xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp (revision d409305fa3838fb39b38c26fc085fb729b8766d5)
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <memory>
109 #include <string>
110 #include <utility>
111 
112 using namespace llvm;
113 using namespace llvm::PatternMatch;
114 
115 #define DEBUG_TYPE "instcombine"
116 
117 STATISTIC(NumWorklistIterations,
118           "Number of instruction combining iterations performed");
119 
120 STATISTIC(NumCombined , "Number of insts combined");
121 STATISTIC(NumConstProp, "Number of constant folds");
122 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
123 STATISTIC(NumSunkInst , "Number of instructions sunk");
124 STATISTIC(NumExpand,    "Number of expansions");
125 STATISTIC(NumFactor   , "Number of factorizations");
126 STATISTIC(NumReassoc  , "Number of reassociations");
127 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
128               "Controls which instructions are visited");
129 
130 // FIXME: these limits eventually should be as low as 2.
131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132 #ifndef NDEBUG
133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134 #else
135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136 #endif
137 
138 static cl::opt<bool>
139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140                                               cl::init(true));
141 
142 static cl::opt<unsigned> LimitMaxIterations(
143     "instcombine-max-iterations",
144     cl::desc("Limit the maximum number of instruction combining iterations"),
145     cl::init(InstCombineDefaultMaxIterations));
146 
147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148     "instcombine-infinite-loop-threshold",
149     cl::desc("Number of instruction combining iterations considered an "
150              "infinite loop"),
151     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
152 
153 static cl::opt<unsigned>
154 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155              cl::desc("Maximum array size considered when doing a combine"));
156 
157 // FIXME: Remove this flag when it is no longer necessary to convert
158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159 // increases variable availability at the cost of accuracy. Variables that
160 // cannot be promoted by mem2reg or SROA will be described as living in memory
161 // for their entire lifetime. However, passes like DSE and instcombine can
162 // delete stores to the alloca, leading to misleading and inaccurate debug
163 // information. This flag can be removed when those passes are fixed.
164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165                                                cl::Hidden, cl::init(true));
166 
167 Optional<Instruction *>
168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169   // Handle target specific intrinsics
170   if (II.getCalledFunction()->isTargetIntrinsic()) {
171     return TTI.instCombineIntrinsic(*this, II);
172   }
173   return None;
174 }
175 
176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178     bool &KnownBitsComputed) {
179   // Handle target specific intrinsics
180   if (II.getCalledFunction()->isTargetIntrinsic()) {
181     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182                                                 KnownBitsComputed);
183   }
184   return None;
185 }
186 
187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188     IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189     APInt &UndefElts3,
190     std::function<void(Instruction *, unsigned, APInt, APInt &)>
191         SimplifyAndSetOp) {
192   // Handle target specific intrinsics
193   if (II.getCalledFunction()->isTargetIntrinsic()) {
194     return TTI.simplifyDemandedVectorEltsIntrinsic(
195         *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196         SimplifyAndSetOp);
197   }
198   return None;
199 }
200 
201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202   return llvm::EmitGEPOffset(&Builder, DL, GEP);
203 }
204 
205 /// Return true if it is desirable to convert an integer computation from a
206 /// given bit width to a new bit width.
207 /// We don't want to convert from a legal to an illegal type or from a smaller
208 /// to a larger illegal type. A width of '1' is always treated as a legal type
209 /// because i1 is a fundamental type in IR, and there are many specialized
210 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
211 /// legal to convert to, in order to open up more combining opportunities.
212 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
213 /// from frontend languages.
214 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
215                                         unsigned ToWidth) const {
216   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
217   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
218 
219   // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
220   // shrink types, to prevent infinite loops.
221   if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
222     return true;
223 
224   // If this is a legal integer from type, and the result would be an illegal
225   // type, don't do the transformation.
226   if (FromLegal && !ToLegal)
227     return false;
228 
229   // Otherwise, if both are illegal, do not increase the size of the result. We
230   // do allow things like i160 -> i64, but not i64 -> i160.
231   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
232     return false;
233 
234   return true;
235 }
236 
237 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
238 /// We don't want to convert from a legal to an illegal type or from a smaller
239 /// to a larger illegal type. i1 is always treated as a legal type because it is
240 /// a fundamental type in IR, and there are many specialized optimizations for
241 /// i1 types.
242 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
243   // TODO: This could be extended to allow vectors. Datalayout changes might be
244   // needed to properly support that.
245   if (!From->isIntegerTy() || !To->isIntegerTy())
246     return false;
247 
248   unsigned FromWidth = From->getPrimitiveSizeInBits();
249   unsigned ToWidth = To->getPrimitiveSizeInBits();
250   return shouldChangeType(FromWidth, ToWidth);
251 }
252 
253 // Return true, if No Signed Wrap should be maintained for I.
254 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
255 // where both B and C should be ConstantInts, results in a constant that does
256 // not overflow. This function only handles the Add and Sub opcodes. For
257 // all other opcodes, the function conservatively returns false.
258 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
259   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
260   if (!OBO || !OBO->hasNoSignedWrap())
261     return false;
262 
263   // We reason about Add and Sub Only.
264   Instruction::BinaryOps Opcode = I.getOpcode();
265   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
266     return false;
267 
268   const APInt *BVal, *CVal;
269   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
270     return false;
271 
272   bool Overflow = false;
273   if (Opcode == Instruction::Add)
274     (void)BVal->sadd_ov(*CVal, Overflow);
275   else
276     (void)BVal->ssub_ov(*CVal, Overflow);
277 
278   return !Overflow;
279 }
280 
281 static bool hasNoUnsignedWrap(BinaryOperator &I) {
282   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
283   return OBO && OBO->hasNoUnsignedWrap();
284 }
285 
286 static bool hasNoSignedWrap(BinaryOperator &I) {
287   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
288   return OBO && OBO->hasNoSignedWrap();
289 }
290 
291 /// Conservatively clears subclassOptionalData after a reassociation or
292 /// commutation. We preserve fast-math flags when applicable as they can be
293 /// preserved.
294 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
295   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
296   if (!FPMO) {
297     I.clearSubclassOptionalData();
298     return;
299   }
300 
301   FastMathFlags FMF = I.getFastMathFlags();
302   I.clearSubclassOptionalData();
303   I.setFastMathFlags(FMF);
304 }
305 
306 /// Combine constant operands of associative operations either before or after a
307 /// cast to eliminate one of the associative operations:
308 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
309 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
310 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
311                                    InstCombinerImpl &IC) {
312   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
313   if (!Cast || !Cast->hasOneUse())
314     return false;
315 
316   // TODO: Enhance logic for other casts and remove this check.
317   auto CastOpcode = Cast->getOpcode();
318   if (CastOpcode != Instruction::ZExt)
319     return false;
320 
321   // TODO: Enhance logic for other BinOps and remove this check.
322   if (!BinOp1->isBitwiseLogicOp())
323     return false;
324 
325   auto AssocOpcode = BinOp1->getOpcode();
326   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
327   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
328     return false;
329 
330   Constant *C1, *C2;
331   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
332       !match(BinOp2->getOperand(1), m_Constant(C2)))
333     return false;
334 
335   // TODO: This assumes a zext cast.
336   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
337   // to the destination type might lose bits.
338 
339   // Fold the constants together in the destination type:
340   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
341   Type *DestTy = C1->getType();
342   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
343   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
344   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
345   IC.replaceOperand(*BinOp1, 1, FoldedC);
346   return true;
347 }
348 
349 /// This performs a few simplifications for operators that are associative or
350 /// commutative:
351 ///
352 ///  Commutative operators:
353 ///
354 ///  1. Order operands such that they are listed from right (least complex) to
355 ///     left (most complex).  This puts constants before unary operators before
356 ///     binary operators.
357 ///
358 ///  Associative operators:
359 ///
360 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
361 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
362 ///
363 ///  Associative and commutative operators:
364 ///
365 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
366 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
367 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
368 ///     if C1 and C2 are constants.
369 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
370   Instruction::BinaryOps Opcode = I.getOpcode();
371   bool Changed = false;
372 
373   do {
374     // Order operands such that they are listed from right (least complex) to
375     // left (most complex).  This puts constants before unary operators before
376     // binary operators.
377     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
378         getComplexity(I.getOperand(1)))
379       Changed = !I.swapOperands();
380 
381     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
382     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
383 
384     if (I.isAssociative()) {
385       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
386       if (Op0 && Op0->getOpcode() == Opcode) {
387         Value *A = Op0->getOperand(0);
388         Value *B = Op0->getOperand(1);
389         Value *C = I.getOperand(1);
390 
391         // Does "B op C" simplify?
392         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
393           // It simplifies to V.  Form "A op V".
394           replaceOperand(I, 0, A);
395           replaceOperand(I, 1, V);
396           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
397           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
398 
399           // Conservatively clear all optional flags since they may not be
400           // preserved by the reassociation. Reset nsw/nuw based on the above
401           // analysis.
402           ClearSubclassDataAfterReassociation(I);
403 
404           // Note: this is only valid because SimplifyBinOp doesn't look at
405           // the operands to Op0.
406           if (IsNUW)
407             I.setHasNoUnsignedWrap(true);
408 
409           if (IsNSW)
410             I.setHasNoSignedWrap(true);
411 
412           Changed = true;
413           ++NumReassoc;
414           continue;
415         }
416       }
417 
418       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
419       if (Op1 && Op1->getOpcode() == Opcode) {
420         Value *A = I.getOperand(0);
421         Value *B = Op1->getOperand(0);
422         Value *C = Op1->getOperand(1);
423 
424         // Does "A op B" simplify?
425         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
426           // It simplifies to V.  Form "V op C".
427           replaceOperand(I, 0, V);
428           replaceOperand(I, 1, C);
429           // Conservatively clear the optional flags, since they may not be
430           // preserved by the reassociation.
431           ClearSubclassDataAfterReassociation(I);
432           Changed = true;
433           ++NumReassoc;
434           continue;
435         }
436       }
437     }
438 
439     if (I.isAssociative() && I.isCommutative()) {
440       if (simplifyAssocCastAssoc(&I, *this)) {
441         Changed = true;
442         ++NumReassoc;
443         continue;
444       }
445 
446       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
447       if (Op0 && Op0->getOpcode() == Opcode) {
448         Value *A = Op0->getOperand(0);
449         Value *B = Op0->getOperand(1);
450         Value *C = I.getOperand(1);
451 
452         // Does "C op A" simplify?
453         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
454           // It simplifies to V.  Form "V op B".
455           replaceOperand(I, 0, V);
456           replaceOperand(I, 1, B);
457           // Conservatively clear the optional flags, since they may not be
458           // preserved by the reassociation.
459           ClearSubclassDataAfterReassociation(I);
460           Changed = true;
461           ++NumReassoc;
462           continue;
463         }
464       }
465 
466       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
467       if (Op1 && Op1->getOpcode() == Opcode) {
468         Value *A = I.getOperand(0);
469         Value *B = Op1->getOperand(0);
470         Value *C = Op1->getOperand(1);
471 
472         // Does "C op A" simplify?
473         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
474           // It simplifies to V.  Form "B op V".
475           replaceOperand(I, 0, B);
476           replaceOperand(I, 1, V);
477           // Conservatively clear the optional flags, since they may not be
478           // preserved by the reassociation.
479           ClearSubclassDataAfterReassociation(I);
480           Changed = true;
481           ++NumReassoc;
482           continue;
483         }
484       }
485 
486       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
487       // if C1 and C2 are constants.
488       Value *A, *B;
489       Constant *C1, *C2;
490       if (Op0 && Op1 &&
491           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
492           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
493           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
494         bool IsNUW = hasNoUnsignedWrap(I) &&
495            hasNoUnsignedWrap(*Op0) &&
496            hasNoUnsignedWrap(*Op1);
497          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
498            BinaryOperator::CreateNUW(Opcode, A, B) :
499            BinaryOperator::Create(Opcode, A, B);
500 
501          if (isa<FPMathOperator>(NewBO)) {
502           FastMathFlags Flags = I.getFastMathFlags();
503           Flags &= Op0->getFastMathFlags();
504           Flags &= Op1->getFastMathFlags();
505           NewBO->setFastMathFlags(Flags);
506         }
507         InsertNewInstWith(NewBO, I);
508         NewBO->takeName(Op1);
509         replaceOperand(I, 0, NewBO);
510         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
511         // Conservatively clear the optional flags, since they may not be
512         // preserved by the reassociation.
513         ClearSubclassDataAfterReassociation(I);
514         if (IsNUW)
515           I.setHasNoUnsignedWrap(true);
516 
517         Changed = true;
518         continue;
519       }
520     }
521 
522     // No further simplifications.
523     return Changed;
524   } while (true);
525 }
526 
527 /// Return whether "X LOp (Y ROp Z)" is always equal to
528 /// "(X LOp Y) ROp (X LOp Z)".
529 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
530                                      Instruction::BinaryOps ROp) {
531   // X & (Y | Z) <--> (X & Y) | (X & Z)
532   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
533   if (LOp == Instruction::And)
534     return ROp == Instruction::Or || ROp == Instruction::Xor;
535 
536   // X | (Y & Z) <--> (X | Y) & (X | Z)
537   if (LOp == Instruction::Or)
538     return ROp == Instruction::And;
539 
540   // X * (Y + Z) <--> (X * Y) + (X * Z)
541   // X * (Y - Z) <--> (X * Y) - (X * Z)
542   if (LOp == Instruction::Mul)
543     return ROp == Instruction::Add || ROp == Instruction::Sub;
544 
545   return false;
546 }
547 
548 /// Return whether "(X LOp Y) ROp Z" is always equal to
549 /// "(X ROp Z) LOp (Y ROp Z)".
550 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
551                                      Instruction::BinaryOps ROp) {
552   if (Instruction::isCommutative(ROp))
553     return leftDistributesOverRight(ROp, LOp);
554 
555   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
556   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
557 
558   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
559   // but this requires knowing that the addition does not overflow and other
560   // such subtleties.
561 }
562 
563 /// This function returns identity value for given opcode, which can be used to
564 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
565 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
566   if (isa<Constant>(V))
567     return nullptr;
568 
569   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
570 }
571 
572 /// This function predicates factorization using distributive laws. By default,
573 /// it just returns the 'Op' inputs. But for special-cases like
574 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
575 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
576 /// allow more factorization opportunities.
577 static Instruction::BinaryOps
578 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
579                           Value *&LHS, Value *&RHS) {
580   assert(Op && "Expected a binary operator");
581   LHS = Op->getOperand(0);
582   RHS = Op->getOperand(1);
583   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
584     Constant *C;
585     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
586       // X << C --> X * (1 << C)
587       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
588       return Instruction::Mul;
589     }
590     // TODO: We can add other conversions e.g. shr => div etc.
591   }
592   return Op->getOpcode();
593 }
594 
595 /// This tries to simplify binary operations by factorizing out common terms
596 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
597 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
598                                           Instruction::BinaryOps InnerOpcode,
599                                           Value *A, Value *B, Value *C,
600                                           Value *D) {
601   assert(A && B && C && D && "All values must be provided");
602 
603   Value *V = nullptr;
604   Value *SimplifiedInst = nullptr;
605   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
606   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
607 
608   // Does "X op' Y" always equal "Y op' X"?
609   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
610 
611   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
612   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
613     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
614     // commutative case, "(A op' B) op (C op' A)"?
615     if (A == C || (InnerCommutative && A == D)) {
616       if (A != C)
617         std::swap(C, D);
618       // Consider forming "A op' (B op D)".
619       // If "B op D" simplifies then it can be formed with no cost.
620       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
621       // If "B op D" doesn't simplify then only go on if both of the existing
622       // operations "A op' B" and "C op' D" will be zapped as no longer used.
623       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
624         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
625       if (V) {
626         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
627       }
628     }
629 
630   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
631   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
632     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
633     // commutative case, "(A op' B) op (B op' D)"?
634     if (B == D || (InnerCommutative && B == C)) {
635       if (B != D)
636         std::swap(C, D);
637       // Consider forming "(A op C) op' B".
638       // If "A op C" simplifies then it can be formed with no cost.
639       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
640 
641       // If "A op C" doesn't simplify then only go on if both of the existing
642       // operations "A op' B" and "C op' D" will be zapped as no longer used.
643       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
644         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
645       if (V) {
646         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
647       }
648     }
649 
650   if (SimplifiedInst) {
651     ++NumFactor;
652     SimplifiedInst->takeName(&I);
653 
654     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
655     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
656       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
657         bool HasNSW = false;
658         bool HasNUW = false;
659         if (isa<OverflowingBinaryOperator>(&I)) {
660           HasNSW = I.hasNoSignedWrap();
661           HasNUW = I.hasNoUnsignedWrap();
662         }
663 
664         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
665           HasNSW &= LOBO->hasNoSignedWrap();
666           HasNUW &= LOBO->hasNoUnsignedWrap();
667         }
668 
669         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
670           HasNSW &= ROBO->hasNoSignedWrap();
671           HasNUW &= ROBO->hasNoUnsignedWrap();
672         }
673 
674         if (TopLevelOpcode == Instruction::Add &&
675             InnerOpcode == Instruction::Mul) {
676           // We can propagate 'nsw' if we know that
677           //  %Y = mul nsw i16 %X, C
678           //  %Z = add nsw i16 %Y, %X
679           // =>
680           //  %Z = mul nsw i16 %X, C+1
681           //
682           // iff C+1 isn't INT_MIN
683           const APInt *CInt;
684           if (match(V, m_APInt(CInt))) {
685             if (!CInt->isMinSignedValue())
686               BO->setHasNoSignedWrap(HasNSW);
687           }
688 
689           // nuw can be propagated with any constant or nuw value.
690           BO->setHasNoUnsignedWrap(HasNUW);
691         }
692       }
693     }
694   }
695   return SimplifiedInst;
696 }
697 
698 /// This tries to simplify binary operations which some other binary operation
699 /// distributes over either by factorizing out common terms
700 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
701 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
702 /// Returns the simplified value, or null if it didn't simplify.
703 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
704   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
705   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
706   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
707   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
708 
709   {
710     // Factorization.
711     Value *A, *B, *C, *D;
712     Instruction::BinaryOps LHSOpcode, RHSOpcode;
713     if (Op0)
714       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
715     if (Op1)
716       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
717 
718     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
719     // a common term.
720     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
721       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
722         return V;
723 
724     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
725     // term.
726     if (Op0)
727       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
728         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
729           return V;
730 
731     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
732     // term.
733     if (Op1)
734       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
735         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
736           return V;
737   }
738 
739   // Expansion.
740   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
741     // The instruction has the form "(A op' B) op C".  See if expanding it out
742     // to "(A op C) op' (B op C)" results in simplifications.
743     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
744     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
745 
746     // Disable the use of undef because it's not safe to distribute undef.
747     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
748     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
749     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
750 
751     // Do "A op C" and "B op C" both simplify?
752     if (L && R) {
753       // They do! Return "L op' R".
754       ++NumExpand;
755       C = Builder.CreateBinOp(InnerOpcode, L, R);
756       C->takeName(&I);
757       return C;
758     }
759 
760     // Does "A op C" simplify to the identity value for the inner opcode?
761     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
762       // They do! Return "B op C".
763       ++NumExpand;
764       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
765       C->takeName(&I);
766       return C;
767     }
768 
769     // Does "B op C" simplify to the identity value for the inner opcode?
770     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
771       // They do! Return "A op C".
772       ++NumExpand;
773       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
774       C->takeName(&I);
775       return C;
776     }
777   }
778 
779   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
780     // The instruction has the form "A op (B op' C)".  See if expanding it out
781     // to "(A op B) op' (A op C)" results in simplifications.
782     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
783     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
784 
785     // Disable the use of undef because it's not safe to distribute undef.
786     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
787     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
788     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
789 
790     // Do "A op B" and "A op C" both simplify?
791     if (L && R) {
792       // They do! Return "L op' R".
793       ++NumExpand;
794       A = Builder.CreateBinOp(InnerOpcode, L, R);
795       A->takeName(&I);
796       return A;
797     }
798 
799     // Does "A op B" simplify to the identity value for the inner opcode?
800     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
801       // They do! Return "A op C".
802       ++NumExpand;
803       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
804       A->takeName(&I);
805       return A;
806     }
807 
808     // Does "A op C" simplify to the identity value for the inner opcode?
809     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
810       // They do! Return "A op B".
811       ++NumExpand;
812       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
813       A->takeName(&I);
814       return A;
815     }
816   }
817 
818   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
819 }
820 
821 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
822                                                         Value *LHS,
823                                                         Value *RHS) {
824   Value *A, *B, *C, *D, *E, *F;
825   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
826   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
827   if (!LHSIsSelect && !RHSIsSelect)
828     return nullptr;
829 
830   FastMathFlags FMF;
831   BuilderTy::FastMathFlagGuard Guard(Builder);
832   if (isa<FPMathOperator>(&I)) {
833     FMF = I.getFastMathFlags();
834     Builder.setFastMathFlags(FMF);
835   }
836 
837   Instruction::BinaryOps Opcode = I.getOpcode();
838   SimplifyQuery Q = SQ.getWithInstruction(&I);
839 
840   Value *Cond, *True = nullptr, *False = nullptr;
841   if (LHSIsSelect && RHSIsSelect && A == D) {
842     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
843     Cond = A;
844     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
845     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
846 
847     if (LHS->hasOneUse() && RHS->hasOneUse()) {
848       if (False && !True)
849         True = Builder.CreateBinOp(Opcode, B, E);
850       else if (True && !False)
851         False = Builder.CreateBinOp(Opcode, C, F);
852     }
853   } else if (LHSIsSelect && LHS->hasOneUse()) {
854     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
855     Cond = A;
856     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
857     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
858   } else if (RHSIsSelect && RHS->hasOneUse()) {
859     // X op (D ? E : F) -> D ? (X op E) : (X op F)
860     Cond = D;
861     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
862     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
863   }
864 
865   if (!True || !False)
866     return nullptr;
867 
868   Value *SI = Builder.CreateSelect(Cond, True, False);
869   SI->takeName(&I);
870   return SI;
871 }
872 
873 /// Freely adapt every user of V as-if V was changed to !V.
874 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
875 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
876   for (User *U : I->users()) {
877     switch (cast<Instruction>(U)->getOpcode()) {
878     case Instruction::Select: {
879       auto *SI = cast<SelectInst>(U);
880       SI->swapValues();
881       SI->swapProfMetadata();
882       break;
883     }
884     case Instruction::Br:
885       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
886       break;
887     case Instruction::Xor:
888       replaceInstUsesWith(cast<Instruction>(*U), I);
889       break;
890     default:
891       llvm_unreachable("Got unexpected user - out of sync with "
892                        "canFreelyInvertAllUsersOf() ?");
893     }
894   }
895 }
896 
897 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
898 /// constant zero (which is the 'negate' form).
899 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
900   Value *NegV;
901   if (match(V, m_Neg(m_Value(NegV))))
902     return NegV;
903 
904   // Constants can be considered to be negated values if they can be folded.
905   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
906     return ConstantExpr::getNeg(C);
907 
908   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
909     if (C->getType()->getElementType()->isIntegerTy())
910       return ConstantExpr::getNeg(C);
911 
912   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
913     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
914       Constant *Elt = CV->getAggregateElement(i);
915       if (!Elt)
916         return nullptr;
917 
918       if (isa<UndefValue>(Elt))
919         continue;
920 
921       if (!isa<ConstantInt>(Elt))
922         return nullptr;
923     }
924     return ConstantExpr::getNeg(CV);
925   }
926 
927   return nullptr;
928 }
929 
930 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
931                                              InstCombiner::BuilderTy &Builder) {
932   if (auto *Cast = dyn_cast<CastInst>(&I))
933     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
934 
935   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
936 
937   // Figure out if the constant is the left or the right argument.
938   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
939   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
940 
941   if (auto *SOC = dyn_cast<Constant>(SO)) {
942     if (ConstIsRHS)
943       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
944     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
945   }
946 
947   Value *Op0 = SO, *Op1 = ConstOperand;
948   if (!ConstIsRHS)
949     std::swap(Op0, Op1);
950 
951   auto *BO = cast<BinaryOperator>(&I);
952   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
953                                   SO->getName() + ".op");
954   auto *FPInst = dyn_cast<Instruction>(RI);
955   if (FPInst && isa<FPMathOperator>(FPInst))
956     FPInst->copyFastMathFlags(BO);
957   return RI;
958 }
959 
960 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
961                                                 SelectInst *SI) {
962   // Don't modify shared select instructions.
963   if (!SI->hasOneUse())
964     return nullptr;
965 
966   Value *TV = SI->getTrueValue();
967   Value *FV = SI->getFalseValue();
968   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
969     return nullptr;
970 
971   // Bool selects with constant operands can be folded to logical ops.
972   if (SI->getType()->isIntOrIntVectorTy(1))
973     return nullptr;
974 
975   // If it's a bitcast involving vectors, make sure it has the same number of
976   // elements on both sides.
977   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
978     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
979     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
980 
981     // Verify that either both or neither are vectors.
982     if ((SrcTy == nullptr) != (DestTy == nullptr))
983       return nullptr;
984 
985     // If vectors, verify that they have the same number of elements.
986     if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
987       return nullptr;
988   }
989 
990   // Test if a CmpInst instruction is used exclusively by a select as
991   // part of a minimum or maximum operation. If so, refrain from doing
992   // any other folding. This helps out other analyses which understand
993   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
994   // and CodeGen. And in this case, at least one of the comparison
995   // operands has at least one user besides the compare (the select),
996   // which would often largely negate the benefit of folding anyway.
997   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
998     if (CI->hasOneUse()) {
999       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1000 
1001       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1002       //        We have to ensure that vector constants that only differ with
1003       //        undef elements are treated as equivalent.
1004       auto areLooselyEqual = [](Value *A, Value *B) {
1005         if (A == B)
1006           return true;
1007 
1008         // Test for vector constants.
1009         Constant *ConstA, *ConstB;
1010         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1011           return false;
1012 
1013         // TODO: Deal with FP constants?
1014         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1015           return false;
1016 
1017         // Compare for equality including undefs as equal.
1018         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1019         const APInt *C;
1020         return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
1021       };
1022 
1023       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1024           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1025         return nullptr;
1026     }
1027   }
1028 
1029   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1030   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1031   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1032 }
1033 
1034 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1035                                         InstCombiner::BuilderTy &Builder) {
1036   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1037   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1038 
1039   if (auto *InC = dyn_cast<Constant>(InV)) {
1040     if (ConstIsRHS)
1041       return ConstantExpr::get(I->getOpcode(), InC, C);
1042     return ConstantExpr::get(I->getOpcode(), C, InC);
1043   }
1044 
1045   Value *Op0 = InV, *Op1 = C;
1046   if (!ConstIsRHS)
1047     std::swap(Op0, Op1);
1048 
1049   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1050   auto *FPInst = dyn_cast<Instruction>(RI);
1051   if (FPInst && isa<FPMathOperator>(FPInst))
1052     FPInst->copyFastMathFlags(I);
1053   return RI;
1054 }
1055 
1056 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1057   unsigned NumPHIValues = PN->getNumIncomingValues();
1058   if (NumPHIValues == 0)
1059     return nullptr;
1060 
1061   // We normally only transform phis with a single use.  However, if a PHI has
1062   // multiple uses and they are all the same operation, we can fold *all* of the
1063   // uses into the PHI.
1064   if (!PN->hasOneUse()) {
1065     // Walk the use list for the instruction, comparing them to I.
1066     for (User *U : PN->users()) {
1067       Instruction *UI = cast<Instruction>(U);
1068       if (UI != &I && !I.isIdenticalTo(UI))
1069         return nullptr;
1070     }
1071     // Otherwise, we can replace *all* users with the new PHI we form.
1072   }
1073 
1074   // Check to see if all of the operands of the PHI are simple constants
1075   // (constantint/constantfp/undef).  If there is one non-constant value,
1076   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1077   // bail out.  We don't do arbitrary constant expressions here because moving
1078   // their computation can be expensive without a cost model.
1079   BasicBlock *NonConstBB = nullptr;
1080   for (unsigned i = 0; i != NumPHIValues; ++i) {
1081     Value *InVal = PN->getIncomingValue(i);
1082     // If I is a freeze instruction, count undef as a non-constant.
1083     if (match(InVal, m_ImmConstant()) &&
1084         (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal)))
1085       continue;
1086 
1087     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1088     if (NonConstBB) return nullptr;  // More than one non-const value.
1089 
1090     NonConstBB = PN->getIncomingBlock(i);
1091 
1092     // If the InVal is an invoke at the end of the pred block, then we can't
1093     // insert a computation after it without breaking the edge.
1094     if (isa<InvokeInst>(InVal))
1095       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1096         return nullptr;
1097 
1098     // If the incoming non-constant value is in I's block, we will remove one
1099     // instruction, but insert another equivalent one, leading to infinite
1100     // instcombine.
1101     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
1102       return nullptr;
1103   }
1104 
1105   // If there is exactly one non-constant value, we can insert a copy of the
1106   // operation in that block.  However, if this is a critical edge, we would be
1107   // inserting the computation on some other paths (e.g. inside a loop).  Only
1108   // do this if the pred block is unconditionally branching into the phi block.
1109   // Also, make sure that the pred block is not dead code.
1110   if (NonConstBB != nullptr) {
1111     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1112     if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1113       return nullptr;
1114   }
1115 
1116   // Okay, we can do the transformation: create the new PHI node.
1117   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1118   InsertNewInstBefore(NewPN, *PN);
1119   NewPN->takeName(PN);
1120 
1121   // If we are going to have to insert a new computation, do so right before the
1122   // predecessor's terminator.
1123   if (NonConstBB)
1124     Builder.SetInsertPoint(NonConstBB->getTerminator());
1125 
1126   // Next, add all of the operands to the PHI.
1127   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1128     // We only currently try to fold the condition of a select when it is a phi,
1129     // not the true/false values.
1130     Value *TrueV = SI->getTrueValue();
1131     Value *FalseV = SI->getFalseValue();
1132     BasicBlock *PhiTransBB = PN->getParent();
1133     for (unsigned i = 0; i != NumPHIValues; ++i) {
1134       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1135       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1136       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1137       Value *InV = nullptr;
1138       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1139       // even if currently isNullValue gives false.
1140       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1141       // For vector constants, we cannot use isNullValue to fold into
1142       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1143       // elements in the vector, we will incorrectly fold InC to
1144       // `TrueVInPred`.
1145       if (InC && isa<ConstantInt>(InC))
1146         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1147       else {
1148         // Generate the select in the same block as PN's current incoming block.
1149         // Note: ThisBB need not be the NonConstBB because vector constants
1150         // which are constants by definition are handled here.
1151         // FIXME: This can lead to an increase in IR generation because we might
1152         // generate selects for vector constant phi operand, that could not be
1153         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1154         // non-vector phis, this transformation was always profitable because
1155         // the select would be generated exactly once in the NonConstBB.
1156         Builder.SetInsertPoint(ThisBB->getTerminator());
1157         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1158                                    FalseVInPred, "phi.sel");
1159       }
1160       NewPN->addIncoming(InV, ThisBB);
1161     }
1162   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1163     Constant *C = cast<Constant>(I.getOperand(1));
1164     for (unsigned i = 0; i != NumPHIValues; ++i) {
1165       Value *InV = nullptr;
1166       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1167         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1168       else
1169         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1170                                 C, "phi.cmp");
1171       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1172     }
1173   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1174     for (unsigned i = 0; i != NumPHIValues; ++i) {
1175       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1176                                              Builder);
1177       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1178     }
1179   } else if (isa<FreezeInst>(&I)) {
1180     for (unsigned i = 0; i != NumPHIValues; ++i) {
1181       Value *InV;
1182       if (NonConstBB == PN->getIncomingBlock(i))
1183         InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1184       else
1185         InV = PN->getIncomingValue(i);
1186       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1187     }
1188   } else {
1189     CastInst *CI = cast<CastInst>(&I);
1190     Type *RetTy = CI->getType();
1191     for (unsigned i = 0; i != NumPHIValues; ++i) {
1192       Value *InV;
1193       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1194         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1195       else
1196         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1197                                  I.getType(), "phi.cast");
1198       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1199     }
1200   }
1201 
1202   for (User *U : make_early_inc_range(PN->users())) {
1203     Instruction *User = cast<Instruction>(U);
1204     if (User == &I) continue;
1205     replaceInstUsesWith(*User, NewPN);
1206     eraseInstFromFunction(*User);
1207   }
1208   return replaceInstUsesWith(I, NewPN);
1209 }
1210 
1211 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1212   if (!isa<Constant>(I.getOperand(1)))
1213     return nullptr;
1214 
1215   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1216     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1217       return NewSel;
1218   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1219     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1220       return NewPhi;
1221   }
1222   return nullptr;
1223 }
1224 
1225 /// Given a pointer type and a constant offset, determine whether or not there
1226 /// is a sequence of GEP indices into the pointed type that will land us at the
1227 /// specified offset. If so, fill them into NewIndices and return the resultant
1228 /// element type, otherwise return null.
1229 Type *
1230 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1231                                       SmallVectorImpl<Value *> &NewIndices) {
1232   Type *Ty = PtrTy->getElementType();
1233   if (!Ty->isSized())
1234     return nullptr;
1235 
1236   // Start with the index over the outer type.  Note that the type size
1237   // might be zero (even if the offset isn't zero) if the indexed type
1238   // is something like [0 x {int, int}]
1239   Type *IndexTy = DL.getIndexType(PtrTy);
1240   int64_t FirstIdx = 0;
1241   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1242     FirstIdx = Offset/TySize;
1243     Offset -= FirstIdx*TySize;
1244 
1245     // Handle hosts where % returns negative instead of values [0..TySize).
1246     if (Offset < 0) {
1247       --FirstIdx;
1248       Offset += TySize;
1249       assert(Offset >= 0);
1250     }
1251     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1252   }
1253 
1254   NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1255 
1256   // Index into the types.  If we fail, set OrigBase to null.
1257   while (Offset) {
1258     // Indexing into tail padding between struct/array elements.
1259     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1260       return nullptr;
1261 
1262     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1263       const StructLayout *SL = DL.getStructLayout(STy);
1264       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1265              "Offset must stay within the indexed type");
1266 
1267       unsigned Elt = SL->getElementContainingOffset(Offset);
1268       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1269                                             Elt));
1270 
1271       Offset -= SL->getElementOffset(Elt);
1272       Ty = STy->getElementType(Elt);
1273     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1274       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1275       assert(EltSize && "Cannot index into a zero-sized array");
1276       NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1277       Offset %= EltSize;
1278       Ty = AT->getElementType();
1279     } else {
1280       // Otherwise, we can't index into the middle of this atomic type, bail.
1281       return nullptr;
1282     }
1283   }
1284 
1285   return Ty;
1286 }
1287 
1288 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1289   // If this GEP has only 0 indices, it is the same pointer as
1290   // Src. If Src is not a trivial GEP too, don't combine
1291   // the indices.
1292   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1293       !Src.hasOneUse())
1294     return false;
1295   return true;
1296 }
1297 
1298 /// Return a value X such that Val = X * Scale, or null if none.
1299 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1300 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1301   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1302   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1303          Scale.getBitWidth() && "Scale not compatible with value!");
1304 
1305   // If Val is zero or Scale is one then Val = Val * Scale.
1306   if (match(Val, m_Zero()) || Scale == 1) {
1307     NoSignedWrap = true;
1308     return Val;
1309   }
1310 
1311   // If Scale is zero then it does not divide Val.
1312   if (Scale.isMinValue())
1313     return nullptr;
1314 
1315   // Look through chains of multiplications, searching for a constant that is
1316   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1317   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1318   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1319   // down from Val:
1320   //
1321   //     Val = M1 * X          ||   Analysis starts here and works down
1322   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1323   //      M2 =  Z * 4          \/   than one use
1324   //
1325   // Then to modify a term at the bottom:
1326   //
1327   //     Val = M1 * X
1328   //      M1 =  Z * Y          ||   Replaced M2 with Z
1329   //
1330   // Then to work back up correcting nsw flags.
1331 
1332   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1333   // Replaced with its descaled value before exiting from the drill down loop.
1334   Value *Op = Val;
1335 
1336   // Parent - initially null, but after drilling down notes where Op came from.
1337   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1338   // 0'th operand of Val.
1339   std::pair<Instruction *, unsigned> Parent;
1340 
1341   // Set if the transform requires a descaling at deeper levels that doesn't
1342   // overflow.
1343   bool RequireNoSignedWrap = false;
1344 
1345   // Log base 2 of the scale. Negative if not a power of 2.
1346   int32_t logScale = Scale.exactLogBase2();
1347 
1348   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1349     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1350       // If Op is a constant divisible by Scale then descale to the quotient.
1351       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1352       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1353       if (!Remainder.isMinValue())
1354         // Not divisible by Scale.
1355         return nullptr;
1356       // Replace with the quotient in the parent.
1357       Op = ConstantInt::get(CI->getType(), Quotient);
1358       NoSignedWrap = true;
1359       break;
1360     }
1361 
1362     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1363       if (BO->getOpcode() == Instruction::Mul) {
1364         // Multiplication.
1365         NoSignedWrap = BO->hasNoSignedWrap();
1366         if (RequireNoSignedWrap && !NoSignedWrap)
1367           return nullptr;
1368 
1369         // There are three cases for multiplication: multiplication by exactly
1370         // the scale, multiplication by a constant different to the scale, and
1371         // multiplication by something else.
1372         Value *LHS = BO->getOperand(0);
1373         Value *RHS = BO->getOperand(1);
1374 
1375         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1376           // Multiplication by a constant.
1377           if (CI->getValue() == Scale) {
1378             // Multiplication by exactly the scale, replace the multiplication
1379             // by its left-hand side in the parent.
1380             Op = LHS;
1381             break;
1382           }
1383 
1384           // Otherwise drill down into the constant.
1385           if (!Op->hasOneUse())
1386             return nullptr;
1387 
1388           Parent = std::make_pair(BO, 1);
1389           continue;
1390         }
1391 
1392         // Multiplication by something else. Drill down into the left-hand side
1393         // since that's where the reassociate pass puts the good stuff.
1394         if (!Op->hasOneUse())
1395           return nullptr;
1396 
1397         Parent = std::make_pair(BO, 0);
1398         continue;
1399       }
1400 
1401       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1402           isa<ConstantInt>(BO->getOperand(1))) {
1403         // Multiplication by a power of 2.
1404         NoSignedWrap = BO->hasNoSignedWrap();
1405         if (RequireNoSignedWrap && !NoSignedWrap)
1406           return nullptr;
1407 
1408         Value *LHS = BO->getOperand(0);
1409         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1410           getLimitedValue(Scale.getBitWidth());
1411         // Op = LHS << Amt.
1412 
1413         if (Amt == logScale) {
1414           // Multiplication by exactly the scale, replace the multiplication
1415           // by its left-hand side in the parent.
1416           Op = LHS;
1417           break;
1418         }
1419         if (Amt < logScale || !Op->hasOneUse())
1420           return nullptr;
1421 
1422         // Multiplication by more than the scale.  Reduce the multiplying amount
1423         // by the scale in the parent.
1424         Parent = std::make_pair(BO, 1);
1425         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1426         break;
1427       }
1428     }
1429 
1430     if (!Op->hasOneUse())
1431       return nullptr;
1432 
1433     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1434       if (Cast->getOpcode() == Instruction::SExt) {
1435         // Op is sign-extended from a smaller type, descale in the smaller type.
1436         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1437         APInt SmallScale = Scale.trunc(SmallSize);
1438         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1439         // descale Op as (sext Y) * Scale.  In order to have
1440         //   sext (Y * SmallScale) = (sext Y) * Scale
1441         // some conditions need to hold however: SmallScale must sign-extend to
1442         // Scale and the multiplication Y * SmallScale should not overflow.
1443         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1444           // SmallScale does not sign-extend to Scale.
1445           return nullptr;
1446         assert(SmallScale.exactLogBase2() == logScale);
1447         // Require that Y * SmallScale must not overflow.
1448         RequireNoSignedWrap = true;
1449 
1450         // Drill down through the cast.
1451         Parent = std::make_pair(Cast, 0);
1452         Scale = SmallScale;
1453         continue;
1454       }
1455 
1456       if (Cast->getOpcode() == Instruction::Trunc) {
1457         // Op is truncated from a larger type, descale in the larger type.
1458         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1459         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1460         // always holds.  However (trunc Y) * Scale may overflow even if
1461         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1462         // from this point up in the expression (see later).
1463         if (RequireNoSignedWrap)
1464           return nullptr;
1465 
1466         // Drill down through the cast.
1467         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1468         Parent = std::make_pair(Cast, 0);
1469         Scale = Scale.sext(LargeSize);
1470         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1471           logScale = -1;
1472         assert(Scale.exactLogBase2() == logScale);
1473         continue;
1474       }
1475     }
1476 
1477     // Unsupported expression, bail out.
1478     return nullptr;
1479   }
1480 
1481   // If Op is zero then Val = Op * Scale.
1482   if (match(Op, m_Zero())) {
1483     NoSignedWrap = true;
1484     return Op;
1485   }
1486 
1487   // We know that we can successfully descale, so from here on we can safely
1488   // modify the IR.  Op holds the descaled version of the deepest term in the
1489   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1490   // not to overflow.
1491 
1492   if (!Parent.first)
1493     // The expression only had one term.
1494     return Op;
1495 
1496   // Rewrite the parent using the descaled version of its operand.
1497   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1498   assert(Op != Parent.first->getOperand(Parent.second) &&
1499          "Descaling was a no-op?");
1500   replaceOperand(*Parent.first, Parent.second, Op);
1501   Worklist.push(Parent.first);
1502 
1503   // Now work back up the expression correcting nsw flags.  The logic is based
1504   // on the following observation: if X * Y is known not to overflow as a signed
1505   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1506   // then X * Z will not overflow as a signed multiplication either.  As we work
1507   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1508   // current level has strictly smaller absolute value than the original.
1509   Instruction *Ancestor = Parent.first;
1510   do {
1511     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1512       // If the multiplication wasn't nsw then we can't say anything about the
1513       // value of the descaled multiplication, and we have to clear nsw flags
1514       // from this point on up.
1515       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1516       NoSignedWrap &= OpNoSignedWrap;
1517       if (NoSignedWrap != OpNoSignedWrap) {
1518         BO->setHasNoSignedWrap(NoSignedWrap);
1519         Worklist.push(Ancestor);
1520       }
1521     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1522       // The fact that the descaled input to the trunc has smaller absolute
1523       // value than the original input doesn't tell us anything useful about
1524       // the absolute values of the truncations.
1525       NoSignedWrap = false;
1526     }
1527     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1528            "Failed to keep proper track of nsw flags while drilling down?");
1529 
1530     if (Ancestor == Val)
1531       // Got to the top, all done!
1532       return Val;
1533 
1534     // Move up one level in the expression.
1535     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1536     Ancestor = Ancestor->user_back();
1537   } while (true);
1538 }
1539 
1540 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1541   if (!isa<VectorType>(Inst.getType()))
1542     return nullptr;
1543 
1544   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1545   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1546   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1547          cast<VectorType>(Inst.getType())->getElementCount());
1548   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1549          cast<VectorType>(Inst.getType())->getElementCount());
1550 
1551   // If both operands of the binop are vector concatenations, then perform the
1552   // narrow binop on each pair of the source operands followed by concatenation
1553   // of the results.
1554   Value *L0, *L1, *R0, *R1;
1555   ArrayRef<int> Mask;
1556   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1557       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1558       LHS->hasOneUse() && RHS->hasOneUse() &&
1559       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1560       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1561     // This transform does not have the speculative execution constraint as
1562     // below because the shuffle is a concatenation. The new binops are
1563     // operating on exactly the same elements as the existing binop.
1564     // TODO: We could ease the mask requirement to allow different undef lanes,
1565     //       but that requires an analysis of the binop-with-undef output value.
1566     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1567     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1568       BO->copyIRFlags(&Inst);
1569     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1570     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1571       BO->copyIRFlags(&Inst);
1572     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1573   }
1574 
1575   // It may not be safe to reorder shuffles and things like div, urem, etc.
1576   // because we may trap when executing those ops on unknown vector elements.
1577   // See PR20059.
1578   if (!isSafeToSpeculativelyExecute(&Inst))
1579     return nullptr;
1580 
1581   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1582     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1583     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1584       BO->copyIRFlags(&Inst);
1585     return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1586   };
1587 
1588   // If both arguments of the binary operation are shuffles that use the same
1589   // mask and shuffle within a single vector, move the shuffle after the binop.
1590   Value *V1, *V2;
1591   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1592       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1593       V1->getType() == V2->getType() &&
1594       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1595     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1596     return createBinOpShuffle(V1, V2, Mask);
1597   }
1598 
1599   // If both arguments of a commutative binop are select-shuffles that use the
1600   // same mask with commuted operands, the shuffles are unnecessary.
1601   if (Inst.isCommutative() &&
1602       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1603       match(RHS,
1604             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1605     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1606     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1607     // TODO: Allow shuffles that contain undefs in the mask?
1608     //       That is legal, but it reduces undef knowledge.
1609     // TODO: Allow arbitrary shuffles by shuffling after binop?
1610     //       That might be legal, but we have to deal with poison.
1611     if (LShuf->isSelect() &&
1612         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1613         RShuf->isSelect() &&
1614         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1615       // Example:
1616       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1617       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1618       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1619       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1620       NewBO->copyIRFlags(&Inst);
1621       return NewBO;
1622     }
1623   }
1624 
1625   // If one argument is a shuffle within one vector and the other is a constant,
1626   // try moving the shuffle after the binary operation. This canonicalization
1627   // intends to move shuffles closer to other shuffles and binops closer to
1628   // other binops, so they can be folded. It may also enable demanded elements
1629   // transforms.
1630   Constant *C;
1631   auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1632   if (InstVTy &&
1633       match(&Inst,
1634             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1635                       m_ImmConstant(C))) &&
1636       cast<FixedVectorType>(V1->getType())->getNumElements() <=
1637           InstVTy->getNumElements()) {
1638     assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1639            "Shuffle should not change scalar type");
1640 
1641     // Find constant NewC that has property:
1642     //   shuffle(NewC, ShMask) = C
1643     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1644     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1645     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1646     bool ConstOp1 = isa<Constant>(RHS);
1647     ArrayRef<int> ShMask = Mask;
1648     unsigned SrcVecNumElts =
1649         cast<FixedVectorType>(V1->getType())->getNumElements();
1650     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1651     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1652     bool MayChange = true;
1653     unsigned NumElts = InstVTy->getNumElements();
1654     for (unsigned I = 0; I < NumElts; ++I) {
1655       Constant *CElt = C->getAggregateElement(I);
1656       if (ShMask[I] >= 0) {
1657         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1658         Constant *NewCElt = NewVecC[ShMask[I]];
1659         // Bail out if:
1660         // 1. The constant vector contains a constant expression.
1661         // 2. The shuffle needs an element of the constant vector that can't
1662         //    be mapped to a new constant vector.
1663         // 3. This is a widening shuffle that copies elements of V1 into the
1664         //    extended elements (extending with undef is allowed).
1665         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1666             I >= SrcVecNumElts) {
1667           MayChange = false;
1668           break;
1669         }
1670         NewVecC[ShMask[I]] = CElt;
1671       }
1672       // If this is a widening shuffle, we must be able to extend with undef
1673       // elements. If the original binop does not produce an undef in the high
1674       // lanes, then this transform is not safe.
1675       // Similarly for undef lanes due to the shuffle mask, we can only
1676       // transform binops that preserve undef.
1677       // TODO: We could shuffle those non-undef constant values into the
1678       //       result by using a constant vector (rather than an undef vector)
1679       //       as operand 1 of the new binop, but that might be too aggressive
1680       //       for target-independent shuffle creation.
1681       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1682         Constant *MaybeUndef =
1683             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1684                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1685         if (!isa<UndefValue>(MaybeUndef)) {
1686           MayChange = false;
1687           break;
1688         }
1689       }
1690     }
1691     if (MayChange) {
1692       Constant *NewC = ConstantVector::get(NewVecC);
1693       // It may not be safe to execute a binop on a vector with undef elements
1694       // because the entire instruction can be folded to undef or create poison
1695       // that did not exist in the original code.
1696       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1697         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1698 
1699       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1700       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1701       Value *NewLHS = ConstOp1 ? V1 : NewC;
1702       Value *NewRHS = ConstOp1 ? NewC : V1;
1703       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1704     }
1705   }
1706 
1707   // Try to reassociate to sink a splat shuffle after a binary operation.
1708   if (Inst.isAssociative() && Inst.isCommutative()) {
1709     // Canonicalize shuffle operand as LHS.
1710     if (isa<ShuffleVectorInst>(RHS))
1711       std::swap(LHS, RHS);
1712 
1713     Value *X;
1714     ArrayRef<int> MaskC;
1715     int SplatIndex;
1716     BinaryOperator *BO;
1717     if (!match(LHS,
1718                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1719         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1720         X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1721         BO->getOpcode() != Opcode)
1722       return nullptr;
1723 
1724     // FIXME: This may not be safe if the analysis allows undef elements. By
1725     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1726     //        that it is not undef/poison at the splat index.
1727     Value *Y, *OtherOp;
1728     if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1729       Y = BO->getOperand(0);
1730       OtherOp = BO->getOperand(1);
1731     } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1732       Y = BO->getOperand(1);
1733       OtherOp = BO->getOperand(0);
1734     } else {
1735       return nullptr;
1736     }
1737 
1738     // X and Y are splatted values, so perform the binary operation on those
1739     // values followed by a splat followed by the 2nd binary operation:
1740     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1741     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1742     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1743     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1744     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1745 
1746     // Intersect FMF on both new binops. Other (poison-generating) flags are
1747     // dropped to be safe.
1748     if (isa<FPMathOperator>(R)) {
1749       R->copyFastMathFlags(&Inst);
1750       R->andIRFlags(BO);
1751     }
1752     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1753       NewInstBO->copyIRFlags(R);
1754     return R;
1755   }
1756 
1757   return nullptr;
1758 }
1759 
1760 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1761 /// of a value. This requires a potentially expensive known bits check to make
1762 /// sure the narrow op does not overflow.
1763 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1764   // We need at least one extended operand.
1765   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1766 
1767   // If this is a sub, we swap the operands since we always want an extension
1768   // on the RHS. The LHS can be an extension or a constant.
1769   if (BO.getOpcode() == Instruction::Sub)
1770     std::swap(Op0, Op1);
1771 
1772   Value *X;
1773   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1774   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1775     return nullptr;
1776 
1777   // If both operands are the same extension from the same source type and we
1778   // can eliminate at least one (hasOneUse), this might work.
1779   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1780   Value *Y;
1781   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1782         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1783         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1784     // If that did not match, see if we have a suitable constant operand.
1785     // Truncating and extending must produce the same constant.
1786     Constant *WideC;
1787     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1788       return nullptr;
1789     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1790     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1791       return nullptr;
1792     Y = NarrowC;
1793   }
1794 
1795   // Swap back now that we found our operands.
1796   if (BO.getOpcode() == Instruction::Sub)
1797     std::swap(X, Y);
1798 
1799   // Both operands have narrow versions. Last step: the math must not overflow
1800   // in the narrow width.
1801   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1802     return nullptr;
1803 
1804   // bo (ext X), (ext Y) --> ext (bo X, Y)
1805   // bo (ext X), C       --> ext (bo X, C')
1806   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1807   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1808     if (IsSext)
1809       NewBinOp->setHasNoSignedWrap();
1810     else
1811       NewBinOp->setHasNoUnsignedWrap();
1812   }
1813   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1814 }
1815 
1816 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1817   // At least one GEP must be inbounds.
1818   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1819     return false;
1820 
1821   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1822          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1823 }
1824 
1825 /// Thread a GEP operation with constant indices through the constant true/false
1826 /// arms of a select.
1827 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1828                                   InstCombiner::BuilderTy &Builder) {
1829   if (!GEP.hasAllConstantIndices())
1830     return nullptr;
1831 
1832   Instruction *Sel;
1833   Value *Cond;
1834   Constant *TrueC, *FalseC;
1835   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1836       !match(Sel,
1837              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1838     return nullptr;
1839 
1840   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1841   // Propagate 'inbounds' and metadata from existing instructions.
1842   // Note: using IRBuilder to create the constants for efficiency.
1843   SmallVector<Value *, 4> IndexC(GEP.indices());
1844   bool IsInBounds = GEP.isInBounds();
1845   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC)
1846                                : Builder.CreateGEP(TrueC, IndexC);
1847   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC)
1848                                 : Builder.CreateGEP(FalseC, IndexC);
1849   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1850 }
1851 
1852 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1853   SmallVector<Value *, 8> Ops(GEP.operands());
1854   Type *GEPType = GEP.getType();
1855   Type *GEPEltType = GEP.getSourceElementType();
1856   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1857   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1858     return replaceInstUsesWith(GEP, V);
1859 
1860   // For vector geps, use the generic demanded vector support.
1861   // Skip if GEP return type is scalable. The number of elements is unknown at
1862   // compile-time.
1863   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1864     auto VWidth = GEPFVTy->getNumElements();
1865     APInt UndefElts(VWidth, 0);
1866     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1867     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1868                                               UndefElts)) {
1869       if (V != &GEP)
1870         return replaceInstUsesWith(GEP, V);
1871       return &GEP;
1872     }
1873 
1874     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1875     // possible (decide on canonical form for pointer broadcast), 3) exploit
1876     // undef elements to decrease demanded bits
1877   }
1878 
1879   Value *PtrOp = GEP.getOperand(0);
1880 
1881   // Eliminate unneeded casts for indices, and replace indices which displace
1882   // by multiples of a zero size type with zero.
1883   bool MadeChange = false;
1884 
1885   // Index width may not be the same width as pointer width.
1886   // Data layout chooses the right type based on supported integer types.
1887   Type *NewScalarIndexTy =
1888       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1889 
1890   gep_type_iterator GTI = gep_type_begin(GEP);
1891   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1892        ++I, ++GTI) {
1893     // Skip indices into struct types.
1894     if (GTI.isStruct())
1895       continue;
1896 
1897     Type *IndexTy = (*I)->getType();
1898     Type *NewIndexType =
1899         IndexTy->isVectorTy()
1900             ? VectorType::get(NewScalarIndexTy,
1901                               cast<VectorType>(IndexTy)->getElementCount())
1902             : NewScalarIndexTy;
1903 
1904     // If the element type has zero size then any index over it is equivalent
1905     // to an index of zero, so replace it with zero if it is not zero already.
1906     Type *EltTy = GTI.getIndexedType();
1907     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1908       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1909         *I = Constant::getNullValue(NewIndexType);
1910         MadeChange = true;
1911       }
1912 
1913     if (IndexTy != NewIndexType) {
1914       // If we are using a wider index than needed for this platform, shrink
1915       // it to what we need.  If narrower, sign-extend it to what we need.
1916       // This explicit cast can make subsequent optimizations more obvious.
1917       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1918       MadeChange = true;
1919     }
1920   }
1921   if (MadeChange)
1922     return &GEP;
1923 
1924   // Check to see if the inputs to the PHI node are getelementptr instructions.
1925   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1926     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1927     if (!Op1)
1928       return nullptr;
1929 
1930     // Don't fold a GEP into itself through a PHI node. This can only happen
1931     // through the back-edge of a loop. Folding a GEP into itself means that
1932     // the value of the previous iteration needs to be stored in the meantime,
1933     // thus requiring an additional register variable to be live, but not
1934     // actually achieving anything (the GEP still needs to be executed once per
1935     // loop iteration).
1936     if (Op1 == &GEP)
1937       return nullptr;
1938 
1939     int DI = -1;
1940 
1941     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1942       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1943       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1944         return nullptr;
1945 
1946       // As for Op1 above, don't try to fold a GEP into itself.
1947       if (Op2 == &GEP)
1948         return nullptr;
1949 
1950       // Keep track of the type as we walk the GEP.
1951       Type *CurTy = nullptr;
1952 
1953       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1954         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1955           return nullptr;
1956 
1957         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1958           if (DI == -1) {
1959             // We have not seen any differences yet in the GEPs feeding the
1960             // PHI yet, so we record this one if it is allowed to be a
1961             // variable.
1962 
1963             // The first two arguments can vary for any GEP, the rest have to be
1964             // static for struct slots
1965             if (J > 1) {
1966               assert(CurTy && "No current type?");
1967               if (CurTy->isStructTy())
1968                 return nullptr;
1969             }
1970 
1971             DI = J;
1972           } else {
1973             // The GEP is different by more than one input. While this could be
1974             // extended to support GEPs that vary by more than one variable it
1975             // doesn't make sense since it greatly increases the complexity and
1976             // would result in an R+R+R addressing mode which no backend
1977             // directly supports and would need to be broken into several
1978             // simpler instructions anyway.
1979             return nullptr;
1980           }
1981         }
1982 
1983         // Sink down a layer of the type for the next iteration.
1984         if (J > 0) {
1985           if (J == 1) {
1986             CurTy = Op1->getSourceElementType();
1987           } else {
1988             CurTy =
1989                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
1990           }
1991         }
1992       }
1993     }
1994 
1995     // If not all GEPs are identical we'll have to create a new PHI node.
1996     // Check that the old PHI node has only one use so that it will get
1997     // removed.
1998     if (DI != -1 && !PN->hasOneUse())
1999       return nullptr;
2000 
2001     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2002     if (DI == -1) {
2003       // All the GEPs feeding the PHI are identical. Clone one down into our
2004       // BB so that it can be merged with the current GEP.
2005     } else {
2006       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2007       // into the current block so it can be merged, and create a new PHI to
2008       // set that index.
2009       PHINode *NewPN;
2010       {
2011         IRBuilderBase::InsertPointGuard Guard(Builder);
2012         Builder.SetInsertPoint(PN);
2013         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2014                                   PN->getNumOperands());
2015       }
2016 
2017       for (auto &I : PN->operands())
2018         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2019                            PN->getIncomingBlock(I));
2020 
2021       NewGEP->setOperand(DI, NewPN);
2022     }
2023 
2024     GEP.getParent()->getInstList().insert(
2025         GEP.getParent()->getFirstInsertionPt(), NewGEP);
2026     replaceOperand(GEP, 0, NewGEP);
2027     PtrOp = NewGEP;
2028   }
2029 
2030   // Combine Indices - If the source pointer to this getelementptr instruction
2031   // is a getelementptr instruction, combine the indices of the two
2032   // getelementptr instructions into a single instruction.
2033   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2034     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2035       return nullptr;
2036 
2037     // Try to reassociate loop invariant GEP chains to enable LICM.
2038     if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2039         Src->hasOneUse()) {
2040       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2041         Value *GO1 = GEP.getOperand(1);
2042         Value *SO1 = Src->getOperand(1);
2043         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2044         // invariant: this breaks the dependence between GEPs and allows LICM
2045         // to hoist the invariant part out of the loop.
2046         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2047           // We have to be careful here.
2048           // We have something like:
2049           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2050           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2051           // If we just swap idx & idx2 then we could inadvertantly
2052           // change %src from a vector to a scalar, or vice versa.
2053           // Cases:
2054           //  1) %base a scalar & idx a scalar & idx2 a vector
2055           //      => Swapping idx & idx2 turns %src into a vector type.
2056           //  2) %base a scalar & idx a vector & idx2 a scalar
2057           //      => Swapping idx & idx2 turns %src in a scalar type
2058           //  3) %base, %idx, and %idx2 are scalars
2059           //      => %src & %gep are scalars
2060           //      => swapping idx & idx2 is safe
2061           //  4) %base a vector
2062           //      => %src is a vector
2063           //      => swapping idx & idx2 is safe.
2064           auto *SO0 = Src->getOperand(0);
2065           auto *SO0Ty = SO0->getType();
2066           if (!isa<VectorType>(GEPType) || // case 3
2067               isa<VectorType>(SO0Ty)) {    // case 4
2068             Src->setOperand(1, GO1);
2069             GEP.setOperand(1, SO1);
2070             return &GEP;
2071           } else {
2072             // Case 1 or 2
2073             // -- have to recreate %src & %gep
2074             // put NewSrc at same location as %src
2075             Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2076             auto *NewSrc = cast<GetElementPtrInst>(
2077                 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
2078             NewSrc->setIsInBounds(Src->isInBounds());
2079             auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2080             NewGEP->setIsInBounds(GEP.isInBounds());
2081             return NewGEP;
2082           }
2083         }
2084       }
2085     }
2086 
2087     // Note that if our source is a gep chain itself then we wait for that
2088     // chain to be resolved before we perform this transformation.  This
2089     // avoids us creating a TON of code in some cases.
2090     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2091       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2092         return nullptr;   // Wait until our source is folded to completion.
2093 
2094     SmallVector<Value*, 8> Indices;
2095 
2096     // Find out whether the last index in the source GEP is a sequential idx.
2097     bool EndsWithSequential = false;
2098     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2099          I != E; ++I)
2100       EndsWithSequential = I.isSequential();
2101 
2102     // Can we combine the two pointer arithmetics offsets?
2103     if (EndsWithSequential) {
2104       // Replace: gep (gep %P, long B), long A, ...
2105       // With:    T = long A+B; gep %P, T, ...
2106       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2107       Value *GO1 = GEP.getOperand(1);
2108 
2109       // If they aren't the same type, then the input hasn't been processed
2110       // by the loop above yet (which canonicalizes sequential index types to
2111       // intptr_t).  Just avoid transforming this until the input has been
2112       // normalized.
2113       if (SO1->getType() != GO1->getType())
2114         return nullptr;
2115 
2116       Value *Sum =
2117           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2118       // Only do the combine when we are sure the cost after the
2119       // merge is never more than that before the merge.
2120       if (Sum == nullptr)
2121         return nullptr;
2122 
2123       // Update the GEP in place if possible.
2124       if (Src->getNumOperands() == 2) {
2125         GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2126         replaceOperand(GEP, 0, Src->getOperand(0));
2127         replaceOperand(GEP, 1, Sum);
2128         return &GEP;
2129       }
2130       Indices.append(Src->op_begin()+1, Src->op_end()-1);
2131       Indices.push_back(Sum);
2132       Indices.append(GEP.op_begin()+2, GEP.op_end());
2133     } else if (isa<Constant>(*GEP.idx_begin()) &&
2134                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2135                Src->getNumOperands() != 1) {
2136       // Otherwise we can do the fold if the first index of the GEP is a zero
2137       Indices.append(Src->op_begin()+1, Src->op_end());
2138       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2139     }
2140 
2141     if (!Indices.empty())
2142       return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2143                  ? GetElementPtrInst::CreateInBounds(
2144                        Src->getSourceElementType(), Src->getOperand(0), Indices,
2145                        GEP.getName())
2146                  : GetElementPtrInst::Create(Src->getSourceElementType(),
2147                                              Src->getOperand(0), Indices,
2148                                              GEP.getName());
2149   }
2150 
2151   // Skip if GEP source element type is scalable. The type alloc size is unknown
2152   // at compile-time.
2153   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2154     unsigned AS = GEP.getPointerAddressSpace();
2155     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2156         DL.getIndexSizeInBits(AS)) {
2157       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2158 
2159       bool Matched = false;
2160       uint64_t C;
2161       Value *V = nullptr;
2162       if (TyAllocSize == 1) {
2163         V = GEP.getOperand(1);
2164         Matched = true;
2165       } else if (match(GEP.getOperand(1),
2166                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2167         if (TyAllocSize == 1ULL << C)
2168           Matched = true;
2169       } else if (match(GEP.getOperand(1),
2170                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2171         if (TyAllocSize == C)
2172           Matched = true;
2173       }
2174 
2175       if (Matched) {
2176         // Canonicalize (gep i8* X, -(ptrtoint Y))
2177         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
2178         // The GEP pattern is emitted by the SCEV expander for certain kinds of
2179         // pointer arithmetic.
2180         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
2181           Operator *Index = cast<Operator>(V);
2182           Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
2183           Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
2184           return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
2185         }
2186         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
2187         // to (bitcast Y)
2188         Value *Y;
2189         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
2190                            m_PtrToInt(m_Specific(GEP.getOperand(0))))))
2191           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2192       }
2193     }
2194   }
2195 
2196   // We do not handle pointer-vector geps here.
2197   if (GEPType->isVectorTy())
2198     return nullptr;
2199 
2200   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2201   Value *StrippedPtr = PtrOp->stripPointerCasts();
2202   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2203 
2204   if (StrippedPtr != PtrOp) {
2205     bool HasZeroPointerIndex = false;
2206     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2207 
2208     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2209       HasZeroPointerIndex = C->isZero();
2210 
2211     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2212     // into     : GEP [10 x i8]* X, i32 0, ...
2213     //
2214     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2215     //           into     : GEP i8* X, ...
2216     //
2217     // This occurs when the program declares an array extern like "int X[];"
2218     if (HasZeroPointerIndex) {
2219       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2220         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2221         if (CATy->getElementType() == StrippedPtrEltTy) {
2222           // -> GEP i8* X, ...
2223           SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2224           GetElementPtrInst *Res = GetElementPtrInst::Create(
2225               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2226           Res->setIsInBounds(GEP.isInBounds());
2227           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2228             return Res;
2229           // Insert Res, and create an addrspacecast.
2230           // e.g.,
2231           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2232           // ->
2233           // %0 = GEP i8 addrspace(1)* X, ...
2234           // addrspacecast i8 addrspace(1)* %0 to i8*
2235           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2236         }
2237 
2238         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2239           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2240           if (CATy->getElementType() == XATy->getElementType()) {
2241             // -> GEP [10 x i8]* X, i32 0, ...
2242             // At this point, we know that the cast source type is a pointer
2243             // to an array of the same type as the destination pointer
2244             // array.  Because the array type is never stepped over (there
2245             // is a leading zero) we can fold the cast into this GEP.
2246             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2247               GEP.setSourceElementType(XATy);
2248               return replaceOperand(GEP, 0, StrippedPtr);
2249             }
2250             // Cannot replace the base pointer directly because StrippedPtr's
2251             // address space is different. Instead, create a new GEP followed by
2252             // an addrspacecast.
2253             // e.g.,
2254             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2255             //   i32 0, ...
2256             // ->
2257             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2258             // addrspacecast i8 addrspace(1)* %0 to i8*
2259             SmallVector<Value *, 8> Idx(GEP.indices());
2260             Value *NewGEP =
2261                 GEP.isInBounds()
2262                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2263                                                 Idx, GEP.getName())
2264                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2265                                         GEP.getName());
2266             return new AddrSpaceCastInst(NewGEP, GEPType);
2267           }
2268         }
2269       }
2270     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2271       // Skip if GEP source element type is scalable. The type alloc size is
2272       // unknown at compile-time.
2273       // Transform things like: %t = getelementptr i32*
2274       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2275       // x i32]* %str, i32 0, i32 %V; bitcast
2276       if (StrippedPtrEltTy->isArrayTy() &&
2277           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2278               DL.getTypeAllocSize(GEPEltType)) {
2279         Type *IdxType = DL.getIndexType(GEPType);
2280         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2281         Value *NewGEP =
2282             GEP.isInBounds()
2283                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2284                                             GEP.getName())
2285                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2286                                     GEP.getName());
2287 
2288         // V and GEP are both pointer types --> BitCast
2289         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2290       }
2291 
2292       // Transform things like:
2293       // %V = mul i64 %N, 4
2294       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2295       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2296       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2297         // Check that changing the type amounts to dividing the index by a scale
2298         // factor.
2299         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2300         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2301         if (ResSize && SrcSize % ResSize == 0) {
2302           Value *Idx = GEP.getOperand(1);
2303           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2304           uint64_t Scale = SrcSize / ResSize;
2305 
2306           // Earlier transforms ensure that the index has the right type
2307           // according to Data Layout, which considerably simplifies the
2308           // logic by eliminating implicit casts.
2309           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2310                  "Index type does not match the Data Layout preferences");
2311 
2312           bool NSW;
2313           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2314             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2315             // If the multiplication NewIdx * Scale may overflow then the new
2316             // GEP may not be "inbounds".
2317             Value *NewGEP =
2318                 GEP.isInBounds() && NSW
2319                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2320                                                 NewIdx, GEP.getName())
2321                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2322                                         GEP.getName());
2323 
2324             // The NewGEP must be pointer typed, so must the old one -> BitCast
2325             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2326                                                                  GEPType);
2327           }
2328         }
2329       }
2330 
2331       // Similarly, transform things like:
2332       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2333       //   (where tmp = 8*tmp2) into:
2334       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2335       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2336           StrippedPtrEltTy->isArrayTy()) {
2337         // Check that changing to the array element type amounts to dividing the
2338         // index by a scale factor.
2339         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2340         uint64_t ArrayEltSize =
2341             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2342                 .getFixedSize();
2343         if (ResSize && ArrayEltSize % ResSize == 0) {
2344           Value *Idx = GEP.getOperand(1);
2345           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2346           uint64_t Scale = ArrayEltSize / ResSize;
2347 
2348           // Earlier transforms ensure that the index has the right type
2349           // according to the Data Layout, which considerably simplifies
2350           // the logic by eliminating implicit casts.
2351           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2352                  "Index type does not match the Data Layout preferences");
2353 
2354           bool NSW;
2355           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2356             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2357             // If the multiplication NewIdx * Scale may overflow then the new
2358             // GEP may not be "inbounds".
2359             Type *IndTy = DL.getIndexType(GEPType);
2360             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2361 
2362             Value *NewGEP =
2363                 GEP.isInBounds() && NSW
2364                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2365                                                 Off, GEP.getName())
2366                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2367                                         GEP.getName());
2368             // The NewGEP must be pointer typed, so must the old one -> BitCast
2369             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2370                                                                  GEPType);
2371           }
2372         }
2373       }
2374     }
2375   }
2376 
2377   // addrspacecast between types is canonicalized as a bitcast, then an
2378   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2379   // through the addrspacecast.
2380   Value *ASCStrippedPtrOp = PtrOp;
2381   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2382     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2383     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2384     //   Z = gep Y, <...constant indices...>
2385     // Into an addrspacecasted GEP of the struct.
2386     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2387       ASCStrippedPtrOp = BC;
2388   }
2389 
2390   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2391     Value *SrcOp = BCI->getOperand(0);
2392     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2393     Type *SrcEltType = SrcType->getElementType();
2394 
2395     // GEP directly using the source operand if this GEP is accessing an element
2396     // of a bitcasted pointer to vector or array of the same dimensions:
2397     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2398     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2399     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2400                                           const DataLayout &DL) {
2401       auto *VecVTy = cast<FixedVectorType>(VecTy);
2402       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2403              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2404              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2405     };
2406     if (GEP.getNumOperands() == 3 &&
2407         ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2408           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2409          (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2410           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2411 
2412       // Create a new GEP here, as using `setOperand()` followed by
2413       // `setSourceElementType()` won't actually update the type of the
2414       // existing GEP Value. Causing issues if this Value is accessed when
2415       // constructing an AddrSpaceCastInst
2416       Value *NGEP =
2417           GEP.isInBounds()
2418               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2419               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2420       NGEP->takeName(&GEP);
2421 
2422       // Preserve GEP address space to satisfy users
2423       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2424         return new AddrSpaceCastInst(NGEP, GEPType);
2425 
2426       return replaceInstUsesWith(GEP, NGEP);
2427     }
2428 
2429     // See if we can simplify:
2430     //   X = bitcast A* to B*
2431     //   Y = gep X, <...constant indices...>
2432     // into a gep of the original struct. This is important for SROA and alias
2433     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2434     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2435     APInt Offset(OffsetBits, 0);
2436     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2437       // If this GEP instruction doesn't move the pointer, just replace the GEP
2438       // with a bitcast of the real input to the dest type.
2439       if (!Offset) {
2440         // If the bitcast is of an allocation, and the allocation will be
2441         // converted to match the type of the cast, don't touch this.
2442         if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2443           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2444           if (Instruction *I = visitBitCast(*BCI)) {
2445             if (I != BCI) {
2446               I->takeName(BCI);
2447               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2448               replaceInstUsesWith(*BCI, I);
2449             }
2450             return &GEP;
2451           }
2452         }
2453 
2454         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2455           return new AddrSpaceCastInst(SrcOp, GEPType);
2456         return new BitCastInst(SrcOp, GEPType);
2457       }
2458 
2459       // Otherwise, if the offset is non-zero, we need to find out if there is a
2460       // field at Offset in 'A's type.  If so, we can pull the cast through the
2461       // GEP.
2462       SmallVector<Value*, 8> NewIndices;
2463       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2464         Value *NGEP =
2465             GEP.isInBounds()
2466                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2467                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2468 
2469         if (NGEP->getType() == GEPType)
2470           return replaceInstUsesWith(GEP, NGEP);
2471         NGEP->takeName(&GEP);
2472 
2473         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2474           return new AddrSpaceCastInst(NGEP, GEPType);
2475         return new BitCastInst(NGEP, GEPType);
2476       }
2477     }
2478   }
2479 
2480   if (!GEP.isInBounds()) {
2481     unsigned IdxWidth =
2482         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2483     APInt BasePtrOffset(IdxWidth, 0);
2484     Value *UnderlyingPtrOp =
2485             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2486                                                              BasePtrOffset);
2487     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2488       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2489           BasePtrOffset.isNonNegative()) {
2490         APInt AllocSize(
2491             IdxWidth,
2492             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2493         if (BasePtrOffset.ule(AllocSize)) {
2494           return GetElementPtrInst::CreateInBounds(
2495               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2496               GEP.getName());
2497         }
2498       }
2499     }
2500   }
2501 
2502   if (Instruction *R = foldSelectGEP(GEP, Builder))
2503     return R;
2504 
2505   return nullptr;
2506 }
2507 
2508 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2509                                          Instruction *AI) {
2510   if (isa<ConstantPointerNull>(V))
2511     return true;
2512   if (auto *LI = dyn_cast<LoadInst>(V))
2513     return isa<GlobalVariable>(LI->getPointerOperand());
2514   // Two distinct allocations will never be equal.
2515   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2516   // through bitcasts of V can cause
2517   // the result statement below to be true, even when AI and V (ex:
2518   // i8* ->i32* ->i8* of AI) are the same allocations.
2519   return isAllocLikeFn(V, TLI) && V != AI;
2520 }
2521 
2522 static bool isAllocSiteRemovable(Instruction *AI,
2523                                  SmallVectorImpl<WeakTrackingVH> &Users,
2524                                  const TargetLibraryInfo *TLI) {
2525   SmallVector<Instruction*, 4> Worklist;
2526   Worklist.push_back(AI);
2527 
2528   do {
2529     Instruction *PI = Worklist.pop_back_val();
2530     for (User *U : PI->users()) {
2531       Instruction *I = cast<Instruction>(U);
2532       switch (I->getOpcode()) {
2533       default:
2534         // Give up the moment we see something we can't handle.
2535         return false;
2536 
2537       case Instruction::AddrSpaceCast:
2538       case Instruction::BitCast:
2539       case Instruction::GetElementPtr:
2540         Users.emplace_back(I);
2541         Worklist.push_back(I);
2542         continue;
2543 
2544       case Instruction::ICmp: {
2545         ICmpInst *ICI = cast<ICmpInst>(I);
2546         // We can fold eq/ne comparisons with null to false/true, respectively.
2547         // We also fold comparisons in some conditions provided the alloc has
2548         // not escaped (see isNeverEqualToUnescapedAlloc).
2549         if (!ICI->isEquality())
2550           return false;
2551         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2552         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2553           return false;
2554         Users.emplace_back(I);
2555         continue;
2556       }
2557 
2558       case Instruction::Call:
2559         // Ignore no-op and store intrinsics.
2560         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2561           switch (II->getIntrinsicID()) {
2562           default:
2563             return false;
2564 
2565           case Intrinsic::memmove:
2566           case Intrinsic::memcpy:
2567           case Intrinsic::memset: {
2568             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2569             if (MI->isVolatile() || MI->getRawDest() != PI)
2570               return false;
2571             LLVM_FALLTHROUGH;
2572           }
2573           case Intrinsic::assume:
2574           case Intrinsic::invariant_start:
2575           case Intrinsic::invariant_end:
2576           case Intrinsic::lifetime_start:
2577           case Intrinsic::lifetime_end:
2578           case Intrinsic::objectsize:
2579             Users.emplace_back(I);
2580             continue;
2581           }
2582         }
2583 
2584         if (isFreeCall(I, TLI)) {
2585           Users.emplace_back(I);
2586           continue;
2587         }
2588         return false;
2589 
2590       case Instruction::Store: {
2591         StoreInst *SI = cast<StoreInst>(I);
2592         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2593           return false;
2594         Users.emplace_back(I);
2595         continue;
2596       }
2597       }
2598       llvm_unreachable("missing a return?");
2599     }
2600   } while (!Worklist.empty());
2601   return true;
2602 }
2603 
2604 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2605   // If we have a malloc call which is only used in any amount of comparisons to
2606   // null and free calls, delete the calls and replace the comparisons with true
2607   // or false as appropriate.
2608 
2609   // This is based on the principle that we can substitute our own allocation
2610   // function (which will never return null) rather than knowledge of the
2611   // specific function being called. In some sense this can change the permitted
2612   // outputs of a program (when we convert a malloc to an alloca, the fact that
2613   // the allocation is now on the stack is potentially visible, for example),
2614   // but we believe in a permissible manner.
2615   SmallVector<WeakTrackingVH, 64> Users;
2616 
2617   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2618   // before each store.
2619   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2620   std::unique_ptr<DIBuilder> DIB;
2621   if (isa<AllocaInst>(MI)) {
2622     findDbgUsers(DVIs, &MI);
2623     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2624   }
2625 
2626   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2627     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2628       // Lowering all @llvm.objectsize calls first because they may
2629       // use a bitcast/GEP of the alloca we are removing.
2630       if (!Users[i])
2631        continue;
2632 
2633       Instruction *I = cast<Instruction>(&*Users[i]);
2634 
2635       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2636         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2637           Value *Result =
2638               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2639           replaceInstUsesWith(*I, Result);
2640           eraseInstFromFunction(*I);
2641           Users[i] = nullptr; // Skip examining in the next loop.
2642         }
2643       }
2644     }
2645     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2646       if (!Users[i])
2647         continue;
2648 
2649       Instruction *I = cast<Instruction>(&*Users[i]);
2650 
2651       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2652         replaceInstUsesWith(*C,
2653                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2654                                              C->isFalseWhenEqual()));
2655       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2656         for (auto *DVI : DVIs)
2657           if (DVI->isAddressOfVariable())
2658             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2659       } else {
2660         // Casts, GEP, or anything else: we're about to delete this instruction,
2661         // so it can not have any valid uses.
2662         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2663       }
2664       eraseInstFromFunction(*I);
2665     }
2666 
2667     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2668       // Replace invoke with a NOP intrinsic to maintain the original CFG
2669       Module *M = II->getModule();
2670       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2671       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2672                          None, "", II->getParent());
2673     }
2674 
2675     // Remove debug intrinsics which describe the value contained within the
2676     // alloca. In addition to removing dbg.{declare,addr} which simply point to
2677     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2678     //
2679     // ```
2680     //   define void @foo(i32 %0) {
2681     //     %a = alloca i32                              ; Deleted.
2682     //     store i32 %0, i32* %a
2683     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2684     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2685     //     call void @trivially_inlinable_no_op(i32* %a)
2686     //     ret void
2687     //  }
2688     // ```
2689     //
2690     // This may not be required if we stop describing the contents of allocas
2691     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2692     // the LowerDbgDeclare utility.
2693     //
2694     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2695     // "arg0" dbg.value may be stale after the call. However, failing to remove
2696     // the DW_OP_deref dbg.value causes large gaps in location coverage.
2697     for (auto *DVI : DVIs)
2698       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2699         DVI->eraseFromParent();
2700 
2701     return eraseInstFromFunction(MI);
2702   }
2703   return nullptr;
2704 }
2705 
2706 /// Move the call to free before a NULL test.
2707 ///
2708 /// Check if this free is accessed after its argument has been test
2709 /// against NULL (property 0).
2710 /// If yes, it is legal to move this call in its predecessor block.
2711 ///
2712 /// The move is performed only if the block containing the call to free
2713 /// will be removed, i.e.:
2714 /// 1. it has only one predecessor P, and P has two successors
2715 /// 2. it contains the call, noops, and an unconditional branch
2716 /// 3. its successor is the same as its predecessor's successor
2717 ///
2718 /// The profitability is out-of concern here and this function should
2719 /// be called only if the caller knows this transformation would be
2720 /// profitable (e.g., for code size).
2721 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2722                                                 const DataLayout &DL) {
2723   Value *Op = FI.getArgOperand(0);
2724   BasicBlock *FreeInstrBB = FI.getParent();
2725   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2726 
2727   // Validate part of constraint #1: Only one predecessor
2728   // FIXME: We can extend the number of predecessor, but in that case, we
2729   //        would duplicate the call to free in each predecessor and it may
2730   //        not be profitable even for code size.
2731   if (!PredBB)
2732     return nullptr;
2733 
2734   // Validate constraint #2: Does this block contains only the call to
2735   //                         free, noops, and an unconditional branch?
2736   BasicBlock *SuccBB;
2737   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2738   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2739     return nullptr;
2740 
2741   // If there are only 2 instructions in the block, at this point,
2742   // this is the call to free and unconditional.
2743   // If there are more than 2 instructions, check that they are noops
2744   // i.e., they won't hurt the performance of the generated code.
2745   if (FreeInstrBB->size() != 2) {
2746     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2747       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2748         continue;
2749       auto *Cast = dyn_cast<CastInst>(&Inst);
2750       if (!Cast || !Cast->isNoopCast(DL))
2751         return nullptr;
2752     }
2753   }
2754   // Validate the rest of constraint #1 by matching on the pred branch.
2755   Instruction *TI = PredBB->getTerminator();
2756   BasicBlock *TrueBB, *FalseBB;
2757   ICmpInst::Predicate Pred;
2758   if (!match(TI, m_Br(m_ICmp(Pred,
2759                              m_CombineOr(m_Specific(Op),
2760                                          m_Specific(Op->stripPointerCasts())),
2761                              m_Zero()),
2762                       TrueBB, FalseBB)))
2763     return nullptr;
2764   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2765     return nullptr;
2766 
2767   // Validate constraint #3: Ensure the null case just falls through.
2768   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2769     return nullptr;
2770   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2771          "Broken CFG: missing edge from predecessor to successor");
2772 
2773   // At this point, we know that everything in FreeInstrBB can be moved
2774   // before TI.
2775   for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2776        It != End;) {
2777     Instruction &Instr = *It++;
2778     if (&Instr == FreeInstrBBTerminator)
2779       break;
2780     Instr.moveBefore(TI);
2781   }
2782   assert(FreeInstrBB->size() == 1 &&
2783          "Only the branch instruction should remain");
2784   return &FI;
2785 }
2786 
2787 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2788   Value *Op = FI.getArgOperand(0);
2789 
2790   // free undef -> unreachable.
2791   if (isa<UndefValue>(Op)) {
2792     // Leave a marker since we can't modify the CFG here.
2793     CreateNonTerminatorUnreachable(&FI);
2794     return eraseInstFromFunction(FI);
2795   }
2796 
2797   // If we have 'free null' delete the instruction.  This can happen in stl code
2798   // when lots of inlining happens.
2799   if (isa<ConstantPointerNull>(Op))
2800     return eraseInstFromFunction(FI);
2801 
2802   // If we optimize for code size, try to move the call to free before the null
2803   // test so that simplify cfg can remove the empty block and dead code
2804   // elimination the branch. I.e., helps to turn something like:
2805   // if (foo) free(foo);
2806   // into
2807   // free(foo);
2808   //
2809   // Note that we can only do this for 'free' and not for any flavor of
2810   // 'operator delete'; there is no 'operator delete' symbol for which we are
2811   // permitted to invent a call, even if we're passing in a null pointer.
2812   if (MinimizeSize) {
2813     LibFunc Func;
2814     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2815       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2816         return I;
2817   }
2818 
2819   return nullptr;
2820 }
2821 
2822 static bool isMustTailCall(Value *V) {
2823   if (auto *CI = dyn_cast<CallInst>(V))
2824     return CI->isMustTailCall();
2825   return false;
2826 }
2827 
2828 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2829   if (RI.getNumOperands() == 0) // ret void
2830     return nullptr;
2831 
2832   Value *ResultOp = RI.getOperand(0);
2833   Type *VTy = ResultOp->getType();
2834   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2835     return nullptr;
2836 
2837   // Don't replace result of musttail calls.
2838   if (isMustTailCall(ResultOp))
2839     return nullptr;
2840 
2841   // There might be assume intrinsics dominating this return that completely
2842   // determine the value. If so, constant fold it.
2843   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2844   if (Known.isConstant())
2845     return replaceOperand(RI, 0,
2846         Constant::getIntegerValue(VTy, Known.getConstant()));
2847 
2848   return nullptr;
2849 }
2850 
2851 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
2852   // Try to remove the previous instruction if it must lead to unreachable.
2853   // This includes instructions like stores and "llvm.assume" that may not get
2854   // removed by simple dead code elimination.
2855   Instruction *Prev = I.getPrevNonDebugInstruction();
2856   if (Prev && !Prev->isEHPad() &&
2857       isGuaranteedToTransferExecutionToSuccessor(Prev)) {
2858     // Temporarily disable removal of volatile stores preceding unreachable,
2859     // pending a potential LangRef change permitting volatile stores to trap.
2860     // TODO: Either remove this code, or properly integrate the check into
2861     // isGuaranteedToTransferExecutionToSuccessor().
2862     if (auto *SI = dyn_cast<StoreInst>(Prev))
2863       if (SI->isVolatile())
2864         return nullptr;
2865 
2866     // A value may still have uses before we process it here (for example, in
2867     // another unreachable block), so convert those to undef.
2868     replaceInstUsesWith(*Prev, UndefValue::get(Prev->getType()));
2869     eraseInstFromFunction(*Prev);
2870     return &I;
2871   }
2872   return nullptr;
2873 }
2874 
2875 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2876   assert(BI.isUnconditional() && "Only for unconditional branches.");
2877 
2878   // If this store is the second-to-last instruction in the basic block
2879   // (excluding debug info and bitcasts of pointers) and if the block ends with
2880   // an unconditional branch, try to move the store to the successor block.
2881 
2882   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2883     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2884       return isa<DbgInfoIntrinsic>(BBI) ||
2885              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2886     };
2887 
2888     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2889     do {
2890       if (BBI != FirstInstr)
2891         --BBI;
2892     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2893 
2894     return dyn_cast<StoreInst>(BBI);
2895   };
2896 
2897   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2898     if (mergeStoreIntoSuccessor(*SI))
2899       return &BI;
2900 
2901   return nullptr;
2902 }
2903 
2904 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
2905   if (BI.isUnconditional())
2906     return visitUnconditionalBranchInst(BI);
2907 
2908   // Change br (not X), label True, label False to: br X, label False, True
2909   Value *X = nullptr;
2910   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2911       !isa<Constant>(X)) {
2912     // Swap Destinations and condition...
2913     BI.swapSuccessors();
2914     return replaceOperand(BI, 0, X);
2915   }
2916 
2917   // If the condition is irrelevant, remove the use so that other
2918   // transforms on the condition become more effective.
2919   if (!isa<ConstantInt>(BI.getCondition()) &&
2920       BI.getSuccessor(0) == BI.getSuccessor(1))
2921     return replaceOperand(
2922         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2923 
2924   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2925   CmpInst::Predicate Pred;
2926   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2927                       m_BasicBlock(), m_BasicBlock())) &&
2928       !isCanonicalPredicate(Pred)) {
2929     // Swap destinations and condition.
2930     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2931     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2932     BI.swapSuccessors();
2933     Worklist.push(Cond);
2934     return &BI;
2935   }
2936 
2937   return nullptr;
2938 }
2939 
2940 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
2941   Value *Cond = SI.getCondition();
2942   Value *Op0;
2943   ConstantInt *AddRHS;
2944   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2945     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2946     for (auto Case : SI.cases()) {
2947       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2948       assert(isa<ConstantInt>(NewCase) &&
2949              "Result of expression should be constant");
2950       Case.setValue(cast<ConstantInt>(NewCase));
2951     }
2952     return replaceOperand(SI, 0, Op0);
2953   }
2954 
2955   KnownBits Known = computeKnownBits(Cond, 0, &SI);
2956   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2957   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2958 
2959   // Compute the number of leading bits we can ignore.
2960   // TODO: A better way to determine this would use ComputeNumSignBits().
2961   for (auto &C : SI.cases()) {
2962     LeadingKnownZeros = std::min(
2963         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2964     LeadingKnownOnes = std::min(
2965         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2966   }
2967 
2968   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2969 
2970   // Shrink the condition operand if the new type is smaller than the old type.
2971   // But do not shrink to a non-standard type, because backend can't generate
2972   // good code for that yet.
2973   // TODO: We can make it aggressive again after fixing PR39569.
2974   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2975       shouldChangeType(Known.getBitWidth(), NewWidth)) {
2976     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2977     Builder.SetInsertPoint(&SI);
2978     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2979 
2980     for (auto Case : SI.cases()) {
2981       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2982       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2983     }
2984     return replaceOperand(SI, 0, NewCond);
2985   }
2986 
2987   return nullptr;
2988 }
2989 
2990 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
2991   Value *Agg = EV.getAggregateOperand();
2992 
2993   if (!EV.hasIndices())
2994     return replaceInstUsesWith(EV, Agg);
2995 
2996   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2997                                           SQ.getWithInstruction(&EV)))
2998     return replaceInstUsesWith(EV, V);
2999 
3000   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3001     // We're extracting from an insertvalue instruction, compare the indices
3002     const unsigned *exti, *exte, *insi, *inse;
3003     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3004          exte = EV.idx_end(), inse = IV->idx_end();
3005          exti != exte && insi != inse;
3006          ++exti, ++insi) {
3007       if (*insi != *exti)
3008         // The insert and extract both reference distinctly different elements.
3009         // This means the extract is not influenced by the insert, and we can
3010         // replace the aggregate operand of the extract with the aggregate
3011         // operand of the insert. i.e., replace
3012         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3013         // %E = extractvalue { i32, { i32 } } %I, 0
3014         // with
3015         // %E = extractvalue { i32, { i32 } } %A, 0
3016         return ExtractValueInst::Create(IV->getAggregateOperand(),
3017                                         EV.getIndices());
3018     }
3019     if (exti == exte && insi == inse)
3020       // Both iterators are at the end: Index lists are identical. Replace
3021       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3022       // %C = extractvalue { i32, { i32 } } %B, 1, 0
3023       // with "i32 42"
3024       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3025     if (exti == exte) {
3026       // The extract list is a prefix of the insert list. i.e. replace
3027       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3028       // %E = extractvalue { i32, { i32 } } %I, 1
3029       // with
3030       // %X = extractvalue { i32, { i32 } } %A, 1
3031       // %E = insertvalue { i32 } %X, i32 42, 0
3032       // by switching the order of the insert and extract (though the
3033       // insertvalue should be left in, since it may have other uses).
3034       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3035                                                 EV.getIndices());
3036       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3037                                      makeArrayRef(insi, inse));
3038     }
3039     if (insi == inse)
3040       // The insert list is a prefix of the extract list
3041       // We can simply remove the common indices from the extract and make it
3042       // operate on the inserted value instead of the insertvalue result.
3043       // i.e., replace
3044       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3045       // %E = extractvalue { i32, { i32 } } %I, 1, 0
3046       // with
3047       // %E extractvalue { i32 } { i32 42 }, 0
3048       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3049                                       makeArrayRef(exti, exte));
3050   }
3051   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3052     // We're extracting from an overflow intrinsic, see if we're the only user,
3053     // which allows us to simplify multiple result intrinsics to simpler
3054     // things that just get one value.
3055     if (WO->hasOneUse()) {
3056       // Check if we're grabbing only the result of a 'with overflow' intrinsic
3057       // and replace it with a traditional binary instruction.
3058       if (*EV.idx_begin() == 0) {
3059         Instruction::BinaryOps BinOp = WO->getBinaryOp();
3060         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3061         replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
3062         eraseInstFromFunction(*WO);
3063         return BinaryOperator::Create(BinOp, LHS, RHS);
3064       }
3065 
3066       // If the normal result of the add is dead, and the RHS is a constant,
3067       // we can transform this into a range comparison.
3068       // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
3069       if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
3070         if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
3071           return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
3072                               ConstantExpr::getNot(CI));
3073     }
3074   }
3075   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3076     // If the (non-volatile) load only has one use, we can rewrite this to a
3077     // load from a GEP. This reduces the size of the load. If a load is used
3078     // only by extractvalue instructions then this either must have been
3079     // optimized before, or it is a struct with padding, in which case we
3080     // don't want to do the transformation as it loses padding knowledge.
3081     if (L->isSimple() && L->hasOneUse()) {
3082       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3083       SmallVector<Value*, 4> Indices;
3084       // Prefix an i32 0 since we need the first element.
3085       Indices.push_back(Builder.getInt32(0));
3086       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
3087             I != E; ++I)
3088         Indices.push_back(Builder.getInt32(*I));
3089 
3090       // We need to insert these at the location of the old load, not at that of
3091       // the extractvalue.
3092       Builder.SetInsertPoint(L);
3093       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3094                                              L->getPointerOperand(), Indices);
3095       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3096       // Whatever aliasing information we had for the orignal load must also
3097       // hold for the smaller load, so propagate the annotations.
3098       AAMDNodes Nodes;
3099       L->getAAMetadata(Nodes);
3100       NL->setAAMetadata(Nodes);
3101       // Returning the load directly will cause the main loop to insert it in
3102       // the wrong spot, so use replaceInstUsesWith().
3103       return replaceInstUsesWith(EV, NL);
3104     }
3105   // We could simplify extracts from other values. Note that nested extracts may
3106   // already be simplified implicitly by the above: extract (extract (insert) )
3107   // will be translated into extract ( insert ( extract ) ) first and then just
3108   // the value inserted, if appropriate. Similarly for extracts from single-use
3109   // loads: extract (extract (load)) will be translated to extract (load (gep))
3110   // and if again single-use then via load (gep (gep)) to load (gep).
3111   // However, double extracts from e.g. function arguments or return values
3112   // aren't handled yet.
3113   return nullptr;
3114 }
3115 
3116 /// Return 'true' if the given typeinfo will match anything.
3117 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3118   switch (Personality) {
3119   case EHPersonality::GNU_C:
3120   case EHPersonality::GNU_C_SjLj:
3121   case EHPersonality::Rust:
3122     // The GCC C EH and Rust personality only exists to support cleanups, so
3123     // it's not clear what the semantics of catch clauses are.
3124     return false;
3125   case EHPersonality::Unknown:
3126     return false;
3127   case EHPersonality::GNU_Ada:
3128     // While __gnat_all_others_value will match any Ada exception, it doesn't
3129     // match foreign exceptions (or didn't, before gcc-4.7).
3130     return false;
3131   case EHPersonality::GNU_CXX:
3132   case EHPersonality::GNU_CXX_SjLj:
3133   case EHPersonality::GNU_ObjC:
3134   case EHPersonality::MSVC_X86SEH:
3135   case EHPersonality::MSVC_TableSEH:
3136   case EHPersonality::MSVC_CXX:
3137   case EHPersonality::CoreCLR:
3138   case EHPersonality::Wasm_CXX:
3139   case EHPersonality::XL_CXX:
3140     return TypeInfo->isNullValue();
3141   }
3142   llvm_unreachable("invalid enum");
3143 }
3144 
3145 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3146   return
3147     cast<ArrayType>(LHS->getType())->getNumElements()
3148   <
3149     cast<ArrayType>(RHS->getType())->getNumElements();
3150 }
3151 
3152 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3153   // The logic here should be correct for any real-world personality function.
3154   // However if that turns out not to be true, the offending logic can always
3155   // be conditioned on the personality function, like the catch-all logic is.
3156   EHPersonality Personality =
3157       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3158 
3159   // Simplify the list of clauses, eg by removing repeated catch clauses
3160   // (these are often created by inlining).
3161   bool MakeNewInstruction = false; // If true, recreate using the following:
3162   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3163   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3164 
3165   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3166   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3167     bool isLastClause = i + 1 == e;
3168     if (LI.isCatch(i)) {
3169       // A catch clause.
3170       Constant *CatchClause = LI.getClause(i);
3171       Constant *TypeInfo = CatchClause->stripPointerCasts();
3172 
3173       // If we already saw this clause, there is no point in having a second
3174       // copy of it.
3175       if (AlreadyCaught.insert(TypeInfo).second) {
3176         // This catch clause was not already seen.
3177         NewClauses.push_back(CatchClause);
3178       } else {
3179         // Repeated catch clause - drop the redundant copy.
3180         MakeNewInstruction = true;
3181       }
3182 
3183       // If this is a catch-all then there is no point in keeping any following
3184       // clauses or marking the landingpad as having a cleanup.
3185       if (isCatchAll(Personality, TypeInfo)) {
3186         if (!isLastClause)
3187           MakeNewInstruction = true;
3188         CleanupFlag = false;
3189         break;
3190       }
3191     } else {
3192       // A filter clause.  If any of the filter elements were already caught
3193       // then they can be dropped from the filter.  It is tempting to try to
3194       // exploit the filter further by saying that any typeinfo that does not
3195       // occur in the filter can't be caught later (and thus can be dropped).
3196       // However this would be wrong, since typeinfos can match without being
3197       // equal (for example if one represents a C++ class, and the other some
3198       // class derived from it).
3199       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3200       Constant *FilterClause = LI.getClause(i);
3201       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3202       unsigned NumTypeInfos = FilterType->getNumElements();
3203 
3204       // An empty filter catches everything, so there is no point in keeping any
3205       // following clauses or marking the landingpad as having a cleanup.  By
3206       // dealing with this case here the following code is made a bit simpler.
3207       if (!NumTypeInfos) {
3208         NewClauses.push_back(FilterClause);
3209         if (!isLastClause)
3210           MakeNewInstruction = true;
3211         CleanupFlag = false;
3212         break;
3213       }
3214 
3215       bool MakeNewFilter = false; // If true, make a new filter.
3216       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3217       if (isa<ConstantAggregateZero>(FilterClause)) {
3218         // Not an empty filter - it contains at least one null typeinfo.
3219         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3220         Constant *TypeInfo =
3221           Constant::getNullValue(FilterType->getElementType());
3222         // If this typeinfo is a catch-all then the filter can never match.
3223         if (isCatchAll(Personality, TypeInfo)) {
3224           // Throw the filter away.
3225           MakeNewInstruction = true;
3226           continue;
3227         }
3228 
3229         // There is no point in having multiple copies of this typeinfo, so
3230         // discard all but the first copy if there is more than one.
3231         NewFilterElts.push_back(TypeInfo);
3232         if (NumTypeInfos > 1)
3233           MakeNewFilter = true;
3234       } else {
3235         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3236         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3237         NewFilterElts.reserve(NumTypeInfos);
3238 
3239         // Remove any filter elements that were already caught or that already
3240         // occurred in the filter.  While there, see if any of the elements are
3241         // catch-alls.  If so, the filter can be discarded.
3242         bool SawCatchAll = false;
3243         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3244           Constant *Elt = Filter->getOperand(j);
3245           Constant *TypeInfo = Elt->stripPointerCasts();
3246           if (isCatchAll(Personality, TypeInfo)) {
3247             // This element is a catch-all.  Bail out, noting this fact.
3248             SawCatchAll = true;
3249             break;
3250           }
3251 
3252           // Even if we've seen a type in a catch clause, we don't want to
3253           // remove it from the filter.  An unexpected type handler may be
3254           // set up for a call site which throws an exception of the same
3255           // type caught.  In order for the exception thrown by the unexpected
3256           // handler to propagate correctly, the filter must be correctly
3257           // described for the call site.
3258           //
3259           // Example:
3260           //
3261           // void unexpected() { throw 1;}
3262           // void foo() throw (int) {
3263           //   std::set_unexpected(unexpected);
3264           //   try {
3265           //     throw 2.0;
3266           //   } catch (int i) {}
3267           // }
3268 
3269           // There is no point in having multiple copies of the same typeinfo in
3270           // a filter, so only add it if we didn't already.
3271           if (SeenInFilter.insert(TypeInfo).second)
3272             NewFilterElts.push_back(cast<Constant>(Elt));
3273         }
3274         // A filter containing a catch-all cannot match anything by definition.
3275         if (SawCatchAll) {
3276           // Throw the filter away.
3277           MakeNewInstruction = true;
3278           continue;
3279         }
3280 
3281         // If we dropped something from the filter, make a new one.
3282         if (NewFilterElts.size() < NumTypeInfos)
3283           MakeNewFilter = true;
3284       }
3285       if (MakeNewFilter) {
3286         FilterType = ArrayType::get(FilterType->getElementType(),
3287                                     NewFilterElts.size());
3288         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3289         MakeNewInstruction = true;
3290       }
3291 
3292       NewClauses.push_back(FilterClause);
3293 
3294       // If the new filter is empty then it will catch everything so there is
3295       // no point in keeping any following clauses or marking the landingpad
3296       // as having a cleanup.  The case of the original filter being empty was
3297       // already handled above.
3298       if (MakeNewFilter && !NewFilterElts.size()) {
3299         assert(MakeNewInstruction && "New filter but not a new instruction!");
3300         CleanupFlag = false;
3301         break;
3302       }
3303     }
3304   }
3305 
3306   // If several filters occur in a row then reorder them so that the shortest
3307   // filters come first (those with the smallest number of elements).  This is
3308   // advantageous because shorter filters are more likely to match, speeding up
3309   // unwinding, but mostly because it increases the effectiveness of the other
3310   // filter optimizations below.
3311   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3312     unsigned j;
3313     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3314     for (j = i; j != e; ++j)
3315       if (!isa<ArrayType>(NewClauses[j]->getType()))
3316         break;
3317 
3318     // Check whether the filters are already sorted by length.  We need to know
3319     // if sorting them is actually going to do anything so that we only make a
3320     // new landingpad instruction if it does.
3321     for (unsigned k = i; k + 1 < j; ++k)
3322       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3323         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3324         // correct too but reordering filters pointlessly might confuse users.
3325         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3326                          shorter_filter);
3327         MakeNewInstruction = true;
3328         break;
3329       }
3330 
3331     // Look for the next batch of filters.
3332     i = j + 1;
3333   }
3334 
3335   // If typeinfos matched if and only if equal, then the elements of a filter L
3336   // that occurs later than a filter F could be replaced by the intersection of
3337   // the elements of F and L.  In reality two typeinfos can match without being
3338   // equal (for example if one represents a C++ class, and the other some class
3339   // derived from it) so it would be wrong to perform this transform in general.
3340   // However the transform is correct and useful if F is a subset of L.  In that
3341   // case L can be replaced by F, and thus removed altogether since repeating a
3342   // filter is pointless.  So here we look at all pairs of filters F and L where
3343   // L follows F in the list of clauses, and remove L if every element of F is
3344   // an element of L.  This can occur when inlining C++ functions with exception
3345   // specifications.
3346   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3347     // Examine each filter in turn.
3348     Value *Filter = NewClauses[i];
3349     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3350     if (!FTy)
3351       // Not a filter - skip it.
3352       continue;
3353     unsigned FElts = FTy->getNumElements();
3354     // Examine each filter following this one.  Doing this backwards means that
3355     // we don't have to worry about filters disappearing under us when removed.
3356     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3357       Value *LFilter = NewClauses[j];
3358       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3359       if (!LTy)
3360         // Not a filter - skip it.
3361         continue;
3362       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3363       // an element of LFilter, then discard LFilter.
3364       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3365       // If Filter is empty then it is a subset of LFilter.
3366       if (!FElts) {
3367         // Discard LFilter.
3368         NewClauses.erase(J);
3369         MakeNewInstruction = true;
3370         // Move on to the next filter.
3371         continue;
3372       }
3373       unsigned LElts = LTy->getNumElements();
3374       // If Filter is longer than LFilter then it cannot be a subset of it.
3375       if (FElts > LElts)
3376         // Move on to the next filter.
3377         continue;
3378       // At this point we know that LFilter has at least one element.
3379       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3380         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3381         // already know that Filter is not longer than LFilter).
3382         if (isa<ConstantAggregateZero>(Filter)) {
3383           assert(FElts <= LElts && "Should have handled this case earlier!");
3384           // Discard LFilter.
3385           NewClauses.erase(J);
3386           MakeNewInstruction = true;
3387         }
3388         // Move on to the next filter.
3389         continue;
3390       }
3391       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3392       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3393         // Since Filter is non-empty and contains only zeros, it is a subset of
3394         // LFilter iff LFilter contains a zero.
3395         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3396         for (unsigned l = 0; l != LElts; ++l)
3397           if (LArray->getOperand(l)->isNullValue()) {
3398             // LFilter contains a zero - discard it.
3399             NewClauses.erase(J);
3400             MakeNewInstruction = true;
3401             break;
3402           }
3403         // Move on to the next filter.
3404         continue;
3405       }
3406       // At this point we know that both filters are ConstantArrays.  Loop over
3407       // operands to see whether every element of Filter is also an element of
3408       // LFilter.  Since filters tend to be short this is probably faster than
3409       // using a method that scales nicely.
3410       ConstantArray *FArray = cast<ConstantArray>(Filter);
3411       bool AllFound = true;
3412       for (unsigned f = 0; f != FElts; ++f) {
3413         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3414         AllFound = false;
3415         for (unsigned l = 0; l != LElts; ++l) {
3416           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3417           if (LTypeInfo == FTypeInfo) {
3418             AllFound = true;
3419             break;
3420           }
3421         }
3422         if (!AllFound)
3423           break;
3424       }
3425       if (AllFound) {
3426         // Discard LFilter.
3427         NewClauses.erase(J);
3428         MakeNewInstruction = true;
3429       }
3430       // Move on to the next filter.
3431     }
3432   }
3433 
3434   // If we changed any of the clauses, replace the old landingpad instruction
3435   // with a new one.
3436   if (MakeNewInstruction) {
3437     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3438                                                  NewClauses.size());
3439     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3440       NLI->addClause(NewClauses[i]);
3441     // A landing pad with no clauses must have the cleanup flag set.  It is
3442     // theoretically possible, though highly unlikely, that we eliminated all
3443     // clauses.  If so, force the cleanup flag to true.
3444     if (NewClauses.empty())
3445       CleanupFlag = true;
3446     NLI->setCleanup(CleanupFlag);
3447     return NLI;
3448   }
3449 
3450   // Even if none of the clauses changed, we may nonetheless have understood
3451   // that the cleanup flag is pointless.  Clear it if so.
3452   if (LI.isCleanup() != CleanupFlag) {
3453     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3454     LI.setCleanup(CleanupFlag);
3455     return &LI;
3456   }
3457 
3458   return nullptr;
3459 }
3460 
3461 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3462   Value *Op0 = I.getOperand(0);
3463 
3464   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3465     return replaceInstUsesWith(I, V);
3466 
3467   // freeze (phi const, x) --> phi const, (freeze x)
3468   if (auto *PN = dyn_cast<PHINode>(Op0)) {
3469     if (Instruction *NV = foldOpIntoPhi(I, PN))
3470       return NV;
3471   }
3472 
3473   if (match(Op0, m_Undef())) {
3474     // If I is freeze(undef), see its uses and fold it to the best constant.
3475     // - or: pick -1
3476     // - select's condition: pick the value that leads to choosing a constant
3477     // - other ops: pick 0
3478     Constant *BestValue = nullptr;
3479     Constant *NullValue = Constant::getNullValue(I.getType());
3480     for (const auto *U : I.users()) {
3481       Constant *C = NullValue;
3482 
3483       if (match(U, m_Or(m_Value(), m_Value())))
3484         C = Constant::getAllOnesValue(I.getType());
3485       else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3486         if (SI->getCondition() == &I) {
3487           APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3488           C = Constant::getIntegerValue(I.getType(), CondVal);
3489         }
3490       }
3491 
3492       if (!BestValue)
3493         BestValue = C;
3494       else if (BestValue != C)
3495         BestValue = NullValue;
3496     }
3497 
3498     return replaceInstUsesWith(I, BestValue);
3499   }
3500 
3501   return nullptr;
3502 }
3503 
3504 /// Try to move the specified instruction from its current block into the
3505 /// beginning of DestBlock, which can only happen if it's safe to move the
3506 /// instruction past all of the instructions between it and the end of its
3507 /// block.
3508 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3509   assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
3510   BasicBlock *SrcBlock = I->getParent();
3511 
3512   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3513   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3514       I->isTerminator())
3515     return false;
3516 
3517   // Do not sink static or dynamic alloca instructions. Static allocas must
3518   // remain in the entry block, and dynamic allocas must not be sunk in between
3519   // a stacksave / stackrestore pair, which would incorrectly shorten its
3520   // lifetime.
3521   if (isa<AllocaInst>(I))
3522     return false;
3523 
3524   // Do not sink into catchswitch blocks.
3525   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3526     return false;
3527 
3528   // Do not sink convergent call instructions.
3529   if (auto *CI = dyn_cast<CallInst>(I)) {
3530     if (CI->isConvergent())
3531       return false;
3532   }
3533   // We can only sink load instructions if there is nothing between the load and
3534   // the end of block that could change the value.
3535   if (I->mayReadFromMemory()) {
3536     // We don't want to do any sophisticated alias analysis, so we only check
3537     // the instructions after I in I's parent block if we try to sink to its
3538     // successor block.
3539     if (DestBlock->getUniquePredecessor() != I->getParent())
3540       return false;
3541     for (BasicBlock::iterator Scan = I->getIterator(),
3542                               E = I->getParent()->end();
3543          Scan != E; ++Scan)
3544       if (Scan->mayWriteToMemory())
3545         return false;
3546   }
3547 
3548   I->dropDroppableUses([DestBlock](const Use *U) {
3549     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3550       return I->getParent() != DestBlock;
3551     return true;
3552   });
3553   /// FIXME: We could remove droppable uses that are not dominated by
3554   /// the new position.
3555 
3556   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3557   I->moveBefore(&*InsertPos);
3558   ++NumSunkInst;
3559 
3560   // Also sink all related debug uses from the source basic block. Otherwise we
3561   // get debug use before the def. Attempt to salvage debug uses first, to
3562   // maximise the range variables have location for. If we cannot salvage, then
3563   // mark the location undef: we know it was supposed to receive a new location
3564   // here, but that computation has been sunk.
3565   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3566   findDbgUsers(DbgUsers, I);
3567 
3568   // Update the arguments of a dbg.declare instruction, so that it
3569   // does not point into a sunk instruction.
3570   auto updateDbgDeclare = [&I](DbgVariableIntrinsic *DII) {
3571     if (!isa<DbgDeclareInst>(DII))
3572       return false;
3573 
3574     if (isa<CastInst>(I))
3575       DII->setOperand(
3576           0, MetadataAsValue::get(I->getContext(),
3577                                   ValueAsMetadata::get(I->getOperand(0))));
3578     return true;
3579   };
3580 
3581   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3582   for (auto User : DbgUsers) {
3583     // A dbg.declare instruction should not be cloned, since there can only be
3584     // one per variable fragment. It should be left in the original place
3585     // because the sunk instruction is not an alloca (otherwise we could not be
3586     // here).
3587     if (User->getParent() != SrcBlock || updateDbgDeclare(User))
3588       continue;
3589 
3590     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3591     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3592   }
3593 
3594   // Perform salvaging without the clones, then sink the clones.
3595   if (!DIIClones.empty()) {
3596     salvageDebugInfoForDbgValues(*I, DbgUsers);
3597     for (auto &DIIClone : DIIClones) {
3598       DIIClone->insertBefore(&*InsertPos);
3599       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3600     }
3601   }
3602 
3603   return true;
3604 }
3605 
3606 bool InstCombinerImpl::run() {
3607   while (!Worklist.isEmpty()) {
3608     // Walk deferred instructions in reverse order, and push them to the
3609     // worklist, which means they'll end up popped from the worklist in-order.
3610     while (Instruction *I = Worklist.popDeferred()) {
3611       // Check to see if we can DCE the instruction. We do this already here to
3612       // reduce the number of uses and thus allow other folds to trigger.
3613       // Note that eraseInstFromFunction() may push additional instructions on
3614       // the deferred worklist, so this will DCE whole instruction chains.
3615       if (isInstructionTriviallyDead(I, &TLI)) {
3616         eraseInstFromFunction(*I);
3617         ++NumDeadInst;
3618         continue;
3619       }
3620 
3621       Worklist.push(I);
3622     }
3623 
3624     Instruction *I = Worklist.removeOne();
3625     if (I == nullptr) continue;  // skip null values.
3626 
3627     // Check to see if we can DCE the instruction.
3628     if (isInstructionTriviallyDead(I, &TLI)) {
3629       eraseInstFromFunction(*I);
3630       ++NumDeadInst;
3631       continue;
3632     }
3633 
3634     if (!DebugCounter::shouldExecute(VisitCounter))
3635       continue;
3636 
3637     // Instruction isn't dead, see if we can constant propagate it.
3638     if (!I->use_empty() &&
3639         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3640       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3641         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3642                           << '\n');
3643 
3644         // Add operands to the worklist.
3645         replaceInstUsesWith(*I, C);
3646         ++NumConstProp;
3647         if (isInstructionTriviallyDead(I, &TLI))
3648           eraseInstFromFunction(*I);
3649         MadeIRChange = true;
3650         continue;
3651       }
3652     }
3653 
3654     // See if we can trivially sink this instruction to its user if we can
3655     // prove that the successor is not executed more frequently than our block.
3656     if (EnableCodeSinking)
3657       if (Use *SingleUse = I->getSingleUndroppableUse()) {
3658         BasicBlock *BB = I->getParent();
3659         Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
3660         BasicBlock *UserParent;
3661 
3662         // Get the block the use occurs in.
3663         if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3664           UserParent = PN->getIncomingBlock(*SingleUse);
3665         else
3666           UserParent = UserInst->getParent();
3667 
3668         // Try sinking to another block. If that block is unreachable, then do
3669         // not bother. SimplifyCFG should handle it.
3670         if (UserParent != BB && DT.isReachableFromEntry(UserParent)) {
3671           // See if the user is one of our successors that has only one
3672           // predecessor, so that we don't have to split the critical edge.
3673           bool ShouldSink = UserParent->getUniquePredecessor() == BB;
3674           // Another option where we can sink is a block that ends with a
3675           // terminator that does not pass control to other block (such as
3676           // return or unreachable). In this case:
3677           //   - I dominates the User (by SSA form);
3678           //   - the User will be executed at most once.
3679           // So sinking I down to User is always profitable or neutral.
3680           if (!ShouldSink) {
3681             auto *Term = UserParent->getTerminator();
3682             ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
3683           }
3684           if (ShouldSink) {
3685             assert(DT.dominates(BB, UserParent) &&
3686                    "Dominance relation broken?");
3687             // Okay, the CFG is simple enough, try to sink this instruction.
3688             if (TryToSinkInstruction(I, UserParent)) {
3689               LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3690               MadeIRChange = true;
3691               // We'll add uses of the sunk instruction below, but since sinking
3692               // can expose opportunities for it's *operands* add them to the
3693               // worklist
3694               for (Use &U : I->operands())
3695                 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3696                   Worklist.push(OpI);
3697             }
3698           }
3699         }
3700       }
3701 
3702     // Now that we have an instruction, try combining it to simplify it.
3703     Builder.SetInsertPoint(I);
3704     Builder.CollectMetadataToCopy(
3705         I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3706 
3707 #ifndef NDEBUG
3708     std::string OrigI;
3709 #endif
3710     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3711     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3712 
3713     if (Instruction *Result = visit(*I)) {
3714       ++NumCombined;
3715       // Should we replace the old instruction with a new one?
3716       if (Result != I) {
3717         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3718                           << "    New = " << *Result << '\n');
3719 
3720         Result->copyMetadata(*I,
3721                              {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3722         // Everything uses the new instruction now.
3723         I->replaceAllUsesWith(Result);
3724 
3725         // Move the name to the new instruction first.
3726         Result->takeName(I);
3727 
3728         // Insert the new instruction into the basic block...
3729         BasicBlock *InstParent = I->getParent();
3730         BasicBlock::iterator InsertPos = I->getIterator();
3731 
3732         // Are we replace a PHI with something that isn't a PHI, or vice versa?
3733         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
3734           // We need to fix up the insertion point.
3735           if (isa<PHINode>(I)) // PHI -> Non-PHI
3736             InsertPos = InstParent->getFirstInsertionPt();
3737           else // Non-PHI -> PHI
3738             InsertPos = InstParent->getFirstNonPHI()->getIterator();
3739         }
3740 
3741         InstParent->getInstList().insert(InsertPos, Result);
3742 
3743         // Push the new instruction and any users onto the worklist.
3744         Worklist.pushUsersToWorkList(*Result);
3745         Worklist.push(Result);
3746 
3747         eraseInstFromFunction(*I);
3748       } else {
3749         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3750                           << "    New = " << *I << '\n');
3751 
3752         // If the instruction was modified, it's possible that it is now dead.
3753         // if so, remove it.
3754         if (isInstructionTriviallyDead(I, &TLI)) {
3755           eraseInstFromFunction(*I);
3756         } else {
3757           Worklist.pushUsersToWorkList(*I);
3758           Worklist.push(I);
3759         }
3760       }
3761       MadeIRChange = true;
3762     }
3763   }
3764 
3765   Worklist.zap();
3766   return MadeIRChange;
3767 }
3768 
3769 // Track the scopes used by !alias.scope and !noalias. In a function, a
3770 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
3771 // by both sets. If not, the declaration of the scope can be safely omitted.
3772 // The MDNode of the scope can be omitted as well for the instructions that are
3773 // part of this function. We do not do that at this point, as this might become
3774 // too time consuming to do.
3775 class AliasScopeTracker {
3776   SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
3777   SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
3778 
3779 public:
3780   void analyse(Instruction *I) {
3781     // This seems to be faster than checking 'mayReadOrWriteMemory()'.
3782     if (!I->hasMetadataOtherThanDebugLoc())
3783       return;
3784 
3785     auto Track = [](Metadata *ScopeList, auto &Container) {
3786       const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
3787       if (!MDScopeList || !Container.insert(MDScopeList).second)
3788         return;
3789       for (auto &MDOperand : MDScopeList->operands())
3790         if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
3791           Container.insert(MDScope);
3792     };
3793 
3794     Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
3795     Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
3796   }
3797 
3798   bool isNoAliasScopeDeclDead(Instruction *Inst) {
3799     NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
3800     if (!Decl)
3801       return false;
3802 
3803     assert(Decl->use_empty() &&
3804            "llvm.experimental.noalias.scope.decl in use ?");
3805     const MDNode *MDSL = Decl->getScopeList();
3806     assert(MDSL->getNumOperands() == 1 &&
3807            "llvm.experimental.noalias.scope should refer to a single scope");
3808     auto &MDOperand = MDSL->getOperand(0);
3809     if (auto *MD = dyn_cast<MDNode>(MDOperand))
3810       return !UsedAliasScopesAndLists.contains(MD) ||
3811              !UsedNoAliasScopesAndLists.contains(MD);
3812 
3813     // Not an MDNode ? throw away.
3814     return true;
3815   }
3816 };
3817 
3818 /// Populate the IC worklist from a function, by walking it in depth-first
3819 /// order and adding all reachable code to the worklist.
3820 ///
3821 /// This has a couple of tricks to make the code faster and more powerful.  In
3822 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3823 /// them to the worklist (this significantly speeds up instcombine on code where
3824 /// many instructions are dead or constant).  Additionally, if we find a branch
3825 /// whose condition is a known constant, we only visit the reachable successors.
3826 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3827                                           const TargetLibraryInfo *TLI,
3828                                           InstCombineWorklist &ICWorklist) {
3829   bool MadeIRChange = false;
3830   SmallPtrSet<BasicBlock *, 32> Visited;
3831   SmallVector<BasicBlock*, 256> Worklist;
3832   Worklist.push_back(&F.front());
3833 
3834   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3835   DenseMap<Constant *, Constant *> FoldedConstants;
3836   AliasScopeTracker SeenAliasScopes;
3837 
3838   do {
3839     BasicBlock *BB = Worklist.pop_back_val();
3840 
3841     // We have now visited this block!  If we've already been here, ignore it.
3842     if (!Visited.insert(BB).second)
3843       continue;
3844 
3845     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3846       Instruction *Inst = &*BBI++;
3847 
3848       // ConstantProp instruction if trivially constant.
3849       if (!Inst->use_empty() &&
3850           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3851         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3852           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3853                             << '\n');
3854           Inst->replaceAllUsesWith(C);
3855           ++NumConstProp;
3856           if (isInstructionTriviallyDead(Inst, TLI))
3857             Inst->eraseFromParent();
3858           MadeIRChange = true;
3859           continue;
3860         }
3861 
3862       // See if we can constant fold its operands.
3863       for (Use &U : Inst->operands()) {
3864         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3865           continue;
3866 
3867         auto *C = cast<Constant>(U);
3868         Constant *&FoldRes = FoldedConstants[C];
3869         if (!FoldRes)
3870           FoldRes = ConstantFoldConstant(C, DL, TLI);
3871 
3872         if (FoldRes != C) {
3873           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3874                             << "\n    Old = " << *C
3875                             << "\n    New = " << *FoldRes << '\n');
3876           U = FoldRes;
3877           MadeIRChange = true;
3878         }
3879       }
3880 
3881       // Skip processing debug and pseudo intrinsics in InstCombine. Processing
3882       // these call instructions consumes non-trivial amount of time and
3883       // provides no value for the optimization.
3884       if (!Inst->isDebugOrPseudoInst()) {
3885         InstrsForInstCombineWorklist.push_back(Inst);
3886         SeenAliasScopes.analyse(Inst);
3887       }
3888     }
3889 
3890     // Recursively visit successors.  If this is a branch or switch on a
3891     // constant, only visit the reachable successor.
3892     Instruction *TI = BB->getTerminator();
3893     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3894       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3895         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3896         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3897         Worklist.push_back(ReachableBB);
3898         continue;
3899       }
3900     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3901       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3902         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3903         continue;
3904       }
3905     }
3906 
3907     append_range(Worklist, successors(TI));
3908   } while (!Worklist.empty());
3909 
3910   // Remove instructions inside unreachable blocks. This prevents the
3911   // instcombine code from having to deal with some bad special cases, and
3912   // reduces use counts of instructions.
3913   for (BasicBlock &BB : F) {
3914     if (Visited.count(&BB))
3915       continue;
3916 
3917     unsigned NumDeadInstInBB;
3918     unsigned NumDeadDbgInstInBB;
3919     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
3920         removeAllNonTerminatorAndEHPadInstructions(&BB);
3921 
3922     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
3923     NumDeadInst += NumDeadInstInBB;
3924   }
3925 
3926   // Once we've found all of the instructions to add to instcombine's worklist,
3927   // add them in reverse order.  This way instcombine will visit from the top
3928   // of the function down.  This jives well with the way that it adds all uses
3929   // of instructions to the worklist after doing a transformation, thus avoiding
3930   // some N^2 behavior in pathological cases.
3931   ICWorklist.reserve(InstrsForInstCombineWorklist.size());
3932   for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
3933     // DCE instruction if trivially dead. As we iterate in reverse program
3934     // order here, we will clean up whole chains of dead instructions.
3935     if (isInstructionTriviallyDead(Inst, TLI) ||
3936         SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
3937       ++NumDeadInst;
3938       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3939       salvageDebugInfo(*Inst);
3940       Inst->eraseFromParent();
3941       MadeIRChange = true;
3942       continue;
3943     }
3944 
3945     ICWorklist.push(Inst);
3946   }
3947 
3948   return MadeIRChange;
3949 }
3950 
3951 static bool combineInstructionsOverFunction(
3952     Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3953     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
3954     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3955     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
3956   auto &DL = F.getParent()->getDataLayout();
3957   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
3958 
3959   /// Builder - This is an IRBuilder that automatically inserts new
3960   /// instructions into the worklist when they are created.
3961   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3962       F.getContext(), TargetFolder(DL),
3963       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3964         Worklist.add(I);
3965         if (match(I, m_Intrinsic<Intrinsic::assume>()))
3966           AC.registerAssumption(cast<CallInst>(I));
3967       }));
3968 
3969   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3970   // by instcombiner.
3971   bool MadeIRChange = false;
3972   if (ShouldLowerDbgDeclare)
3973     MadeIRChange = LowerDbgDeclare(F);
3974 
3975   // Iterate while there is work to do.
3976   unsigned Iteration = 0;
3977   while (true) {
3978     ++NumWorklistIterations;
3979     ++Iteration;
3980 
3981     if (Iteration > InfiniteLoopDetectionThreshold) {
3982       report_fatal_error(
3983           "Instruction Combining seems stuck in an infinite loop after " +
3984           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
3985     }
3986 
3987     if (Iteration > MaxIterations) {
3988       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
3989                         << " on " << F.getName()
3990                         << " reached; stopping before reaching a fixpoint\n");
3991       break;
3992     }
3993 
3994     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3995                       << F.getName() << "\n");
3996 
3997     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3998 
3999     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4000                         ORE, BFI, PSI, DL, LI);
4001     IC.MaxArraySizeForCombine = MaxArraySize;
4002 
4003     if (!IC.run())
4004       break;
4005 
4006     MadeIRChange = true;
4007   }
4008 
4009   return MadeIRChange;
4010 }
4011 
4012 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4013 
4014 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4015     : MaxIterations(MaxIterations) {}
4016 
4017 PreservedAnalyses InstCombinePass::run(Function &F,
4018                                        FunctionAnalysisManager &AM) {
4019   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4020   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4021   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4022   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4023   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4024 
4025   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4026 
4027   auto *AA = &AM.getResult<AAManager>(F);
4028   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4029   ProfileSummaryInfo *PSI =
4030       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4031   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4032       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4033 
4034   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4035                                        BFI, PSI, MaxIterations, LI))
4036     // No changes, all analyses are preserved.
4037     return PreservedAnalyses::all();
4038 
4039   // Mark all the analyses that instcombine updates as preserved.
4040   PreservedAnalyses PA;
4041   PA.preserveSet<CFGAnalyses>();
4042   PA.preserve<AAManager>();
4043   PA.preserve<BasicAA>();
4044   PA.preserve<GlobalsAA>();
4045   return PA;
4046 }
4047 
4048 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4049   AU.setPreservesCFG();
4050   AU.addRequired<AAResultsWrapperPass>();
4051   AU.addRequired<AssumptionCacheTracker>();
4052   AU.addRequired<TargetLibraryInfoWrapperPass>();
4053   AU.addRequired<TargetTransformInfoWrapperPass>();
4054   AU.addRequired<DominatorTreeWrapperPass>();
4055   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4056   AU.addPreserved<DominatorTreeWrapperPass>();
4057   AU.addPreserved<AAResultsWrapperPass>();
4058   AU.addPreserved<BasicAAWrapperPass>();
4059   AU.addPreserved<GlobalsAAWrapperPass>();
4060   AU.addRequired<ProfileSummaryInfoWrapperPass>();
4061   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4062 }
4063 
4064 bool InstructionCombiningPass::runOnFunction(Function &F) {
4065   if (skipFunction(F))
4066     return false;
4067 
4068   // Required analyses.
4069   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4070   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4071   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4072   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4073   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4074   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4075 
4076   // Optional analyses.
4077   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4078   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4079   ProfileSummaryInfo *PSI =
4080       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4081   BlockFrequencyInfo *BFI =
4082       (PSI && PSI->hasProfileSummary()) ?
4083       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4084       nullptr;
4085 
4086   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4087                                          BFI, PSI, MaxIterations, LI);
4088 }
4089 
4090 char InstructionCombiningPass::ID = 0;
4091 
4092 InstructionCombiningPass::InstructionCombiningPass()
4093     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4094   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4095 }
4096 
4097 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4098     : FunctionPass(ID), MaxIterations(MaxIterations) {
4099   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4100 }
4101 
4102 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4103                       "Combine redundant instructions", false, false)
4104 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4105 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4106 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4107 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4108 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4109 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4110 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4111 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4112 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4113 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4114                     "Combine redundant instructions", false, false)
4115 
4116 // Initialization Routines
4117 void llvm::initializeInstCombine(PassRegistry &Registry) {
4118   initializeInstructionCombiningPassPass(Registry);
4119 }
4120 
4121 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4122   initializeInstructionCombiningPassPass(*unwrap(R));
4123 }
4124 
4125 FunctionPass *llvm::createInstructionCombiningPass() {
4126   return new InstructionCombiningPass();
4127 }
4128 
4129 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4130   return new InstructionCombiningPass(MaxIterations);
4131 }
4132 
4133 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4134   unwrap(PM)->add(createInstructionCombiningPass());
4135 }
4136