionTriviallyDead(I, &TLI)) { 3972 eraseInstFromFunction(*I); 3973 ++NumDeadInst; 3974 continue; 3975 } 3976 3977 Worklist.push(I); 3978 } 3979 3980 Instruction *I = Worklist.removeOne(); 3981 if (I == nullptr) continue; // skip null values. 3982 3983 // Check to see if we can DCE the instruction. 3984 if (isInstructionTriviallyDead(I, &TLI)) { 3985 eraseInstFromFunction(*I); 3986 ++NumDeadInst; 3987 continue; 3988 } 3989 3990 if (!DebugCounter::shouldExecute(VisitCounter)) 3991 continue; 3992 3993 // Instruction isn't dead, see if we can constant propagate it. 3994 if (!I->use_empty() && 3995 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3996 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3997 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3998 << '\n'); 3999 4000 // Add operands to the worklist. 4001 replaceInstUsesWith(*I, C); 4002 ++NumConstProp; 4003 if (isInstructionTriviallyDead(I, &TLI)) 4004 eraseInstFromFunction(*I); 4005 MadeIRChange = true; 4006 continue; 4007 } 4008 } 4009 4010 // See if we can trivially sink this instruction to its user if we can 4011 // prove that the successor is not executed more frequently than our block. 4012 // Return the UserBlock if successful. 4013 auto getOptionalSinkBlockForInst = 4014 [this](Instruction *I) -> Optional<BasicBlock *> { 4015 if (!EnableCodeSinking) 4016 return None; 4017 auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser()); 4018 if (!UserInst) 4019 return None; 4020 4021 BasicBlock *BB = I->getParent(); 4022 BasicBlock *UserParent = nullptr; 4023 4024 // Special handling for Phi nodes - get the block the use occurs in. 4025 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 4026 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 4027 if (PN->getIncomingValue(i) == I) { 4028 // Bail out if we have uses in different blocks. We don't do any 4029 // sophisticated analysis (i.e finding NearestCommonDominator of these 4030 // use blocks). 4031 if (UserParent && UserParent != PN->getIncomingBlock(i)) 4032 return None; 4033 UserParent = PN->getIncomingBlock(i); 4034 } 4035 } 4036 assert(UserParent && "expected to find user block!"); 4037 } else 4038 UserParent = UserInst->getParent(); 4039 4040 // Try sinking to another block. If that block is unreachable, then do 4041 // not bother. SimplifyCFG should handle it. 4042 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 4043 return None; 4044 4045 auto *Term = UserParent->getTerminator(); 4046 // See if the user is one of our successors that has only one 4047 // predecessor, so that we don't have to split the critical edge. 4048 // Another option where we can sink is a block that ends with a 4049 // terminator that does not pass control to other block (such as 4050 // return or unreachable or resume). In this case: 4051 // - I dominates the User (by SSA form); 4052 // - the User will be executed at most once. 4053 // So sinking I down to User is always profitable or neutral. 4054 if (UserParent->getUniquePredecessor() == BB || succ_empty(Term)) { 4055 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 4056 return UserParent; 4057 } 4058 return None; 4059 }; 4060 4061 auto OptBB = getOptionalSinkBlockForInst(I); 4062 if (OptBB) { 4063 auto *UserParent = *OptBB; 4064 // Okay, the CFG is simple enough, try to sink this instruction. 4065 if (TryToSinkInstruction(I, UserParent, TLI)) { 4066 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 4067 MadeIRChange = true; 4068 // We'll add uses of the sunk instruction below, but since 4069 // sinking can expose opportunities for it's *operands* add 4070 // them to the worklist 4071 for (Use &U : I->operands()) 4072 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 4073 Worklist.push(OpI); 4074 } 4075 } 4076 4077 // Now that we have an instruction, try combining it to simplify it. 4078 Builder.SetInsertPoint(I); 4079 Builder.CollectMetadataToCopy( 4080 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4081 4082 #ifndef NDEBUG 4083 std::string OrigI; 4084 #endif 4085 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4086 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4087 4088 if (Instruction *Result = visit(*I)) { 4089 ++NumCombined; 4090 // Should we replace the old instruction with a new one? 4091 if (Result != I) { 4092 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4093 << " New = " << *Result << '\n'); 4094 4095 Result->copyMetadata(*I, 4096 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4097 // Everything uses the new instruction now. 4098 I->replaceAllUsesWith(Result); 4099 4100 // Move the name to the new instruction first. 4101 Result->takeName(I); 4102 4103 // Insert the new instruction into the basic block... 4104 BasicBlock *InstParent = I->getParent(); 4105 BasicBlock::iterator InsertPos = I->getIterator(); 4106 4107 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4108 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4109 // We need to fix up the insertion point. 4110 if (isa<PHINode>(I)) // PHI -> Non-PHI 4111 InsertPos = InstParent->getFirstInsertionPt(); 4112 else // Non-PHI -> PHI 4113 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 4114 } 4115 4116 InstParent->getInstList().insert(InsertPos, Result); 4117 4118 // Push the new instruction and any users onto the worklist. 4119 Worklist.pushUsersToWorkList(*Result); 4120 Worklist.push(Result); 4121 4122 eraseInstFromFunction(*I); 4123 } else { 4124 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4125 << " New = " << *I << '\n'); 4126 4127 // If the instruction was modified, it's possible that it is now dead. 4128 // if so, remove it. 4129 if (isInstructionTriviallyDead(I, &TLI)) { 4130 eraseInstFromFunction(*I); 4131 } else { 4132 Worklist.pushUsersToWorkList(*I); 4133 Worklist.push(I); 4134 } 4135 } 4136 MadeIRChange = true; 4137 } 4138 } 4139 4140 Worklist.zap(); 4141 return MadeIRChange; 4142 } 4143 4144 // Track the scopes used by !alias.scope and !noalias. In a function, a 4145 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4146 // by both sets. If not, the declaration of the scope can be safely omitted. 4147 // The MDNode of the scope can be omitted as well for the instructions that are 4148 // part of this function. We do not do that at this point, as this might become 4149 // too time consuming to do. 4150 class AliasScopeTracker { 4151 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4152 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4153 4154 public: 4155 void analyse(Instruction *I) { 4156 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4157 if (!I->hasMetadataOtherThanDebugLoc()) 4158 return; 4159 4160 auto Track = [](Metadata *ScopeList, auto &Container) { 4161 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4162 if (!MDScopeList || !Container.insert(MDScopeList).second) 4163 return; 4164 for (auto &MDOperand : MDScopeList->operands()) 4165 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4166 Container.insert(MDScope); 4167 }; 4168 4169 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4170 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4171 } 4172 4173 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4174 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4175 if (!Decl) 4176 return false; 4177 4178 assert(Decl->use_empty() && 4179 "llvm.experimental.noalias.scope.decl in use ?"); 4180 const MDNode *MDSL = Decl->getScopeList(); 4181 assert(MDSL->getNumOperands() == 1 && 4182 "llvm.experimental.noalias.scope should refer to a single scope"); 4183 auto &MDOperand = MDSL->getOperand(0); 4184 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4185 return !UsedAliasScopesAndLists.contains(MD) || 4186 !UsedNoAliasScopesAndLists.contains(MD); 4187 4188 // Not an MDNode ? throw away. 4189 return true; 4190 } 4191 }; 4192 4193 /// Populate the IC worklist from a function, by walking it in depth-first 4194 /// order and adding all reachable code to the worklist. 4195 /// 4196 /// This has a couple of tricks to make the code faster and more powerful. In 4197 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4198 /// them to the worklist (this significantly speeds up instcombine on code where 4199 /// many instructions are dead or constant). Additionally, if we find a branch 4200 /// whose condition is a known constant, we only visit the reachable successors. 4201 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4202 const TargetLibraryInfo *TLI, 4203 InstructionWorklist &ICWorklist) { 4204 bool MadeIRChange = false; 4205 SmallPtrSet<BasicBlock *, 32> Visited; 4206 SmallVector<BasicBlock*, 256> Worklist; 4207 Worklist.push_back(&F.front()); 4208 4209 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4210 DenseMap<Constant *, Constant *> FoldedConstants; 4211 AliasScopeTracker SeenAliasScopes; 4212 4213 do { 4214 BasicBlock *BB = Worklist.pop_back_val(); 4215 4216 // We have now visited this block! If we've already been here, ignore it. 4217 if (!Visited.insert(BB).second) 4218 continue; 4219 4220 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4221 // ConstantProp instruction if trivially constant. 4222 if (!Inst.use_empty() && 4223 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4224 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4225 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4226 << '\n'); 4227 Inst.replaceAllUsesWith(C); 4228 ++NumConstProp; 4229 if (isInstructionTriviallyDead(&Inst, TLI)) 4230 Inst.eraseFromParent(); 4231 MadeIRChange = true; 4232 continue; 4233 } 4234 4235 // See if we can constant fold its operands. 4236 for (Use &U : Inst.operands()) { 4237 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4238 continue; 4239 4240 auto *C = cast<Constant>(U); 4241 Constant *&FoldRes = FoldedConstants[C]; 4242 if (!FoldRes) 4243 FoldRes = ConstantFoldConstant(C, DL, TLI); 4244 4245 if (FoldRes != C) { 4246 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4247 << "\n Old = " << *C 4248 << "\n New = " << *FoldRes << '\n'); 4249 U = FoldRes; 4250 MadeIRChange = true; 4251 } 4252 } 4253 4254 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4255 // these call instructions consumes non-trivial amount of time and 4256 // provides no value for the optimization. 4257 if (!Inst.isDebugOrPseudoInst()) { 4258 InstrsForInstructionWorklist.push_back(&Inst); 4259 SeenAliasScopes.analyse(&Inst); 4260 } 4261 } 4262 4263 // Recursively visit successors. If this is a branch or switch on a 4264 // constant, only visit the reachable successor. 4265 Instruction *TI = BB->getTerminator(); 4266 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4267 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4268 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4269 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4270 Worklist.push_back(ReachableBB); 4271 continue; 4272 } 4273 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4274 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4275 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4276 continue; 4277 } 4278 } 4279 4280 append_range(Worklist, successors(TI)); 4281 } while (!Worklist.empty()); 4282 4283 // Remove instructions inside unreachable blocks. This prevents the 4284 // instcombine code from having to deal with some bad special cases, and 4285 // reduces use counts of instructions. 4286 for (BasicBlock &BB : F) { 4287 if (Visited.count(&BB)) 4288 continue; 4289 4290 unsigned NumDeadInstInBB; 4291 unsigned NumDeadDbgInstInBB; 4292 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4293 removeAllNonTerminatorAndEHPadInstructions(&BB); 4294 4295 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4296 NumDeadInst += NumDeadInstInBB; 4297 } 4298 4299 // Once we've found all of the instructions to add to instcombine's worklist, 4300 // add them in reverse order. This way instcombine will visit from the top 4301 // of the function down. This jives well with the way that it adds all uses 4302 // of instructions to the worklist after doing a transformation, thus avoiding 4303 // some N^2 behavior in pathological cases. 4304 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4305 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4306 // DCE instruction if trivially dead. As we iterate in reverse program 4307 // order here, we will clean up whole chains of dead instructions. 4308 if (isInstructionTriviallyDead(Inst, TLI) || 4309 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4310 ++NumDeadInst; 4311 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4312 salvageDebugInfo(*Inst); 4313 Inst->eraseFromParent(); 4314 MadeIRChange = true; 4315 continue; 4316 } 4317 4318 ICWorklist.push(Inst); 4319 } 4320 4321 return MadeIRChange; 4322 } 4323 4324 static bool combineInstructionsOverFunction( 4325 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4326 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4327 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4328 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4329 auto &DL = F.getParent()->getDataLayout(); 4330 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4331 4332 /// Builder - This is an IRBuilder that automatically inserts new 4333 /// instructions into the worklist when they are created. 4334 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4335 F.getContext(), TargetFolder(DL), 4336 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4337 Worklist.add(I); 4338 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4339 AC.registerAssumption(Assume); 4340 })); 4341 4342 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4343 // by instcombiner. 4344 bool MadeIRChange = false; 4345 if (ShouldLowerDbgDeclare) 4346 MadeIRChange = LowerDbgDeclare(F); 4347 4348 // Iterate while there is work to do. 4349 unsigned Iteration = 0; 4350 while (true) { 4351 ++NumWorklistIterations; 4352 ++Iteration; 4353 4354 if (Iteration > InfiniteLoopDetectionThreshold) { 4355 report_fatal_error( 4356 "Instruction Combining seems stuck in an infinite loop after " + 4357 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4358 } 4359 4360 if (Iteration > MaxIterations) { 4361 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4362 << " on " << F.getName() 4363 << " reached; stopping before reaching a fixpoint\n"); 4364 break; 4365 } 4366 4367 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4368 << F.getName() << "\n"); 4369 4370 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4371 4372 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4373 ORE, BFI, PSI, DL, LI); 4374 IC.MaxArraySizeForCombine = MaxArraySize; 4375 4376 if (!IC.run()) 4377 break; 4378 4379 MadeIRChange = true; 4380 } 4381 4382 return MadeIRChange; 4383 } 4384 4385 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4386 4387 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4388 : MaxIterations(MaxIterations) {} 4389 4390 PreservedAnalyses InstCombinePass::run(Function &F, 4391 FunctionAnalysisManager &AM) { 4392 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4393 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4394 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4395 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4396 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4397 4398 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4399 4400 auto *AA = &AM.getResult<AAManager>(F); 4401 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4402 ProfileSummaryInfo *PSI = 4403 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4404 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4405 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4406 4407 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4408 BFI, PSI, MaxIterations, LI)) 4409 // No changes, all analyses are preserved. 4410 return PreservedAnalyses::all(); 4411 4412 // Mark all the analyses that instcombine updates as preserved. 4413 PreservedAnalyses PA; 4414 PA.preserveSet<CFGAnalyses>(); 4415 return PA; 4416 } 4417 4418 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4419 AU.setPreservesCFG(); 4420 AU.addRequired<AAResultsWrapperPass>(); 4421 AU.addRequired<AssumptionCacheTracker>(); 4422 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4423 AU.addRequired<TargetTransformInfoWrapperPass>(); 4424 AU.addRequired<DominatorTreeWrapperPass>(); 4425 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4426 AU.addPreserved<DominatorTreeWrapperPass>(); 4427 AU.addPreserved<AAResultsWrapperPass>(); 4428 AU.addPreserved<BasicAAWrapperPass>(); 4429 AU.addPreserved<GlobalsAAWrapperPass>(); 4430 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4431 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4432 } 4433 4434 bool InstructionCombiningPass::runOnFunction(Function &F) { 4435 if (skipFunction(F)) 4436 return false; 4437 4438 // Required analyses. 4439 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4440 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4441 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4442 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4443 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4444 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4445 4446 // Optional analyses. 4447 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4448 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4449 ProfileSummaryInfo *PSI = 4450 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4451 BlockFrequencyInfo *BFI = 4452 (PSI && PSI->hasProfileSummary()) ? 4453 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4454 nullptr; 4455 4456 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4457 BFI, PSI, MaxIterations, LI); 4458 } 4459 4460 char InstructionCombiningPass::ID = 0; 4461 4462 InstructionCombiningPass::InstructionCombiningPass() 4463 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4464 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4465 } 4466 4467 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4468 : FunctionPass(ID), MaxIterations(MaxIterations) { 4469 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4470 } 4471 4472 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4473 "Combine redundant instructions", false, false) 4474 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4475 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4476 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4477 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4478 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4479 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4480 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4481 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4482 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4483 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4484 "Combine redundant instructions", false, false) 4485 4486 // Initialization Routines 4487 void llvm::initializeInstCombine(PassRegistry &Registry) { 4488 initializeInstructionCombiningPassPass(Registry); 4489 } 4490 4491 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4492 initializeInstructionCombiningPassPass(*unwrap(R)); 4493 } 4494 4495 FunctionPass *llvm::createInstructionCombiningPass() { 4496 return new InstructionCombiningPass(); 4497 } 4498 4499 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4500 return new InstructionCombiningPass(MaxIterations); 4501 } 4502 4503 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4504 unwrap(PM)->add(createInstructionCombiningPass()); 4505 } 4506