xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/BlockFrequencyInfo.h"
46 #include "llvm/Analysis/CFG.h"
47 #include "llvm/Analysis/ConstantFolding.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/InstructionSimplify.h"
50 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/MemoryBuiltins.h"
53 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
54 #include "llvm/Analysis/ProfileSummaryInfo.h"
55 #include "llvm/Analysis/TargetFolder.h"
56 #include "llvm/Analysis/TargetLibraryInfo.h"
57 #include "llvm/Analysis/TargetTransformInfo.h"
58 #include "llvm/Analysis/Utils/Local.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Analysis/VectorUtils.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DIBuilder.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/PassManager.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Use.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/IR/ValueHandle.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/DebugCounter.h"
94 #include "llvm/Support/ErrorHandling.h"
95 #include "llvm/Support/KnownBits.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Transforms/InstCombine/InstCombine.h"
98 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <memory>
104 #include <optional>
105 #include <string>
106 #include <utility>
107 
108 #define DEBUG_TYPE "instcombine"
109 #include "llvm/Transforms/Utils/InstructionWorklist.h"
110 #include <optional>
111 
112 using namespace llvm;
113 using namespace llvm::PatternMatch;
114 
115 STATISTIC(NumWorklistIterations,
116           "Number of instruction combining iterations performed");
117 STATISTIC(NumOneIteration, "Number of functions with one iteration");
118 STATISTIC(NumTwoIterations, "Number of functions with two iterations");
119 STATISTIC(NumThreeIterations, "Number of functions with three iterations");
120 STATISTIC(NumFourOrMoreIterations,
121           "Number of functions with four or more iterations");
122 
123 STATISTIC(NumCombined , "Number of insts combined");
124 STATISTIC(NumConstProp, "Number of constant folds");
125 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
126 STATISTIC(NumSunkInst , "Number of instructions sunk");
127 STATISTIC(NumExpand,    "Number of expansions");
128 STATISTIC(NumFactor   , "Number of factorizations");
129 STATISTIC(NumReassoc  , "Number of reassociations");
130 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
131               "Controls which instructions are visited");
132 
133 static cl::opt<bool>
134 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
135                                               cl::init(true));
136 
137 static cl::opt<unsigned> MaxSinkNumUsers(
138     "instcombine-max-sink-users", cl::init(32),
139     cl::desc("Maximum number of undroppable users for instruction sinking"));
140 
141 static cl::opt<unsigned>
142 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
143              cl::desc("Maximum array size considered when doing a combine"));
144 
145 // FIXME: Remove this flag when it is no longer necessary to convert
146 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
147 // increases variable availability at the cost of accuracy. Variables that
148 // cannot be promoted by mem2reg or SROA will be described as living in memory
149 // for their entire lifetime. However, passes like DSE and instcombine can
150 // delete stores to the alloca, leading to misleading and inaccurate debug
151 // information. This flag can be removed when those passes are fixed.
152 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
153                                                cl::Hidden, cl::init(true));
154 
155 std::optional<Instruction *>
156 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
157   // Handle target specific intrinsics
158   if (II.getCalledFunction()->isTargetIntrinsic()) {
159     return TTI.instCombineIntrinsic(*this, II);
160   }
161   return std::nullopt;
162 }
163 
164 std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
165     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
166     bool &KnownBitsComputed) {
167   // Handle target specific intrinsics
168   if (II.getCalledFunction()->isTargetIntrinsic()) {
169     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
170                                                 KnownBitsComputed);
171   }
172   return std::nullopt;
173 }
174 
175 std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
176     IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts,
177     APInt &PoisonElts2, APInt &PoisonElts3,
178     std::function<void(Instruction *, unsigned, APInt, APInt &)>
179         SimplifyAndSetOp) {
180   // Handle target specific intrinsics
181   if (II.getCalledFunction()->isTargetIntrinsic()) {
182     return TTI.simplifyDemandedVectorEltsIntrinsic(
183         *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
184         SimplifyAndSetOp);
185   }
186   return std::nullopt;
187 }
188 
189 bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
190   return TTI.isValidAddrSpaceCast(FromAS, ToAS);
191 }
192 
193 Value *InstCombinerImpl::EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP) {
194   if (!RewriteGEP)
195     return llvm::emitGEPOffset(&Builder, DL, GEP);
196 
197   IRBuilderBase::InsertPointGuard Guard(Builder);
198   auto *Inst = dyn_cast<Instruction>(GEP);
199   if (Inst)
200     Builder.SetInsertPoint(Inst);
201 
202   Value *Offset = EmitGEPOffset(GEP);
203   // If a non-trivial GEP has other uses, rewrite it to avoid duplicating
204   // the offset arithmetic.
205   if (Inst && !GEP->hasOneUse() && !GEP->hasAllConstantIndices() &&
206       !GEP->getSourceElementType()->isIntegerTy(8)) {
207     replaceInstUsesWith(
208         *Inst, Builder.CreateGEP(Builder.getInt8Ty(), GEP->getPointerOperand(),
209                                  Offset, "", GEP->getNoWrapFlags()));
210     eraseInstFromFunction(*Inst);
211   }
212   return Offset;
213 }
214 
215 /// Legal integers and common types are considered desirable. This is used to
216 /// avoid creating instructions with types that may not be supported well by the
217 /// the backend.
218 /// NOTE: This treats i8, i16 and i32 specially because they are common
219 ///       types in frontend languages.
220 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
221   switch (BitWidth) {
222   case 8:
223   case 16:
224   case 32:
225     return true;
226   default:
227     return DL.isLegalInteger(BitWidth);
228   }
229 }
230 
231 /// Return true if it is desirable to convert an integer computation from a
232 /// given bit width to a new bit width.
233 /// We don't want to convert from a legal or desirable type (like i8) to an
234 /// illegal type or from a smaller to a larger illegal type. A width of '1'
235 /// is always treated as a desirable type because i1 is a fundamental type in
236 /// IR, and there are many specialized optimizations for i1 types.
237 /// Common/desirable widths are equally treated as legal to convert to, in
238 /// order to open up more combining opportunities.
239 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
240                                         unsigned ToWidth) const {
241   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
242   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
243 
244   // Convert to desirable widths even if they are not legal types.
245   // Only shrink types, to prevent infinite loops.
246   if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
247     return true;
248 
249   // If this is a legal or desiable integer from type, and the result would be
250   // an illegal type, don't do the transformation.
251   if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
252     return false;
253 
254   // Otherwise, if both are illegal, do not increase the size of the result. We
255   // do allow things like i160 -> i64, but not i64 -> i160.
256   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
257     return false;
258 
259   return true;
260 }
261 
262 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
263 /// We don't want to convert from a legal to an illegal type or from a smaller
264 /// to a larger illegal type. i1 is always treated as a legal type because it is
265 /// a fundamental type in IR, and there are many specialized optimizations for
266 /// i1 types.
267 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
268   // TODO: This could be extended to allow vectors. Datalayout changes might be
269   // needed to properly support that.
270   if (!From->isIntegerTy() || !To->isIntegerTy())
271     return false;
272 
273   unsigned FromWidth = From->getPrimitiveSizeInBits();
274   unsigned ToWidth = To->getPrimitiveSizeInBits();
275   return shouldChangeType(FromWidth, ToWidth);
276 }
277 
278 // Return true, if No Signed Wrap should be maintained for I.
279 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
280 // where both B and C should be ConstantInts, results in a constant that does
281 // not overflow. This function only handles the Add and Sub opcodes. For
282 // all other opcodes, the function conservatively returns false.
283 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
284   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
285   if (!OBO || !OBO->hasNoSignedWrap())
286     return false;
287 
288   // We reason about Add and Sub Only.
289   Instruction::BinaryOps Opcode = I.getOpcode();
290   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
291     return false;
292 
293   const APInt *BVal, *CVal;
294   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
295     return false;
296 
297   bool Overflow = false;
298   if (Opcode == Instruction::Add)
299     (void)BVal->sadd_ov(*CVal, Overflow);
300   else
301     (void)BVal->ssub_ov(*CVal, Overflow);
302 
303   return !Overflow;
304 }
305 
306 static bool hasNoUnsignedWrap(BinaryOperator &I) {
307   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
308   return OBO && OBO->hasNoUnsignedWrap();
309 }
310 
311 static bool hasNoSignedWrap(BinaryOperator &I) {
312   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
313   return OBO && OBO->hasNoSignedWrap();
314 }
315 
316 /// Conservatively clears subclassOptionalData after a reassociation or
317 /// commutation. We preserve fast-math flags when applicable as they can be
318 /// preserved.
319 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
320   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
321   if (!FPMO) {
322     I.clearSubclassOptionalData();
323     return;
324   }
325 
326   FastMathFlags FMF = I.getFastMathFlags();
327   I.clearSubclassOptionalData();
328   I.setFastMathFlags(FMF);
329 }
330 
331 /// Combine constant operands of associative operations either before or after a
332 /// cast to eliminate one of the associative operations:
333 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
334 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
335 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
336                                    InstCombinerImpl &IC) {
337   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
338   if (!Cast || !Cast->hasOneUse())
339     return false;
340 
341   // TODO: Enhance logic for other casts and remove this check.
342   auto CastOpcode = Cast->getOpcode();
343   if (CastOpcode != Instruction::ZExt)
344     return false;
345 
346   // TODO: Enhance logic for other BinOps and remove this check.
347   if (!BinOp1->isBitwiseLogicOp())
348     return false;
349 
350   auto AssocOpcode = BinOp1->getOpcode();
351   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
352   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
353     return false;
354 
355   Constant *C1, *C2;
356   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
357       !match(BinOp2->getOperand(1), m_Constant(C2)))
358     return false;
359 
360   // TODO: This assumes a zext cast.
361   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
362   // to the destination type might lose bits.
363 
364   // Fold the constants together in the destination type:
365   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
366   const DataLayout &DL = IC.getDataLayout();
367   Type *DestTy = C1->getType();
368   Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL);
369   if (!CastC2)
370     return false;
371   Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL);
372   if (!FoldedC)
373     return false;
374 
375   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
376   IC.replaceOperand(*BinOp1, 1, FoldedC);
377   BinOp1->dropPoisonGeneratingFlags();
378   Cast->dropPoisonGeneratingFlags();
379   return true;
380 }
381 
382 // Simplifies IntToPtr/PtrToInt RoundTrip Cast.
383 // inttoptr ( ptrtoint (x) ) --> x
384 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
385   auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
386   if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
387                       DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
388     auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
389     Type *CastTy = IntToPtr->getDestTy();
390     if (PtrToInt &&
391         CastTy->getPointerAddressSpace() ==
392             PtrToInt->getSrcTy()->getPointerAddressSpace() &&
393         DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
394             DL.getTypeSizeInBits(PtrToInt->getDestTy()))
395       return PtrToInt->getOperand(0);
396   }
397   return nullptr;
398 }
399 
400 /// This performs a few simplifications for operators that are associative or
401 /// commutative:
402 ///
403 ///  Commutative operators:
404 ///
405 ///  1. Order operands such that they are listed from right (least complex) to
406 ///     left (most complex).  This puts constants before unary operators before
407 ///     binary operators.
408 ///
409 ///  Associative operators:
410 ///
411 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
412 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
413 ///
414 ///  Associative and commutative operators:
415 ///
416 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
417 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
418 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
419 ///     if C1 and C2 are constants.
420 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
421   Instruction::BinaryOps Opcode = I.getOpcode();
422   bool Changed = false;
423 
424   do {
425     // Order operands such that they are listed from right (least complex) to
426     // left (most complex).  This puts constants before unary operators before
427     // binary operators.
428     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
429         getComplexity(I.getOperand(1)))
430       Changed = !I.swapOperands();
431 
432     if (I.isCommutative()) {
433       if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
434         replaceOperand(I, 0, Pair->first);
435         replaceOperand(I, 1, Pair->second);
436         Changed = true;
437       }
438     }
439 
440     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
441     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
442 
443     if (I.isAssociative()) {
444       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
445       if (Op0 && Op0->getOpcode() == Opcode) {
446         Value *A = Op0->getOperand(0);
447         Value *B = Op0->getOperand(1);
448         Value *C = I.getOperand(1);
449 
450         // Does "B op C" simplify?
451         if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
452           // It simplifies to V.  Form "A op V".
453           replaceOperand(I, 0, A);
454           replaceOperand(I, 1, V);
455           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
456           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
457 
458           // Conservatively clear all optional flags since they may not be
459           // preserved by the reassociation. Reset nsw/nuw based on the above
460           // analysis.
461           ClearSubclassDataAfterReassociation(I);
462 
463           // Note: this is only valid because SimplifyBinOp doesn't look at
464           // the operands to Op0.
465           if (IsNUW)
466             I.setHasNoUnsignedWrap(true);
467 
468           if (IsNSW)
469             I.setHasNoSignedWrap(true);
470 
471           Changed = true;
472           ++NumReassoc;
473           continue;
474         }
475       }
476 
477       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
478       if (Op1 && Op1->getOpcode() == Opcode) {
479         Value *A = I.getOperand(0);
480         Value *B = Op1->getOperand(0);
481         Value *C = Op1->getOperand(1);
482 
483         // Does "A op B" simplify?
484         if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
485           // It simplifies to V.  Form "V op C".
486           replaceOperand(I, 0, V);
487           replaceOperand(I, 1, C);
488           // Conservatively clear the optional flags, since they may not be
489           // preserved by the reassociation.
490           ClearSubclassDataAfterReassociation(I);
491           Changed = true;
492           ++NumReassoc;
493           continue;
494         }
495       }
496     }
497 
498     if (I.isAssociative() && I.isCommutative()) {
499       if (simplifyAssocCastAssoc(&I, *this)) {
500         Changed = true;
501         ++NumReassoc;
502         continue;
503       }
504 
505       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
506       if (Op0 && Op0->getOpcode() == Opcode) {
507         Value *A = Op0->getOperand(0);
508         Value *B = Op0->getOperand(1);
509         Value *C = I.getOperand(1);
510 
511         // Does "C op A" simplify?
512         if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
513           // It simplifies to V.  Form "V op B".
514           replaceOperand(I, 0, V);
515           replaceOperand(I, 1, B);
516           // Conservatively clear the optional flags, since they may not be
517           // preserved by the reassociation.
518           ClearSubclassDataAfterReassociation(I);
519           Changed = true;
520           ++NumReassoc;
521           continue;
522         }
523       }
524 
525       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
526       if (Op1 && Op1->getOpcode() == Opcode) {
527         Value *A = I.getOperand(0);
528         Value *B = Op1->getOperand(0);
529         Value *C = Op1->getOperand(1);
530 
531         // Does "C op A" simplify?
532         if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
533           // It simplifies to V.  Form "B op V".
534           replaceOperand(I, 0, B);
535           replaceOperand(I, 1, V);
536           // Conservatively clear the optional flags, since they may not be
537           // preserved by the reassociation.
538           ClearSubclassDataAfterReassociation(I);
539           Changed = true;
540           ++NumReassoc;
541           continue;
542         }
543       }
544 
545       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
546       // if C1 and C2 are constants.
547       Value *A, *B;
548       Constant *C1, *C2, *CRes;
549       if (Op0 && Op1 &&
550           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
551           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
552           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
553           (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
554         bool IsNUW = hasNoUnsignedWrap(I) &&
555            hasNoUnsignedWrap(*Op0) &&
556            hasNoUnsignedWrap(*Op1);
557          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
558            BinaryOperator::CreateNUW(Opcode, A, B) :
559            BinaryOperator::Create(Opcode, A, B);
560 
561          if (isa<FPMathOperator>(NewBO)) {
562            FastMathFlags Flags = I.getFastMathFlags() &
563                                  Op0->getFastMathFlags() &
564                                  Op1->getFastMathFlags();
565            NewBO->setFastMathFlags(Flags);
566         }
567         InsertNewInstWith(NewBO, I.getIterator());
568         NewBO->takeName(Op1);
569         replaceOperand(I, 0, NewBO);
570         replaceOperand(I, 1, CRes);
571         // Conservatively clear the optional flags, since they may not be
572         // preserved by the reassociation.
573         ClearSubclassDataAfterReassociation(I);
574         if (IsNUW)
575           I.setHasNoUnsignedWrap(true);
576 
577         Changed = true;
578         continue;
579       }
580     }
581 
582     // No further simplifications.
583     return Changed;
584   } while (true);
585 }
586 
587 /// Return whether "X LOp (Y ROp Z)" is always equal to
588 /// "(X LOp Y) ROp (X LOp Z)".
589 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
590                                      Instruction::BinaryOps ROp) {
591   // X & (Y | Z) <--> (X & Y) | (X & Z)
592   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
593   if (LOp == Instruction::And)
594     return ROp == Instruction::Or || ROp == Instruction::Xor;
595 
596   // X | (Y & Z) <--> (X | Y) & (X | Z)
597   if (LOp == Instruction::Or)
598     return ROp == Instruction::And;
599 
600   // X * (Y + Z) <--> (X * Y) + (X * Z)
601   // X * (Y - Z) <--> (X * Y) - (X * Z)
602   if (LOp == Instruction::Mul)
603     return ROp == Instruction::Add || ROp == Instruction::Sub;
604 
605   return false;
606 }
607 
608 /// Return whether "(X LOp Y) ROp Z" is always equal to
609 /// "(X ROp Z) LOp (Y ROp Z)".
610 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
611                                      Instruction::BinaryOps ROp) {
612   if (Instruction::isCommutative(ROp))
613     return leftDistributesOverRight(ROp, LOp);
614 
615   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
616   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
617 
618   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
619   // but this requires knowing that the addition does not overflow and other
620   // such subtleties.
621 }
622 
623 /// This function returns identity value for given opcode, which can be used to
624 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
625 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
626   if (isa<Constant>(V))
627     return nullptr;
628 
629   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
630 }
631 
632 /// This function predicates factorization using distributive laws. By default,
633 /// it just returns the 'Op' inputs. But for special-cases like
634 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
635 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
636 /// allow more factorization opportunities.
637 static Instruction::BinaryOps
638 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
639                           Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) {
640   assert(Op && "Expected a binary operator");
641   LHS = Op->getOperand(0);
642   RHS = Op->getOperand(1);
643   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
644     Constant *C;
645     if (match(Op, m_Shl(m_Value(), m_ImmConstant(C)))) {
646       // X << C --> X * (1 << C)
647       RHS = ConstantFoldBinaryInstruction(
648           Instruction::Shl, ConstantInt::get(Op->getType(), 1), C);
649       assert(RHS && "Constant folding of immediate constants failed");
650       return Instruction::Mul;
651     }
652     // TODO: We can add other conversions e.g. shr => div etc.
653   }
654   if (Instruction::isBitwiseLogicOp(TopOpcode)) {
655     if (OtherOp && OtherOp->getOpcode() == Instruction::AShr &&
656         match(Op, m_LShr(m_NonNegative(), m_Value()))) {
657       // lshr nneg C, X --> ashr nneg C, X
658       return Instruction::AShr;
659     }
660   }
661   return Op->getOpcode();
662 }
663 
664 /// This tries to simplify binary operations by factorizing out common terms
665 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
666 static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ,
667                                InstCombiner::BuilderTy &Builder,
668                                Instruction::BinaryOps InnerOpcode, Value *A,
669                                Value *B, Value *C, Value *D) {
670   assert(A && B && C && D && "All values must be provided");
671 
672   Value *V = nullptr;
673   Value *RetVal = nullptr;
674   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
675   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
676 
677   // Does "X op' Y" always equal "Y op' X"?
678   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
679 
680   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
681   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
682     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
683     // commutative case, "(A op' B) op (C op' A)"?
684     if (A == C || (InnerCommutative && A == D)) {
685       if (A != C)
686         std::swap(C, D);
687       // Consider forming "A op' (B op D)".
688       // If "B op D" simplifies then it can be formed with no cost.
689       V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
690 
691       // If "B op D" doesn't simplify then only go on if one of the existing
692       // operations "A op' B" and "C op' D" will be zapped as no longer used.
693       if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
694         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
695       if (V)
696         RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
697     }
698   }
699 
700   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
701   if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
702     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
703     // commutative case, "(A op' B) op (B op' D)"?
704     if (B == D || (InnerCommutative && B == C)) {
705       if (B != D)
706         std::swap(C, D);
707       // Consider forming "(A op C) op' B".
708       // If "A op C" simplifies then it can be formed with no cost.
709       V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
710 
711       // If "A op C" doesn't simplify then only go on if one of the existing
712       // operations "A op' B" and "C op' D" will be zapped as no longer used.
713       if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
714         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
715       if (V)
716         RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
717     }
718   }
719 
720   if (!RetVal)
721     return nullptr;
722 
723   ++NumFactor;
724   RetVal->takeName(&I);
725 
726   // Try to add no-overflow flags to the final value.
727   if (isa<OverflowingBinaryOperator>(RetVal)) {
728     bool HasNSW = false;
729     bool HasNUW = false;
730     if (isa<OverflowingBinaryOperator>(&I)) {
731       HasNSW = I.hasNoSignedWrap();
732       HasNUW = I.hasNoUnsignedWrap();
733     }
734     if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
735       HasNSW &= LOBO->hasNoSignedWrap();
736       HasNUW &= LOBO->hasNoUnsignedWrap();
737     }
738 
739     if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
740       HasNSW &= ROBO->hasNoSignedWrap();
741       HasNUW &= ROBO->hasNoUnsignedWrap();
742     }
743 
744     if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
745       // We can propagate 'nsw' if we know that
746       //  %Y = mul nsw i16 %X, C
747       //  %Z = add nsw i16 %Y, %X
748       // =>
749       //  %Z = mul nsw i16 %X, C+1
750       //
751       // iff C+1 isn't INT_MIN
752       const APInt *CInt;
753       if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
754         cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
755 
756       // nuw can be propagated with any constant or nuw value.
757       cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
758     }
759   }
760   return RetVal;
761 }
762 
763 // If `I` has one Const operand and the other matches `(ctpop (not x))`,
764 // replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`.
765 // This is only useful is the new subtract can fold so we only handle the
766 // following cases:
767 //    1) (add/sub/disjoint_or C, (ctpop (not x))
768 //        -> (add/sub/disjoint_or C', (ctpop x))
769 //    1) (cmp pred C, (ctpop (not x))
770 //        -> (cmp pred C', (ctpop x))
771 Instruction *InstCombinerImpl::tryFoldInstWithCtpopWithNot(Instruction *I) {
772   unsigned Opc = I->getOpcode();
773   unsigned ConstIdx = 1;
774   switch (Opc) {
775   default:
776     return nullptr;
777     // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x))
778     // We can fold the BitWidth(x) with add/sub/icmp as long the other operand
779     // is constant.
780   case Instruction::Sub:
781     ConstIdx = 0;
782     break;
783   case Instruction::ICmp:
784     // Signed predicates aren't correct in some edge cases like for i2 types, as
785     // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed
786     // comparisons against it are simplfied to unsigned.
787     if (cast<ICmpInst>(I)->isSigned())
788       return nullptr;
789     break;
790   case Instruction::Or:
791     if (!match(I, m_DisjointOr(m_Value(), m_Value())))
792       return nullptr;
793     [[fallthrough]];
794   case Instruction::Add:
795     break;
796   }
797 
798   Value *Op;
799   // Find ctpop.
800   if (!match(I->getOperand(1 - ConstIdx),
801              m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(Op)))))
802     return nullptr;
803 
804   Constant *C;
805   // Check other operand is ImmConstant.
806   if (!match(I->getOperand(ConstIdx), m_ImmConstant(C)))
807     return nullptr;
808 
809   Type *Ty = Op->getType();
810   Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
811   // Need extra check for icmp. Note if this check is true, it generally means
812   // the icmp will simplify to true/false.
813   if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality()) {
814     Constant *Cmp =
815         ConstantFoldCompareInstOperands(ICmpInst::ICMP_UGT, C, BitWidthC, DL);
816     if (!Cmp || !Cmp->isZeroValue())
817       return nullptr;
818   }
819 
820   // Check we can invert `(not x)` for free.
821   bool Consumes = false;
822   if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes)
823     return nullptr;
824   Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder);
825   assert(NotOp != nullptr &&
826          "Desync between isFreeToInvert and getFreelyInverted");
827 
828   Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
829 
830   Value *R = nullptr;
831 
832   // Do the transformation here to avoid potentially introducing an infinite
833   // loop.
834   switch (Opc) {
835   case Instruction::Sub:
836     R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC));
837     break;
838   case Instruction::Or:
839   case Instruction::Add:
840     R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp);
841     break;
842   case Instruction::ICmp:
843     R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(),
844                            CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C));
845     break;
846   default:
847     llvm_unreachable("Unhandled Opcode");
848   }
849   assert(R != nullptr);
850   return replaceInstUsesWith(*I, R);
851 }
852 
853 // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
854 //   IFF
855 //    1) the logic_shifts match
856 //    2) either both binops are binops and one is `and` or
857 //       BinOp1 is `and`
858 //       (logic_shift (inv_logic_shift C1, C), C) == C1 or
859 //
860 //    -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
861 //
862 // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
863 //   IFF
864 //    1) the logic_shifts match
865 //    2) BinOp1 == BinOp2 (if BinOp ==  `add`, then also requires `shl`).
866 //
867 //    -> (BinOp (logic_shift (BinOp X, Y)), Mask)
868 //
869 // (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
870 //   IFF
871 //   1) Binop1 is bitwise logical operator `and`, `or` or `xor`
872 //   2) Binop2 is `not`
873 //
874 //   -> (arithmetic_shift Binop1((not X), Y), Amt)
875 
876 Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) {
877   const DataLayout &DL = I.getDataLayout();
878   auto IsValidBinOpc = [](unsigned Opc) {
879     switch (Opc) {
880     default:
881       return false;
882     case Instruction::And:
883     case Instruction::Or:
884     case Instruction::Xor:
885     case Instruction::Add:
886       // Skip Sub as we only match constant masks which will canonicalize to use
887       // add.
888       return true;
889     }
890   };
891 
892   // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
893   // constraints.
894   auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2,
895                                       unsigned ShOpc) {
896     assert(ShOpc != Instruction::AShr);
897     return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
898            ShOpc == Instruction::Shl;
899   };
900 
901   auto GetInvShift = [](unsigned ShOpc) {
902     assert(ShOpc != Instruction::AShr);
903     return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
904   };
905 
906   auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2,
907                                  unsigned ShOpc, Constant *CMask,
908                                  Constant *CShift) {
909     // If the BinOp1 is `and` we don't need to check the mask.
910     if (BinOpc1 == Instruction::And)
911       return true;
912 
913     // For all other possible transfers we need complete distributable
914     // binop/shift (anything but `add` + `lshr`).
915     if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
916       return false;
917 
918     // If BinOp2 is `and`, any mask works (this only really helps for non-splat
919     // vecs, otherwise the mask will be simplified and the following check will
920     // handle it).
921     if (BinOpc2 == Instruction::And)
922       return true;
923 
924     // Otherwise, need mask that meets the below requirement.
925     // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
926     Constant *MaskInvShift =
927         ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
928     return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) ==
929            CMask;
930   };
931 
932   auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * {
933     Constant *CMask, *CShift;
934     Value *X, *Y, *ShiftedX, *Mask, *Shift;
935     if (!match(I.getOperand(ShOpnum),
936                m_OneUse(m_Shift(m_Value(Y), m_Value(Shift)))))
937       return nullptr;
938     if (!match(I.getOperand(1 - ShOpnum),
939                m_BinOp(m_Value(ShiftedX), m_Value(Mask))))
940       return nullptr;
941 
942     if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift)))))
943       return nullptr;
944 
945     // Make sure we are matching instruction shifts and not ConstantExpr
946     auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum));
947     auto *IX = dyn_cast<Instruction>(ShiftedX);
948     if (!IY || !IX)
949       return nullptr;
950 
951     // LHS and RHS need same shift opcode
952     unsigned ShOpc = IY->getOpcode();
953     if (ShOpc != IX->getOpcode())
954       return nullptr;
955 
956     // Make sure binop is real instruction and not ConstantExpr
957     auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum));
958     if (!BO2)
959       return nullptr;
960 
961     unsigned BinOpc = BO2->getOpcode();
962     // Make sure we have valid binops.
963     if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc))
964       return nullptr;
965 
966     if (ShOpc == Instruction::AShr) {
967       if (Instruction::isBitwiseLogicOp(I.getOpcode()) &&
968           BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) {
969         Value *NotX = Builder.CreateNot(X);
970         Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX);
971         return BinaryOperator::Create(
972             static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift);
973       }
974 
975       return nullptr;
976     }
977 
978     // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
979     // distribute to drop the shift irrelevant of constants.
980     if (BinOpc == I.getOpcode() &&
981         IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) {
982       Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y);
983       Value *NewBinOp1 = Builder.CreateBinOp(
984           static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift);
985       return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask);
986     }
987 
988     // Otherwise we can only distribute by constant shifting the mask, so
989     // ensure we have constants.
990     if (!match(Shift, m_ImmConstant(CShift)))
991       return nullptr;
992     if (!match(Mask, m_ImmConstant(CMask)))
993       return nullptr;
994 
995     // Check if we can distribute the binops.
996     if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
997       return nullptr;
998 
999     Constant *NewCMask =
1000         ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
1001     Value *NewBinOp2 = Builder.CreateBinOp(
1002         static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask);
1003     Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2);
1004     return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc),
1005                                   NewBinOp1, CShift);
1006   };
1007 
1008   if (Instruction *R = MatchBinOp(0))
1009     return R;
1010   return MatchBinOp(1);
1011 }
1012 
1013 // (Binop (zext C), (select C, T, F))
1014 //    -> (select C, (binop 1, T), (binop 0, F))
1015 //
1016 // (Binop (sext C), (select C, T, F))
1017 //    -> (select C, (binop -1, T), (binop 0, F))
1018 //
1019 // Attempt to simplify binary operations into a select with folded args, when
1020 // one operand of the binop is a select instruction and the other operand is a
1021 // zext/sext extension, whose value is the select condition.
1022 Instruction *
1023 InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) {
1024   // TODO: this simplification may be extended to any speculatable instruction,
1025   // not just binops, and would possibly be handled better in FoldOpIntoSelect.
1026   Instruction::BinaryOps Opc = I.getOpcode();
1027   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1028   Value *A, *CondVal, *TrueVal, *FalseVal;
1029   Value *CastOp;
1030 
1031   auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) {
1032     return match(CastOp, m_ZExtOrSExt(m_Value(A))) &&
1033            A->getType()->getScalarSizeInBits() == 1 &&
1034            match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal),
1035                                     m_Value(FalseVal)));
1036   };
1037 
1038   // Make sure one side of the binop is a select instruction, and the other is a
1039   // zero/sign extension operating on a i1.
1040   if (MatchSelectAndCast(LHS, RHS))
1041     CastOp = LHS;
1042   else if (MatchSelectAndCast(RHS, LHS))
1043     CastOp = RHS;
1044   else
1045     return nullptr;
1046 
1047   auto NewFoldedConst = [&](bool IsTrueArm, Value *V) {
1048     bool IsCastOpRHS = (CastOp == RHS);
1049     bool IsZExt = isa<ZExtInst>(CastOp);
1050     Constant *C;
1051 
1052     if (IsTrueArm) {
1053       C = Constant::getNullValue(V->getType());
1054     } else if (IsZExt) {
1055       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1056       C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1));
1057     } else {
1058       C = Constant::getAllOnesValue(V->getType());
1059     }
1060 
1061     return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C)
1062                        : Builder.CreateBinOp(Opc, C, V);
1063   };
1064 
1065   // If the value used in the zext/sext is the select condition, or the negated
1066   // of the select condition, the binop can be simplified.
1067   if (CondVal == A) {
1068     Value *NewTrueVal = NewFoldedConst(false, TrueVal);
1069     return SelectInst::Create(CondVal, NewTrueVal,
1070                               NewFoldedConst(true, FalseVal));
1071   }
1072 
1073   if (match(A, m_Not(m_Specific(CondVal)))) {
1074     Value *NewTrueVal = NewFoldedConst(true, TrueVal);
1075     return SelectInst::Create(CondVal, NewTrueVal,
1076                               NewFoldedConst(false, FalseVal));
1077   }
1078 
1079   return nullptr;
1080 }
1081 
1082 Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) {
1083   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1084   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
1085   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
1086   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1087   Value *A, *B, *C, *D;
1088   Instruction::BinaryOps LHSOpcode, RHSOpcode;
1089 
1090   if (Op0)
1091     LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1);
1092   if (Op1)
1093     RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0);
1094 
1095   // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
1096   // a common term.
1097   if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1098     if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
1099       return V;
1100 
1101   // The instruction has the form "(A op' B) op (C)".  Try to factorize common
1102   // term.
1103   if (Op0)
1104     if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
1105       if (Value *V =
1106               tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
1107         return V;
1108 
1109   // The instruction has the form "(B) op (C op' D)".  Try to factorize common
1110   // term.
1111   if (Op1)
1112     if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
1113       if (Value *V =
1114               tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
1115         return V;
1116 
1117   return nullptr;
1118 }
1119 
1120 /// This tries to simplify binary operations which some other binary operation
1121 /// distributes over either by factorizing out common terms
1122 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
1123 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
1124 /// Returns the simplified value, or null if it didn't simplify.
1125 Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) {
1126   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1127   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
1128   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
1129   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1130 
1131   // Factorization.
1132   if (Value *R = tryFactorizationFolds(I))
1133     return R;
1134 
1135   // Expansion.
1136   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
1137     // The instruction has the form "(A op' B) op C".  See if expanding it out
1138     // to "(A op C) op' (B op C)" results in simplifications.
1139     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
1140     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
1141 
1142     // Disable the use of undef because it's not safe to distribute undef.
1143     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1144     Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1145     Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
1146 
1147     // Do "A op C" and "B op C" both simplify?
1148     if (L && R) {
1149       // They do! Return "L op' R".
1150       ++NumExpand;
1151       C = Builder.CreateBinOp(InnerOpcode, L, R);
1152       C->takeName(&I);
1153       return C;
1154     }
1155 
1156     // Does "A op C" simplify to the identity value for the inner opcode?
1157     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1158       // They do! Return "B op C".
1159       ++NumExpand;
1160       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
1161       C->takeName(&I);
1162       return C;
1163     }
1164 
1165     // Does "B op C" simplify to the identity value for the inner opcode?
1166     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1167       // They do! Return "A op C".
1168       ++NumExpand;
1169       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
1170       C->takeName(&I);
1171       return C;
1172     }
1173   }
1174 
1175   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
1176     // The instruction has the form "A op (B op' C)".  See if expanding it out
1177     // to "(A op B) op' (A op C)" results in simplifications.
1178     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
1179     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
1180 
1181     // Disable the use of undef because it's not safe to distribute undef.
1182     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1183     Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
1184     Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1185 
1186     // Do "A op B" and "A op C" both simplify?
1187     if (L && R) {
1188       // They do! Return "L op' R".
1189       ++NumExpand;
1190       A = Builder.CreateBinOp(InnerOpcode, L, R);
1191       A->takeName(&I);
1192       return A;
1193     }
1194 
1195     // Does "A op B" simplify to the identity value for the inner opcode?
1196     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1197       // They do! Return "A op C".
1198       ++NumExpand;
1199       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
1200       A->takeName(&I);
1201       return A;
1202     }
1203 
1204     // Does "A op C" simplify to the identity value for the inner opcode?
1205     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1206       // They do! Return "A op B".
1207       ++NumExpand;
1208       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
1209       A->takeName(&I);
1210       return A;
1211     }
1212   }
1213 
1214   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
1215 }
1216 
1217 static std::optional<std::pair<Value *, Value *>>
1218 matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) {
1219   if (LHS->getParent() != RHS->getParent())
1220     return std::nullopt;
1221 
1222   if (LHS->getNumIncomingValues() < 2)
1223     return std::nullopt;
1224 
1225   if (!equal(LHS->blocks(), RHS->blocks()))
1226     return std::nullopt;
1227 
1228   Value *L0 = LHS->getIncomingValue(0);
1229   Value *R0 = RHS->getIncomingValue(0);
1230 
1231   for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) {
1232     Value *L1 = LHS->getIncomingValue(I);
1233     Value *R1 = RHS->getIncomingValue(I);
1234 
1235     if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1236       continue;
1237 
1238     return std::nullopt;
1239   }
1240 
1241   return std::optional(std::pair(L0, R0));
1242 }
1243 
1244 std::optional<std::pair<Value *, Value *>>
1245 InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) {
1246   Instruction *LHSInst = dyn_cast<Instruction>(LHS);
1247   Instruction *RHSInst = dyn_cast<Instruction>(RHS);
1248   if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode())
1249     return std::nullopt;
1250   switch (LHSInst->getOpcode()) {
1251   case Instruction::PHI:
1252     return matchSymmetricPhiNodesPair(cast<PHINode>(LHS), cast<PHINode>(RHS));
1253   case Instruction::Select: {
1254     Value *Cond = LHSInst->getOperand(0);
1255     Value *TrueVal = LHSInst->getOperand(1);
1256     Value *FalseVal = LHSInst->getOperand(2);
1257     if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) &&
1258         FalseVal == RHSInst->getOperand(1))
1259       return std::pair(TrueVal, FalseVal);
1260     return std::nullopt;
1261   }
1262   case Instruction::Call: {
1263     // Match min(a, b) and max(a, b)
1264     MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst);
1265     MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst);
1266     if (LHSMinMax && RHSMinMax &&
1267         LHSMinMax->getPredicate() ==
1268             ICmpInst::getSwappedPredicate(RHSMinMax->getPredicate()) &&
1269         ((LHSMinMax->getLHS() == RHSMinMax->getLHS() &&
1270           LHSMinMax->getRHS() == RHSMinMax->getRHS()) ||
1271          (LHSMinMax->getLHS() == RHSMinMax->getRHS() &&
1272           LHSMinMax->getRHS() == RHSMinMax->getLHS())))
1273       return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS());
1274     return std::nullopt;
1275   }
1276   default:
1277     return std::nullopt;
1278   }
1279 }
1280 
1281 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
1282                                                         Value *LHS,
1283                                                         Value *RHS) {
1284   Value *A, *B, *C, *D, *E, *F;
1285   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
1286   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
1287   if (!LHSIsSelect && !RHSIsSelect)
1288     return nullptr;
1289 
1290   FastMathFlags FMF;
1291   BuilderTy::FastMathFlagGuard Guard(Builder);
1292   if (isa<FPMathOperator>(&I)) {
1293     FMF = I.getFastMathFlags();
1294     Builder.setFastMathFlags(FMF);
1295   }
1296 
1297   Instruction::BinaryOps Opcode = I.getOpcode();
1298   SimplifyQuery Q = SQ.getWithInstruction(&I);
1299 
1300   Value *Cond, *True = nullptr, *False = nullptr;
1301 
1302   // Special-case for add/negate combination. Replace the zero in the negation
1303   // with the trailing add operand:
1304   // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
1305   // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
1306   auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
1307     // We need an 'add' and exactly 1 arm of the select to have been simplified.
1308     if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1309       return nullptr;
1310 
1311     Value *N;
1312     if (True && match(FVal, m_Neg(m_Value(N)))) {
1313       Value *Sub = Builder.CreateSub(Z, N);
1314       return Builder.CreateSelect(Cond, True, Sub, I.getName());
1315     }
1316     if (False && match(TVal, m_Neg(m_Value(N)))) {
1317       Value *Sub = Builder.CreateSub(Z, N);
1318       return Builder.CreateSelect(Cond, Sub, False, I.getName());
1319     }
1320     return nullptr;
1321   };
1322 
1323   if (LHSIsSelect && RHSIsSelect && A == D) {
1324     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
1325     Cond = A;
1326     True = simplifyBinOp(Opcode, B, E, FMF, Q);
1327     False = simplifyBinOp(Opcode, C, F, FMF, Q);
1328 
1329     if (LHS->hasOneUse() && RHS->hasOneUse()) {
1330       if (False && !True)
1331         True = Builder.CreateBinOp(Opcode, B, E);
1332       else if (True && !False)
1333         False = Builder.CreateBinOp(Opcode, C, F);
1334     }
1335   } else if (LHSIsSelect && LHS->hasOneUse()) {
1336     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
1337     Cond = A;
1338     True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
1339     False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
1340     if (Value *NewSel = foldAddNegate(B, C, RHS))
1341       return NewSel;
1342   } else if (RHSIsSelect && RHS->hasOneUse()) {
1343     // X op (D ? E : F) -> D ? (X op E) : (X op F)
1344     Cond = D;
1345     True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
1346     False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
1347     if (Value *NewSel = foldAddNegate(E, F, LHS))
1348       return NewSel;
1349   }
1350 
1351   if (!True || !False)
1352     return nullptr;
1353 
1354   Value *SI = Builder.CreateSelect(Cond, True, False);
1355   SI->takeName(&I);
1356   return SI;
1357 }
1358 
1359 /// Freely adapt every user of V as-if V was changed to !V.
1360 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
1361 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) {
1362   assert(!isa<Constant>(I) && "Shouldn't invert users of constant");
1363   for (User *U : make_early_inc_range(I->users())) {
1364     if (U == IgnoredUser)
1365       continue; // Don't consider this user.
1366     switch (cast<Instruction>(U)->getOpcode()) {
1367     case Instruction::Select: {
1368       auto *SI = cast<SelectInst>(U);
1369       SI->swapValues();
1370       SI->swapProfMetadata();
1371       break;
1372     }
1373     case Instruction::Br: {
1374       BranchInst *BI = cast<BranchInst>(U);
1375       BI->swapSuccessors(); // swaps prof metadata too
1376       if (BPI)
1377         BPI->swapSuccEdgesProbabilities(BI->getParent());
1378       break;
1379     }
1380     case Instruction::Xor:
1381       replaceInstUsesWith(cast<Instruction>(*U), I);
1382       // Add to worklist for DCE.
1383       addToWorklist(cast<Instruction>(U));
1384       break;
1385     default:
1386       llvm_unreachable("Got unexpected user - out of sync with "
1387                        "canFreelyInvertAllUsersOf() ?");
1388     }
1389   }
1390 }
1391 
1392 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
1393 /// constant zero (which is the 'negate' form).
1394 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
1395   Value *NegV;
1396   if (match(V, m_Neg(m_Value(NegV))))
1397     return NegV;
1398 
1399   // Constants can be considered to be negated values if they can be folded.
1400   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
1401     return ConstantExpr::getNeg(C);
1402 
1403   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
1404     if (C->getType()->getElementType()->isIntegerTy())
1405       return ConstantExpr::getNeg(C);
1406 
1407   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
1408     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1409       Constant *Elt = CV->getAggregateElement(i);
1410       if (!Elt)
1411         return nullptr;
1412 
1413       if (isa<UndefValue>(Elt))
1414         continue;
1415 
1416       if (!isa<ConstantInt>(Elt))
1417         return nullptr;
1418     }
1419     return ConstantExpr::getNeg(CV);
1420   }
1421 
1422   // Negate integer vector splats.
1423   if (auto *CV = dyn_cast<Constant>(V))
1424     if (CV->getType()->isVectorTy() &&
1425         CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1426       return ConstantExpr::getNeg(CV);
1427 
1428   return nullptr;
1429 }
1430 
1431 // Try to fold:
1432 //    1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1433 //        -> ({s|u}itofp (int_binop x, y))
1434 //    2) (fp_binop ({s|u}itofp x), FpC)
1435 //        -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1436 //
1437 // Assuming the sign of the cast for x/y is `OpsFromSigned`.
1438 Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1439     BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps,
1440     Constant *Op1FpC, SmallVectorImpl<WithCache<const Value *>> &OpsKnown) {
1441 
1442   Type *FPTy = BO.getType();
1443   Type *IntTy = IntOps[0]->getType();
1444 
1445   unsigned IntSz = IntTy->getScalarSizeInBits();
1446   // This is the maximum number of inuse bits by the integer where the int -> fp
1447   // casts are exact.
1448   unsigned MaxRepresentableBits =
1449       APFloat::semanticsPrecision(FPTy->getScalarType()->getFltSemantics());
1450 
1451   // Preserve known number of leading bits. This can allow us to trivial nsw/nuw
1452   // checks later on.
1453   unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
1454 
1455   // NB: This only comes up if OpsFromSigned is true, so there is no need to
1456   // cache if between calls to `foldFBinOpOfIntCastsFromSign`.
1457   auto IsNonZero = [&](unsigned OpNo) -> bool {
1458     if (OpsKnown[OpNo].hasKnownBits() &&
1459         OpsKnown[OpNo].getKnownBits(SQ).isNonZero())
1460       return true;
1461     return isKnownNonZero(IntOps[OpNo], SQ);
1462   };
1463 
1464   auto IsNonNeg = [&](unsigned OpNo) -> bool {
1465     // NB: This matches the impl in ValueTracking, we just try to use cached
1466     // knownbits here. If we ever start supporting WithCache for
1467     // `isKnownNonNegative`, change this to an explicit call.
1468     return OpsKnown[OpNo].getKnownBits(SQ).isNonNegative();
1469   };
1470 
1471   // Check if we know for certain that ({s|u}itofp op) is exact.
1472   auto IsValidPromotion = [&](unsigned OpNo) -> bool {
1473     // Can we treat this operand as the desired sign?
1474     if (OpsFromSigned != isa<SIToFPInst>(BO.getOperand(OpNo)) &&
1475         !IsNonNeg(OpNo))
1476       return false;
1477 
1478     // If fp precision >= bitwidth(op) then its exact.
1479     // NB: This is slightly conservative for `sitofp`. For signed conversion, we
1480     // can handle `MaxRepresentableBits == IntSz - 1` as the sign bit will be
1481     // handled specially. We can't, however, increase the bound arbitrarily for
1482     // `sitofp` as for larger sizes, it won't sign extend.
1483     if (MaxRepresentableBits < IntSz) {
1484       // Otherwise if its signed cast check that fp precisions >= bitwidth(op) -
1485       // numSignBits(op).
1486       // TODO: If we add support for `WithCache` in `ComputeNumSignBits`, change
1487       // `IntOps[OpNo]` arguments to `KnownOps[OpNo]`.
1488       if (OpsFromSigned)
1489         NumUsedLeadingBits[OpNo] = IntSz - ComputeNumSignBits(IntOps[OpNo]);
1490       // Finally for unsigned check that fp precision >= bitwidth(op) -
1491       // numLeadingZeros(op).
1492       else {
1493         NumUsedLeadingBits[OpNo] =
1494             IntSz - OpsKnown[OpNo].getKnownBits(SQ).countMinLeadingZeros();
1495       }
1496     }
1497     // NB: We could also check if op is known to be a power of 2 or zero (which
1498     // will always be representable). Its unlikely, however, that is we are
1499     // unable to bound op in any way we will be able to pass the overflow checks
1500     // later on.
1501 
1502     if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
1503       return false;
1504     // Signed + Mul also requires that op is non-zero to avoid -0 cases.
1505     return !OpsFromSigned || BO.getOpcode() != Instruction::FMul ||
1506            IsNonZero(OpNo);
1507   };
1508 
1509   // If we have a constant rhs, see if we can losslessly convert it to an int.
1510   if (Op1FpC != nullptr) {
1511     // Signed + Mul req non-zero
1512     if (OpsFromSigned && BO.getOpcode() == Instruction::FMul &&
1513         !match(Op1FpC, m_NonZeroFP()))
1514       return nullptr;
1515 
1516     Constant *Op1IntC = ConstantFoldCastOperand(
1517         OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
1518         IntTy, DL);
1519     if (Op1IntC == nullptr)
1520       return nullptr;
1521     if (ConstantFoldCastOperand(OpsFromSigned ? Instruction::SIToFP
1522                                               : Instruction::UIToFP,
1523                                 Op1IntC, FPTy, DL) != Op1FpC)
1524       return nullptr;
1525 
1526     // First try to keep sign of cast the same.
1527     IntOps[1] = Op1IntC;
1528   }
1529 
1530   // Ensure lhs/rhs integer types match.
1531   if (IntTy != IntOps[1]->getType())
1532     return nullptr;
1533 
1534   if (Op1FpC == nullptr) {
1535     if (!IsValidPromotion(1))
1536       return nullptr;
1537   }
1538   if (!IsValidPromotion(0))
1539     return nullptr;
1540 
1541   // Final we check if the integer version of the binop will not overflow.
1542   BinaryOperator::BinaryOps IntOpc;
1543   // Because of the precision check, we can often rule out overflows.
1544   bool NeedsOverflowCheck = true;
1545   // Try to conservatively rule out overflow based on the already done precision
1546   // checks.
1547   unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
1548   unsigned OverflowMaxCurBits =
1549       std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
1550   bool OutputSigned = OpsFromSigned;
1551   switch (BO.getOpcode()) {
1552   case Instruction::FAdd:
1553     IntOpc = Instruction::Add;
1554     OverflowMaxOutputBits += OverflowMaxCurBits;
1555     break;
1556   case Instruction::FSub:
1557     IntOpc = Instruction::Sub;
1558     OverflowMaxOutputBits += OverflowMaxCurBits;
1559     break;
1560   case Instruction::FMul:
1561     IntOpc = Instruction::Mul;
1562     OverflowMaxOutputBits += OverflowMaxCurBits * 2;
1563     break;
1564   default:
1565     llvm_unreachable("Unsupported binop");
1566   }
1567   // The precision check may have already ruled out overflow.
1568   if (OverflowMaxOutputBits < IntSz) {
1569     NeedsOverflowCheck = false;
1570     // We can bound unsigned overflow from sub to in range signed value (this is
1571     // what allows us to avoid the overflow check for sub).
1572     if (IntOpc == Instruction::Sub)
1573       OutputSigned = true;
1574   }
1575 
1576   // Precision check did not rule out overflow, so need to check.
1577   // TODO: If we add support for `WithCache` in `willNotOverflow`, change
1578   // `IntOps[...]` arguments to `KnownOps[...]`.
1579   if (NeedsOverflowCheck &&
1580       !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
1581     return nullptr;
1582 
1583   Value *IntBinOp = Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]);
1584   if (auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) {
1585     IntBO->setHasNoSignedWrap(OutputSigned);
1586     IntBO->setHasNoUnsignedWrap(!OutputSigned);
1587   }
1588   if (OutputSigned)
1589     return new SIToFPInst(IntBinOp, FPTy);
1590   return new UIToFPInst(IntBinOp, FPTy);
1591 }
1592 
1593 // Try to fold:
1594 //    1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1595 //        -> ({s|u}itofp (int_binop x, y))
1596 //    2) (fp_binop ({s|u}itofp x), FpC)
1597 //        -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1598 Instruction *InstCombinerImpl::foldFBinOpOfIntCasts(BinaryOperator &BO) {
1599   std::array<Value *, 2> IntOps = {nullptr, nullptr};
1600   Constant *Op1FpC = nullptr;
1601   // Check for:
1602   //    1) (binop ({s|u}itofp x), ({s|u}itofp y))
1603   //    2) (binop ({s|u}itofp x), FpC)
1604   if (!match(BO.getOperand(0), m_SIToFP(m_Value(IntOps[0]))) &&
1605       !match(BO.getOperand(0), m_UIToFP(m_Value(IntOps[0]))))
1606     return nullptr;
1607 
1608   if (!match(BO.getOperand(1), m_Constant(Op1FpC)) &&
1609       !match(BO.getOperand(1), m_SIToFP(m_Value(IntOps[1]))) &&
1610       !match(BO.getOperand(1), m_UIToFP(m_Value(IntOps[1]))))
1611     return nullptr;
1612 
1613   // Cache KnownBits a bit to potentially save some analysis.
1614   SmallVector<WithCache<const Value *>, 2> OpsKnown = {IntOps[0], IntOps[1]};
1615 
1616   // Try treating x/y as coming from both `uitofp` and `sitofp`. There are
1617   // different constraints depending on the sign of the cast.
1618   // NB: `(uitofp nneg X)` == `(sitofp nneg X)`.
1619   if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/false,
1620                                                     IntOps, Op1FpC, OpsKnown))
1621     return R;
1622   return foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/true, IntOps,
1623                                       Op1FpC, OpsKnown);
1624 }
1625 
1626 /// A binop with a constant operand and a sign-extended boolean operand may be
1627 /// converted into a select of constants by applying the binary operation to
1628 /// the constant with the two possible values of the extended boolean (0 or -1).
1629 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
1630   // TODO: Handle non-commutative binop (constant is operand 0).
1631   // TODO: Handle zext.
1632   // TODO: Peek through 'not' of cast.
1633   Value *BO0 = BO.getOperand(0);
1634   Value *BO1 = BO.getOperand(1);
1635   Value *X;
1636   Constant *C;
1637   if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
1638       !X->getType()->isIntOrIntVectorTy(1))
1639     return nullptr;
1640 
1641   // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
1642   Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
1643   Constant *Zero = ConstantInt::getNullValue(BO.getType());
1644   Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
1645   Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
1646   return SelectInst::Create(X, TVal, FVal);
1647 }
1648 
1649 static Constant *constantFoldOperationIntoSelectOperand(Instruction &I,
1650                                                         SelectInst *SI,
1651                                                         bool IsTrueArm) {
1652   SmallVector<Constant *> ConstOps;
1653   for (Value *Op : I.operands()) {
1654     CmpInst::Predicate Pred;
1655     Constant *C = nullptr;
1656     if (Op == SI) {
1657       C = dyn_cast<Constant>(IsTrueArm ? SI->getTrueValue()
1658                                        : SI->getFalseValue());
1659     } else if (match(SI->getCondition(),
1660                      m_ICmp(Pred, m_Specific(Op), m_Constant(C))) &&
1661                Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
1662                isGuaranteedNotToBeUndefOrPoison(C)) {
1663       // Pass
1664     } else {
1665       C = dyn_cast<Constant>(Op);
1666     }
1667     if (C == nullptr)
1668       return nullptr;
1669 
1670     ConstOps.push_back(C);
1671   }
1672 
1673   return ConstantFoldInstOperands(&I, ConstOps, I.getDataLayout());
1674 }
1675 
1676 static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI,
1677                                              Value *NewOp, InstCombiner &IC) {
1678   Instruction *Clone = I.clone();
1679   Clone->replaceUsesOfWith(SI, NewOp);
1680   Clone->dropUBImplyingAttrsAndMetadata();
1681   IC.InsertNewInstBefore(Clone, SI->getIterator());
1682   return Clone;
1683 }
1684 
1685 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1686                                                 bool FoldWithMultiUse) {
1687   // Don't modify shared select instructions unless set FoldWithMultiUse
1688   if (!SI->hasOneUse() && !FoldWithMultiUse)
1689     return nullptr;
1690 
1691   Value *TV = SI->getTrueValue();
1692   Value *FV = SI->getFalseValue();
1693   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1694     return nullptr;
1695 
1696   // Bool selects with constant operands can be folded to logical ops.
1697   if (SI->getType()->isIntOrIntVectorTy(1))
1698     return nullptr;
1699 
1700   // Test if a FCmpInst instruction is used exclusively by a select as
1701   // part of a minimum or maximum operation. If so, refrain from doing
1702   // any other folding. This helps out other analyses which understand
1703   // non-obfuscated minimum and maximum idioms. And in this case, at
1704   // least one of the comparison operands has at least one user besides
1705   // the compare (the select), which would often largely negate the
1706   // benefit of folding anyway.
1707   if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
1708     if (CI->hasOneUse()) {
1709       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1710       if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1))
1711         return nullptr;
1712     }
1713   }
1714 
1715   // Make sure that one of the select arms constant folds successfully.
1716   Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true);
1717   Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false);
1718   if (!NewTV && !NewFV)
1719     return nullptr;
1720 
1721   // Create an instruction for the arm that did not fold.
1722   if (!NewTV)
1723     NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this);
1724   if (!NewFV)
1725     NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this);
1726   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1727 }
1728 
1729 static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN,
1730                                          Value *InValue, BasicBlock *InBB,
1731                                          const DataLayout &DL,
1732                                          const SimplifyQuery SQ) {
1733   // NB: It is a precondition of this transform that the operands be
1734   // phi translatable! This is usually trivially satisfied by limiting it
1735   // to constant ops, and for selects we do a more sophisticated check.
1736   SmallVector<Value *> Ops;
1737   for (Value *Op : I.operands()) {
1738     if (Op == PN)
1739       Ops.push_back(InValue);
1740     else
1741       Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
1742   }
1743 
1744   // Don't consider the simplification successful if we get back a constant
1745   // expression. That's just an instruction in hiding.
1746   // Also reject the case where we simplify back to the phi node. We wouldn't
1747   // be able to remove it in that case.
1748   Value *NewVal = simplifyInstructionWithOperands(
1749       &I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
1750   if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr()))
1751     return NewVal;
1752 
1753   // Check if incoming PHI value can be replaced with constant
1754   // based on implied condition.
1755   BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator());
1756   const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I);
1757   if (TerminatorBI && TerminatorBI->isConditional() &&
1758       TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) {
1759     bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent();
1760     std::optional<bool> ImpliedCond =
1761         isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(),
1762                            Ops[0], Ops[1], DL, LHSIsTrue);
1763     if (ImpliedCond)
1764       return ConstantInt::getBool(I.getType(), ImpliedCond.value());
1765   }
1766 
1767   return nullptr;
1768 }
1769 
1770 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1771   unsigned NumPHIValues = PN->getNumIncomingValues();
1772   if (NumPHIValues == 0)
1773     return nullptr;
1774 
1775   // We normally only transform phis with a single use.  However, if a PHI has
1776   // multiple uses and they are all the same operation, we can fold *all* of the
1777   // uses into the PHI.
1778   if (!PN->hasOneUse()) {
1779     // Walk the use list for the instruction, comparing them to I.
1780     for (User *U : PN->users()) {
1781       Instruction *UI = cast<Instruction>(U);
1782       if (UI != &I && !I.isIdenticalTo(UI))
1783         return nullptr;
1784     }
1785     // Otherwise, we can replace *all* users with the new PHI we form.
1786   }
1787 
1788   // Check to see whether the instruction can be folded into each phi operand.
1789   // If there is one operand that does not fold, remember the BB it is in.
1790   // If there is more than one or if *it* is a PHI, bail out.
1791   SmallVector<Value *> NewPhiValues;
1792   BasicBlock *NonSimplifiedBB = nullptr;
1793   Value *NonSimplifiedInVal = nullptr;
1794   for (unsigned i = 0; i != NumPHIValues; ++i) {
1795     Value *InVal = PN->getIncomingValue(i);
1796     BasicBlock *InBB = PN->getIncomingBlock(i);
1797 
1798     if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) {
1799       NewPhiValues.push_back(NewVal);
1800       continue;
1801     }
1802 
1803     if (NonSimplifiedBB) return nullptr;  // More than one non-simplified value.
1804 
1805     NonSimplifiedBB = InBB;
1806     NonSimplifiedInVal = InVal;
1807     NewPhiValues.push_back(nullptr);
1808 
1809     // If the InVal is an invoke at the end of the pred block, then we can't
1810     // insert a computation after it without breaking the edge.
1811     if (isa<InvokeInst>(InVal))
1812       if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB)
1813         return nullptr;
1814 
1815     // If the incoming non-constant value is reachable from the phis block,
1816     // we'll push the operation across a loop backedge. This could result in
1817     // an infinite combine loop, and is generally non-profitable (especially
1818     // if the operation was originally outside the loop).
1819     if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT,
1820                                LI))
1821       return nullptr;
1822   }
1823 
1824   // If there is exactly one non-simplified value, we can insert a copy of the
1825   // operation in that block.  However, if this is a critical edge, we would be
1826   // inserting the computation on some other paths (e.g. inside a loop).  Only
1827   // do this if the pred block is unconditionally branching into the phi block.
1828   // Also, make sure that the pred block is not dead code.
1829   if (NonSimplifiedBB != nullptr) {
1830     BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator());
1831     if (!BI || !BI->isUnconditional() ||
1832         !DT.isReachableFromEntry(NonSimplifiedBB))
1833       return nullptr;
1834   }
1835 
1836   // Okay, we can do the transformation: create the new PHI node.
1837   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1838   InsertNewInstBefore(NewPN, PN->getIterator());
1839   NewPN->takeName(PN);
1840   NewPN->setDebugLoc(PN->getDebugLoc());
1841 
1842   // If we are going to have to insert a new computation, do so right before the
1843   // predecessor's terminator.
1844   Instruction *Clone = nullptr;
1845   if (NonSimplifiedBB) {
1846     Clone = I.clone();
1847     for (Use &U : Clone->operands()) {
1848       if (U == PN)
1849         U = NonSimplifiedInVal;
1850       else
1851         U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB);
1852     }
1853     InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator());
1854   }
1855 
1856   for (unsigned i = 0; i != NumPHIValues; ++i) {
1857     if (NewPhiValues[i])
1858       NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
1859     else
1860       NewPN->addIncoming(Clone, PN->getIncomingBlock(i));
1861   }
1862 
1863   for (User *U : make_early_inc_range(PN->users())) {
1864     Instruction *User = cast<Instruction>(U);
1865     if (User == &I) continue;
1866     replaceInstUsesWith(*User, NewPN);
1867     eraseInstFromFunction(*User);
1868   }
1869 
1870   replaceAllDbgUsesWith(const_cast<PHINode &>(*PN),
1871                         const_cast<PHINode &>(*NewPN),
1872                         const_cast<PHINode &>(*PN), DT);
1873   return replaceInstUsesWith(I, NewPN);
1874 }
1875 
1876 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) {
1877   // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
1878   //       we are guarding against replicating the binop in >1 predecessor.
1879   //       This could miss matching a phi with 2 constant incoming values.
1880   auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
1881   auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
1882   if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
1883       Phi0->getNumOperands() != Phi1->getNumOperands())
1884     return nullptr;
1885 
1886   // TODO: Remove the restriction for binop being in the same block as the phis.
1887   if (BO.getParent() != Phi0->getParent() ||
1888       BO.getParent() != Phi1->getParent())
1889     return nullptr;
1890 
1891   // Fold if there is at least one specific constant value in phi0 or phi1's
1892   // incoming values that comes from the same block and this specific constant
1893   // value can be used to do optimization for specific binary operator.
1894   // For example:
1895   // %phi0 = phi i32 [0, %bb0], [%i, %bb1]
1896   // %phi1 = phi i32 [%j, %bb0], [0, %bb1]
1897   // %add = add i32 %phi0, %phi1
1898   // ==>
1899   // %add = phi i32 [%j, %bb0], [%i, %bb1]
1900   Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(),
1901                                                /*AllowRHSConstant*/ false);
1902   if (C) {
1903     SmallVector<Value *, 4> NewIncomingValues;
1904     auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) {
1905       auto &Phi0Use = std::get<0>(T);
1906       auto &Phi1Use = std::get<1>(T);
1907       if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
1908         return false;
1909       Value *Phi0UseV = Phi0Use.get();
1910       Value *Phi1UseV = Phi1Use.get();
1911       if (Phi0UseV == C)
1912         NewIncomingValues.push_back(Phi1UseV);
1913       else if (Phi1UseV == C)
1914         NewIncomingValues.push_back(Phi0UseV);
1915       else
1916         return false;
1917       return true;
1918     };
1919 
1920     if (all_of(zip(Phi0->operands(), Phi1->operands()),
1921                CanFoldIncomingValuePair)) {
1922       PHINode *NewPhi =
1923           PHINode::Create(Phi0->getType(), Phi0->getNumOperands());
1924       assert(NewIncomingValues.size() == Phi0->getNumOperands() &&
1925              "The number of collected incoming values should equal the number "
1926              "of the original PHINode operands!");
1927       for (unsigned I = 0; I < Phi0->getNumOperands(); I++)
1928         NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I));
1929       return NewPhi;
1930     }
1931   }
1932 
1933   if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
1934     return nullptr;
1935 
1936   // Match a pair of incoming constants for one of the predecessor blocks.
1937   BasicBlock *ConstBB, *OtherBB;
1938   Constant *C0, *C1;
1939   if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
1940     ConstBB = Phi0->getIncomingBlock(0);
1941     OtherBB = Phi0->getIncomingBlock(1);
1942   } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
1943     ConstBB = Phi0->getIncomingBlock(1);
1944     OtherBB = Phi0->getIncomingBlock(0);
1945   } else {
1946     return nullptr;
1947   }
1948   if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
1949     return nullptr;
1950 
1951   // The block that we are hoisting to must reach here unconditionally.
1952   // Otherwise, we could be speculatively executing an expensive or
1953   // non-speculative op.
1954   auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
1955   if (!PredBlockBranch || PredBlockBranch->isConditional() ||
1956       !DT.isReachableFromEntry(OtherBB))
1957     return nullptr;
1958 
1959   // TODO: This check could be tightened to only apply to binops (div/rem) that
1960   //       are not safe to speculatively execute. But that could allow hoisting
1961   //       potentially expensive instructions (fdiv for example).
1962   for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
1963     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter))
1964       return nullptr;
1965 
1966   // Fold constants for the predecessor block with constant incoming values.
1967   Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
1968   if (!NewC)
1969     return nullptr;
1970 
1971   // Make a new binop in the predecessor block with the non-constant incoming
1972   // values.
1973   Builder.SetInsertPoint(PredBlockBranch);
1974   Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
1975                                      Phi0->getIncomingValueForBlock(OtherBB),
1976                                      Phi1->getIncomingValueForBlock(OtherBB));
1977   if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
1978     NotFoldedNewBO->copyIRFlags(&BO);
1979 
1980   // Replace the binop with a phi of the new values. The old phis are dead.
1981   PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
1982   NewPhi->addIncoming(NewBO, OtherBB);
1983   NewPhi->addIncoming(NewC, ConstBB);
1984   return NewPhi;
1985 }
1986 
1987 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1988   if (!isa<Constant>(I.getOperand(1)))
1989     return nullptr;
1990 
1991   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1992     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1993       return NewSel;
1994   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1995     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1996       return NewPhi;
1997   }
1998   return nullptr;
1999 }
2000 
2001 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
2002   // If this GEP has only 0 indices, it is the same pointer as
2003   // Src. If Src is not a trivial GEP too, don't combine
2004   // the indices.
2005   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
2006       !Src.hasOneUse())
2007     return false;
2008   return true;
2009 }
2010 
2011 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
2012   if (!isa<VectorType>(Inst.getType()))
2013     return nullptr;
2014 
2015   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
2016   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
2017   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
2018          cast<VectorType>(Inst.getType())->getElementCount());
2019   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
2020          cast<VectorType>(Inst.getType())->getElementCount());
2021 
2022   // If both operands of the binop are vector concatenations, then perform the
2023   // narrow binop on each pair of the source operands followed by concatenation
2024   // of the results.
2025   Value *L0, *L1, *R0, *R1;
2026   ArrayRef<int> Mask;
2027   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
2028       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
2029       LHS->hasOneUse() && RHS->hasOneUse() &&
2030       cast<ShuffleVectorInst>(LHS)->isConcat() &&
2031       cast<ShuffleVectorInst>(RHS)->isConcat()) {
2032     // This transform does not have the speculative execution constraint as
2033     // below because the shuffle is a concatenation. The new binops are
2034     // operating on exactly the same elements as the existing binop.
2035     // TODO: We could ease the mask requirement to allow different undef lanes,
2036     //       but that requires an analysis of the binop-with-undef output value.
2037     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
2038     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
2039       BO->copyIRFlags(&Inst);
2040     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
2041     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
2042       BO->copyIRFlags(&Inst);
2043     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
2044   }
2045 
2046   auto createBinOpReverse = [&](Value *X, Value *Y) {
2047     Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
2048     if (auto *BO = dyn_cast<BinaryOperator>(V))
2049       BO->copyIRFlags(&Inst);
2050     Module *M = Inst.getModule();
2051     Function *F =
2052         Intrinsic::getDeclaration(M, Intrinsic::vector_reverse, V->getType());
2053     return CallInst::Create(F, V);
2054   };
2055 
2056   // NOTE: Reverse shuffles don't require the speculative execution protection
2057   // below because they don't affect which lanes take part in the computation.
2058 
2059   Value *V1, *V2;
2060   if (match(LHS, m_VecReverse(m_Value(V1)))) {
2061     // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
2062     if (match(RHS, m_VecReverse(m_Value(V2))) &&
2063         (LHS->hasOneUse() || RHS->hasOneUse() ||
2064          (LHS == RHS && LHS->hasNUses(2))))
2065       return createBinOpReverse(V1, V2);
2066 
2067     // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
2068     if (LHS->hasOneUse() && isSplatValue(RHS))
2069       return createBinOpReverse(V1, RHS);
2070   }
2071   // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
2072   else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
2073     return createBinOpReverse(LHS, V2);
2074 
2075   // It may not be safe to reorder shuffles and things like div, urem, etc.
2076   // because we may trap when executing those ops on unknown vector elements.
2077   // See PR20059.
2078   if (!isSafeToSpeculativelyExecute(&Inst))
2079     return nullptr;
2080 
2081   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
2082     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
2083     if (auto *BO = dyn_cast<BinaryOperator>(XY))
2084       BO->copyIRFlags(&Inst);
2085     return new ShuffleVectorInst(XY, M);
2086   };
2087 
2088   // If both arguments of the binary operation are shuffles that use the same
2089   // mask and shuffle within a single vector, move the shuffle after the binop.
2090   if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) &&
2091       match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) &&
2092       V1->getType() == V2->getType() &&
2093       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
2094     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
2095     return createBinOpShuffle(V1, V2, Mask);
2096   }
2097 
2098   // If both arguments of a commutative binop are select-shuffles that use the
2099   // same mask with commuted operands, the shuffles are unnecessary.
2100   if (Inst.isCommutative() &&
2101       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
2102       match(RHS,
2103             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
2104     auto *LShuf = cast<ShuffleVectorInst>(LHS);
2105     auto *RShuf = cast<ShuffleVectorInst>(RHS);
2106     // TODO: Allow shuffles that contain undefs in the mask?
2107     //       That is legal, but it reduces undef knowledge.
2108     // TODO: Allow arbitrary shuffles by shuffling after binop?
2109     //       That might be legal, but we have to deal with poison.
2110     if (LShuf->isSelect() &&
2111         !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) &&
2112         RShuf->isSelect() &&
2113         !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) {
2114       // Example:
2115       // LHS = shuffle V1, V2, <0, 5, 6, 3>
2116       // RHS = shuffle V2, V1, <0, 5, 6, 3>
2117       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
2118       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
2119       NewBO->copyIRFlags(&Inst);
2120       return NewBO;
2121     }
2122   }
2123 
2124   // If one argument is a shuffle within one vector and the other is a constant,
2125   // try moving the shuffle after the binary operation. This canonicalization
2126   // intends to move shuffles closer to other shuffles and binops closer to
2127   // other binops, so they can be folded. It may also enable demanded elements
2128   // transforms.
2129   Constant *C;
2130   auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
2131   if (InstVTy &&
2132       match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(),
2133                                                 m_Mask(Mask))),
2134                              m_ImmConstant(C))) &&
2135       cast<FixedVectorType>(V1->getType())->getNumElements() <=
2136           InstVTy->getNumElements()) {
2137     assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
2138            "Shuffle should not change scalar type");
2139 
2140     // Find constant NewC that has property:
2141     //   shuffle(NewC, ShMask) = C
2142     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
2143     // reorder is not possible. A 1-to-1 mapping is not required. Example:
2144     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
2145     bool ConstOp1 = isa<Constant>(RHS);
2146     ArrayRef<int> ShMask = Mask;
2147     unsigned SrcVecNumElts =
2148         cast<FixedVectorType>(V1->getType())->getNumElements();
2149     PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType());
2150     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, PoisonScalar);
2151     bool MayChange = true;
2152     unsigned NumElts = InstVTy->getNumElements();
2153     for (unsigned I = 0; I < NumElts; ++I) {
2154       Constant *CElt = C->getAggregateElement(I);
2155       if (ShMask[I] >= 0) {
2156         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
2157         Constant *NewCElt = NewVecC[ShMask[I]];
2158         // Bail out if:
2159         // 1. The constant vector contains a constant expression.
2160         // 2. The shuffle needs an element of the constant vector that can't
2161         //    be mapped to a new constant vector.
2162         // 3. This is a widening shuffle that copies elements of V1 into the
2163         //    extended elements (extending with poison is allowed).
2164         if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
2165             I >= SrcVecNumElts) {
2166           MayChange = false;
2167           break;
2168         }
2169         NewVecC[ShMask[I]] = CElt;
2170       }
2171       // If this is a widening shuffle, we must be able to extend with poison
2172       // elements. If the original binop does not produce a poison in the high
2173       // lanes, then this transform is not safe.
2174       // Similarly for poison lanes due to the shuffle mask, we can only
2175       // transform binops that preserve poison.
2176       // TODO: We could shuffle those non-poison constant values into the
2177       //       result by using a constant vector (rather than an poison vector)
2178       //       as operand 1 of the new binop, but that might be too aggressive
2179       //       for target-independent shuffle creation.
2180       if (I >= SrcVecNumElts || ShMask[I] < 0) {
2181         Constant *MaybePoison =
2182             ConstOp1
2183                 ? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL)
2184                 : ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL);
2185         if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) {
2186           MayChange = false;
2187           break;
2188         }
2189       }
2190     }
2191     if (MayChange) {
2192       Constant *NewC = ConstantVector::get(NewVecC);
2193       // It may not be safe to execute a binop on a vector with poison elements
2194       // because the entire instruction can be folded to undef or create poison
2195       // that did not exist in the original code.
2196       // TODO: The shift case should not be necessary.
2197       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
2198         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
2199 
2200       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
2201       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
2202       Value *NewLHS = ConstOp1 ? V1 : NewC;
2203       Value *NewRHS = ConstOp1 ? NewC : V1;
2204       return createBinOpShuffle(NewLHS, NewRHS, Mask);
2205     }
2206   }
2207 
2208   // Try to reassociate to sink a splat shuffle after a binary operation.
2209   if (Inst.isAssociative() && Inst.isCommutative()) {
2210     // Canonicalize shuffle operand as LHS.
2211     if (isa<ShuffleVectorInst>(RHS))
2212       std::swap(LHS, RHS);
2213 
2214     Value *X;
2215     ArrayRef<int> MaskC;
2216     int SplatIndex;
2217     Value *Y, *OtherOp;
2218     if (!match(LHS,
2219                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
2220         !match(MaskC, m_SplatOrPoisonMask(SplatIndex)) ||
2221         X->getType() != Inst.getType() ||
2222         !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
2223       return nullptr;
2224 
2225     // FIXME: This may not be safe if the analysis allows undef elements. By
2226     //        moving 'Y' before the splat shuffle, we are implicitly assuming
2227     //        that it is not undef/poison at the splat index.
2228     if (isSplatValue(OtherOp, SplatIndex)) {
2229       std::swap(Y, OtherOp);
2230     } else if (!isSplatValue(Y, SplatIndex)) {
2231       return nullptr;
2232     }
2233 
2234     // X and Y are splatted values, so perform the binary operation on those
2235     // values followed by a splat followed by the 2nd binary operation:
2236     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
2237     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
2238     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
2239     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
2240     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
2241 
2242     // Intersect FMF on both new binops. Other (poison-generating) flags are
2243     // dropped to be safe.
2244     if (isa<FPMathOperator>(R)) {
2245       R->copyFastMathFlags(&Inst);
2246       R->andIRFlags(RHS);
2247     }
2248     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
2249       NewInstBO->copyIRFlags(R);
2250     return R;
2251   }
2252 
2253   return nullptr;
2254 }
2255 
2256 /// Try to narrow the width of a binop if at least 1 operand is an extend of
2257 /// of a value. This requires a potentially expensive known bits check to make
2258 /// sure the narrow op does not overflow.
2259 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
2260   // We need at least one extended operand.
2261   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
2262 
2263   // If this is a sub, we swap the operands since we always want an extension
2264   // on the RHS. The LHS can be an extension or a constant.
2265   if (BO.getOpcode() == Instruction::Sub)
2266     std::swap(Op0, Op1);
2267 
2268   Value *X;
2269   bool IsSext = match(Op0, m_SExt(m_Value(X)));
2270   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
2271     return nullptr;
2272 
2273   // If both operands are the same extension from the same source type and we
2274   // can eliminate at least one (hasOneUse), this might work.
2275   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
2276   Value *Y;
2277   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
2278         cast<Operator>(Op1)->getOpcode() == CastOpc &&
2279         (Op0->hasOneUse() || Op1->hasOneUse()))) {
2280     // If that did not match, see if we have a suitable constant operand.
2281     // Truncating and extending must produce the same constant.
2282     Constant *WideC;
2283     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
2284       return nullptr;
2285     Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc);
2286     if (!NarrowC)
2287       return nullptr;
2288     Y = NarrowC;
2289   }
2290 
2291   // Swap back now that we found our operands.
2292   if (BO.getOpcode() == Instruction::Sub)
2293     std::swap(X, Y);
2294 
2295   // Both operands have narrow versions. Last step: the math must not overflow
2296   // in the narrow width.
2297   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
2298     return nullptr;
2299 
2300   // bo (ext X), (ext Y) --> ext (bo X, Y)
2301   // bo (ext X), C       --> ext (bo X, C')
2302   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
2303   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
2304     if (IsSext)
2305       NewBinOp->setHasNoSignedWrap();
2306     else
2307       NewBinOp->setHasNoUnsignedWrap();
2308   }
2309   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
2310 }
2311 
2312 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
2313   return GEP1.isInBounds() && GEP2.isInBounds();
2314 }
2315 
2316 /// Thread a GEP operation with constant indices through the constant true/false
2317 /// arms of a select.
2318 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
2319                                   InstCombiner::BuilderTy &Builder) {
2320   if (!GEP.hasAllConstantIndices())
2321     return nullptr;
2322 
2323   Instruction *Sel;
2324   Value *Cond;
2325   Constant *TrueC, *FalseC;
2326   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
2327       !match(Sel,
2328              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
2329     return nullptr;
2330 
2331   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
2332   // Propagate 'inbounds' and metadata from existing instructions.
2333   // Note: using IRBuilder to create the constants for efficiency.
2334   SmallVector<Value *, 4> IndexC(GEP.indices());
2335   GEPNoWrapFlags NW = GEP.getNoWrapFlags();
2336   Type *Ty = GEP.getSourceElementType();
2337   Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", NW);
2338   Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", NW);
2339   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
2340 }
2341 
2342 // Canonicalization:
2343 // gep T, (gep i8, base, C1), (Index + C2) into
2344 // gep T, (gep i8, base, C1 + C2 * sizeof(T)), Index
2345 static Instruction *canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP,
2346                                                 GEPOperator *Src,
2347                                                 InstCombinerImpl &IC) {
2348   if (GEP.getNumIndices() != 1)
2349     return nullptr;
2350   auto &DL = IC.getDataLayout();
2351   Value *Base;
2352   const APInt *C1;
2353   if (!match(Src, m_PtrAdd(m_Value(Base), m_APInt(C1))))
2354     return nullptr;
2355   Value *VarIndex;
2356   const APInt *C2;
2357   Type *PtrTy = Src->getType()->getScalarType();
2358   unsigned IndexSizeInBits = DL.getIndexTypeSizeInBits(PtrTy);
2359   if (!match(GEP.getOperand(1), m_AddLike(m_Value(VarIndex), m_APInt(C2))))
2360     return nullptr;
2361   if (C1->getBitWidth() != IndexSizeInBits ||
2362       C2->getBitWidth() != IndexSizeInBits)
2363     return nullptr;
2364   Type *BaseType = GEP.getSourceElementType();
2365   if (isa<ScalableVectorType>(BaseType))
2366     return nullptr;
2367   APInt TypeSize(IndexSizeInBits, DL.getTypeAllocSize(BaseType));
2368   APInt NewOffset = TypeSize * *C2 + *C1;
2369   if (NewOffset.isZero() ||
2370       (Src->hasOneUse() && GEP.getOperand(1)->hasOneUse())) {
2371     Value *GEPConst =
2372         IC.Builder.CreatePtrAdd(Base, IC.Builder.getInt(NewOffset));
2373     return GetElementPtrInst::Create(BaseType, GEPConst, VarIndex);
2374   }
2375 
2376   return nullptr;
2377 }
2378 
2379 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP,
2380                                              GEPOperator *Src) {
2381   // Combine Indices - If the source pointer to this getelementptr instruction
2382   // is a getelementptr instruction with matching element type, combine the
2383   // indices of the two getelementptr instructions into a single instruction.
2384   if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2385     return nullptr;
2386 
2387   if (auto *I = canonicalizeGEPOfConstGEPI8(GEP, Src, *this))
2388     return I;
2389 
2390   // For constant GEPs, use a more general offset-based folding approach.
2391   Type *PtrTy = Src->getType()->getScalarType();
2392   if (GEP.hasAllConstantIndices() &&
2393       (Src->hasOneUse() || Src->hasAllConstantIndices())) {
2394     // Split Src into a variable part and a constant suffix.
2395     gep_type_iterator GTI = gep_type_begin(*Src);
2396     Type *BaseType = GTI.getIndexedType();
2397     bool IsFirstType = true;
2398     unsigned NumVarIndices = 0;
2399     for (auto Pair : enumerate(Src->indices())) {
2400       if (!isa<ConstantInt>(Pair.value())) {
2401         BaseType = GTI.getIndexedType();
2402         IsFirstType = false;
2403         NumVarIndices = Pair.index() + 1;
2404       }
2405       ++GTI;
2406     }
2407 
2408     // Determine the offset for the constant suffix of Src.
2409     APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0);
2410     if (NumVarIndices != Src->getNumIndices()) {
2411       // FIXME: getIndexedOffsetInType() does not handled scalable vectors.
2412       if (BaseType->isScalableTy())
2413         return nullptr;
2414 
2415       SmallVector<Value *> ConstantIndices;
2416       if (!IsFirstType)
2417         ConstantIndices.push_back(
2418             Constant::getNullValue(Type::getInt32Ty(GEP.getContext())));
2419       append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices));
2420       Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices);
2421     }
2422 
2423     // Add the offset for GEP (which is fully constant).
2424     if (!GEP.accumulateConstantOffset(DL, Offset))
2425       return nullptr;
2426 
2427     APInt OffsetOld = Offset;
2428     // Convert the total offset back into indices.
2429     SmallVector<APInt> ConstIndices =
2430         DL.getGEPIndicesForOffset(BaseType, Offset);
2431     if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) {
2432       // If both GEP are constant-indexed, and cannot be merged in either way,
2433       // convert them to a GEP of i8.
2434       if (Src->hasAllConstantIndices())
2435         return replaceInstUsesWith(
2436             GEP, Builder.CreateGEP(
2437                      Builder.getInt8Ty(), Src->getOperand(0),
2438                      Builder.getInt(OffsetOld), "",
2439                      isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
2440       return nullptr;
2441     }
2442 
2443     bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP));
2444     SmallVector<Value *> Indices;
2445     append_range(Indices, drop_end(Src->indices(),
2446                                    Src->getNumIndices() - NumVarIndices));
2447     for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) {
2448       Indices.push_back(ConstantInt::get(GEP.getContext(), Idx));
2449       // Even if the total offset is inbounds, we may end up representing it
2450       // by first performing a larger negative offset, and then a smaller
2451       // positive one. The large negative offset might go out of bounds. Only
2452       // preserve inbounds if all signs are the same.
2453       IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative();
2454     }
2455 
2456     return replaceInstUsesWith(
2457         GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0),
2458                                Indices, "", IsInBounds));
2459   }
2460 
2461   if (Src->getResultElementType() != GEP.getSourceElementType())
2462     return nullptr;
2463 
2464   SmallVector<Value*, 8> Indices;
2465 
2466   // Find out whether the last index in the source GEP is a sequential idx.
2467   bool EndsWithSequential = false;
2468   for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2469        I != E; ++I)
2470     EndsWithSequential = I.isSequential();
2471 
2472   // Can we combine the two pointer arithmetics offsets?
2473   if (EndsWithSequential) {
2474     // Replace: gep (gep %P, long B), long A, ...
2475     // With:    T = long A+B; gep %P, T, ...
2476     Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2477     Value *GO1 = GEP.getOperand(1);
2478 
2479     // If they aren't the same type, then the input hasn't been processed
2480     // by the loop above yet (which canonicalizes sequential index types to
2481     // intptr_t).  Just avoid transforming this until the input has been
2482     // normalized.
2483     if (SO1->getType() != GO1->getType())
2484       return nullptr;
2485 
2486     Value *Sum =
2487         simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2488     // Only do the combine when we are sure the cost after the
2489     // merge is never more than that before the merge.
2490     if (Sum == nullptr)
2491       return nullptr;
2492 
2493     // Update the GEP in place if possible.
2494     if (Src->getNumOperands() == 2) {
2495       GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2496       replaceOperand(GEP, 0, Src->getOperand(0));
2497       replaceOperand(GEP, 1, Sum);
2498       return &GEP;
2499     }
2500     Indices.append(Src->op_begin()+1, Src->op_end()-1);
2501     Indices.push_back(Sum);
2502     Indices.append(GEP.op_begin()+2, GEP.op_end());
2503   } else if (isa<Constant>(*GEP.idx_begin()) &&
2504              cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2505              Src->getNumOperands() != 1) {
2506     // Otherwise we can do the fold if the first index of the GEP is a zero
2507     Indices.append(Src->op_begin()+1, Src->op_end());
2508     Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2509   }
2510 
2511   if (!Indices.empty())
2512     return replaceInstUsesWith(
2513         GEP, Builder.CreateGEP(
2514                  Src->getSourceElementType(), Src->getOperand(0), Indices, "",
2515                  isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
2516 
2517   return nullptr;
2518 }
2519 
2520 Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses,
2521                                            BuilderTy *Builder,
2522                                            bool &DoesConsume, unsigned Depth) {
2523   static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1));
2524   // ~(~(X)) -> X.
2525   Value *A, *B;
2526   if (match(V, m_Not(m_Value(A)))) {
2527     DoesConsume = true;
2528     return A;
2529   }
2530 
2531   Constant *C;
2532   // Constants can be considered to be not'ed values.
2533   if (match(V, m_ImmConstant(C)))
2534     return ConstantExpr::getNot(C);
2535 
2536   if (Depth++ >= MaxAnalysisRecursionDepth)
2537     return nullptr;
2538 
2539   // The rest of the cases require that we invert all uses so don't bother
2540   // doing the analysis if we know we can't use the result.
2541   if (!WillInvertAllUses)
2542     return nullptr;
2543 
2544   // Compares can be inverted if all of their uses are being modified to use
2545   // the ~V.
2546   if (auto *I = dyn_cast<CmpInst>(V)) {
2547     if (Builder != nullptr)
2548       return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0),
2549                                 I->getOperand(1));
2550     return NonNull;
2551   }
2552 
2553   // If `V` is of the form `A + B` then `-1 - V` can be folded into
2554   // `(-1 - B) - A` if we are willing to invert all of the uses.
2555   if (match(V, m_Add(m_Value(A), m_Value(B)))) {
2556     if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2557                                          DoesConsume, Depth))
2558       return Builder ? Builder->CreateSub(BV, A) : NonNull;
2559     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2560                                          DoesConsume, Depth))
2561       return Builder ? Builder->CreateSub(AV, B) : NonNull;
2562     return nullptr;
2563   }
2564 
2565   // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
2566   // into `A ^ B` if we are willing to invert all of the uses.
2567   if (match(V, m_Xor(m_Value(A), m_Value(B)))) {
2568     if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2569                                          DoesConsume, Depth))
2570       return Builder ? Builder->CreateXor(A, BV) : NonNull;
2571     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2572                                          DoesConsume, Depth))
2573       return Builder ? Builder->CreateXor(AV, B) : NonNull;
2574     return nullptr;
2575   }
2576 
2577   // If `V` is of the form `B - A` then `-1 - V` can be folded into
2578   // `A + (-1 - B)` if we are willing to invert all of the uses.
2579   if (match(V, m_Sub(m_Value(A), m_Value(B)))) {
2580     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2581                                          DoesConsume, Depth))
2582       return Builder ? Builder->CreateAdd(AV, B) : NonNull;
2583     return nullptr;
2584   }
2585 
2586   // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
2587   // into `A s>> B` if we are willing to invert all of the uses.
2588   if (match(V, m_AShr(m_Value(A), m_Value(B)))) {
2589     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2590                                          DoesConsume, Depth))
2591       return Builder ? Builder->CreateAShr(AV, B) : NonNull;
2592     return nullptr;
2593   }
2594 
2595   Value *Cond;
2596   // LogicOps are special in that we canonicalize them at the cost of an
2597   // instruction.
2598   bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
2599                   !shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V));
2600   // Selects/min/max with invertible operands are freely invertible
2601   if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) {
2602     bool LocalDoesConsume = DoesConsume;
2603     if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr,
2604                                LocalDoesConsume, Depth))
2605       return nullptr;
2606     if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2607                                             LocalDoesConsume, Depth)) {
2608       DoesConsume = LocalDoesConsume;
2609       if (Builder != nullptr) {
2610         Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2611                                             DoesConsume, Depth);
2612         assert(NotB != nullptr &&
2613                "Unable to build inverted value for known freely invertable op");
2614         if (auto *II = dyn_cast<IntrinsicInst>(V))
2615           return Builder->CreateBinaryIntrinsic(
2616               getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB);
2617         return Builder->CreateSelect(Cond, NotA, NotB);
2618       }
2619       return NonNull;
2620     }
2621   }
2622 
2623   if (PHINode *PN = dyn_cast<PHINode>(V)) {
2624     bool LocalDoesConsume = DoesConsume;
2625     SmallVector<std::pair<Value *, BasicBlock *>, 8> IncomingValues;
2626     for (Use &U : PN->operands()) {
2627       BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
2628       Value *NewIncomingVal = getFreelyInvertedImpl(
2629           U.get(), /*WillInvertAllUses=*/false,
2630           /*Builder=*/nullptr, LocalDoesConsume, MaxAnalysisRecursionDepth - 1);
2631       if (NewIncomingVal == nullptr)
2632         return nullptr;
2633       // Make sure that we can safely erase the original PHI node.
2634       if (NewIncomingVal == V)
2635         return nullptr;
2636       if (Builder != nullptr)
2637         IncomingValues.emplace_back(NewIncomingVal, IncomingBlock);
2638     }
2639 
2640     DoesConsume = LocalDoesConsume;
2641     if (Builder != nullptr) {
2642       IRBuilderBase::InsertPointGuard Guard(*Builder);
2643       Builder->SetInsertPoint(PN);
2644       PHINode *NewPN =
2645           Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues());
2646       for (auto [Val, Pred] : IncomingValues)
2647         NewPN->addIncoming(Val, Pred);
2648       return NewPN;
2649     }
2650     return NonNull;
2651   }
2652 
2653   if (match(V, m_SExtLike(m_Value(A)))) {
2654     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2655                                          DoesConsume, Depth))
2656       return Builder ? Builder->CreateSExt(AV, V->getType()) : NonNull;
2657     return nullptr;
2658   }
2659 
2660   if (match(V, m_Trunc(m_Value(A)))) {
2661     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2662                                          DoesConsume, Depth))
2663       return Builder ? Builder->CreateTrunc(AV, V->getType()) : NonNull;
2664     return nullptr;
2665   }
2666 
2667   // De Morgan's Laws:
2668   // (~(A | B)) -> (~A & ~B)
2669   // (~(A & B)) -> (~A | ~B)
2670   auto TryInvertAndOrUsingDeMorgan = [&](Instruction::BinaryOps Opcode,
2671                                          bool IsLogical, Value *A,
2672                                          Value *B) -> Value * {
2673     bool LocalDoesConsume = DoesConsume;
2674     if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder=*/nullptr,
2675                                LocalDoesConsume, Depth))
2676       return nullptr;
2677     if (auto *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2678                                            LocalDoesConsume, Depth)) {
2679       auto *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2680                                          LocalDoesConsume, Depth);
2681       DoesConsume = LocalDoesConsume;
2682       if (IsLogical)
2683         return Builder ? Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull;
2684       return Builder ? Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull;
2685     }
2686 
2687     return nullptr;
2688   };
2689 
2690   if (match(V, m_Or(m_Value(A), m_Value(B))))
2691     return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/false, A,
2692                                        B);
2693 
2694   if (match(V, m_And(m_Value(A), m_Value(B))))
2695     return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/false, A,
2696                                        B);
2697 
2698   if (match(V, m_LogicalOr(m_Value(A), m_Value(B))))
2699     return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/true, A,
2700                                        B);
2701 
2702   if (match(V, m_LogicalAnd(m_Value(A), m_Value(B))))
2703     return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/true, A,
2704                                        B);
2705 
2706   return nullptr;
2707 }
2708 
2709 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2710   Value *PtrOp = GEP.getOperand(0);
2711   SmallVector<Value *, 8> Indices(GEP.indices());
2712   Type *GEPType = GEP.getType();
2713   Type *GEPEltType = GEP.getSourceElementType();
2714   if (Value *V =
2715           simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.getNoWrapFlags(),
2716                           SQ.getWithInstruction(&GEP)))
2717     return replaceInstUsesWith(GEP, V);
2718 
2719   // For vector geps, use the generic demanded vector support.
2720   // Skip if GEP return type is scalable. The number of elements is unknown at
2721   // compile-time.
2722   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2723     auto VWidth = GEPFVTy->getNumElements();
2724     APInt PoisonElts(VWidth, 0);
2725     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2726     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
2727                                               PoisonElts)) {
2728       if (V != &GEP)
2729         return replaceInstUsesWith(GEP, V);
2730       return &GEP;
2731     }
2732 
2733     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
2734     // possible (decide on canonical form for pointer broadcast), 3) exploit
2735     // undef elements to decrease demanded bits
2736   }
2737 
2738   // Eliminate unneeded casts for indices, and replace indices which displace
2739   // by multiples of a zero size type with zero.
2740   bool MadeChange = false;
2741 
2742   // Index width may not be the same width as pointer width.
2743   // Data layout chooses the right type based on supported integer types.
2744   Type *NewScalarIndexTy =
2745       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
2746 
2747   gep_type_iterator GTI = gep_type_begin(GEP);
2748   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
2749        ++I, ++GTI) {
2750     // Skip indices into struct types.
2751     if (GTI.isStruct())
2752       continue;
2753 
2754     Type *IndexTy = (*I)->getType();
2755     Type *NewIndexType =
2756         IndexTy->isVectorTy()
2757             ? VectorType::get(NewScalarIndexTy,
2758                               cast<VectorType>(IndexTy)->getElementCount())
2759             : NewScalarIndexTy;
2760 
2761     // If the element type has zero size then any index over it is equivalent
2762     // to an index of zero, so replace it with zero if it is not zero already.
2763     Type *EltTy = GTI.getIndexedType();
2764     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
2765       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
2766         *I = Constant::getNullValue(NewIndexType);
2767         MadeChange = true;
2768       }
2769 
2770     if (IndexTy != NewIndexType) {
2771       // If we are using a wider index than needed for this platform, shrink
2772       // it to what we need.  If narrower, sign-extend it to what we need.
2773       // This explicit cast can make subsequent optimizations more obvious.
2774       *I = Builder.CreateIntCast(*I, NewIndexType, true);
2775       MadeChange = true;
2776     }
2777   }
2778   if (MadeChange)
2779     return &GEP;
2780 
2781   // Canonicalize constant GEPs to i8 type.
2782   if (!GEPEltType->isIntegerTy(8) && GEP.hasAllConstantIndices()) {
2783     APInt Offset(DL.getIndexTypeSizeInBits(GEPType), 0);
2784     if (GEP.accumulateConstantOffset(DL, Offset))
2785       return replaceInstUsesWith(
2786           GEP, Builder.CreatePtrAdd(PtrOp, Builder.getInt(Offset), "",
2787                                     GEP.getNoWrapFlags()));
2788   }
2789 
2790   // Canonicalize
2791   //  - scalable GEPs to an explicit offset using the llvm.vscale intrinsic.
2792   //    This has better support in BasicAA.
2793   //  - gep i32 p, mul(O, C) -> gep i8, p, mul(O, C*4) to fold the two
2794   //    multiplies together.
2795   if (GEPEltType->isScalableTy() ||
2796       (!GEPEltType->isIntegerTy(8) && GEP.getNumIndices() == 1 &&
2797        match(GEP.getOperand(1),
2798              m_OneUse(m_CombineOr(m_Mul(m_Value(), m_ConstantInt()),
2799                                   m_Shl(m_Value(), m_ConstantInt())))))) {
2800     Value *Offset = EmitGEPOffset(cast<GEPOperator>(&GEP));
2801     return replaceInstUsesWith(
2802         GEP, Builder.CreatePtrAdd(PtrOp, Offset, "", GEP.getNoWrapFlags()));
2803   }
2804 
2805   // Check to see if the inputs to the PHI node are getelementptr instructions.
2806   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
2807     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
2808     if (!Op1)
2809       return nullptr;
2810 
2811     // Don't fold a GEP into itself through a PHI node. This can only happen
2812     // through the back-edge of a loop. Folding a GEP into itself means that
2813     // the value of the previous iteration needs to be stored in the meantime,
2814     // thus requiring an additional register variable to be live, but not
2815     // actually achieving anything (the GEP still needs to be executed once per
2816     // loop iteration).
2817     if (Op1 == &GEP)
2818       return nullptr;
2819 
2820     int DI = -1;
2821 
2822     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
2823       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
2824       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
2825           Op1->getSourceElementType() != Op2->getSourceElementType())
2826         return nullptr;
2827 
2828       // As for Op1 above, don't try to fold a GEP into itself.
2829       if (Op2 == &GEP)
2830         return nullptr;
2831 
2832       // Keep track of the type as we walk the GEP.
2833       Type *CurTy = nullptr;
2834 
2835       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
2836         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2837           return nullptr;
2838 
2839         if (Op1->getOperand(J) != Op2->getOperand(J)) {
2840           if (DI == -1) {
2841             // We have not seen any differences yet in the GEPs feeding the
2842             // PHI yet, so we record this one if it is allowed to be a
2843             // variable.
2844 
2845             // The first two arguments can vary for any GEP, the rest have to be
2846             // static for struct slots
2847             if (J > 1) {
2848               assert(CurTy && "No current type?");
2849               if (CurTy->isStructTy())
2850                 return nullptr;
2851             }
2852 
2853             DI = J;
2854           } else {
2855             // The GEP is different by more than one input. While this could be
2856             // extended to support GEPs that vary by more than one variable it
2857             // doesn't make sense since it greatly increases the complexity and
2858             // would result in an R+R+R addressing mode which no backend
2859             // directly supports and would need to be broken into several
2860             // simpler instructions anyway.
2861             return nullptr;
2862           }
2863         }
2864 
2865         // Sink down a layer of the type for the next iteration.
2866         if (J > 0) {
2867           if (J == 1) {
2868             CurTy = Op1->getSourceElementType();
2869           } else {
2870             CurTy =
2871                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2872           }
2873         }
2874       }
2875     }
2876 
2877     // If not all GEPs are identical we'll have to create a new PHI node.
2878     // Check that the old PHI node has only one use so that it will get
2879     // removed.
2880     if (DI != -1 && !PN->hasOneUse())
2881       return nullptr;
2882 
2883     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2884     if (DI == -1) {
2885       // All the GEPs feeding the PHI are identical. Clone one down into our
2886       // BB so that it can be merged with the current GEP.
2887     } else {
2888       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2889       // into the current block so it can be merged, and create a new PHI to
2890       // set that index.
2891       PHINode *NewPN;
2892       {
2893         IRBuilderBase::InsertPointGuard Guard(Builder);
2894         Builder.SetInsertPoint(PN);
2895         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2896                                   PN->getNumOperands());
2897       }
2898 
2899       for (auto &I : PN->operands())
2900         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2901                            PN->getIncomingBlock(I));
2902 
2903       NewGEP->setOperand(DI, NewPN);
2904     }
2905 
2906     NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
2907     return replaceOperand(GEP, 0, NewGEP);
2908   }
2909 
2910   if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
2911     if (Instruction *I = visitGEPOfGEP(GEP, Src))
2912       return I;
2913 
2914   if (GEP.getNumIndices() == 1) {
2915     unsigned AS = GEP.getPointerAddressSpace();
2916     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2917         DL.getIndexSizeInBits(AS)) {
2918       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
2919 
2920       if (TyAllocSize == 1) {
2921         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
2922         // but only if the result pointer is only used as if it were an integer,
2923         // or both point to the same underlying object (otherwise provenance is
2924         // not necessarily retained).
2925         Value *X = GEP.getPointerOperand();
2926         Value *Y;
2927         if (match(GEP.getOperand(1),
2928                   m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2929             GEPType == Y->getType()) {
2930           bool HasSameUnderlyingObject =
2931               getUnderlyingObject(X) == getUnderlyingObject(Y);
2932           bool Changed = false;
2933           GEP.replaceUsesWithIf(Y, [&](Use &U) {
2934             bool ShouldReplace = HasSameUnderlyingObject ||
2935                                  isa<ICmpInst>(U.getUser()) ||
2936                                  isa<PtrToIntInst>(U.getUser());
2937             Changed |= ShouldReplace;
2938             return ShouldReplace;
2939           });
2940           return Changed ? &GEP : nullptr;
2941         }
2942       } else if (auto *ExactIns =
2943                      dyn_cast<PossiblyExactOperator>(GEP.getOperand(1))) {
2944         // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
2945         Value *V;
2946         if (ExactIns->isExact()) {
2947           if ((has_single_bit(TyAllocSize) &&
2948                match(GEP.getOperand(1),
2949                      m_Shr(m_Value(V),
2950                            m_SpecificInt(countr_zero(TyAllocSize))))) ||
2951               match(GEP.getOperand(1),
2952                     m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize)))) {
2953             return GetElementPtrInst::Create(Builder.getInt8Ty(),
2954                                              GEP.getPointerOperand(), V,
2955                                              GEP.getNoWrapFlags());
2956           }
2957         }
2958         if (ExactIns->isExact() && ExactIns->hasOneUse()) {
2959           // Try to canonicalize non-i8 element type to i8 if the index is an
2960           // exact instruction. If the index is an exact instruction (div/shr)
2961           // with a constant RHS, we can fold the non-i8 element scale into the
2962           // div/shr (similiar to the mul case, just inverted).
2963           const APInt *C;
2964           std::optional<APInt> NewC;
2965           if (has_single_bit(TyAllocSize) &&
2966               match(ExactIns, m_Shr(m_Value(V), m_APInt(C))) &&
2967               C->uge(countr_zero(TyAllocSize)))
2968             NewC = *C - countr_zero(TyAllocSize);
2969           else if (match(ExactIns, m_UDiv(m_Value(V), m_APInt(C)))) {
2970             APInt Quot;
2971             uint64_t Rem;
2972             APInt::udivrem(*C, TyAllocSize, Quot, Rem);
2973             if (Rem == 0)
2974               NewC = Quot;
2975           } else if (match(ExactIns, m_SDiv(m_Value(V), m_APInt(C)))) {
2976             APInt Quot;
2977             int64_t Rem;
2978             APInt::sdivrem(*C, TyAllocSize, Quot, Rem);
2979             // For sdiv we need to make sure we arent creating INT_MIN / -1.
2980             if (!Quot.isAllOnes() && Rem == 0)
2981               NewC = Quot;
2982           }
2983 
2984           if (NewC.has_value()) {
2985             Value *NewOp = Builder.CreateBinOp(
2986                 static_cast<Instruction::BinaryOps>(ExactIns->getOpcode()), V,
2987                 ConstantInt::get(V->getType(), *NewC));
2988             cast<BinaryOperator>(NewOp)->setIsExact();
2989             return GetElementPtrInst::Create(Builder.getInt8Ty(),
2990                                              GEP.getPointerOperand(), NewOp,
2991                                              GEP.getNoWrapFlags());
2992           }
2993         }
2994       }
2995     }
2996   }
2997   // We do not handle pointer-vector geps here.
2998   if (GEPType->isVectorTy())
2999     return nullptr;
3000 
3001   if (GEP.getNumIndices() == 1) {
3002     // We can only preserve inbounds if the original gep is inbounds, the add
3003     // is nsw, and the add operands are non-negative.
3004     auto CanPreserveInBounds = [&](bool AddIsNSW, Value *Idx1, Value *Idx2) {
3005       SimplifyQuery Q = SQ.getWithInstruction(&GEP);
3006       return GEP.isInBounds() && AddIsNSW && isKnownNonNegative(Idx1, Q) &&
3007              isKnownNonNegative(Idx2, Q);
3008     };
3009 
3010     // Try to replace ADD + GEP with GEP + GEP.
3011     Value *Idx1, *Idx2;
3012     if (match(GEP.getOperand(1),
3013               m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) {
3014       //   %idx = add i64 %idx1, %idx2
3015       //   %gep = getelementptr i32, ptr %ptr, i64 %idx
3016       // as:
3017       //   %newptr = getelementptr i32, ptr %ptr, i64 %idx1
3018       //   %newgep = getelementptr i32, ptr %newptr, i64 %idx2
3019       bool IsInBounds = CanPreserveInBounds(
3020           cast<OverflowingBinaryOperator>(GEP.getOperand(1))->hasNoSignedWrap(),
3021           Idx1, Idx2);
3022       auto *NewPtr =
3023           Builder.CreateGEP(GEP.getSourceElementType(), GEP.getPointerOperand(),
3024                             Idx1, "", IsInBounds);
3025       return replaceInstUsesWith(
3026           GEP, Builder.CreateGEP(GEP.getSourceElementType(), NewPtr, Idx2, "",
3027                                  IsInBounds));
3028     }
3029     ConstantInt *C;
3030     if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd(
3031                                      m_Value(Idx1), m_ConstantInt(C))))))) {
3032       // %add = add nsw i32 %idx1, idx2
3033       // %sidx = sext i32 %add to i64
3034       // %gep = getelementptr i32, ptr %ptr, i64 %sidx
3035       // as:
3036       // %newptr = getelementptr i32, ptr %ptr, i32 %idx1
3037       // %newgep = getelementptr i32, ptr %newptr, i32 idx2
3038       bool IsInBounds = CanPreserveInBounds(
3039           /*IsNSW=*/true, Idx1, C);
3040       auto *NewPtr = Builder.CreateGEP(
3041           GEP.getSourceElementType(), GEP.getPointerOperand(),
3042           Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()), "",
3043           IsInBounds);
3044       return replaceInstUsesWith(
3045           GEP,
3046           Builder.CreateGEP(GEP.getSourceElementType(), NewPtr,
3047                             Builder.CreateSExt(C, GEP.getOperand(1)->getType()),
3048                             "", IsInBounds));
3049     }
3050   }
3051 
3052   if (!GEP.isInBounds()) {
3053     unsigned IdxWidth =
3054         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
3055     APInt BasePtrOffset(IdxWidth, 0);
3056     Value *UnderlyingPtrOp =
3057             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
3058                                                              BasePtrOffset);
3059     bool CanBeNull, CanBeFreed;
3060     uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes(
3061         DL, CanBeNull, CanBeFreed);
3062     if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
3063       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
3064           BasePtrOffset.isNonNegative()) {
3065         APInt AllocSize(IdxWidth, DerefBytes);
3066         if (BasePtrOffset.ule(AllocSize)) {
3067           return GetElementPtrInst::CreateInBounds(
3068               GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
3069         }
3070       }
3071     }
3072   }
3073 
3074   if (Instruction *R = foldSelectGEP(GEP, Builder))
3075     return R;
3076 
3077   return nullptr;
3078 }
3079 
3080 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
3081                                          Instruction *AI) {
3082   if (isa<ConstantPointerNull>(V))
3083     return true;
3084   if (auto *LI = dyn_cast<LoadInst>(V))
3085     return isa<GlobalVariable>(LI->getPointerOperand());
3086   // Two distinct allocations will never be equal.
3087   return isAllocLikeFn(V, &TLI) && V != AI;
3088 }
3089 
3090 /// Given a call CB which uses an address UsedV, return true if we can prove the
3091 /// call's only possible effect is storing to V.
3092 static bool isRemovableWrite(CallBase &CB, Value *UsedV,
3093                              const TargetLibraryInfo &TLI) {
3094   if (!CB.use_empty())
3095     // TODO: add recursion if returned attribute is present
3096     return false;
3097 
3098   if (CB.isTerminator())
3099     // TODO: remove implementation restriction
3100     return false;
3101 
3102   if (!CB.willReturn() || !CB.doesNotThrow())
3103     return false;
3104 
3105   // If the only possible side effect of the call is writing to the alloca,
3106   // and the result isn't used, we can safely remove any reads implied by the
3107   // call including those which might read the alloca itself.
3108   std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
3109   return Dest && Dest->Ptr == UsedV;
3110 }
3111 
3112 static bool isAllocSiteRemovable(Instruction *AI,
3113                                  SmallVectorImpl<WeakTrackingVH> &Users,
3114                                  const TargetLibraryInfo &TLI) {
3115   SmallVector<Instruction*, 4> Worklist;
3116   const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
3117   Worklist.push_back(AI);
3118 
3119   do {
3120     Instruction *PI = Worklist.pop_back_val();
3121     for (User *U : PI->users()) {
3122       Instruction *I = cast<Instruction>(U);
3123       switch (I->getOpcode()) {
3124       default:
3125         // Give up the moment we see something we can't handle.
3126         return false;
3127 
3128       case Instruction::AddrSpaceCast:
3129       case Instruction::BitCast:
3130       case Instruction::GetElementPtr:
3131         Users.emplace_back(I);
3132         Worklist.push_back(I);
3133         continue;
3134 
3135       case Instruction::ICmp: {
3136         ICmpInst *ICI = cast<ICmpInst>(I);
3137         // We can fold eq/ne comparisons with null to false/true, respectively.
3138         // We also fold comparisons in some conditions provided the alloc has
3139         // not escaped (see isNeverEqualToUnescapedAlloc).
3140         if (!ICI->isEquality())
3141           return false;
3142         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
3143         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
3144           return false;
3145 
3146         // Do not fold compares to aligned_alloc calls, as they may have to
3147         // return null in case the required alignment cannot be satisfied,
3148         // unless we can prove that both alignment and size are valid.
3149         auto AlignmentAndSizeKnownValid = [](CallBase *CB) {
3150           // Check if alignment and size of a call to aligned_alloc is valid,
3151           // that is alignment is a power-of-2 and the size is a multiple of the
3152           // alignment.
3153           const APInt *Alignment;
3154           const APInt *Size;
3155           return match(CB->getArgOperand(0), m_APInt(Alignment)) &&
3156                  match(CB->getArgOperand(1), m_APInt(Size)) &&
3157                  Alignment->isPowerOf2() && Size->urem(*Alignment).isZero();
3158         };
3159         auto *CB = dyn_cast<CallBase>(AI);
3160         LibFunc TheLibFunc;
3161         if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
3162             TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
3163             !AlignmentAndSizeKnownValid(CB))
3164           return false;
3165         Users.emplace_back(I);
3166         continue;
3167       }
3168 
3169       case Instruction::Call:
3170         // Ignore no-op and store intrinsics.
3171         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3172           switch (II->getIntrinsicID()) {
3173           default:
3174             return false;
3175 
3176           case Intrinsic::memmove:
3177           case Intrinsic::memcpy:
3178           case Intrinsic::memset: {
3179             MemIntrinsic *MI = cast<MemIntrinsic>(II);
3180             if (MI->isVolatile() || MI->getRawDest() != PI)
3181               return false;
3182             [[fallthrough]];
3183           }
3184           case Intrinsic::assume:
3185           case Intrinsic::invariant_start:
3186           case Intrinsic::invariant_end:
3187           case Intrinsic::lifetime_start:
3188           case Intrinsic::lifetime_end:
3189           case Intrinsic::objectsize:
3190             Users.emplace_back(I);
3191             continue;
3192           case Intrinsic::launder_invariant_group:
3193           case Intrinsic::strip_invariant_group:
3194             Users.emplace_back(I);
3195             Worklist.push_back(I);
3196             continue;
3197           }
3198         }
3199 
3200         if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
3201           Users.emplace_back(I);
3202           continue;
3203         }
3204 
3205         if (getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
3206             getAllocationFamily(I, &TLI) == Family) {
3207           assert(Family);
3208           Users.emplace_back(I);
3209           continue;
3210         }
3211 
3212         if (getReallocatedOperand(cast<CallBase>(I)) == PI &&
3213             getAllocationFamily(I, &TLI) == Family) {
3214           assert(Family);
3215           Users.emplace_back(I);
3216           Worklist.push_back(I);
3217           continue;
3218         }
3219 
3220         return false;
3221 
3222       case Instruction::Store: {
3223         StoreInst *SI = cast<StoreInst>(I);
3224         if (SI->isVolatile() || SI->getPointerOperand() != PI)
3225           return false;
3226         Users.emplace_back(I);
3227         continue;
3228       }
3229       }
3230       llvm_unreachable("missing a return?");
3231     }
3232   } while (!Worklist.empty());
3233   return true;
3234 }
3235 
3236 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
3237   assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI));
3238 
3239   // If we have a malloc call which is only used in any amount of comparisons to
3240   // null and free calls, delete the calls and replace the comparisons with true
3241   // or false as appropriate.
3242 
3243   // This is based on the principle that we can substitute our own allocation
3244   // function (which will never return null) rather than knowledge of the
3245   // specific function being called. In some sense this can change the permitted
3246   // outputs of a program (when we convert a malloc to an alloca, the fact that
3247   // the allocation is now on the stack is potentially visible, for example),
3248   // but we believe in a permissible manner.
3249   SmallVector<WeakTrackingVH, 64> Users;
3250 
3251   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
3252   // before each store.
3253   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
3254   SmallVector<DbgVariableRecord *, 8> DVRs;
3255   std::unique_ptr<DIBuilder> DIB;
3256   if (isa<AllocaInst>(MI)) {
3257     findDbgUsers(DVIs, &MI, &DVRs);
3258     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
3259   }
3260 
3261   if (isAllocSiteRemovable(&MI, Users, TLI)) {
3262     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
3263       // Lowering all @llvm.objectsize calls first because they may
3264       // use a bitcast/GEP of the alloca we are removing.
3265       if (!Users[i])
3266        continue;
3267 
3268       Instruction *I = cast<Instruction>(&*Users[i]);
3269 
3270       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3271         if (II->getIntrinsicID() == Intrinsic::objectsize) {
3272           SmallVector<Instruction *> InsertedInstructions;
3273           Value *Result = lowerObjectSizeCall(
3274               II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions);
3275           for (Instruction *Inserted : InsertedInstructions)
3276             Worklist.add(Inserted);
3277           replaceInstUsesWith(*I, Result);
3278           eraseInstFromFunction(*I);
3279           Users[i] = nullptr; // Skip examining in the next loop.
3280         }
3281       }
3282     }
3283     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
3284       if (!Users[i])
3285         continue;
3286 
3287       Instruction *I = cast<Instruction>(&*Users[i]);
3288 
3289       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
3290         replaceInstUsesWith(*C,
3291                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
3292                                              C->isFalseWhenEqual()));
3293       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3294         for (auto *DVI : DVIs)
3295           if (DVI->isAddressOfVariable())
3296             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
3297         for (auto *DVR : DVRs)
3298           if (DVR->isAddressOfVariable())
3299             ConvertDebugDeclareToDebugValue(DVR, SI, *DIB);
3300       } else {
3301         // Casts, GEP, or anything else: we're about to delete this instruction,
3302         // so it can not have any valid uses.
3303         replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
3304       }
3305       eraseInstFromFunction(*I);
3306     }
3307 
3308     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
3309       // Replace invoke with a NOP intrinsic to maintain the original CFG
3310       Module *M = II->getModule();
3311       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
3312       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
3313                          std::nullopt, "", II->getParent());
3314     }
3315 
3316     // Remove debug intrinsics which describe the value contained within the
3317     // alloca. In addition to removing dbg.{declare,addr} which simply point to
3318     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
3319     //
3320     // ```
3321     //   define void @foo(i32 %0) {
3322     //     %a = alloca i32                              ; Deleted.
3323     //     store i32 %0, i32* %a
3324     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
3325     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
3326     //     call void @trivially_inlinable_no_op(i32* %a)
3327     //     ret void
3328     //  }
3329     // ```
3330     //
3331     // This may not be required if we stop describing the contents of allocas
3332     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
3333     // the LowerDbgDeclare utility.
3334     //
3335     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
3336     // "arg0" dbg.value may be stale after the call. However, failing to remove
3337     // the DW_OP_deref dbg.value causes large gaps in location coverage.
3338     //
3339     // FIXME: the Assignment Tracking project has now likely made this
3340     // redundant (and it's sometimes harmful).
3341     for (auto *DVI : DVIs)
3342       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
3343         DVI->eraseFromParent();
3344     for (auto *DVR : DVRs)
3345       if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
3346         DVR->eraseFromParent();
3347 
3348     return eraseInstFromFunction(MI);
3349   }
3350   return nullptr;
3351 }
3352 
3353 /// Move the call to free before a NULL test.
3354 ///
3355 /// Check if this free is accessed after its argument has been test
3356 /// against NULL (property 0).
3357 /// If yes, it is legal to move this call in its predecessor block.
3358 ///
3359 /// The move is performed only if the block containing the call to free
3360 /// will be removed, i.e.:
3361 /// 1. it has only one predecessor P, and P has two successors
3362 /// 2. it contains the call, noops, and an unconditional branch
3363 /// 3. its successor is the same as its predecessor's successor
3364 ///
3365 /// The profitability is out-of concern here and this function should
3366 /// be called only if the caller knows this transformation would be
3367 /// profitable (e.g., for code size).
3368 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
3369                                                 const DataLayout &DL) {
3370   Value *Op = FI.getArgOperand(0);
3371   BasicBlock *FreeInstrBB = FI.getParent();
3372   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
3373 
3374   // Validate part of constraint #1: Only one predecessor
3375   // FIXME: We can extend the number of predecessor, but in that case, we
3376   //        would duplicate the call to free in each predecessor and it may
3377   //        not be profitable even for code size.
3378   if (!PredBB)
3379     return nullptr;
3380 
3381   // Validate constraint #2: Does this block contains only the call to
3382   //                         free, noops, and an unconditional branch?
3383   BasicBlock *SuccBB;
3384   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
3385   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
3386     return nullptr;
3387 
3388   // If there are only 2 instructions in the block, at this point,
3389   // this is the call to free and unconditional.
3390   // If there are more than 2 instructions, check that they are noops
3391   // i.e., they won't hurt the performance of the generated code.
3392   if (FreeInstrBB->size() != 2) {
3393     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
3394       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
3395         continue;
3396       auto *Cast = dyn_cast<CastInst>(&Inst);
3397       if (!Cast || !Cast->isNoopCast(DL))
3398         return nullptr;
3399     }
3400   }
3401   // Validate the rest of constraint #1 by matching on the pred branch.
3402   Instruction *TI = PredBB->getTerminator();
3403   BasicBlock *TrueBB, *FalseBB;
3404   ICmpInst::Predicate Pred;
3405   if (!match(TI, m_Br(m_ICmp(Pred,
3406                              m_CombineOr(m_Specific(Op),
3407                                          m_Specific(Op->stripPointerCasts())),
3408                              m_Zero()),
3409                       TrueBB, FalseBB)))
3410     return nullptr;
3411   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
3412     return nullptr;
3413 
3414   // Validate constraint #3: Ensure the null case just falls through.
3415   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
3416     return nullptr;
3417   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
3418          "Broken CFG: missing edge from predecessor to successor");
3419 
3420   // At this point, we know that everything in FreeInstrBB can be moved
3421   // before TI.
3422   for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
3423     if (&Instr == FreeInstrBBTerminator)
3424       break;
3425     Instr.moveBeforePreserving(TI);
3426   }
3427   assert(FreeInstrBB->size() == 1 &&
3428          "Only the branch instruction should remain");
3429 
3430   // Now that we've moved the call to free before the NULL check, we have to
3431   // remove any attributes on its parameter that imply it's non-null, because
3432   // those attributes might have only been valid because of the NULL check, and
3433   // we can get miscompiles if we keep them. This is conservative if non-null is
3434   // also implied by something other than the NULL check, but it's guaranteed to
3435   // be correct, and the conservativeness won't matter in practice, since the
3436   // attributes are irrelevant for the call to free itself and the pointer
3437   // shouldn't be used after the call.
3438   AttributeList Attrs = FI.getAttributes();
3439   Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
3440   Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3441   if (Dereferenceable.isValid()) {
3442     uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
3443     Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
3444                                        Attribute::Dereferenceable);
3445     Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
3446   }
3447   FI.setAttributes(Attrs);
3448 
3449   return &FI;
3450 }
3451 
3452 Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) {
3453   // free undef -> unreachable.
3454   if (isa<UndefValue>(Op)) {
3455     // Leave a marker since we can't modify the CFG here.
3456     CreateNonTerminatorUnreachable(&FI);
3457     return eraseInstFromFunction(FI);
3458   }
3459 
3460   // If we have 'free null' delete the instruction.  This can happen in stl code
3461   // when lots of inlining happens.
3462   if (isa<ConstantPointerNull>(Op))
3463     return eraseInstFromFunction(FI);
3464 
3465   // If we had free(realloc(...)) with no intervening uses, then eliminate the
3466   // realloc() entirely.
3467   CallInst *CI = dyn_cast<CallInst>(Op);
3468   if (CI && CI->hasOneUse())
3469     if (Value *ReallocatedOp = getReallocatedOperand(CI))
3470       return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
3471 
3472   // If we optimize for code size, try to move the call to free before the null
3473   // test so that simplify cfg can remove the empty block and dead code
3474   // elimination the branch. I.e., helps to turn something like:
3475   // if (foo) free(foo);
3476   // into
3477   // free(foo);
3478   //
3479   // Note that we can only do this for 'free' and not for any flavor of
3480   // 'operator delete'; there is no 'operator delete' symbol for which we are
3481   // permitted to invent a call, even if we're passing in a null pointer.
3482   if (MinimizeSize) {
3483     LibFunc Func;
3484     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
3485       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
3486         return I;
3487   }
3488 
3489   return nullptr;
3490 }
3491 
3492 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
3493   Value *RetVal = RI.getReturnValue();
3494   if (!RetVal || !AttributeFuncs::isNoFPClassCompatibleType(RetVal->getType()))
3495     return nullptr;
3496 
3497   Function *F = RI.getFunction();
3498   FPClassTest ReturnClass = F->getAttributes().getRetNoFPClass();
3499   if (ReturnClass == fcNone)
3500     return nullptr;
3501 
3502   KnownFPClass KnownClass;
3503   Value *Simplified =
3504       SimplifyDemandedUseFPClass(RetVal, ~ReturnClass, KnownClass, 0, &RI);
3505   if (!Simplified)
3506     return nullptr;
3507 
3508   return ReturnInst::Create(RI.getContext(), Simplified);
3509 }
3510 
3511 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
3512 bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) {
3513   // Try to remove the previous instruction if it must lead to unreachable.
3514   // This includes instructions like stores and "llvm.assume" that may not get
3515   // removed by simple dead code elimination.
3516   bool Changed = false;
3517   while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
3518     // While we theoretically can erase EH, that would result in a block that
3519     // used to start with an EH no longer starting with EH, which is invalid.
3520     // To make it valid, we'd need to fixup predecessors to no longer refer to
3521     // this block, but that changes CFG, which is not allowed in InstCombine.
3522     if (Prev->isEHPad())
3523       break; // Can not drop any more instructions. We're done here.
3524 
3525     if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
3526       break; // Can not drop any more instructions. We're done here.
3527     // Otherwise, this instruction can be freely erased,
3528     // even if it is not side-effect free.
3529 
3530     // A value may still have uses before we process it here (for example, in
3531     // another unreachable block), so convert those to poison.
3532     replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
3533     eraseInstFromFunction(*Prev);
3534     Changed = true;
3535   }
3536   return Changed;
3537 }
3538 
3539 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
3540   removeInstructionsBeforeUnreachable(I);
3541   return nullptr;
3542 }
3543 
3544 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
3545   assert(BI.isUnconditional() && "Only for unconditional branches.");
3546 
3547   // If this store is the second-to-last instruction in the basic block
3548   // (excluding debug info and bitcasts of pointers) and if the block ends with
3549   // an unconditional branch, try to move the store to the successor block.
3550 
3551   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
3552     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
3553       return BBI->isDebugOrPseudoInst() ||
3554              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3555     };
3556 
3557     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
3558     do {
3559       if (BBI != FirstInstr)
3560         --BBI;
3561     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3562 
3563     return dyn_cast<StoreInst>(BBI);
3564   };
3565 
3566   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
3567     if (mergeStoreIntoSuccessor(*SI))
3568       return &BI;
3569 
3570   return nullptr;
3571 }
3572 
3573 void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To,
3574                                    SmallVectorImpl<BasicBlock *> &Worklist) {
3575   if (!DeadEdges.insert({From, To}).second)
3576     return;
3577 
3578   // Replace phi node operands in successor with poison.
3579   for (PHINode &PN : To->phis())
3580     for (Use &U : PN.incoming_values())
3581       if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) {
3582         replaceUse(U, PoisonValue::get(PN.getType()));
3583         addToWorklist(&PN);
3584         MadeIRChange = true;
3585       }
3586 
3587   Worklist.push_back(To);
3588 }
3589 
3590 // Under the assumption that I is unreachable, remove it and following
3591 // instructions. Changes are reported directly to MadeIRChange.
3592 void InstCombinerImpl::handleUnreachableFrom(
3593     Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) {
3594   BasicBlock *BB = I->getParent();
3595   for (Instruction &Inst : make_early_inc_range(
3596            make_range(std::next(BB->getTerminator()->getReverseIterator()),
3597                       std::next(I->getReverseIterator())))) {
3598     if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
3599       replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType()));
3600       MadeIRChange = true;
3601     }
3602     if (Inst.isEHPad() || Inst.getType()->isTokenTy())
3603       continue;
3604     // RemoveDIs: erase debug-info on this instruction manually.
3605     Inst.dropDbgRecords();
3606     eraseInstFromFunction(Inst);
3607     MadeIRChange = true;
3608   }
3609 
3610   SmallVector<Value *> Changed;
3611   if (handleUnreachableTerminator(BB->getTerminator(), Changed)) {
3612     MadeIRChange = true;
3613     for (Value *V : Changed)
3614       addToWorklist(cast<Instruction>(V));
3615   }
3616 
3617   // Handle potentially dead successors.
3618   for (BasicBlock *Succ : successors(BB))
3619     addDeadEdge(BB, Succ, Worklist);
3620 }
3621 
3622 void InstCombinerImpl::handlePotentiallyDeadBlocks(
3623     SmallVectorImpl<BasicBlock *> &Worklist) {
3624   while (!Worklist.empty()) {
3625     BasicBlock *BB = Worklist.pop_back_val();
3626     if (!all_of(predecessors(BB), [&](BasicBlock *Pred) {
3627           return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
3628         }))
3629       continue;
3630 
3631     handleUnreachableFrom(&BB->front(), Worklist);
3632   }
3633 }
3634 
3635 void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB,
3636                                                        BasicBlock *LiveSucc) {
3637   SmallVector<BasicBlock *> Worklist;
3638   for (BasicBlock *Succ : successors(BB)) {
3639     // The live successor isn't dead.
3640     if (Succ == LiveSucc)
3641       continue;
3642 
3643     addDeadEdge(BB, Succ, Worklist);
3644   }
3645 
3646   handlePotentiallyDeadBlocks(Worklist);
3647 }
3648 
3649 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
3650   if (BI.isUnconditional())
3651     return visitUnconditionalBranchInst(BI);
3652 
3653   // Change br (not X), label True, label False to: br X, label False, True
3654   Value *Cond = BI.getCondition();
3655   Value *X;
3656   if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
3657     // Swap Destinations and condition...
3658     BI.swapSuccessors();
3659     if (BPI)
3660       BPI->swapSuccEdgesProbabilities(BI.getParent());
3661     return replaceOperand(BI, 0, X);
3662   }
3663 
3664   // Canonicalize logical-and-with-invert as logical-or-with-invert.
3665   // This is done by inverting the condition and swapping successors:
3666   // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
3667   Value *Y;
3668   if (isa<SelectInst>(Cond) &&
3669       match(Cond,
3670             m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) {
3671     Value *NotX = Builder.CreateNot(X, "not." + X->getName());
3672     Value *Or = Builder.CreateLogicalOr(NotX, Y);
3673     BI.swapSuccessors();
3674     if (BPI)
3675       BPI->swapSuccEdgesProbabilities(BI.getParent());
3676     return replaceOperand(BI, 0, Or);
3677   }
3678 
3679   // If the condition is irrelevant, remove the use so that other
3680   // transforms on the condition become more effective.
3681   if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
3682     return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
3683 
3684   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3685   CmpInst::Predicate Pred;
3686   if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
3687       !isCanonicalPredicate(Pred)) {
3688     // Swap destinations and condition.
3689     auto *Cmp = cast<CmpInst>(Cond);
3690     Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
3691     BI.swapSuccessors();
3692     if (BPI)
3693       BPI->swapSuccEdgesProbabilities(BI.getParent());
3694     Worklist.push(Cmp);
3695     return &BI;
3696   }
3697 
3698   if (isa<UndefValue>(Cond)) {
3699     handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr);
3700     return nullptr;
3701   }
3702   if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
3703     handlePotentiallyDeadSuccessors(BI.getParent(),
3704                                     BI.getSuccessor(!CI->getZExtValue()));
3705     return nullptr;
3706   }
3707 
3708   DC.registerBranch(&BI);
3709   return nullptr;
3710 }
3711 
3712 // Replaces (switch (select cond, X, C)/(select cond, C, X)) with (switch X) if
3713 // we can prove that both (switch C) and (switch X) go to the default when cond
3714 // is false/true.
3715 static Value *simplifySwitchOnSelectUsingRanges(SwitchInst &SI,
3716                                                 SelectInst *Select,
3717                                                 bool IsTrueArm) {
3718   unsigned CstOpIdx = IsTrueArm ? 1 : 2;
3719   auto *C = dyn_cast<ConstantInt>(Select->getOperand(CstOpIdx));
3720   if (!C)
3721     return nullptr;
3722 
3723   BasicBlock *CstBB = SI.findCaseValue(C)->getCaseSuccessor();
3724   if (CstBB != SI.getDefaultDest())
3725     return nullptr;
3726   Value *X = Select->getOperand(3 - CstOpIdx);
3727   ICmpInst::Predicate Pred;
3728   const APInt *RHSC;
3729   if (!match(Select->getCondition(),
3730              m_ICmp(Pred, m_Specific(X), m_APInt(RHSC))))
3731     return nullptr;
3732   if (IsTrueArm)
3733     Pred = ICmpInst::getInversePredicate(Pred);
3734 
3735   // See whether we can replace the select with X
3736   ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *RHSC);
3737   for (auto Case : SI.cases())
3738     if (!CR.contains(Case.getCaseValue()->getValue()))
3739       return nullptr;
3740 
3741   return X;
3742 }
3743 
3744 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3745   Value *Cond = SI.getCondition();
3746   Value *Op0;
3747   ConstantInt *AddRHS;
3748   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3749     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3750     for (auto Case : SI.cases()) {
3751       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3752       assert(isa<ConstantInt>(NewCase) &&
3753              "Result of expression should be constant");
3754       Case.setValue(cast<ConstantInt>(NewCase));
3755     }
3756     return replaceOperand(SI, 0, Op0);
3757   }
3758 
3759   ConstantInt *SubLHS;
3760   if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) {
3761     // Change 'switch (1-X) case 1:' into 'switch (X) case 0'.
3762     for (auto Case : SI.cases()) {
3763       Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue());
3764       assert(isa<ConstantInt>(NewCase) &&
3765              "Result of expression should be constant");
3766       Case.setValue(cast<ConstantInt>(NewCase));
3767     }
3768     return replaceOperand(SI, 0, Op0);
3769   }
3770 
3771   uint64_t ShiftAmt;
3772   if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) &&
3773       ShiftAmt < Op0->getType()->getScalarSizeInBits() &&
3774       all_of(SI.cases(), [&](const auto &Case) {
3775         return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
3776       })) {
3777     // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
3778     OverflowingBinaryOperator *Shl = cast<OverflowingBinaryOperator>(Cond);
3779     if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() ||
3780         Shl->hasOneUse()) {
3781       Value *NewCond = Op0;
3782       if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) {
3783         // If the shift may wrap, we need to mask off the shifted bits.
3784         unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
3785         NewCond = Builder.CreateAnd(
3786             Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt));
3787       }
3788       for (auto Case : SI.cases()) {
3789         const APInt &CaseVal = Case.getCaseValue()->getValue();
3790         APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt)
3791                                                    : CaseVal.lshr(ShiftAmt);
3792         Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
3793       }
3794       return replaceOperand(SI, 0, NewCond);
3795     }
3796   }
3797 
3798   // Fold switch(zext/sext(X)) into switch(X) if possible.
3799   if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) {
3800     bool IsZExt = isa<ZExtInst>(Cond);
3801     Type *SrcTy = Op0->getType();
3802     unsigned NewWidth = SrcTy->getScalarSizeInBits();
3803 
3804     if (all_of(SI.cases(), [&](const auto &Case) {
3805           const APInt &CaseVal = Case.getCaseValue()->getValue();
3806           return IsZExt ? CaseVal.isIntN(NewWidth)
3807                         : CaseVal.isSignedIntN(NewWidth);
3808         })) {
3809       for (auto &Case : SI.cases()) {
3810         APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3811         Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3812       }
3813       return replaceOperand(SI, 0, Op0);
3814     }
3815   }
3816 
3817   // Fold switch(select cond, X, Y) into switch(X/Y) if possible
3818   if (auto *Select = dyn_cast<SelectInst>(Cond)) {
3819     if (Value *V =
3820             simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/true))
3821       return replaceOperand(SI, 0, V);
3822     if (Value *V =
3823             simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/false))
3824       return replaceOperand(SI, 0, V);
3825   }
3826 
3827   KnownBits Known = computeKnownBits(Cond, 0, &SI);
3828   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3829   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3830 
3831   // Compute the number of leading bits we can ignore.
3832   // TODO: A better way to determine this would use ComputeNumSignBits().
3833   for (const auto &C : SI.cases()) {
3834     LeadingKnownZeros =
3835         std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero());
3836     LeadingKnownOnes =
3837         std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one());
3838   }
3839 
3840   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3841 
3842   // Shrink the condition operand if the new type is smaller than the old type.
3843   // But do not shrink to a non-standard type, because backend can't generate
3844   // good code for that yet.
3845   // TODO: We can make it aggressive again after fixing PR39569.
3846   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3847       shouldChangeType(Known.getBitWidth(), NewWidth)) {
3848     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3849     Builder.SetInsertPoint(&SI);
3850     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3851 
3852     for (auto Case : SI.cases()) {
3853       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3854       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3855     }
3856     return replaceOperand(SI, 0, NewCond);
3857   }
3858 
3859   if (isa<UndefValue>(Cond)) {
3860     handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr);
3861     return nullptr;
3862   }
3863   if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
3864     handlePotentiallyDeadSuccessors(SI.getParent(),
3865                                     SI.findCaseValue(CI)->getCaseSuccessor());
3866     return nullptr;
3867   }
3868 
3869   return nullptr;
3870 }
3871 
3872 Instruction *
3873 InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
3874   auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand());
3875   if (!WO)
3876     return nullptr;
3877 
3878   Intrinsic::ID OvID = WO->getIntrinsicID();
3879   const APInt *C = nullptr;
3880   if (match(WO->getRHS(), m_APIntAllowPoison(C))) {
3881     if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
3882                                  OvID == Intrinsic::umul_with_overflow)) {
3883       // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
3884       if (C->isAllOnes())
3885         return BinaryOperator::CreateNeg(WO->getLHS());
3886       // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
3887       if (C->isPowerOf2()) {
3888         return BinaryOperator::CreateShl(
3889             WO->getLHS(),
3890             ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
3891       }
3892     }
3893   }
3894 
3895   // We're extracting from an overflow intrinsic. See if we're the only user.
3896   // That allows us to simplify multiple result intrinsics to simpler things
3897   // that just get one value.
3898   if (!WO->hasOneUse())
3899     return nullptr;
3900 
3901   // Check if we're grabbing only the result of a 'with overflow' intrinsic
3902   // and replace it with a traditional binary instruction.
3903   if (*EV.idx_begin() == 0) {
3904     Instruction::BinaryOps BinOp = WO->getBinaryOp();
3905     Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3906     // Replace the old instruction's uses with poison.
3907     replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3908     eraseInstFromFunction(*WO);
3909     return BinaryOperator::Create(BinOp, LHS, RHS);
3910   }
3911 
3912   assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
3913 
3914   // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
3915   if (OvID == Intrinsic::usub_with_overflow)
3916     return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
3917 
3918   // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
3919   // +1 is not possible because we assume signed values.
3920   if (OvID == Intrinsic::smul_with_overflow &&
3921       WO->getLHS()->getType()->isIntOrIntVectorTy(1))
3922     return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
3923 
3924   // extractvalue (umul_with_overflow X, X), 1 -> X u> 2^(N/2)-1
3925   if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
3926     unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
3927     // Only handle even bitwidths for performance reasons.
3928     if (BitWidth % 2 == 0)
3929       return new ICmpInst(
3930           ICmpInst::ICMP_UGT, WO->getLHS(),
3931           ConstantInt::get(WO->getLHS()->getType(),
3932                            APInt::getLowBitsSet(BitWidth, BitWidth / 2)));
3933   }
3934 
3935   // If only the overflow result is used, and the right hand side is a
3936   // constant (or constant splat), we can remove the intrinsic by directly
3937   // checking for overflow.
3938   if (C) {
3939     // Compute the no-wrap range for LHS given RHS=C, then construct an
3940     // equivalent icmp, potentially using an offset.
3941     ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
3942         WO->getBinaryOp(), *C, WO->getNoWrapKind());
3943 
3944     CmpInst::Predicate Pred;
3945     APInt NewRHSC, Offset;
3946     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3947     auto *OpTy = WO->getRHS()->getType();
3948     auto *NewLHS = WO->getLHS();
3949     if (Offset != 0)
3950       NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3951     return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3952                         ConstantInt::get(OpTy, NewRHSC));
3953   }
3954 
3955   return nullptr;
3956 }
3957 
3958 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3959   Value *Agg = EV.getAggregateOperand();
3960 
3961   if (!EV.hasIndices())
3962     return replaceInstUsesWith(EV, Agg);
3963 
3964   if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
3965                                           SQ.getWithInstruction(&EV)))
3966     return replaceInstUsesWith(EV, V);
3967 
3968   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3969     // We're extracting from an insertvalue instruction, compare the indices
3970     const unsigned *exti, *exte, *insi, *inse;
3971     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3972          exte = EV.idx_end(), inse = IV->idx_end();
3973          exti != exte && insi != inse;
3974          ++exti, ++insi) {
3975       if (*insi != *exti)
3976         // The insert and extract both reference distinctly different elements.
3977         // This means the extract is not influenced by the insert, and we can
3978         // replace the aggregate operand of the extract with the aggregate
3979         // operand of the insert. i.e., replace
3980         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3981         // %E = extractvalue { i32, { i32 } } %I, 0
3982         // with
3983         // %E = extractvalue { i32, { i32 } } %A, 0
3984         return ExtractValueInst::Create(IV->getAggregateOperand(),
3985                                         EV.getIndices());
3986     }
3987     if (exti == exte && insi == inse)
3988       // Both iterators are at the end: Index lists are identical. Replace
3989       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3990       // %C = extractvalue { i32, { i32 } } %B, 1, 0
3991       // with "i32 42"
3992       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3993     if (exti == exte) {
3994       // The extract list is a prefix of the insert list. i.e. replace
3995       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3996       // %E = extractvalue { i32, { i32 } } %I, 1
3997       // with
3998       // %X = extractvalue { i32, { i32 } } %A, 1
3999       // %E = insertvalue { i32 } %X, i32 42, 0
4000       // by switching the order of the insert and extract (though the
4001       // insertvalue should be left in, since it may have other uses).
4002       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
4003                                                 EV.getIndices());
4004       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
4005                                      ArrayRef(insi, inse));
4006     }
4007     if (insi == inse)
4008       // The insert list is a prefix of the extract list
4009       // We can simply remove the common indices from the extract and make it
4010       // operate on the inserted value instead of the insertvalue result.
4011       // i.e., replace
4012       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
4013       // %E = extractvalue { i32, { i32 } } %I, 1, 0
4014       // with
4015       // %E extractvalue { i32 } { i32 42 }, 0
4016       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
4017                                       ArrayRef(exti, exte));
4018   }
4019 
4020   if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
4021     return R;
4022 
4023   if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
4024     // Bail out if the aggregate contains scalable vector type
4025     if (auto *STy = dyn_cast<StructType>(Agg->getType());
4026         STy && STy->containsScalableVectorType())
4027       return nullptr;
4028 
4029     // If the (non-volatile) load only has one use, we can rewrite this to a
4030     // load from a GEP. This reduces the size of the load. If a load is used
4031     // only by extractvalue instructions then this either must have been
4032     // optimized before, or it is a struct with padding, in which case we
4033     // don't want to do the transformation as it loses padding knowledge.
4034     if (L->isSimple() && L->hasOneUse()) {
4035       // extractvalue has integer indices, getelementptr has Value*s. Convert.
4036       SmallVector<Value*, 4> Indices;
4037       // Prefix an i32 0 since we need the first element.
4038       Indices.push_back(Builder.getInt32(0));
4039       for (unsigned Idx : EV.indices())
4040         Indices.push_back(Builder.getInt32(Idx));
4041 
4042       // We need to insert these at the location of the old load, not at that of
4043       // the extractvalue.
4044       Builder.SetInsertPoint(L);
4045       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
4046                                              L->getPointerOperand(), Indices);
4047       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
4048       // Whatever aliasing information we had for the orignal load must also
4049       // hold for the smaller load, so propagate the annotations.
4050       NL->setAAMetadata(L->getAAMetadata());
4051       // Returning the load directly will cause the main loop to insert it in
4052       // the wrong spot, so use replaceInstUsesWith().
4053       return replaceInstUsesWith(EV, NL);
4054     }
4055   }
4056 
4057   if (auto *PN = dyn_cast<PHINode>(Agg))
4058     if (Instruction *Res = foldOpIntoPhi(EV, PN))
4059       return Res;
4060 
4061   // Canonicalize extract (select Cond, TV, FV)
4062   // -> select cond, (extract TV), (extract FV)
4063   if (auto *SI = dyn_cast<SelectInst>(Agg))
4064     if (Instruction *R = FoldOpIntoSelect(EV, SI, /*FoldWithMultiUse=*/true))
4065       return R;
4066 
4067   // We could simplify extracts from other values. Note that nested extracts may
4068   // already be simplified implicitly by the above: extract (extract (insert) )
4069   // will be translated into extract ( insert ( extract ) ) first and then just
4070   // the value inserted, if appropriate. Similarly for extracts from single-use
4071   // loads: extract (extract (load)) will be translated to extract (load (gep))
4072   // and if again single-use then via load (gep (gep)) to load (gep).
4073   // However, double extracts from e.g. function arguments or return values
4074   // aren't handled yet.
4075   return nullptr;
4076 }
4077 
4078 /// Return 'true' if the given typeinfo will match anything.
4079 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
4080   switch (Personality) {
4081   case EHPersonality::GNU_C:
4082   case EHPersonality::GNU_C_SjLj:
4083   case EHPersonality::Rust:
4084     // The GCC C EH and Rust personality only exists to support cleanups, so
4085     // it's not clear what the semantics of catch clauses are.
4086     return false;
4087   case EHPersonality::Unknown:
4088     return false;
4089   case EHPersonality::GNU_Ada:
4090     // While __gnat_all_others_value will match any Ada exception, it doesn't
4091     // match foreign exceptions (or didn't, before gcc-4.7).
4092     return false;
4093   case EHPersonality::GNU_CXX:
4094   case EHPersonality::GNU_CXX_SjLj:
4095   case EHPersonality::GNU_ObjC:
4096   case EHPersonality::MSVC_X86SEH:
4097   case EHPersonality::MSVC_TableSEH:
4098   case EHPersonality::MSVC_CXX:
4099   case EHPersonality::CoreCLR:
4100   case EHPersonality::Wasm_CXX:
4101   case EHPersonality::XL_CXX:
4102   case EHPersonality::ZOS_CXX:
4103     return TypeInfo->isNullValue();
4104   }
4105   llvm_unreachable("invalid enum");
4106 }
4107 
4108 static bool shorter_filter(const Value *LHS, const Value *RHS) {
4109   return
4110     cast<ArrayType>(LHS->getType())->getNumElements()
4111   <
4112     cast<ArrayType>(RHS->getType())->getNumElements();
4113 }
4114 
4115 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
4116   // The logic here should be correct for any real-world personality function.
4117   // However if that turns out not to be true, the offending logic can always
4118   // be conditioned on the personality function, like the catch-all logic is.
4119   EHPersonality Personality =
4120       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
4121 
4122   // Simplify the list of clauses, eg by removing repeated catch clauses
4123   // (these are often created by inlining).
4124   bool MakeNewInstruction = false; // If true, recreate using the following:
4125   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
4126   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
4127 
4128   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
4129   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
4130     bool isLastClause = i + 1 == e;
4131     if (LI.isCatch(i)) {
4132       // A catch clause.
4133       Constant *CatchClause = LI.getClause(i);
4134       Constant *TypeInfo = CatchClause->stripPointerCasts();
4135 
4136       // If we already saw this clause, there is no point in having a second
4137       // copy of it.
4138       if (AlreadyCaught.insert(TypeInfo).second) {
4139         // This catch clause was not already seen.
4140         NewClauses.push_back(CatchClause);
4141       } else {
4142         // Repeated catch clause - drop the redundant copy.
4143         MakeNewInstruction = true;
4144       }
4145 
4146       // If this is a catch-all then there is no point in keeping any following
4147       // clauses or marking the landingpad as having a cleanup.
4148       if (isCatchAll(Personality, TypeInfo)) {
4149         if (!isLastClause)
4150           MakeNewInstruction = true;
4151         CleanupFlag = false;
4152         break;
4153       }
4154     } else {
4155       // A filter clause.  If any of the filter elements were already caught
4156       // then they can be dropped from the filter.  It is tempting to try to
4157       // exploit the filter further by saying that any typeinfo that does not
4158       // occur in the filter can't be caught later (and thus can be dropped).
4159       // However this would be wrong, since typeinfos can match without being
4160       // equal (for example if one represents a C++ class, and the other some
4161       // class derived from it).
4162       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
4163       Constant *FilterClause = LI.getClause(i);
4164       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
4165       unsigned NumTypeInfos = FilterType->getNumElements();
4166 
4167       // An empty filter catches everything, so there is no point in keeping any
4168       // following clauses or marking the landingpad as having a cleanup.  By
4169       // dealing with this case here the following code is made a bit simpler.
4170       if (!NumTypeInfos) {
4171         NewClauses.push_back(FilterClause);
4172         if (!isLastClause)
4173           MakeNewInstruction = true;
4174         CleanupFlag = false;
4175         break;
4176       }
4177 
4178       bool MakeNewFilter = false; // If true, make a new filter.
4179       SmallVector<Constant *, 16> NewFilterElts; // New elements.
4180       if (isa<ConstantAggregateZero>(FilterClause)) {
4181         // Not an empty filter - it contains at least one null typeinfo.
4182         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
4183         Constant *TypeInfo =
4184           Constant::getNullValue(FilterType->getElementType());
4185         // If this typeinfo is a catch-all then the filter can never match.
4186         if (isCatchAll(Personality, TypeInfo)) {
4187           // Throw the filter away.
4188           MakeNewInstruction = true;
4189           continue;
4190         }
4191 
4192         // There is no point in having multiple copies of this typeinfo, so
4193         // discard all but the first copy if there is more than one.
4194         NewFilterElts.push_back(TypeInfo);
4195         if (NumTypeInfos > 1)
4196           MakeNewFilter = true;
4197       } else {
4198         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
4199         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
4200         NewFilterElts.reserve(NumTypeInfos);
4201 
4202         // Remove any filter elements that were already caught or that already
4203         // occurred in the filter.  While there, see if any of the elements are
4204         // catch-alls.  If so, the filter can be discarded.
4205         bool SawCatchAll = false;
4206         for (unsigned j = 0; j != NumTypeInfos; ++j) {
4207           Constant *Elt = Filter->getOperand(j);
4208           Constant *TypeInfo = Elt->stripPointerCasts();
4209           if (isCatchAll(Personality, TypeInfo)) {
4210             // This element is a catch-all.  Bail out, noting this fact.
4211             SawCatchAll = true;
4212             break;
4213           }
4214 
4215           // Even if we've seen a type in a catch clause, we don't want to
4216           // remove it from the filter.  An unexpected type handler may be
4217           // set up for a call site which throws an exception of the same
4218           // type caught.  In order for the exception thrown by the unexpected
4219           // handler to propagate correctly, the filter must be correctly
4220           // described for the call site.
4221           //
4222           // Example:
4223           //
4224           // void unexpected() { throw 1;}
4225           // void foo() throw (int) {
4226           //   std::set_unexpected(unexpected);
4227           //   try {
4228           //     throw 2.0;
4229           //   } catch (int i) {}
4230           // }
4231 
4232           // There is no point in having multiple copies of the same typeinfo in
4233           // a filter, so only add it if we didn't already.
4234           if (SeenInFilter.insert(TypeInfo).second)
4235             NewFilterElts.push_back(cast<Constant>(Elt));
4236         }
4237         // A filter containing a catch-all cannot match anything by definition.
4238         if (SawCatchAll) {
4239           // Throw the filter away.
4240           MakeNewInstruction = true;
4241           continue;
4242         }
4243 
4244         // If we dropped something from the filter, make a new one.
4245         if (NewFilterElts.size() < NumTypeInfos)
4246           MakeNewFilter = true;
4247       }
4248       if (MakeNewFilter) {
4249         FilterType = ArrayType::get(FilterType->getElementType(),
4250                                     NewFilterElts.size());
4251         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
4252         MakeNewInstruction = true;
4253       }
4254 
4255       NewClauses.push_back(FilterClause);
4256 
4257       // If the new filter is empty then it will catch everything so there is
4258       // no point in keeping any following clauses or marking the landingpad
4259       // as having a cleanup.  The case of the original filter being empty was
4260       // already handled above.
4261       if (MakeNewFilter && !NewFilterElts.size()) {
4262         assert(MakeNewInstruction && "New filter but not a new instruction!");
4263         CleanupFlag = false;
4264         break;
4265       }
4266     }
4267   }
4268 
4269   // If several filters occur in a row then reorder them so that the shortest
4270   // filters come first (those with the smallest number of elements).  This is
4271   // advantageous because shorter filters are more likely to match, speeding up
4272   // unwinding, but mostly because it increases the effectiveness of the other
4273   // filter optimizations below.
4274   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
4275     unsigned j;
4276     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
4277     for (j = i; j != e; ++j)
4278       if (!isa<ArrayType>(NewClauses[j]->getType()))
4279         break;
4280 
4281     // Check whether the filters are already sorted by length.  We need to know
4282     // if sorting them is actually going to do anything so that we only make a
4283     // new landingpad instruction if it does.
4284     for (unsigned k = i; k + 1 < j; ++k)
4285       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
4286         // Not sorted, so sort the filters now.  Doing an unstable sort would be
4287         // correct too but reordering filters pointlessly might confuse users.
4288         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
4289                          shorter_filter);
4290         MakeNewInstruction = true;
4291         break;
4292       }
4293 
4294     // Look for the next batch of filters.
4295     i = j + 1;
4296   }
4297 
4298   // If typeinfos matched if and only if equal, then the elements of a filter L
4299   // that occurs later than a filter F could be replaced by the intersection of
4300   // the elements of F and L.  In reality two typeinfos can match without being
4301   // equal (for example if one represents a C++ class, and the other some class
4302   // derived from it) so it would be wrong to perform this transform in general.
4303   // However the transform is correct and useful if F is a subset of L.  In that
4304   // case L can be replaced by F, and thus removed altogether since repeating a
4305   // filter is pointless.  So here we look at all pairs of filters F and L where
4306   // L follows F in the list of clauses, and remove L if every element of F is
4307   // an element of L.  This can occur when inlining C++ functions with exception
4308   // specifications.
4309   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
4310     // Examine each filter in turn.
4311     Value *Filter = NewClauses[i];
4312     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
4313     if (!FTy)
4314       // Not a filter - skip it.
4315       continue;
4316     unsigned FElts = FTy->getNumElements();
4317     // Examine each filter following this one.  Doing this backwards means that
4318     // we don't have to worry about filters disappearing under us when removed.
4319     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
4320       Value *LFilter = NewClauses[j];
4321       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
4322       if (!LTy)
4323         // Not a filter - skip it.
4324         continue;
4325       // If Filter is a subset of LFilter, i.e. every element of Filter is also
4326       // an element of LFilter, then discard LFilter.
4327       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
4328       // If Filter is empty then it is a subset of LFilter.
4329       if (!FElts) {
4330         // Discard LFilter.
4331         NewClauses.erase(J);
4332         MakeNewInstruction = true;
4333         // Move on to the next filter.
4334         continue;
4335       }
4336       unsigned LElts = LTy->getNumElements();
4337       // If Filter is longer than LFilter then it cannot be a subset of it.
4338       if (FElts > LElts)
4339         // Move on to the next filter.
4340         continue;
4341       // At this point we know that LFilter has at least one element.
4342       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
4343         // Filter is a subset of LFilter iff Filter contains only zeros (as we
4344         // already know that Filter is not longer than LFilter).
4345         if (isa<ConstantAggregateZero>(Filter)) {
4346           assert(FElts <= LElts && "Should have handled this case earlier!");
4347           // Discard LFilter.
4348           NewClauses.erase(J);
4349           MakeNewInstruction = true;
4350         }
4351         // Move on to the next filter.
4352         continue;
4353       }
4354       ConstantArray *LArray = cast<ConstantArray>(LFilter);
4355       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
4356         // Since Filter is non-empty and contains only zeros, it is a subset of
4357         // LFilter iff LFilter contains a zero.
4358         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
4359         for (unsigned l = 0; l != LElts; ++l)
4360           if (LArray->getOperand(l)->isNullValue()) {
4361             // LFilter contains a zero - discard it.
4362             NewClauses.erase(J);
4363             MakeNewInstruction = true;
4364             break;
4365           }
4366         // Move on to the next filter.
4367         continue;
4368       }
4369       // At this point we know that both filters are ConstantArrays.  Loop over
4370       // operands to see whether every element of Filter is also an element of
4371       // LFilter.  Since filters tend to be short this is probably faster than
4372       // using a method that scales nicely.
4373       ConstantArray *FArray = cast<ConstantArray>(Filter);
4374       bool AllFound = true;
4375       for (unsigned f = 0; f != FElts; ++f) {
4376         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
4377         AllFound = false;
4378         for (unsigned l = 0; l != LElts; ++l) {
4379           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
4380           if (LTypeInfo == FTypeInfo) {
4381             AllFound = true;
4382             break;
4383           }
4384         }
4385         if (!AllFound)
4386           break;
4387       }
4388       if (AllFound) {
4389         // Discard LFilter.
4390         NewClauses.erase(J);
4391         MakeNewInstruction = true;
4392       }
4393       // Move on to the next filter.
4394     }
4395   }
4396 
4397   // If we changed any of the clauses, replace the old landingpad instruction
4398   // with a new one.
4399   if (MakeNewInstruction) {
4400     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
4401                                                  NewClauses.size());
4402     for (Constant *C : NewClauses)
4403       NLI->addClause(C);
4404     // A landing pad with no clauses must have the cleanup flag set.  It is
4405     // theoretically possible, though highly unlikely, that we eliminated all
4406     // clauses.  If so, force the cleanup flag to true.
4407     if (NewClauses.empty())
4408       CleanupFlag = true;
4409     NLI->setCleanup(CleanupFlag);
4410     return NLI;
4411   }
4412 
4413   // Even if none of the clauses changed, we may nonetheless have understood
4414   // that the cleanup flag is pointless.  Clear it if so.
4415   if (LI.isCleanup() != CleanupFlag) {
4416     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
4417     LI.setCleanup(CleanupFlag);
4418     return &LI;
4419   }
4420 
4421   return nullptr;
4422 }
4423 
4424 Value *
4425 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
4426   // Try to push freeze through instructions that propagate but don't produce
4427   // poison as far as possible.  If an operand of freeze follows three
4428   // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
4429   // guaranteed-non-poison operands then push the freeze through to the one
4430   // operand that is not guaranteed non-poison.  The actual transform is as
4431   // follows.
4432   //   Op1 = ...                        ; Op1 can be posion
4433   //   Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
4434   //                                    ; single guaranteed-non-poison operands
4435   //   ... = Freeze(Op0)
4436   // =>
4437   //   Op1 = ...
4438   //   Op1.fr = Freeze(Op1)
4439   //   ... = Inst(Op1.fr, NonPoisonOps...)
4440   auto *OrigOp = OrigFI.getOperand(0);
4441   auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
4442 
4443   // While we could change the other users of OrigOp to use freeze(OrigOp), that
4444   // potentially reduces their optimization potential, so let's only do this iff
4445   // the OrigOp is only used by the freeze.
4446   if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
4447     return nullptr;
4448 
4449   // We can't push the freeze through an instruction which can itself create
4450   // poison.  If the only source of new poison is flags, we can simply
4451   // strip them (since we know the only use is the freeze and nothing can
4452   // benefit from them.)
4453   if (canCreateUndefOrPoison(cast<Operator>(OrigOp),
4454                              /*ConsiderFlagsAndMetadata*/ false))
4455     return nullptr;
4456 
4457   // If operand is guaranteed not to be poison, there is no need to add freeze
4458   // to the operand. So we first find the operand that is not guaranteed to be
4459   // poison.
4460   Use *MaybePoisonOperand = nullptr;
4461   for (Use &U : OrigOpInst->operands()) {
4462     if (isa<MetadataAsValue>(U.get()) ||
4463         isGuaranteedNotToBeUndefOrPoison(U.get()))
4464       continue;
4465     if (!MaybePoisonOperand)
4466       MaybePoisonOperand = &U;
4467     else
4468       return nullptr;
4469   }
4470 
4471   OrigOpInst->dropPoisonGeneratingAnnotations();
4472 
4473   // If all operands are guaranteed to be non-poison, we can drop freeze.
4474   if (!MaybePoisonOperand)
4475     return OrigOp;
4476 
4477   Builder.SetInsertPoint(OrigOpInst);
4478   auto *FrozenMaybePoisonOperand = Builder.CreateFreeze(
4479       MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
4480 
4481   replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
4482   return OrigOp;
4483 }
4484 
4485 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI,
4486                                                         PHINode *PN) {
4487   // Detect whether this is a recurrence with a start value and some number of
4488   // backedge values. We'll check whether we can push the freeze through the
4489   // backedge values (possibly dropping poison flags along the way) until we
4490   // reach the phi again. In that case, we can move the freeze to the start
4491   // value.
4492   Use *StartU = nullptr;
4493   SmallVector<Value *> Worklist;
4494   for (Use &U : PN->incoming_values()) {
4495     if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
4496       // Add backedge value to worklist.
4497       Worklist.push_back(U.get());
4498       continue;
4499     }
4500 
4501     // Don't bother handling multiple start values.
4502     if (StartU)
4503       return nullptr;
4504     StartU = &U;
4505   }
4506 
4507   if (!StartU || Worklist.empty())
4508     return nullptr; // Not a recurrence.
4509 
4510   Value *StartV = StartU->get();
4511   BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
4512   bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
4513   // We can't insert freeze if the start value is the result of the
4514   // terminator (e.g. an invoke).
4515   if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
4516     return nullptr;
4517 
4518   SmallPtrSet<Value *, 32> Visited;
4519   SmallVector<Instruction *> DropFlags;
4520   while (!Worklist.empty()) {
4521     Value *V = Worklist.pop_back_val();
4522     if (!Visited.insert(V).second)
4523       continue;
4524 
4525     if (Visited.size() > 32)
4526       return nullptr; // Limit the total number of values we inspect.
4527 
4528     // Assume that PN is non-poison, because it will be after the transform.
4529     if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
4530       continue;
4531 
4532     Instruction *I = dyn_cast<Instruction>(V);
4533     if (!I || canCreateUndefOrPoison(cast<Operator>(I),
4534                                      /*ConsiderFlagsAndMetadata*/ false))
4535       return nullptr;
4536 
4537     DropFlags.push_back(I);
4538     append_range(Worklist, I->operands());
4539   }
4540 
4541   for (Instruction *I : DropFlags)
4542     I->dropPoisonGeneratingAnnotations();
4543 
4544   if (StartNeedsFreeze) {
4545     Builder.SetInsertPoint(StartBB->getTerminator());
4546     Value *FrozenStartV = Builder.CreateFreeze(StartV,
4547                                                StartV->getName() + ".fr");
4548     replaceUse(*StartU, FrozenStartV);
4549   }
4550   return replaceInstUsesWith(FI, PN);
4551 }
4552 
4553 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) {
4554   Value *Op = FI.getOperand(0);
4555 
4556   if (isa<Constant>(Op) || Op->hasOneUse())
4557     return false;
4558 
4559   // Move the freeze directly after the definition of its operand, so that
4560   // it dominates the maximum number of uses. Note that it may not dominate
4561   // *all* uses if the operand is an invoke/callbr and the use is in a phi on
4562   // the normal/default destination. This is why the domination check in the
4563   // replacement below is still necessary.
4564   BasicBlock::iterator MoveBefore;
4565   if (isa<Argument>(Op)) {
4566     MoveBefore =
4567         FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
4568   } else {
4569     auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef();
4570     if (!MoveBeforeOpt)
4571       return false;
4572     MoveBefore = *MoveBeforeOpt;
4573   }
4574 
4575   // Don't move to the position of a debug intrinsic.
4576   if (isa<DbgInfoIntrinsic>(MoveBefore))
4577     MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator();
4578   // Re-point iterator to come after any debug-info records, if we're
4579   // running in "RemoveDIs" mode
4580   MoveBefore.setHeadBit(false);
4581 
4582   bool Changed = false;
4583   if (&FI != &*MoveBefore) {
4584     FI.moveBefore(*MoveBefore->getParent(), MoveBefore);
4585     Changed = true;
4586   }
4587 
4588   Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
4589     bool Dominates = DT.dominates(&FI, U);
4590     Changed |= Dominates;
4591     return Dominates;
4592   });
4593 
4594   return Changed;
4595 }
4596 
4597 // Check if any direct or bitcast user of this value is a shuffle instruction.
4598 static bool isUsedWithinShuffleVector(Value *V) {
4599   for (auto *U : V->users()) {
4600     if (isa<ShuffleVectorInst>(U))
4601       return true;
4602     else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U))
4603       return true;
4604   }
4605   return false;
4606 }
4607 
4608 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
4609   Value *Op0 = I.getOperand(0);
4610 
4611   if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
4612     return replaceInstUsesWith(I, V);
4613 
4614   // freeze (phi const, x) --> phi const, (freeze x)
4615   if (auto *PN = dyn_cast<PHINode>(Op0)) {
4616     if (Instruction *NV = foldOpIntoPhi(I, PN))
4617       return NV;
4618     if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
4619       return NV;
4620   }
4621 
4622   if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
4623     return replaceInstUsesWith(I, NI);
4624 
4625   // If I is freeze(undef), check its uses and fold it to a fixed constant.
4626   // - or: pick -1
4627   // - select's condition: if the true value is constant, choose it by making
4628   //                       the condition true.
4629   // - default: pick 0
4630   //
4631   // Note that this transform is intentionally done here rather than
4632   // via an analysis in InstSimplify or at individual user sites. That is
4633   // because we must produce the same value for all uses of the freeze -
4634   // it's the reason "freeze" exists!
4635   //
4636   // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
4637   //       duplicating logic for binops at least.
4638   auto getUndefReplacement = [&I](Type *Ty) {
4639     Constant *BestValue = nullptr;
4640     Constant *NullValue = Constant::getNullValue(Ty);
4641     for (const auto *U : I.users()) {
4642       Constant *C = NullValue;
4643       if (match(U, m_Or(m_Value(), m_Value())))
4644         C = ConstantInt::getAllOnesValue(Ty);
4645       else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
4646         C = ConstantInt::getTrue(Ty);
4647 
4648       if (!BestValue)
4649         BestValue = C;
4650       else if (BestValue != C)
4651         BestValue = NullValue;
4652     }
4653     assert(BestValue && "Must have at least one use");
4654     return BestValue;
4655   };
4656 
4657   if (match(Op0, m_Undef())) {
4658     // Don't fold freeze(undef/poison) if it's used as a vector operand in
4659     // a shuffle. This may improve codegen for shuffles that allow
4660     // unspecified inputs.
4661     if (isUsedWithinShuffleVector(&I))
4662       return nullptr;
4663     return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
4664   }
4665 
4666   Constant *C;
4667   if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) {
4668     Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType());
4669     return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC));
4670   }
4671 
4672   // Replace uses of Op with freeze(Op).
4673   if (freezeOtherUses(I))
4674     return &I;
4675 
4676   return nullptr;
4677 }
4678 
4679 /// Check for case where the call writes to an otherwise dead alloca.  This
4680 /// shows up for unused out-params in idiomatic C/C++ code.   Note that this
4681 /// helper *only* analyzes the write; doesn't check any other legality aspect.
4682 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) {
4683   auto *CB = dyn_cast<CallBase>(I);
4684   if (!CB)
4685     // TODO: handle e.g. store to alloca here - only worth doing if we extend
4686     // to allow reload along used path as described below.  Otherwise, this
4687     // is simply a store to a dead allocation which will be removed.
4688     return false;
4689   std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
4690   if (!Dest)
4691     return false;
4692   auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
4693   if (!AI)
4694     // TODO: allow malloc?
4695     return false;
4696   // TODO: allow memory access dominated by move point?  Note that since AI
4697   // could have a reference to itself captured by the call, we would need to
4698   // account for cycles in doing so.
4699   SmallVector<const User *> AllocaUsers;
4700   SmallPtrSet<const User *, 4> Visited;
4701   auto pushUsers = [&](const Instruction &I) {
4702     for (const User *U : I.users()) {
4703       if (Visited.insert(U).second)
4704         AllocaUsers.push_back(U);
4705     }
4706   };
4707   pushUsers(*AI);
4708   while (!AllocaUsers.empty()) {
4709     auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
4710     if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) ||
4711         isa<AddrSpaceCastInst>(UserI)) {
4712       pushUsers(*UserI);
4713       continue;
4714     }
4715     if (UserI == CB)
4716       continue;
4717     // TODO: support lifetime.start/end here
4718     return false;
4719   }
4720   return true;
4721 }
4722 
4723 /// Try to move the specified instruction from its current block into the
4724 /// beginning of DestBlock, which can only happen if it's safe to move the
4725 /// instruction past all of the instructions between it and the end of its
4726 /// block.
4727 bool InstCombinerImpl::tryToSinkInstruction(Instruction *I,
4728                                             BasicBlock *DestBlock) {
4729   BasicBlock *SrcBlock = I->getParent();
4730 
4731   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
4732   if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
4733       I->isTerminator())
4734     return false;
4735 
4736   // Do not sink static or dynamic alloca instructions. Static allocas must
4737   // remain in the entry block, and dynamic allocas must not be sunk in between
4738   // a stacksave / stackrestore pair, which would incorrectly shorten its
4739   // lifetime.
4740   if (isa<AllocaInst>(I))
4741     return false;
4742 
4743   // Do not sink into catchswitch blocks.
4744   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
4745     return false;
4746 
4747   // Do not sink convergent call instructions.
4748   if (auto *CI = dyn_cast<CallInst>(I)) {
4749     if (CI->isConvergent())
4750       return false;
4751   }
4752 
4753   // Unless we can prove that the memory write isn't visibile except on the
4754   // path we're sinking to, we must bail.
4755   if (I->mayWriteToMemory()) {
4756     if (!SoleWriteToDeadLocal(I, TLI))
4757       return false;
4758   }
4759 
4760   // We can only sink load instructions if there is nothing between the load and
4761   // the end of block that could change the value.
4762   if (I->mayReadFromMemory()) {
4763     // We don't want to do any sophisticated alias analysis, so we only check
4764     // the instructions after I in I's parent block if we try to sink to its
4765     // successor block.
4766     if (DestBlock->getUniquePredecessor() != I->getParent())
4767       return false;
4768     for (BasicBlock::iterator Scan = std::next(I->getIterator()),
4769                               E = I->getParent()->end();
4770          Scan != E; ++Scan)
4771       if (Scan->mayWriteToMemory())
4772         return false;
4773   }
4774 
4775   I->dropDroppableUses([&](const Use *U) {
4776     auto *I = dyn_cast<Instruction>(U->getUser());
4777     if (I && I->getParent() != DestBlock) {
4778       Worklist.add(I);
4779       return true;
4780     }
4781     return false;
4782   });
4783   /// FIXME: We could remove droppable uses that are not dominated by
4784   /// the new position.
4785 
4786   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
4787   I->moveBefore(*DestBlock, InsertPos);
4788   ++NumSunkInst;
4789 
4790   // Also sink all related debug uses from the source basic block. Otherwise we
4791   // get debug use before the def. Attempt to salvage debug uses first, to
4792   // maximise the range variables have location for. If we cannot salvage, then
4793   // mark the location undef: we know it was supposed to receive a new location
4794   // here, but that computation has been sunk.
4795   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
4796   SmallVector<DbgVariableRecord *, 2> DbgVariableRecords;
4797   findDbgUsers(DbgUsers, I, &DbgVariableRecords);
4798   if (!DbgUsers.empty())
4799     tryToSinkInstructionDbgValues(I, InsertPos, SrcBlock, DestBlock, DbgUsers);
4800   if (!DbgVariableRecords.empty())
4801     tryToSinkInstructionDbgVariableRecords(I, InsertPos, SrcBlock, DestBlock,
4802                                            DbgVariableRecords);
4803 
4804   // PS: there are numerous flaws with this behaviour, not least that right now
4805   // assignments can be re-ordered past other assignments to the same variable
4806   // if they use different Values. Creating more undef assignements can never be
4807   // undone. And salvaging all users outside of this block can un-necessarily
4808   // alter the lifetime of the live-value that the variable refers to.
4809   // Some of these things can be resolved by tolerating debug use-before-defs in
4810   // LLVM-IR, however it depends on the instruction-referencing CodeGen backend
4811   // being used for more architectures.
4812 
4813   return true;
4814 }
4815 
4816 void InstCombinerImpl::tryToSinkInstructionDbgValues(
4817     Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
4818     BasicBlock *DestBlock, SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers) {
4819   // For all debug values in the destination block, the sunk instruction
4820   // will still be available, so they do not need to be dropped.
4821   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage;
4822   for (auto &DbgUser : DbgUsers)
4823     if (DbgUser->getParent() != DestBlock)
4824       DbgUsersToSalvage.push_back(DbgUser);
4825 
4826   // Process the sinking DbgUsersToSalvage in reverse order, as we only want
4827   // to clone the last appearing debug intrinsic for each given variable.
4828   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
4829   for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage)
4830     if (DVI->getParent() == SrcBlock)
4831       DbgUsersToSink.push_back(DVI);
4832   llvm::sort(DbgUsersToSink,
4833              [](auto *A, auto *B) { return B->comesBefore(A); });
4834 
4835   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
4836   SmallSet<DebugVariable, 4> SunkVariables;
4837   for (auto *User : DbgUsersToSink) {
4838     // A dbg.declare instruction should not be cloned, since there can only be
4839     // one per variable fragment. It should be left in the original place
4840     // because the sunk instruction is not an alloca (otherwise we could not be
4841     // here).
4842     if (isa<DbgDeclareInst>(User))
4843       continue;
4844 
4845     DebugVariable DbgUserVariable =
4846         DebugVariable(User->getVariable(), User->getExpression(),
4847                       User->getDebugLoc()->getInlinedAt());
4848 
4849     if (!SunkVariables.insert(DbgUserVariable).second)
4850       continue;
4851 
4852     // Leave dbg.assign intrinsics in their original positions and there should
4853     // be no need to insert a clone.
4854     if (isa<DbgAssignIntrinsic>(User))
4855       continue;
4856 
4857     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
4858     if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
4859       DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
4860     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
4861   }
4862 
4863   // Perform salvaging without the clones, then sink the clones.
4864   if (!DIIClones.empty()) {
4865     salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, {});
4866     // The clones are in reverse order of original appearance, reverse again to
4867     // maintain the original order.
4868     for (auto &DIIClone : llvm::reverse(DIIClones)) {
4869       DIIClone->insertBefore(&*InsertPos);
4870       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
4871     }
4872   }
4873 }
4874 
4875 void InstCombinerImpl::tryToSinkInstructionDbgVariableRecords(
4876     Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
4877     BasicBlock *DestBlock,
4878     SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) {
4879   // Implementation of tryToSinkInstructionDbgValues, but for the
4880   // DbgVariableRecord of variable assignments rather than dbg.values.
4881 
4882   // Fetch all DbgVariableRecords not already in the destination.
4883   SmallVector<DbgVariableRecord *, 2> DbgVariableRecordsToSalvage;
4884   for (auto &DVR : DbgVariableRecords)
4885     if (DVR->getParent() != DestBlock)
4886       DbgVariableRecordsToSalvage.push_back(DVR);
4887 
4888   // Fetch a second collection, of DbgVariableRecords in the source block that
4889   // we're going to sink.
4890   SmallVector<DbgVariableRecord *> DbgVariableRecordsToSink;
4891   for (DbgVariableRecord *DVR : DbgVariableRecordsToSalvage)
4892     if (DVR->getParent() == SrcBlock)
4893       DbgVariableRecordsToSink.push_back(DVR);
4894 
4895   // Sort DbgVariableRecords according to their position in the block. This is a
4896   // partial order: DbgVariableRecords attached to different instructions will
4897   // be ordered by the instruction order, but DbgVariableRecords attached to the
4898   // same instruction won't have an order.
4899   auto Order = [](DbgVariableRecord *A, DbgVariableRecord *B) -> bool {
4900     return B->getInstruction()->comesBefore(A->getInstruction());
4901   };
4902   llvm::stable_sort(DbgVariableRecordsToSink, Order);
4903 
4904   // If there are two assignments to the same variable attached to the same
4905   // instruction, the ordering between the two assignments is important. Scan
4906   // for this (rare) case and establish which is the last assignment.
4907   using InstVarPair = std::pair<const Instruction *, DebugVariable>;
4908   SmallDenseMap<InstVarPair, DbgVariableRecord *> FilterOutMap;
4909   if (DbgVariableRecordsToSink.size() > 1) {
4910     SmallDenseMap<InstVarPair, unsigned> CountMap;
4911     // Count how many assignments to each variable there is per instruction.
4912     for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
4913       DebugVariable DbgUserVariable =
4914           DebugVariable(DVR->getVariable(), DVR->getExpression(),
4915                         DVR->getDebugLoc()->getInlinedAt());
4916       CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
4917     }
4918 
4919     // If there are any instructions with two assignments, add them to the
4920     // FilterOutMap to record that they need extra filtering.
4921     SmallPtrSet<const Instruction *, 4> DupSet;
4922     for (auto It : CountMap) {
4923       if (It.second > 1) {
4924         FilterOutMap[It.first] = nullptr;
4925         DupSet.insert(It.first.first);
4926       }
4927     }
4928 
4929     // For all instruction/variable pairs needing extra filtering, find the
4930     // latest assignment.
4931     for (const Instruction *Inst : DupSet) {
4932       for (DbgVariableRecord &DVR :
4933            llvm::reverse(filterDbgVars(Inst->getDbgRecordRange()))) {
4934         DebugVariable DbgUserVariable =
4935             DebugVariable(DVR.getVariable(), DVR.getExpression(),
4936                           DVR.getDebugLoc()->getInlinedAt());
4937         auto FilterIt =
4938             FilterOutMap.find(std::make_pair(Inst, DbgUserVariable));
4939         if (FilterIt == FilterOutMap.end())
4940           continue;
4941         if (FilterIt->second != nullptr)
4942           continue;
4943         FilterIt->second = &DVR;
4944       }
4945     }
4946   }
4947 
4948   // Perform cloning of the DbgVariableRecords that we plan on sinking, filter
4949   // out any duplicate assignments identified above.
4950   SmallVector<DbgVariableRecord *, 2> DVRClones;
4951   SmallSet<DebugVariable, 4> SunkVariables;
4952   for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
4953     if (DVR->Type == DbgVariableRecord::LocationType::Declare)
4954       continue;
4955 
4956     DebugVariable DbgUserVariable =
4957         DebugVariable(DVR->getVariable(), DVR->getExpression(),
4958                       DVR->getDebugLoc()->getInlinedAt());
4959 
4960     // For any variable where there were multiple assignments in the same place,
4961     // ignore all but the last assignment.
4962     if (!FilterOutMap.empty()) {
4963       InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
4964       auto It = FilterOutMap.find(IVP);
4965 
4966       // Filter out.
4967       if (It != FilterOutMap.end() && It->second != DVR)
4968         continue;
4969     }
4970 
4971     if (!SunkVariables.insert(DbgUserVariable).second)
4972       continue;
4973 
4974     if (DVR->isDbgAssign())
4975       continue;
4976 
4977     DVRClones.emplace_back(DVR->clone());
4978     LLVM_DEBUG(dbgs() << "CLONE: " << *DVRClones.back() << '\n');
4979   }
4980 
4981   // Perform salvaging without the clones, then sink the clones.
4982   if (DVRClones.empty())
4983     return;
4984 
4985   salvageDebugInfoForDbgValues(*I, {}, DbgVariableRecordsToSalvage);
4986 
4987   // The clones are in reverse order of original appearance. Assert that the
4988   // head bit is set on the iterator as we _should_ have received it via
4989   // getFirstInsertionPt. Inserting like this will reverse the clone order as
4990   // we'll repeatedly insert at the head, such as:
4991   //   DVR-3 (third insertion goes here)
4992   //   DVR-2 (second insertion goes here)
4993   //   DVR-1 (first insertion goes here)
4994   //   Any-Prior-DVRs
4995   //   InsertPtInst
4996   assert(InsertPos.getHeadBit());
4997   for (DbgVariableRecord *DVRClone : DVRClones) {
4998     InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
4999     LLVM_DEBUG(dbgs() << "SINK: " << *DVRClone << '\n');
5000   }
5001 }
5002 
5003 bool InstCombinerImpl::run() {
5004   while (!Worklist.isEmpty()) {
5005     // Walk deferred instructions in reverse order, and push them to the
5006     // worklist, which means they'll end up popped from the worklist in-order.
5007     while (Instruction *I = Worklist.popDeferred()) {
5008       // Check to see if we can DCE the instruction. We do this already here to
5009       // reduce the number of uses and thus allow other folds to trigger.
5010       // Note that eraseInstFromFunction() may push additional instructions on
5011       // the deferred worklist, so this will DCE whole instruction chains.
5012       if (isInstructionTriviallyDead(I, &TLI)) {
5013         eraseInstFromFunction(*I);
5014         ++NumDeadInst;
5015         continue;
5016       }
5017 
5018       Worklist.push(I);
5019     }
5020 
5021     Instruction *I = Worklist.removeOne();
5022     if (I == nullptr) continue;  // skip null values.
5023 
5024     // Check to see if we can DCE the instruction.
5025     if (isInstructionTriviallyDead(I, &TLI)) {
5026       eraseInstFromFunction(*I);
5027       ++NumDeadInst;
5028       continue;
5029     }
5030 
5031     if (!DebugCounter::shouldExecute(VisitCounter))
5032       continue;
5033 
5034     // See if we can trivially sink this instruction to its user if we can
5035     // prove that the successor is not executed more frequently than our block.
5036     // Return the UserBlock if successful.
5037     auto getOptionalSinkBlockForInst =
5038         [this](Instruction *I) -> std::optional<BasicBlock *> {
5039       if (!EnableCodeSinking)
5040         return std::nullopt;
5041 
5042       BasicBlock *BB = I->getParent();
5043       BasicBlock *UserParent = nullptr;
5044       unsigned NumUsers = 0;
5045 
5046       for (Use &U : I->uses()) {
5047         User *User = U.getUser();
5048         if (User->isDroppable())
5049           continue;
5050         if (NumUsers > MaxSinkNumUsers)
5051           return std::nullopt;
5052 
5053         Instruction *UserInst = cast<Instruction>(User);
5054         // Special handling for Phi nodes - get the block the use occurs in.
5055         BasicBlock *UserBB = UserInst->getParent();
5056         if (PHINode *PN = dyn_cast<PHINode>(UserInst))
5057           UserBB = PN->getIncomingBlock(U);
5058         // Bail out if we have uses in different blocks. We don't do any
5059         // sophisticated analysis (i.e finding NearestCommonDominator of these
5060         // use blocks).
5061         if (UserParent && UserParent != UserBB)
5062           return std::nullopt;
5063         UserParent = UserBB;
5064 
5065         // Make sure these checks are done only once, naturally we do the checks
5066         // the first time we get the userparent, this will save compile time.
5067         if (NumUsers == 0) {
5068           // Try sinking to another block. If that block is unreachable, then do
5069           // not bother. SimplifyCFG should handle it.
5070           if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
5071             return std::nullopt;
5072 
5073           auto *Term = UserParent->getTerminator();
5074           // See if the user is one of our successors that has only one
5075           // predecessor, so that we don't have to split the critical edge.
5076           // Another option where we can sink is a block that ends with a
5077           // terminator that does not pass control to other block (such as
5078           // return or unreachable or resume). In this case:
5079           //   - I dominates the User (by SSA form);
5080           //   - the User will be executed at most once.
5081           // So sinking I down to User is always profitable or neutral.
5082           if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
5083             return std::nullopt;
5084 
5085           assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
5086         }
5087 
5088         NumUsers++;
5089       }
5090 
5091       // No user or only has droppable users.
5092       if (!UserParent)
5093         return std::nullopt;
5094 
5095       return UserParent;
5096     };
5097 
5098     auto OptBB = getOptionalSinkBlockForInst(I);
5099     if (OptBB) {
5100       auto *UserParent = *OptBB;
5101       // Okay, the CFG is simple enough, try to sink this instruction.
5102       if (tryToSinkInstruction(I, UserParent)) {
5103         LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
5104         MadeIRChange = true;
5105         // We'll add uses of the sunk instruction below, but since
5106         // sinking can expose opportunities for it's *operands* add
5107         // them to the worklist
5108         for (Use &U : I->operands())
5109           if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
5110             Worklist.push(OpI);
5111       }
5112     }
5113 
5114     // Now that we have an instruction, try combining it to simplify it.
5115     Builder.SetInsertPoint(I);
5116     Builder.CollectMetadataToCopy(
5117         I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5118 
5119 #ifndef NDEBUG
5120     std::string OrigI;
5121 #endif
5122     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS););
5123     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
5124 
5125     if (Instruction *Result = visit(*I)) {
5126       ++NumCombined;
5127       // Should we replace the old instruction with a new one?
5128       if (Result != I) {
5129         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
5130                           << "    New = " << *Result << '\n');
5131 
5132         Result->copyMetadata(*I,
5133                              {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5134         // Everything uses the new instruction now.
5135         I->replaceAllUsesWith(Result);
5136 
5137         // Move the name to the new instruction first.
5138         Result->takeName(I);
5139 
5140         // Insert the new instruction into the basic block...
5141         BasicBlock *InstParent = I->getParent();
5142         BasicBlock::iterator InsertPos = I->getIterator();
5143 
5144         // Are we replace a PHI with something that isn't a PHI, or vice versa?
5145         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
5146           // We need to fix up the insertion point.
5147           if (isa<PHINode>(I)) // PHI -> Non-PHI
5148             InsertPos = InstParent->getFirstInsertionPt();
5149           else // Non-PHI -> PHI
5150             InsertPos = InstParent->getFirstNonPHIIt();
5151         }
5152 
5153         Result->insertInto(InstParent, InsertPos);
5154 
5155         // Push the new instruction and any users onto the worklist.
5156         Worklist.pushUsersToWorkList(*Result);
5157         Worklist.push(Result);
5158 
5159         eraseInstFromFunction(*I);
5160       } else {
5161         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
5162                           << "    New = " << *I << '\n');
5163 
5164         // If the instruction was modified, it's possible that it is now dead.
5165         // if so, remove it.
5166         if (isInstructionTriviallyDead(I, &TLI)) {
5167           eraseInstFromFunction(*I);
5168         } else {
5169           Worklist.pushUsersToWorkList(*I);
5170           Worklist.push(I);
5171         }
5172       }
5173       MadeIRChange = true;
5174     }
5175   }
5176 
5177   Worklist.zap();
5178   return MadeIRChange;
5179 }
5180 
5181 // Track the scopes used by !alias.scope and !noalias. In a function, a
5182 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
5183 // by both sets. If not, the declaration of the scope can be safely omitted.
5184 // The MDNode of the scope can be omitted as well for the instructions that are
5185 // part of this function. We do not do that at this point, as this might become
5186 // too time consuming to do.
5187 class AliasScopeTracker {
5188   SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
5189   SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
5190 
5191 public:
5192   void analyse(Instruction *I) {
5193     // This seems to be faster than checking 'mayReadOrWriteMemory()'.
5194     if (!I->hasMetadataOtherThanDebugLoc())
5195       return;
5196 
5197     auto Track = [](Metadata *ScopeList, auto &Container) {
5198       const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
5199       if (!MDScopeList || !Container.insert(MDScopeList).second)
5200         return;
5201       for (const auto &MDOperand : MDScopeList->operands())
5202         if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
5203           Container.insert(MDScope);
5204     };
5205 
5206     Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
5207     Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
5208   }
5209 
5210   bool isNoAliasScopeDeclDead(Instruction *Inst) {
5211     NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
5212     if (!Decl)
5213       return false;
5214 
5215     assert(Decl->use_empty() &&
5216            "llvm.experimental.noalias.scope.decl in use ?");
5217     const MDNode *MDSL = Decl->getScopeList();
5218     assert(MDSL->getNumOperands() == 1 &&
5219            "llvm.experimental.noalias.scope should refer to a single scope");
5220     auto &MDOperand = MDSL->getOperand(0);
5221     if (auto *MD = dyn_cast<MDNode>(MDOperand))
5222       return !UsedAliasScopesAndLists.contains(MD) ||
5223              !UsedNoAliasScopesAndLists.contains(MD);
5224 
5225     // Not an MDNode ? throw away.
5226     return true;
5227   }
5228 };
5229 
5230 /// Populate the IC worklist from a function, by walking it in reverse
5231 /// post-order and adding all reachable code to the worklist.
5232 ///
5233 /// This has a couple of tricks to make the code faster and more powerful.  In
5234 /// particular, we constant fold and DCE instructions as we go, to avoid adding
5235 /// them to the worklist (this significantly speeds up instcombine on code where
5236 /// many instructions are dead or constant).  Additionally, if we find a branch
5237 /// whose condition is a known constant, we only visit the reachable successors.
5238 bool InstCombinerImpl::prepareWorklist(
5239     Function &F, ReversePostOrderTraversal<BasicBlock *> &RPOT) {
5240   bool MadeIRChange = false;
5241   SmallPtrSet<BasicBlock *, 32> LiveBlocks;
5242   SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
5243   DenseMap<Constant *, Constant *> FoldedConstants;
5244   AliasScopeTracker SeenAliasScopes;
5245 
5246   auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) {
5247     for (BasicBlock *Succ : successors(BB))
5248       if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second)
5249         for (PHINode &PN : Succ->phis())
5250           for (Use &U : PN.incoming_values())
5251             if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
5252               U.set(PoisonValue::get(PN.getType()));
5253               MadeIRChange = true;
5254             }
5255   };
5256 
5257   for (BasicBlock *BB : RPOT) {
5258     if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) {
5259           return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
5260         })) {
5261       HandleOnlyLiveSuccessor(BB, nullptr);
5262       continue;
5263     }
5264     LiveBlocks.insert(BB);
5265 
5266     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
5267       // ConstantProp instruction if trivially constant.
5268       if (!Inst.use_empty() &&
5269           (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
5270         if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) {
5271           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
5272                             << '\n');
5273           Inst.replaceAllUsesWith(C);
5274           ++NumConstProp;
5275           if (isInstructionTriviallyDead(&Inst, &TLI))
5276             Inst.eraseFromParent();
5277           MadeIRChange = true;
5278           continue;
5279         }
5280 
5281       // See if we can constant fold its operands.
5282       for (Use &U : Inst.operands()) {
5283         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
5284           continue;
5285 
5286         auto *C = cast<Constant>(U);
5287         Constant *&FoldRes = FoldedConstants[C];
5288         if (!FoldRes)
5289           FoldRes = ConstantFoldConstant(C, DL, &TLI);
5290 
5291         if (FoldRes != C) {
5292           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
5293                             << "\n    Old = " << *C
5294                             << "\n    New = " << *FoldRes << '\n');
5295           U = FoldRes;
5296           MadeIRChange = true;
5297         }
5298       }
5299 
5300       // Skip processing debug and pseudo intrinsics in InstCombine. Processing
5301       // these call instructions consumes non-trivial amount of time and
5302       // provides no value for the optimization.
5303       if (!Inst.isDebugOrPseudoInst()) {
5304         InstrsForInstructionWorklist.push_back(&Inst);
5305         SeenAliasScopes.analyse(&Inst);
5306       }
5307     }
5308 
5309     // If this is a branch or switch on a constant, mark only the single
5310     // live successor. Otherwise assume all successors are live.
5311     Instruction *TI = BB->getTerminator();
5312     if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) {
5313       if (isa<UndefValue>(BI->getCondition())) {
5314         // Branch on undef is UB.
5315         HandleOnlyLiveSuccessor(BB, nullptr);
5316         continue;
5317       }
5318       if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
5319         bool CondVal = Cond->getZExtValue();
5320         HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
5321         continue;
5322       }
5323     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
5324       if (isa<UndefValue>(SI->getCondition())) {
5325         // Switch on undef is UB.
5326         HandleOnlyLiveSuccessor(BB, nullptr);
5327         continue;
5328       }
5329       if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
5330         HandleOnlyLiveSuccessor(BB,
5331                                 SI->findCaseValue(Cond)->getCaseSuccessor());
5332         continue;
5333       }
5334     }
5335   }
5336 
5337   // Remove instructions inside unreachable blocks. This prevents the
5338   // instcombine code from having to deal with some bad special cases, and
5339   // reduces use counts of instructions.
5340   for (BasicBlock &BB : F) {
5341     if (LiveBlocks.count(&BB))
5342       continue;
5343 
5344     unsigned NumDeadInstInBB;
5345     unsigned NumDeadDbgInstInBB;
5346     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
5347         removeAllNonTerminatorAndEHPadInstructions(&BB);
5348 
5349     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
5350     NumDeadInst += NumDeadInstInBB;
5351   }
5352 
5353   // Once we've found all of the instructions to add to instcombine's worklist,
5354   // add them in reverse order.  This way instcombine will visit from the top
5355   // of the function down.  This jives well with the way that it adds all uses
5356   // of instructions to the worklist after doing a transformation, thus avoiding
5357   // some N^2 behavior in pathological cases.
5358   Worklist.reserve(InstrsForInstructionWorklist.size());
5359   for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
5360     // DCE instruction if trivially dead. As we iterate in reverse program
5361     // order here, we will clean up whole chains of dead instructions.
5362     if (isInstructionTriviallyDead(Inst, &TLI) ||
5363         SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
5364       ++NumDeadInst;
5365       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
5366       salvageDebugInfo(*Inst);
5367       Inst->eraseFromParent();
5368       MadeIRChange = true;
5369       continue;
5370     }
5371 
5372     Worklist.push(Inst);
5373   }
5374 
5375   return MadeIRChange;
5376 }
5377 
5378 static bool combineInstructionsOverFunction(
5379     Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
5380     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
5381     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
5382     BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, LoopInfo *LI,
5383     const InstCombineOptions &Opts) {
5384   auto &DL = F.getDataLayout();
5385 
5386   /// Builder - This is an IRBuilder that automatically inserts new
5387   /// instructions into the worklist when they are created.
5388   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
5389       F.getContext(), TargetFolder(DL),
5390       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
5391         Worklist.add(I);
5392         if (auto *Assume = dyn_cast<AssumeInst>(I))
5393           AC.registerAssumption(Assume);
5394       }));
5395 
5396   ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front());
5397 
5398   // Lower dbg.declare intrinsics otherwise their value may be clobbered
5399   // by instcombiner.
5400   bool MadeIRChange = false;
5401   if (ShouldLowerDbgDeclare)
5402     MadeIRChange = LowerDbgDeclare(F);
5403 
5404   // Iterate while there is work to do.
5405   unsigned Iteration = 0;
5406   while (true) {
5407     ++Iteration;
5408 
5409     if (Iteration > Opts.MaxIterations && !Opts.VerifyFixpoint) {
5410       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations
5411                         << " on " << F.getName()
5412                         << " reached; stopping without verifying fixpoint\n");
5413       break;
5414     }
5415 
5416     ++NumWorklistIterations;
5417     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
5418                       << F.getName() << "\n");
5419 
5420     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
5421                         ORE, BFI, BPI, PSI, DL, LI);
5422     IC.MaxArraySizeForCombine = MaxArraySize;
5423     bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT);
5424     MadeChangeInThisIteration |= IC.run();
5425     if (!MadeChangeInThisIteration)
5426       break;
5427 
5428     MadeIRChange = true;
5429     if (Iteration > Opts.MaxIterations) {
5430       report_fatal_error(
5431           "Instruction Combining did not reach a fixpoint after " +
5432               Twine(Opts.MaxIterations) + " iterations",
5433           /*GenCrashDiag=*/false);
5434     }
5435   }
5436 
5437   if (Iteration == 1)
5438     ++NumOneIteration;
5439   else if (Iteration == 2)
5440     ++NumTwoIterations;
5441   else if (Iteration == 3)
5442     ++NumThreeIterations;
5443   else
5444     ++NumFourOrMoreIterations;
5445 
5446   return MadeIRChange;
5447 }
5448 
5449 InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {}
5450 
5451 void InstCombinePass::printPipeline(
5452     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
5453   static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline(
5454       OS, MapClassName2PassName);
5455   OS << '<';
5456   OS << "max-iterations=" << Options.MaxIterations << ";";
5457   OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;";
5458   OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint";
5459   OS << '>';
5460 }
5461 
5462 PreservedAnalyses InstCombinePass::run(Function &F,
5463                                        FunctionAnalysisManager &AM) {
5464   auto &AC = AM.getResult<AssumptionAnalysis>(F);
5465   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
5466   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
5467   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5468   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
5469 
5470   // TODO: Only use LoopInfo when the option is set. This requires that the
5471   //       callers in the pass pipeline explicitly set the option.
5472   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
5473   if (!LI && Options.UseLoopInfo)
5474     LI = &AM.getResult<LoopAnalysis>(F);
5475 
5476   auto *AA = &AM.getResult<AAManager>(F);
5477   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
5478   ProfileSummaryInfo *PSI =
5479       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
5480   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
5481       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
5482   auto *BPI = AM.getCachedResult<BranchProbabilityAnalysis>(F);
5483 
5484   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
5485                                        BFI, BPI, PSI, LI, Options))
5486     // No changes, all analyses are preserved.
5487     return PreservedAnalyses::all();
5488 
5489   // Mark all the analyses that instcombine updates as preserved.
5490   PreservedAnalyses PA;
5491   PA.preserveSet<CFGAnalyses>();
5492   return PA;
5493 }
5494 
5495 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
5496   AU.setPreservesCFG();
5497   AU.addRequired<AAResultsWrapperPass>();
5498   AU.addRequired<AssumptionCacheTracker>();
5499   AU.addRequired<TargetLibraryInfoWrapperPass>();
5500   AU.addRequired<TargetTransformInfoWrapperPass>();
5501   AU.addRequired<DominatorTreeWrapperPass>();
5502   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5503   AU.addPreserved<DominatorTreeWrapperPass>();
5504   AU.addPreserved<AAResultsWrapperPass>();
5505   AU.addPreserved<BasicAAWrapperPass>();
5506   AU.addPreserved<GlobalsAAWrapperPass>();
5507   AU.addRequired<ProfileSummaryInfoWrapperPass>();
5508   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
5509 }
5510 
5511 bool InstructionCombiningPass::runOnFunction(Function &F) {
5512   if (skipFunction(F))
5513     return false;
5514 
5515   // Required analyses.
5516   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5517   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5518   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
5519   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5520   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5521   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5522 
5523   // Optional analyses.
5524   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
5525   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
5526   ProfileSummaryInfo *PSI =
5527       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
5528   BlockFrequencyInfo *BFI =
5529       (PSI && PSI->hasProfileSummary()) ?
5530       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
5531       nullptr;
5532   BranchProbabilityInfo *BPI = nullptr;
5533   if (auto *WrapperPass =
5534           getAnalysisIfAvailable<BranchProbabilityInfoWrapperPass>())
5535     BPI = &WrapperPass->getBPI();
5536 
5537   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
5538                                          BFI, BPI, PSI, LI,
5539                                          InstCombineOptions());
5540 }
5541 
5542 char InstructionCombiningPass::ID = 0;
5543 
5544 InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) {
5545   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
5546 }
5547 
5548 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
5549                       "Combine redundant instructions", false, false)
5550 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
5551 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
5552 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5553 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5554 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
5555 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
5556 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
5557 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
5558 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
5559 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
5560                     "Combine redundant instructions", false, false)
5561 
5562 // Initialization Routines
5563 void llvm::initializeInstCombine(PassRegistry &Registry) {
5564   initializeInstructionCombiningPassPass(Registry);
5565 }
5566 
5567 FunctionPass *llvm::createInstructionCombiningPass() {
5568   return new InstructionCombiningPass();
5569 }
5570