1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/SmallPtrSet.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/ADT/Statistic.h" 44 #include "llvm/Analysis/AliasAnalysis.h" 45 #include "llvm/Analysis/AssumptionCache.h" 46 #include "llvm/Analysis/BasicAliasAnalysis.h" 47 #include "llvm/Analysis/BlockFrequencyInfo.h" 48 #include "llvm/Analysis/CFG.h" 49 #include "llvm/Analysis/ConstantFolding.h" 50 #include "llvm/Analysis/EHPersonalities.h" 51 #include "llvm/Analysis/GlobalsModRef.h" 52 #include "llvm/Analysis/InstructionSimplify.h" 53 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 54 #include "llvm/Analysis/LoopInfo.h" 55 #include "llvm/Analysis/MemoryBuiltins.h" 56 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 57 #include "llvm/Analysis/ProfileSummaryInfo.h" 58 #include "llvm/Analysis/TargetFolder.h" 59 #include "llvm/Analysis/TargetLibraryInfo.h" 60 #include "llvm/Analysis/TargetTransformInfo.h" 61 #include "llvm/Analysis/Utils/Local.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/Analysis/VectorUtils.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/CFG.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DIBuilder.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfo.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LegacyPassManager.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PassManager.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Use.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/InitializePasses.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/DebugCounter.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/KnownBits.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/InstCombine/InstCombine.h" 101 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <memory> 107 #include <optional> 108 #include <string> 109 #include <utility> 110 111 #define DEBUG_TYPE "instcombine" 112 #include "llvm/Transforms/Utils/InstructionWorklist.h" 113 #include <optional> 114 115 using namespace llvm; 116 using namespace llvm::PatternMatch; 117 118 STATISTIC(NumWorklistIterations, 119 "Number of instruction combining iterations performed"); 120 121 STATISTIC(NumCombined , "Number of insts combined"); 122 STATISTIC(NumConstProp, "Number of constant folds"); 123 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 124 STATISTIC(NumSunkInst , "Number of instructions sunk"); 125 STATISTIC(NumExpand, "Number of expansions"); 126 STATISTIC(NumFactor , "Number of factorizations"); 127 STATISTIC(NumReassoc , "Number of reassociations"); 128 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 129 "Controls which instructions are visited"); 130 131 // FIXME: these limits eventually should be as low as 2. 132 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 133 #ifndef NDEBUG 134 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 135 #else 136 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 137 #endif 138 139 static cl::opt<bool> 140 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 141 cl::init(true)); 142 143 static cl::opt<unsigned> MaxSinkNumUsers( 144 "instcombine-max-sink-users", cl::init(32), 145 cl::desc("Maximum number of undroppable users for instruction sinking")); 146 147 static cl::opt<unsigned> LimitMaxIterations( 148 "instcombine-max-iterations", 149 cl::desc("Limit the maximum number of instruction combining iterations"), 150 cl::init(InstCombineDefaultMaxIterations)); 151 152 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 153 "instcombine-infinite-loop-threshold", 154 cl::desc("Number of instruction combining iterations considered an " 155 "infinite loop"), 156 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 157 158 static cl::opt<unsigned> 159 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 160 cl::desc("Maximum array size considered when doing a combine")); 161 162 // FIXME: Remove this flag when it is no longer necessary to convert 163 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 164 // increases variable availability at the cost of accuracy. Variables that 165 // cannot be promoted by mem2reg or SROA will be described as living in memory 166 // for their entire lifetime. However, passes like DSE and instcombine can 167 // delete stores to the alloca, leading to misleading and inaccurate debug 168 // information. This flag can be removed when those passes are fixed. 169 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 170 cl::Hidden, cl::init(true)); 171 172 std::optional<Instruction *> 173 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 174 // Handle target specific intrinsics 175 if (II.getCalledFunction()->isTargetIntrinsic()) { 176 return TTI.instCombineIntrinsic(*this, II); 177 } 178 return std::nullopt; 179 } 180 181 std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 182 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 183 bool &KnownBitsComputed) { 184 // Handle target specific intrinsics 185 if (II.getCalledFunction()->isTargetIntrinsic()) { 186 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 187 KnownBitsComputed); 188 } 189 return std::nullopt; 190 } 191 192 std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 193 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 194 APInt &UndefElts3, 195 std::function<void(Instruction *, unsigned, APInt, APInt &)> 196 SimplifyAndSetOp) { 197 // Handle target specific intrinsics 198 if (II.getCalledFunction()->isTargetIntrinsic()) { 199 return TTI.simplifyDemandedVectorEltsIntrinsic( 200 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 201 SimplifyAndSetOp); 202 } 203 return std::nullopt; 204 } 205 206 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 207 return llvm::emitGEPOffset(&Builder, DL, GEP); 208 } 209 210 /// Legal integers and common types are considered desirable. This is used to 211 /// avoid creating instructions with types that may not be supported well by the 212 /// the backend. 213 /// NOTE: This treats i8, i16 and i32 specially because they are common 214 /// types in frontend languages. 215 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 216 switch (BitWidth) { 217 case 8: 218 case 16: 219 case 32: 220 return true; 221 default: 222 return DL.isLegalInteger(BitWidth); 223 } 224 } 225 226 /// Return true if it is desirable to convert an integer computation from a 227 /// given bit width to a new bit width. 228 /// We don't want to convert from a legal or desirable type (like i8) to an 229 /// illegal type or from a smaller to a larger illegal type. A width of '1' 230 /// is always treated as a desirable type because i1 is a fundamental type in 231 /// IR, and there are many specialized optimizations for i1 types. 232 /// Common/desirable widths are equally treated as legal to convert to, in 233 /// order to open up more combining opportunities. 234 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 235 unsigned ToWidth) const { 236 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 237 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 238 239 // Convert to desirable widths even if they are not legal types. 240 // Only shrink types, to prevent infinite loops. 241 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 242 return true; 243 244 // If this is a legal or desiable integer from type, and the result would be 245 // an illegal type, don't do the transformation. 246 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal) 247 return false; 248 249 // Otherwise, if both are illegal, do not increase the size of the result. We 250 // do allow things like i160 -> i64, but not i64 -> i160. 251 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 252 return false; 253 254 return true; 255 } 256 257 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 258 /// We don't want to convert from a legal to an illegal type or from a smaller 259 /// to a larger illegal type. i1 is always treated as a legal type because it is 260 /// a fundamental type in IR, and there are many specialized optimizations for 261 /// i1 types. 262 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 263 // TODO: This could be extended to allow vectors. Datalayout changes might be 264 // needed to properly support that. 265 if (!From->isIntegerTy() || !To->isIntegerTy()) 266 return false; 267 268 unsigned FromWidth = From->getPrimitiveSizeInBits(); 269 unsigned ToWidth = To->getPrimitiveSizeInBits(); 270 return shouldChangeType(FromWidth, ToWidth); 271 } 272 273 // Return true, if No Signed Wrap should be maintained for I. 274 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 275 // where both B and C should be ConstantInts, results in a constant that does 276 // not overflow. This function only handles the Add and Sub opcodes. For 277 // all other opcodes, the function conservatively returns false. 278 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 279 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 280 if (!OBO || !OBO->hasNoSignedWrap()) 281 return false; 282 283 // We reason about Add and Sub Only. 284 Instruction::BinaryOps Opcode = I.getOpcode(); 285 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 286 return false; 287 288 const APInt *BVal, *CVal; 289 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 290 return false; 291 292 bool Overflow = false; 293 if (Opcode == Instruction::Add) 294 (void)BVal->sadd_ov(*CVal, Overflow); 295 else 296 (void)BVal->ssub_ov(*CVal, Overflow); 297 298 return !Overflow; 299 } 300 301 static bool hasNoUnsignedWrap(BinaryOperator &I) { 302 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 303 return OBO && OBO->hasNoUnsignedWrap(); 304 } 305 306 static bool hasNoSignedWrap(BinaryOperator &I) { 307 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 308 return OBO && OBO->hasNoSignedWrap(); 309 } 310 311 /// Conservatively clears subclassOptionalData after a reassociation or 312 /// commutation. We preserve fast-math flags when applicable as they can be 313 /// preserved. 314 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 315 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 316 if (!FPMO) { 317 I.clearSubclassOptionalData(); 318 return; 319 } 320 321 FastMathFlags FMF = I.getFastMathFlags(); 322 I.clearSubclassOptionalData(); 323 I.setFastMathFlags(FMF); 324 } 325 326 /// Combine constant operands of associative operations either before or after a 327 /// cast to eliminate one of the associative operations: 328 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 329 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 330 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 331 InstCombinerImpl &IC) { 332 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 333 if (!Cast || !Cast->hasOneUse()) 334 return false; 335 336 // TODO: Enhance logic for other casts and remove this check. 337 auto CastOpcode = Cast->getOpcode(); 338 if (CastOpcode != Instruction::ZExt) 339 return false; 340 341 // TODO: Enhance logic for other BinOps and remove this check. 342 if (!BinOp1->isBitwiseLogicOp()) 343 return false; 344 345 auto AssocOpcode = BinOp1->getOpcode(); 346 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 347 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 348 return false; 349 350 Constant *C1, *C2; 351 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 352 !match(BinOp2->getOperand(1), m_Constant(C2))) 353 return false; 354 355 // TODO: This assumes a zext cast. 356 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 357 // to the destination type might lose bits. 358 359 // Fold the constants together in the destination type: 360 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 361 Type *DestTy = C1->getType(); 362 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 363 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 364 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 365 IC.replaceOperand(*BinOp1, 1, FoldedC); 366 return true; 367 } 368 369 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 370 // inttoptr ( ptrtoint (x) ) --> x 371 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 372 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 373 if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) == 374 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 375 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 376 Type *CastTy = IntToPtr->getDestTy(); 377 if (PtrToInt && 378 CastTy->getPointerAddressSpace() == 379 PtrToInt->getSrcTy()->getPointerAddressSpace() && 380 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) == 381 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 382 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 383 "", PtrToInt); 384 } 385 } 386 return nullptr; 387 } 388 389 /// This performs a few simplifications for operators that are associative or 390 /// commutative: 391 /// 392 /// Commutative operators: 393 /// 394 /// 1. Order operands such that they are listed from right (least complex) to 395 /// left (most complex). This puts constants before unary operators before 396 /// binary operators. 397 /// 398 /// Associative operators: 399 /// 400 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 401 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 402 /// 403 /// Associative and commutative operators: 404 /// 405 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 406 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 407 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 408 /// if C1 and C2 are constants. 409 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 410 Instruction::BinaryOps Opcode = I.getOpcode(); 411 bool Changed = false; 412 413 do { 414 // Order operands such that they are listed from right (least complex) to 415 // left (most complex). This puts constants before unary operators before 416 // binary operators. 417 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 418 getComplexity(I.getOperand(1))) 419 Changed = !I.swapOperands(); 420 421 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 422 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 423 424 if (I.isAssociative()) { 425 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 426 if (Op0 && Op0->getOpcode() == Opcode) { 427 Value *A = Op0->getOperand(0); 428 Value *B = Op0->getOperand(1); 429 Value *C = I.getOperand(1); 430 431 // Does "B op C" simplify? 432 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 433 // It simplifies to V. Form "A op V". 434 replaceOperand(I, 0, A); 435 replaceOperand(I, 1, V); 436 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 437 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 438 439 // Conservatively clear all optional flags since they may not be 440 // preserved by the reassociation. Reset nsw/nuw based on the above 441 // analysis. 442 ClearSubclassDataAfterReassociation(I); 443 444 // Note: this is only valid because SimplifyBinOp doesn't look at 445 // the operands to Op0. 446 if (IsNUW) 447 I.setHasNoUnsignedWrap(true); 448 449 if (IsNSW) 450 I.setHasNoSignedWrap(true); 451 452 Changed = true; 453 ++NumReassoc; 454 continue; 455 } 456 } 457 458 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 459 if (Op1 && Op1->getOpcode() == Opcode) { 460 Value *A = I.getOperand(0); 461 Value *B = Op1->getOperand(0); 462 Value *C = Op1->getOperand(1); 463 464 // Does "A op B" simplify? 465 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 466 // It simplifies to V. Form "V op C". 467 replaceOperand(I, 0, V); 468 replaceOperand(I, 1, C); 469 // Conservatively clear the optional flags, since they may not be 470 // preserved by the reassociation. 471 ClearSubclassDataAfterReassociation(I); 472 Changed = true; 473 ++NumReassoc; 474 continue; 475 } 476 } 477 } 478 479 if (I.isAssociative() && I.isCommutative()) { 480 if (simplifyAssocCastAssoc(&I, *this)) { 481 Changed = true; 482 ++NumReassoc; 483 continue; 484 } 485 486 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 487 if (Op0 && Op0->getOpcode() == Opcode) { 488 Value *A = Op0->getOperand(0); 489 Value *B = Op0->getOperand(1); 490 Value *C = I.getOperand(1); 491 492 // Does "C op A" simplify? 493 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 494 // It simplifies to V. Form "V op B". 495 replaceOperand(I, 0, V); 496 replaceOperand(I, 1, B); 497 // Conservatively clear the optional flags, since they may not be 498 // preserved by the reassociation. 499 ClearSubclassDataAfterReassociation(I); 500 Changed = true; 501 ++NumReassoc; 502 continue; 503 } 504 } 505 506 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 507 if (Op1 && Op1->getOpcode() == Opcode) { 508 Value *A = I.getOperand(0); 509 Value *B = Op1->getOperand(0); 510 Value *C = Op1->getOperand(1); 511 512 // Does "C op A" simplify? 513 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 514 // It simplifies to V. Form "B op V". 515 replaceOperand(I, 0, B); 516 replaceOperand(I, 1, V); 517 // Conservatively clear the optional flags, since they may not be 518 // preserved by the reassociation. 519 ClearSubclassDataAfterReassociation(I); 520 Changed = true; 521 ++NumReassoc; 522 continue; 523 } 524 } 525 526 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 527 // if C1 and C2 are constants. 528 Value *A, *B; 529 Constant *C1, *C2, *CRes; 530 if (Op0 && Op1 && 531 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 532 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 533 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) && 534 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) { 535 bool IsNUW = hasNoUnsignedWrap(I) && 536 hasNoUnsignedWrap(*Op0) && 537 hasNoUnsignedWrap(*Op1); 538 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 539 BinaryOperator::CreateNUW(Opcode, A, B) : 540 BinaryOperator::Create(Opcode, A, B); 541 542 if (isa<FPMathOperator>(NewBO)) { 543 FastMathFlags Flags = I.getFastMathFlags(); 544 Flags &= Op0->getFastMathFlags(); 545 Flags &= Op1->getFastMathFlags(); 546 NewBO->setFastMathFlags(Flags); 547 } 548 InsertNewInstWith(NewBO, I); 549 NewBO->takeName(Op1); 550 replaceOperand(I, 0, NewBO); 551 replaceOperand(I, 1, CRes); 552 // Conservatively clear the optional flags, since they may not be 553 // preserved by the reassociation. 554 ClearSubclassDataAfterReassociation(I); 555 if (IsNUW) 556 I.setHasNoUnsignedWrap(true); 557 558 Changed = true; 559 continue; 560 } 561 } 562 563 // No further simplifications. 564 return Changed; 565 } while (true); 566 } 567 568 /// Return whether "X LOp (Y ROp Z)" is always equal to 569 /// "(X LOp Y) ROp (X LOp Z)". 570 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 571 Instruction::BinaryOps ROp) { 572 // X & (Y | Z) <--> (X & Y) | (X & Z) 573 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 574 if (LOp == Instruction::And) 575 return ROp == Instruction::Or || ROp == Instruction::Xor; 576 577 // X | (Y & Z) <--> (X | Y) & (X | Z) 578 if (LOp == Instruction::Or) 579 return ROp == Instruction::And; 580 581 // X * (Y + Z) <--> (X * Y) + (X * Z) 582 // X * (Y - Z) <--> (X * Y) - (X * Z) 583 if (LOp == Instruction::Mul) 584 return ROp == Instruction::Add || ROp == Instruction::Sub; 585 586 return false; 587 } 588 589 /// Return whether "(X LOp Y) ROp Z" is always equal to 590 /// "(X ROp Z) LOp (Y ROp Z)". 591 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 592 Instruction::BinaryOps ROp) { 593 if (Instruction::isCommutative(ROp)) 594 return leftDistributesOverRight(ROp, LOp); 595 596 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 597 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 598 599 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 600 // but this requires knowing that the addition does not overflow and other 601 // such subtleties. 602 } 603 604 /// This function returns identity value for given opcode, which can be used to 605 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 606 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 607 if (isa<Constant>(V)) 608 return nullptr; 609 610 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 611 } 612 613 /// This function predicates factorization using distributive laws. By default, 614 /// it just returns the 'Op' inputs. But for special-cases like 615 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 616 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 617 /// allow more factorization opportunities. 618 static Instruction::BinaryOps 619 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 620 Value *&LHS, Value *&RHS) { 621 assert(Op && "Expected a binary operator"); 622 LHS = Op->getOperand(0); 623 RHS = Op->getOperand(1); 624 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 625 Constant *C; 626 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 627 // X << C --> X * (1 << C) 628 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 629 return Instruction::Mul; 630 } 631 // TODO: We can add other conversions e.g. shr => div etc. 632 } 633 return Op->getOpcode(); 634 } 635 636 /// This tries to simplify binary operations by factorizing out common terms 637 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 638 static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, 639 InstCombiner::BuilderTy &Builder, 640 Instruction::BinaryOps InnerOpcode, Value *A, 641 Value *B, Value *C, Value *D) { 642 assert(A && B && C && D && "All values must be provided"); 643 644 Value *V = nullptr; 645 Value *RetVal = nullptr; 646 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 647 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 648 649 // Does "X op' Y" always equal "Y op' X"? 650 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 651 652 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 653 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) { 654 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 655 // commutative case, "(A op' B) op (C op' A)"? 656 if (A == C || (InnerCommutative && A == D)) { 657 if (A != C) 658 std::swap(C, D); 659 // Consider forming "A op' (B op D)". 660 // If "B op D" simplifies then it can be formed with no cost. 661 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 662 663 // If "B op D" doesn't simplify then only go on if one of the existing 664 // operations "A op' B" and "C op' D" will be zapped as no longer used. 665 if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) 666 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 667 if (V) 668 RetVal = Builder.CreateBinOp(InnerOpcode, A, V); 669 } 670 } 671 672 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 673 if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) { 674 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 675 // commutative case, "(A op' B) op (B op' D)"? 676 if (B == D || (InnerCommutative && B == C)) { 677 if (B != D) 678 std::swap(C, D); 679 // Consider forming "(A op C) op' B". 680 // If "A op C" simplifies then it can be formed with no cost. 681 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 682 683 // If "A op C" doesn't simplify then only go on if one of the existing 684 // operations "A op' B" and "C op' D" will be zapped as no longer used. 685 if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) 686 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 687 if (V) 688 RetVal = Builder.CreateBinOp(InnerOpcode, V, B); 689 } 690 } 691 692 if (!RetVal) 693 return nullptr; 694 695 ++NumFactor; 696 RetVal->takeName(&I); 697 698 // Try to add no-overflow flags to the final value. 699 if (isa<OverflowingBinaryOperator>(RetVal)) { 700 bool HasNSW = false; 701 bool HasNUW = false; 702 if (isa<OverflowingBinaryOperator>(&I)) { 703 HasNSW = I.hasNoSignedWrap(); 704 HasNUW = I.hasNoUnsignedWrap(); 705 } 706 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 707 HasNSW &= LOBO->hasNoSignedWrap(); 708 HasNUW &= LOBO->hasNoUnsignedWrap(); 709 } 710 711 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 712 HasNSW &= ROBO->hasNoSignedWrap(); 713 HasNUW &= ROBO->hasNoUnsignedWrap(); 714 } 715 716 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) { 717 // We can propagate 'nsw' if we know that 718 // %Y = mul nsw i16 %X, C 719 // %Z = add nsw i16 %Y, %X 720 // => 721 // %Z = mul nsw i16 %X, C+1 722 // 723 // iff C+1 isn't INT_MIN 724 const APInt *CInt; 725 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 726 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW); 727 728 // nuw can be propagated with any constant or nuw value. 729 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW); 730 } 731 } 732 return RetVal; 733 } 734 735 Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) { 736 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 737 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 738 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 739 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 740 Value *A, *B, *C, *D; 741 Instruction::BinaryOps LHSOpcode, RHSOpcode; 742 743 if (Op0) 744 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 745 if (Op1) 746 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 747 748 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 749 // a common term. 750 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 751 if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D)) 752 return V; 753 754 // The instruction has the form "(A op' B) op (C)". Try to factorize common 755 // term. 756 if (Op0) 757 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 758 if (Value *V = 759 tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident)) 760 return V; 761 762 // The instruction has the form "(B) op (C op' D)". Try to factorize common 763 // term. 764 if (Op1) 765 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 766 if (Value *V = 767 tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D)) 768 return V; 769 770 return nullptr; 771 } 772 773 /// This tries to simplify binary operations which some other binary operation 774 /// distributes over either by factorizing out common terms 775 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 776 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 777 /// Returns the simplified value, or null if it didn't simplify. 778 Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) { 779 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 780 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 781 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 782 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 783 784 // Factorization. 785 if (Value *R = tryFactorizationFolds(I)) 786 return R; 787 788 // Expansion. 789 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 790 // The instruction has the form "(A op' B) op C". See if expanding it out 791 // to "(A op C) op' (B op C)" results in simplifications. 792 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 793 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 794 795 // Disable the use of undef because it's not safe to distribute undef. 796 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 797 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 798 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 799 800 // Do "A op C" and "B op C" both simplify? 801 if (L && R) { 802 // They do! Return "L op' R". 803 ++NumExpand; 804 C = Builder.CreateBinOp(InnerOpcode, L, R); 805 C->takeName(&I); 806 return C; 807 } 808 809 // Does "A op C" simplify to the identity value for the inner opcode? 810 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 811 // They do! Return "B op C". 812 ++NumExpand; 813 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 814 C->takeName(&I); 815 return C; 816 } 817 818 // Does "B op C" simplify to the identity value for the inner opcode? 819 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 820 // They do! Return "A op C". 821 ++NumExpand; 822 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 823 C->takeName(&I); 824 return C; 825 } 826 } 827 828 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 829 // The instruction has the form "A op (B op' C)". See if expanding it out 830 // to "(A op B) op' (A op C)" results in simplifications. 831 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 832 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 833 834 // Disable the use of undef because it's not safe to distribute undef. 835 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 836 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 837 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 838 839 // Do "A op B" and "A op C" both simplify? 840 if (L && R) { 841 // They do! Return "L op' R". 842 ++NumExpand; 843 A = Builder.CreateBinOp(InnerOpcode, L, R); 844 A->takeName(&I); 845 return A; 846 } 847 848 // Does "A op B" simplify to the identity value for the inner opcode? 849 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 850 // They do! Return "A op C". 851 ++NumExpand; 852 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 853 A->takeName(&I); 854 return A; 855 } 856 857 // Does "A op C" simplify to the identity value for the inner opcode? 858 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 859 // They do! Return "A op B". 860 ++NumExpand; 861 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 862 A->takeName(&I); 863 return A; 864 } 865 } 866 867 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 868 } 869 870 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 871 Value *LHS, 872 Value *RHS) { 873 Value *A, *B, *C, *D, *E, *F; 874 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 875 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 876 if (!LHSIsSelect && !RHSIsSelect) 877 return nullptr; 878 879 FastMathFlags FMF; 880 BuilderTy::FastMathFlagGuard Guard(Builder); 881 if (isa<FPMathOperator>(&I)) { 882 FMF = I.getFastMathFlags(); 883 Builder.setFastMathFlags(FMF); 884 } 885 886 Instruction::BinaryOps Opcode = I.getOpcode(); 887 SimplifyQuery Q = SQ.getWithInstruction(&I); 888 889 Value *Cond, *True = nullptr, *False = nullptr; 890 891 // Special-case for add/negate combination. Replace the zero in the negation 892 // with the trailing add operand: 893 // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N) 894 // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False 895 auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * { 896 // We need an 'add' and exactly 1 arm of the select to have been simplified. 897 if (Opcode != Instruction::Add || (!True && !False) || (True && False)) 898 return nullptr; 899 900 Value *N; 901 if (True && match(FVal, m_Neg(m_Value(N)))) { 902 Value *Sub = Builder.CreateSub(Z, N); 903 return Builder.CreateSelect(Cond, True, Sub, I.getName()); 904 } 905 if (False && match(TVal, m_Neg(m_Value(N)))) { 906 Value *Sub = Builder.CreateSub(Z, N); 907 return Builder.CreateSelect(Cond, Sub, False, I.getName()); 908 } 909 return nullptr; 910 }; 911 912 if (LHSIsSelect && RHSIsSelect && A == D) { 913 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 914 Cond = A; 915 True = simplifyBinOp(Opcode, B, E, FMF, Q); 916 False = simplifyBinOp(Opcode, C, F, FMF, Q); 917 918 if (LHS->hasOneUse() && RHS->hasOneUse()) { 919 if (False && !True) 920 True = Builder.CreateBinOp(Opcode, B, E); 921 else if (True && !False) 922 False = Builder.CreateBinOp(Opcode, C, F); 923 } 924 } else if (LHSIsSelect && LHS->hasOneUse()) { 925 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 926 Cond = A; 927 True = simplifyBinOp(Opcode, B, RHS, FMF, Q); 928 False = simplifyBinOp(Opcode, C, RHS, FMF, Q); 929 if (Value *NewSel = foldAddNegate(B, C, RHS)) 930 return NewSel; 931 } else if (RHSIsSelect && RHS->hasOneUse()) { 932 // X op (D ? E : F) -> D ? (X op E) : (X op F) 933 Cond = D; 934 True = simplifyBinOp(Opcode, LHS, E, FMF, Q); 935 False = simplifyBinOp(Opcode, LHS, F, FMF, Q); 936 if (Value *NewSel = foldAddNegate(E, F, LHS)) 937 return NewSel; 938 } 939 940 if (!True || !False) 941 return nullptr; 942 943 Value *SI = Builder.CreateSelect(Cond, True, False); 944 SI->takeName(&I); 945 return SI; 946 } 947 948 /// Freely adapt every user of V as-if V was changed to !V. 949 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 950 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) { 951 for (User *U : make_early_inc_range(I->users())) { 952 if (U == IgnoredUser) 953 continue; // Don't consider this user. 954 switch (cast<Instruction>(U)->getOpcode()) { 955 case Instruction::Select: { 956 auto *SI = cast<SelectInst>(U); 957 SI->swapValues(); 958 SI->swapProfMetadata(); 959 break; 960 } 961 case Instruction::Br: 962 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 963 break; 964 case Instruction::Xor: 965 replaceInstUsesWith(cast<Instruction>(*U), I); 966 break; 967 default: 968 llvm_unreachable("Got unexpected user - out of sync with " 969 "canFreelyInvertAllUsersOf() ?"); 970 } 971 } 972 } 973 974 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 975 /// constant zero (which is the 'negate' form). 976 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 977 Value *NegV; 978 if (match(V, m_Neg(m_Value(NegV)))) 979 return NegV; 980 981 // Constants can be considered to be negated values if they can be folded. 982 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 983 return ConstantExpr::getNeg(C); 984 985 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 986 if (C->getType()->getElementType()->isIntegerTy()) 987 return ConstantExpr::getNeg(C); 988 989 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 990 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 991 Constant *Elt = CV->getAggregateElement(i); 992 if (!Elt) 993 return nullptr; 994 995 if (isa<UndefValue>(Elt)) 996 continue; 997 998 if (!isa<ConstantInt>(Elt)) 999 return nullptr; 1000 } 1001 return ConstantExpr::getNeg(CV); 1002 } 1003 1004 // Negate integer vector splats. 1005 if (auto *CV = dyn_cast<Constant>(V)) 1006 if (CV->getType()->isVectorTy() && 1007 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 1008 return ConstantExpr::getNeg(CV); 1009 1010 return nullptr; 1011 } 1012 1013 /// A binop with a constant operand and a sign-extended boolean operand may be 1014 /// converted into a select of constants by applying the binary operation to 1015 /// the constant with the two possible values of the extended boolean (0 or -1). 1016 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 1017 // TODO: Handle non-commutative binop (constant is operand 0). 1018 // TODO: Handle zext. 1019 // TODO: Peek through 'not' of cast. 1020 Value *BO0 = BO.getOperand(0); 1021 Value *BO1 = BO.getOperand(1); 1022 Value *X; 1023 Constant *C; 1024 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 1025 !X->getType()->isIntOrIntVectorTy(1)) 1026 return nullptr; 1027 1028 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 1029 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 1030 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 1031 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C); 1032 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C); 1033 return SelectInst::Create(X, TVal, FVal); 1034 } 1035 1036 static Constant *constantFoldOperationIntoSelectOperand( 1037 Instruction &I, SelectInst *SI, Value *SO) { 1038 auto *ConstSO = dyn_cast<Constant>(SO); 1039 if (!ConstSO) 1040 return nullptr; 1041 1042 SmallVector<Constant *> ConstOps; 1043 for (Value *Op : I.operands()) { 1044 if (Op == SI) 1045 ConstOps.push_back(ConstSO); 1046 else if (auto *C = dyn_cast<Constant>(Op)) 1047 ConstOps.push_back(C); 1048 else 1049 llvm_unreachable("Operands should be select or constant"); 1050 } 1051 return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout()); 1052 } 1053 1054 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 1055 InstCombiner::BuilderTy &Builder) { 1056 if (auto *Cast = dyn_cast<CastInst>(&I)) 1057 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 1058 1059 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1060 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 1061 "Expected constant-foldable intrinsic"); 1062 Intrinsic::ID IID = II->getIntrinsicID(); 1063 if (II->arg_size() == 1) 1064 return Builder.CreateUnaryIntrinsic(IID, SO); 1065 1066 // This works for real binary ops like min/max (where we always expect the 1067 // constant operand to be canonicalized as op1) and unary ops with a bonus 1068 // constant argument like ctlz/cttz. 1069 // TODO: Handle non-commutative binary intrinsics as below for binops. 1070 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 1071 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 1072 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 1073 } 1074 1075 if (auto *EI = dyn_cast<ExtractElementInst>(&I)) 1076 return Builder.CreateExtractElement(SO, EI->getIndexOperand()); 1077 1078 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 1079 1080 // Figure out if the constant is the left or the right argument. 1081 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 1082 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 1083 1084 Value *Op0 = SO, *Op1 = ConstOperand; 1085 if (!ConstIsRHS) 1086 std::swap(Op0, Op1); 1087 1088 Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0, 1089 Op1, SO->getName() + ".op"); 1090 if (auto *NewBOI = dyn_cast<Instruction>(NewBO)) 1091 NewBOI->copyIRFlags(&I); 1092 return NewBO; 1093 } 1094 1095 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, 1096 bool FoldWithMultiUse) { 1097 // Don't modify shared select instructions unless set FoldWithMultiUse 1098 if (!SI->hasOneUse() && !FoldWithMultiUse) 1099 return nullptr; 1100 1101 Value *TV = SI->getTrueValue(); 1102 Value *FV = SI->getFalseValue(); 1103 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1104 return nullptr; 1105 1106 // Bool selects with constant operands can be folded to logical ops. 1107 if (SI->getType()->isIntOrIntVectorTy(1)) 1108 return nullptr; 1109 1110 // If it's a bitcast involving vectors, make sure it has the same number of 1111 // elements on both sides. 1112 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1113 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1114 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1115 1116 // Verify that either both or neither are vectors. 1117 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1118 return nullptr; 1119 1120 // If vectors, verify that they have the same number of elements. 1121 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1122 return nullptr; 1123 } 1124 1125 // Test if a CmpInst instruction is used exclusively by a select as 1126 // part of a minimum or maximum operation. If so, refrain from doing 1127 // any other folding. This helps out other analyses which understand 1128 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1129 // and CodeGen. And in this case, at least one of the comparison 1130 // operands has at least one user besides the compare (the select), 1131 // which would often largely negate the benefit of folding anyway. 1132 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1133 if (CI->hasOneUse()) { 1134 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1135 1136 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1137 // We have to ensure that vector constants that only differ with 1138 // undef elements are treated as equivalent. 1139 auto areLooselyEqual = [](Value *A, Value *B) { 1140 if (A == B) 1141 return true; 1142 1143 // Test for vector constants. 1144 Constant *ConstA, *ConstB; 1145 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1146 return false; 1147 1148 // TODO: Deal with FP constants? 1149 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1150 return false; 1151 1152 // Compare for equality including undefs as equal. 1153 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1154 const APInt *C; 1155 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1156 }; 1157 1158 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1159 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1160 return nullptr; 1161 } 1162 } 1163 1164 // Make sure that one of the select arms constant folds successfully. 1165 Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, TV); 1166 Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, FV); 1167 if (!NewTV && !NewFV) 1168 return nullptr; 1169 1170 // Create an instruction for the arm that did not fold. 1171 if (!NewTV) 1172 NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1173 if (!NewFV) 1174 NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1175 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1176 } 1177 1178 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1179 unsigned NumPHIValues = PN->getNumIncomingValues(); 1180 if (NumPHIValues == 0) 1181 return nullptr; 1182 1183 // We normally only transform phis with a single use. However, if a PHI has 1184 // multiple uses and they are all the same operation, we can fold *all* of the 1185 // uses into the PHI. 1186 if (!PN->hasOneUse()) { 1187 // Walk the use list for the instruction, comparing them to I. 1188 for (User *U : PN->users()) { 1189 Instruction *UI = cast<Instruction>(U); 1190 if (UI != &I && !I.isIdenticalTo(UI)) 1191 return nullptr; 1192 } 1193 // Otherwise, we can replace *all* users with the new PHI we form. 1194 } 1195 1196 // Check to see whether the instruction can be folded into each phi operand. 1197 // If there is one operand that does not fold, remember the BB it is in. 1198 // If there is more than one or if *it* is a PHI, bail out. 1199 SmallVector<Value *> NewPhiValues; 1200 BasicBlock *NonSimplifiedBB = nullptr; 1201 Value *NonSimplifiedInVal = nullptr; 1202 for (unsigned i = 0; i != NumPHIValues; ++i) { 1203 Value *InVal = PN->getIncomingValue(i); 1204 BasicBlock *InBB = PN->getIncomingBlock(i); 1205 1206 // NB: It is a precondition of this transform that the operands be 1207 // phi translatable! This is usually trivially satisfied by limiting it 1208 // to constant ops, and for selects we do a more sophisticated check. 1209 SmallVector<Value *> Ops; 1210 for (Value *Op : I.operands()) { 1211 if (Op == PN) 1212 Ops.push_back(InVal); 1213 else 1214 Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB)); 1215 } 1216 1217 // Don't consider the simplification successful if we get back a constant 1218 // expression. That's just an instruction in hiding. 1219 // Also reject the case where we simplify back to the phi node. We wouldn't 1220 // be able to remove it in that case. 1221 Value *NewVal = simplifyInstructionWithOperands( 1222 &I, Ops, SQ.getWithInstruction(InBB->getTerminator())); 1223 if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr())) { 1224 NewPhiValues.push_back(NewVal); 1225 continue; 1226 } 1227 1228 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1229 if (NonSimplifiedBB) return nullptr; // More than one non-simplified value. 1230 1231 NonSimplifiedBB = InBB; 1232 NonSimplifiedInVal = InVal; 1233 NewPhiValues.push_back(nullptr); 1234 1235 // If the InVal is an invoke at the end of the pred block, then we can't 1236 // insert a computation after it without breaking the edge. 1237 if (isa<InvokeInst>(InVal)) 1238 if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB) 1239 return nullptr; 1240 1241 // If the incoming non-constant value is reachable from the phis block, 1242 // we'll push the operation across a loop backedge. This could result in 1243 // an infinite combine loop, and is generally non-profitable (especially 1244 // if the operation was originally outside the loop). 1245 if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT, 1246 LI)) 1247 return nullptr; 1248 } 1249 1250 // If there is exactly one non-simplified value, we can insert a copy of the 1251 // operation in that block. However, if this is a critical edge, we would be 1252 // inserting the computation on some other paths (e.g. inside a loop). Only 1253 // do this if the pred block is unconditionally branching into the phi block. 1254 // Also, make sure that the pred block is not dead code. 1255 if (NonSimplifiedBB != nullptr) { 1256 BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator()); 1257 if (!BI || !BI->isUnconditional() || 1258 !DT.isReachableFromEntry(NonSimplifiedBB)) 1259 return nullptr; 1260 } 1261 1262 // Okay, we can do the transformation: create the new PHI node. 1263 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1264 InsertNewInstBefore(NewPN, *PN); 1265 NewPN->takeName(PN); 1266 1267 // If we are going to have to insert a new computation, do so right before the 1268 // predecessor's terminator. 1269 Instruction *Clone = nullptr; 1270 if (NonSimplifiedBB) { 1271 Clone = I.clone(); 1272 for (Use &U : Clone->operands()) { 1273 if (U == PN) 1274 U = NonSimplifiedInVal; 1275 else 1276 U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB); 1277 } 1278 InsertNewInstBefore(Clone, *NonSimplifiedBB->getTerminator()); 1279 } 1280 1281 for (unsigned i = 0; i != NumPHIValues; ++i) { 1282 if (NewPhiValues[i]) 1283 NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i)); 1284 else 1285 NewPN->addIncoming(Clone, PN->getIncomingBlock(i)); 1286 } 1287 1288 for (User *U : make_early_inc_range(PN->users())) { 1289 Instruction *User = cast<Instruction>(U); 1290 if (User == &I) continue; 1291 replaceInstUsesWith(*User, NewPN); 1292 eraseInstFromFunction(*User); 1293 } 1294 return replaceInstUsesWith(I, NewPN); 1295 } 1296 1297 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1298 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1299 // we are guarding against replicating the binop in >1 predecessor. 1300 // This could miss matching a phi with 2 constant incoming values. 1301 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1302 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1303 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1304 Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1305 return nullptr; 1306 1307 // TODO: Remove the restriction for binop being in the same block as the phis. 1308 if (BO.getParent() != Phi0->getParent() || 1309 BO.getParent() != Phi1->getParent()) 1310 return nullptr; 1311 1312 // Match a pair of incoming constants for one of the predecessor blocks. 1313 BasicBlock *ConstBB, *OtherBB; 1314 Constant *C0, *C1; 1315 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 1316 ConstBB = Phi0->getIncomingBlock(0); 1317 OtherBB = Phi0->getIncomingBlock(1); 1318 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 1319 ConstBB = Phi0->getIncomingBlock(1); 1320 OtherBB = Phi0->getIncomingBlock(0); 1321 } else { 1322 return nullptr; 1323 } 1324 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 1325 return nullptr; 1326 1327 // The block that we are hoisting to must reach here unconditionally. 1328 // Otherwise, we could be speculatively executing an expensive or 1329 // non-speculative op. 1330 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 1331 if (!PredBlockBranch || PredBlockBranch->isConditional() || 1332 !DT.isReachableFromEntry(OtherBB)) 1333 return nullptr; 1334 1335 // TODO: This check could be tightened to only apply to binops (div/rem) that 1336 // are not safe to speculatively execute. But that could allow hoisting 1337 // potentially expensive instructions (fdiv for example). 1338 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 1339 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 1340 return nullptr; 1341 1342 // Fold constants for the predecessor block with constant incoming values. 1343 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL); 1344 if (!NewC) 1345 return nullptr; 1346 1347 // Make a new binop in the predecessor block with the non-constant incoming 1348 // values. 1349 Builder.SetInsertPoint(PredBlockBranch); 1350 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 1351 Phi0->getIncomingValueForBlock(OtherBB), 1352 Phi1->getIncomingValueForBlock(OtherBB)); 1353 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 1354 NotFoldedNewBO->copyIRFlags(&BO); 1355 1356 // Replace the binop with a phi of the new values. The old phis are dead. 1357 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 1358 NewPhi->addIncoming(NewBO, OtherBB); 1359 NewPhi->addIncoming(NewC, ConstBB); 1360 return NewPhi; 1361 } 1362 1363 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1364 if (!isa<Constant>(I.getOperand(1))) 1365 return nullptr; 1366 1367 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1368 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1369 return NewSel; 1370 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1371 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1372 return NewPhi; 1373 } 1374 return nullptr; 1375 } 1376 1377 /// Given a pointer type and a constant offset, determine whether or not there 1378 /// is a sequence of GEP indices into the pointed type that will land us at the 1379 /// specified offset. If so, fill them into NewIndices and return the resultant 1380 /// element type, otherwise return null. 1381 static Type *findElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1382 SmallVectorImpl<Value *> &NewIndices, 1383 const DataLayout &DL) { 1384 // Only used by visitGEPOfBitcast(), which is skipped for opaque pointers. 1385 Type *Ty = PtrTy->getNonOpaquePointerElementType(); 1386 if (!Ty->isSized()) 1387 return nullptr; 1388 1389 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1390 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1391 if (!Offset.isZero()) 1392 return nullptr; 1393 1394 for (const APInt &Index : Indices) 1395 NewIndices.push_back(ConstantInt::get(PtrTy->getContext(), Index)); 1396 return Ty; 1397 } 1398 1399 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1400 // If this GEP has only 0 indices, it is the same pointer as 1401 // Src. If Src is not a trivial GEP too, don't combine 1402 // the indices. 1403 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1404 !Src.hasOneUse()) 1405 return false; 1406 return true; 1407 } 1408 1409 /// Return a value X such that Val = X * Scale, or null if none. 1410 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1411 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1412 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1413 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1414 Scale.getBitWidth() && "Scale not compatible with value!"); 1415 1416 // If Val is zero or Scale is one then Val = Val * Scale. 1417 if (match(Val, m_Zero()) || Scale == 1) { 1418 NoSignedWrap = true; 1419 return Val; 1420 } 1421 1422 // If Scale is zero then it does not divide Val. 1423 if (Scale.isMinValue()) 1424 return nullptr; 1425 1426 // Look through chains of multiplications, searching for a constant that is 1427 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1428 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1429 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1430 // down from Val: 1431 // 1432 // Val = M1 * X || Analysis starts here and works down 1433 // M1 = M2 * Y || Doesn't descend into terms with more 1434 // M2 = Z * 4 \/ than one use 1435 // 1436 // Then to modify a term at the bottom: 1437 // 1438 // Val = M1 * X 1439 // M1 = Z * Y || Replaced M2 with Z 1440 // 1441 // Then to work back up correcting nsw flags. 1442 1443 // Op - the term we are currently analyzing. Starts at Val then drills down. 1444 // Replaced with its descaled value before exiting from the drill down loop. 1445 Value *Op = Val; 1446 1447 // Parent - initially null, but after drilling down notes where Op came from. 1448 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1449 // 0'th operand of Val. 1450 std::pair<Instruction *, unsigned> Parent; 1451 1452 // Set if the transform requires a descaling at deeper levels that doesn't 1453 // overflow. 1454 bool RequireNoSignedWrap = false; 1455 1456 // Log base 2 of the scale. Negative if not a power of 2. 1457 int32_t logScale = Scale.exactLogBase2(); 1458 1459 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1460 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1461 // If Op is a constant divisible by Scale then descale to the quotient. 1462 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1463 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1464 if (!Remainder.isMinValue()) 1465 // Not divisible by Scale. 1466 return nullptr; 1467 // Replace with the quotient in the parent. 1468 Op = ConstantInt::get(CI->getType(), Quotient); 1469 NoSignedWrap = true; 1470 break; 1471 } 1472 1473 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1474 if (BO->getOpcode() == Instruction::Mul) { 1475 // Multiplication. 1476 NoSignedWrap = BO->hasNoSignedWrap(); 1477 if (RequireNoSignedWrap && !NoSignedWrap) 1478 return nullptr; 1479 1480 // There are three cases for multiplication: multiplication by exactly 1481 // the scale, multiplication by a constant different to the scale, and 1482 // multiplication by something else. 1483 Value *LHS = BO->getOperand(0); 1484 Value *RHS = BO->getOperand(1); 1485 1486 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1487 // Multiplication by a constant. 1488 if (CI->getValue() == Scale) { 1489 // Multiplication by exactly the scale, replace the multiplication 1490 // by its left-hand side in the parent. 1491 Op = LHS; 1492 break; 1493 } 1494 1495 // Otherwise drill down into the constant. 1496 if (!Op->hasOneUse()) 1497 return nullptr; 1498 1499 Parent = std::make_pair(BO, 1); 1500 continue; 1501 } 1502 1503 // Multiplication by something else. Drill down into the left-hand side 1504 // since that's where the reassociate pass puts the good stuff. 1505 if (!Op->hasOneUse()) 1506 return nullptr; 1507 1508 Parent = std::make_pair(BO, 0); 1509 continue; 1510 } 1511 1512 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1513 isa<ConstantInt>(BO->getOperand(1))) { 1514 // Multiplication by a power of 2. 1515 NoSignedWrap = BO->hasNoSignedWrap(); 1516 if (RequireNoSignedWrap && !NoSignedWrap) 1517 return nullptr; 1518 1519 Value *LHS = BO->getOperand(0); 1520 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1521 getLimitedValue(Scale.getBitWidth()); 1522 // Op = LHS << Amt. 1523 1524 if (Amt == logScale) { 1525 // Multiplication by exactly the scale, replace the multiplication 1526 // by its left-hand side in the parent. 1527 Op = LHS; 1528 break; 1529 } 1530 if (Amt < logScale || !Op->hasOneUse()) 1531 return nullptr; 1532 1533 // Multiplication by more than the scale. Reduce the multiplying amount 1534 // by the scale in the parent. 1535 Parent = std::make_pair(BO, 1); 1536 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1537 break; 1538 } 1539 } 1540 1541 if (!Op->hasOneUse()) 1542 return nullptr; 1543 1544 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1545 if (Cast->getOpcode() == Instruction::SExt) { 1546 // Op is sign-extended from a smaller type, descale in the smaller type. 1547 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1548 APInt SmallScale = Scale.trunc(SmallSize); 1549 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1550 // descale Op as (sext Y) * Scale. In order to have 1551 // sext (Y * SmallScale) = (sext Y) * Scale 1552 // some conditions need to hold however: SmallScale must sign-extend to 1553 // Scale and the multiplication Y * SmallScale should not overflow. 1554 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1555 // SmallScale does not sign-extend to Scale. 1556 return nullptr; 1557 assert(SmallScale.exactLogBase2() == logScale); 1558 // Require that Y * SmallScale must not overflow. 1559 RequireNoSignedWrap = true; 1560 1561 // Drill down through the cast. 1562 Parent = std::make_pair(Cast, 0); 1563 Scale = SmallScale; 1564 continue; 1565 } 1566 1567 if (Cast->getOpcode() == Instruction::Trunc) { 1568 // Op is truncated from a larger type, descale in the larger type. 1569 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1570 // trunc (Y * sext Scale) = (trunc Y) * Scale 1571 // always holds. However (trunc Y) * Scale may overflow even if 1572 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1573 // from this point up in the expression (see later). 1574 if (RequireNoSignedWrap) 1575 return nullptr; 1576 1577 // Drill down through the cast. 1578 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1579 Parent = std::make_pair(Cast, 0); 1580 Scale = Scale.sext(LargeSize); 1581 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1582 logScale = -1; 1583 assert(Scale.exactLogBase2() == logScale); 1584 continue; 1585 } 1586 } 1587 1588 // Unsupported expression, bail out. 1589 return nullptr; 1590 } 1591 1592 // If Op is zero then Val = Op * Scale. 1593 if (match(Op, m_Zero())) { 1594 NoSignedWrap = true; 1595 return Op; 1596 } 1597 1598 // We know that we can successfully descale, so from here on we can safely 1599 // modify the IR. Op holds the descaled version of the deepest term in the 1600 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1601 // not to overflow. 1602 1603 if (!Parent.first) 1604 // The expression only had one term. 1605 return Op; 1606 1607 // Rewrite the parent using the descaled version of its operand. 1608 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1609 assert(Op != Parent.first->getOperand(Parent.second) && 1610 "Descaling was a no-op?"); 1611 replaceOperand(*Parent.first, Parent.second, Op); 1612 Worklist.push(Parent.first); 1613 1614 // Now work back up the expression correcting nsw flags. The logic is based 1615 // on the following observation: if X * Y is known not to overflow as a signed 1616 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1617 // then X * Z will not overflow as a signed multiplication either. As we work 1618 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1619 // current level has strictly smaller absolute value than the original. 1620 Instruction *Ancestor = Parent.first; 1621 do { 1622 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1623 // If the multiplication wasn't nsw then we can't say anything about the 1624 // value of the descaled multiplication, and we have to clear nsw flags 1625 // from this point on up. 1626 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1627 NoSignedWrap &= OpNoSignedWrap; 1628 if (NoSignedWrap != OpNoSignedWrap) { 1629 BO->setHasNoSignedWrap(NoSignedWrap); 1630 Worklist.push(Ancestor); 1631 } 1632 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1633 // The fact that the descaled input to the trunc has smaller absolute 1634 // value than the original input doesn't tell us anything useful about 1635 // the absolute values of the truncations. 1636 NoSignedWrap = false; 1637 } 1638 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1639 "Failed to keep proper track of nsw flags while drilling down?"); 1640 1641 if (Ancestor == Val) 1642 // Got to the top, all done! 1643 return Val; 1644 1645 // Move up one level in the expression. 1646 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1647 Ancestor = Ancestor->user_back(); 1648 } while (true); 1649 } 1650 1651 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1652 if (!isa<VectorType>(Inst.getType())) 1653 return nullptr; 1654 1655 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1656 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1657 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1658 cast<VectorType>(Inst.getType())->getElementCount()); 1659 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1660 cast<VectorType>(Inst.getType())->getElementCount()); 1661 1662 // If both operands of the binop are vector concatenations, then perform the 1663 // narrow binop on each pair of the source operands followed by concatenation 1664 // of the results. 1665 Value *L0, *L1, *R0, *R1; 1666 ArrayRef<int> Mask; 1667 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1668 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1669 LHS->hasOneUse() && RHS->hasOneUse() && 1670 cast<ShuffleVectorInst>(LHS)->isConcat() && 1671 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1672 // This transform does not have the speculative execution constraint as 1673 // below because the shuffle is a concatenation. The new binops are 1674 // operating on exactly the same elements as the existing binop. 1675 // TODO: We could ease the mask requirement to allow different undef lanes, 1676 // but that requires an analysis of the binop-with-undef output value. 1677 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1678 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1679 BO->copyIRFlags(&Inst); 1680 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1681 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1682 BO->copyIRFlags(&Inst); 1683 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1684 } 1685 1686 auto createBinOpReverse = [&](Value *X, Value *Y) { 1687 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName()); 1688 if (auto *BO = dyn_cast<BinaryOperator>(V)) 1689 BO->copyIRFlags(&Inst); 1690 Module *M = Inst.getModule(); 1691 Function *F = Intrinsic::getDeclaration( 1692 M, Intrinsic::experimental_vector_reverse, V->getType()); 1693 return CallInst::Create(F, V); 1694 }; 1695 1696 // NOTE: Reverse shuffles don't require the speculative execution protection 1697 // below because they don't affect which lanes take part in the computation. 1698 1699 Value *V1, *V2; 1700 if (match(LHS, m_VecReverse(m_Value(V1)))) { 1701 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2)) 1702 if (match(RHS, m_VecReverse(m_Value(V2))) && 1703 (LHS->hasOneUse() || RHS->hasOneUse() || 1704 (LHS == RHS && LHS->hasNUses(2)))) 1705 return createBinOpReverse(V1, V2); 1706 1707 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat)) 1708 if (LHS->hasOneUse() && isSplatValue(RHS)) 1709 return createBinOpReverse(V1, RHS); 1710 } 1711 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2)) 1712 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2))))) 1713 return createBinOpReverse(LHS, V2); 1714 1715 // It may not be safe to reorder shuffles and things like div, urem, etc. 1716 // because we may trap when executing those ops on unknown vector elements. 1717 // See PR20059. 1718 if (!isSafeToSpeculativelyExecute(&Inst)) 1719 return nullptr; 1720 1721 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1722 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1723 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1724 BO->copyIRFlags(&Inst); 1725 return new ShuffleVectorInst(XY, M); 1726 }; 1727 1728 // If both arguments of the binary operation are shuffles that use the same 1729 // mask and shuffle within a single vector, move the shuffle after the binop. 1730 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1731 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1732 V1->getType() == V2->getType() && 1733 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1734 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1735 return createBinOpShuffle(V1, V2, Mask); 1736 } 1737 1738 // If both arguments of a commutative binop are select-shuffles that use the 1739 // same mask with commuted operands, the shuffles are unnecessary. 1740 if (Inst.isCommutative() && 1741 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1742 match(RHS, 1743 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1744 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1745 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1746 // TODO: Allow shuffles that contain undefs in the mask? 1747 // That is legal, but it reduces undef knowledge. 1748 // TODO: Allow arbitrary shuffles by shuffling after binop? 1749 // That might be legal, but we have to deal with poison. 1750 if (LShuf->isSelect() && 1751 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1752 RShuf->isSelect() && 1753 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1754 // Example: 1755 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1756 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1757 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1758 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1759 NewBO->copyIRFlags(&Inst); 1760 return NewBO; 1761 } 1762 } 1763 1764 // If one argument is a shuffle within one vector and the other is a constant, 1765 // try moving the shuffle after the binary operation. This canonicalization 1766 // intends to move shuffles closer to other shuffles and binops closer to 1767 // other binops, so they can be folded. It may also enable demanded elements 1768 // transforms. 1769 Constant *C; 1770 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1771 if (InstVTy && 1772 match(&Inst, 1773 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1774 m_ImmConstant(C))) && 1775 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1776 InstVTy->getNumElements()) { 1777 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1778 "Shuffle should not change scalar type"); 1779 1780 // Find constant NewC that has property: 1781 // shuffle(NewC, ShMask) = C 1782 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1783 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1784 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1785 bool ConstOp1 = isa<Constant>(RHS); 1786 ArrayRef<int> ShMask = Mask; 1787 unsigned SrcVecNumElts = 1788 cast<FixedVectorType>(V1->getType())->getNumElements(); 1789 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1790 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1791 bool MayChange = true; 1792 unsigned NumElts = InstVTy->getNumElements(); 1793 for (unsigned I = 0; I < NumElts; ++I) { 1794 Constant *CElt = C->getAggregateElement(I); 1795 if (ShMask[I] >= 0) { 1796 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1797 Constant *NewCElt = NewVecC[ShMask[I]]; 1798 // Bail out if: 1799 // 1. The constant vector contains a constant expression. 1800 // 2. The shuffle needs an element of the constant vector that can't 1801 // be mapped to a new constant vector. 1802 // 3. This is a widening shuffle that copies elements of V1 into the 1803 // extended elements (extending with undef is allowed). 1804 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1805 I >= SrcVecNumElts) { 1806 MayChange = false; 1807 break; 1808 } 1809 NewVecC[ShMask[I]] = CElt; 1810 } 1811 // If this is a widening shuffle, we must be able to extend with undef 1812 // elements. If the original binop does not produce an undef in the high 1813 // lanes, then this transform is not safe. 1814 // Similarly for undef lanes due to the shuffle mask, we can only 1815 // transform binops that preserve undef. 1816 // TODO: We could shuffle those non-undef constant values into the 1817 // result by using a constant vector (rather than an undef vector) 1818 // as operand 1 of the new binop, but that might be too aggressive 1819 // for target-independent shuffle creation. 1820 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1821 Constant *MaybeUndef = 1822 ConstOp1 1823 ? ConstantFoldBinaryOpOperands(Opcode, UndefScalar, CElt, DL) 1824 : ConstantFoldBinaryOpOperands(Opcode, CElt, UndefScalar, DL); 1825 if (!MaybeUndef || !match(MaybeUndef, m_Undef())) { 1826 MayChange = false; 1827 break; 1828 } 1829 } 1830 } 1831 if (MayChange) { 1832 Constant *NewC = ConstantVector::get(NewVecC); 1833 // It may not be safe to execute a binop on a vector with undef elements 1834 // because the entire instruction can be folded to undef or create poison 1835 // that did not exist in the original code. 1836 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1837 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1838 1839 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1840 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1841 Value *NewLHS = ConstOp1 ? V1 : NewC; 1842 Value *NewRHS = ConstOp1 ? NewC : V1; 1843 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1844 } 1845 } 1846 1847 // Try to reassociate to sink a splat shuffle after a binary operation. 1848 if (Inst.isAssociative() && Inst.isCommutative()) { 1849 // Canonicalize shuffle operand as LHS. 1850 if (isa<ShuffleVectorInst>(RHS)) 1851 std::swap(LHS, RHS); 1852 1853 Value *X; 1854 ArrayRef<int> MaskC; 1855 int SplatIndex; 1856 Value *Y, *OtherOp; 1857 if (!match(LHS, 1858 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1859 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1860 X->getType() != Inst.getType() || 1861 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1862 return nullptr; 1863 1864 // FIXME: This may not be safe if the analysis allows undef elements. By 1865 // moving 'Y' before the splat shuffle, we are implicitly assuming 1866 // that it is not undef/poison at the splat index. 1867 if (isSplatValue(OtherOp, SplatIndex)) { 1868 std::swap(Y, OtherOp); 1869 } else if (!isSplatValue(Y, SplatIndex)) { 1870 return nullptr; 1871 } 1872 1873 // X and Y are splatted values, so perform the binary operation on those 1874 // values followed by a splat followed by the 2nd binary operation: 1875 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1876 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1877 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1878 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1879 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1880 1881 // Intersect FMF on both new binops. Other (poison-generating) flags are 1882 // dropped to be safe. 1883 if (isa<FPMathOperator>(R)) { 1884 R->copyFastMathFlags(&Inst); 1885 R->andIRFlags(RHS); 1886 } 1887 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1888 NewInstBO->copyIRFlags(R); 1889 return R; 1890 } 1891 1892 return nullptr; 1893 } 1894 1895 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1896 /// of a value. This requires a potentially expensive known bits check to make 1897 /// sure the narrow op does not overflow. 1898 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1899 // We need at least one extended operand. 1900 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1901 1902 // If this is a sub, we swap the operands since we always want an extension 1903 // on the RHS. The LHS can be an extension or a constant. 1904 if (BO.getOpcode() == Instruction::Sub) 1905 std::swap(Op0, Op1); 1906 1907 Value *X; 1908 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1909 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1910 return nullptr; 1911 1912 // If both operands are the same extension from the same source type and we 1913 // can eliminate at least one (hasOneUse), this might work. 1914 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1915 Value *Y; 1916 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1917 cast<Operator>(Op1)->getOpcode() == CastOpc && 1918 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1919 // If that did not match, see if we have a suitable constant operand. 1920 // Truncating and extending must produce the same constant. 1921 Constant *WideC; 1922 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1923 return nullptr; 1924 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1925 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1926 return nullptr; 1927 Y = NarrowC; 1928 } 1929 1930 // Swap back now that we found our operands. 1931 if (BO.getOpcode() == Instruction::Sub) 1932 std::swap(X, Y); 1933 1934 // Both operands have narrow versions. Last step: the math must not overflow 1935 // in the narrow width. 1936 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1937 return nullptr; 1938 1939 // bo (ext X), (ext Y) --> ext (bo X, Y) 1940 // bo (ext X), C --> ext (bo X, C') 1941 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1942 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1943 if (IsSext) 1944 NewBinOp->setHasNoSignedWrap(); 1945 else 1946 NewBinOp->setHasNoUnsignedWrap(); 1947 } 1948 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1949 } 1950 1951 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1952 // At least one GEP must be inbounds. 1953 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1954 return false; 1955 1956 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1957 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1958 } 1959 1960 /// Thread a GEP operation with constant indices through the constant true/false 1961 /// arms of a select. 1962 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1963 InstCombiner::BuilderTy &Builder) { 1964 if (!GEP.hasAllConstantIndices()) 1965 return nullptr; 1966 1967 Instruction *Sel; 1968 Value *Cond; 1969 Constant *TrueC, *FalseC; 1970 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1971 !match(Sel, 1972 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1973 return nullptr; 1974 1975 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1976 // Propagate 'inbounds' and metadata from existing instructions. 1977 // Note: using IRBuilder to create the constants for efficiency. 1978 SmallVector<Value *, 4> IndexC(GEP.indices()); 1979 bool IsInBounds = GEP.isInBounds(); 1980 Type *Ty = GEP.getSourceElementType(); 1981 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds); 1982 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds); 1983 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1984 } 1985 1986 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 1987 GEPOperator *Src) { 1988 // Combine Indices - If the source pointer to this getelementptr instruction 1989 // is a getelementptr instruction with matching element type, combine the 1990 // indices of the two getelementptr instructions into a single instruction. 1991 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1992 return nullptr; 1993 1994 if (Src->getResultElementType() == GEP.getSourceElementType() && 1995 Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1996 Src->hasOneUse()) { 1997 Value *GO1 = GEP.getOperand(1); 1998 Value *SO1 = Src->getOperand(1); 1999 2000 if (LI) { 2001 // Try to reassociate loop invariant GEP chains to enable LICM. 2002 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 2003 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 2004 // invariant: this breaks the dependence between GEPs and allows LICM 2005 // to hoist the invariant part out of the loop. 2006 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 2007 // The swapped GEPs are inbounds if both original GEPs are inbounds 2008 // and the sign of the offsets is the same. For simplicity, only 2009 // handle both offsets being non-negative. 2010 bool IsInBounds = Src->isInBounds() && GEP.isInBounds() && 2011 isKnownNonNegative(SO1, DL, 0, &AC, &GEP, &DT) && 2012 isKnownNonNegative(GO1, DL, 0, &AC, &GEP, &DT); 2013 // Put NewSrc at same location as %src. 2014 Builder.SetInsertPoint(cast<Instruction>(Src)); 2015 Value *NewSrc = Builder.CreateGEP(GEP.getSourceElementType(), 2016 Src->getPointerOperand(), GO1, 2017 Src->getName(), IsInBounds); 2018 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 2019 GEP.getSourceElementType(), NewSrc, {SO1}); 2020 NewGEP->setIsInBounds(IsInBounds); 2021 return NewGEP; 2022 } 2023 } 2024 } 2025 } 2026 2027 // Note that if our source is a gep chain itself then we wait for that 2028 // chain to be resolved before we perform this transformation. This 2029 // avoids us creating a TON of code in some cases. 2030 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 2031 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 2032 return nullptr; // Wait until our source is folded to completion. 2033 2034 // For constant GEPs, use a more general offset-based folding approach. 2035 // Only do this for opaque pointers, as the result element type may change. 2036 Type *PtrTy = Src->getType()->getScalarType(); 2037 if (PtrTy->isOpaquePointerTy() && GEP.hasAllConstantIndices() && 2038 (Src->hasOneUse() || Src->hasAllConstantIndices())) { 2039 // Split Src into a variable part and a constant suffix. 2040 gep_type_iterator GTI = gep_type_begin(*Src); 2041 Type *BaseType = GTI.getIndexedType(); 2042 bool IsFirstType = true; 2043 unsigned NumVarIndices = 0; 2044 for (auto Pair : enumerate(Src->indices())) { 2045 if (!isa<ConstantInt>(Pair.value())) { 2046 BaseType = GTI.getIndexedType(); 2047 IsFirstType = false; 2048 NumVarIndices = Pair.index() + 1; 2049 } 2050 ++GTI; 2051 } 2052 2053 // Determine the offset for the constant suffix of Src. 2054 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); 2055 if (NumVarIndices != Src->getNumIndices()) { 2056 // FIXME: getIndexedOffsetInType() does not handled scalable vectors. 2057 if (isa<ScalableVectorType>(BaseType)) 2058 return nullptr; 2059 2060 SmallVector<Value *> ConstantIndices; 2061 if (!IsFirstType) 2062 ConstantIndices.push_back( 2063 Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); 2064 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); 2065 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); 2066 } 2067 2068 // Add the offset for GEP (which is fully constant). 2069 if (!GEP.accumulateConstantOffset(DL, Offset)) 2070 return nullptr; 2071 2072 APInt OffsetOld = Offset; 2073 // Convert the total offset back into indices. 2074 SmallVector<APInt> ConstIndices = 2075 DL.getGEPIndicesForOffset(BaseType, Offset); 2076 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) { 2077 // If both GEP are constant-indexed, and cannot be merged in either way, 2078 // convert them to a GEP of i8. 2079 if (Src->hasAllConstantIndices()) 2080 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2081 ? GetElementPtrInst::CreateInBounds( 2082 Builder.getInt8Ty(), Src->getOperand(0), 2083 Builder.getInt(OffsetOld), GEP.getName()) 2084 : GetElementPtrInst::Create( 2085 Builder.getInt8Ty(), Src->getOperand(0), 2086 Builder.getInt(OffsetOld), GEP.getName()); 2087 return nullptr; 2088 } 2089 2090 bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)); 2091 SmallVector<Value *> Indices; 2092 append_range(Indices, drop_end(Src->indices(), 2093 Src->getNumIndices() - NumVarIndices)); 2094 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { 2095 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); 2096 // Even if the total offset is inbounds, we may end up representing it 2097 // by first performing a larger negative offset, and then a smaller 2098 // positive one. The large negative offset might go out of bounds. Only 2099 // preserve inbounds if all signs are the same. 2100 IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative(); 2101 } 2102 2103 return IsInBounds 2104 ? GetElementPtrInst::CreateInBounds(Src->getSourceElementType(), 2105 Src->getOperand(0), Indices, 2106 GEP.getName()) 2107 : GetElementPtrInst::Create(Src->getSourceElementType(), 2108 Src->getOperand(0), Indices, 2109 GEP.getName()); 2110 } 2111 2112 if (Src->getResultElementType() != GEP.getSourceElementType()) 2113 return nullptr; 2114 2115 SmallVector<Value*, 8> Indices; 2116 2117 // Find out whether the last index in the source GEP is a sequential idx. 2118 bool EndsWithSequential = false; 2119 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2120 I != E; ++I) 2121 EndsWithSequential = I.isSequential(); 2122 2123 // Can we combine the two pointer arithmetics offsets? 2124 if (EndsWithSequential) { 2125 // Replace: gep (gep %P, long B), long A, ... 2126 // With: T = long A+B; gep %P, T, ... 2127 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2128 Value *GO1 = GEP.getOperand(1); 2129 2130 // If they aren't the same type, then the input hasn't been processed 2131 // by the loop above yet (which canonicalizes sequential index types to 2132 // intptr_t). Just avoid transforming this until the input has been 2133 // normalized. 2134 if (SO1->getType() != GO1->getType()) 2135 return nullptr; 2136 2137 Value *Sum = 2138 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2139 // Only do the combine when we are sure the cost after the 2140 // merge is never more than that before the merge. 2141 if (Sum == nullptr) 2142 return nullptr; 2143 2144 // Update the GEP in place if possible. 2145 if (Src->getNumOperands() == 2) { 2146 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2147 replaceOperand(GEP, 0, Src->getOperand(0)); 2148 replaceOperand(GEP, 1, Sum); 2149 return &GEP; 2150 } 2151 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2152 Indices.push_back(Sum); 2153 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2154 } else if (isa<Constant>(*GEP.idx_begin()) && 2155 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2156 Src->getNumOperands() != 1) { 2157 // Otherwise we can do the fold if the first index of the GEP is a zero 2158 Indices.append(Src->op_begin()+1, Src->op_end()); 2159 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2160 } 2161 2162 if (!Indices.empty()) 2163 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2164 ? GetElementPtrInst::CreateInBounds( 2165 Src->getSourceElementType(), Src->getOperand(0), Indices, 2166 GEP.getName()) 2167 : GetElementPtrInst::Create(Src->getSourceElementType(), 2168 Src->getOperand(0), Indices, 2169 GEP.getName()); 2170 2171 return nullptr; 2172 } 2173 2174 // Note that we may have also stripped an address space cast in between. 2175 Instruction *InstCombinerImpl::visitGEPOfBitcast(BitCastInst *BCI, 2176 GetElementPtrInst &GEP) { 2177 // With opaque pointers, there is no pointer element type we can use to 2178 // adjust the GEP type. 2179 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2180 if (SrcType->isOpaque()) 2181 return nullptr; 2182 2183 Type *GEPEltType = GEP.getSourceElementType(); 2184 Type *SrcEltType = SrcType->getNonOpaquePointerElementType(); 2185 Value *SrcOp = BCI->getOperand(0); 2186 2187 // GEP directly using the source operand if this GEP is accessing an element 2188 // of a bitcasted pointer to vector or array of the same dimensions: 2189 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2190 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2191 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2192 const DataLayout &DL) { 2193 auto *VecVTy = cast<FixedVectorType>(VecTy); 2194 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2195 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2196 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2197 }; 2198 if (GEP.getNumOperands() == 3 && 2199 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2200 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2201 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2202 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2203 2204 // Create a new GEP here, as using `setOperand()` followed by 2205 // `setSourceElementType()` won't actually update the type of the 2206 // existing GEP Value. Causing issues if this Value is accessed when 2207 // constructing an AddrSpaceCastInst 2208 SmallVector<Value *, 8> Indices(GEP.indices()); 2209 Value *NGEP = 2210 Builder.CreateGEP(SrcEltType, SrcOp, Indices, "", GEP.isInBounds()); 2211 NGEP->takeName(&GEP); 2212 2213 // Preserve GEP address space to satisfy users 2214 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2215 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2216 2217 return replaceInstUsesWith(GEP, NGEP); 2218 } 2219 2220 // See if we can simplify: 2221 // X = bitcast A* to B* 2222 // Y = gep X, <...constant indices...> 2223 // into a gep of the original struct. This is important for SROA and alias 2224 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2225 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEP.getType()); 2226 APInt Offset(OffsetBits, 0); 2227 2228 // If the bitcast argument is an allocation, The bitcast is for convertion 2229 // to actual type of allocation. Removing such bitcasts, results in having 2230 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2231 // struct or array hierarchy. 2232 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2233 // a better chance to succeed. 2234 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2235 !isAllocationFn(SrcOp, &TLI)) { 2236 // If this GEP instruction doesn't move the pointer, just replace the GEP 2237 // with a bitcast of the real input to the dest type. 2238 if (!Offset) { 2239 // If the bitcast is of an allocation, and the allocation will be 2240 // converted to match the type of the cast, don't touch this. 2241 if (isa<AllocaInst>(SrcOp)) { 2242 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2243 if (Instruction *I = visitBitCast(*BCI)) { 2244 if (I != BCI) { 2245 I->takeName(BCI); 2246 I->insertInto(BCI->getParent(), BCI->getIterator()); 2247 replaceInstUsesWith(*BCI, I); 2248 } 2249 return &GEP; 2250 } 2251 } 2252 2253 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2254 return new AddrSpaceCastInst(SrcOp, GEP.getType()); 2255 return new BitCastInst(SrcOp, GEP.getType()); 2256 } 2257 2258 // Otherwise, if the offset is non-zero, we need to find out if there is a 2259 // field at Offset in 'A's type. If so, we can pull the cast through the 2260 // GEP. 2261 SmallVector<Value *, 8> NewIndices; 2262 if (findElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices, DL)) { 2263 Value *NGEP = Builder.CreateGEP(SrcEltType, SrcOp, NewIndices, "", 2264 GEP.isInBounds()); 2265 2266 if (NGEP->getType() == GEP.getType()) 2267 return replaceInstUsesWith(GEP, NGEP); 2268 NGEP->takeName(&GEP); 2269 2270 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2271 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2272 return new BitCastInst(NGEP, GEP.getType()); 2273 } 2274 } 2275 2276 return nullptr; 2277 } 2278 2279 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2280 Value *PtrOp = GEP.getOperand(0); 2281 SmallVector<Value *, 8> Indices(GEP.indices()); 2282 Type *GEPType = GEP.getType(); 2283 Type *GEPEltType = GEP.getSourceElementType(); 2284 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 2285 if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2286 SQ.getWithInstruction(&GEP))) 2287 return replaceInstUsesWith(GEP, V); 2288 2289 // For vector geps, use the generic demanded vector support. 2290 // Skip if GEP return type is scalable. The number of elements is unknown at 2291 // compile-time. 2292 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2293 auto VWidth = GEPFVTy->getNumElements(); 2294 APInt UndefElts(VWidth, 0); 2295 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2296 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2297 UndefElts)) { 2298 if (V != &GEP) 2299 return replaceInstUsesWith(GEP, V); 2300 return &GEP; 2301 } 2302 2303 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2304 // possible (decide on canonical form for pointer broadcast), 3) exploit 2305 // undef elements to decrease demanded bits 2306 } 2307 2308 // Eliminate unneeded casts for indices, and replace indices which displace 2309 // by multiples of a zero size type with zero. 2310 bool MadeChange = false; 2311 2312 // Index width may not be the same width as pointer width. 2313 // Data layout chooses the right type based on supported integer types. 2314 Type *NewScalarIndexTy = 2315 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2316 2317 gep_type_iterator GTI = gep_type_begin(GEP); 2318 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2319 ++I, ++GTI) { 2320 // Skip indices into struct types. 2321 if (GTI.isStruct()) 2322 continue; 2323 2324 Type *IndexTy = (*I)->getType(); 2325 Type *NewIndexType = 2326 IndexTy->isVectorTy() 2327 ? VectorType::get(NewScalarIndexTy, 2328 cast<VectorType>(IndexTy)->getElementCount()) 2329 : NewScalarIndexTy; 2330 2331 // If the element type has zero size then any index over it is equivalent 2332 // to an index of zero, so replace it with zero if it is not zero already. 2333 Type *EltTy = GTI.getIndexedType(); 2334 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2335 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2336 *I = Constant::getNullValue(NewIndexType); 2337 MadeChange = true; 2338 } 2339 2340 if (IndexTy != NewIndexType) { 2341 // If we are using a wider index than needed for this platform, shrink 2342 // it to what we need. If narrower, sign-extend it to what we need. 2343 // This explicit cast can make subsequent optimizations more obvious. 2344 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2345 MadeChange = true; 2346 } 2347 } 2348 if (MadeChange) 2349 return &GEP; 2350 2351 // Check to see if the inputs to the PHI node are getelementptr instructions. 2352 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2353 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2354 if (!Op1) 2355 return nullptr; 2356 2357 // Don't fold a GEP into itself through a PHI node. This can only happen 2358 // through the back-edge of a loop. Folding a GEP into itself means that 2359 // the value of the previous iteration needs to be stored in the meantime, 2360 // thus requiring an additional register variable to be live, but not 2361 // actually achieving anything (the GEP still needs to be executed once per 2362 // loop iteration). 2363 if (Op1 == &GEP) 2364 return nullptr; 2365 2366 int DI = -1; 2367 2368 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2369 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2370 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || 2371 Op1->getSourceElementType() != Op2->getSourceElementType()) 2372 return nullptr; 2373 2374 // As for Op1 above, don't try to fold a GEP into itself. 2375 if (Op2 == &GEP) 2376 return nullptr; 2377 2378 // Keep track of the type as we walk the GEP. 2379 Type *CurTy = nullptr; 2380 2381 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2382 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2383 return nullptr; 2384 2385 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2386 if (DI == -1) { 2387 // We have not seen any differences yet in the GEPs feeding the 2388 // PHI yet, so we record this one if it is allowed to be a 2389 // variable. 2390 2391 // The first two arguments can vary for any GEP, the rest have to be 2392 // static for struct slots 2393 if (J > 1) { 2394 assert(CurTy && "No current type?"); 2395 if (CurTy->isStructTy()) 2396 return nullptr; 2397 } 2398 2399 DI = J; 2400 } else { 2401 // The GEP is different by more than one input. While this could be 2402 // extended to support GEPs that vary by more than one variable it 2403 // doesn't make sense since it greatly increases the complexity and 2404 // would result in an R+R+R addressing mode which no backend 2405 // directly supports and would need to be broken into several 2406 // simpler instructions anyway. 2407 return nullptr; 2408 } 2409 } 2410 2411 // Sink down a layer of the type for the next iteration. 2412 if (J > 0) { 2413 if (J == 1) { 2414 CurTy = Op1->getSourceElementType(); 2415 } else { 2416 CurTy = 2417 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2418 } 2419 } 2420 } 2421 } 2422 2423 // If not all GEPs are identical we'll have to create a new PHI node. 2424 // Check that the old PHI node has only one use so that it will get 2425 // removed. 2426 if (DI != -1 && !PN->hasOneUse()) 2427 return nullptr; 2428 2429 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2430 if (DI == -1) { 2431 // All the GEPs feeding the PHI are identical. Clone one down into our 2432 // BB so that it can be merged with the current GEP. 2433 } else { 2434 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2435 // into the current block so it can be merged, and create a new PHI to 2436 // set that index. 2437 PHINode *NewPN; 2438 { 2439 IRBuilderBase::InsertPointGuard Guard(Builder); 2440 Builder.SetInsertPoint(PN); 2441 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2442 PN->getNumOperands()); 2443 } 2444 2445 for (auto &I : PN->operands()) 2446 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2447 PN->getIncomingBlock(I)); 2448 2449 NewGEP->setOperand(DI, NewPN); 2450 } 2451 2452 NewGEP->insertInto(GEP.getParent(), GEP.getParent()->getFirstInsertionPt()); 2453 return replaceOperand(GEP, 0, NewGEP); 2454 } 2455 2456 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2457 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2458 return I; 2459 2460 // Skip if GEP source element type is scalable. The type alloc size is unknown 2461 // at compile-time. 2462 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2463 unsigned AS = GEP.getPointerAddressSpace(); 2464 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2465 DL.getIndexSizeInBits(AS)) { 2466 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue(); 2467 2468 bool Matched = false; 2469 uint64_t C; 2470 Value *V = nullptr; 2471 if (TyAllocSize == 1) { 2472 V = GEP.getOperand(1); 2473 Matched = true; 2474 } else if (match(GEP.getOperand(1), 2475 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2476 if (TyAllocSize == 1ULL << C) 2477 Matched = true; 2478 } else if (match(GEP.getOperand(1), 2479 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2480 if (TyAllocSize == C) 2481 Matched = true; 2482 } 2483 2484 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2485 // only if both point to the same underlying object (otherwise provenance 2486 // is not necessarily retained). 2487 Value *Y; 2488 Value *X = GEP.getOperand(0); 2489 if (Matched && 2490 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2491 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2492 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2493 } 2494 } 2495 2496 // We do not handle pointer-vector geps here. 2497 if (GEPType->isVectorTy()) 2498 return nullptr; 2499 2500 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2501 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2502 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2503 2504 // TODO: The basic approach of these folds is not compatible with opaque 2505 // pointers, because we can't use bitcasts as a hint for a desirable GEP 2506 // type. Instead, we should perform canonicalization directly on the GEP 2507 // type. For now, skip these. 2508 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) { 2509 bool HasZeroPointerIndex = false; 2510 Type *StrippedPtrEltTy = StrippedPtrTy->getNonOpaquePointerElementType(); 2511 2512 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2513 HasZeroPointerIndex = C->isZero(); 2514 2515 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2516 // into : GEP [10 x i8]* X, i32 0, ... 2517 // 2518 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2519 // into : GEP i8* X, ... 2520 // 2521 // This occurs when the program declares an array extern like "int X[];" 2522 if (HasZeroPointerIndex) { 2523 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2524 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2525 if (CATy->getElementType() == StrippedPtrEltTy) { 2526 // -> GEP i8* X, ... 2527 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2528 GetElementPtrInst *Res = GetElementPtrInst::Create( 2529 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2530 Res->setIsInBounds(GEP.isInBounds()); 2531 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2532 return Res; 2533 // Insert Res, and create an addrspacecast. 2534 // e.g., 2535 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2536 // -> 2537 // %0 = GEP i8 addrspace(1)* X, ... 2538 // addrspacecast i8 addrspace(1)* %0 to i8* 2539 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2540 } 2541 2542 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2543 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2544 if (CATy->getElementType() == XATy->getElementType()) { 2545 // -> GEP [10 x i8]* X, i32 0, ... 2546 // At this point, we know that the cast source type is a pointer 2547 // to an array of the same type as the destination pointer 2548 // array. Because the array type is never stepped over (there 2549 // is a leading zero) we can fold the cast into this GEP. 2550 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2551 GEP.setSourceElementType(XATy); 2552 return replaceOperand(GEP, 0, StrippedPtr); 2553 } 2554 // Cannot replace the base pointer directly because StrippedPtr's 2555 // address space is different. Instead, create a new GEP followed by 2556 // an addrspacecast. 2557 // e.g., 2558 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2559 // i32 0, ... 2560 // -> 2561 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2562 // addrspacecast i8 addrspace(1)* %0 to i8* 2563 SmallVector<Value *, 8> Idx(GEP.indices()); 2564 Value *NewGEP = 2565 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2566 GEP.getName(), GEP.isInBounds()); 2567 return new AddrSpaceCastInst(NewGEP, GEPType); 2568 } 2569 } 2570 } 2571 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2572 // Skip if GEP source element type is scalable. The type alloc size is 2573 // unknown at compile-time. 2574 // Transform things like: %t = getelementptr i32* 2575 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2576 // x i32]* %str, i32 0, i32 %V; bitcast 2577 if (StrippedPtrEltTy->isArrayTy() && 2578 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2579 DL.getTypeAllocSize(GEPEltType)) { 2580 Type *IdxType = DL.getIndexType(GEPType); 2581 Value *Idx[2] = {Constant::getNullValue(IdxType), GEP.getOperand(1)}; 2582 Value *NewGEP = Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2583 GEP.getName(), GEP.isInBounds()); 2584 2585 // V and GEP are both pointer types --> BitCast 2586 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2587 } 2588 2589 // Transform things like: 2590 // %V = mul i64 %N, 4 2591 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2592 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2593 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2594 // Check that changing the type amounts to dividing the index by a scale 2595 // factor. 2596 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedValue(); 2597 uint64_t SrcSize = 2598 DL.getTypeAllocSize(StrippedPtrEltTy).getFixedValue(); 2599 if (ResSize && SrcSize % ResSize == 0) { 2600 Value *Idx = GEP.getOperand(1); 2601 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2602 uint64_t Scale = SrcSize / ResSize; 2603 2604 // Earlier transforms ensure that the index has the right type 2605 // according to Data Layout, which considerably simplifies the 2606 // logic by eliminating implicit casts. 2607 assert(Idx->getType() == DL.getIndexType(GEPType) && 2608 "Index type does not match the Data Layout preferences"); 2609 2610 bool NSW; 2611 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2612 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2613 // If the multiplication NewIdx * Scale may overflow then the new 2614 // GEP may not be "inbounds". 2615 Value *NewGEP = 2616 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2617 GEP.getName(), GEP.isInBounds() && NSW); 2618 2619 // The NewGEP must be pointer typed, so must the old one -> BitCast 2620 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2621 GEPType); 2622 } 2623 } 2624 } 2625 2626 // Similarly, transform things like: 2627 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2628 // (where tmp = 8*tmp2) into: 2629 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2630 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2631 StrippedPtrEltTy->isArrayTy()) { 2632 // Check that changing to the array element type amounts to dividing the 2633 // index by a scale factor. 2634 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedValue(); 2635 uint64_t ArrayEltSize = 2636 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2637 .getFixedValue(); 2638 if (ResSize && ArrayEltSize % ResSize == 0) { 2639 Value *Idx = GEP.getOperand(1); 2640 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2641 uint64_t Scale = ArrayEltSize / ResSize; 2642 2643 // Earlier transforms ensure that the index has the right type 2644 // according to the Data Layout, which considerably simplifies 2645 // the logic by eliminating implicit casts. 2646 assert(Idx->getType() == DL.getIndexType(GEPType) && 2647 "Index type does not match the Data Layout preferences"); 2648 2649 bool NSW; 2650 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2651 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2652 // If the multiplication NewIdx * Scale may overflow then the new 2653 // GEP may not be "inbounds". 2654 Type *IndTy = DL.getIndexType(GEPType); 2655 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2656 2657 Value *NewGEP = 2658 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2659 GEP.getName(), GEP.isInBounds() && NSW); 2660 // The NewGEP must be pointer typed, so must the old one -> BitCast 2661 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2662 GEPType); 2663 } 2664 } 2665 } 2666 } 2667 } 2668 2669 // addrspacecast between types is canonicalized as a bitcast, then an 2670 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2671 // through the addrspacecast. 2672 Value *ASCStrippedPtrOp = PtrOp; 2673 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2674 // X = bitcast A addrspace(1)* to B addrspace(1)* 2675 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2676 // Z = gep Y, <...constant indices...> 2677 // Into an addrspacecasted GEP of the struct. 2678 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2679 ASCStrippedPtrOp = BC; 2680 } 2681 2682 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) 2683 if (Instruction *I = visitGEPOfBitcast(BCI, GEP)) 2684 return I; 2685 2686 if (!GEP.isInBounds()) { 2687 unsigned IdxWidth = 2688 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2689 APInt BasePtrOffset(IdxWidth, 0); 2690 Value *UnderlyingPtrOp = 2691 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2692 BasePtrOffset); 2693 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2694 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2695 BasePtrOffset.isNonNegative()) { 2696 APInt AllocSize( 2697 IdxWidth, 2698 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinValue()); 2699 if (BasePtrOffset.ule(AllocSize)) { 2700 return GetElementPtrInst::CreateInBounds( 2701 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2702 } 2703 } 2704 } 2705 } 2706 2707 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2708 return R; 2709 2710 return nullptr; 2711 } 2712 2713 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2714 Instruction *AI) { 2715 if (isa<ConstantPointerNull>(V)) 2716 return true; 2717 if (auto *LI = dyn_cast<LoadInst>(V)) 2718 return isa<GlobalVariable>(LI->getPointerOperand()); 2719 // Two distinct allocations will never be equal. 2720 return isAllocLikeFn(V, &TLI) && V != AI; 2721 } 2722 2723 /// Given a call CB which uses an address UsedV, return true if we can prove the 2724 /// call's only possible effect is storing to V. 2725 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2726 const TargetLibraryInfo &TLI) { 2727 if (!CB.use_empty()) 2728 // TODO: add recursion if returned attribute is present 2729 return false; 2730 2731 if (CB.isTerminator()) 2732 // TODO: remove implementation restriction 2733 return false; 2734 2735 if (!CB.willReturn() || !CB.doesNotThrow()) 2736 return false; 2737 2738 // If the only possible side effect of the call is writing to the alloca, 2739 // and the result isn't used, we can safely remove any reads implied by the 2740 // call including those which might read the alloca itself. 2741 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2742 return Dest && Dest->Ptr == UsedV; 2743 } 2744 2745 static bool isAllocSiteRemovable(Instruction *AI, 2746 SmallVectorImpl<WeakTrackingVH> &Users, 2747 const TargetLibraryInfo &TLI) { 2748 SmallVector<Instruction*, 4> Worklist; 2749 const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI); 2750 Worklist.push_back(AI); 2751 2752 do { 2753 Instruction *PI = Worklist.pop_back_val(); 2754 for (User *U : PI->users()) { 2755 Instruction *I = cast<Instruction>(U); 2756 switch (I->getOpcode()) { 2757 default: 2758 // Give up the moment we see something we can't handle. 2759 return false; 2760 2761 case Instruction::AddrSpaceCast: 2762 case Instruction::BitCast: 2763 case Instruction::GetElementPtr: 2764 Users.emplace_back(I); 2765 Worklist.push_back(I); 2766 continue; 2767 2768 case Instruction::ICmp: { 2769 ICmpInst *ICI = cast<ICmpInst>(I); 2770 // We can fold eq/ne comparisons with null to false/true, respectively. 2771 // We also fold comparisons in some conditions provided the alloc has 2772 // not escaped (see isNeverEqualToUnescapedAlloc). 2773 if (!ICI->isEquality()) 2774 return false; 2775 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2776 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2777 return false; 2778 Users.emplace_back(I); 2779 continue; 2780 } 2781 2782 case Instruction::Call: 2783 // Ignore no-op and store intrinsics. 2784 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2785 switch (II->getIntrinsicID()) { 2786 default: 2787 return false; 2788 2789 case Intrinsic::memmove: 2790 case Intrinsic::memcpy: 2791 case Intrinsic::memset: { 2792 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2793 if (MI->isVolatile() || MI->getRawDest() != PI) 2794 return false; 2795 [[fallthrough]]; 2796 } 2797 case Intrinsic::assume: 2798 case Intrinsic::invariant_start: 2799 case Intrinsic::invariant_end: 2800 case Intrinsic::lifetime_start: 2801 case Intrinsic::lifetime_end: 2802 case Intrinsic::objectsize: 2803 Users.emplace_back(I); 2804 continue; 2805 case Intrinsic::launder_invariant_group: 2806 case Intrinsic::strip_invariant_group: 2807 Users.emplace_back(I); 2808 Worklist.push_back(I); 2809 continue; 2810 } 2811 } 2812 2813 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2814 Users.emplace_back(I); 2815 continue; 2816 } 2817 2818 if (getFreedOperand(cast<CallBase>(I), &TLI) == PI && 2819 getAllocationFamily(I, &TLI) == Family) { 2820 assert(Family); 2821 Users.emplace_back(I); 2822 continue; 2823 } 2824 2825 if (getReallocatedOperand(cast<CallBase>(I)) == PI && 2826 getAllocationFamily(I, &TLI) == Family) { 2827 assert(Family); 2828 Users.emplace_back(I); 2829 Worklist.push_back(I); 2830 continue; 2831 } 2832 2833 return false; 2834 2835 case Instruction::Store: { 2836 StoreInst *SI = cast<StoreInst>(I); 2837 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2838 return false; 2839 Users.emplace_back(I); 2840 continue; 2841 } 2842 } 2843 llvm_unreachable("missing a return?"); 2844 } 2845 } while (!Worklist.empty()); 2846 return true; 2847 } 2848 2849 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2850 assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI)); 2851 2852 // If we have a malloc call which is only used in any amount of comparisons to 2853 // null and free calls, delete the calls and replace the comparisons with true 2854 // or false as appropriate. 2855 2856 // This is based on the principle that we can substitute our own allocation 2857 // function (which will never return null) rather than knowledge of the 2858 // specific function being called. In some sense this can change the permitted 2859 // outputs of a program (when we convert a malloc to an alloca, the fact that 2860 // the allocation is now on the stack is potentially visible, for example), 2861 // but we believe in a permissible manner. 2862 SmallVector<WeakTrackingVH, 64> Users; 2863 2864 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2865 // before each store. 2866 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2867 std::unique_ptr<DIBuilder> DIB; 2868 if (isa<AllocaInst>(MI)) { 2869 findDbgUsers(DVIs, &MI); 2870 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2871 } 2872 2873 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2874 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2875 // Lowering all @llvm.objectsize calls first because they may 2876 // use a bitcast/GEP of the alloca we are removing. 2877 if (!Users[i]) 2878 continue; 2879 2880 Instruction *I = cast<Instruction>(&*Users[i]); 2881 2882 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2883 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2884 Value *Result = 2885 lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/true); 2886 replaceInstUsesWith(*I, Result); 2887 eraseInstFromFunction(*I); 2888 Users[i] = nullptr; // Skip examining in the next loop. 2889 } 2890 } 2891 } 2892 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2893 if (!Users[i]) 2894 continue; 2895 2896 Instruction *I = cast<Instruction>(&*Users[i]); 2897 2898 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2899 replaceInstUsesWith(*C, 2900 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2901 C->isFalseWhenEqual())); 2902 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2903 for (auto *DVI : DVIs) 2904 if (DVI->isAddressOfVariable()) 2905 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2906 } else { 2907 // Casts, GEP, or anything else: we're about to delete this instruction, 2908 // so it can not have any valid uses. 2909 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2910 } 2911 eraseInstFromFunction(*I); 2912 } 2913 2914 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2915 // Replace invoke with a NOP intrinsic to maintain the original CFG 2916 Module *M = II->getModule(); 2917 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2918 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2919 std::nullopt, "", II->getParent()); 2920 } 2921 2922 // Remove debug intrinsics which describe the value contained within the 2923 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2924 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2925 // 2926 // ``` 2927 // define void @foo(i32 %0) { 2928 // %a = alloca i32 ; Deleted. 2929 // store i32 %0, i32* %a 2930 // dbg.value(i32 %0, "arg0") ; Not deleted. 2931 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2932 // call void @trivially_inlinable_no_op(i32* %a) 2933 // ret void 2934 // } 2935 // ``` 2936 // 2937 // This may not be required if we stop describing the contents of allocas 2938 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2939 // the LowerDbgDeclare utility. 2940 // 2941 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2942 // "arg0" dbg.value may be stale after the call. However, failing to remove 2943 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2944 for (auto *DVI : DVIs) 2945 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2946 DVI->eraseFromParent(); 2947 2948 return eraseInstFromFunction(MI); 2949 } 2950 return nullptr; 2951 } 2952 2953 /// Move the call to free before a NULL test. 2954 /// 2955 /// Check if this free is accessed after its argument has been test 2956 /// against NULL (property 0). 2957 /// If yes, it is legal to move this call in its predecessor block. 2958 /// 2959 /// The move is performed only if the block containing the call to free 2960 /// will be removed, i.e.: 2961 /// 1. it has only one predecessor P, and P has two successors 2962 /// 2. it contains the call, noops, and an unconditional branch 2963 /// 3. its successor is the same as its predecessor's successor 2964 /// 2965 /// The profitability is out-of concern here and this function should 2966 /// be called only if the caller knows this transformation would be 2967 /// profitable (e.g., for code size). 2968 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2969 const DataLayout &DL) { 2970 Value *Op = FI.getArgOperand(0); 2971 BasicBlock *FreeInstrBB = FI.getParent(); 2972 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2973 2974 // Validate part of constraint #1: Only one predecessor 2975 // FIXME: We can extend the number of predecessor, but in that case, we 2976 // would duplicate the call to free in each predecessor and it may 2977 // not be profitable even for code size. 2978 if (!PredBB) 2979 return nullptr; 2980 2981 // Validate constraint #2: Does this block contains only the call to 2982 // free, noops, and an unconditional branch? 2983 BasicBlock *SuccBB; 2984 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2985 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2986 return nullptr; 2987 2988 // If there are only 2 instructions in the block, at this point, 2989 // this is the call to free and unconditional. 2990 // If there are more than 2 instructions, check that they are noops 2991 // i.e., they won't hurt the performance of the generated code. 2992 if (FreeInstrBB->size() != 2) { 2993 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2994 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2995 continue; 2996 auto *Cast = dyn_cast<CastInst>(&Inst); 2997 if (!Cast || !Cast->isNoopCast(DL)) 2998 return nullptr; 2999 } 3000 } 3001 // Validate the rest of constraint #1 by matching on the pred branch. 3002 Instruction *TI = PredBB->getTerminator(); 3003 BasicBlock *TrueBB, *FalseBB; 3004 ICmpInst::Predicate Pred; 3005 if (!match(TI, m_Br(m_ICmp(Pred, 3006 m_CombineOr(m_Specific(Op), 3007 m_Specific(Op->stripPointerCasts())), 3008 m_Zero()), 3009 TrueBB, FalseBB))) 3010 return nullptr; 3011 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 3012 return nullptr; 3013 3014 // Validate constraint #3: Ensure the null case just falls through. 3015 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 3016 return nullptr; 3017 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 3018 "Broken CFG: missing edge from predecessor to successor"); 3019 3020 // At this point, we know that everything in FreeInstrBB can be moved 3021 // before TI. 3022 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 3023 if (&Instr == FreeInstrBBTerminator) 3024 break; 3025 Instr.moveBefore(TI); 3026 } 3027 assert(FreeInstrBB->size() == 1 && 3028 "Only the branch instruction should remain"); 3029 3030 // Now that we've moved the call to free before the NULL check, we have to 3031 // remove any attributes on its parameter that imply it's non-null, because 3032 // those attributes might have only been valid because of the NULL check, and 3033 // we can get miscompiles if we keep them. This is conservative if non-null is 3034 // also implied by something other than the NULL check, but it's guaranteed to 3035 // be correct, and the conservativeness won't matter in practice, since the 3036 // attributes are irrelevant for the call to free itself and the pointer 3037 // shouldn't be used after the call. 3038 AttributeList Attrs = FI.getAttributes(); 3039 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 3040 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 3041 if (Dereferenceable.isValid()) { 3042 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 3043 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 3044 Attribute::Dereferenceable); 3045 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 3046 } 3047 FI.setAttributes(Attrs); 3048 3049 return &FI; 3050 } 3051 3052 Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) { 3053 // free undef -> unreachable. 3054 if (isa<UndefValue>(Op)) { 3055 // Leave a marker since we can't modify the CFG here. 3056 CreateNonTerminatorUnreachable(&FI); 3057 return eraseInstFromFunction(FI); 3058 } 3059 3060 // If we have 'free null' delete the instruction. This can happen in stl code 3061 // when lots of inlining happens. 3062 if (isa<ConstantPointerNull>(Op)) 3063 return eraseInstFromFunction(FI); 3064 3065 // If we had free(realloc(...)) with no intervening uses, then eliminate the 3066 // realloc() entirely. 3067 CallInst *CI = dyn_cast<CallInst>(Op); 3068 if (CI && CI->hasOneUse()) 3069 if (Value *ReallocatedOp = getReallocatedOperand(CI)) 3070 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp)); 3071 3072 // If we optimize for code size, try to move the call to free before the null 3073 // test so that simplify cfg can remove the empty block and dead code 3074 // elimination the branch. I.e., helps to turn something like: 3075 // if (foo) free(foo); 3076 // into 3077 // free(foo); 3078 // 3079 // Note that we can only do this for 'free' and not for any flavor of 3080 // 'operator delete'; there is no 'operator delete' symbol for which we are 3081 // permitted to invent a call, even if we're passing in a null pointer. 3082 if (MinimizeSize) { 3083 LibFunc Func; 3084 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 3085 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 3086 return I; 3087 } 3088 3089 return nullptr; 3090 } 3091 3092 static bool isMustTailCall(Value *V) { 3093 if (auto *CI = dyn_cast<CallInst>(V)) 3094 return CI->isMustTailCall(); 3095 return false; 3096 } 3097 3098 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3099 if (RI.getNumOperands() == 0) // ret void 3100 return nullptr; 3101 3102 Value *ResultOp = RI.getOperand(0); 3103 Type *VTy = ResultOp->getType(); 3104 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 3105 return nullptr; 3106 3107 // Don't replace result of musttail calls. 3108 if (isMustTailCall(ResultOp)) 3109 return nullptr; 3110 3111 // There might be assume intrinsics dominating this return that completely 3112 // determine the value. If so, constant fold it. 3113 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 3114 if (Known.isConstant()) 3115 return replaceOperand(RI, 0, 3116 Constant::getIntegerValue(VTy, Known.getConstant())); 3117 3118 return nullptr; 3119 } 3120 3121 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 3122 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3123 // Try to remove the previous instruction if it must lead to unreachable. 3124 // This includes instructions like stores and "llvm.assume" that may not get 3125 // removed by simple dead code elimination. 3126 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3127 // While we theoretically can erase EH, that would result in a block that 3128 // used to start with an EH no longer starting with EH, which is invalid. 3129 // To make it valid, we'd need to fixup predecessors to no longer refer to 3130 // this block, but that changes CFG, which is not allowed in InstCombine. 3131 if (Prev->isEHPad()) 3132 return nullptr; // Can not drop any more instructions. We're done here. 3133 3134 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3135 return nullptr; // Can not drop any more instructions. We're done here. 3136 // Otherwise, this instruction can be freely erased, 3137 // even if it is not side-effect free. 3138 3139 // A value may still have uses before we process it here (for example, in 3140 // another unreachable block), so convert those to poison. 3141 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3142 eraseInstFromFunction(*Prev); 3143 } 3144 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 3145 // FIXME: recurse into unconditional predecessors? 3146 return nullptr; 3147 } 3148 3149 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3150 assert(BI.isUnconditional() && "Only for unconditional branches."); 3151 3152 // If this store is the second-to-last instruction in the basic block 3153 // (excluding debug info and bitcasts of pointers) and if the block ends with 3154 // an unconditional branch, try to move the store to the successor block. 3155 3156 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3157 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3158 return BBI->isDebugOrPseudoInst() || 3159 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3160 }; 3161 3162 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3163 do { 3164 if (BBI != FirstInstr) 3165 --BBI; 3166 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3167 3168 return dyn_cast<StoreInst>(BBI); 3169 }; 3170 3171 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3172 if (mergeStoreIntoSuccessor(*SI)) 3173 return &BI; 3174 3175 return nullptr; 3176 } 3177 3178 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3179 if (BI.isUnconditional()) 3180 return visitUnconditionalBranchInst(BI); 3181 3182 // Change br (not X), label True, label False to: br X, label False, True 3183 Value *Cond = BI.getCondition(); 3184 Value *X; 3185 if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) { 3186 // Swap Destinations and condition... 3187 BI.swapSuccessors(); 3188 return replaceOperand(BI, 0, X); 3189 } 3190 3191 // Canonicalize logical-and-with-invert as logical-or-with-invert. 3192 // This is done by inverting the condition and swapping successors: 3193 // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T 3194 Value *Y; 3195 if (isa<SelectInst>(Cond) && 3196 match(Cond, 3197 m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) { 3198 Value *NotX = Builder.CreateNot(X, "not." + X->getName()); 3199 Value *Or = Builder.CreateLogicalOr(NotX, Y); 3200 BI.swapSuccessors(); 3201 return replaceOperand(BI, 0, Or); 3202 } 3203 3204 // If the condition is irrelevant, remove the use so that other 3205 // transforms on the condition become more effective. 3206 if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1)) 3207 return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType())); 3208 3209 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3210 CmpInst::Predicate Pred; 3211 if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) && 3212 !isCanonicalPredicate(Pred)) { 3213 // Swap destinations and condition. 3214 auto *Cmp = cast<CmpInst>(Cond); 3215 Cmp->setPredicate(CmpInst::getInversePredicate(Pred)); 3216 BI.swapSuccessors(); 3217 Worklist.push(Cmp); 3218 return &BI; 3219 } 3220 3221 return nullptr; 3222 } 3223 3224 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3225 Value *Cond = SI.getCondition(); 3226 Value *Op0; 3227 ConstantInt *AddRHS; 3228 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3229 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3230 for (auto Case : SI.cases()) { 3231 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3232 assert(isa<ConstantInt>(NewCase) && 3233 "Result of expression should be constant"); 3234 Case.setValue(cast<ConstantInt>(NewCase)); 3235 } 3236 return replaceOperand(SI, 0, Op0); 3237 } 3238 3239 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3240 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3241 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3242 3243 // Compute the number of leading bits we can ignore. 3244 // TODO: A better way to determine this would use ComputeNumSignBits(). 3245 for (const auto &C : SI.cases()) { 3246 LeadingKnownZeros = std::min( 3247 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3248 LeadingKnownOnes = std::min( 3249 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3250 } 3251 3252 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3253 3254 // Shrink the condition operand if the new type is smaller than the old type. 3255 // But do not shrink to a non-standard type, because backend can't generate 3256 // good code for that yet. 3257 // TODO: We can make it aggressive again after fixing PR39569. 3258 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3259 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3260 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3261 Builder.SetInsertPoint(&SI); 3262 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3263 3264 for (auto Case : SI.cases()) { 3265 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3266 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3267 } 3268 return replaceOperand(SI, 0, NewCond); 3269 } 3270 3271 return nullptr; 3272 } 3273 3274 Instruction * 3275 InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) { 3276 auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand()); 3277 if (!WO) 3278 return nullptr; 3279 3280 Intrinsic::ID OvID = WO->getIntrinsicID(); 3281 const APInt *C = nullptr; 3282 if (match(WO->getRHS(), m_APIntAllowUndef(C))) { 3283 if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow || 3284 OvID == Intrinsic::umul_with_overflow)) { 3285 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X 3286 if (C->isAllOnes()) 3287 return BinaryOperator::CreateNeg(WO->getLHS()); 3288 // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n 3289 if (C->isPowerOf2()) { 3290 return BinaryOperator::CreateShl( 3291 WO->getLHS(), 3292 ConstantInt::get(WO->getLHS()->getType(), C->logBase2())); 3293 } 3294 } 3295 } 3296 3297 // We're extracting from an overflow intrinsic. See if we're the only user. 3298 // That allows us to simplify multiple result intrinsics to simpler things 3299 // that just get one value. 3300 if (!WO->hasOneUse()) 3301 return nullptr; 3302 3303 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3304 // and replace it with a traditional binary instruction. 3305 if (*EV.idx_begin() == 0) { 3306 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3307 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3308 // Replace the old instruction's uses with poison. 3309 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3310 eraseInstFromFunction(*WO); 3311 return BinaryOperator::Create(BinOp, LHS, RHS); 3312 } 3313 3314 assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst"); 3315 3316 // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS. 3317 if (OvID == Intrinsic::usub_with_overflow) 3318 return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS()); 3319 3320 // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but 3321 // +1 is not possible because we assume signed values. 3322 if (OvID == Intrinsic::smul_with_overflow && 3323 WO->getLHS()->getType()->isIntOrIntVectorTy(1)) 3324 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS()); 3325 3326 // If only the overflow result is used, and the right hand side is a 3327 // constant (or constant splat), we can remove the intrinsic by directly 3328 // checking for overflow. 3329 if (C) { 3330 // Compute the no-wrap range for LHS given RHS=C, then construct an 3331 // equivalent icmp, potentially using an offset. 3332 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 3333 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 3334 3335 CmpInst::Predicate Pred; 3336 APInt NewRHSC, Offset; 3337 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3338 auto *OpTy = WO->getRHS()->getType(); 3339 auto *NewLHS = WO->getLHS(); 3340 if (Offset != 0) 3341 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3342 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3343 ConstantInt::get(OpTy, NewRHSC)); 3344 } 3345 3346 return nullptr; 3347 } 3348 3349 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3350 Value *Agg = EV.getAggregateOperand(); 3351 3352 if (!EV.hasIndices()) 3353 return replaceInstUsesWith(EV, Agg); 3354 3355 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), 3356 SQ.getWithInstruction(&EV))) 3357 return replaceInstUsesWith(EV, V); 3358 3359 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3360 // We're extracting from an insertvalue instruction, compare the indices 3361 const unsigned *exti, *exte, *insi, *inse; 3362 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3363 exte = EV.idx_end(), inse = IV->idx_end(); 3364 exti != exte && insi != inse; 3365 ++exti, ++insi) { 3366 if (*insi != *exti) 3367 // The insert and extract both reference distinctly different elements. 3368 // This means the extract is not influenced by the insert, and we can 3369 // replace the aggregate operand of the extract with the aggregate 3370 // operand of the insert. i.e., replace 3371 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3372 // %E = extractvalue { i32, { i32 } } %I, 0 3373 // with 3374 // %E = extractvalue { i32, { i32 } } %A, 0 3375 return ExtractValueInst::Create(IV->getAggregateOperand(), 3376 EV.getIndices()); 3377 } 3378 if (exti == exte && insi == inse) 3379 // Both iterators are at the end: Index lists are identical. Replace 3380 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3381 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3382 // with "i32 42" 3383 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3384 if (exti == exte) { 3385 // The extract list is a prefix of the insert list. i.e. replace 3386 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3387 // %E = extractvalue { i32, { i32 } } %I, 1 3388 // with 3389 // %X = extractvalue { i32, { i32 } } %A, 1 3390 // %E = insertvalue { i32 } %X, i32 42, 0 3391 // by switching the order of the insert and extract (though the 3392 // insertvalue should be left in, since it may have other uses). 3393 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3394 EV.getIndices()); 3395 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3396 ArrayRef(insi, inse)); 3397 } 3398 if (insi == inse) 3399 // The insert list is a prefix of the extract list 3400 // We can simply remove the common indices from the extract and make it 3401 // operate on the inserted value instead of the insertvalue result. 3402 // i.e., replace 3403 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3404 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3405 // with 3406 // %E extractvalue { i32 } { i32 42 }, 0 3407 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3408 ArrayRef(exti, exte)); 3409 } 3410 3411 if (Instruction *R = foldExtractOfOverflowIntrinsic(EV)) 3412 return R; 3413 3414 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) { 3415 // If the (non-volatile) load only has one use, we can rewrite this to a 3416 // load from a GEP. This reduces the size of the load. If a load is used 3417 // only by extractvalue instructions then this either must have been 3418 // optimized before, or it is a struct with padding, in which case we 3419 // don't want to do the transformation as it loses padding knowledge. 3420 if (L->isSimple() && L->hasOneUse()) { 3421 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3422 SmallVector<Value*, 4> Indices; 3423 // Prefix an i32 0 since we need the first element. 3424 Indices.push_back(Builder.getInt32(0)); 3425 for (unsigned Idx : EV.indices()) 3426 Indices.push_back(Builder.getInt32(Idx)); 3427 3428 // We need to insert these at the location of the old load, not at that of 3429 // the extractvalue. 3430 Builder.SetInsertPoint(L); 3431 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3432 L->getPointerOperand(), Indices); 3433 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3434 // Whatever aliasing information we had for the orignal load must also 3435 // hold for the smaller load, so propagate the annotations. 3436 NL->setAAMetadata(L->getAAMetadata()); 3437 // Returning the load directly will cause the main loop to insert it in 3438 // the wrong spot, so use replaceInstUsesWith(). 3439 return replaceInstUsesWith(EV, NL); 3440 } 3441 } 3442 3443 if (auto *PN = dyn_cast<PHINode>(Agg)) 3444 if (Instruction *Res = foldOpIntoPhi(EV, PN)) 3445 return Res; 3446 3447 // We could simplify extracts from other values. Note that nested extracts may 3448 // already be simplified implicitly by the above: extract (extract (insert) ) 3449 // will be translated into extract ( insert ( extract ) ) first and then just 3450 // the value inserted, if appropriate. Similarly for extracts from single-use 3451 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3452 // and if again single-use then via load (gep (gep)) to load (gep). 3453 // However, double extracts from e.g. function arguments or return values 3454 // aren't handled yet. 3455 return nullptr; 3456 } 3457 3458 /// Return 'true' if the given typeinfo will match anything. 3459 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3460 switch (Personality) { 3461 case EHPersonality::GNU_C: 3462 case EHPersonality::GNU_C_SjLj: 3463 case EHPersonality::Rust: 3464 // The GCC C EH and Rust personality only exists to support cleanups, so 3465 // it's not clear what the semantics of catch clauses are. 3466 return false; 3467 case EHPersonality::Unknown: 3468 return false; 3469 case EHPersonality::GNU_Ada: 3470 // While __gnat_all_others_value will match any Ada exception, it doesn't 3471 // match foreign exceptions (or didn't, before gcc-4.7). 3472 return false; 3473 case EHPersonality::GNU_CXX: 3474 case EHPersonality::GNU_CXX_SjLj: 3475 case EHPersonality::GNU_ObjC: 3476 case EHPersonality::MSVC_X86SEH: 3477 case EHPersonality::MSVC_TableSEH: 3478 case EHPersonality::MSVC_CXX: 3479 case EHPersonality::CoreCLR: 3480 case EHPersonality::Wasm_CXX: 3481 case EHPersonality::XL_CXX: 3482 return TypeInfo->isNullValue(); 3483 } 3484 llvm_unreachable("invalid enum"); 3485 } 3486 3487 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3488 return 3489 cast<ArrayType>(LHS->getType())->getNumElements() 3490 < 3491 cast<ArrayType>(RHS->getType())->getNumElements(); 3492 } 3493 3494 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3495 // The logic here should be correct for any real-world personality function. 3496 // However if that turns out not to be true, the offending logic can always 3497 // be conditioned on the personality function, like the catch-all logic is. 3498 EHPersonality Personality = 3499 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3500 3501 // Simplify the list of clauses, eg by removing repeated catch clauses 3502 // (these are often created by inlining). 3503 bool MakeNewInstruction = false; // If true, recreate using the following: 3504 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3505 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3506 3507 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3508 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3509 bool isLastClause = i + 1 == e; 3510 if (LI.isCatch(i)) { 3511 // A catch clause. 3512 Constant *CatchClause = LI.getClause(i); 3513 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3514 3515 // If we already saw this clause, there is no point in having a second 3516 // copy of it. 3517 if (AlreadyCaught.insert(TypeInfo).second) { 3518 // This catch clause was not already seen. 3519 NewClauses.push_back(CatchClause); 3520 } else { 3521 // Repeated catch clause - drop the redundant copy. 3522 MakeNewInstruction = true; 3523 } 3524 3525 // If this is a catch-all then there is no point in keeping any following 3526 // clauses or marking the landingpad as having a cleanup. 3527 if (isCatchAll(Personality, TypeInfo)) { 3528 if (!isLastClause) 3529 MakeNewInstruction = true; 3530 CleanupFlag = false; 3531 break; 3532 } 3533 } else { 3534 // A filter clause. If any of the filter elements were already caught 3535 // then they can be dropped from the filter. It is tempting to try to 3536 // exploit the filter further by saying that any typeinfo that does not 3537 // occur in the filter can't be caught later (and thus can be dropped). 3538 // However this would be wrong, since typeinfos can match without being 3539 // equal (for example if one represents a C++ class, and the other some 3540 // class derived from it). 3541 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3542 Constant *FilterClause = LI.getClause(i); 3543 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3544 unsigned NumTypeInfos = FilterType->getNumElements(); 3545 3546 // An empty filter catches everything, so there is no point in keeping any 3547 // following clauses or marking the landingpad as having a cleanup. By 3548 // dealing with this case here the following code is made a bit simpler. 3549 if (!NumTypeInfos) { 3550 NewClauses.push_back(FilterClause); 3551 if (!isLastClause) 3552 MakeNewInstruction = true; 3553 CleanupFlag = false; 3554 break; 3555 } 3556 3557 bool MakeNewFilter = false; // If true, make a new filter. 3558 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3559 if (isa<ConstantAggregateZero>(FilterClause)) { 3560 // Not an empty filter - it contains at least one null typeinfo. 3561 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3562 Constant *TypeInfo = 3563 Constant::getNullValue(FilterType->getElementType()); 3564 // If this typeinfo is a catch-all then the filter can never match. 3565 if (isCatchAll(Personality, TypeInfo)) { 3566 // Throw the filter away. 3567 MakeNewInstruction = true; 3568 continue; 3569 } 3570 3571 // There is no point in having multiple copies of this typeinfo, so 3572 // discard all but the first copy if there is more than one. 3573 NewFilterElts.push_back(TypeInfo); 3574 if (NumTypeInfos > 1) 3575 MakeNewFilter = true; 3576 } else { 3577 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3578 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3579 NewFilterElts.reserve(NumTypeInfos); 3580 3581 // Remove any filter elements that were already caught or that already 3582 // occurred in the filter. While there, see if any of the elements are 3583 // catch-alls. If so, the filter can be discarded. 3584 bool SawCatchAll = false; 3585 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3586 Constant *Elt = Filter->getOperand(j); 3587 Constant *TypeInfo = Elt->stripPointerCasts(); 3588 if (isCatchAll(Personality, TypeInfo)) { 3589 // This element is a catch-all. Bail out, noting this fact. 3590 SawCatchAll = true; 3591 break; 3592 } 3593 3594 // Even if we've seen a type in a catch clause, we don't want to 3595 // remove it from the filter. An unexpected type handler may be 3596 // set up for a call site which throws an exception of the same 3597 // type caught. In order for the exception thrown by the unexpected 3598 // handler to propagate correctly, the filter must be correctly 3599 // described for the call site. 3600 // 3601 // Example: 3602 // 3603 // void unexpected() { throw 1;} 3604 // void foo() throw (int) { 3605 // std::set_unexpected(unexpected); 3606 // try { 3607 // throw 2.0; 3608 // } catch (int i) {} 3609 // } 3610 3611 // There is no point in having multiple copies of the same typeinfo in 3612 // a filter, so only add it if we didn't already. 3613 if (SeenInFilter.insert(TypeInfo).second) 3614 NewFilterElts.push_back(cast<Constant>(Elt)); 3615 } 3616 // A filter containing a catch-all cannot match anything by definition. 3617 if (SawCatchAll) { 3618 // Throw the filter away. 3619 MakeNewInstruction = true; 3620 continue; 3621 } 3622 3623 // If we dropped something from the filter, make a new one. 3624 if (NewFilterElts.size() < NumTypeInfos) 3625 MakeNewFilter = true; 3626 } 3627 if (MakeNewFilter) { 3628 FilterType = ArrayType::get(FilterType->getElementType(), 3629 NewFilterElts.size()); 3630 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3631 MakeNewInstruction = true; 3632 } 3633 3634 NewClauses.push_back(FilterClause); 3635 3636 // If the new filter is empty then it will catch everything so there is 3637 // no point in keeping any following clauses or marking the landingpad 3638 // as having a cleanup. The case of the original filter being empty was 3639 // already handled above. 3640 if (MakeNewFilter && !NewFilterElts.size()) { 3641 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3642 CleanupFlag = false; 3643 break; 3644 } 3645 } 3646 } 3647 3648 // If several filters occur in a row then reorder them so that the shortest 3649 // filters come first (those with the smallest number of elements). This is 3650 // advantageous because shorter filters are more likely to match, speeding up 3651 // unwinding, but mostly because it increases the effectiveness of the other 3652 // filter optimizations below. 3653 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3654 unsigned j; 3655 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3656 for (j = i; j != e; ++j) 3657 if (!isa<ArrayType>(NewClauses[j]->getType())) 3658 break; 3659 3660 // Check whether the filters are already sorted by length. We need to know 3661 // if sorting them is actually going to do anything so that we only make a 3662 // new landingpad instruction if it does. 3663 for (unsigned k = i; k + 1 < j; ++k) 3664 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3665 // Not sorted, so sort the filters now. Doing an unstable sort would be 3666 // correct too but reordering filters pointlessly might confuse users. 3667 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3668 shorter_filter); 3669 MakeNewInstruction = true; 3670 break; 3671 } 3672 3673 // Look for the next batch of filters. 3674 i = j + 1; 3675 } 3676 3677 // If typeinfos matched if and only if equal, then the elements of a filter L 3678 // that occurs later than a filter F could be replaced by the intersection of 3679 // the elements of F and L. In reality two typeinfos can match without being 3680 // equal (for example if one represents a C++ class, and the other some class 3681 // derived from it) so it would be wrong to perform this transform in general. 3682 // However the transform is correct and useful if F is a subset of L. In that 3683 // case L can be replaced by F, and thus removed altogether since repeating a 3684 // filter is pointless. So here we look at all pairs of filters F and L where 3685 // L follows F in the list of clauses, and remove L if every element of F is 3686 // an element of L. This can occur when inlining C++ functions with exception 3687 // specifications. 3688 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3689 // Examine each filter in turn. 3690 Value *Filter = NewClauses[i]; 3691 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3692 if (!FTy) 3693 // Not a filter - skip it. 3694 continue; 3695 unsigned FElts = FTy->getNumElements(); 3696 // Examine each filter following this one. Doing this backwards means that 3697 // we don't have to worry about filters disappearing under us when removed. 3698 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3699 Value *LFilter = NewClauses[j]; 3700 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3701 if (!LTy) 3702 // Not a filter - skip it. 3703 continue; 3704 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3705 // an element of LFilter, then discard LFilter. 3706 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3707 // If Filter is empty then it is a subset of LFilter. 3708 if (!FElts) { 3709 // Discard LFilter. 3710 NewClauses.erase(J); 3711 MakeNewInstruction = true; 3712 // Move on to the next filter. 3713 continue; 3714 } 3715 unsigned LElts = LTy->getNumElements(); 3716 // If Filter is longer than LFilter then it cannot be a subset of it. 3717 if (FElts > LElts) 3718 // Move on to the next filter. 3719 continue; 3720 // At this point we know that LFilter has at least one element. 3721 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3722 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3723 // already know that Filter is not longer than LFilter). 3724 if (isa<ConstantAggregateZero>(Filter)) { 3725 assert(FElts <= LElts && "Should have handled this case earlier!"); 3726 // Discard LFilter. 3727 NewClauses.erase(J); 3728 MakeNewInstruction = true; 3729 } 3730 // Move on to the next filter. 3731 continue; 3732 } 3733 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3734 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3735 // Since Filter is non-empty and contains only zeros, it is a subset of 3736 // LFilter iff LFilter contains a zero. 3737 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3738 for (unsigned l = 0; l != LElts; ++l) 3739 if (LArray->getOperand(l)->isNullValue()) { 3740 // LFilter contains a zero - discard it. 3741 NewClauses.erase(J); 3742 MakeNewInstruction = true; 3743 break; 3744 } 3745 // Move on to the next filter. 3746 continue; 3747 } 3748 // At this point we know that both filters are ConstantArrays. Loop over 3749 // operands to see whether every element of Filter is also an element of 3750 // LFilter. Since filters tend to be short this is probably faster than 3751 // using a method that scales nicely. 3752 ConstantArray *FArray = cast<ConstantArray>(Filter); 3753 bool AllFound = true; 3754 for (unsigned f = 0; f != FElts; ++f) { 3755 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3756 AllFound = false; 3757 for (unsigned l = 0; l != LElts; ++l) { 3758 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3759 if (LTypeInfo == FTypeInfo) { 3760 AllFound = true; 3761 break; 3762 } 3763 } 3764 if (!AllFound) 3765 break; 3766 } 3767 if (AllFound) { 3768 // Discard LFilter. 3769 NewClauses.erase(J); 3770 MakeNewInstruction = true; 3771 } 3772 // Move on to the next filter. 3773 } 3774 } 3775 3776 // If we changed any of the clauses, replace the old landingpad instruction 3777 // with a new one. 3778 if (MakeNewInstruction) { 3779 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3780 NewClauses.size()); 3781 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3782 NLI->addClause(NewClauses[i]); 3783 // A landing pad with no clauses must have the cleanup flag set. It is 3784 // theoretically possible, though highly unlikely, that we eliminated all 3785 // clauses. If so, force the cleanup flag to true. 3786 if (NewClauses.empty()) 3787 CleanupFlag = true; 3788 NLI->setCleanup(CleanupFlag); 3789 return NLI; 3790 } 3791 3792 // Even if none of the clauses changed, we may nonetheless have understood 3793 // that the cleanup flag is pointless. Clear it if so. 3794 if (LI.isCleanup() != CleanupFlag) { 3795 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3796 LI.setCleanup(CleanupFlag); 3797 return &LI; 3798 } 3799 3800 return nullptr; 3801 } 3802 3803 Value * 3804 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3805 // Try to push freeze through instructions that propagate but don't produce 3806 // poison as far as possible. If an operand of freeze follows three 3807 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3808 // guaranteed-non-poison operands then push the freeze through to the one 3809 // operand that is not guaranteed non-poison. The actual transform is as 3810 // follows. 3811 // Op1 = ... ; Op1 can be posion 3812 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3813 // ; single guaranteed-non-poison operands 3814 // ... = Freeze(Op0) 3815 // => 3816 // Op1 = ... 3817 // Op1.fr = Freeze(Op1) 3818 // ... = Inst(Op1.fr, NonPoisonOps...) 3819 auto *OrigOp = OrigFI.getOperand(0); 3820 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3821 3822 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3823 // potentially reduces their optimization potential, so let's only do this iff 3824 // the OrigOp is only used by the freeze. 3825 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3826 return nullptr; 3827 3828 // We can't push the freeze through an instruction which can itself create 3829 // poison. If the only source of new poison is flags, we can simply 3830 // strip them (since we know the only use is the freeze and nothing can 3831 // benefit from them.) 3832 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), 3833 /*ConsiderFlagsAndMetadata*/ false)) 3834 return nullptr; 3835 3836 // If operand is guaranteed not to be poison, there is no need to add freeze 3837 // to the operand. So we first find the operand that is not guaranteed to be 3838 // poison. 3839 Use *MaybePoisonOperand = nullptr; 3840 for (Use &U : OrigOpInst->operands()) { 3841 if (isa<MetadataAsValue>(U.get()) || 3842 isGuaranteedNotToBeUndefOrPoison(U.get())) 3843 continue; 3844 if (!MaybePoisonOperand) 3845 MaybePoisonOperand = &U; 3846 else 3847 return nullptr; 3848 } 3849 3850 OrigOpInst->dropPoisonGeneratingFlagsAndMetadata(); 3851 3852 // If all operands are guaranteed to be non-poison, we can drop freeze. 3853 if (!MaybePoisonOperand) 3854 return OrigOp; 3855 3856 Builder.SetInsertPoint(OrigOpInst); 3857 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( 3858 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3859 3860 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3861 return OrigOp; 3862 } 3863 3864 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, 3865 PHINode *PN) { 3866 // Detect whether this is a recurrence with a start value and some number of 3867 // backedge values. We'll check whether we can push the freeze through the 3868 // backedge values (possibly dropping poison flags along the way) until we 3869 // reach the phi again. In that case, we can move the freeze to the start 3870 // value. 3871 Use *StartU = nullptr; 3872 SmallVector<Value *> Worklist; 3873 for (Use &U : PN->incoming_values()) { 3874 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { 3875 // Add backedge value to worklist. 3876 Worklist.push_back(U.get()); 3877 continue; 3878 } 3879 3880 // Don't bother handling multiple start values. 3881 if (StartU) 3882 return nullptr; 3883 StartU = &U; 3884 } 3885 3886 if (!StartU || Worklist.empty()) 3887 return nullptr; // Not a recurrence. 3888 3889 Value *StartV = StartU->get(); 3890 BasicBlock *StartBB = PN->getIncomingBlock(*StartU); 3891 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); 3892 // We can't insert freeze if the the start value is the result of the 3893 // terminator (e.g. an invoke). 3894 if (StartNeedsFreeze && StartBB->getTerminator() == StartV) 3895 return nullptr; 3896 3897 SmallPtrSet<Value *, 32> Visited; 3898 SmallVector<Instruction *> DropFlags; 3899 while (!Worklist.empty()) { 3900 Value *V = Worklist.pop_back_val(); 3901 if (!Visited.insert(V).second) 3902 continue; 3903 3904 if (Visited.size() > 32) 3905 return nullptr; // Limit the total number of values we inspect. 3906 3907 // Assume that PN is non-poison, because it will be after the transform. 3908 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) 3909 continue; 3910 3911 Instruction *I = dyn_cast<Instruction>(V); 3912 if (!I || canCreateUndefOrPoison(cast<Operator>(I), 3913 /*ConsiderFlagsAndMetadata*/ false)) 3914 return nullptr; 3915 3916 DropFlags.push_back(I); 3917 append_range(Worklist, I->operands()); 3918 } 3919 3920 for (Instruction *I : DropFlags) 3921 I->dropPoisonGeneratingFlagsAndMetadata(); 3922 3923 if (StartNeedsFreeze) { 3924 Builder.SetInsertPoint(StartBB->getTerminator()); 3925 Value *FrozenStartV = Builder.CreateFreeze(StartV, 3926 StartV->getName() + ".fr"); 3927 replaceUse(*StartU, FrozenStartV); 3928 } 3929 return replaceInstUsesWith(FI, PN); 3930 } 3931 3932 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { 3933 Value *Op = FI.getOperand(0); 3934 3935 if (isa<Constant>(Op) || Op->hasOneUse()) 3936 return false; 3937 3938 // Move the freeze directly after the definition of its operand, so that 3939 // it dominates the maximum number of uses. Note that it may not dominate 3940 // *all* uses if the operand is an invoke/callbr and the use is in a phi on 3941 // the normal/default destination. This is why the domination check in the 3942 // replacement below is still necessary. 3943 Instruction *MoveBefore; 3944 if (isa<Argument>(Op)) { 3945 MoveBefore = 3946 &*FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca(); 3947 } else { 3948 MoveBefore = cast<Instruction>(Op)->getInsertionPointAfterDef(); 3949 if (!MoveBefore) 3950 return false; 3951 } 3952 3953 bool Changed = false; 3954 if (&FI != MoveBefore) { 3955 FI.moveBefore(MoveBefore); 3956 Changed = true; 3957 } 3958 3959 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3960 bool Dominates = DT.dominates(&FI, U); 3961 Changed |= Dominates; 3962 return Dominates; 3963 }); 3964 3965 return Changed; 3966 } 3967 3968 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3969 Value *Op0 = I.getOperand(0); 3970 3971 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3972 return replaceInstUsesWith(I, V); 3973 3974 // freeze (phi const, x) --> phi const, (freeze x) 3975 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3976 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3977 return NV; 3978 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) 3979 return NV; 3980 } 3981 3982 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3983 return replaceInstUsesWith(I, NI); 3984 3985 // If I is freeze(undef), check its uses and fold it to a fixed constant. 3986 // - or: pick -1 3987 // - select's condition: if the true value is constant, choose it by making 3988 // the condition true. 3989 // - default: pick 0 3990 // 3991 // Note that this transform is intentionally done here rather than 3992 // via an analysis in InstSimplify or at individual user sites. That is 3993 // because we must produce the same value for all uses of the freeze - 3994 // it's the reason "freeze" exists! 3995 // 3996 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid 3997 // duplicating logic for binops at least. 3998 auto getUndefReplacement = [&I](Type *Ty) { 3999 Constant *BestValue = nullptr; 4000 Constant *NullValue = Constant::getNullValue(Ty); 4001 for (const auto *U : I.users()) { 4002 Constant *C = NullValue; 4003 if (match(U, m_Or(m_Value(), m_Value()))) 4004 C = ConstantInt::getAllOnesValue(Ty); 4005 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) 4006 C = ConstantInt::getTrue(Ty); 4007 4008 if (!BestValue) 4009 BestValue = C; 4010 else if (BestValue != C) 4011 BestValue = NullValue; 4012 } 4013 assert(BestValue && "Must have at least one use"); 4014 return BestValue; 4015 }; 4016 4017 if (match(Op0, m_Undef())) 4018 return replaceInstUsesWith(I, getUndefReplacement(I.getType())); 4019 4020 Constant *C; 4021 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { 4022 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); 4023 return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); 4024 } 4025 4026 // Replace uses of Op with freeze(Op). 4027 if (freezeOtherUses(I)) 4028 return &I; 4029 4030 return nullptr; 4031 } 4032 4033 /// Check for case where the call writes to an otherwise dead alloca. This 4034 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 4035 /// helper *only* analyzes the write; doesn't check any other legality aspect. 4036 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 4037 auto *CB = dyn_cast<CallBase>(I); 4038 if (!CB) 4039 // TODO: handle e.g. store to alloca here - only worth doing if we extend 4040 // to allow reload along used path as described below. Otherwise, this 4041 // is simply a store to a dead allocation which will be removed. 4042 return false; 4043 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 4044 if (!Dest) 4045 return false; 4046 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 4047 if (!AI) 4048 // TODO: allow malloc? 4049 return false; 4050 // TODO: allow memory access dominated by move point? Note that since AI 4051 // could have a reference to itself captured by the call, we would need to 4052 // account for cycles in doing so. 4053 SmallVector<const User *> AllocaUsers; 4054 SmallPtrSet<const User *, 4> Visited; 4055 auto pushUsers = [&](const Instruction &I) { 4056 for (const User *U : I.users()) { 4057 if (Visited.insert(U).second) 4058 AllocaUsers.push_back(U); 4059 } 4060 }; 4061 pushUsers(*AI); 4062 while (!AllocaUsers.empty()) { 4063 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 4064 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 4065 isa<AddrSpaceCastInst>(UserI)) { 4066 pushUsers(*UserI); 4067 continue; 4068 } 4069 if (UserI == CB) 4070 continue; 4071 // TODO: support lifetime.start/end here 4072 return false; 4073 } 4074 return true; 4075 } 4076 4077 /// Try to move the specified instruction from its current block into the 4078 /// beginning of DestBlock, which can only happen if it's safe to move the 4079 /// instruction past all of the instructions between it and the end of its 4080 /// block. 4081 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 4082 TargetLibraryInfo &TLI) { 4083 BasicBlock *SrcBlock = I->getParent(); 4084 4085 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 4086 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 4087 I->isTerminator()) 4088 return false; 4089 4090 // Do not sink static or dynamic alloca instructions. Static allocas must 4091 // remain in the entry block, and dynamic allocas must not be sunk in between 4092 // a stacksave / stackrestore pair, which would incorrectly shorten its 4093 // lifetime. 4094 if (isa<AllocaInst>(I)) 4095 return false; 4096 4097 // Do not sink into catchswitch blocks. 4098 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 4099 return false; 4100 4101 // Do not sink convergent call instructions. 4102 if (auto *CI = dyn_cast<CallInst>(I)) { 4103 if (CI->isConvergent()) 4104 return false; 4105 } 4106 4107 // Unless we can prove that the memory write isn't visibile except on the 4108 // path we're sinking to, we must bail. 4109 if (I->mayWriteToMemory()) { 4110 if (!SoleWriteToDeadLocal(I, TLI)) 4111 return false; 4112 } 4113 4114 // We can only sink load instructions if there is nothing between the load and 4115 // the end of block that could change the value. 4116 if (I->mayReadFromMemory()) { 4117 // We don't want to do any sophisticated alias analysis, so we only check 4118 // the instructions after I in I's parent block if we try to sink to its 4119 // successor block. 4120 if (DestBlock->getUniquePredecessor() != I->getParent()) 4121 return false; 4122 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 4123 E = I->getParent()->end(); 4124 Scan != E; ++Scan) 4125 if (Scan->mayWriteToMemory()) 4126 return false; 4127 } 4128 4129 I->dropDroppableUses([DestBlock](const Use *U) { 4130 if (auto *I = dyn_cast<Instruction>(U->getUser())) 4131 return I->getParent() != DestBlock; 4132 return true; 4133 }); 4134 /// FIXME: We could remove droppable uses that are not dominated by 4135 /// the new position. 4136 4137 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 4138 I->moveBefore(&*InsertPos); 4139 ++NumSunkInst; 4140 4141 // Also sink all related debug uses from the source basic block. Otherwise we 4142 // get debug use before the def. Attempt to salvage debug uses first, to 4143 // maximise the range variables have location for. If we cannot salvage, then 4144 // mark the location undef: we know it was supposed to receive a new location 4145 // here, but that computation has been sunk. 4146 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 4147 findDbgUsers(DbgUsers, I); 4148 // Process the sinking DbgUsers in reverse order, as we only want to clone the 4149 // last appearing debug intrinsic for each given variable. 4150 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 4151 for (DbgVariableIntrinsic *DVI : DbgUsers) 4152 if (DVI->getParent() == SrcBlock) 4153 DbgUsersToSink.push_back(DVI); 4154 llvm::sort(DbgUsersToSink, 4155 [](auto *A, auto *B) { return B->comesBefore(A); }); 4156 4157 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 4158 SmallSet<DebugVariable, 4> SunkVariables; 4159 for (auto *User : DbgUsersToSink) { 4160 // A dbg.declare instruction should not be cloned, since there can only be 4161 // one per variable fragment. It should be left in the original place 4162 // because the sunk instruction is not an alloca (otherwise we could not be 4163 // here). 4164 if (isa<DbgDeclareInst>(User)) 4165 continue; 4166 4167 DebugVariable DbgUserVariable = 4168 DebugVariable(User->getVariable(), User->getExpression(), 4169 User->getDebugLoc()->getInlinedAt()); 4170 4171 if (!SunkVariables.insert(DbgUserVariable).second) 4172 continue; 4173 4174 // Leave dbg.assign intrinsics in their original positions and there should 4175 // be no need to insert a clone. 4176 if (isa<DbgAssignIntrinsic>(User)) 4177 continue; 4178 4179 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 4180 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 4181 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 4182 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 4183 } 4184 4185 // Perform salvaging without the clones, then sink the clones. 4186 if (!DIIClones.empty()) { 4187 salvageDebugInfoForDbgValues(*I, DbgUsers); 4188 // The clones are in reverse order of original appearance, reverse again to 4189 // maintain the original order. 4190 for (auto &DIIClone : llvm::reverse(DIIClones)) { 4191 DIIClone->insertBefore(&*InsertPos); 4192 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 4193 } 4194 } 4195 4196 return true; 4197 } 4198 4199 bool InstCombinerImpl::run() { 4200 while (!Worklist.isEmpty()) { 4201 // Walk deferred instructions in reverse order, and push them to the 4202 // worklist, which means they'll end up popped from the worklist in-order. 4203 while (Instruction *I = Worklist.popDeferred()) { 4204 // Check to see if we can DCE the instruction. We do this already here to 4205 // reduce the number of uses and thus allow other folds to trigger. 4206 // Note that eraseInstFromFunction() may push additional instructions on 4207 // the deferred worklist, so this will DCE whole instruction chains. 4208 if (isInstructionTriviallyDead(I, &TLI)) { 4209 eraseInstFromFunction(*I); 4210 ++NumDeadInst; 4211 continue; 4212 } 4213 4214 Worklist.push(I); 4215 } 4216 4217 Instruction *I = Worklist.removeOne(); 4218 if (I == nullptr) continue; // skip null values. 4219 4220 // Check to see if we can DCE the instruction. 4221 if (isInstructionTriviallyDead(I, &TLI)) { 4222 eraseInstFromFunction(*I); 4223 ++NumDeadInst; 4224 continue; 4225 } 4226 4227 if (!DebugCounter::shouldExecute(VisitCounter)) 4228 continue; 4229 4230 // Instruction isn't dead, see if we can constant propagate it. 4231 if (!I->use_empty() && 4232 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 4233 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 4234 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 4235 << '\n'); 4236 4237 // Add operands to the worklist. 4238 replaceInstUsesWith(*I, C); 4239 ++NumConstProp; 4240 if (isInstructionTriviallyDead(I, &TLI)) 4241 eraseInstFromFunction(*I); 4242 MadeIRChange = true; 4243 continue; 4244 } 4245 } 4246 4247 // See if we can trivially sink this instruction to its user if we can 4248 // prove that the successor is not executed more frequently than our block. 4249 // Return the UserBlock if successful. 4250 auto getOptionalSinkBlockForInst = 4251 [this](Instruction *I) -> std::optional<BasicBlock *> { 4252 if (!EnableCodeSinking) 4253 return std::nullopt; 4254 4255 BasicBlock *BB = I->getParent(); 4256 BasicBlock *UserParent = nullptr; 4257 unsigned NumUsers = 0; 4258 4259 for (auto *U : I->users()) { 4260 if (U->isDroppable()) 4261 continue; 4262 if (NumUsers > MaxSinkNumUsers) 4263 return std::nullopt; 4264 4265 Instruction *UserInst = cast<Instruction>(U); 4266 // Special handling for Phi nodes - get the block the use occurs in. 4267 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 4268 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 4269 if (PN->getIncomingValue(i) == I) { 4270 // Bail out if we have uses in different blocks. We don't do any 4271 // sophisticated analysis (i.e finding NearestCommonDominator of 4272 // these use blocks). 4273 if (UserParent && UserParent != PN->getIncomingBlock(i)) 4274 return std::nullopt; 4275 UserParent = PN->getIncomingBlock(i); 4276 } 4277 } 4278 assert(UserParent && "expected to find user block!"); 4279 } else { 4280 if (UserParent && UserParent != UserInst->getParent()) 4281 return std::nullopt; 4282 UserParent = UserInst->getParent(); 4283 } 4284 4285 // Make sure these checks are done only once, naturally we do the checks 4286 // the first time we get the userparent, this will save compile time. 4287 if (NumUsers == 0) { 4288 // Try sinking to another block. If that block is unreachable, then do 4289 // not bother. SimplifyCFG should handle it. 4290 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 4291 return std::nullopt; 4292 4293 auto *Term = UserParent->getTerminator(); 4294 // See if the user is one of our successors that has only one 4295 // predecessor, so that we don't have to split the critical edge. 4296 // Another option where we can sink is a block that ends with a 4297 // terminator that does not pass control to other block (such as 4298 // return or unreachable or resume). In this case: 4299 // - I dominates the User (by SSA form); 4300 // - the User will be executed at most once. 4301 // So sinking I down to User is always profitable or neutral. 4302 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) 4303 return std::nullopt; 4304 4305 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 4306 } 4307 4308 NumUsers++; 4309 } 4310 4311 // No user or only has droppable users. 4312 if (!UserParent) 4313 return std::nullopt; 4314 4315 return UserParent; 4316 }; 4317 4318 auto OptBB = getOptionalSinkBlockForInst(I); 4319 if (OptBB) { 4320 auto *UserParent = *OptBB; 4321 // Okay, the CFG is simple enough, try to sink this instruction. 4322 if (TryToSinkInstruction(I, UserParent, TLI)) { 4323 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 4324 MadeIRChange = true; 4325 // We'll add uses of the sunk instruction below, but since 4326 // sinking can expose opportunities for it's *operands* add 4327 // them to the worklist 4328 for (Use &U : I->operands()) 4329 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 4330 Worklist.push(OpI); 4331 } 4332 } 4333 4334 // Now that we have an instruction, try combining it to simplify it. 4335 Builder.SetInsertPoint(I); 4336 Builder.CollectMetadataToCopy( 4337 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4338 4339 #ifndef NDEBUG 4340 std::string OrigI; 4341 #endif 4342 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4343 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4344 4345 if (Instruction *Result = visit(*I)) { 4346 ++NumCombined; 4347 // Should we replace the old instruction with a new one? 4348 if (Result != I) { 4349 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4350 << " New = " << *Result << '\n'); 4351 4352 Result->copyMetadata(*I, 4353 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4354 // Everything uses the new instruction now. 4355 I->replaceAllUsesWith(Result); 4356 4357 // Move the name to the new instruction first. 4358 Result->takeName(I); 4359 4360 // Insert the new instruction into the basic block... 4361 BasicBlock *InstParent = I->getParent(); 4362 BasicBlock::iterator InsertPos = I->getIterator(); 4363 4364 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4365 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4366 // We need to fix up the insertion point. 4367 if (isa<PHINode>(I)) // PHI -> Non-PHI 4368 InsertPos = InstParent->getFirstInsertionPt(); 4369 else // Non-PHI -> PHI 4370 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 4371 } 4372 4373 Result->insertInto(InstParent, InsertPos); 4374 4375 // Push the new instruction and any users onto the worklist. 4376 Worklist.pushUsersToWorkList(*Result); 4377 Worklist.push(Result); 4378 4379 eraseInstFromFunction(*I); 4380 } else { 4381 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4382 << " New = " << *I << '\n'); 4383 4384 // If the instruction was modified, it's possible that it is now dead. 4385 // if so, remove it. 4386 if (isInstructionTriviallyDead(I, &TLI)) { 4387 eraseInstFromFunction(*I); 4388 } else { 4389 Worklist.pushUsersToWorkList(*I); 4390 Worklist.push(I); 4391 } 4392 } 4393 MadeIRChange = true; 4394 } 4395 } 4396 4397 Worklist.zap(); 4398 return MadeIRChange; 4399 } 4400 4401 // Track the scopes used by !alias.scope and !noalias. In a function, a 4402 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4403 // by both sets. If not, the declaration of the scope can be safely omitted. 4404 // The MDNode of the scope can be omitted as well for the instructions that are 4405 // part of this function. We do not do that at this point, as this might become 4406 // too time consuming to do. 4407 class AliasScopeTracker { 4408 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4409 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4410 4411 public: 4412 void analyse(Instruction *I) { 4413 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4414 if (!I->hasMetadataOtherThanDebugLoc()) 4415 return; 4416 4417 auto Track = [](Metadata *ScopeList, auto &Container) { 4418 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4419 if (!MDScopeList || !Container.insert(MDScopeList).second) 4420 return; 4421 for (const auto &MDOperand : MDScopeList->operands()) 4422 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4423 Container.insert(MDScope); 4424 }; 4425 4426 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4427 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4428 } 4429 4430 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4431 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4432 if (!Decl) 4433 return false; 4434 4435 assert(Decl->use_empty() && 4436 "llvm.experimental.noalias.scope.decl in use ?"); 4437 const MDNode *MDSL = Decl->getScopeList(); 4438 assert(MDSL->getNumOperands() == 1 && 4439 "llvm.experimental.noalias.scope should refer to a single scope"); 4440 auto &MDOperand = MDSL->getOperand(0); 4441 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4442 return !UsedAliasScopesAndLists.contains(MD) || 4443 !UsedNoAliasScopesAndLists.contains(MD); 4444 4445 // Not an MDNode ? throw away. 4446 return true; 4447 } 4448 }; 4449 4450 /// Populate the IC worklist from a function, by walking it in depth-first 4451 /// order and adding all reachable code to the worklist. 4452 /// 4453 /// This has a couple of tricks to make the code faster and more powerful. In 4454 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4455 /// them to the worklist (this significantly speeds up instcombine on code where 4456 /// many instructions are dead or constant). Additionally, if we find a branch 4457 /// whose condition is a known constant, we only visit the reachable successors. 4458 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4459 const TargetLibraryInfo *TLI, 4460 InstructionWorklist &ICWorklist) { 4461 bool MadeIRChange = false; 4462 SmallPtrSet<BasicBlock *, 32> Visited; 4463 SmallVector<BasicBlock*, 256> Worklist; 4464 Worklist.push_back(&F.front()); 4465 4466 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4467 DenseMap<Constant *, Constant *> FoldedConstants; 4468 AliasScopeTracker SeenAliasScopes; 4469 4470 do { 4471 BasicBlock *BB = Worklist.pop_back_val(); 4472 4473 // We have now visited this block! If we've already been here, ignore it. 4474 if (!Visited.insert(BB).second) 4475 continue; 4476 4477 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4478 // ConstantProp instruction if trivially constant. 4479 if (!Inst.use_empty() && 4480 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4481 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4482 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4483 << '\n'); 4484 Inst.replaceAllUsesWith(C); 4485 ++NumConstProp; 4486 if (isInstructionTriviallyDead(&Inst, TLI)) 4487 Inst.eraseFromParent(); 4488 MadeIRChange = true; 4489 continue; 4490 } 4491 4492 // See if we can constant fold its operands. 4493 for (Use &U : Inst.operands()) { 4494 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4495 continue; 4496 4497 auto *C = cast<Constant>(U); 4498 Constant *&FoldRes = FoldedConstants[C]; 4499 if (!FoldRes) 4500 FoldRes = ConstantFoldConstant(C, DL, TLI); 4501 4502 if (FoldRes != C) { 4503 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4504 << "\n Old = " << *C 4505 << "\n New = " << *FoldRes << '\n'); 4506 U = FoldRes; 4507 MadeIRChange = true; 4508 } 4509 } 4510 4511 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4512 // these call instructions consumes non-trivial amount of time and 4513 // provides no value for the optimization. 4514 if (!Inst.isDebugOrPseudoInst()) { 4515 InstrsForInstructionWorklist.push_back(&Inst); 4516 SeenAliasScopes.analyse(&Inst); 4517 } 4518 } 4519 4520 // Recursively visit successors. If this is a branch or switch on a 4521 // constant, only visit the reachable successor. 4522 Instruction *TI = BB->getTerminator(); 4523 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4524 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4525 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4526 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4527 Worklist.push_back(ReachableBB); 4528 continue; 4529 } 4530 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4531 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4532 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4533 continue; 4534 } 4535 } 4536 4537 append_range(Worklist, successors(TI)); 4538 } while (!Worklist.empty()); 4539 4540 // Remove instructions inside unreachable blocks. This prevents the 4541 // instcombine code from having to deal with some bad special cases, and 4542 // reduces use counts of instructions. 4543 for (BasicBlock &BB : F) { 4544 if (Visited.count(&BB)) 4545 continue; 4546 4547 unsigned NumDeadInstInBB; 4548 unsigned NumDeadDbgInstInBB; 4549 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4550 removeAllNonTerminatorAndEHPadInstructions(&BB); 4551 4552 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4553 NumDeadInst += NumDeadInstInBB; 4554 } 4555 4556 // Once we've found all of the instructions to add to instcombine's worklist, 4557 // add them in reverse order. This way instcombine will visit from the top 4558 // of the function down. This jives well with the way that it adds all uses 4559 // of instructions to the worklist after doing a transformation, thus avoiding 4560 // some N^2 behavior in pathological cases. 4561 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4562 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4563 // DCE instruction if trivially dead. As we iterate in reverse program 4564 // order here, we will clean up whole chains of dead instructions. 4565 if (isInstructionTriviallyDead(Inst, TLI) || 4566 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4567 ++NumDeadInst; 4568 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4569 salvageDebugInfo(*Inst); 4570 Inst->eraseFromParent(); 4571 MadeIRChange = true; 4572 continue; 4573 } 4574 4575 ICWorklist.push(Inst); 4576 } 4577 4578 return MadeIRChange; 4579 } 4580 4581 static bool combineInstructionsOverFunction( 4582 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4583 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4584 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4585 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4586 auto &DL = F.getParent()->getDataLayout(); 4587 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4588 4589 /// Builder - This is an IRBuilder that automatically inserts new 4590 /// instructions into the worklist when they are created. 4591 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4592 F.getContext(), TargetFolder(DL), 4593 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4594 Worklist.add(I); 4595 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4596 AC.registerAssumption(Assume); 4597 })); 4598 4599 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4600 // by instcombiner. 4601 bool MadeIRChange = false; 4602 if (ShouldLowerDbgDeclare) 4603 MadeIRChange = LowerDbgDeclare(F); 4604 // LowerDbgDeclare calls RemoveRedundantDbgInstrs, but LowerDbgDeclare will 4605 // almost never return true when running an assignment tracking build. Take 4606 // this opportunity to do some clean up for assignment tracking builds too. 4607 if (!MadeIRChange && isAssignmentTrackingEnabled(*F.getParent())) { 4608 for (auto &BB : F) 4609 RemoveRedundantDbgInstrs(&BB); 4610 } 4611 4612 // Iterate while there is work to do. 4613 unsigned Iteration = 0; 4614 while (true) { 4615 ++NumWorklistIterations; 4616 ++Iteration; 4617 4618 if (Iteration > InfiniteLoopDetectionThreshold) { 4619 report_fatal_error( 4620 "Instruction Combining seems stuck in an infinite loop after " + 4621 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4622 } 4623 4624 if (Iteration > MaxIterations) { 4625 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4626 << " on " << F.getName() 4627 << " reached; stopping before reaching a fixpoint\n"); 4628 break; 4629 } 4630 4631 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4632 << F.getName() << "\n"); 4633 4634 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4635 4636 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4637 ORE, BFI, PSI, DL, LI); 4638 IC.MaxArraySizeForCombine = MaxArraySize; 4639 4640 if (!IC.run()) 4641 break; 4642 4643 MadeIRChange = true; 4644 } 4645 4646 return MadeIRChange; 4647 } 4648 4649 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4650 4651 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4652 : MaxIterations(MaxIterations) {} 4653 4654 PreservedAnalyses InstCombinePass::run(Function &F, 4655 FunctionAnalysisManager &AM) { 4656 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4657 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4658 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4659 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4660 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4661 4662 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4663 4664 auto *AA = &AM.getResult<AAManager>(F); 4665 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4666 ProfileSummaryInfo *PSI = 4667 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4668 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4669 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4670 4671 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4672 BFI, PSI, MaxIterations, LI)) 4673 // No changes, all analyses are preserved. 4674 return PreservedAnalyses::all(); 4675 4676 // Mark all the analyses that instcombine updates as preserved. 4677 PreservedAnalyses PA; 4678 PA.preserveSet<CFGAnalyses>(); 4679 return PA; 4680 } 4681 4682 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4683 AU.setPreservesCFG(); 4684 AU.addRequired<AAResultsWrapperPass>(); 4685 AU.addRequired<AssumptionCacheTracker>(); 4686 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4687 AU.addRequired<TargetTransformInfoWrapperPass>(); 4688 AU.addRequired<DominatorTreeWrapperPass>(); 4689 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4690 AU.addPreserved<DominatorTreeWrapperPass>(); 4691 AU.addPreserved<AAResultsWrapperPass>(); 4692 AU.addPreserved<BasicAAWrapperPass>(); 4693 AU.addPreserved<GlobalsAAWrapperPass>(); 4694 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4695 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4696 } 4697 4698 bool InstructionCombiningPass::runOnFunction(Function &F) { 4699 if (skipFunction(F)) 4700 return false; 4701 4702 // Required analyses. 4703 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4704 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4705 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4706 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4707 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4708 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4709 4710 // Optional analyses. 4711 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4712 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4713 ProfileSummaryInfo *PSI = 4714 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4715 BlockFrequencyInfo *BFI = 4716 (PSI && PSI->hasProfileSummary()) ? 4717 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4718 nullptr; 4719 4720 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4721 BFI, PSI, MaxIterations, LI); 4722 } 4723 4724 char InstructionCombiningPass::ID = 0; 4725 4726 InstructionCombiningPass::InstructionCombiningPass() 4727 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4728 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4729 } 4730 4731 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4732 : FunctionPass(ID), MaxIterations(MaxIterations) { 4733 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4734 } 4735 4736 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4737 "Combine redundant instructions", false, false) 4738 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4739 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4740 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4741 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4742 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4743 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4744 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4745 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4746 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4747 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4748 "Combine redundant instructions", false, false) 4749 4750 // Initialization Routines 4751 void llvm::initializeInstCombine(PassRegistry &Registry) { 4752 initializeInstructionCombiningPassPass(Registry); 4753 } 4754 4755 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4756 initializeInstructionCombiningPassPass(*unwrap(R)); 4757 } 4758 4759 FunctionPass *llvm::createInstructionCombiningPass() { 4760 return new InstructionCombiningPass(); 4761 } 4762 4763 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4764 return new InstructionCombiningPass(MaxIterations); 4765 } 4766 4767 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4768 unwrap(PM)->add(createInstructionCombiningPass()); 4769 } 4770