1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm/ADT/APInt.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/ADT/DenseMap.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/Analysis/AliasAnalysis.h" 43 #include "llvm/Analysis/AssumptionCache.h" 44 #include "llvm/Analysis/BasicAliasAnalysis.h" 45 #include "llvm/Analysis/BlockFrequencyInfo.h" 46 #include "llvm/Analysis/CFG.h" 47 #include "llvm/Analysis/ConstantFolding.h" 48 #include "llvm/Analysis/GlobalsModRef.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/MemoryBuiltins.h" 53 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 54 #include "llvm/Analysis/ProfileSummaryInfo.h" 55 #include "llvm/Analysis/TargetFolder.h" 56 #include "llvm/Analysis/TargetLibraryInfo.h" 57 #include "llvm/Analysis/TargetTransformInfo.h" 58 #include "llvm/Analysis/Utils/Local.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/Analysis/VectorUtils.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/CFG.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DIBuilder.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/PassManager.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Use.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/InitializePasses.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/DebugCounter.h" 94 #include "llvm/Support/ErrorHandling.h" 95 #include "llvm/Support/KnownBits.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Transforms/InstCombine/InstCombine.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <memory> 104 #include <optional> 105 #include <string> 106 #include <utility> 107 108 #define DEBUG_TYPE "instcombine" 109 #include "llvm/Transforms/Utils/InstructionWorklist.h" 110 #include <optional> 111 112 using namespace llvm; 113 using namespace llvm::PatternMatch; 114 115 STATISTIC(NumWorklistIterations, 116 "Number of instruction combining iterations performed"); 117 STATISTIC(NumOneIteration, "Number of functions with one iteration"); 118 STATISTIC(NumTwoIterations, "Number of functions with two iterations"); 119 STATISTIC(NumThreeIterations, "Number of functions with three iterations"); 120 STATISTIC(NumFourOrMoreIterations, 121 "Number of functions with four or more iterations"); 122 123 STATISTIC(NumCombined , "Number of insts combined"); 124 STATISTIC(NumConstProp, "Number of constant folds"); 125 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 126 STATISTIC(NumSunkInst , "Number of instructions sunk"); 127 STATISTIC(NumExpand, "Number of expansions"); 128 STATISTIC(NumFactor , "Number of factorizations"); 129 STATISTIC(NumReassoc , "Number of reassociations"); 130 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 131 "Controls which instructions are visited"); 132 133 static cl::opt<bool> 134 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 135 cl::init(true)); 136 137 static cl::opt<unsigned> MaxSinkNumUsers( 138 "instcombine-max-sink-users", cl::init(32), 139 cl::desc("Maximum number of undroppable users for instruction sinking")); 140 141 static cl::opt<unsigned> 142 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 143 cl::desc("Maximum array size considered when doing a combine")); 144 145 // FIXME: Remove this flag when it is no longer necessary to convert 146 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 147 // increases variable availability at the cost of accuracy. Variables that 148 // cannot be promoted by mem2reg or SROA will be described as living in memory 149 // for their entire lifetime. However, passes like DSE and instcombine can 150 // delete stores to the alloca, leading to misleading and inaccurate debug 151 // information. This flag can be removed when those passes are fixed. 152 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 153 cl::Hidden, cl::init(true)); 154 155 std::optional<Instruction *> 156 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 157 // Handle target specific intrinsics 158 if (II.getCalledFunction()->isTargetIntrinsic()) { 159 return TTI.instCombineIntrinsic(*this, II); 160 } 161 return std::nullopt; 162 } 163 164 std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 165 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 166 bool &KnownBitsComputed) { 167 // Handle target specific intrinsics 168 if (II.getCalledFunction()->isTargetIntrinsic()) { 169 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 170 KnownBitsComputed); 171 } 172 return std::nullopt; 173 } 174 175 std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 176 IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts, 177 APInt &PoisonElts2, APInt &PoisonElts3, 178 std::function<void(Instruction *, unsigned, APInt, APInt &)> 179 SimplifyAndSetOp) { 180 // Handle target specific intrinsics 181 if (II.getCalledFunction()->isTargetIntrinsic()) { 182 return TTI.simplifyDemandedVectorEltsIntrinsic( 183 *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3, 184 SimplifyAndSetOp); 185 } 186 return std::nullopt; 187 } 188 189 bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const { 190 return TTI.isValidAddrSpaceCast(FromAS, ToAS); 191 } 192 193 Value *InstCombinerImpl::EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP) { 194 if (!RewriteGEP) 195 return llvm::emitGEPOffset(&Builder, DL, GEP); 196 197 IRBuilderBase::InsertPointGuard Guard(Builder); 198 auto *Inst = dyn_cast<Instruction>(GEP); 199 if (Inst) 200 Builder.SetInsertPoint(Inst); 201 202 Value *Offset = EmitGEPOffset(GEP); 203 // If a non-trivial GEP has other uses, rewrite it to avoid duplicating 204 // the offset arithmetic. 205 if (Inst && !GEP->hasOneUse() && !GEP->hasAllConstantIndices() && 206 !GEP->getSourceElementType()->isIntegerTy(8)) { 207 replaceInstUsesWith( 208 *Inst, Builder.CreateGEP(Builder.getInt8Ty(), GEP->getPointerOperand(), 209 Offset, "", GEP->getNoWrapFlags())); 210 eraseInstFromFunction(*Inst); 211 } 212 return Offset; 213 } 214 215 /// Legal integers and common types are considered desirable. This is used to 216 /// avoid creating instructions with types that may not be supported well by the 217 /// the backend. 218 /// NOTE: This treats i8, i16 and i32 specially because they are common 219 /// types in frontend languages. 220 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 221 switch (BitWidth) { 222 case 8: 223 case 16: 224 case 32: 225 return true; 226 default: 227 return DL.isLegalInteger(BitWidth); 228 } 229 } 230 231 /// Return true if it is desirable to convert an integer computation from a 232 /// given bit width to a new bit width. 233 /// We don't want to convert from a legal or desirable type (like i8) to an 234 /// illegal type or from a smaller to a larger illegal type. A width of '1' 235 /// is always treated as a desirable type because i1 is a fundamental type in 236 /// IR, and there are many specialized optimizations for i1 types. 237 /// Common/desirable widths are equally treated as legal to convert to, in 238 /// order to open up more combining opportunities. 239 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 240 unsigned ToWidth) const { 241 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 242 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 243 244 // Convert to desirable widths even if they are not legal types. 245 // Only shrink types, to prevent infinite loops. 246 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 247 return true; 248 249 // If this is a legal or desiable integer from type, and the result would be 250 // an illegal type, don't do the transformation. 251 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal) 252 return false; 253 254 // Otherwise, if both are illegal, do not increase the size of the result. We 255 // do allow things like i160 -> i64, but not i64 -> i160. 256 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 257 return false; 258 259 return true; 260 } 261 262 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 263 /// We don't want to convert from a legal to an illegal type or from a smaller 264 /// to a larger illegal type. i1 is always treated as a legal type because it is 265 /// a fundamental type in IR, and there are many specialized optimizations for 266 /// i1 types. 267 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 268 // TODO: This could be extended to allow vectors. Datalayout changes might be 269 // needed to properly support that. 270 if (!From->isIntegerTy() || !To->isIntegerTy()) 271 return false; 272 273 unsigned FromWidth = From->getPrimitiveSizeInBits(); 274 unsigned ToWidth = To->getPrimitiveSizeInBits(); 275 return shouldChangeType(FromWidth, ToWidth); 276 } 277 278 // Return true, if No Signed Wrap should be maintained for I. 279 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 280 // where both B and C should be ConstantInts, results in a constant that does 281 // not overflow. This function only handles the Add and Sub opcodes. For 282 // all other opcodes, the function conservatively returns false. 283 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 284 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 285 if (!OBO || !OBO->hasNoSignedWrap()) 286 return false; 287 288 // We reason about Add and Sub Only. 289 Instruction::BinaryOps Opcode = I.getOpcode(); 290 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 291 return false; 292 293 const APInt *BVal, *CVal; 294 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 295 return false; 296 297 bool Overflow = false; 298 if (Opcode == Instruction::Add) 299 (void)BVal->sadd_ov(*CVal, Overflow); 300 else 301 (void)BVal->ssub_ov(*CVal, Overflow); 302 303 return !Overflow; 304 } 305 306 static bool hasNoUnsignedWrap(BinaryOperator &I) { 307 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 308 return OBO && OBO->hasNoUnsignedWrap(); 309 } 310 311 static bool hasNoSignedWrap(BinaryOperator &I) { 312 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 313 return OBO && OBO->hasNoSignedWrap(); 314 } 315 316 /// Conservatively clears subclassOptionalData after a reassociation or 317 /// commutation. We preserve fast-math flags when applicable as they can be 318 /// preserved. 319 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 320 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 321 if (!FPMO) { 322 I.clearSubclassOptionalData(); 323 return; 324 } 325 326 FastMathFlags FMF = I.getFastMathFlags(); 327 I.clearSubclassOptionalData(); 328 I.setFastMathFlags(FMF); 329 } 330 331 /// Combine constant operands of associative operations either before or after a 332 /// cast to eliminate one of the associative operations: 333 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 334 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 335 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 336 InstCombinerImpl &IC) { 337 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 338 if (!Cast || !Cast->hasOneUse()) 339 return false; 340 341 // TODO: Enhance logic for other casts and remove this check. 342 auto CastOpcode = Cast->getOpcode(); 343 if (CastOpcode != Instruction::ZExt) 344 return false; 345 346 // TODO: Enhance logic for other BinOps and remove this check. 347 if (!BinOp1->isBitwiseLogicOp()) 348 return false; 349 350 auto AssocOpcode = BinOp1->getOpcode(); 351 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 352 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 353 return false; 354 355 Constant *C1, *C2; 356 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 357 !match(BinOp2->getOperand(1), m_Constant(C2))) 358 return false; 359 360 // TODO: This assumes a zext cast. 361 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 362 // to the destination type might lose bits. 363 364 // Fold the constants together in the destination type: 365 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 366 const DataLayout &DL = IC.getDataLayout(); 367 Type *DestTy = C1->getType(); 368 Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL); 369 if (!CastC2) 370 return false; 371 Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL); 372 if (!FoldedC) 373 return false; 374 375 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 376 IC.replaceOperand(*BinOp1, 1, FoldedC); 377 BinOp1->dropPoisonGeneratingFlags(); 378 Cast->dropPoisonGeneratingFlags(); 379 return true; 380 } 381 382 // Simplifies IntToPtr/PtrToInt RoundTrip Cast. 383 // inttoptr ( ptrtoint (x) ) --> x 384 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 385 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 386 if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) == 387 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 388 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 389 Type *CastTy = IntToPtr->getDestTy(); 390 if (PtrToInt && 391 CastTy->getPointerAddressSpace() == 392 PtrToInt->getSrcTy()->getPointerAddressSpace() && 393 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) == 394 DL.getTypeSizeInBits(PtrToInt->getDestTy())) 395 return PtrToInt->getOperand(0); 396 } 397 return nullptr; 398 } 399 400 /// This performs a few simplifications for operators that are associative or 401 /// commutative: 402 /// 403 /// Commutative operators: 404 /// 405 /// 1. Order operands such that they are listed from right (least complex) to 406 /// left (most complex). This puts constants before unary operators before 407 /// binary operators. 408 /// 409 /// Associative operators: 410 /// 411 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 412 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 413 /// 414 /// Associative and commutative operators: 415 /// 416 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 417 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 418 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 419 /// if C1 and C2 are constants. 420 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 421 Instruction::BinaryOps Opcode = I.getOpcode(); 422 bool Changed = false; 423 424 do { 425 // Order operands such that they are listed from right (least complex) to 426 // left (most complex). This puts constants before unary operators before 427 // binary operators. 428 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 429 getComplexity(I.getOperand(1))) 430 Changed = !I.swapOperands(); 431 432 if (I.isCommutative()) { 433 if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) { 434 replaceOperand(I, 0, Pair->first); 435 replaceOperand(I, 1, Pair->second); 436 Changed = true; 437 } 438 } 439 440 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 441 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 442 443 if (I.isAssociative()) { 444 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 445 if (Op0 && Op0->getOpcode() == Opcode) { 446 Value *A = Op0->getOperand(0); 447 Value *B = Op0->getOperand(1); 448 Value *C = I.getOperand(1); 449 450 // Does "B op C" simplify? 451 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 452 // It simplifies to V. Form "A op V". 453 replaceOperand(I, 0, A); 454 replaceOperand(I, 1, V); 455 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 456 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 457 458 // Conservatively clear all optional flags since they may not be 459 // preserved by the reassociation. Reset nsw/nuw based on the above 460 // analysis. 461 ClearSubclassDataAfterReassociation(I); 462 463 // Note: this is only valid because SimplifyBinOp doesn't look at 464 // the operands to Op0. 465 if (IsNUW) 466 I.setHasNoUnsignedWrap(true); 467 468 if (IsNSW) 469 I.setHasNoSignedWrap(true); 470 471 Changed = true; 472 ++NumReassoc; 473 continue; 474 } 475 } 476 477 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 478 if (Op1 && Op1->getOpcode() == Opcode) { 479 Value *A = I.getOperand(0); 480 Value *B = Op1->getOperand(0); 481 Value *C = Op1->getOperand(1); 482 483 // Does "A op B" simplify? 484 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 485 // It simplifies to V. Form "V op C". 486 replaceOperand(I, 0, V); 487 replaceOperand(I, 1, C); 488 // Conservatively clear the optional flags, since they may not be 489 // preserved by the reassociation. 490 ClearSubclassDataAfterReassociation(I); 491 Changed = true; 492 ++NumReassoc; 493 continue; 494 } 495 } 496 } 497 498 if (I.isAssociative() && I.isCommutative()) { 499 if (simplifyAssocCastAssoc(&I, *this)) { 500 Changed = true; 501 ++NumReassoc; 502 continue; 503 } 504 505 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 506 if (Op0 && Op0->getOpcode() == Opcode) { 507 Value *A = Op0->getOperand(0); 508 Value *B = Op0->getOperand(1); 509 Value *C = I.getOperand(1); 510 511 // Does "C op A" simplify? 512 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 513 // It simplifies to V. Form "V op B". 514 replaceOperand(I, 0, V); 515 replaceOperand(I, 1, B); 516 // Conservatively clear the optional flags, since they may not be 517 // preserved by the reassociation. 518 ClearSubclassDataAfterReassociation(I); 519 Changed = true; 520 ++NumReassoc; 521 continue; 522 } 523 } 524 525 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 526 if (Op1 && Op1->getOpcode() == Opcode) { 527 Value *A = I.getOperand(0); 528 Value *B = Op1->getOperand(0); 529 Value *C = Op1->getOperand(1); 530 531 // Does "C op A" simplify? 532 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 533 // It simplifies to V. Form "B op V". 534 replaceOperand(I, 0, B); 535 replaceOperand(I, 1, V); 536 // Conservatively clear the optional flags, since they may not be 537 // preserved by the reassociation. 538 ClearSubclassDataAfterReassociation(I); 539 Changed = true; 540 ++NumReassoc; 541 continue; 542 } 543 } 544 545 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 546 // if C1 and C2 are constants. 547 Value *A, *B; 548 Constant *C1, *C2, *CRes; 549 if (Op0 && Op1 && 550 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 551 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 552 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) && 553 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) { 554 bool IsNUW = hasNoUnsignedWrap(I) && 555 hasNoUnsignedWrap(*Op0) && 556 hasNoUnsignedWrap(*Op1); 557 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 558 BinaryOperator::CreateNUW(Opcode, A, B) : 559 BinaryOperator::Create(Opcode, A, B); 560 561 if (isa<FPMathOperator>(NewBO)) { 562 FastMathFlags Flags = I.getFastMathFlags() & 563 Op0->getFastMathFlags() & 564 Op1->getFastMathFlags(); 565 NewBO->setFastMathFlags(Flags); 566 } 567 InsertNewInstWith(NewBO, I.getIterator()); 568 NewBO->takeName(Op1); 569 replaceOperand(I, 0, NewBO); 570 replaceOperand(I, 1, CRes); 571 // Conservatively clear the optional flags, since they may not be 572 // preserved by the reassociation. 573 ClearSubclassDataAfterReassociation(I); 574 if (IsNUW) 575 I.setHasNoUnsignedWrap(true); 576 577 Changed = true; 578 continue; 579 } 580 } 581 582 // No further simplifications. 583 return Changed; 584 } while (true); 585 } 586 587 /// Return whether "X LOp (Y ROp Z)" is always equal to 588 /// "(X LOp Y) ROp (X LOp Z)". 589 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 590 Instruction::BinaryOps ROp) { 591 // X & (Y | Z) <--> (X & Y) | (X & Z) 592 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 593 if (LOp == Instruction::And) 594 return ROp == Instruction::Or || ROp == Instruction::Xor; 595 596 // X | (Y & Z) <--> (X | Y) & (X | Z) 597 if (LOp == Instruction::Or) 598 return ROp == Instruction::And; 599 600 // X * (Y + Z) <--> (X * Y) + (X * Z) 601 // X * (Y - Z) <--> (X * Y) - (X * Z) 602 if (LOp == Instruction::Mul) 603 return ROp == Instruction::Add || ROp == Instruction::Sub; 604 605 return false; 606 } 607 608 /// Return whether "(X LOp Y) ROp Z" is always equal to 609 /// "(X ROp Z) LOp (Y ROp Z)". 610 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 611 Instruction::BinaryOps ROp) { 612 if (Instruction::isCommutative(ROp)) 613 return leftDistributesOverRight(ROp, LOp); 614 615 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 616 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 617 618 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 619 // but this requires knowing that the addition does not overflow and other 620 // such subtleties. 621 } 622 623 /// This function returns identity value for given opcode, which can be used to 624 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 625 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 626 if (isa<Constant>(V)) 627 return nullptr; 628 629 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 630 } 631 632 /// This function predicates factorization using distributive laws. By default, 633 /// it just returns the 'Op' inputs. But for special-cases like 634 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 635 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 636 /// allow more factorization opportunities. 637 static Instruction::BinaryOps 638 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 639 Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) { 640 assert(Op && "Expected a binary operator"); 641 LHS = Op->getOperand(0); 642 RHS = Op->getOperand(1); 643 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 644 Constant *C; 645 if (match(Op, m_Shl(m_Value(), m_ImmConstant(C)))) { 646 // X << C --> X * (1 << C) 647 RHS = ConstantFoldBinaryInstruction( 648 Instruction::Shl, ConstantInt::get(Op->getType(), 1), C); 649 assert(RHS && "Constant folding of immediate constants failed"); 650 return Instruction::Mul; 651 } 652 // TODO: We can add other conversions e.g. shr => div etc. 653 } 654 if (Instruction::isBitwiseLogicOp(TopOpcode)) { 655 if (OtherOp && OtherOp->getOpcode() == Instruction::AShr && 656 match(Op, m_LShr(m_NonNegative(), m_Value()))) { 657 // lshr nneg C, X --> ashr nneg C, X 658 return Instruction::AShr; 659 } 660 } 661 return Op->getOpcode(); 662 } 663 664 /// This tries to simplify binary operations by factorizing out common terms 665 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 666 static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, 667 InstCombiner::BuilderTy &Builder, 668 Instruction::BinaryOps InnerOpcode, Value *A, 669 Value *B, Value *C, Value *D) { 670 assert(A && B && C && D && "All values must be provided"); 671 672 Value *V = nullptr; 673 Value *RetVal = nullptr; 674 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 675 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 676 677 // Does "X op' Y" always equal "Y op' X"? 678 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 679 680 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 681 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) { 682 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 683 // commutative case, "(A op' B) op (C op' A)"? 684 if (A == C || (InnerCommutative && A == D)) { 685 if (A != C) 686 std::swap(C, D); 687 // Consider forming "A op' (B op D)". 688 // If "B op D" simplifies then it can be formed with no cost. 689 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 690 691 // If "B op D" doesn't simplify then only go on if one of the existing 692 // operations "A op' B" and "C op' D" will be zapped as no longer used. 693 if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) 694 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 695 if (V) 696 RetVal = Builder.CreateBinOp(InnerOpcode, A, V); 697 } 698 } 699 700 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 701 if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) { 702 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 703 // commutative case, "(A op' B) op (B op' D)"? 704 if (B == D || (InnerCommutative && B == C)) { 705 if (B != D) 706 std::swap(C, D); 707 // Consider forming "(A op C) op' B". 708 // If "A op C" simplifies then it can be formed with no cost. 709 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 710 711 // If "A op C" doesn't simplify then only go on if one of the existing 712 // operations "A op' B" and "C op' D" will be zapped as no longer used. 713 if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) 714 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 715 if (V) 716 RetVal = Builder.CreateBinOp(InnerOpcode, V, B); 717 } 718 } 719 720 if (!RetVal) 721 return nullptr; 722 723 ++NumFactor; 724 RetVal->takeName(&I); 725 726 // Try to add no-overflow flags to the final value. 727 if (isa<OverflowingBinaryOperator>(RetVal)) { 728 bool HasNSW = false; 729 bool HasNUW = false; 730 if (isa<OverflowingBinaryOperator>(&I)) { 731 HasNSW = I.hasNoSignedWrap(); 732 HasNUW = I.hasNoUnsignedWrap(); 733 } 734 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 735 HasNSW &= LOBO->hasNoSignedWrap(); 736 HasNUW &= LOBO->hasNoUnsignedWrap(); 737 } 738 739 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 740 HasNSW &= ROBO->hasNoSignedWrap(); 741 HasNUW &= ROBO->hasNoUnsignedWrap(); 742 } 743 744 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) { 745 // We can propagate 'nsw' if we know that 746 // %Y = mul nsw i16 %X, C 747 // %Z = add nsw i16 %Y, %X 748 // => 749 // %Z = mul nsw i16 %X, C+1 750 // 751 // iff C+1 isn't INT_MIN 752 const APInt *CInt; 753 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 754 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW); 755 756 // nuw can be propagated with any constant or nuw value. 757 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW); 758 } 759 } 760 return RetVal; 761 } 762 763 // If `I` has one Const operand and the other matches `(ctpop (not x))`, 764 // replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`. 765 // This is only useful is the new subtract can fold so we only handle the 766 // following cases: 767 // 1) (add/sub/disjoint_or C, (ctpop (not x)) 768 // -> (add/sub/disjoint_or C', (ctpop x)) 769 // 1) (cmp pred C, (ctpop (not x)) 770 // -> (cmp pred C', (ctpop x)) 771 Instruction *InstCombinerImpl::tryFoldInstWithCtpopWithNot(Instruction *I) { 772 unsigned Opc = I->getOpcode(); 773 unsigned ConstIdx = 1; 774 switch (Opc) { 775 default: 776 return nullptr; 777 // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x)) 778 // We can fold the BitWidth(x) with add/sub/icmp as long the other operand 779 // is constant. 780 case Instruction::Sub: 781 ConstIdx = 0; 782 break; 783 case Instruction::ICmp: 784 // Signed predicates aren't correct in some edge cases like for i2 types, as 785 // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed 786 // comparisons against it are simplfied to unsigned. 787 if (cast<ICmpInst>(I)->isSigned()) 788 return nullptr; 789 break; 790 case Instruction::Or: 791 if (!match(I, m_DisjointOr(m_Value(), m_Value()))) 792 return nullptr; 793 [[fallthrough]]; 794 case Instruction::Add: 795 break; 796 } 797 798 Value *Op; 799 // Find ctpop. 800 if (!match(I->getOperand(1 - ConstIdx), 801 m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(Op))))) 802 return nullptr; 803 804 Constant *C; 805 // Check other operand is ImmConstant. 806 if (!match(I->getOperand(ConstIdx), m_ImmConstant(C))) 807 return nullptr; 808 809 Type *Ty = Op->getType(); 810 Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits()); 811 // Need extra check for icmp. Note if this check is true, it generally means 812 // the icmp will simplify to true/false. 813 if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality()) { 814 Constant *Cmp = 815 ConstantFoldCompareInstOperands(ICmpInst::ICMP_UGT, C, BitWidthC, DL); 816 if (!Cmp || !Cmp->isZeroValue()) 817 return nullptr; 818 } 819 820 // Check we can invert `(not x)` for free. 821 bool Consumes = false; 822 if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes) 823 return nullptr; 824 Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder); 825 assert(NotOp != nullptr && 826 "Desync between isFreeToInvert and getFreelyInverted"); 827 828 Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp); 829 830 Value *R = nullptr; 831 832 // Do the transformation here to avoid potentially introducing an infinite 833 // loop. 834 switch (Opc) { 835 case Instruction::Sub: 836 R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC)); 837 break; 838 case Instruction::Or: 839 case Instruction::Add: 840 R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp); 841 break; 842 case Instruction::ICmp: 843 R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(), 844 CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C)); 845 break; 846 default: 847 llvm_unreachable("Unhandled Opcode"); 848 } 849 assert(R != nullptr); 850 return replaceInstUsesWith(*I, R); 851 } 852 853 // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C)) 854 // IFF 855 // 1) the logic_shifts match 856 // 2) either both binops are binops and one is `and` or 857 // BinOp1 is `and` 858 // (logic_shift (inv_logic_shift C1, C), C) == C1 or 859 // 860 // -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C) 861 // 862 // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt)) 863 // IFF 864 // 1) the logic_shifts match 865 // 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`). 866 // 867 // -> (BinOp (logic_shift (BinOp X, Y)), Mask) 868 // 869 // (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt)) 870 // IFF 871 // 1) Binop1 is bitwise logical operator `and`, `or` or `xor` 872 // 2) Binop2 is `not` 873 // 874 // -> (arithmetic_shift Binop1((not X), Y), Amt) 875 876 Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) { 877 const DataLayout &DL = I.getDataLayout(); 878 auto IsValidBinOpc = [](unsigned Opc) { 879 switch (Opc) { 880 default: 881 return false; 882 case Instruction::And: 883 case Instruction::Or: 884 case Instruction::Xor: 885 case Instruction::Add: 886 // Skip Sub as we only match constant masks which will canonicalize to use 887 // add. 888 return true; 889 } 890 }; 891 892 // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra 893 // constraints. 894 auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2, 895 unsigned ShOpc) { 896 assert(ShOpc != Instruction::AShr); 897 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) || 898 ShOpc == Instruction::Shl; 899 }; 900 901 auto GetInvShift = [](unsigned ShOpc) { 902 assert(ShOpc != Instruction::AShr); 903 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr; 904 }; 905 906 auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2, 907 unsigned ShOpc, Constant *CMask, 908 Constant *CShift) { 909 // If the BinOp1 is `and` we don't need to check the mask. 910 if (BinOpc1 == Instruction::And) 911 return true; 912 913 // For all other possible transfers we need complete distributable 914 // binop/shift (anything but `add` + `lshr`). 915 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc)) 916 return false; 917 918 // If BinOp2 is `and`, any mask works (this only really helps for non-splat 919 // vecs, otherwise the mask will be simplified and the following check will 920 // handle it). 921 if (BinOpc2 == Instruction::And) 922 return true; 923 924 // Otherwise, need mask that meets the below requirement. 925 // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask 926 Constant *MaskInvShift = 927 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL); 928 return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) == 929 CMask; 930 }; 931 932 auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * { 933 Constant *CMask, *CShift; 934 Value *X, *Y, *ShiftedX, *Mask, *Shift; 935 if (!match(I.getOperand(ShOpnum), 936 m_OneUse(m_Shift(m_Value(Y), m_Value(Shift))))) 937 return nullptr; 938 if (!match(I.getOperand(1 - ShOpnum), 939 m_BinOp(m_Value(ShiftedX), m_Value(Mask)))) 940 return nullptr; 941 942 if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift))))) 943 return nullptr; 944 945 // Make sure we are matching instruction shifts and not ConstantExpr 946 auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum)); 947 auto *IX = dyn_cast<Instruction>(ShiftedX); 948 if (!IY || !IX) 949 return nullptr; 950 951 // LHS and RHS need same shift opcode 952 unsigned ShOpc = IY->getOpcode(); 953 if (ShOpc != IX->getOpcode()) 954 return nullptr; 955 956 // Make sure binop is real instruction and not ConstantExpr 957 auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum)); 958 if (!BO2) 959 return nullptr; 960 961 unsigned BinOpc = BO2->getOpcode(); 962 // Make sure we have valid binops. 963 if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc)) 964 return nullptr; 965 966 if (ShOpc == Instruction::AShr) { 967 if (Instruction::isBitwiseLogicOp(I.getOpcode()) && 968 BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) { 969 Value *NotX = Builder.CreateNot(X); 970 Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX); 971 return BinaryOperator::Create( 972 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift); 973 } 974 975 return nullptr; 976 } 977 978 // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just 979 // distribute to drop the shift irrelevant of constants. 980 if (BinOpc == I.getOpcode() && 981 IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) { 982 Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y); 983 Value *NewBinOp1 = Builder.CreateBinOp( 984 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift); 985 return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask); 986 } 987 988 // Otherwise we can only distribute by constant shifting the mask, so 989 // ensure we have constants. 990 if (!match(Shift, m_ImmConstant(CShift))) 991 return nullptr; 992 if (!match(Mask, m_ImmConstant(CMask))) 993 return nullptr; 994 995 // Check if we can distribute the binops. 996 if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift)) 997 return nullptr; 998 999 Constant *NewCMask = 1000 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL); 1001 Value *NewBinOp2 = Builder.CreateBinOp( 1002 static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask); 1003 Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2); 1004 return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc), 1005 NewBinOp1, CShift); 1006 }; 1007 1008 if (Instruction *R = MatchBinOp(0)) 1009 return R; 1010 return MatchBinOp(1); 1011 } 1012 1013 // (Binop (zext C), (select C, T, F)) 1014 // -> (select C, (binop 1, T), (binop 0, F)) 1015 // 1016 // (Binop (sext C), (select C, T, F)) 1017 // -> (select C, (binop -1, T), (binop 0, F)) 1018 // 1019 // Attempt to simplify binary operations into a select with folded args, when 1020 // one operand of the binop is a select instruction and the other operand is a 1021 // zext/sext extension, whose value is the select condition. 1022 Instruction * 1023 InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) { 1024 // TODO: this simplification may be extended to any speculatable instruction, 1025 // not just binops, and would possibly be handled better in FoldOpIntoSelect. 1026 Instruction::BinaryOps Opc = I.getOpcode(); 1027 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1028 Value *A, *CondVal, *TrueVal, *FalseVal; 1029 Value *CastOp; 1030 1031 auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) { 1032 return match(CastOp, m_ZExtOrSExt(m_Value(A))) && 1033 A->getType()->getScalarSizeInBits() == 1 && 1034 match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal), 1035 m_Value(FalseVal))); 1036 }; 1037 1038 // Make sure one side of the binop is a select instruction, and the other is a 1039 // zero/sign extension operating on a i1. 1040 if (MatchSelectAndCast(LHS, RHS)) 1041 CastOp = LHS; 1042 else if (MatchSelectAndCast(RHS, LHS)) 1043 CastOp = RHS; 1044 else 1045 return nullptr; 1046 1047 auto NewFoldedConst = [&](bool IsTrueArm, Value *V) { 1048 bool IsCastOpRHS = (CastOp == RHS); 1049 bool IsZExt = isa<ZExtInst>(CastOp); 1050 Constant *C; 1051 1052 if (IsTrueArm) { 1053 C = Constant::getNullValue(V->getType()); 1054 } else if (IsZExt) { 1055 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1056 C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1)); 1057 } else { 1058 C = Constant::getAllOnesValue(V->getType()); 1059 } 1060 1061 return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C) 1062 : Builder.CreateBinOp(Opc, C, V); 1063 }; 1064 1065 // If the value used in the zext/sext is the select condition, or the negated 1066 // of the select condition, the binop can be simplified. 1067 if (CondVal == A) { 1068 Value *NewTrueVal = NewFoldedConst(false, TrueVal); 1069 return SelectInst::Create(CondVal, NewTrueVal, 1070 NewFoldedConst(true, FalseVal)); 1071 } 1072 1073 if (match(A, m_Not(m_Specific(CondVal)))) { 1074 Value *NewTrueVal = NewFoldedConst(true, TrueVal); 1075 return SelectInst::Create(CondVal, NewTrueVal, 1076 NewFoldedConst(false, FalseVal)); 1077 } 1078 1079 return nullptr; 1080 } 1081 1082 Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) { 1083 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1084 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 1085 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 1086 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 1087 Value *A, *B, *C, *D; 1088 Instruction::BinaryOps LHSOpcode, RHSOpcode; 1089 1090 if (Op0) 1091 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1); 1092 if (Op1) 1093 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0); 1094 1095 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 1096 // a common term. 1097 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 1098 if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D)) 1099 return V; 1100 1101 // The instruction has the form "(A op' B) op (C)". Try to factorize common 1102 // term. 1103 if (Op0) 1104 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 1105 if (Value *V = 1106 tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident)) 1107 return V; 1108 1109 // The instruction has the form "(B) op (C op' D)". Try to factorize common 1110 // term. 1111 if (Op1) 1112 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 1113 if (Value *V = 1114 tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D)) 1115 return V; 1116 1117 return nullptr; 1118 } 1119 1120 /// This tries to simplify binary operations which some other binary operation 1121 /// distributes over either by factorizing out common terms 1122 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 1123 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 1124 /// Returns the simplified value, or null if it didn't simplify. 1125 Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) { 1126 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1127 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 1128 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 1129 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 1130 1131 // Factorization. 1132 if (Value *R = tryFactorizationFolds(I)) 1133 return R; 1134 1135 // Expansion. 1136 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 1137 // The instruction has the form "(A op' B) op C". See if expanding it out 1138 // to "(A op C) op' (B op C)" results in simplifications. 1139 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 1140 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 1141 1142 // Disable the use of undef because it's not safe to distribute undef. 1143 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 1144 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 1145 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 1146 1147 // Do "A op C" and "B op C" both simplify? 1148 if (L && R) { 1149 // They do! Return "L op' R". 1150 ++NumExpand; 1151 C = Builder.CreateBinOp(InnerOpcode, L, R); 1152 C->takeName(&I); 1153 return C; 1154 } 1155 1156 // Does "A op C" simplify to the identity value for the inner opcode? 1157 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 1158 // They do! Return "B op C". 1159 ++NumExpand; 1160 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 1161 C->takeName(&I); 1162 return C; 1163 } 1164 1165 // Does "B op C" simplify to the identity value for the inner opcode? 1166 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 1167 // They do! Return "A op C". 1168 ++NumExpand; 1169 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 1170 C->takeName(&I); 1171 return C; 1172 } 1173 } 1174 1175 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 1176 // The instruction has the form "A op (B op' C)". See if expanding it out 1177 // to "(A op B) op' (A op C)" results in simplifications. 1178 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 1179 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 1180 1181 // Disable the use of undef because it's not safe to distribute undef. 1182 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 1183 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 1184 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 1185 1186 // Do "A op B" and "A op C" both simplify? 1187 if (L && R) { 1188 // They do! Return "L op' R". 1189 ++NumExpand; 1190 A = Builder.CreateBinOp(InnerOpcode, L, R); 1191 A->takeName(&I); 1192 return A; 1193 } 1194 1195 // Does "A op B" simplify to the identity value for the inner opcode? 1196 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 1197 // They do! Return "A op C". 1198 ++NumExpand; 1199 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 1200 A->takeName(&I); 1201 return A; 1202 } 1203 1204 // Does "A op C" simplify to the identity value for the inner opcode? 1205 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 1206 // They do! Return "A op B". 1207 ++NumExpand; 1208 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 1209 A->takeName(&I); 1210 return A; 1211 } 1212 } 1213 1214 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 1215 } 1216 1217 static std::optional<std::pair<Value *, Value *>> 1218 matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) { 1219 if (LHS->getParent() != RHS->getParent()) 1220 return std::nullopt; 1221 1222 if (LHS->getNumIncomingValues() < 2) 1223 return std::nullopt; 1224 1225 if (!equal(LHS->blocks(), RHS->blocks())) 1226 return std::nullopt; 1227 1228 Value *L0 = LHS->getIncomingValue(0); 1229 Value *R0 = RHS->getIncomingValue(0); 1230 1231 for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) { 1232 Value *L1 = LHS->getIncomingValue(I); 1233 Value *R1 = RHS->getIncomingValue(I); 1234 1235 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1)) 1236 continue; 1237 1238 return std::nullopt; 1239 } 1240 1241 return std::optional(std::pair(L0, R0)); 1242 } 1243 1244 std::optional<std::pair<Value *, Value *>> 1245 InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) { 1246 Instruction *LHSInst = dyn_cast<Instruction>(LHS); 1247 Instruction *RHSInst = dyn_cast<Instruction>(RHS); 1248 if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode()) 1249 return std::nullopt; 1250 switch (LHSInst->getOpcode()) { 1251 case Instruction::PHI: 1252 return matchSymmetricPhiNodesPair(cast<PHINode>(LHS), cast<PHINode>(RHS)); 1253 case Instruction::Select: { 1254 Value *Cond = LHSInst->getOperand(0); 1255 Value *TrueVal = LHSInst->getOperand(1); 1256 Value *FalseVal = LHSInst->getOperand(2); 1257 if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) && 1258 FalseVal == RHSInst->getOperand(1)) 1259 return std::pair(TrueVal, FalseVal); 1260 return std::nullopt; 1261 } 1262 case Instruction::Call: { 1263 // Match min(a, b) and max(a, b) 1264 MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst); 1265 MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst); 1266 if (LHSMinMax && RHSMinMax && 1267 LHSMinMax->getPredicate() == 1268 ICmpInst::getSwappedPredicate(RHSMinMax->getPredicate()) && 1269 ((LHSMinMax->getLHS() == RHSMinMax->getLHS() && 1270 LHSMinMax->getRHS() == RHSMinMax->getRHS()) || 1271 (LHSMinMax->getLHS() == RHSMinMax->getRHS() && 1272 LHSMinMax->getRHS() == RHSMinMax->getLHS()))) 1273 return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS()); 1274 return std::nullopt; 1275 } 1276 default: 1277 return std::nullopt; 1278 } 1279 } 1280 1281 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 1282 Value *LHS, 1283 Value *RHS) { 1284 Value *A, *B, *C, *D, *E, *F; 1285 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 1286 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 1287 if (!LHSIsSelect && !RHSIsSelect) 1288 return nullptr; 1289 1290 FastMathFlags FMF; 1291 BuilderTy::FastMathFlagGuard Guard(Builder); 1292 if (isa<FPMathOperator>(&I)) { 1293 FMF = I.getFastMathFlags(); 1294 Builder.setFastMathFlags(FMF); 1295 } 1296 1297 Instruction::BinaryOps Opcode = I.getOpcode(); 1298 SimplifyQuery Q = SQ.getWithInstruction(&I); 1299 1300 Value *Cond, *True = nullptr, *False = nullptr; 1301 1302 // Special-case for add/negate combination. Replace the zero in the negation 1303 // with the trailing add operand: 1304 // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N) 1305 // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False 1306 auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * { 1307 // We need an 'add' and exactly 1 arm of the select to have been simplified. 1308 if (Opcode != Instruction::Add || (!True && !False) || (True && False)) 1309 return nullptr; 1310 1311 Value *N; 1312 if (True && match(FVal, m_Neg(m_Value(N)))) { 1313 Value *Sub = Builder.CreateSub(Z, N); 1314 return Builder.CreateSelect(Cond, True, Sub, I.getName()); 1315 } 1316 if (False && match(TVal, m_Neg(m_Value(N)))) { 1317 Value *Sub = Builder.CreateSub(Z, N); 1318 return Builder.CreateSelect(Cond, Sub, False, I.getName()); 1319 } 1320 return nullptr; 1321 }; 1322 1323 if (LHSIsSelect && RHSIsSelect && A == D) { 1324 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 1325 Cond = A; 1326 True = simplifyBinOp(Opcode, B, E, FMF, Q); 1327 False = simplifyBinOp(Opcode, C, F, FMF, Q); 1328 1329 if (LHS->hasOneUse() && RHS->hasOneUse()) { 1330 if (False && !True) 1331 True = Builder.CreateBinOp(Opcode, B, E); 1332 else if (True && !False) 1333 False = Builder.CreateBinOp(Opcode, C, F); 1334 } 1335 } else if (LHSIsSelect && LHS->hasOneUse()) { 1336 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 1337 Cond = A; 1338 True = simplifyBinOp(Opcode, B, RHS, FMF, Q); 1339 False = simplifyBinOp(Opcode, C, RHS, FMF, Q); 1340 if (Value *NewSel = foldAddNegate(B, C, RHS)) 1341 return NewSel; 1342 } else if (RHSIsSelect && RHS->hasOneUse()) { 1343 // X op (D ? E : F) -> D ? (X op E) : (X op F) 1344 Cond = D; 1345 True = simplifyBinOp(Opcode, LHS, E, FMF, Q); 1346 False = simplifyBinOp(Opcode, LHS, F, FMF, Q); 1347 if (Value *NewSel = foldAddNegate(E, F, LHS)) 1348 return NewSel; 1349 } 1350 1351 if (!True || !False) 1352 return nullptr; 1353 1354 Value *SI = Builder.CreateSelect(Cond, True, False); 1355 SI->takeName(&I); 1356 return SI; 1357 } 1358 1359 /// Freely adapt every user of V as-if V was changed to !V. 1360 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 1361 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) { 1362 assert(!isa<Constant>(I) && "Shouldn't invert users of constant"); 1363 for (User *U : make_early_inc_range(I->users())) { 1364 if (U == IgnoredUser) 1365 continue; // Don't consider this user. 1366 switch (cast<Instruction>(U)->getOpcode()) { 1367 case Instruction::Select: { 1368 auto *SI = cast<SelectInst>(U); 1369 SI->swapValues(); 1370 SI->swapProfMetadata(); 1371 break; 1372 } 1373 case Instruction::Br: { 1374 BranchInst *BI = cast<BranchInst>(U); 1375 BI->swapSuccessors(); // swaps prof metadata too 1376 if (BPI) 1377 BPI->swapSuccEdgesProbabilities(BI->getParent()); 1378 break; 1379 } 1380 case Instruction::Xor: 1381 replaceInstUsesWith(cast<Instruction>(*U), I); 1382 // Add to worklist for DCE. 1383 addToWorklist(cast<Instruction>(U)); 1384 break; 1385 default: 1386 llvm_unreachable("Got unexpected user - out of sync with " 1387 "canFreelyInvertAllUsersOf() ?"); 1388 } 1389 } 1390 } 1391 1392 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 1393 /// constant zero (which is the 'negate' form). 1394 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 1395 Value *NegV; 1396 if (match(V, m_Neg(m_Value(NegV)))) 1397 return NegV; 1398 1399 // Constants can be considered to be negated values if they can be folded. 1400 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 1401 return ConstantExpr::getNeg(C); 1402 1403 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 1404 if (C->getType()->getElementType()->isIntegerTy()) 1405 return ConstantExpr::getNeg(C); 1406 1407 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 1408 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1409 Constant *Elt = CV->getAggregateElement(i); 1410 if (!Elt) 1411 return nullptr; 1412 1413 if (isa<UndefValue>(Elt)) 1414 continue; 1415 1416 if (!isa<ConstantInt>(Elt)) 1417 return nullptr; 1418 } 1419 return ConstantExpr::getNeg(CV); 1420 } 1421 1422 // Negate integer vector splats. 1423 if (auto *CV = dyn_cast<Constant>(V)) 1424 if (CV->getType()->isVectorTy() && 1425 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 1426 return ConstantExpr::getNeg(CV); 1427 1428 return nullptr; 1429 } 1430 1431 // Try to fold: 1432 // 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y)) 1433 // -> ({s|u}itofp (int_binop x, y)) 1434 // 2) (fp_binop ({s|u}itofp x), FpC) 1435 // -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC))) 1436 // 1437 // Assuming the sign of the cast for x/y is `OpsFromSigned`. 1438 Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign( 1439 BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps, 1440 Constant *Op1FpC, SmallVectorImpl<WithCache<const Value *>> &OpsKnown) { 1441 1442 Type *FPTy = BO.getType(); 1443 Type *IntTy = IntOps[0]->getType(); 1444 1445 unsigned IntSz = IntTy->getScalarSizeInBits(); 1446 // This is the maximum number of inuse bits by the integer where the int -> fp 1447 // casts are exact. 1448 unsigned MaxRepresentableBits = 1449 APFloat::semanticsPrecision(FPTy->getScalarType()->getFltSemantics()); 1450 1451 // Preserve known number of leading bits. This can allow us to trivial nsw/nuw 1452 // checks later on. 1453 unsigned NumUsedLeadingBits[2] = {IntSz, IntSz}; 1454 1455 // NB: This only comes up if OpsFromSigned is true, so there is no need to 1456 // cache if between calls to `foldFBinOpOfIntCastsFromSign`. 1457 auto IsNonZero = [&](unsigned OpNo) -> bool { 1458 if (OpsKnown[OpNo].hasKnownBits() && 1459 OpsKnown[OpNo].getKnownBits(SQ).isNonZero()) 1460 return true; 1461 return isKnownNonZero(IntOps[OpNo], SQ); 1462 }; 1463 1464 auto IsNonNeg = [&](unsigned OpNo) -> bool { 1465 // NB: This matches the impl in ValueTracking, we just try to use cached 1466 // knownbits here. If we ever start supporting WithCache for 1467 // `isKnownNonNegative`, change this to an explicit call. 1468 return OpsKnown[OpNo].getKnownBits(SQ).isNonNegative(); 1469 }; 1470 1471 // Check if we know for certain that ({s|u}itofp op) is exact. 1472 auto IsValidPromotion = [&](unsigned OpNo) -> bool { 1473 // Can we treat this operand as the desired sign? 1474 if (OpsFromSigned != isa<SIToFPInst>(BO.getOperand(OpNo)) && 1475 !IsNonNeg(OpNo)) 1476 return false; 1477 1478 // If fp precision >= bitwidth(op) then its exact. 1479 // NB: This is slightly conservative for `sitofp`. For signed conversion, we 1480 // can handle `MaxRepresentableBits == IntSz - 1` as the sign bit will be 1481 // handled specially. We can't, however, increase the bound arbitrarily for 1482 // `sitofp` as for larger sizes, it won't sign extend. 1483 if (MaxRepresentableBits < IntSz) { 1484 // Otherwise if its signed cast check that fp precisions >= bitwidth(op) - 1485 // numSignBits(op). 1486 // TODO: If we add support for `WithCache` in `ComputeNumSignBits`, change 1487 // `IntOps[OpNo]` arguments to `KnownOps[OpNo]`. 1488 if (OpsFromSigned) 1489 NumUsedLeadingBits[OpNo] = IntSz - ComputeNumSignBits(IntOps[OpNo]); 1490 // Finally for unsigned check that fp precision >= bitwidth(op) - 1491 // numLeadingZeros(op). 1492 else { 1493 NumUsedLeadingBits[OpNo] = 1494 IntSz - OpsKnown[OpNo].getKnownBits(SQ).countMinLeadingZeros(); 1495 } 1496 } 1497 // NB: We could also check if op is known to be a power of 2 or zero (which 1498 // will always be representable). Its unlikely, however, that is we are 1499 // unable to bound op in any way we will be able to pass the overflow checks 1500 // later on. 1501 1502 if (MaxRepresentableBits < NumUsedLeadingBits[OpNo]) 1503 return false; 1504 // Signed + Mul also requires that op is non-zero to avoid -0 cases. 1505 return !OpsFromSigned || BO.getOpcode() != Instruction::FMul || 1506 IsNonZero(OpNo); 1507 }; 1508 1509 // If we have a constant rhs, see if we can losslessly convert it to an int. 1510 if (Op1FpC != nullptr) { 1511 // Signed + Mul req non-zero 1512 if (OpsFromSigned && BO.getOpcode() == Instruction::FMul && 1513 !match(Op1FpC, m_NonZeroFP())) 1514 return nullptr; 1515 1516 Constant *Op1IntC = ConstantFoldCastOperand( 1517 OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC, 1518 IntTy, DL); 1519 if (Op1IntC == nullptr) 1520 return nullptr; 1521 if (ConstantFoldCastOperand(OpsFromSigned ? Instruction::SIToFP 1522 : Instruction::UIToFP, 1523 Op1IntC, FPTy, DL) != Op1FpC) 1524 return nullptr; 1525 1526 // First try to keep sign of cast the same. 1527 IntOps[1] = Op1IntC; 1528 } 1529 1530 // Ensure lhs/rhs integer types match. 1531 if (IntTy != IntOps[1]->getType()) 1532 return nullptr; 1533 1534 if (Op1FpC == nullptr) { 1535 if (!IsValidPromotion(1)) 1536 return nullptr; 1537 } 1538 if (!IsValidPromotion(0)) 1539 return nullptr; 1540 1541 // Final we check if the integer version of the binop will not overflow. 1542 BinaryOperator::BinaryOps IntOpc; 1543 // Because of the precision check, we can often rule out overflows. 1544 bool NeedsOverflowCheck = true; 1545 // Try to conservatively rule out overflow based on the already done precision 1546 // checks. 1547 unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1; 1548 unsigned OverflowMaxCurBits = 1549 std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]); 1550 bool OutputSigned = OpsFromSigned; 1551 switch (BO.getOpcode()) { 1552 case Instruction::FAdd: 1553 IntOpc = Instruction::Add; 1554 OverflowMaxOutputBits += OverflowMaxCurBits; 1555 break; 1556 case Instruction::FSub: 1557 IntOpc = Instruction::Sub; 1558 OverflowMaxOutputBits += OverflowMaxCurBits; 1559 break; 1560 case Instruction::FMul: 1561 IntOpc = Instruction::Mul; 1562 OverflowMaxOutputBits += OverflowMaxCurBits * 2; 1563 break; 1564 default: 1565 llvm_unreachable("Unsupported binop"); 1566 } 1567 // The precision check may have already ruled out overflow. 1568 if (OverflowMaxOutputBits < IntSz) { 1569 NeedsOverflowCheck = false; 1570 // We can bound unsigned overflow from sub to in range signed value (this is 1571 // what allows us to avoid the overflow check for sub). 1572 if (IntOpc == Instruction::Sub) 1573 OutputSigned = true; 1574 } 1575 1576 // Precision check did not rule out overflow, so need to check. 1577 // TODO: If we add support for `WithCache` in `willNotOverflow`, change 1578 // `IntOps[...]` arguments to `KnownOps[...]`. 1579 if (NeedsOverflowCheck && 1580 !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned)) 1581 return nullptr; 1582 1583 Value *IntBinOp = Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]); 1584 if (auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) { 1585 IntBO->setHasNoSignedWrap(OutputSigned); 1586 IntBO->setHasNoUnsignedWrap(!OutputSigned); 1587 } 1588 if (OutputSigned) 1589 return new SIToFPInst(IntBinOp, FPTy); 1590 return new UIToFPInst(IntBinOp, FPTy); 1591 } 1592 1593 // Try to fold: 1594 // 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y)) 1595 // -> ({s|u}itofp (int_binop x, y)) 1596 // 2) (fp_binop ({s|u}itofp x), FpC) 1597 // -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC))) 1598 Instruction *InstCombinerImpl::foldFBinOpOfIntCasts(BinaryOperator &BO) { 1599 std::array<Value *, 2> IntOps = {nullptr, nullptr}; 1600 Constant *Op1FpC = nullptr; 1601 // Check for: 1602 // 1) (binop ({s|u}itofp x), ({s|u}itofp y)) 1603 // 2) (binop ({s|u}itofp x), FpC) 1604 if (!match(BO.getOperand(0), m_SIToFP(m_Value(IntOps[0]))) && 1605 !match(BO.getOperand(0), m_UIToFP(m_Value(IntOps[0])))) 1606 return nullptr; 1607 1608 if (!match(BO.getOperand(1), m_Constant(Op1FpC)) && 1609 !match(BO.getOperand(1), m_SIToFP(m_Value(IntOps[1]))) && 1610 !match(BO.getOperand(1), m_UIToFP(m_Value(IntOps[1])))) 1611 return nullptr; 1612 1613 // Cache KnownBits a bit to potentially save some analysis. 1614 SmallVector<WithCache<const Value *>, 2> OpsKnown = {IntOps[0], IntOps[1]}; 1615 1616 // Try treating x/y as coming from both `uitofp` and `sitofp`. There are 1617 // different constraints depending on the sign of the cast. 1618 // NB: `(uitofp nneg X)` == `(sitofp nneg X)`. 1619 if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/false, 1620 IntOps, Op1FpC, OpsKnown)) 1621 return R; 1622 return foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/true, IntOps, 1623 Op1FpC, OpsKnown); 1624 } 1625 1626 /// A binop with a constant operand and a sign-extended boolean operand may be 1627 /// converted into a select of constants by applying the binary operation to 1628 /// the constant with the two possible values of the extended boolean (0 or -1). 1629 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 1630 // TODO: Handle non-commutative binop (constant is operand 0). 1631 // TODO: Handle zext. 1632 // TODO: Peek through 'not' of cast. 1633 Value *BO0 = BO.getOperand(0); 1634 Value *BO1 = BO.getOperand(1); 1635 Value *X; 1636 Constant *C; 1637 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 1638 !X->getType()->isIntOrIntVectorTy(1)) 1639 return nullptr; 1640 1641 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 1642 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 1643 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 1644 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C); 1645 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C); 1646 return SelectInst::Create(X, TVal, FVal); 1647 } 1648 1649 static Constant *constantFoldOperationIntoSelectOperand(Instruction &I, 1650 SelectInst *SI, 1651 bool IsTrueArm) { 1652 SmallVector<Constant *> ConstOps; 1653 for (Value *Op : I.operands()) { 1654 CmpInst::Predicate Pred; 1655 Constant *C = nullptr; 1656 if (Op == SI) { 1657 C = dyn_cast<Constant>(IsTrueArm ? SI->getTrueValue() 1658 : SI->getFalseValue()); 1659 } else if (match(SI->getCondition(), 1660 m_ICmp(Pred, m_Specific(Op), m_Constant(C))) && 1661 Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 1662 isGuaranteedNotToBeUndefOrPoison(C)) { 1663 // Pass 1664 } else { 1665 C = dyn_cast<Constant>(Op); 1666 } 1667 if (C == nullptr) 1668 return nullptr; 1669 1670 ConstOps.push_back(C); 1671 } 1672 1673 return ConstantFoldInstOperands(&I, ConstOps, I.getDataLayout()); 1674 } 1675 1676 static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, 1677 Value *NewOp, InstCombiner &IC) { 1678 Instruction *Clone = I.clone(); 1679 Clone->replaceUsesOfWith(SI, NewOp); 1680 Clone->dropUBImplyingAttrsAndMetadata(); 1681 IC.InsertNewInstBefore(Clone, SI->getIterator()); 1682 return Clone; 1683 } 1684 1685 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, 1686 bool FoldWithMultiUse) { 1687 // Don't modify shared select instructions unless set FoldWithMultiUse 1688 if (!SI->hasOneUse() && !FoldWithMultiUse) 1689 return nullptr; 1690 1691 Value *TV = SI->getTrueValue(); 1692 Value *FV = SI->getFalseValue(); 1693 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1694 return nullptr; 1695 1696 // Bool selects with constant operands can be folded to logical ops. 1697 if (SI->getType()->isIntOrIntVectorTy(1)) 1698 return nullptr; 1699 1700 // Test if a FCmpInst instruction is used exclusively by a select as 1701 // part of a minimum or maximum operation. If so, refrain from doing 1702 // any other folding. This helps out other analyses which understand 1703 // non-obfuscated minimum and maximum idioms. And in this case, at 1704 // least one of the comparison operands has at least one user besides 1705 // the compare (the select), which would often largely negate the 1706 // benefit of folding anyway. 1707 if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) { 1708 if (CI->hasOneUse()) { 1709 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1710 if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) 1711 return nullptr; 1712 } 1713 } 1714 1715 // Make sure that one of the select arms constant folds successfully. 1716 Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true); 1717 Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false); 1718 if (!NewTV && !NewFV) 1719 return nullptr; 1720 1721 // Create an instruction for the arm that did not fold. 1722 if (!NewTV) 1723 NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this); 1724 if (!NewFV) 1725 NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this); 1726 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1727 } 1728 1729 static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN, 1730 Value *InValue, BasicBlock *InBB, 1731 const DataLayout &DL, 1732 const SimplifyQuery SQ) { 1733 // NB: It is a precondition of this transform that the operands be 1734 // phi translatable! This is usually trivially satisfied by limiting it 1735 // to constant ops, and for selects we do a more sophisticated check. 1736 SmallVector<Value *> Ops; 1737 for (Value *Op : I.operands()) { 1738 if (Op == PN) 1739 Ops.push_back(InValue); 1740 else 1741 Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB)); 1742 } 1743 1744 // Don't consider the simplification successful if we get back a constant 1745 // expression. That's just an instruction in hiding. 1746 // Also reject the case where we simplify back to the phi node. We wouldn't 1747 // be able to remove it in that case. 1748 Value *NewVal = simplifyInstructionWithOperands( 1749 &I, Ops, SQ.getWithInstruction(InBB->getTerminator())); 1750 if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr())) 1751 return NewVal; 1752 1753 // Check if incoming PHI value can be replaced with constant 1754 // based on implied condition. 1755 BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator()); 1756 const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I); 1757 if (TerminatorBI && TerminatorBI->isConditional() && 1758 TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) { 1759 bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent(); 1760 std::optional<bool> ImpliedCond = 1761 isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(), 1762 Ops[0], Ops[1], DL, LHSIsTrue); 1763 if (ImpliedCond) 1764 return ConstantInt::getBool(I.getType(), ImpliedCond.value()); 1765 } 1766 1767 return nullptr; 1768 } 1769 1770 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1771 unsigned NumPHIValues = PN->getNumIncomingValues(); 1772 if (NumPHIValues == 0) 1773 return nullptr; 1774 1775 // We normally only transform phis with a single use. However, if a PHI has 1776 // multiple uses and they are all the same operation, we can fold *all* of the 1777 // uses into the PHI. 1778 if (!PN->hasOneUse()) { 1779 // Walk the use list for the instruction, comparing them to I. 1780 for (User *U : PN->users()) { 1781 Instruction *UI = cast<Instruction>(U); 1782 if (UI != &I && !I.isIdenticalTo(UI)) 1783 return nullptr; 1784 } 1785 // Otherwise, we can replace *all* users with the new PHI we form. 1786 } 1787 1788 // Check to see whether the instruction can be folded into each phi operand. 1789 // If there is one operand that does not fold, remember the BB it is in. 1790 // If there is more than one or if *it* is a PHI, bail out. 1791 SmallVector<Value *> NewPhiValues; 1792 BasicBlock *NonSimplifiedBB = nullptr; 1793 Value *NonSimplifiedInVal = nullptr; 1794 for (unsigned i = 0; i != NumPHIValues; ++i) { 1795 Value *InVal = PN->getIncomingValue(i); 1796 BasicBlock *InBB = PN->getIncomingBlock(i); 1797 1798 if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) { 1799 NewPhiValues.push_back(NewVal); 1800 continue; 1801 } 1802 1803 if (NonSimplifiedBB) return nullptr; // More than one non-simplified value. 1804 1805 NonSimplifiedBB = InBB; 1806 NonSimplifiedInVal = InVal; 1807 NewPhiValues.push_back(nullptr); 1808 1809 // If the InVal is an invoke at the end of the pred block, then we can't 1810 // insert a computation after it without breaking the edge. 1811 if (isa<InvokeInst>(InVal)) 1812 if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB) 1813 return nullptr; 1814 1815 // If the incoming non-constant value is reachable from the phis block, 1816 // we'll push the operation across a loop backedge. This could result in 1817 // an infinite combine loop, and is generally non-profitable (especially 1818 // if the operation was originally outside the loop). 1819 if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT, 1820 LI)) 1821 return nullptr; 1822 } 1823 1824 // If there is exactly one non-simplified value, we can insert a copy of the 1825 // operation in that block. However, if this is a critical edge, we would be 1826 // inserting the computation on some other paths (e.g. inside a loop). Only 1827 // do this if the pred block is unconditionally branching into the phi block. 1828 // Also, make sure that the pred block is not dead code. 1829 if (NonSimplifiedBB != nullptr) { 1830 BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator()); 1831 if (!BI || !BI->isUnconditional() || 1832 !DT.isReachableFromEntry(NonSimplifiedBB)) 1833 return nullptr; 1834 } 1835 1836 // Okay, we can do the transformation: create the new PHI node. 1837 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1838 InsertNewInstBefore(NewPN, PN->getIterator()); 1839 NewPN->takeName(PN); 1840 NewPN->setDebugLoc(PN->getDebugLoc()); 1841 1842 // If we are going to have to insert a new computation, do so right before the 1843 // predecessor's terminator. 1844 Instruction *Clone = nullptr; 1845 if (NonSimplifiedBB) { 1846 Clone = I.clone(); 1847 for (Use &U : Clone->operands()) { 1848 if (U == PN) 1849 U = NonSimplifiedInVal; 1850 else 1851 U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB); 1852 } 1853 InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator()); 1854 } 1855 1856 for (unsigned i = 0; i != NumPHIValues; ++i) { 1857 if (NewPhiValues[i]) 1858 NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i)); 1859 else 1860 NewPN->addIncoming(Clone, PN->getIncomingBlock(i)); 1861 } 1862 1863 for (User *U : make_early_inc_range(PN->users())) { 1864 Instruction *User = cast<Instruction>(U); 1865 if (User == &I) continue; 1866 replaceInstUsesWith(*User, NewPN); 1867 eraseInstFromFunction(*User); 1868 } 1869 1870 replaceAllDbgUsesWith(const_cast<PHINode &>(*PN), 1871 const_cast<PHINode &>(*NewPN), 1872 const_cast<PHINode &>(*PN), DT); 1873 return replaceInstUsesWith(I, NewPN); 1874 } 1875 1876 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1877 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1878 // we are guarding against replicating the binop in >1 predecessor. 1879 // This could miss matching a phi with 2 constant incoming values. 1880 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1881 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1882 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1883 Phi0->getNumOperands() != Phi1->getNumOperands()) 1884 return nullptr; 1885 1886 // TODO: Remove the restriction for binop being in the same block as the phis. 1887 if (BO.getParent() != Phi0->getParent() || 1888 BO.getParent() != Phi1->getParent()) 1889 return nullptr; 1890 1891 // Fold if there is at least one specific constant value in phi0 or phi1's 1892 // incoming values that comes from the same block and this specific constant 1893 // value can be used to do optimization for specific binary operator. 1894 // For example: 1895 // %phi0 = phi i32 [0, %bb0], [%i, %bb1] 1896 // %phi1 = phi i32 [%j, %bb0], [0, %bb1] 1897 // %add = add i32 %phi0, %phi1 1898 // ==> 1899 // %add = phi i32 [%j, %bb0], [%i, %bb1] 1900 Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(), 1901 /*AllowRHSConstant*/ false); 1902 if (C) { 1903 SmallVector<Value *, 4> NewIncomingValues; 1904 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) { 1905 auto &Phi0Use = std::get<0>(T); 1906 auto &Phi1Use = std::get<1>(T); 1907 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use)) 1908 return false; 1909 Value *Phi0UseV = Phi0Use.get(); 1910 Value *Phi1UseV = Phi1Use.get(); 1911 if (Phi0UseV == C) 1912 NewIncomingValues.push_back(Phi1UseV); 1913 else if (Phi1UseV == C) 1914 NewIncomingValues.push_back(Phi0UseV); 1915 else 1916 return false; 1917 return true; 1918 }; 1919 1920 if (all_of(zip(Phi0->operands(), Phi1->operands()), 1921 CanFoldIncomingValuePair)) { 1922 PHINode *NewPhi = 1923 PHINode::Create(Phi0->getType(), Phi0->getNumOperands()); 1924 assert(NewIncomingValues.size() == Phi0->getNumOperands() && 1925 "The number of collected incoming values should equal the number " 1926 "of the original PHINode operands!"); 1927 for (unsigned I = 0; I < Phi0->getNumOperands(); I++) 1928 NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I)); 1929 return NewPhi; 1930 } 1931 } 1932 1933 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1934 return nullptr; 1935 1936 // Match a pair of incoming constants for one of the predecessor blocks. 1937 BasicBlock *ConstBB, *OtherBB; 1938 Constant *C0, *C1; 1939 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 1940 ConstBB = Phi0->getIncomingBlock(0); 1941 OtherBB = Phi0->getIncomingBlock(1); 1942 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 1943 ConstBB = Phi0->getIncomingBlock(1); 1944 OtherBB = Phi0->getIncomingBlock(0); 1945 } else { 1946 return nullptr; 1947 } 1948 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 1949 return nullptr; 1950 1951 // The block that we are hoisting to must reach here unconditionally. 1952 // Otherwise, we could be speculatively executing an expensive or 1953 // non-speculative op. 1954 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 1955 if (!PredBlockBranch || PredBlockBranch->isConditional() || 1956 !DT.isReachableFromEntry(OtherBB)) 1957 return nullptr; 1958 1959 // TODO: This check could be tightened to only apply to binops (div/rem) that 1960 // are not safe to speculatively execute. But that could allow hoisting 1961 // potentially expensive instructions (fdiv for example). 1962 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 1963 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 1964 return nullptr; 1965 1966 // Fold constants for the predecessor block with constant incoming values. 1967 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL); 1968 if (!NewC) 1969 return nullptr; 1970 1971 // Make a new binop in the predecessor block with the non-constant incoming 1972 // values. 1973 Builder.SetInsertPoint(PredBlockBranch); 1974 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 1975 Phi0->getIncomingValueForBlock(OtherBB), 1976 Phi1->getIncomingValueForBlock(OtherBB)); 1977 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 1978 NotFoldedNewBO->copyIRFlags(&BO); 1979 1980 // Replace the binop with a phi of the new values. The old phis are dead. 1981 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 1982 NewPhi->addIncoming(NewBO, OtherBB); 1983 NewPhi->addIncoming(NewC, ConstBB); 1984 return NewPhi; 1985 } 1986 1987 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1988 if (!isa<Constant>(I.getOperand(1))) 1989 return nullptr; 1990 1991 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1992 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1993 return NewSel; 1994 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1995 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1996 return NewPhi; 1997 } 1998 return nullptr; 1999 } 2000 2001 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 2002 // If this GEP has only 0 indices, it is the same pointer as 2003 // Src. If Src is not a trivial GEP too, don't combine 2004 // the indices. 2005 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 2006 !Src.hasOneUse()) 2007 return false; 2008 return true; 2009 } 2010 2011 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 2012 if (!isa<VectorType>(Inst.getType())) 2013 return nullptr; 2014 2015 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 2016 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 2017 assert(cast<VectorType>(LHS->getType())->getElementCount() == 2018 cast<VectorType>(Inst.getType())->getElementCount()); 2019 assert(cast<VectorType>(RHS->getType())->getElementCount() == 2020 cast<VectorType>(Inst.getType())->getElementCount()); 2021 2022 // If both operands of the binop are vector concatenations, then perform the 2023 // narrow binop on each pair of the source operands followed by concatenation 2024 // of the results. 2025 Value *L0, *L1, *R0, *R1; 2026 ArrayRef<int> Mask; 2027 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 2028 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 2029 LHS->hasOneUse() && RHS->hasOneUse() && 2030 cast<ShuffleVectorInst>(LHS)->isConcat() && 2031 cast<ShuffleVectorInst>(RHS)->isConcat()) { 2032 // This transform does not have the speculative execution constraint as 2033 // below because the shuffle is a concatenation. The new binops are 2034 // operating on exactly the same elements as the existing binop. 2035 // TODO: We could ease the mask requirement to allow different undef lanes, 2036 // but that requires an analysis of the binop-with-undef output value. 2037 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 2038 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 2039 BO->copyIRFlags(&Inst); 2040 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 2041 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 2042 BO->copyIRFlags(&Inst); 2043 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 2044 } 2045 2046 auto createBinOpReverse = [&](Value *X, Value *Y) { 2047 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName()); 2048 if (auto *BO = dyn_cast<BinaryOperator>(V)) 2049 BO->copyIRFlags(&Inst); 2050 Module *M = Inst.getModule(); 2051 Function *F = 2052 Intrinsic::getDeclaration(M, Intrinsic::vector_reverse, V->getType()); 2053 return CallInst::Create(F, V); 2054 }; 2055 2056 // NOTE: Reverse shuffles don't require the speculative execution protection 2057 // below because they don't affect which lanes take part in the computation. 2058 2059 Value *V1, *V2; 2060 if (match(LHS, m_VecReverse(m_Value(V1)))) { 2061 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2)) 2062 if (match(RHS, m_VecReverse(m_Value(V2))) && 2063 (LHS->hasOneUse() || RHS->hasOneUse() || 2064 (LHS == RHS && LHS->hasNUses(2)))) 2065 return createBinOpReverse(V1, V2); 2066 2067 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat)) 2068 if (LHS->hasOneUse() && isSplatValue(RHS)) 2069 return createBinOpReverse(V1, RHS); 2070 } 2071 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2)) 2072 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2))))) 2073 return createBinOpReverse(LHS, V2); 2074 2075 // It may not be safe to reorder shuffles and things like div, urem, etc. 2076 // because we may trap when executing those ops on unknown vector elements. 2077 // See PR20059. 2078 if (!isSafeToSpeculativelyExecute(&Inst)) 2079 return nullptr; 2080 2081 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 2082 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 2083 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 2084 BO->copyIRFlags(&Inst); 2085 return new ShuffleVectorInst(XY, M); 2086 }; 2087 2088 // If both arguments of the binary operation are shuffles that use the same 2089 // mask and shuffle within a single vector, move the shuffle after the binop. 2090 if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) && 2091 match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) && 2092 V1->getType() == V2->getType() && 2093 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 2094 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 2095 return createBinOpShuffle(V1, V2, Mask); 2096 } 2097 2098 // If both arguments of a commutative binop are select-shuffles that use the 2099 // same mask with commuted operands, the shuffles are unnecessary. 2100 if (Inst.isCommutative() && 2101 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 2102 match(RHS, 2103 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 2104 auto *LShuf = cast<ShuffleVectorInst>(LHS); 2105 auto *RShuf = cast<ShuffleVectorInst>(RHS); 2106 // TODO: Allow shuffles that contain undefs in the mask? 2107 // That is legal, but it reduces undef knowledge. 2108 // TODO: Allow arbitrary shuffles by shuffling after binop? 2109 // That might be legal, but we have to deal with poison. 2110 if (LShuf->isSelect() && 2111 !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) && 2112 RShuf->isSelect() && 2113 !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) { 2114 // Example: 2115 // LHS = shuffle V1, V2, <0, 5, 6, 3> 2116 // RHS = shuffle V2, V1, <0, 5, 6, 3> 2117 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 2118 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 2119 NewBO->copyIRFlags(&Inst); 2120 return NewBO; 2121 } 2122 } 2123 2124 // If one argument is a shuffle within one vector and the other is a constant, 2125 // try moving the shuffle after the binary operation. This canonicalization 2126 // intends to move shuffles closer to other shuffles and binops closer to 2127 // other binops, so they can be folded. It may also enable demanded elements 2128 // transforms. 2129 Constant *C; 2130 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 2131 if (InstVTy && 2132 match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(), 2133 m_Mask(Mask))), 2134 m_ImmConstant(C))) && 2135 cast<FixedVectorType>(V1->getType())->getNumElements() <= 2136 InstVTy->getNumElements()) { 2137 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 2138 "Shuffle should not change scalar type"); 2139 2140 // Find constant NewC that has property: 2141 // shuffle(NewC, ShMask) = C 2142 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 2143 // reorder is not possible. A 1-to-1 mapping is not required. Example: 2144 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 2145 bool ConstOp1 = isa<Constant>(RHS); 2146 ArrayRef<int> ShMask = Mask; 2147 unsigned SrcVecNumElts = 2148 cast<FixedVectorType>(V1->getType())->getNumElements(); 2149 PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType()); 2150 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, PoisonScalar); 2151 bool MayChange = true; 2152 unsigned NumElts = InstVTy->getNumElements(); 2153 for (unsigned I = 0; I < NumElts; ++I) { 2154 Constant *CElt = C->getAggregateElement(I); 2155 if (ShMask[I] >= 0) { 2156 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 2157 Constant *NewCElt = NewVecC[ShMask[I]]; 2158 // Bail out if: 2159 // 1. The constant vector contains a constant expression. 2160 // 2. The shuffle needs an element of the constant vector that can't 2161 // be mapped to a new constant vector. 2162 // 3. This is a widening shuffle that copies elements of V1 into the 2163 // extended elements (extending with poison is allowed). 2164 if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) || 2165 I >= SrcVecNumElts) { 2166 MayChange = false; 2167 break; 2168 } 2169 NewVecC[ShMask[I]] = CElt; 2170 } 2171 // If this is a widening shuffle, we must be able to extend with poison 2172 // elements. If the original binop does not produce a poison in the high 2173 // lanes, then this transform is not safe. 2174 // Similarly for poison lanes due to the shuffle mask, we can only 2175 // transform binops that preserve poison. 2176 // TODO: We could shuffle those non-poison constant values into the 2177 // result by using a constant vector (rather than an poison vector) 2178 // as operand 1 of the new binop, but that might be too aggressive 2179 // for target-independent shuffle creation. 2180 if (I >= SrcVecNumElts || ShMask[I] < 0) { 2181 Constant *MaybePoison = 2182 ConstOp1 2183 ? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL) 2184 : ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL); 2185 if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) { 2186 MayChange = false; 2187 break; 2188 } 2189 } 2190 } 2191 if (MayChange) { 2192 Constant *NewC = ConstantVector::get(NewVecC); 2193 // It may not be safe to execute a binop on a vector with poison elements 2194 // because the entire instruction can be folded to undef or create poison 2195 // that did not exist in the original code. 2196 // TODO: The shift case should not be necessary. 2197 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 2198 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 2199 2200 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 2201 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 2202 Value *NewLHS = ConstOp1 ? V1 : NewC; 2203 Value *NewRHS = ConstOp1 ? NewC : V1; 2204 return createBinOpShuffle(NewLHS, NewRHS, Mask); 2205 } 2206 } 2207 2208 // Try to reassociate to sink a splat shuffle after a binary operation. 2209 if (Inst.isAssociative() && Inst.isCommutative()) { 2210 // Canonicalize shuffle operand as LHS. 2211 if (isa<ShuffleVectorInst>(RHS)) 2212 std::swap(LHS, RHS); 2213 2214 Value *X; 2215 ArrayRef<int> MaskC; 2216 int SplatIndex; 2217 Value *Y, *OtherOp; 2218 if (!match(LHS, 2219 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 2220 !match(MaskC, m_SplatOrPoisonMask(SplatIndex)) || 2221 X->getType() != Inst.getType() || 2222 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 2223 return nullptr; 2224 2225 // FIXME: This may not be safe if the analysis allows undef elements. By 2226 // moving 'Y' before the splat shuffle, we are implicitly assuming 2227 // that it is not undef/poison at the splat index. 2228 if (isSplatValue(OtherOp, SplatIndex)) { 2229 std::swap(Y, OtherOp); 2230 } else if (!isSplatValue(Y, SplatIndex)) { 2231 return nullptr; 2232 } 2233 2234 // X and Y are splatted values, so perform the binary operation on those 2235 // values followed by a splat followed by the 2nd binary operation: 2236 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 2237 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 2238 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 2239 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 2240 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 2241 2242 // Intersect FMF on both new binops. Other (poison-generating) flags are 2243 // dropped to be safe. 2244 if (isa<FPMathOperator>(R)) { 2245 R->copyFastMathFlags(&Inst); 2246 R->andIRFlags(RHS); 2247 } 2248 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 2249 NewInstBO->copyIRFlags(R); 2250 return R; 2251 } 2252 2253 return nullptr; 2254 } 2255 2256 /// Try to narrow the width of a binop if at least 1 operand is an extend of 2257 /// of a value. This requires a potentially expensive known bits check to make 2258 /// sure the narrow op does not overflow. 2259 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 2260 // We need at least one extended operand. 2261 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 2262 2263 // If this is a sub, we swap the operands since we always want an extension 2264 // on the RHS. The LHS can be an extension or a constant. 2265 if (BO.getOpcode() == Instruction::Sub) 2266 std::swap(Op0, Op1); 2267 2268 Value *X; 2269 bool IsSext = match(Op0, m_SExt(m_Value(X))); 2270 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 2271 return nullptr; 2272 2273 // If both operands are the same extension from the same source type and we 2274 // can eliminate at least one (hasOneUse), this might work. 2275 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 2276 Value *Y; 2277 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 2278 cast<Operator>(Op1)->getOpcode() == CastOpc && 2279 (Op0->hasOneUse() || Op1->hasOneUse()))) { 2280 // If that did not match, see if we have a suitable constant operand. 2281 // Truncating and extending must produce the same constant. 2282 Constant *WideC; 2283 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 2284 return nullptr; 2285 Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc); 2286 if (!NarrowC) 2287 return nullptr; 2288 Y = NarrowC; 2289 } 2290 2291 // Swap back now that we found our operands. 2292 if (BO.getOpcode() == Instruction::Sub) 2293 std::swap(X, Y); 2294 2295 // Both operands have narrow versions. Last step: the math must not overflow 2296 // in the narrow width. 2297 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 2298 return nullptr; 2299 2300 // bo (ext X), (ext Y) --> ext (bo X, Y) 2301 // bo (ext X), C --> ext (bo X, C') 2302 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 2303 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 2304 if (IsSext) 2305 NewBinOp->setHasNoSignedWrap(); 2306 else 2307 NewBinOp->setHasNoUnsignedWrap(); 2308 } 2309 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 2310 } 2311 2312 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 2313 return GEP1.isInBounds() && GEP2.isInBounds(); 2314 } 2315 2316 /// Thread a GEP operation with constant indices through the constant true/false 2317 /// arms of a select. 2318 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 2319 InstCombiner::BuilderTy &Builder) { 2320 if (!GEP.hasAllConstantIndices()) 2321 return nullptr; 2322 2323 Instruction *Sel; 2324 Value *Cond; 2325 Constant *TrueC, *FalseC; 2326 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 2327 !match(Sel, 2328 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 2329 return nullptr; 2330 2331 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 2332 // Propagate 'inbounds' and metadata from existing instructions. 2333 // Note: using IRBuilder to create the constants for efficiency. 2334 SmallVector<Value *, 4> IndexC(GEP.indices()); 2335 GEPNoWrapFlags NW = GEP.getNoWrapFlags(); 2336 Type *Ty = GEP.getSourceElementType(); 2337 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", NW); 2338 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", NW); 2339 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 2340 } 2341 2342 // Canonicalization: 2343 // gep T, (gep i8, base, C1), (Index + C2) into 2344 // gep T, (gep i8, base, C1 + C2 * sizeof(T)), Index 2345 static Instruction *canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP, 2346 GEPOperator *Src, 2347 InstCombinerImpl &IC) { 2348 if (GEP.getNumIndices() != 1) 2349 return nullptr; 2350 auto &DL = IC.getDataLayout(); 2351 Value *Base; 2352 const APInt *C1; 2353 if (!match(Src, m_PtrAdd(m_Value(Base), m_APInt(C1)))) 2354 return nullptr; 2355 Value *VarIndex; 2356 const APInt *C2; 2357 Type *PtrTy = Src->getType()->getScalarType(); 2358 unsigned IndexSizeInBits = DL.getIndexTypeSizeInBits(PtrTy); 2359 if (!match(GEP.getOperand(1), m_AddLike(m_Value(VarIndex), m_APInt(C2)))) 2360 return nullptr; 2361 if (C1->getBitWidth() != IndexSizeInBits || 2362 C2->getBitWidth() != IndexSizeInBits) 2363 return nullptr; 2364 Type *BaseType = GEP.getSourceElementType(); 2365 if (isa<ScalableVectorType>(BaseType)) 2366 return nullptr; 2367 APInt TypeSize(IndexSizeInBits, DL.getTypeAllocSize(BaseType)); 2368 APInt NewOffset = TypeSize * *C2 + *C1; 2369 if (NewOffset.isZero() || 2370 (Src->hasOneUse() && GEP.getOperand(1)->hasOneUse())) { 2371 Value *GEPConst = 2372 IC.Builder.CreatePtrAdd(Base, IC.Builder.getInt(NewOffset)); 2373 return GetElementPtrInst::Create(BaseType, GEPConst, VarIndex); 2374 } 2375 2376 return nullptr; 2377 } 2378 2379 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 2380 GEPOperator *Src) { 2381 // Combine Indices - If the source pointer to this getelementptr instruction 2382 // is a getelementptr instruction with matching element type, combine the 2383 // indices of the two getelementptr instructions into a single instruction. 2384 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 2385 return nullptr; 2386 2387 if (auto *I = canonicalizeGEPOfConstGEPI8(GEP, Src, *this)) 2388 return I; 2389 2390 // For constant GEPs, use a more general offset-based folding approach. 2391 Type *PtrTy = Src->getType()->getScalarType(); 2392 if (GEP.hasAllConstantIndices() && 2393 (Src->hasOneUse() || Src->hasAllConstantIndices())) { 2394 // Split Src into a variable part and a constant suffix. 2395 gep_type_iterator GTI = gep_type_begin(*Src); 2396 Type *BaseType = GTI.getIndexedType(); 2397 bool IsFirstType = true; 2398 unsigned NumVarIndices = 0; 2399 for (auto Pair : enumerate(Src->indices())) { 2400 if (!isa<ConstantInt>(Pair.value())) { 2401 BaseType = GTI.getIndexedType(); 2402 IsFirstType = false; 2403 NumVarIndices = Pair.index() + 1; 2404 } 2405 ++GTI; 2406 } 2407 2408 // Determine the offset for the constant suffix of Src. 2409 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); 2410 if (NumVarIndices != Src->getNumIndices()) { 2411 // FIXME: getIndexedOffsetInType() does not handled scalable vectors. 2412 if (BaseType->isScalableTy()) 2413 return nullptr; 2414 2415 SmallVector<Value *> ConstantIndices; 2416 if (!IsFirstType) 2417 ConstantIndices.push_back( 2418 Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); 2419 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); 2420 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); 2421 } 2422 2423 // Add the offset for GEP (which is fully constant). 2424 if (!GEP.accumulateConstantOffset(DL, Offset)) 2425 return nullptr; 2426 2427 APInt OffsetOld = Offset; 2428 // Convert the total offset back into indices. 2429 SmallVector<APInt> ConstIndices = 2430 DL.getGEPIndicesForOffset(BaseType, Offset); 2431 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) { 2432 // If both GEP are constant-indexed, and cannot be merged in either way, 2433 // convert them to a GEP of i8. 2434 if (Src->hasAllConstantIndices()) 2435 return replaceInstUsesWith( 2436 GEP, Builder.CreateGEP( 2437 Builder.getInt8Ty(), Src->getOperand(0), 2438 Builder.getInt(OffsetOld), "", 2439 isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)))); 2440 return nullptr; 2441 } 2442 2443 bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)); 2444 SmallVector<Value *> Indices; 2445 append_range(Indices, drop_end(Src->indices(), 2446 Src->getNumIndices() - NumVarIndices)); 2447 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { 2448 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); 2449 // Even if the total offset is inbounds, we may end up representing it 2450 // by first performing a larger negative offset, and then a smaller 2451 // positive one. The large negative offset might go out of bounds. Only 2452 // preserve inbounds if all signs are the same. 2453 IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative(); 2454 } 2455 2456 return replaceInstUsesWith( 2457 GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0), 2458 Indices, "", IsInBounds)); 2459 } 2460 2461 if (Src->getResultElementType() != GEP.getSourceElementType()) 2462 return nullptr; 2463 2464 SmallVector<Value*, 8> Indices; 2465 2466 // Find out whether the last index in the source GEP is a sequential idx. 2467 bool EndsWithSequential = false; 2468 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2469 I != E; ++I) 2470 EndsWithSequential = I.isSequential(); 2471 2472 // Can we combine the two pointer arithmetics offsets? 2473 if (EndsWithSequential) { 2474 // Replace: gep (gep %P, long B), long A, ... 2475 // With: T = long A+B; gep %P, T, ... 2476 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2477 Value *GO1 = GEP.getOperand(1); 2478 2479 // If they aren't the same type, then the input hasn't been processed 2480 // by the loop above yet (which canonicalizes sequential index types to 2481 // intptr_t). Just avoid transforming this until the input has been 2482 // normalized. 2483 if (SO1->getType() != GO1->getType()) 2484 return nullptr; 2485 2486 Value *Sum = 2487 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2488 // Only do the combine when we are sure the cost after the 2489 // merge is never more than that before the merge. 2490 if (Sum == nullptr) 2491 return nullptr; 2492 2493 // Update the GEP in place if possible. 2494 if (Src->getNumOperands() == 2) { 2495 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2496 replaceOperand(GEP, 0, Src->getOperand(0)); 2497 replaceOperand(GEP, 1, Sum); 2498 return &GEP; 2499 } 2500 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2501 Indices.push_back(Sum); 2502 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2503 } else if (isa<Constant>(*GEP.idx_begin()) && 2504 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2505 Src->getNumOperands() != 1) { 2506 // Otherwise we can do the fold if the first index of the GEP is a zero 2507 Indices.append(Src->op_begin()+1, Src->op_end()); 2508 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2509 } 2510 2511 if (!Indices.empty()) 2512 return replaceInstUsesWith( 2513 GEP, Builder.CreateGEP( 2514 Src->getSourceElementType(), Src->getOperand(0), Indices, "", 2515 isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)))); 2516 2517 return nullptr; 2518 } 2519 2520 Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, 2521 BuilderTy *Builder, 2522 bool &DoesConsume, unsigned Depth) { 2523 static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1)); 2524 // ~(~(X)) -> X. 2525 Value *A, *B; 2526 if (match(V, m_Not(m_Value(A)))) { 2527 DoesConsume = true; 2528 return A; 2529 } 2530 2531 Constant *C; 2532 // Constants can be considered to be not'ed values. 2533 if (match(V, m_ImmConstant(C))) 2534 return ConstantExpr::getNot(C); 2535 2536 if (Depth++ >= MaxAnalysisRecursionDepth) 2537 return nullptr; 2538 2539 // The rest of the cases require that we invert all uses so don't bother 2540 // doing the analysis if we know we can't use the result. 2541 if (!WillInvertAllUses) 2542 return nullptr; 2543 2544 // Compares can be inverted if all of their uses are being modified to use 2545 // the ~V. 2546 if (auto *I = dyn_cast<CmpInst>(V)) { 2547 if (Builder != nullptr) 2548 return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0), 2549 I->getOperand(1)); 2550 return NonNull; 2551 } 2552 2553 // If `V` is of the form `A + B` then `-1 - V` can be folded into 2554 // `(-1 - B) - A` if we are willing to invert all of the uses. 2555 if (match(V, m_Add(m_Value(A), m_Value(B)))) { 2556 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2557 DoesConsume, Depth)) 2558 return Builder ? Builder->CreateSub(BV, A) : NonNull; 2559 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2560 DoesConsume, Depth)) 2561 return Builder ? Builder->CreateSub(AV, B) : NonNull; 2562 return nullptr; 2563 } 2564 2565 // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded 2566 // into `A ^ B` if we are willing to invert all of the uses. 2567 if (match(V, m_Xor(m_Value(A), m_Value(B)))) { 2568 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2569 DoesConsume, Depth)) 2570 return Builder ? Builder->CreateXor(A, BV) : NonNull; 2571 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2572 DoesConsume, Depth)) 2573 return Builder ? Builder->CreateXor(AV, B) : NonNull; 2574 return nullptr; 2575 } 2576 2577 // If `V` is of the form `B - A` then `-1 - V` can be folded into 2578 // `A + (-1 - B)` if we are willing to invert all of the uses. 2579 if (match(V, m_Sub(m_Value(A), m_Value(B)))) { 2580 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2581 DoesConsume, Depth)) 2582 return Builder ? Builder->CreateAdd(AV, B) : NonNull; 2583 return nullptr; 2584 } 2585 2586 // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded 2587 // into `A s>> B` if we are willing to invert all of the uses. 2588 if (match(V, m_AShr(m_Value(A), m_Value(B)))) { 2589 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2590 DoesConsume, Depth)) 2591 return Builder ? Builder->CreateAShr(AV, B) : NonNull; 2592 return nullptr; 2593 } 2594 2595 Value *Cond; 2596 // LogicOps are special in that we canonicalize them at the cost of an 2597 // instruction. 2598 bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) && 2599 !shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V)); 2600 // Selects/min/max with invertible operands are freely invertible 2601 if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) { 2602 bool LocalDoesConsume = DoesConsume; 2603 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr, 2604 LocalDoesConsume, Depth)) 2605 return nullptr; 2606 if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2607 LocalDoesConsume, Depth)) { 2608 DoesConsume = LocalDoesConsume; 2609 if (Builder != nullptr) { 2610 Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2611 DoesConsume, Depth); 2612 assert(NotB != nullptr && 2613 "Unable to build inverted value for known freely invertable op"); 2614 if (auto *II = dyn_cast<IntrinsicInst>(V)) 2615 return Builder->CreateBinaryIntrinsic( 2616 getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB); 2617 return Builder->CreateSelect(Cond, NotA, NotB); 2618 } 2619 return NonNull; 2620 } 2621 } 2622 2623 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2624 bool LocalDoesConsume = DoesConsume; 2625 SmallVector<std::pair<Value *, BasicBlock *>, 8> IncomingValues; 2626 for (Use &U : PN->operands()) { 2627 BasicBlock *IncomingBlock = PN->getIncomingBlock(U); 2628 Value *NewIncomingVal = getFreelyInvertedImpl( 2629 U.get(), /*WillInvertAllUses=*/false, 2630 /*Builder=*/nullptr, LocalDoesConsume, MaxAnalysisRecursionDepth - 1); 2631 if (NewIncomingVal == nullptr) 2632 return nullptr; 2633 // Make sure that we can safely erase the original PHI node. 2634 if (NewIncomingVal == V) 2635 return nullptr; 2636 if (Builder != nullptr) 2637 IncomingValues.emplace_back(NewIncomingVal, IncomingBlock); 2638 } 2639 2640 DoesConsume = LocalDoesConsume; 2641 if (Builder != nullptr) { 2642 IRBuilderBase::InsertPointGuard Guard(*Builder); 2643 Builder->SetInsertPoint(PN); 2644 PHINode *NewPN = 2645 Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues()); 2646 for (auto [Val, Pred] : IncomingValues) 2647 NewPN->addIncoming(Val, Pred); 2648 return NewPN; 2649 } 2650 return NonNull; 2651 } 2652 2653 if (match(V, m_SExtLike(m_Value(A)))) { 2654 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2655 DoesConsume, Depth)) 2656 return Builder ? Builder->CreateSExt(AV, V->getType()) : NonNull; 2657 return nullptr; 2658 } 2659 2660 if (match(V, m_Trunc(m_Value(A)))) { 2661 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2662 DoesConsume, Depth)) 2663 return Builder ? Builder->CreateTrunc(AV, V->getType()) : NonNull; 2664 return nullptr; 2665 } 2666 2667 // De Morgan's Laws: 2668 // (~(A | B)) -> (~A & ~B) 2669 // (~(A & B)) -> (~A | ~B) 2670 auto TryInvertAndOrUsingDeMorgan = [&](Instruction::BinaryOps Opcode, 2671 bool IsLogical, Value *A, 2672 Value *B) -> Value * { 2673 bool LocalDoesConsume = DoesConsume; 2674 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder=*/nullptr, 2675 LocalDoesConsume, Depth)) 2676 return nullptr; 2677 if (auto *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2678 LocalDoesConsume, Depth)) { 2679 auto *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2680 LocalDoesConsume, Depth); 2681 DoesConsume = LocalDoesConsume; 2682 if (IsLogical) 2683 return Builder ? Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull; 2684 return Builder ? Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull; 2685 } 2686 2687 return nullptr; 2688 }; 2689 2690 if (match(V, m_Or(m_Value(A), m_Value(B)))) 2691 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/false, A, 2692 B); 2693 2694 if (match(V, m_And(m_Value(A), m_Value(B)))) 2695 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/false, A, 2696 B); 2697 2698 if (match(V, m_LogicalOr(m_Value(A), m_Value(B)))) 2699 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/true, A, 2700 B); 2701 2702 if (match(V, m_LogicalAnd(m_Value(A), m_Value(B)))) 2703 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/true, A, 2704 B); 2705 2706 return nullptr; 2707 } 2708 2709 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2710 Value *PtrOp = GEP.getOperand(0); 2711 SmallVector<Value *, 8> Indices(GEP.indices()); 2712 Type *GEPType = GEP.getType(); 2713 Type *GEPEltType = GEP.getSourceElementType(); 2714 if (Value *V = 2715 simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.getNoWrapFlags(), 2716 SQ.getWithInstruction(&GEP))) 2717 return replaceInstUsesWith(GEP, V); 2718 2719 // For vector geps, use the generic demanded vector support. 2720 // Skip if GEP return type is scalable. The number of elements is unknown at 2721 // compile-time. 2722 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2723 auto VWidth = GEPFVTy->getNumElements(); 2724 APInt PoisonElts(VWidth, 0); 2725 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2726 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2727 PoisonElts)) { 2728 if (V != &GEP) 2729 return replaceInstUsesWith(GEP, V); 2730 return &GEP; 2731 } 2732 2733 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2734 // possible (decide on canonical form for pointer broadcast), 3) exploit 2735 // undef elements to decrease demanded bits 2736 } 2737 2738 // Eliminate unneeded casts for indices, and replace indices which displace 2739 // by multiples of a zero size type with zero. 2740 bool MadeChange = false; 2741 2742 // Index width may not be the same width as pointer width. 2743 // Data layout chooses the right type based on supported integer types. 2744 Type *NewScalarIndexTy = 2745 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2746 2747 gep_type_iterator GTI = gep_type_begin(GEP); 2748 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2749 ++I, ++GTI) { 2750 // Skip indices into struct types. 2751 if (GTI.isStruct()) 2752 continue; 2753 2754 Type *IndexTy = (*I)->getType(); 2755 Type *NewIndexType = 2756 IndexTy->isVectorTy() 2757 ? VectorType::get(NewScalarIndexTy, 2758 cast<VectorType>(IndexTy)->getElementCount()) 2759 : NewScalarIndexTy; 2760 2761 // If the element type has zero size then any index over it is equivalent 2762 // to an index of zero, so replace it with zero if it is not zero already. 2763 Type *EltTy = GTI.getIndexedType(); 2764 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2765 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2766 *I = Constant::getNullValue(NewIndexType); 2767 MadeChange = true; 2768 } 2769 2770 if (IndexTy != NewIndexType) { 2771 // If we are using a wider index than needed for this platform, shrink 2772 // it to what we need. If narrower, sign-extend it to what we need. 2773 // This explicit cast can make subsequent optimizations more obvious. 2774 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2775 MadeChange = true; 2776 } 2777 } 2778 if (MadeChange) 2779 return &GEP; 2780 2781 // Canonicalize constant GEPs to i8 type. 2782 if (!GEPEltType->isIntegerTy(8) && GEP.hasAllConstantIndices()) { 2783 APInt Offset(DL.getIndexTypeSizeInBits(GEPType), 0); 2784 if (GEP.accumulateConstantOffset(DL, Offset)) 2785 return replaceInstUsesWith( 2786 GEP, Builder.CreatePtrAdd(PtrOp, Builder.getInt(Offset), "", 2787 GEP.getNoWrapFlags())); 2788 } 2789 2790 // Canonicalize 2791 // - scalable GEPs to an explicit offset using the llvm.vscale intrinsic. 2792 // This has better support in BasicAA. 2793 // - gep i32 p, mul(O, C) -> gep i8, p, mul(O, C*4) to fold the two 2794 // multiplies together. 2795 if (GEPEltType->isScalableTy() || 2796 (!GEPEltType->isIntegerTy(8) && GEP.getNumIndices() == 1 && 2797 match(GEP.getOperand(1), 2798 m_OneUse(m_CombineOr(m_Mul(m_Value(), m_ConstantInt()), 2799 m_Shl(m_Value(), m_ConstantInt())))))) { 2800 Value *Offset = EmitGEPOffset(cast<GEPOperator>(&GEP)); 2801 return replaceInstUsesWith( 2802 GEP, Builder.CreatePtrAdd(PtrOp, Offset, "", GEP.getNoWrapFlags())); 2803 } 2804 2805 // Check to see if the inputs to the PHI node are getelementptr instructions. 2806 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2807 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2808 if (!Op1) 2809 return nullptr; 2810 2811 // Don't fold a GEP into itself through a PHI node. This can only happen 2812 // through the back-edge of a loop. Folding a GEP into itself means that 2813 // the value of the previous iteration needs to be stored in the meantime, 2814 // thus requiring an additional register variable to be live, but not 2815 // actually achieving anything (the GEP still needs to be executed once per 2816 // loop iteration). 2817 if (Op1 == &GEP) 2818 return nullptr; 2819 2820 int DI = -1; 2821 2822 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2823 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2824 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || 2825 Op1->getSourceElementType() != Op2->getSourceElementType()) 2826 return nullptr; 2827 2828 // As for Op1 above, don't try to fold a GEP into itself. 2829 if (Op2 == &GEP) 2830 return nullptr; 2831 2832 // Keep track of the type as we walk the GEP. 2833 Type *CurTy = nullptr; 2834 2835 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2836 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2837 return nullptr; 2838 2839 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2840 if (DI == -1) { 2841 // We have not seen any differences yet in the GEPs feeding the 2842 // PHI yet, so we record this one if it is allowed to be a 2843 // variable. 2844 2845 // The first two arguments can vary for any GEP, the rest have to be 2846 // static for struct slots 2847 if (J > 1) { 2848 assert(CurTy && "No current type?"); 2849 if (CurTy->isStructTy()) 2850 return nullptr; 2851 } 2852 2853 DI = J; 2854 } else { 2855 // The GEP is different by more than one input. While this could be 2856 // extended to support GEPs that vary by more than one variable it 2857 // doesn't make sense since it greatly increases the complexity and 2858 // would result in an R+R+R addressing mode which no backend 2859 // directly supports and would need to be broken into several 2860 // simpler instructions anyway. 2861 return nullptr; 2862 } 2863 } 2864 2865 // Sink down a layer of the type for the next iteration. 2866 if (J > 0) { 2867 if (J == 1) { 2868 CurTy = Op1->getSourceElementType(); 2869 } else { 2870 CurTy = 2871 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2872 } 2873 } 2874 } 2875 } 2876 2877 // If not all GEPs are identical we'll have to create a new PHI node. 2878 // Check that the old PHI node has only one use so that it will get 2879 // removed. 2880 if (DI != -1 && !PN->hasOneUse()) 2881 return nullptr; 2882 2883 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2884 if (DI == -1) { 2885 // All the GEPs feeding the PHI are identical. Clone one down into our 2886 // BB so that it can be merged with the current GEP. 2887 } else { 2888 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2889 // into the current block so it can be merged, and create a new PHI to 2890 // set that index. 2891 PHINode *NewPN; 2892 { 2893 IRBuilderBase::InsertPointGuard Guard(Builder); 2894 Builder.SetInsertPoint(PN); 2895 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2896 PN->getNumOperands()); 2897 } 2898 2899 for (auto &I : PN->operands()) 2900 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2901 PN->getIncomingBlock(I)); 2902 2903 NewGEP->setOperand(DI, NewPN); 2904 } 2905 2906 NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt()); 2907 return replaceOperand(GEP, 0, NewGEP); 2908 } 2909 2910 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2911 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2912 return I; 2913 2914 if (GEP.getNumIndices() == 1) { 2915 unsigned AS = GEP.getPointerAddressSpace(); 2916 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2917 DL.getIndexSizeInBits(AS)) { 2918 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue(); 2919 2920 if (TyAllocSize == 1) { 2921 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), 2922 // but only if the result pointer is only used as if it were an integer, 2923 // or both point to the same underlying object (otherwise provenance is 2924 // not necessarily retained). 2925 Value *X = GEP.getPointerOperand(); 2926 Value *Y; 2927 if (match(GEP.getOperand(1), 2928 m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2929 GEPType == Y->getType()) { 2930 bool HasSameUnderlyingObject = 2931 getUnderlyingObject(X) == getUnderlyingObject(Y); 2932 bool Changed = false; 2933 GEP.replaceUsesWithIf(Y, [&](Use &U) { 2934 bool ShouldReplace = HasSameUnderlyingObject || 2935 isa<ICmpInst>(U.getUser()) || 2936 isa<PtrToIntInst>(U.getUser()); 2937 Changed |= ShouldReplace; 2938 return ShouldReplace; 2939 }); 2940 return Changed ? &GEP : nullptr; 2941 } 2942 } else if (auto *ExactIns = 2943 dyn_cast<PossiblyExactOperator>(GEP.getOperand(1))) { 2944 // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V) 2945 Value *V; 2946 if (ExactIns->isExact()) { 2947 if ((has_single_bit(TyAllocSize) && 2948 match(GEP.getOperand(1), 2949 m_Shr(m_Value(V), 2950 m_SpecificInt(countr_zero(TyAllocSize))))) || 2951 match(GEP.getOperand(1), 2952 m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize)))) { 2953 return GetElementPtrInst::Create(Builder.getInt8Ty(), 2954 GEP.getPointerOperand(), V, 2955 GEP.getNoWrapFlags()); 2956 } 2957 } 2958 if (ExactIns->isExact() && ExactIns->hasOneUse()) { 2959 // Try to canonicalize non-i8 element type to i8 if the index is an 2960 // exact instruction. If the index is an exact instruction (div/shr) 2961 // with a constant RHS, we can fold the non-i8 element scale into the 2962 // div/shr (similiar to the mul case, just inverted). 2963 const APInt *C; 2964 std::optional<APInt> NewC; 2965 if (has_single_bit(TyAllocSize) && 2966 match(ExactIns, m_Shr(m_Value(V), m_APInt(C))) && 2967 C->uge(countr_zero(TyAllocSize))) 2968 NewC = *C - countr_zero(TyAllocSize); 2969 else if (match(ExactIns, m_UDiv(m_Value(V), m_APInt(C)))) { 2970 APInt Quot; 2971 uint64_t Rem; 2972 APInt::udivrem(*C, TyAllocSize, Quot, Rem); 2973 if (Rem == 0) 2974 NewC = Quot; 2975 } else if (match(ExactIns, m_SDiv(m_Value(V), m_APInt(C)))) { 2976 APInt Quot; 2977 int64_t Rem; 2978 APInt::sdivrem(*C, TyAllocSize, Quot, Rem); 2979 // For sdiv we need to make sure we arent creating INT_MIN / -1. 2980 if (!Quot.isAllOnes() && Rem == 0) 2981 NewC = Quot; 2982 } 2983 2984 if (NewC.has_value()) { 2985 Value *NewOp = Builder.CreateBinOp( 2986 static_cast<Instruction::BinaryOps>(ExactIns->getOpcode()), V, 2987 ConstantInt::get(V->getType(), *NewC)); 2988 cast<BinaryOperator>(NewOp)->setIsExact(); 2989 return GetElementPtrInst::Create(Builder.getInt8Ty(), 2990 GEP.getPointerOperand(), NewOp, 2991 GEP.getNoWrapFlags()); 2992 } 2993 } 2994 } 2995 } 2996 } 2997 // We do not handle pointer-vector geps here. 2998 if (GEPType->isVectorTy()) 2999 return nullptr; 3000 3001 if (GEP.getNumIndices() == 1) { 3002 // We can only preserve inbounds if the original gep is inbounds, the add 3003 // is nsw, and the add operands are non-negative. 3004 auto CanPreserveInBounds = [&](bool AddIsNSW, Value *Idx1, Value *Idx2) { 3005 SimplifyQuery Q = SQ.getWithInstruction(&GEP); 3006 return GEP.isInBounds() && AddIsNSW && isKnownNonNegative(Idx1, Q) && 3007 isKnownNonNegative(Idx2, Q); 3008 }; 3009 3010 // Try to replace ADD + GEP with GEP + GEP. 3011 Value *Idx1, *Idx2; 3012 if (match(GEP.getOperand(1), 3013 m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) { 3014 // %idx = add i64 %idx1, %idx2 3015 // %gep = getelementptr i32, ptr %ptr, i64 %idx 3016 // as: 3017 // %newptr = getelementptr i32, ptr %ptr, i64 %idx1 3018 // %newgep = getelementptr i32, ptr %newptr, i64 %idx2 3019 bool IsInBounds = CanPreserveInBounds( 3020 cast<OverflowingBinaryOperator>(GEP.getOperand(1))->hasNoSignedWrap(), 3021 Idx1, Idx2); 3022 auto *NewPtr = 3023 Builder.CreateGEP(GEP.getSourceElementType(), GEP.getPointerOperand(), 3024 Idx1, "", IsInBounds); 3025 return replaceInstUsesWith( 3026 GEP, Builder.CreateGEP(GEP.getSourceElementType(), NewPtr, Idx2, "", 3027 IsInBounds)); 3028 } 3029 ConstantInt *C; 3030 if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd( 3031 m_Value(Idx1), m_ConstantInt(C))))))) { 3032 // %add = add nsw i32 %idx1, idx2 3033 // %sidx = sext i32 %add to i64 3034 // %gep = getelementptr i32, ptr %ptr, i64 %sidx 3035 // as: 3036 // %newptr = getelementptr i32, ptr %ptr, i32 %idx1 3037 // %newgep = getelementptr i32, ptr %newptr, i32 idx2 3038 bool IsInBounds = CanPreserveInBounds( 3039 /*IsNSW=*/true, Idx1, C); 3040 auto *NewPtr = Builder.CreateGEP( 3041 GEP.getSourceElementType(), GEP.getPointerOperand(), 3042 Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()), "", 3043 IsInBounds); 3044 return replaceInstUsesWith( 3045 GEP, 3046 Builder.CreateGEP(GEP.getSourceElementType(), NewPtr, 3047 Builder.CreateSExt(C, GEP.getOperand(1)->getType()), 3048 "", IsInBounds)); 3049 } 3050 } 3051 3052 if (!GEP.isInBounds()) { 3053 unsigned IdxWidth = 3054 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 3055 APInt BasePtrOffset(IdxWidth, 0); 3056 Value *UnderlyingPtrOp = 3057 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 3058 BasePtrOffset); 3059 bool CanBeNull, CanBeFreed; 3060 uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes( 3061 DL, CanBeNull, CanBeFreed); 3062 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) { 3063 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 3064 BasePtrOffset.isNonNegative()) { 3065 APInt AllocSize(IdxWidth, DerefBytes); 3066 if (BasePtrOffset.ule(AllocSize)) { 3067 return GetElementPtrInst::CreateInBounds( 3068 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 3069 } 3070 } 3071 } 3072 } 3073 3074 if (Instruction *R = foldSelectGEP(GEP, Builder)) 3075 return R; 3076 3077 return nullptr; 3078 } 3079 3080 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 3081 Instruction *AI) { 3082 if (isa<ConstantPointerNull>(V)) 3083 return true; 3084 if (auto *LI = dyn_cast<LoadInst>(V)) 3085 return isa<GlobalVariable>(LI->getPointerOperand()); 3086 // Two distinct allocations will never be equal. 3087 return isAllocLikeFn(V, &TLI) && V != AI; 3088 } 3089 3090 /// Given a call CB which uses an address UsedV, return true if we can prove the 3091 /// call's only possible effect is storing to V. 3092 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 3093 const TargetLibraryInfo &TLI) { 3094 if (!CB.use_empty()) 3095 // TODO: add recursion if returned attribute is present 3096 return false; 3097 3098 if (CB.isTerminator()) 3099 // TODO: remove implementation restriction 3100 return false; 3101 3102 if (!CB.willReturn() || !CB.doesNotThrow()) 3103 return false; 3104 3105 // If the only possible side effect of the call is writing to the alloca, 3106 // and the result isn't used, we can safely remove any reads implied by the 3107 // call including those which might read the alloca itself. 3108 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 3109 return Dest && Dest->Ptr == UsedV; 3110 } 3111 3112 static bool isAllocSiteRemovable(Instruction *AI, 3113 SmallVectorImpl<WeakTrackingVH> &Users, 3114 const TargetLibraryInfo &TLI) { 3115 SmallVector<Instruction*, 4> Worklist; 3116 const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI); 3117 Worklist.push_back(AI); 3118 3119 do { 3120 Instruction *PI = Worklist.pop_back_val(); 3121 for (User *U : PI->users()) { 3122 Instruction *I = cast<Instruction>(U); 3123 switch (I->getOpcode()) { 3124 default: 3125 // Give up the moment we see something we can't handle. 3126 return false; 3127 3128 case Instruction::AddrSpaceCast: 3129 case Instruction::BitCast: 3130 case Instruction::GetElementPtr: 3131 Users.emplace_back(I); 3132 Worklist.push_back(I); 3133 continue; 3134 3135 case Instruction::ICmp: { 3136 ICmpInst *ICI = cast<ICmpInst>(I); 3137 // We can fold eq/ne comparisons with null to false/true, respectively. 3138 // We also fold comparisons in some conditions provided the alloc has 3139 // not escaped (see isNeverEqualToUnescapedAlloc). 3140 if (!ICI->isEquality()) 3141 return false; 3142 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 3143 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 3144 return false; 3145 3146 // Do not fold compares to aligned_alloc calls, as they may have to 3147 // return null in case the required alignment cannot be satisfied, 3148 // unless we can prove that both alignment and size are valid. 3149 auto AlignmentAndSizeKnownValid = [](CallBase *CB) { 3150 // Check if alignment and size of a call to aligned_alloc is valid, 3151 // that is alignment is a power-of-2 and the size is a multiple of the 3152 // alignment. 3153 const APInt *Alignment; 3154 const APInt *Size; 3155 return match(CB->getArgOperand(0), m_APInt(Alignment)) && 3156 match(CB->getArgOperand(1), m_APInt(Size)) && 3157 Alignment->isPowerOf2() && Size->urem(*Alignment).isZero(); 3158 }; 3159 auto *CB = dyn_cast<CallBase>(AI); 3160 LibFunc TheLibFunc; 3161 if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) && 3162 TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc && 3163 !AlignmentAndSizeKnownValid(CB)) 3164 return false; 3165 Users.emplace_back(I); 3166 continue; 3167 } 3168 3169 case Instruction::Call: 3170 // Ignore no-op and store intrinsics. 3171 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 3172 switch (II->getIntrinsicID()) { 3173 default: 3174 return false; 3175 3176 case Intrinsic::memmove: 3177 case Intrinsic::memcpy: 3178 case Intrinsic::memset: { 3179 MemIntrinsic *MI = cast<MemIntrinsic>(II); 3180 if (MI->isVolatile() || MI->getRawDest() != PI) 3181 return false; 3182 [[fallthrough]]; 3183 } 3184 case Intrinsic::assume: 3185 case Intrinsic::invariant_start: 3186 case Intrinsic::invariant_end: 3187 case Intrinsic::lifetime_start: 3188 case Intrinsic::lifetime_end: 3189 case Intrinsic::objectsize: 3190 Users.emplace_back(I); 3191 continue; 3192 case Intrinsic::launder_invariant_group: 3193 case Intrinsic::strip_invariant_group: 3194 Users.emplace_back(I); 3195 Worklist.push_back(I); 3196 continue; 3197 } 3198 } 3199 3200 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 3201 Users.emplace_back(I); 3202 continue; 3203 } 3204 3205 if (getFreedOperand(cast<CallBase>(I), &TLI) == PI && 3206 getAllocationFamily(I, &TLI) == Family) { 3207 assert(Family); 3208 Users.emplace_back(I); 3209 continue; 3210 } 3211 3212 if (getReallocatedOperand(cast<CallBase>(I)) == PI && 3213 getAllocationFamily(I, &TLI) == Family) { 3214 assert(Family); 3215 Users.emplace_back(I); 3216 Worklist.push_back(I); 3217 continue; 3218 } 3219 3220 return false; 3221 3222 case Instruction::Store: { 3223 StoreInst *SI = cast<StoreInst>(I); 3224 if (SI->isVolatile() || SI->getPointerOperand() != PI) 3225 return false; 3226 Users.emplace_back(I); 3227 continue; 3228 } 3229 } 3230 llvm_unreachable("missing a return?"); 3231 } 3232 } while (!Worklist.empty()); 3233 return true; 3234 } 3235 3236 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 3237 assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI)); 3238 3239 // If we have a malloc call which is only used in any amount of comparisons to 3240 // null and free calls, delete the calls and replace the comparisons with true 3241 // or false as appropriate. 3242 3243 // This is based on the principle that we can substitute our own allocation 3244 // function (which will never return null) rather than knowledge of the 3245 // specific function being called. In some sense this can change the permitted 3246 // outputs of a program (when we convert a malloc to an alloca, the fact that 3247 // the allocation is now on the stack is potentially visible, for example), 3248 // but we believe in a permissible manner. 3249 SmallVector<WeakTrackingVH, 64> Users; 3250 3251 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 3252 // before each store. 3253 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 3254 SmallVector<DbgVariableRecord *, 8> DVRs; 3255 std::unique_ptr<DIBuilder> DIB; 3256 if (isa<AllocaInst>(MI)) { 3257 findDbgUsers(DVIs, &MI, &DVRs); 3258 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 3259 } 3260 3261 if (isAllocSiteRemovable(&MI, Users, TLI)) { 3262 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 3263 // Lowering all @llvm.objectsize calls first because they may 3264 // use a bitcast/GEP of the alloca we are removing. 3265 if (!Users[i]) 3266 continue; 3267 3268 Instruction *I = cast<Instruction>(&*Users[i]); 3269 3270 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 3271 if (II->getIntrinsicID() == Intrinsic::objectsize) { 3272 SmallVector<Instruction *> InsertedInstructions; 3273 Value *Result = lowerObjectSizeCall( 3274 II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions); 3275 for (Instruction *Inserted : InsertedInstructions) 3276 Worklist.add(Inserted); 3277 replaceInstUsesWith(*I, Result); 3278 eraseInstFromFunction(*I); 3279 Users[i] = nullptr; // Skip examining in the next loop. 3280 } 3281 } 3282 } 3283 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 3284 if (!Users[i]) 3285 continue; 3286 3287 Instruction *I = cast<Instruction>(&*Users[i]); 3288 3289 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 3290 replaceInstUsesWith(*C, 3291 ConstantInt::get(Type::getInt1Ty(C->getContext()), 3292 C->isFalseWhenEqual())); 3293 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 3294 for (auto *DVI : DVIs) 3295 if (DVI->isAddressOfVariable()) 3296 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 3297 for (auto *DVR : DVRs) 3298 if (DVR->isAddressOfVariable()) 3299 ConvertDebugDeclareToDebugValue(DVR, SI, *DIB); 3300 } else { 3301 // Casts, GEP, or anything else: we're about to delete this instruction, 3302 // so it can not have any valid uses. 3303 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 3304 } 3305 eraseInstFromFunction(*I); 3306 } 3307 3308 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 3309 // Replace invoke with a NOP intrinsic to maintain the original CFG 3310 Module *M = II->getModule(); 3311 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 3312 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 3313 std::nullopt, "", II->getParent()); 3314 } 3315 3316 // Remove debug intrinsics which describe the value contained within the 3317 // alloca. In addition to removing dbg.{declare,addr} which simply point to 3318 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 3319 // 3320 // ``` 3321 // define void @foo(i32 %0) { 3322 // %a = alloca i32 ; Deleted. 3323 // store i32 %0, i32* %a 3324 // dbg.value(i32 %0, "arg0") ; Not deleted. 3325 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 3326 // call void @trivially_inlinable_no_op(i32* %a) 3327 // ret void 3328 // } 3329 // ``` 3330 // 3331 // This may not be required if we stop describing the contents of allocas 3332 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 3333 // the LowerDbgDeclare utility. 3334 // 3335 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 3336 // "arg0" dbg.value may be stale after the call. However, failing to remove 3337 // the DW_OP_deref dbg.value causes large gaps in location coverage. 3338 // 3339 // FIXME: the Assignment Tracking project has now likely made this 3340 // redundant (and it's sometimes harmful). 3341 for (auto *DVI : DVIs) 3342 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 3343 DVI->eraseFromParent(); 3344 for (auto *DVR : DVRs) 3345 if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref()) 3346 DVR->eraseFromParent(); 3347 3348 return eraseInstFromFunction(MI); 3349 } 3350 return nullptr; 3351 } 3352 3353 /// Move the call to free before a NULL test. 3354 /// 3355 /// Check if this free is accessed after its argument has been test 3356 /// against NULL (property 0). 3357 /// If yes, it is legal to move this call in its predecessor block. 3358 /// 3359 /// The move is performed only if the block containing the call to free 3360 /// will be removed, i.e.: 3361 /// 1. it has only one predecessor P, and P has two successors 3362 /// 2. it contains the call, noops, and an unconditional branch 3363 /// 3. its successor is the same as its predecessor's successor 3364 /// 3365 /// The profitability is out-of concern here and this function should 3366 /// be called only if the caller knows this transformation would be 3367 /// profitable (e.g., for code size). 3368 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 3369 const DataLayout &DL) { 3370 Value *Op = FI.getArgOperand(0); 3371 BasicBlock *FreeInstrBB = FI.getParent(); 3372 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 3373 3374 // Validate part of constraint #1: Only one predecessor 3375 // FIXME: We can extend the number of predecessor, but in that case, we 3376 // would duplicate the call to free in each predecessor and it may 3377 // not be profitable even for code size. 3378 if (!PredBB) 3379 return nullptr; 3380 3381 // Validate constraint #2: Does this block contains only the call to 3382 // free, noops, and an unconditional branch? 3383 BasicBlock *SuccBB; 3384 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 3385 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 3386 return nullptr; 3387 3388 // If there are only 2 instructions in the block, at this point, 3389 // this is the call to free and unconditional. 3390 // If there are more than 2 instructions, check that they are noops 3391 // i.e., they won't hurt the performance of the generated code. 3392 if (FreeInstrBB->size() != 2) { 3393 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 3394 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 3395 continue; 3396 auto *Cast = dyn_cast<CastInst>(&Inst); 3397 if (!Cast || !Cast->isNoopCast(DL)) 3398 return nullptr; 3399 } 3400 } 3401 // Validate the rest of constraint #1 by matching on the pred branch. 3402 Instruction *TI = PredBB->getTerminator(); 3403 BasicBlock *TrueBB, *FalseBB; 3404 ICmpInst::Predicate Pred; 3405 if (!match(TI, m_Br(m_ICmp(Pred, 3406 m_CombineOr(m_Specific(Op), 3407 m_Specific(Op->stripPointerCasts())), 3408 m_Zero()), 3409 TrueBB, FalseBB))) 3410 return nullptr; 3411 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 3412 return nullptr; 3413 3414 // Validate constraint #3: Ensure the null case just falls through. 3415 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 3416 return nullptr; 3417 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 3418 "Broken CFG: missing edge from predecessor to successor"); 3419 3420 // At this point, we know that everything in FreeInstrBB can be moved 3421 // before TI. 3422 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 3423 if (&Instr == FreeInstrBBTerminator) 3424 break; 3425 Instr.moveBeforePreserving(TI); 3426 } 3427 assert(FreeInstrBB->size() == 1 && 3428 "Only the branch instruction should remain"); 3429 3430 // Now that we've moved the call to free before the NULL check, we have to 3431 // remove any attributes on its parameter that imply it's non-null, because 3432 // those attributes might have only been valid because of the NULL check, and 3433 // we can get miscompiles if we keep them. This is conservative if non-null is 3434 // also implied by something other than the NULL check, but it's guaranteed to 3435 // be correct, and the conservativeness won't matter in practice, since the 3436 // attributes are irrelevant for the call to free itself and the pointer 3437 // shouldn't be used after the call. 3438 AttributeList Attrs = FI.getAttributes(); 3439 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 3440 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 3441 if (Dereferenceable.isValid()) { 3442 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 3443 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 3444 Attribute::Dereferenceable); 3445 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 3446 } 3447 FI.setAttributes(Attrs); 3448 3449 return &FI; 3450 } 3451 3452 Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) { 3453 // free undef -> unreachable. 3454 if (isa<UndefValue>(Op)) { 3455 // Leave a marker since we can't modify the CFG here. 3456 CreateNonTerminatorUnreachable(&FI); 3457 return eraseInstFromFunction(FI); 3458 } 3459 3460 // If we have 'free null' delete the instruction. This can happen in stl code 3461 // when lots of inlining happens. 3462 if (isa<ConstantPointerNull>(Op)) 3463 return eraseInstFromFunction(FI); 3464 3465 // If we had free(realloc(...)) with no intervening uses, then eliminate the 3466 // realloc() entirely. 3467 CallInst *CI = dyn_cast<CallInst>(Op); 3468 if (CI && CI->hasOneUse()) 3469 if (Value *ReallocatedOp = getReallocatedOperand(CI)) 3470 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp)); 3471 3472 // If we optimize for code size, try to move the call to free before the null 3473 // test so that simplify cfg can remove the empty block and dead code 3474 // elimination the branch. I.e., helps to turn something like: 3475 // if (foo) free(foo); 3476 // into 3477 // free(foo); 3478 // 3479 // Note that we can only do this for 'free' and not for any flavor of 3480 // 'operator delete'; there is no 'operator delete' symbol for which we are 3481 // permitted to invent a call, even if we're passing in a null pointer. 3482 if (MinimizeSize) { 3483 LibFunc Func; 3484 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 3485 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 3486 return I; 3487 } 3488 3489 return nullptr; 3490 } 3491 3492 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3493 Value *RetVal = RI.getReturnValue(); 3494 if (!RetVal || !AttributeFuncs::isNoFPClassCompatibleType(RetVal->getType())) 3495 return nullptr; 3496 3497 Function *F = RI.getFunction(); 3498 FPClassTest ReturnClass = F->getAttributes().getRetNoFPClass(); 3499 if (ReturnClass == fcNone) 3500 return nullptr; 3501 3502 KnownFPClass KnownClass; 3503 Value *Simplified = 3504 SimplifyDemandedUseFPClass(RetVal, ~ReturnClass, KnownClass, 0, &RI); 3505 if (!Simplified) 3506 return nullptr; 3507 3508 return ReturnInst::Create(RI.getContext(), Simplified); 3509 } 3510 3511 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 3512 bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) { 3513 // Try to remove the previous instruction if it must lead to unreachable. 3514 // This includes instructions like stores and "llvm.assume" that may not get 3515 // removed by simple dead code elimination. 3516 bool Changed = false; 3517 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3518 // While we theoretically can erase EH, that would result in a block that 3519 // used to start with an EH no longer starting with EH, which is invalid. 3520 // To make it valid, we'd need to fixup predecessors to no longer refer to 3521 // this block, but that changes CFG, which is not allowed in InstCombine. 3522 if (Prev->isEHPad()) 3523 break; // Can not drop any more instructions. We're done here. 3524 3525 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3526 break; // Can not drop any more instructions. We're done here. 3527 // Otherwise, this instruction can be freely erased, 3528 // even if it is not side-effect free. 3529 3530 // A value may still have uses before we process it here (for example, in 3531 // another unreachable block), so convert those to poison. 3532 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3533 eraseInstFromFunction(*Prev); 3534 Changed = true; 3535 } 3536 return Changed; 3537 } 3538 3539 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3540 removeInstructionsBeforeUnreachable(I); 3541 return nullptr; 3542 } 3543 3544 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3545 assert(BI.isUnconditional() && "Only for unconditional branches."); 3546 3547 // If this store is the second-to-last instruction in the basic block 3548 // (excluding debug info and bitcasts of pointers) and if the block ends with 3549 // an unconditional branch, try to move the store to the successor block. 3550 3551 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3552 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3553 return BBI->isDebugOrPseudoInst() || 3554 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3555 }; 3556 3557 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3558 do { 3559 if (BBI != FirstInstr) 3560 --BBI; 3561 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3562 3563 return dyn_cast<StoreInst>(BBI); 3564 }; 3565 3566 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3567 if (mergeStoreIntoSuccessor(*SI)) 3568 return &BI; 3569 3570 return nullptr; 3571 } 3572 3573 void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To, 3574 SmallVectorImpl<BasicBlock *> &Worklist) { 3575 if (!DeadEdges.insert({From, To}).second) 3576 return; 3577 3578 // Replace phi node operands in successor with poison. 3579 for (PHINode &PN : To->phis()) 3580 for (Use &U : PN.incoming_values()) 3581 if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) { 3582 replaceUse(U, PoisonValue::get(PN.getType())); 3583 addToWorklist(&PN); 3584 MadeIRChange = true; 3585 } 3586 3587 Worklist.push_back(To); 3588 } 3589 3590 // Under the assumption that I is unreachable, remove it and following 3591 // instructions. Changes are reported directly to MadeIRChange. 3592 void InstCombinerImpl::handleUnreachableFrom( 3593 Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) { 3594 BasicBlock *BB = I->getParent(); 3595 for (Instruction &Inst : make_early_inc_range( 3596 make_range(std::next(BB->getTerminator()->getReverseIterator()), 3597 std::next(I->getReverseIterator())))) { 3598 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) { 3599 replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType())); 3600 MadeIRChange = true; 3601 } 3602 if (Inst.isEHPad() || Inst.getType()->isTokenTy()) 3603 continue; 3604 // RemoveDIs: erase debug-info on this instruction manually. 3605 Inst.dropDbgRecords(); 3606 eraseInstFromFunction(Inst); 3607 MadeIRChange = true; 3608 } 3609 3610 SmallVector<Value *> Changed; 3611 if (handleUnreachableTerminator(BB->getTerminator(), Changed)) { 3612 MadeIRChange = true; 3613 for (Value *V : Changed) 3614 addToWorklist(cast<Instruction>(V)); 3615 } 3616 3617 // Handle potentially dead successors. 3618 for (BasicBlock *Succ : successors(BB)) 3619 addDeadEdge(BB, Succ, Worklist); 3620 } 3621 3622 void InstCombinerImpl::handlePotentiallyDeadBlocks( 3623 SmallVectorImpl<BasicBlock *> &Worklist) { 3624 while (!Worklist.empty()) { 3625 BasicBlock *BB = Worklist.pop_back_val(); 3626 if (!all_of(predecessors(BB), [&](BasicBlock *Pred) { 3627 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); 3628 })) 3629 continue; 3630 3631 handleUnreachableFrom(&BB->front(), Worklist); 3632 } 3633 } 3634 3635 void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB, 3636 BasicBlock *LiveSucc) { 3637 SmallVector<BasicBlock *> Worklist; 3638 for (BasicBlock *Succ : successors(BB)) { 3639 // The live successor isn't dead. 3640 if (Succ == LiveSucc) 3641 continue; 3642 3643 addDeadEdge(BB, Succ, Worklist); 3644 } 3645 3646 handlePotentiallyDeadBlocks(Worklist); 3647 } 3648 3649 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3650 if (BI.isUnconditional()) 3651 return visitUnconditionalBranchInst(BI); 3652 3653 // Change br (not X), label True, label False to: br X, label False, True 3654 Value *Cond = BI.getCondition(); 3655 Value *X; 3656 if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) { 3657 // Swap Destinations and condition... 3658 BI.swapSuccessors(); 3659 if (BPI) 3660 BPI->swapSuccEdgesProbabilities(BI.getParent()); 3661 return replaceOperand(BI, 0, X); 3662 } 3663 3664 // Canonicalize logical-and-with-invert as logical-or-with-invert. 3665 // This is done by inverting the condition and swapping successors: 3666 // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T 3667 Value *Y; 3668 if (isa<SelectInst>(Cond) && 3669 match(Cond, 3670 m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) { 3671 Value *NotX = Builder.CreateNot(X, "not." + X->getName()); 3672 Value *Or = Builder.CreateLogicalOr(NotX, Y); 3673 BI.swapSuccessors(); 3674 if (BPI) 3675 BPI->swapSuccEdgesProbabilities(BI.getParent()); 3676 return replaceOperand(BI, 0, Or); 3677 } 3678 3679 // If the condition is irrelevant, remove the use so that other 3680 // transforms on the condition become more effective. 3681 if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1)) 3682 return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType())); 3683 3684 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3685 CmpInst::Predicate Pred; 3686 if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) && 3687 !isCanonicalPredicate(Pred)) { 3688 // Swap destinations and condition. 3689 auto *Cmp = cast<CmpInst>(Cond); 3690 Cmp->setPredicate(CmpInst::getInversePredicate(Pred)); 3691 BI.swapSuccessors(); 3692 if (BPI) 3693 BPI->swapSuccEdgesProbabilities(BI.getParent()); 3694 Worklist.push(Cmp); 3695 return &BI; 3696 } 3697 3698 if (isa<UndefValue>(Cond)) { 3699 handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr); 3700 return nullptr; 3701 } 3702 if (auto *CI = dyn_cast<ConstantInt>(Cond)) { 3703 handlePotentiallyDeadSuccessors(BI.getParent(), 3704 BI.getSuccessor(!CI->getZExtValue())); 3705 return nullptr; 3706 } 3707 3708 DC.registerBranch(&BI); 3709 return nullptr; 3710 } 3711 3712 // Replaces (switch (select cond, X, C)/(select cond, C, X)) with (switch X) if 3713 // we can prove that both (switch C) and (switch X) go to the default when cond 3714 // is false/true. 3715 static Value *simplifySwitchOnSelectUsingRanges(SwitchInst &SI, 3716 SelectInst *Select, 3717 bool IsTrueArm) { 3718 unsigned CstOpIdx = IsTrueArm ? 1 : 2; 3719 auto *C = dyn_cast<ConstantInt>(Select->getOperand(CstOpIdx)); 3720 if (!C) 3721 return nullptr; 3722 3723 BasicBlock *CstBB = SI.findCaseValue(C)->getCaseSuccessor(); 3724 if (CstBB != SI.getDefaultDest()) 3725 return nullptr; 3726 Value *X = Select->getOperand(3 - CstOpIdx); 3727 ICmpInst::Predicate Pred; 3728 const APInt *RHSC; 3729 if (!match(Select->getCondition(), 3730 m_ICmp(Pred, m_Specific(X), m_APInt(RHSC)))) 3731 return nullptr; 3732 if (IsTrueArm) 3733 Pred = ICmpInst::getInversePredicate(Pred); 3734 3735 // See whether we can replace the select with X 3736 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *RHSC); 3737 for (auto Case : SI.cases()) 3738 if (!CR.contains(Case.getCaseValue()->getValue())) 3739 return nullptr; 3740 3741 return X; 3742 } 3743 3744 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3745 Value *Cond = SI.getCondition(); 3746 Value *Op0; 3747 ConstantInt *AddRHS; 3748 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3749 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3750 for (auto Case : SI.cases()) { 3751 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3752 assert(isa<ConstantInt>(NewCase) && 3753 "Result of expression should be constant"); 3754 Case.setValue(cast<ConstantInt>(NewCase)); 3755 } 3756 return replaceOperand(SI, 0, Op0); 3757 } 3758 3759 ConstantInt *SubLHS; 3760 if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) { 3761 // Change 'switch (1-X) case 1:' into 'switch (X) case 0'. 3762 for (auto Case : SI.cases()) { 3763 Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue()); 3764 assert(isa<ConstantInt>(NewCase) && 3765 "Result of expression should be constant"); 3766 Case.setValue(cast<ConstantInt>(NewCase)); 3767 } 3768 return replaceOperand(SI, 0, Op0); 3769 } 3770 3771 uint64_t ShiftAmt; 3772 if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) && 3773 ShiftAmt < Op0->getType()->getScalarSizeInBits() && 3774 all_of(SI.cases(), [&](const auto &Case) { 3775 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt; 3776 })) { 3777 // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'. 3778 OverflowingBinaryOperator *Shl = cast<OverflowingBinaryOperator>(Cond); 3779 if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() || 3780 Shl->hasOneUse()) { 3781 Value *NewCond = Op0; 3782 if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) { 3783 // If the shift may wrap, we need to mask off the shifted bits. 3784 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 3785 NewCond = Builder.CreateAnd( 3786 Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt)); 3787 } 3788 for (auto Case : SI.cases()) { 3789 const APInt &CaseVal = Case.getCaseValue()->getValue(); 3790 APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt) 3791 : CaseVal.lshr(ShiftAmt); 3792 Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase)); 3793 } 3794 return replaceOperand(SI, 0, NewCond); 3795 } 3796 } 3797 3798 // Fold switch(zext/sext(X)) into switch(X) if possible. 3799 if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) { 3800 bool IsZExt = isa<ZExtInst>(Cond); 3801 Type *SrcTy = Op0->getType(); 3802 unsigned NewWidth = SrcTy->getScalarSizeInBits(); 3803 3804 if (all_of(SI.cases(), [&](const auto &Case) { 3805 const APInt &CaseVal = Case.getCaseValue()->getValue(); 3806 return IsZExt ? CaseVal.isIntN(NewWidth) 3807 : CaseVal.isSignedIntN(NewWidth); 3808 })) { 3809 for (auto &Case : SI.cases()) { 3810 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3811 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3812 } 3813 return replaceOperand(SI, 0, Op0); 3814 } 3815 } 3816 3817 // Fold switch(select cond, X, Y) into switch(X/Y) if possible 3818 if (auto *Select = dyn_cast<SelectInst>(Cond)) { 3819 if (Value *V = 3820 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/true)) 3821 return replaceOperand(SI, 0, V); 3822 if (Value *V = 3823 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/false)) 3824 return replaceOperand(SI, 0, V); 3825 } 3826 3827 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3828 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3829 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3830 3831 // Compute the number of leading bits we can ignore. 3832 // TODO: A better way to determine this would use ComputeNumSignBits(). 3833 for (const auto &C : SI.cases()) { 3834 LeadingKnownZeros = 3835 std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero()); 3836 LeadingKnownOnes = 3837 std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one()); 3838 } 3839 3840 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3841 3842 // Shrink the condition operand if the new type is smaller than the old type. 3843 // But do not shrink to a non-standard type, because backend can't generate 3844 // good code for that yet. 3845 // TODO: We can make it aggressive again after fixing PR39569. 3846 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3847 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3848 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3849 Builder.SetInsertPoint(&SI); 3850 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3851 3852 for (auto Case : SI.cases()) { 3853 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3854 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3855 } 3856 return replaceOperand(SI, 0, NewCond); 3857 } 3858 3859 if (isa<UndefValue>(Cond)) { 3860 handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr); 3861 return nullptr; 3862 } 3863 if (auto *CI = dyn_cast<ConstantInt>(Cond)) { 3864 handlePotentiallyDeadSuccessors(SI.getParent(), 3865 SI.findCaseValue(CI)->getCaseSuccessor()); 3866 return nullptr; 3867 } 3868 3869 return nullptr; 3870 } 3871 3872 Instruction * 3873 InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) { 3874 auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand()); 3875 if (!WO) 3876 return nullptr; 3877 3878 Intrinsic::ID OvID = WO->getIntrinsicID(); 3879 const APInt *C = nullptr; 3880 if (match(WO->getRHS(), m_APIntAllowPoison(C))) { 3881 if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow || 3882 OvID == Intrinsic::umul_with_overflow)) { 3883 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X 3884 if (C->isAllOnes()) 3885 return BinaryOperator::CreateNeg(WO->getLHS()); 3886 // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n 3887 if (C->isPowerOf2()) { 3888 return BinaryOperator::CreateShl( 3889 WO->getLHS(), 3890 ConstantInt::get(WO->getLHS()->getType(), C->logBase2())); 3891 } 3892 } 3893 } 3894 3895 // We're extracting from an overflow intrinsic. See if we're the only user. 3896 // That allows us to simplify multiple result intrinsics to simpler things 3897 // that just get one value. 3898 if (!WO->hasOneUse()) 3899 return nullptr; 3900 3901 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3902 // and replace it with a traditional binary instruction. 3903 if (*EV.idx_begin() == 0) { 3904 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3905 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3906 // Replace the old instruction's uses with poison. 3907 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3908 eraseInstFromFunction(*WO); 3909 return BinaryOperator::Create(BinOp, LHS, RHS); 3910 } 3911 3912 assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst"); 3913 3914 // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS. 3915 if (OvID == Intrinsic::usub_with_overflow) 3916 return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS()); 3917 3918 // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but 3919 // +1 is not possible because we assume signed values. 3920 if (OvID == Intrinsic::smul_with_overflow && 3921 WO->getLHS()->getType()->isIntOrIntVectorTy(1)) 3922 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS()); 3923 3924 // extractvalue (umul_with_overflow X, X), 1 -> X u> 2^(N/2)-1 3925 if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) { 3926 unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits(); 3927 // Only handle even bitwidths for performance reasons. 3928 if (BitWidth % 2 == 0) 3929 return new ICmpInst( 3930 ICmpInst::ICMP_UGT, WO->getLHS(), 3931 ConstantInt::get(WO->getLHS()->getType(), 3932 APInt::getLowBitsSet(BitWidth, BitWidth / 2))); 3933 } 3934 3935 // If only the overflow result is used, and the right hand side is a 3936 // constant (or constant splat), we can remove the intrinsic by directly 3937 // checking for overflow. 3938 if (C) { 3939 // Compute the no-wrap range for LHS given RHS=C, then construct an 3940 // equivalent icmp, potentially using an offset. 3941 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 3942 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 3943 3944 CmpInst::Predicate Pred; 3945 APInt NewRHSC, Offset; 3946 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3947 auto *OpTy = WO->getRHS()->getType(); 3948 auto *NewLHS = WO->getLHS(); 3949 if (Offset != 0) 3950 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3951 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3952 ConstantInt::get(OpTy, NewRHSC)); 3953 } 3954 3955 return nullptr; 3956 } 3957 3958 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3959 Value *Agg = EV.getAggregateOperand(); 3960 3961 if (!EV.hasIndices()) 3962 return replaceInstUsesWith(EV, Agg); 3963 3964 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), 3965 SQ.getWithInstruction(&EV))) 3966 return replaceInstUsesWith(EV, V); 3967 3968 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3969 // We're extracting from an insertvalue instruction, compare the indices 3970 const unsigned *exti, *exte, *insi, *inse; 3971 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3972 exte = EV.idx_end(), inse = IV->idx_end(); 3973 exti != exte && insi != inse; 3974 ++exti, ++insi) { 3975 if (*insi != *exti) 3976 // The insert and extract both reference distinctly different elements. 3977 // This means the extract is not influenced by the insert, and we can 3978 // replace the aggregate operand of the extract with the aggregate 3979 // operand of the insert. i.e., replace 3980 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3981 // %E = extractvalue { i32, { i32 } } %I, 0 3982 // with 3983 // %E = extractvalue { i32, { i32 } } %A, 0 3984 return ExtractValueInst::Create(IV->getAggregateOperand(), 3985 EV.getIndices()); 3986 } 3987 if (exti == exte && insi == inse) 3988 // Both iterators are at the end: Index lists are identical. Replace 3989 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3990 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3991 // with "i32 42" 3992 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3993 if (exti == exte) { 3994 // The extract list is a prefix of the insert list. i.e. replace 3995 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3996 // %E = extractvalue { i32, { i32 } } %I, 1 3997 // with 3998 // %X = extractvalue { i32, { i32 } } %A, 1 3999 // %E = insertvalue { i32 } %X, i32 42, 0 4000 // by switching the order of the insert and extract (though the 4001 // insertvalue should be left in, since it may have other uses). 4002 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 4003 EV.getIndices()); 4004 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 4005 ArrayRef(insi, inse)); 4006 } 4007 if (insi == inse) 4008 // The insert list is a prefix of the extract list 4009 // We can simply remove the common indices from the extract and make it 4010 // operate on the inserted value instead of the insertvalue result. 4011 // i.e., replace 4012 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 4013 // %E = extractvalue { i32, { i32 } } %I, 1, 0 4014 // with 4015 // %E extractvalue { i32 } { i32 42 }, 0 4016 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 4017 ArrayRef(exti, exte)); 4018 } 4019 4020 if (Instruction *R = foldExtractOfOverflowIntrinsic(EV)) 4021 return R; 4022 4023 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) { 4024 // Bail out if the aggregate contains scalable vector type 4025 if (auto *STy = dyn_cast<StructType>(Agg->getType()); 4026 STy && STy->containsScalableVectorType()) 4027 return nullptr; 4028 4029 // If the (non-volatile) load only has one use, we can rewrite this to a 4030 // load from a GEP. This reduces the size of the load. If a load is used 4031 // only by extractvalue instructions then this either must have been 4032 // optimized before, or it is a struct with padding, in which case we 4033 // don't want to do the transformation as it loses padding knowledge. 4034 if (L->isSimple() && L->hasOneUse()) { 4035 // extractvalue has integer indices, getelementptr has Value*s. Convert. 4036 SmallVector<Value*, 4> Indices; 4037 // Prefix an i32 0 since we need the first element. 4038 Indices.push_back(Builder.getInt32(0)); 4039 for (unsigned Idx : EV.indices()) 4040 Indices.push_back(Builder.getInt32(Idx)); 4041 4042 // We need to insert these at the location of the old load, not at that of 4043 // the extractvalue. 4044 Builder.SetInsertPoint(L); 4045 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 4046 L->getPointerOperand(), Indices); 4047 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 4048 // Whatever aliasing information we had for the orignal load must also 4049 // hold for the smaller load, so propagate the annotations. 4050 NL->setAAMetadata(L->getAAMetadata()); 4051 // Returning the load directly will cause the main loop to insert it in 4052 // the wrong spot, so use replaceInstUsesWith(). 4053 return replaceInstUsesWith(EV, NL); 4054 } 4055 } 4056 4057 if (auto *PN = dyn_cast<PHINode>(Agg)) 4058 if (Instruction *Res = foldOpIntoPhi(EV, PN)) 4059 return Res; 4060 4061 // Canonicalize extract (select Cond, TV, FV) 4062 // -> select cond, (extract TV), (extract FV) 4063 if (auto *SI = dyn_cast<SelectInst>(Agg)) 4064 if (Instruction *R = FoldOpIntoSelect(EV, SI, /*FoldWithMultiUse=*/true)) 4065 return R; 4066 4067 // We could simplify extracts from other values. Note that nested extracts may 4068 // already be simplified implicitly by the above: extract (extract (insert) ) 4069 // will be translated into extract ( insert ( extract ) ) first and then just 4070 // the value inserted, if appropriate. Similarly for extracts from single-use 4071 // loads: extract (extract (load)) will be translated to extract (load (gep)) 4072 // and if again single-use then via load (gep (gep)) to load (gep). 4073 // However, double extracts from e.g. function arguments or return values 4074 // aren't handled yet. 4075 return nullptr; 4076 } 4077 4078 /// Return 'true' if the given typeinfo will match anything. 4079 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 4080 switch (Personality) { 4081 case EHPersonality::GNU_C: 4082 case EHPersonality::GNU_C_SjLj: 4083 case EHPersonality::Rust: 4084 // The GCC C EH and Rust personality only exists to support cleanups, so 4085 // it's not clear what the semantics of catch clauses are. 4086 return false; 4087 case EHPersonality::Unknown: 4088 return false; 4089 case EHPersonality::GNU_Ada: 4090 // While __gnat_all_others_value will match any Ada exception, it doesn't 4091 // match foreign exceptions (or didn't, before gcc-4.7). 4092 return false; 4093 case EHPersonality::GNU_CXX: 4094 case EHPersonality::GNU_CXX_SjLj: 4095 case EHPersonality::GNU_ObjC: 4096 case EHPersonality::MSVC_X86SEH: 4097 case EHPersonality::MSVC_TableSEH: 4098 case EHPersonality::MSVC_CXX: 4099 case EHPersonality::CoreCLR: 4100 case EHPersonality::Wasm_CXX: 4101 case EHPersonality::XL_CXX: 4102 case EHPersonality::ZOS_CXX: 4103 return TypeInfo->isNullValue(); 4104 } 4105 llvm_unreachable("invalid enum"); 4106 } 4107 4108 static bool shorter_filter(const Value *LHS, const Value *RHS) { 4109 return 4110 cast<ArrayType>(LHS->getType())->getNumElements() 4111 < 4112 cast<ArrayType>(RHS->getType())->getNumElements(); 4113 } 4114 4115 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 4116 // The logic here should be correct for any real-world personality function. 4117 // However if that turns out not to be true, the offending logic can always 4118 // be conditioned on the personality function, like the catch-all logic is. 4119 EHPersonality Personality = 4120 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 4121 4122 // Simplify the list of clauses, eg by removing repeated catch clauses 4123 // (these are often created by inlining). 4124 bool MakeNewInstruction = false; // If true, recreate using the following: 4125 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 4126 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 4127 4128 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 4129 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 4130 bool isLastClause = i + 1 == e; 4131 if (LI.isCatch(i)) { 4132 // A catch clause. 4133 Constant *CatchClause = LI.getClause(i); 4134 Constant *TypeInfo = CatchClause->stripPointerCasts(); 4135 4136 // If we already saw this clause, there is no point in having a second 4137 // copy of it. 4138 if (AlreadyCaught.insert(TypeInfo).second) { 4139 // This catch clause was not already seen. 4140 NewClauses.push_back(CatchClause); 4141 } else { 4142 // Repeated catch clause - drop the redundant copy. 4143 MakeNewInstruction = true; 4144 } 4145 4146 // If this is a catch-all then there is no point in keeping any following 4147 // clauses or marking the landingpad as having a cleanup. 4148 if (isCatchAll(Personality, TypeInfo)) { 4149 if (!isLastClause) 4150 MakeNewInstruction = true; 4151 CleanupFlag = false; 4152 break; 4153 } 4154 } else { 4155 // A filter clause. If any of the filter elements were already caught 4156 // then they can be dropped from the filter. It is tempting to try to 4157 // exploit the filter further by saying that any typeinfo that does not 4158 // occur in the filter can't be caught later (and thus can be dropped). 4159 // However this would be wrong, since typeinfos can match without being 4160 // equal (for example if one represents a C++ class, and the other some 4161 // class derived from it). 4162 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 4163 Constant *FilterClause = LI.getClause(i); 4164 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 4165 unsigned NumTypeInfos = FilterType->getNumElements(); 4166 4167 // An empty filter catches everything, so there is no point in keeping any 4168 // following clauses or marking the landingpad as having a cleanup. By 4169 // dealing with this case here the following code is made a bit simpler. 4170 if (!NumTypeInfos) { 4171 NewClauses.push_back(FilterClause); 4172 if (!isLastClause) 4173 MakeNewInstruction = true; 4174 CleanupFlag = false; 4175 break; 4176 } 4177 4178 bool MakeNewFilter = false; // If true, make a new filter. 4179 SmallVector<Constant *, 16> NewFilterElts; // New elements. 4180 if (isa<ConstantAggregateZero>(FilterClause)) { 4181 // Not an empty filter - it contains at least one null typeinfo. 4182 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 4183 Constant *TypeInfo = 4184 Constant::getNullValue(FilterType->getElementType()); 4185 // If this typeinfo is a catch-all then the filter can never match. 4186 if (isCatchAll(Personality, TypeInfo)) { 4187 // Throw the filter away. 4188 MakeNewInstruction = true; 4189 continue; 4190 } 4191 4192 // There is no point in having multiple copies of this typeinfo, so 4193 // discard all but the first copy if there is more than one. 4194 NewFilterElts.push_back(TypeInfo); 4195 if (NumTypeInfos > 1) 4196 MakeNewFilter = true; 4197 } else { 4198 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 4199 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 4200 NewFilterElts.reserve(NumTypeInfos); 4201 4202 // Remove any filter elements that were already caught or that already 4203 // occurred in the filter. While there, see if any of the elements are 4204 // catch-alls. If so, the filter can be discarded. 4205 bool SawCatchAll = false; 4206 for (unsigned j = 0; j != NumTypeInfos; ++j) { 4207 Constant *Elt = Filter->getOperand(j); 4208 Constant *TypeInfo = Elt->stripPointerCasts(); 4209 if (isCatchAll(Personality, TypeInfo)) { 4210 // This element is a catch-all. Bail out, noting this fact. 4211 SawCatchAll = true; 4212 break; 4213 } 4214 4215 // Even if we've seen a type in a catch clause, we don't want to 4216 // remove it from the filter. An unexpected type handler may be 4217 // set up for a call site which throws an exception of the same 4218 // type caught. In order for the exception thrown by the unexpected 4219 // handler to propagate correctly, the filter must be correctly 4220 // described for the call site. 4221 // 4222 // Example: 4223 // 4224 // void unexpected() { throw 1;} 4225 // void foo() throw (int) { 4226 // std::set_unexpected(unexpected); 4227 // try { 4228 // throw 2.0; 4229 // } catch (int i) {} 4230 // } 4231 4232 // There is no point in having multiple copies of the same typeinfo in 4233 // a filter, so only add it if we didn't already. 4234 if (SeenInFilter.insert(TypeInfo).second) 4235 NewFilterElts.push_back(cast<Constant>(Elt)); 4236 } 4237 // A filter containing a catch-all cannot match anything by definition. 4238 if (SawCatchAll) { 4239 // Throw the filter away. 4240 MakeNewInstruction = true; 4241 continue; 4242 } 4243 4244 // If we dropped something from the filter, make a new one. 4245 if (NewFilterElts.size() < NumTypeInfos) 4246 MakeNewFilter = true; 4247 } 4248 if (MakeNewFilter) { 4249 FilterType = ArrayType::get(FilterType->getElementType(), 4250 NewFilterElts.size()); 4251 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 4252 MakeNewInstruction = true; 4253 } 4254 4255 NewClauses.push_back(FilterClause); 4256 4257 // If the new filter is empty then it will catch everything so there is 4258 // no point in keeping any following clauses or marking the landingpad 4259 // as having a cleanup. The case of the original filter being empty was 4260 // already handled above. 4261 if (MakeNewFilter && !NewFilterElts.size()) { 4262 assert(MakeNewInstruction && "New filter but not a new instruction!"); 4263 CleanupFlag = false; 4264 break; 4265 } 4266 } 4267 } 4268 4269 // If several filters occur in a row then reorder them so that the shortest 4270 // filters come first (those with the smallest number of elements). This is 4271 // advantageous because shorter filters are more likely to match, speeding up 4272 // unwinding, but mostly because it increases the effectiveness of the other 4273 // filter optimizations below. 4274 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 4275 unsigned j; 4276 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 4277 for (j = i; j != e; ++j) 4278 if (!isa<ArrayType>(NewClauses[j]->getType())) 4279 break; 4280 4281 // Check whether the filters are already sorted by length. We need to know 4282 // if sorting them is actually going to do anything so that we only make a 4283 // new landingpad instruction if it does. 4284 for (unsigned k = i; k + 1 < j; ++k) 4285 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 4286 // Not sorted, so sort the filters now. Doing an unstable sort would be 4287 // correct too but reordering filters pointlessly might confuse users. 4288 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 4289 shorter_filter); 4290 MakeNewInstruction = true; 4291 break; 4292 } 4293 4294 // Look for the next batch of filters. 4295 i = j + 1; 4296 } 4297 4298 // If typeinfos matched if and only if equal, then the elements of a filter L 4299 // that occurs later than a filter F could be replaced by the intersection of 4300 // the elements of F and L. In reality two typeinfos can match without being 4301 // equal (for example if one represents a C++ class, and the other some class 4302 // derived from it) so it would be wrong to perform this transform in general. 4303 // However the transform is correct and useful if F is a subset of L. In that 4304 // case L can be replaced by F, and thus removed altogether since repeating a 4305 // filter is pointless. So here we look at all pairs of filters F and L where 4306 // L follows F in the list of clauses, and remove L if every element of F is 4307 // an element of L. This can occur when inlining C++ functions with exception 4308 // specifications. 4309 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 4310 // Examine each filter in turn. 4311 Value *Filter = NewClauses[i]; 4312 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 4313 if (!FTy) 4314 // Not a filter - skip it. 4315 continue; 4316 unsigned FElts = FTy->getNumElements(); 4317 // Examine each filter following this one. Doing this backwards means that 4318 // we don't have to worry about filters disappearing under us when removed. 4319 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 4320 Value *LFilter = NewClauses[j]; 4321 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 4322 if (!LTy) 4323 // Not a filter - skip it. 4324 continue; 4325 // If Filter is a subset of LFilter, i.e. every element of Filter is also 4326 // an element of LFilter, then discard LFilter. 4327 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 4328 // If Filter is empty then it is a subset of LFilter. 4329 if (!FElts) { 4330 // Discard LFilter. 4331 NewClauses.erase(J); 4332 MakeNewInstruction = true; 4333 // Move on to the next filter. 4334 continue; 4335 } 4336 unsigned LElts = LTy->getNumElements(); 4337 // If Filter is longer than LFilter then it cannot be a subset of it. 4338 if (FElts > LElts) 4339 // Move on to the next filter. 4340 continue; 4341 // At this point we know that LFilter has at least one element. 4342 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 4343 // Filter is a subset of LFilter iff Filter contains only zeros (as we 4344 // already know that Filter is not longer than LFilter). 4345 if (isa<ConstantAggregateZero>(Filter)) { 4346 assert(FElts <= LElts && "Should have handled this case earlier!"); 4347 // Discard LFilter. 4348 NewClauses.erase(J); 4349 MakeNewInstruction = true; 4350 } 4351 // Move on to the next filter. 4352 continue; 4353 } 4354 ConstantArray *LArray = cast<ConstantArray>(LFilter); 4355 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 4356 // Since Filter is non-empty and contains only zeros, it is a subset of 4357 // LFilter iff LFilter contains a zero. 4358 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 4359 for (unsigned l = 0; l != LElts; ++l) 4360 if (LArray->getOperand(l)->isNullValue()) { 4361 // LFilter contains a zero - discard it. 4362 NewClauses.erase(J); 4363 MakeNewInstruction = true; 4364 break; 4365 } 4366 // Move on to the next filter. 4367 continue; 4368 } 4369 // At this point we know that both filters are ConstantArrays. Loop over 4370 // operands to see whether every element of Filter is also an element of 4371 // LFilter. Since filters tend to be short this is probably faster than 4372 // using a method that scales nicely. 4373 ConstantArray *FArray = cast<ConstantArray>(Filter); 4374 bool AllFound = true; 4375 for (unsigned f = 0; f != FElts; ++f) { 4376 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 4377 AllFound = false; 4378 for (unsigned l = 0; l != LElts; ++l) { 4379 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 4380 if (LTypeInfo == FTypeInfo) { 4381 AllFound = true; 4382 break; 4383 } 4384 } 4385 if (!AllFound) 4386 break; 4387 } 4388 if (AllFound) { 4389 // Discard LFilter. 4390 NewClauses.erase(J); 4391 MakeNewInstruction = true; 4392 } 4393 // Move on to the next filter. 4394 } 4395 } 4396 4397 // If we changed any of the clauses, replace the old landingpad instruction 4398 // with a new one. 4399 if (MakeNewInstruction) { 4400 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 4401 NewClauses.size()); 4402 for (Constant *C : NewClauses) 4403 NLI->addClause(C); 4404 // A landing pad with no clauses must have the cleanup flag set. It is 4405 // theoretically possible, though highly unlikely, that we eliminated all 4406 // clauses. If so, force the cleanup flag to true. 4407 if (NewClauses.empty()) 4408 CleanupFlag = true; 4409 NLI->setCleanup(CleanupFlag); 4410 return NLI; 4411 } 4412 4413 // Even if none of the clauses changed, we may nonetheless have understood 4414 // that the cleanup flag is pointless. Clear it if so. 4415 if (LI.isCleanup() != CleanupFlag) { 4416 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 4417 LI.setCleanup(CleanupFlag); 4418 return &LI; 4419 } 4420 4421 return nullptr; 4422 } 4423 4424 Value * 4425 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 4426 // Try to push freeze through instructions that propagate but don't produce 4427 // poison as far as possible. If an operand of freeze follows three 4428 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 4429 // guaranteed-non-poison operands then push the freeze through to the one 4430 // operand that is not guaranteed non-poison. The actual transform is as 4431 // follows. 4432 // Op1 = ... ; Op1 can be posion 4433 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 4434 // ; single guaranteed-non-poison operands 4435 // ... = Freeze(Op0) 4436 // => 4437 // Op1 = ... 4438 // Op1.fr = Freeze(Op1) 4439 // ... = Inst(Op1.fr, NonPoisonOps...) 4440 auto *OrigOp = OrigFI.getOperand(0); 4441 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 4442 4443 // While we could change the other users of OrigOp to use freeze(OrigOp), that 4444 // potentially reduces their optimization potential, so let's only do this iff 4445 // the OrigOp is only used by the freeze. 4446 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 4447 return nullptr; 4448 4449 // We can't push the freeze through an instruction which can itself create 4450 // poison. If the only source of new poison is flags, we can simply 4451 // strip them (since we know the only use is the freeze and nothing can 4452 // benefit from them.) 4453 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), 4454 /*ConsiderFlagsAndMetadata*/ false)) 4455 return nullptr; 4456 4457 // If operand is guaranteed not to be poison, there is no need to add freeze 4458 // to the operand. So we first find the operand that is not guaranteed to be 4459 // poison. 4460 Use *MaybePoisonOperand = nullptr; 4461 for (Use &U : OrigOpInst->operands()) { 4462 if (isa<MetadataAsValue>(U.get()) || 4463 isGuaranteedNotToBeUndefOrPoison(U.get())) 4464 continue; 4465 if (!MaybePoisonOperand) 4466 MaybePoisonOperand = &U; 4467 else 4468 return nullptr; 4469 } 4470 4471 OrigOpInst->dropPoisonGeneratingAnnotations(); 4472 4473 // If all operands are guaranteed to be non-poison, we can drop freeze. 4474 if (!MaybePoisonOperand) 4475 return OrigOp; 4476 4477 Builder.SetInsertPoint(OrigOpInst); 4478 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( 4479 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 4480 4481 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 4482 return OrigOp; 4483 } 4484 4485 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, 4486 PHINode *PN) { 4487 // Detect whether this is a recurrence with a start value and some number of 4488 // backedge values. We'll check whether we can push the freeze through the 4489 // backedge values (possibly dropping poison flags along the way) until we 4490 // reach the phi again. In that case, we can move the freeze to the start 4491 // value. 4492 Use *StartU = nullptr; 4493 SmallVector<Value *> Worklist; 4494 for (Use &U : PN->incoming_values()) { 4495 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { 4496 // Add backedge value to worklist. 4497 Worklist.push_back(U.get()); 4498 continue; 4499 } 4500 4501 // Don't bother handling multiple start values. 4502 if (StartU) 4503 return nullptr; 4504 StartU = &U; 4505 } 4506 4507 if (!StartU || Worklist.empty()) 4508 return nullptr; // Not a recurrence. 4509 4510 Value *StartV = StartU->get(); 4511 BasicBlock *StartBB = PN->getIncomingBlock(*StartU); 4512 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); 4513 // We can't insert freeze if the start value is the result of the 4514 // terminator (e.g. an invoke). 4515 if (StartNeedsFreeze && StartBB->getTerminator() == StartV) 4516 return nullptr; 4517 4518 SmallPtrSet<Value *, 32> Visited; 4519 SmallVector<Instruction *> DropFlags; 4520 while (!Worklist.empty()) { 4521 Value *V = Worklist.pop_back_val(); 4522 if (!Visited.insert(V).second) 4523 continue; 4524 4525 if (Visited.size() > 32) 4526 return nullptr; // Limit the total number of values we inspect. 4527 4528 // Assume that PN is non-poison, because it will be after the transform. 4529 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) 4530 continue; 4531 4532 Instruction *I = dyn_cast<Instruction>(V); 4533 if (!I || canCreateUndefOrPoison(cast<Operator>(I), 4534 /*ConsiderFlagsAndMetadata*/ false)) 4535 return nullptr; 4536 4537 DropFlags.push_back(I); 4538 append_range(Worklist, I->operands()); 4539 } 4540 4541 for (Instruction *I : DropFlags) 4542 I->dropPoisonGeneratingAnnotations(); 4543 4544 if (StartNeedsFreeze) { 4545 Builder.SetInsertPoint(StartBB->getTerminator()); 4546 Value *FrozenStartV = Builder.CreateFreeze(StartV, 4547 StartV->getName() + ".fr"); 4548 replaceUse(*StartU, FrozenStartV); 4549 } 4550 return replaceInstUsesWith(FI, PN); 4551 } 4552 4553 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { 4554 Value *Op = FI.getOperand(0); 4555 4556 if (isa<Constant>(Op) || Op->hasOneUse()) 4557 return false; 4558 4559 // Move the freeze directly after the definition of its operand, so that 4560 // it dominates the maximum number of uses. Note that it may not dominate 4561 // *all* uses if the operand is an invoke/callbr and the use is in a phi on 4562 // the normal/default destination. This is why the domination check in the 4563 // replacement below is still necessary. 4564 BasicBlock::iterator MoveBefore; 4565 if (isa<Argument>(Op)) { 4566 MoveBefore = 4567 FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca(); 4568 } else { 4569 auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef(); 4570 if (!MoveBeforeOpt) 4571 return false; 4572 MoveBefore = *MoveBeforeOpt; 4573 } 4574 4575 // Don't move to the position of a debug intrinsic. 4576 if (isa<DbgInfoIntrinsic>(MoveBefore)) 4577 MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator(); 4578 // Re-point iterator to come after any debug-info records, if we're 4579 // running in "RemoveDIs" mode 4580 MoveBefore.setHeadBit(false); 4581 4582 bool Changed = false; 4583 if (&FI != &*MoveBefore) { 4584 FI.moveBefore(*MoveBefore->getParent(), MoveBefore); 4585 Changed = true; 4586 } 4587 4588 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 4589 bool Dominates = DT.dominates(&FI, U); 4590 Changed |= Dominates; 4591 return Dominates; 4592 }); 4593 4594 return Changed; 4595 } 4596 4597 // Check if any direct or bitcast user of this value is a shuffle instruction. 4598 static bool isUsedWithinShuffleVector(Value *V) { 4599 for (auto *U : V->users()) { 4600 if (isa<ShuffleVectorInst>(U)) 4601 return true; 4602 else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U)) 4603 return true; 4604 } 4605 return false; 4606 } 4607 4608 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 4609 Value *Op0 = I.getOperand(0); 4610 4611 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 4612 return replaceInstUsesWith(I, V); 4613 4614 // freeze (phi const, x) --> phi const, (freeze x) 4615 if (auto *PN = dyn_cast<PHINode>(Op0)) { 4616 if (Instruction *NV = foldOpIntoPhi(I, PN)) 4617 return NV; 4618 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) 4619 return NV; 4620 } 4621 4622 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 4623 return replaceInstUsesWith(I, NI); 4624 4625 // If I is freeze(undef), check its uses and fold it to a fixed constant. 4626 // - or: pick -1 4627 // - select's condition: if the true value is constant, choose it by making 4628 // the condition true. 4629 // - default: pick 0 4630 // 4631 // Note that this transform is intentionally done here rather than 4632 // via an analysis in InstSimplify or at individual user sites. That is 4633 // because we must produce the same value for all uses of the freeze - 4634 // it's the reason "freeze" exists! 4635 // 4636 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid 4637 // duplicating logic for binops at least. 4638 auto getUndefReplacement = [&I](Type *Ty) { 4639 Constant *BestValue = nullptr; 4640 Constant *NullValue = Constant::getNullValue(Ty); 4641 for (const auto *U : I.users()) { 4642 Constant *C = NullValue; 4643 if (match(U, m_Or(m_Value(), m_Value()))) 4644 C = ConstantInt::getAllOnesValue(Ty); 4645 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) 4646 C = ConstantInt::getTrue(Ty); 4647 4648 if (!BestValue) 4649 BestValue = C; 4650 else if (BestValue != C) 4651 BestValue = NullValue; 4652 } 4653 assert(BestValue && "Must have at least one use"); 4654 return BestValue; 4655 }; 4656 4657 if (match(Op0, m_Undef())) { 4658 // Don't fold freeze(undef/poison) if it's used as a vector operand in 4659 // a shuffle. This may improve codegen for shuffles that allow 4660 // unspecified inputs. 4661 if (isUsedWithinShuffleVector(&I)) 4662 return nullptr; 4663 return replaceInstUsesWith(I, getUndefReplacement(I.getType())); 4664 } 4665 4666 Constant *C; 4667 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { 4668 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); 4669 return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); 4670 } 4671 4672 // Replace uses of Op with freeze(Op). 4673 if (freezeOtherUses(I)) 4674 return &I; 4675 4676 return nullptr; 4677 } 4678 4679 /// Check for case where the call writes to an otherwise dead alloca. This 4680 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 4681 /// helper *only* analyzes the write; doesn't check any other legality aspect. 4682 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 4683 auto *CB = dyn_cast<CallBase>(I); 4684 if (!CB) 4685 // TODO: handle e.g. store to alloca here - only worth doing if we extend 4686 // to allow reload along used path as described below. Otherwise, this 4687 // is simply a store to a dead allocation which will be removed. 4688 return false; 4689 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 4690 if (!Dest) 4691 return false; 4692 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 4693 if (!AI) 4694 // TODO: allow malloc? 4695 return false; 4696 // TODO: allow memory access dominated by move point? Note that since AI 4697 // could have a reference to itself captured by the call, we would need to 4698 // account for cycles in doing so. 4699 SmallVector<const User *> AllocaUsers; 4700 SmallPtrSet<const User *, 4> Visited; 4701 auto pushUsers = [&](const Instruction &I) { 4702 for (const User *U : I.users()) { 4703 if (Visited.insert(U).second) 4704 AllocaUsers.push_back(U); 4705 } 4706 }; 4707 pushUsers(*AI); 4708 while (!AllocaUsers.empty()) { 4709 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 4710 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 4711 isa<AddrSpaceCastInst>(UserI)) { 4712 pushUsers(*UserI); 4713 continue; 4714 } 4715 if (UserI == CB) 4716 continue; 4717 // TODO: support lifetime.start/end here 4718 return false; 4719 } 4720 return true; 4721 } 4722 4723 /// Try to move the specified instruction from its current block into the 4724 /// beginning of DestBlock, which can only happen if it's safe to move the 4725 /// instruction past all of the instructions between it and the end of its 4726 /// block. 4727 bool InstCombinerImpl::tryToSinkInstruction(Instruction *I, 4728 BasicBlock *DestBlock) { 4729 BasicBlock *SrcBlock = I->getParent(); 4730 4731 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 4732 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 4733 I->isTerminator()) 4734 return false; 4735 4736 // Do not sink static or dynamic alloca instructions. Static allocas must 4737 // remain in the entry block, and dynamic allocas must not be sunk in between 4738 // a stacksave / stackrestore pair, which would incorrectly shorten its 4739 // lifetime. 4740 if (isa<AllocaInst>(I)) 4741 return false; 4742 4743 // Do not sink into catchswitch blocks. 4744 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 4745 return false; 4746 4747 // Do not sink convergent call instructions. 4748 if (auto *CI = dyn_cast<CallInst>(I)) { 4749 if (CI->isConvergent()) 4750 return false; 4751 } 4752 4753 // Unless we can prove that the memory write isn't visibile except on the 4754 // path we're sinking to, we must bail. 4755 if (I->mayWriteToMemory()) { 4756 if (!SoleWriteToDeadLocal(I, TLI)) 4757 return false; 4758 } 4759 4760 // We can only sink load instructions if there is nothing between the load and 4761 // the end of block that could change the value. 4762 if (I->mayReadFromMemory()) { 4763 // We don't want to do any sophisticated alias analysis, so we only check 4764 // the instructions after I in I's parent block if we try to sink to its 4765 // successor block. 4766 if (DestBlock->getUniquePredecessor() != I->getParent()) 4767 return false; 4768 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 4769 E = I->getParent()->end(); 4770 Scan != E; ++Scan) 4771 if (Scan->mayWriteToMemory()) 4772 return false; 4773 } 4774 4775 I->dropDroppableUses([&](const Use *U) { 4776 auto *I = dyn_cast<Instruction>(U->getUser()); 4777 if (I && I->getParent() != DestBlock) { 4778 Worklist.add(I); 4779 return true; 4780 } 4781 return false; 4782 }); 4783 /// FIXME: We could remove droppable uses that are not dominated by 4784 /// the new position. 4785 4786 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 4787 I->moveBefore(*DestBlock, InsertPos); 4788 ++NumSunkInst; 4789 4790 // Also sink all related debug uses from the source basic block. Otherwise we 4791 // get debug use before the def. Attempt to salvage debug uses first, to 4792 // maximise the range variables have location for. If we cannot salvage, then 4793 // mark the location undef: we know it was supposed to receive a new location 4794 // here, but that computation has been sunk. 4795 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 4796 SmallVector<DbgVariableRecord *, 2> DbgVariableRecords; 4797 findDbgUsers(DbgUsers, I, &DbgVariableRecords); 4798 if (!DbgUsers.empty()) 4799 tryToSinkInstructionDbgValues(I, InsertPos, SrcBlock, DestBlock, DbgUsers); 4800 if (!DbgVariableRecords.empty()) 4801 tryToSinkInstructionDbgVariableRecords(I, InsertPos, SrcBlock, DestBlock, 4802 DbgVariableRecords); 4803 4804 // PS: there are numerous flaws with this behaviour, not least that right now 4805 // assignments can be re-ordered past other assignments to the same variable 4806 // if they use different Values. Creating more undef assignements can never be 4807 // undone. And salvaging all users outside of this block can un-necessarily 4808 // alter the lifetime of the live-value that the variable refers to. 4809 // Some of these things can be resolved by tolerating debug use-before-defs in 4810 // LLVM-IR, however it depends on the instruction-referencing CodeGen backend 4811 // being used for more architectures. 4812 4813 return true; 4814 } 4815 4816 void InstCombinerImpl::tryToSinkInstructionDbgValues( 4817 Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, 4818 BasicBlock *DestBlock, SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers) { 4819 // For all debug values in the destination block, the sunk instruction 4820 // will still be available, so they do not need to be dropped. 4821 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage; 4822 for (auto &DbgUser : DbgUsers) 4823 if (DbgUser->getParent() != DestBlock) 4824 DbgUsersToSalvage.push_back(DbgUser); 4825 4826 // Process the sinking DbgUsersToSalvage in reverse order, as we only want 4827 // to clone the last appearing debug intrinsic for each given variable. 4828 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 4829 for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage) 4830 if (DVI->getParent() == SrcBlock) 4831 DbgUsersToSink.push_back(DVI); 4832 llvm::sort(DbgUsersToSink, 4833 [](auto *A, auto *B) { return B->comesBefore(A); }); 4834 4835 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 4836 SmallSet<DebugVariable, 4> SunkVariables; 4837 for (auto *User : DbgUsersToSink) { 4838 // A dbg.declare instruction should not be cloned, since there can only be 4839 // one per variable fragment. It should be left in the original place 4840 // because the sunk instruction is not an alloca (otherwise we could not be 4841 // here). 4842 if (isa<DbgDeclareInst>(User)) 4843 continue; 4844 4845 DebugVariable DbgUserVariable = 4846 DebugVariable(User->getVariable(), User->getExpression(), 4847 User->getDebugLoc()->getInlinedAt()); 4848 4849 if (!SunkVariables.insert(DbgUserVariable).second) 4850 continue; 4851 4852 // Leave dbg.assign intrinsics in their original positions and there should 4853 // be no need to insert a clone. 4854 if (isa<DbgAssignIntrinsic>(User)) 4855 continue; 4856 4857 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 4858 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 4859 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 4860 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 4861 } 4862 4863 // Perform salvaging without the clones, then sink the clones. 4864 if (!DIIClones.empty()) { 4865 salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, {}); 4866 // The clones are in reverse order of original appearance, reverse again to 4867 // maintain the original order. 4868 for (auto &DIIClone : llvm::reverse(DIIClones)) { 4869 DIIClone->insertBefore(&*InsertPos); 4870 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 4871 } 4872 } 4873 } 4874 4875 void InstCombinerImpl::tryToSinkInstructionDbgVariableRecords( 4876 Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, 4877 BasicBlock *DestBlock, 4878 SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) { 4879 // Implementation of tryToSinkInstructionDbgValues, but for the 4880 // DbgVariableRecord of variable assignments rather than dbg.values. 4881 4882 // Fetch all DbgVariableRecords not already in the destination. 4883 SmallVector<DbgVariableRecord *, 2> DbgVariableRecordsToSalvage; 4884 for (auto &DVR : DbgVariableRecords) 4885 if (DVR->getParent() != DestBlock) 4886 DbgVariableRecordsToSalvage.push_back(DVR); 4887 4888 // Fetch a second collection, of DbgVariableRecords in the source block that 4889 // we're going to sink. 4890 SmallVector<DbgVariableRecord *> DbgVariableRecordsToSink; 4891 for (DbgVariableRecord *DVR : DbgVariableRecordsToSalvage) 4892 if (DVR->getParent() == SrcBlock) 4893 DbgVariableRecordsToSink.push_back(DVR); 4894 4895 // Sort DbgVariableRecords according to their position in the block. This is a 4896 // partial order: DbgVariableRecords attached to different instructions will 4897 // be ordered by the instruction order, but DbgVariableRecords attached to the 4898 // same instruction won't have an order. 4899 auto Order = [](DbgVariableRecord *A, DbgVariableRecord *B) -> bool { 4900 return B->getInstruction()->comesBefore(A->getInstruction()); 4901 }; 4902 llvm::stable_sort(DbgVariableRecordsToSink, Order); 4903 4904 // If there are two assignments to the same variable attached to the same 4905 // instruction, the ordering between the two assignments is important. Scan 4906 // for this (rare) case and establish which is the last assignment. 4907 using InstVarPair = std::pair<const Instruction *, DebugVariable>; 4908 SmallDenseMap<InstVarPair, DbgVariableRecord *> FilterOutMap; 4909 if (DbgVariableRecordsToSink.size() > 1) { 4910 SmallDenseMap<InstVarPair, unsigned> CountMap; 4911 // Count how many assignments to each variable there is per instruction. 4912 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) { 4913 DebugVariable DbgUserVariable = 4914 DebugVariable(DVR->getVariable(), DVR->getExpression(), 4915 DVR->getDebugLoc()->getInlinedAt()); 4916 CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1; 4917 } 4918 4919 // If there are any instructions with two assignments, add them to the 4920 // FilterOutMap to record that they need extra filtering. 4921 SmallPtrSet<const Instruction *, 4> DupSet; 4922 for (auto It : CountMap) { 4923 if (It.second > 1) { 4924 FilterOutMap[It.first] = nullptr; 4925 DupSet.insert(It.first.first); 4926 } 4927 } 4928 4929 // For all instruction/variable pairs needing extra filtering, find the 4930 // latest assignment. 4931 for (const Instruction *Inst : DupSet) { 4932 for (DbgVariableRecord &DVR : 4933 llvm::reverse(filterDbgVars(Inst->getDbgRecordRange()))) { 4934 DebugVariable DbgUserVariable = 4935 DebugVariable(DVR.getVariable(), DVR.getExpression(), 4936 DVR.getDebugLoc()->getInlinedAt()); 4937 auto FilterIt = 4938 FilterOutMap.find(std::make_pair(Inst, DbgUserVariable)); 4939 if (FilterIt == FilterOutMap.end()) 4940 continue; 4941 if (FilterIt->second != nullptr) 4942 continue; 4943 FilterIt->second = &DVR; 4944 } 4945 } 4946 } 4947 4948 // Perform cloning of the DbgVariableRecords that we plan on sinking, filter 4949 // out any duplicate assignments identified above. 4950 SmallVector<DbgVariableRecord *, 2> DVRClones; 4951 SmallSet<DebugVariable, 4> SunkVariables; 4952 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) { 4953 if (DVR->Type == DbgVariableRecord::LocationType::Declare) 4954 continue; 4955 4956 DebugVariable DbgUserVariable = 4957 DebugVariable(DVR->getVariable(), DVR->getExpression(), 4958 DVR->getDebugLoc()->getInlinedAt()); 4959 4960 // For any variable where there were multiple assignments in the same place, 4961 // ignore all but the last assignment. 4962 if (!FilterOutMap.empty()) { 4963 InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable); 4964 auto It = FilterOutMap.find(IVP); 4965 4966 // Filter out. 4967 if (It != FilterOutMap.end() && It->second != DVR) 4968 continue; 4969 } 4970 4971 if (!SunkVariables.insert(DbgUserVariable).second) 4972 continue; 4973 4974 if (DVR->isDbgAssign()) 4975 continue; 4976 4977 DVRClones.emplace_back(DVR->clone()); 4978 LLVM_DEBUG(dbgs() << "CLONE: " << *DVRClones.back() << '\n'); 4979 } 4980 4981 // Perform salvaging without the clones, then sink the clones. 4982 if (DVRClones.empty()) 4983 return; 4984 4985 salvageDebugInfoForDbgValues(*I, {}, DbgVariableRecordsToSalvage); 4986 4987 // The clones are in reverse order of original appearance. Assert that the 4988 // head bit is set on the iterator as we _should_ have received it via 4989 // getFirstInsertionPt. Inserting like this will reverse the clone order as 4990 // we'll repeatedly insert at the head, such as: 4991 // DVR-3 (third insertion goes here) 4992 // DVR-2 (second insertion goes here) 4993 // DVR-1 (first insertion goes here) 4994 // Any-Prior-DVRs 4995 // InsertPtInst 4996 assert(InsertPos.getHeadBit()); 4997 for (DbgVariableRecord *DVRClone : DVRClones) { 4998 InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos); 4999 LLVM_DEBUG(dbgs() << "SINK: " << *DVRClone << '\n'); 5000 } 5001 } 5002 5003 bool InstCombinerImpl::run() { 5004 while (!Worklist.isEmpty()) { 5005 // Walk deferred instructions in reverse order, and push them to the 5006 // worklist, which means they'll end up popped from the worklist in-order. 5007 while (Instruction *I = Worklist.popDeferred()) { 5008 // Check to see if we can DCE the instruction. We do this already here to 5009 // reduce the number of uses and thus allow other folds to trigger. 5010 // Note that eraseInstFromFunction() may push additional instructions on 5011 // the deferred worklist, so this will DCE whole instruction chains. 5012 if (isInstructionTriviallyDead(I, &TLI)) { 5013 eraseInstFromFunction(*I); 5014 ++NumDeadInst; 5015 continue; 5016 } 5017 5018 Worklist.push(I); 5019 } 5020 5021 Instruction *I = Worklist.removeOne(); 5022 if (I == nullptr) continue; // skip null values. 5023 5024 // Check to see if we can DCE the instruction. 5025 if (isInstructionTriviallyDead(I, &TLI)) { 5026 eraseInstFromFunction(*I); 5027 ++NumDeadInst; 5028 continue; 5029 } 5030 5031 if (!DebugCounter::shouldExecute(VisitCounter)) 5032 continue; 5033 5034 // See if we can trivially sink this instruction to its user if we can 5035 // prove that the successor is not executed more frequently than our block. 5036 // Return the UserBlock if successful. 5037 auto getOptionalSinkBlockForInst = 5038 [this](Instruction *I) -> std::optional<BasicBlock *> { 5039 if (!EnableCodeSinking) 5040 return std::nullopt; 5041 5042 BasicBlock *BB = I->getParent(); 5043 BasicBlock *UserParent = nullptr; 5044 unsigned NumUsers = 0; 5045 5046 for (Use &U : I->uses()) { 5047 User *User = U.getUser(); 5048 if (User->isDroppable()) 5049 continue; 5050 if (NumUsers > MaxSinkNumUsers) 5051 return std::nullopt; 5052 5053 Instruction *UserInst = cast<Instruction>(User); 5054 // Special handling for Phi nodes - get the block the use occurs in. 5055 BasicBlock *UserBB = UserInst->getParent(); 5056 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 5057 UserBB = PN->getIncomingBlock(U); 5058 // Bail out if we have uses in different blocks. We don't do any 5059 // sophisticated analysis (i.e finding NearestCommonDominator of these 5060 // use blocks). 5061 if (UserParent && UserParent != UserBB) 5062 return std::nullopt; 5063 UserParent = UserBB; 5064 5065 // Make sure these checks are done only once, naturally we do the checks 5066 // the first time we get the userparent, this will save compile time. 5067 if (NumUsers == 0) { 5068 // Try sinking to another block. If that block is unreachable, then do 5069 // not bother. SimplifyCFG should handle it. 5070 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 5071 return std::nullopt; 5072 5073 auto *Term = UserParent->getTerminator(); 5074 // See if the user is one of our successors that has only one 5075 // predecessor, so that we don't have to split the critical edge. 5076 // Another option where we can sink is a block that ends with a 5077 // terminator that does not pass control to other block (such as 5078 // return or unreachable or resume). In this case: 5079 // - I dominates the User (by SSA form); 5080 // - the User will be executed at most once. 5081 // So sinking I down to User is always profitable or neutral. 5082 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) 5083 return std::nullopt; 5084 5085 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 5086 } 5087 5088 NumUsers++; 5089 } 5090 5091 // No user or only has droppable users. 5092 if (!UserParent) 5093 return std::nullopt; 5094 5095 return UserParent; 5096 }; 5097 5098 auto OptBB = getOptionalSinkBlockForInst(I); 5099 if (OptBB) { 5100 auto *UserParent = *OptBB; 5101 // Okay, the CFG is simple enough, try to sink this instruction. 5102 if (tryToSinkInstruction(I, UserParent)) { 5103 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 5104 MadeIRChange = true; 5105 // We'll add uses of the sunk instruction below, but since 5106 // sinking can expose opportunities for it's *operands* add 5107 // them to the worklist 5108 for (Use &U : I->operands()) 5109 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 5110 Worklist.push(OpI); 5111 } 5112 } 5113 5114 // Now that we have an instruction, try combining it to simplify it. 5115 Builder.SetInsertPoint(I); 5116 Builder.CollectMetadataToCopy( 5117 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 5118 5119 #ifndef NDEBUG 5120 std::string OrigI; 5121 #endif 5122 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS);); 5123 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 5124 5125 if (Instruction *Result = visit(*I)) { 5126 ++NumCombined; 5127 // Should we replace the old instruction with a new one? 5128 if (Result != I) { 5129 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 5130 << " New = " << *Result << '\n'); 5131 5132 Result->copyMetadata(*I, 5133 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 5134 // Everything uses the new instruction now. 5135 I->replaceAllUsesWith(Result); 5136 5137 // Move the name to the new instruction first. 5138 Result->takeName(I); 5139 5140 // Insert the new instruction into the basic block... 5141 BasicBlock *InstParent = I->getParent(); 5142 BasicBlock::iterator InsertPos = I->getIterator(); 5143 5144 // Are we replace a PHI with something that isn't a PHI, or vice versa? 5145 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 5146 // We need to fix up the insertion point. 5147 if (isa<PHINode>(I)) // PHI -> Non-PHI 5148 InsertPos = InstParent->getFirstInsertionPt(); 5149 else // Non-PHI -> PHI 5150 InsertPos = InstParent->getFirstNonPHIIt(); 5151 } 5152 5153 Result->insertInto(InstParent, InsertPos); 5154 5155 // Push the new instruction and any users onto the worklist. 5156 Worklist.pushUsersToWorkList(*Result); 5157 Worklist.push(Result); 5158 5159 eraseInstFromFunction(*I); 5160 } else { 5161 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 5162 << " New = " << *I << '\n'); 5163 5164 // If the instruction was modified, it's possible that it is now dead. 5165 // if so, remove it. 5166 if (isInstructionTriviallyDead(I, &TLI)) { 5167 eraseInstFromFunction(*I); 5168 } else { 5169 Worklist.pushUsersToWorkList(*I); 5170 Worklist.push(I); 5171 } 5172 } 5173 MadeIRChange = true; 5174 } 5175 } 5176 5177 Worklist.zap(); 5178 return MadeIRChange; 5179 } 5180 5181 // Track the scopes used by !alias.scope and !noalias. In a function, a 5182 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 5183 // by both sets. If not, the declaration of the scope can be safely omitted. 5184 // The MDNode of the scope can be omitted as well for the instructions that are 5185 // part of this function. We do not do that at this point, as this might become 5186 // too time consuming to do. 5187 class AliasScopeTracker { 5188 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 5189 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 5190 5191 public: 5192 void analyse(Instruction *I) { 5193 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 5194 if (!I->hasMetadataOtherThanDebugLoc()) 5195 return; 5196 5197 auto Track = [](Metadata *ScopeList, auto &Container) { 5198 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 5199 if (!MDScopeList || !Container.insert(MDScopeList).second) 5200 return; 5201 for (const auto &MDOperand : MDScopeList->operands()) 5202 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 5203 Container.insert(MDScope); 5204 }; 5205 5206 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 5207 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 5208 } 5209 5210 bool isNoAliasScopeDeclDead(Instruction *Inst) { 5211 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 5212 if (!Decl) 5213 return false; 5214 5215 assert(Decl->use_empty() && 5216 "llvm.experimental.noalias.scope.decl in use ?"); 5217 const MDNode *MDSL = Decl->getScopeList(); 5218 assert(MDSL->getNumOperands() == 1 && 5219 "llvm.experimental.noalias.scope should refer to a single scope"); 5220 auto &MDOperand = MDSL->getOperand(0); 5221 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 5222 return !UsedAliasScopesAndLists.contains(MD) || 5223 !UsedNoAliasScopesAndLists.contains(MD); 5224 5225 // Not an MDNode ? throw away. 5226 return true; 5227 } 5228 }; 5229 5230 /// Populate the IC worklist from a function, by walking it in reverse 5231 /// post-order and adding all reachable code to the worklist. 5232 /// 5233 /// This has a couple of tricks to make the code faster and more powerful. In 5234 /// particular, we constant fold and DCE instructions as we go, to avoid adding 5235 /// them to the worklist (this significantly speeds up instcombine on code where 5236 /// many instructions are dead or constant). Additionally, if we find a branch 5237 /// whose condition is a known constant, we only visit the reachable successors. 5238 bool InstCombinerImpl::prepareWorklist( 5239 Function &F, ReversePostOrderTraversal<BasicBlock *> &RPOT) { 5240 bool MadeIRChange = false; 5241 SmallPtrSet<BasicBlock *, 32> LiveBlocks; 5242 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 5243 DenseMap<Constant *, Constant *> FoldedConstants; 5244 AliasScopeTracker SeenAliasScopes; 5245 5246 auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) { 5247 for (BasicBlock *Succ : successors(BB)) 5248 if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second) 5249 for (PHINode &PN : Succ->phis()) 5250 for (Use &U : PN.incoming_values()) 5251 if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) { 5252 U.set(PoisonValue::get(PN.getType())); 5253 MadeIRChange = true; 5254 } 5255 }; 5256 5257 for (BasicBlock *BB : RPOT) { 5258 if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) { 5259 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); 5260 })) { 5261 HandleOnlyLiveSuccessor(BB, nullptr); 5262 continue; 5263 } 5264 LiveBlocks.insert(BB); 5265 5266 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 5267 // ConstantProp instruction if trivially constant. 5268 if (!Inst.use_empty() && 5269 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 5270 if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) { 5271 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 5272 << '\n'); 5273 Inst.replaceAllUsesWith(C); 5274 ++NumConstProp; 5275 if (isInstructionTriviallyDead(&Inst, &TLI)) 5276 Inst.eraseFromParent(); 5277 MadeIRChange = true; 5278 continue; 5279 } 5280 5281 // See if we can constant fold its operands. 5282 for (Use &U : Inst.operands()) { 5283 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 5284 continue; 5285 5286 auto *C = cast<Constant>(U); 5287 Constant *&FoldRes = FoldedConstants[C]; 5288 if (!FoldRes) 5289 FoldRes = ConstantFoldConstant(C, DL, &TLI); 5290 5291 if (FoldRes != C) { 5292 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 5293 << "\n Old = " << *C 5294 << "\n New = " << *FoldRes << '\n'); 5295 U = FoldRes; 5296 MadeIRChange = true; 5297 } 5298 } 5299 5300 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 5301 // these call instructions consumes non-trivial amount of time and 5302 // provides no value for the optimization. 5303 if (!Inst.isDebugOrPseudoInst()) { 5304 InstrsForInstructionWorklist.push_back(&Inst); 5305 SeenAliasScopes.analyse(&Inst); 5306 } 5307 } 5308 5309 // If this is a branch or switch on a constant, mark only the single 5310 // live successor. Otherwise assume all successors are live. 5311 Instruction *TI = BB->getTerminator(); 5312 if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) { 5313 if (isa<UndefValue>(BI->getCondition())) { 5314 // Branch on undef is UB. 5315 HandleOnlyLiveSuccessor(BB, nullptr); 5316 continue; 5317 } 5318 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 5319 bool CondVal = Cond->getZExtValue(); 5320 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal)); 5321 continue; 5322 } 5323 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 5324 if (isa<UndefValue>(SI->getCondition())) { 5325 // Switch on undef is UB. 5326 HandleOnlyLiveSuccessor(BB, nullptr); 5327 continue; 5328 } 5329 if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 5330 HandleOnlyLiveSuccessor(BB, 5331 SI->findCaseValue(Cond)->getCaseSuccessor()); 5332 continue; 5333 } 5334 } 5335 } 5336 5337 // Remove instructions inside unreachable blocks. This prevents the 5338 // instcombine code from having to deal with some bad special cases, and 5339 // reduces use counts of instructions. 5340 for (BasicBlock &BB : F) { 5341 if (LiveBlocks.count(&BB)) 5342 continue; 5343 5344 unsigned NumDeadInstInBB; 5345 unsigned NumDeadDbgInstInBB; 5346 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 5347 removeAllNonTerminatorAndEHPadInstructions(&BB); 5348 5349 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 5350 NumDeadInst += NumDeadInstInBB; 5351 } 5352 5353 // Once we've found all of the instructions to add to instcombine's worklist, 5354 // add them in reverse order. This way instcombine will visit from the top 5355 // of the function down. This jives well with the way that it adds all uses 5356 // of instructions to the worklist after doing a transformation, thus avoiding 5357 // some N^2 behavior in pathological cases. 5358 Worklist.reserve(InstrsForInstructionWorklist.size()); 5359 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 5360 // DCE instruction if trivially dead. As we iterate in reverse program 5361 // order here, we will clean up whole chains of dead instructions. 5362 if (isInstructionTriviallyDead(Inst, &TLI) || 5363 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 5364 ++NumDeadInst; 5365 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 5366 salvageDebugInfo(*Inst); 5367 Inst->eraseFromParent(); 5368 MadeIRChange = true; 5369 continue; 5370 } 5371 5372 Worklist.push(Inst); 5373 } 5374 5375 return MadeIRChange; 5376 } 5377 5378 static bool combineInstructionsOverFunction( 5379 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 5380 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 5381 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 5382 BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, LoopInfo *LI, 5383 const InstCombineOptions &Opts) { 5384 auto &DL = F.getDataLayout(); 5385 5386 /// Builder - This is an IRBuilder that automatically inserts new 5387 /// instructions into the worklist when they are created. 5388 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 5389 F.getContext(), TargetFolder(DL), 5390 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 5391 Worklist.add(I); 5392 if (auto *Assume = dyn_cast<AssumeInst>(I)) 5393 AC.registerAssumption(Assume); 5394 })); 5395 5396 ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front()); 5397 5398 // Lower dbg.declare intrinsics otherwise their value may be clobbered 5399 // by instcombiner. 5400 bool MadeIRChange = false; 5401 if (ShouldLowerDbgDeclare) 5402 MadeIRChange = LowerDbgDeclare(F); 5403 5404 // Iterate while there is work to do. 5405 unsigned Iteration = 0; 5406 while (true) { 5407 ++Iteration; 5408 5409 if (Iteration > Opts.MaxIterations && !Opts.VerifyFixpoint) { 5410 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations 5411 << " on " << F.getName() 5412 << " reached; stopping without verifying fixpoint\n"); 5413 break; 5414 } 5415 5416 ++NumWorklistIterations; 5417 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 5418 << F.getName() << "\n"); 5419 5420 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 5421 ORE, BFI, BPI, PSI, DL, LI); 5422 IC.MaxArraySizeForCombine = MaxArraySize; 5423 bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT); 5424 MadeChangeInThisIteration |= IC.run(); 5425 if (!MadeChangeInThisIteration) 5426 break; 5427 5428 MadeIRChange = true; 5429 if (Iteration > Opts.MaxIterations) { 5430 report_fatal_error( 5431 "Instruction Combining did not reach a fixpoint after " + 5432 Twine(Opts.MaxIterations) + " iterations", 5433 /*GenCrashDiag=*/false); 5434 } 5435 } 5436 5437 if (Iteration == 1) 5438 ++NumOneIteration; 5439 else if (Iteration == 2) 5440 ++NumTwoIterations; 5441 else if (Iteration == 3) 5442 ++NumThreeIterations; 5443 else 5444 ++NumFourOrMoreIterations; 5445 5446 return MadeIRChange; 5447 } 5448 5449 InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {} 5450 5451 void InstCombinePass::printPipeline( 5452 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 5453 static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline( 5454 OS, MapClassName2PassName); 5455 OS << '<'; 5456 OS << "max-iterations=" << Options.MaxIterations << ";"; 5457 OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;"; 5458 OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint"; 5459 OS << '>'; 5460 } 5461 5462 PreservedAnalyses InstCombinePass::run(Function &F, 5463 FunctionAnalysisManager &AM) { 5464 auto &AC = AM.getResult<AssumptionAnalysis>(F); 5465 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 5466 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 5467 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5468 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 5469 5470 // TODO: Only use LoopInfo when the option is set. This requires that the 5471 // callers in the pass pipeline explicitly set the option. 5472 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 5473 if (!LI && Options.UseLoopInfo) 5474 LI = &AM.getResult<LoopAnalysis>(F); 5475 5476 auto *AA = &AM.getResult<AAManager>(F); 5477 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 5478 ProfileSummaryInfo *PSI = 5479 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 5480 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 5481 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 5482 auto *BPI = AM.getCachedResult<BranchProbabilityAnalysis>(F); 5483 5484 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 5485 BFI, BPI, PSI, LI, Options)) 5486 // No changes, all analyses are preserved. 5487 return PreservedAnalyses::all(); 5488 5489 // Mark all the analyses that instcombine updates as preserved. 5490 PreservedAnalyses PA; 5491 PA.preserveSet<CFGAnalyses>(); 5492 return PA; 5493 } 5494 5495 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 5496 AU.setPreservesCFG(); 5497 AU.addRequired<AAResultsWrapperPass>(); 5498 AU.addRequired<AssumptionCacheTracker>(); 5499 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5500 AU.addRequired<TargetTransformInfoWrapperPass>(); 5501 AU.addRequired<DominatorTreeWrapperPass>(); 5502 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5503 AU.addPreserved<DominatorTreeWrapperPass>(); 5504 AU.addPreserved<AAResultsWrapperPass>(); 5505 AU.addPreserved<BasicAAWrapperPass>(); 5506 AU.addPreserved<GlobalsAAWrapperPass>(); 5507 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 5508 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 5509 } 5510 5511 bool InstructionCombiningPass::runOnFunction(Function &F) { 5512 if (skipFunction(F)) 5513 return false; 5514 5515 // Required analyses. 5516 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5517 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5518 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 5519 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5520 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5521 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5522 5523 // Optional analyses. 5524 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 5525 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 5526 ProfileSummaryInfo *PSI = 5527 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 5528 BlockFrequencyInfo *BFI = 5529 (PSI && PSI->hasProfileSummary()) ? 5530 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 5531 nullptr; 5532 BranchProbabilityInfo *BPI = nullptr; 5533 if (auto *WrapperPass = 5534 getAnalysisIfAvailable<BranchProbabilityInfoWrapperPass>()) 5535 BPI = &WrapperPass->getBPI(); 5536 5537 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 5538 BFI, BPI, PSI, LI, 5539 InstCombineOptions()); 5540 } 5541 5542 char InstructionCombiningPass::ID = 0; 5543 5544 InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) { 5545 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 5546 } 5547 5548 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 5549 "Combine redundant instructions", false, false) 5550 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5551 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 5552 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5553 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5554 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5555 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 5556 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 5557 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 5558 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 5559 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 5560 "Combine redundant instructions", false, false) 5561 5562 // Initialization Routines 5563 void llvm::initializeInstCombine(PassRegistry &Registry) { 5564 initializeInstructionCombiningPassPass(Registry); 5565 } 5566 5567 FunctionPass *llvm::createInstructionCombiningPass() { 5568 return new InstructionCombiningPass(); 5569 } 5570