1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DIBuilder.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/LegacyPassManager.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/Use.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/IR/ValueHandle.h" 89 #include "llvm/InitializePasses.h" 90 #include "llvm/Pass.h" 91 #include "llvm/Support/CBindingWrapping.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/DebugCounter.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/KnownBits.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/InstCombine/InstCombine.h" 101 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 110 using namespace llvm; 111 using namespace llvm::PatternMatch; 112 113 #define DEBUG_TYPE "instcombine" 114 115 STATISTIC(NumCombined , "Number of insts combined"); 116 STATISTIC(NumConstProp, "Number of constant folds"); 117 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 118 STATISTIC(NumSunkInst , "Number of instructions sunk"); 119 STATISTIC(NumExpand, "Number of expansions"); 120 STATISTIC(NumFactor , "Number of factorizations"); 121 STATISTIC(NumReassoc , "Number of reassociations"); 122 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 123 "Controls which instructions are visited"); 124 125 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 126 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 127 128 static cl::opt<bool> 129 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 130 cl::init(true)); 131 132 static cl::opt<bool> 133 EnableExpensiveCombines("expensive-combines", 134 cl::desc("Enable expensive instruction combines")); 135 136 static cl::opt<unsigned> LimitMaxIterations( 137 "instcombine-max-iterations", 138 cl::desc("Limit the maximum number of instruction combining iterations"), 139 cl::init(InstCombineDefaultMaxIterations)); 140 141 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 142 "instcombine-infinite-loop-threshold", 143 cl::desc("Number of instruction combining iterations considered an " 144 "infinite loop"), 145 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 146 147 static cl::opt<unsigned> 148 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 149 cl::desc("Maximum array size considered when doing a combine")); 150 151 // FIXME: Remove this flag when it is no longer necessary to convert 152 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 153 // increases variable availability at the cost of accuracy. Variables that 154 // cannot be promoted by mem2reg or SROA will be described as living in memory 155 // for their entire lifetime. However, passes like DSE and instcombine can 156 // delete stores to the alloca, leading to misleading and inaccurate debug 157 // information. This flag can be removed when those passes are fixed. 158 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 159 cl::Hidden, cl::init(true)); 160 161 Value *InstCombiner::EmitGEPOffset(User *GEP) { 162 return llvm::EmitGEPOffset(&Builder, DL, GEP); 163 } 164 165 /// Return true if it is desirable to convert an integer computation from a 166 /// given bit width to a new bit width. 167 /// We don't want to convert from a legal to an illegal type or from a smaller 168 /// to a larger illegal type. A width of '1' is always treated as a legal type 169 /// because i1 is a fundamental type in IR, and there are many specialized 170 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 171 /// legal to convert to, in order to open up more combining opportunities. 172 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 173 /// from frontend languages. 174 bool InstCombiner::shouldChangeType(unsigned FromWidth, 175 unsigned ToWidth) const { 176 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 177 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 178 179 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 180 // shrink types, to prevent infinite loops. 181 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 182 return true; 183 184 // If this is a legal integer from type, and the result would be an illegal 185 // type, don't do the transformation. 186 if (FromLegal && !ToLegal) 187 return false; 188 189 // Otherwise, if both are illegal, do not increase the size of the result. We 190 // do allow things like i160 -> i64, but not i64 -> i160. 191 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 192 return false; 193 194 return true; 195 } 196 197 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 198 /// We don't want to convert from a legal to an illegal type or from a smaller 199 /// to a larger illegal type. i1 is always treated as a legal type because it is 200 /// a fundamental type in IR, and there are many specialized optimizations for 201 /// i1 types. 202 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 203 // TODO: This could be extended to allow vectors. Datalayout changes might be 204 // needed to properly support that. 205 if (!From->isIntegerTy() || !To->isIntegerTy()) 206 return false; 207 208 unsigned FromWidth = From->getPrimitiveSizeInBits(); 209 unsigned ToWidth = To->getPrimitiveSizeInBits(); 210 return shouldChangeType(FromWidth, ToWidth); 211 } 212 213 // Return true, if No Signed Wrap should be maintained for I. 214 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 215 // where both B and C should be ConstantInts, results in a constant that does 216 // not overflow. This function only handles the Add and Sub opcodes. For 217 // all other opcodes, the function conservatively returns false. 218 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 219 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 220 if (!OBO || !OBO->hasNoSignedWrap()) 221 return false; 222 223 // We reason about Add and Sub Only. 224 Instruction::BinaryOps Opcode = I.getOpcode(); 225 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 226 return false; 227 228 const APInt *BVal, *CVal; 229 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 230 return false; 231 232 bool Overflow = false; 233 if (Opcode == Instruction::Add) 234 (void)BVal->sadd_ov(*CVal, Overflow); 235 else 236 (void)BVal->ssub_ov(*CVal, Overflow); 237 238 return !Overflow; 239 } 240 241 static bool hasNoUnsignedWrap(BinaryOperator &I) { 242 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 243 return OBO && OBO->hasNoUnsignedWrap(); 244 } 245 246 static bool hasNoSignedWrap(BinaryOperator &I) { 247 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 248 return OBO && OBO->hasNoSignedWrap(); 249 } 250 251 /// Conservatively clears subclassOptionalData after a reassociation or 252 /// commutation. We preserve fast-math flags when applicable as they can be 253 /// preserved. 254 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 255 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 256 if (!FPMO) { 257 I.clearSubclassOptionalData(); 258 return; 259 } 260 261 FastMathFlags FMF = I.getFastMathFlags(); 262 I.clearSubclassOptionalData(); 263 I.setFastMathFlags(FMF); 264 } 265 266 /// Combine constant operands of associative operations either before or after a 267 /// cast to eliminate one of the associative operations: 268 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 269 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 270 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 271 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 272 if (!Cast || !Cast->hasOneUse()) 273 return false; 274 275 // TODO: Enhance logic for other casts and remove this check. 276 auto CastOpcode = Cast->getOpcode(); 277 if (CastOpcode != Instruction::ZExt) 278 return false; 279 280 // TODO: Enhance logic for other BinOps and remove this check. 281 if (!BinOp1->isBitwiseLogicOp()) 282 return false; 283 284 auto AssocOpcode = BinOp1->getOpcode(); 285 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 286 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 287 return false; 288 289 Constant *C1, *C2; 290 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 291 !match(BinOp2->getOperand(1), m_Constant(C2))) 292 return false; 293 294 // TODO: This assumes a zext cast. 295 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 296 // to the destination type might lose bits. 297 298 // Fold the constants together in the destination type: 299 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 300 Type *DestTy = C1->getType(); 301 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 302 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 303 Cast->setOperand(0, BinOp2->getOperand(0)); 304 BinOp1->setOperand(1, FoldedC); 305 return true; 306 } 307 308 /// This performs a few simplifications for operators that are associative or 309 /// commutative: 310 /// 311 /// Commutative operators: 312 /// 313 /// 1. Order operands such that they are listed from right (least complex) to 314 /// left (most complex). This puts constants before unary operators before 315 /// binary operators. 316 /// 317 /// Associative operators: 318 /// 319 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 320 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 321 /// 322 /// Associative and commutative operators: 323 /// 324 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 325 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 326 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 327 /// if C1 and C2 are constants. 328 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 329 Instruction::BinaryOps Opcode = I.getOpcode(); 330 bool Changed = false; 331 332 do { 333 // Order operands such that they are listed from right (least complex) to 334 // left (most complex). This puts constants before unary operators before 335 // binary operators. 336 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 337 getComplexity(I.getOperand(1))) 338 Changed = !I.swapOperands(); 339 340 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 341 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 342 343 if (I.isAssociative()) { 344 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 345 if (Op0 && Op0->getOpcode() == Opcode) { 346 Value *A = Op0->getOperand(0); 347 Value *B = Op0->getOperand(1); 348 Value *C = I.getOperand(1); 349 350 // Does "B op C" simplify? 351 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 352 // It simplifies to V. Form "A op V". 353 I.setOperand(0, A); 354 I.setOperand(1, V); 355 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 356 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 357 358 // Conservatively clear all optional flags since they may not be 359 // preserved by the reassociation. Reset nsw/nuw based on the above 360 // analysis. 361 ClearSubclassDataAfterReassociation(I); 362 363 // Note: this is only valid because SimplifyBinOp doesn't look at 364 // the operands to Op0. 365 if (IsNUW) 366 I.setHasNoUnsignedWrap(true); 367 368 if (IsNSW) 369 I.setHasNoSignedWrap(true); 370 371 Changed = true; 372 ++NumReassoc; 373 continue; 374 } 375 } 376 377 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 378 if (Op1 && Op1->getOpcode() == Opcode) { 379 Value *A = I.getOperand(0); 380 Value *B = Op1->getOperand(0); 381 Value *C = Op1->getOperand(1); 382 383 // Does "A op B" simplify? 384 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 385 // It simplifies to V. Form "V op C". 386 I.setOperand(0, V); 387 I.setOperand(1, C); 388 // Conservatively clear the optional flags, since they may not be 389 // preserved by the reassociation. 390 ClearSubclassDataAfterReassociation(I); 391 Changed = true; 392 ++NumReassoc; 393 continue; 394 } 395 } 396 } 397 398 if (I.isAssociative() && I.isCommutative()) { 399 if (simplifyAssocCastAssoc(&I)) { 400 Changed = true; 401 ++NumReassoc; 402 continue; 403 } 404 405 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 406 if (Op0 && Op0->getOpcode() == Opcode) { 407 Value *A = Op0->getOperand(0); 408 Value *B = Op0->getOperand(1); 409 Value *C = I.getOperand(1); 410 411 // Does "C op A" simplify? 412 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 413 // It simplifies to V. Form "V op B". 414 I.setOperand(0, V); 415 I.setOperand(1, B); 416 // Conservatively clear the optional flags, since they may not be 417 // preserved by the reassociation. 418 ClearSubclassDataAfterReassociation(I); 419 Changed = true; 420 ++NumReassoc; 421 continue; 422 } 423 } 424 425 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 426 if (Op1 && Op1->getOpcode() == Opcode) { 427 Value *A = I.getOperand(0); 428 Value *B = Op1->getOperand(0); 429 Value *C = Op1->getOperand(1); 430 431 // Does "C op A" simplify? 432 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 433 // It simplifies to V. Form "B op V". 434 I.setOperand(0, B); 435 I.setOperand(1, V); 436 // Conservatively clear the optional flags, since they may not be 437 // preserved by the reassociation. 438 ClearSubclassDataAfterReassociation(I); 439 Changed = true; 440 ++NumReassoc; 441 continue; 442 } 443 } 444 445 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 446 // if C1 and C2 are constants. 447 Value *A, *B; 448 Constant *C1, *C2; 449 if (Op0 && Op1 && 450 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 451 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 452 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 453 bool IsNUW = hasNoUnsignedWrap(I) && 454 hasNoUnsignedWrap(*Op0) && 455 hasNoUnsignedWrap(*Op1); 456 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 457 BinaryOperator::CreateNUW(Opcode, A, B) : 458 BinaryOperator::Create(Opcode, A, B); 459 460 if (isa<FPMathOperator>(NewBO)) { 461 FastMathFlags Flags = I.getFastMathFlags(); 462 Flags &= Op0->getFastMathFlags(); 463 Flags &= Op1->getFastMathFlags(); 464 NewBO->setFastMathFlags(Flags); 465 } 466 InsertNewInstWith(NewBO, I); 467 NewBO->takeName(Op1); 468 I.setOperand(0, NewBO); 469 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); 470 // Conservatively clear the optional flags, since they may not be 471 // preserved by the reassociation. 472 ClearSubclassDataAfterReassociation(I); 473 if (IsNUW) 474 I.setHasNoUnsignedWrap(true); 475 476 Changed = true; 477 continue; 478 } 479 } 480 481 // No further simplifications. 482 return Changed; 483 } while (true); 484 } 485 486 /// Return whether "X LOp (Y ROp Z)" is always equal to 487 /// "(X LOp Y) ROp (X LOp Z)". 488 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 489 Instruction::BinaryOps ROp) { 490 // X & (Y | Z) <--> (X & Y) | (X & Z) 491 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 492 if (LOp == Instruction::And) 493 return ROp == Instruction::Or || ROp == Instruction::Xor; 494 495 // X | (Y & Z) <--> (X | Y) & (X | Z) 496 if (LOp == Instruction::Or) 497 return ROp == Instruction::And; 498 499 // X * (Y + Z) <--> (X * Y) + (X * Z) 500 // X * (Y - Z) <--> (X * Y) - (X * Z) 501 if (LOp == Instruction::Mul) 502 return ROp == Instruction::Add || ROp == Instruction::Sub; 503 504 return false; 505 } 506 507 /// Return whether "(X LOp Y) ROp Z" is always equal to 508 /// "(X ROp Z) LOp (Y ROp Z)". 509 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 510 Instruction::BinaryOps ROp) { 511 if (Instruction::isCommutative(ROp)) 512 return leftDistributesOverRight(ROp, LOp); 513 514 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 515 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 516 517 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 518 // but this requires knowing that the addition does not overflow and other 519 // such subtleties. 520 } 521 522 /// This function returns identity value for given opcode, which can be used to 523 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 524 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 525 if (isa<Constant>(V)) 526 return nullptr; 527 528 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 529 } 530 531 /// This function predicates factorization using distributive laws. By default, 532 /// it just returns the 'Op' inputs. But for special-cases like 533 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 534 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 535 /// allow more factorization opportunities. 536 static Instruction::BinaryOps 537 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 538 Value *&LHS, Value *&RHS) { 539 assert(Op && "Expected a binary operator"); 540 LHS = Op->getOperand(0); 541 RHS = Op->getOperand(1); 542 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 543 Constant *C; 544 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 545 // X << C --> X * (1 << C) 546 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 547 return Instruction::Mul; 548 } 549 // TODO: We can add other conversions e.g. shr => div etc. 550 } 551 return Op->getOpcode(); 552 } 553 554 /// This tries to simplify binary operations by factorizing out common terms 555 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 556 Value *InstCombiner::tryFactorization(BinaryOperator &I, 557 Instruction::BinaryOps InnerOpcode, 558 Value *A, Value *B, Value *C, Value *D) { 559 assert(A && B && C && D && "All values must be provided"); 560 561 Value *V = nullptr; 562 Value *SimplifiedInst = nullptr; 563 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 564 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 565 566 // Does "X op' Y" always equal "Y op' X"? 567 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 568 569 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 570 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 571 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 572 // commutative case, "(A op' B) op (C op' A)"? 573 if (A == C || (InnerCommutative && A == D)) { 574 if (A != C) 575 std::swap(C, D); 576 // Consider forming "A op' (B op D)". 577 // If "B op D" simplifies then it can be formed with no cost. 578 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 579 // If "B op D" doesn't simplify then only go on if both of the existing 580 // operations "A op' B" and "C op' D" will be zapped as no longer used. 581 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 582 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 583 if (V) { 584 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 585 } 586 } 587 588 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 589 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 590 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 591 // commutative case, "(A op' B) op (B op' D)"? 592 if (B == D || (InnerCommutative && B == C)) { 593 if (B != D) 594 std::swap(C, D); 595 // Consider forming "(A op C) op' B". 596 // If "A op C" simplifies then it can be formed with no cost. 597 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 598 599 // If "A op C" doesn't simplify then only go on if both of the existing 600 // operations "A op' B" and "C op' D" will be zapped as no longer used. 601 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 602 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 603 if (V) { 604 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 605 } 606 } 607 608 if (SimplifiedInst) { 609 ++NumFactor; 610 SimplifiedInst->takeName(&I); 611 612 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 613 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 614 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 615 bool HasNSW = false; 616 bool HasNUW = false; 617 if (isa<OverflowingBinaryOperator>(&I)) { 618 HasNSW = I.hasNoSignedWrap(); 619 HasNUW = I.hasNoUnsignedWrap(); 620 } 621 622 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 623 HasNSW &= LOBO->hasNoSignedWrap(); 624 HasNUW &= LOBO->hasNoUnsignedWrap(); 625 } 626 627 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 628 HasNSW &= ROBO->hasNoSignedWrap(); 629 HasNUW &= ROBO->hasNoUnsignedWrap(); 630 } 631 632 if (TopLevelOpcode == Instruction::Add && 633 InnerOpcode == Instruction::Mul) { 634 // We can propagate 'nsw' if we know that 635 // %Y = mul nsw i16 %X, C 636 // %Z = add nsw i16 %Y, %X 637 // => 638 // %Z = mul nsw i16 %X, C+1 639 // 640 // iff C+1 isn't INT_MIN 641 const APInt *CInt; 642 if (match(V, m_APInt(CInt))) { 643 if (!CInt->isMinSignedValue()) 644 BO->setHasNoSignedWrap(HasNSW); 645 } 646 647 // nuw can be propagated with any constant or nuw value. 648 BO->setHasNoUnsignedWrap(HasNUW); 649 } 650 } 651 } 652 } 653 return SimplifiedInst; 654 } 655 656 /// This tries to simplify binary operations which some other binary operation 657 /// distributes over either by factorizing out common terms 658 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 659 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 660 /// Returns the simplified value, or null if it didn't simplify. 661 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 662 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 663 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 664 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 665 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 666 667 { 668 // Factorization. 669 Value *A, *B, *C, *D; 670 Instruction::BinaryOps LHSOpcode, RHSOpcode; 671 if (Op0) 672 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 673 if (Op1) 674 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 675 676 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 677 // a common term. 678 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 679 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 680 return V; 681 682 // The instruction has the form "(A op' B) op (C)". Try to factorize common 683 // term. 684 if (Op0) 685 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 686 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 687 return V; 688 689 // The instruction has the form "(B) op (C op' D)". Try to factorize common 690 // term. 691 if (Op1) 692 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 693 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 694 return V; 695 } 696 697 // Expansion. 698 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 699 // The instruction has the form "(A op' B) op C". See if expanding it out 700 // to "(A op C) op' (B op C)" results in simplifications. 701 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 702 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 703 704 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 705 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 706 707 // Do "A op C" and "B op C" both simplify? 708 if (L && R) { 709 // They do! Return "L op' R". 710 ++NumExpand; 711 C = Builder.CreateBinOp(InnerOpcode, L, R); 712 C->takeName(&I); 713 return C; 714 } 715 716 // Does "A op C" simplify to the identity value for the inner opcode? 717 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 718 // They do! Return "B op C". 719 ++NumExpand; 720 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 721 C->takeName(&I); 722 return C; 723 } 724 725 // Does "B op C" simplify to the identity value for the inner opcode? 726 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 727 // They do! Return "A op C". 728 ++NumExpand; 729 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 730 C->takeName(&I); 731 return C; 732 } 733 } 734 735 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 736 // The instruction has the form "A op (B op' C)". See if expanding it out 737 // to "(A op B) op' (A op C)" results in simplifications. 738 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 739 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 740 741 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 742 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 743 744 // Do "A op B" and "A op C" both simplify? 745 if (L && R) { 746 // They do! Return "L op' R". 747 ++NumExpand; 748 A = Builder.CreateBinOp(InnerOpcode, L, R); 749 A->takeName(&I); 750 return A; 751 } 752 753 // Does "A op B" simplify to the identity value for the inner opcode? 754 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 755 // They do! Return "A op C". 756 ++NumExpand; 757 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 758 A->takeName(&I); 759 return A; 760 } 761 762 // Does "A op C" simplify to the identity value for the inner opcode? 763 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 764 // They do! Return "A op B". 765 ++NumExpand; 766 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 767 A->takeName(&I); 768 return A; 769 } 770 } 771 772 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 773 } 774 775 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 776 Value *LHS, Value *RHS) { 777 Value *A, *B, *C, *D, *E, *F; 778 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 779 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 780 if (!LHSIsSelect && !RHSIsSelect) 781 return nullptr; 782 783 FastMathFlags FMF; 784 BuilderTy::FastMathFlagGuard Guard(Builder); 785 if (isa<FPMathOperator>(&I)) { 786 FMF = I.getFastMathFlags(); 787 Builder.setFastMathFlags(FMF); 788 } 789 790 Instruction::BinaryOps Opcode = I.getOpcode(); 791 SimplifyQuery Q = SQ.getWithInstruction(&I); 792 793 Value *Cond, *True = nullptr, *False = nullptr; 794 if (LHSIsSelect && RHSIsSelect && A == D) { 795 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 796 Cond = A; 797 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 798 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 799 800 if (LHS->hasOneUse() && RHS->hasOneUse()) { 801 if (False && !True) 802 True = Builder.CreateBinOp(Opcode, B, E); 803 else if (True && !False) 804 False = Builder.CreateBinOp(Opcode, C, F); 805 } 806 } else if (LHSIsSelect && LHS->hasOneUse()) { 807 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 808 Cond = A; 809 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 810 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 811 } else if (RHSIsSelect && RHS->hasOneUse()) { 812 // X op (D ? E : F) -> D ? (X op E) : (X op F) 813 Cond = D; 814 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 815 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 816 } 817 818 if (!True || !False) 819 return nullptr; 820 821 Value *SI = Builder.CreateSelect(Cond, True, False); 822 SI->takeName(&I); 823 return SI; 824 } 825 826 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 827 /// constant zero (which is the 'negate' form). 828 Value *InstCombiner::dyn_castNegVal(Value *V) const { 829 Value *NegV; 830 if (match(V, m_Neg(m_Value(NegV)))) 831 return NegV; 832 833 // Constants can be considered to be negated values if they can be folded. 834 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 835 return ConstantExpr::getNeg(C); 836 837 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 838 if (C->getType()->getElementType()->isIntegerTy()) 839 return ConstantExpr::getNeg(C); 840 841 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 842 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 843 Constant *Elt = CV->getAggregateElement(i); 844 if (!Elt) 845 return nullptr; 846 847 if (isa<UndefValue>(Elt)) 848 continue; 849 850 if (!isa<ConstantInt>(Elt)) 851 return nullptr; 852 } 853 return ConstantExpr::getNeg(CV); 854 } 855 856 return nullptr; 857 } 858 859 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 860 InstCombiner::BuilderTy &Builder) { 861 if (auto *Cast = dyn_cast<CastInst>(&I)) 862 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 863 864 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 865 866 // Figure out if the constant is the left or the right argument. 867 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 868 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 869 870 if (auto *SOC = dyn_cast<Constant>(SO)) { 871 if (ConstIsRHS) 872 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 873 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 874 } 875 876 Value *Op0 = SO, *Op1 = ConstOperand; 877 if (!ConstIsRHS) 878 std::swap(Op0, Op1); 879 880 auto *BO = cast<BinaryOperator>(&I); 881 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 882 SO->getName() + ".op"); 883 auto *FPInst = dyn_cast<Instruction>(RI); 884 if (FPInst && isa<FPMathOperator>(FPInst)) 885 FPInst->copyFastMathFlags(BO); 886 return RI; 887 } 888 889 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 890 // Don't modify shared select instructions. 891 if (!SI->hasOneUse()) 892 return nullptr; 893 894 Value *TV = SI->getTrueValue(); 895 Value *FV = SI->getFalseValue(); 896 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 897 return nullptr; 898 899 // Bool selects with constant operands can be folded to logical ops. 900 if (SI->getType()->isIntOrIntVectorTy(1)) 901 return nullptr; 902 903 // If it's a bitcast involving vectors, make sure it has the same number of 904 // elements on both sides. 905 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 906 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 907 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 908 909 // Verify that either both or neither are vectors. 910 if ((SrcTy == nullptr) != (DestTy == nullptr)) 911 return nullptr; 912 913 // If vectors, verify that they have the same number of elements. 914 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 915 return nullptr; 916 } 917 918 // Test if a CmpInst instruction is used exclusively by a select as 919 // part of a minimum or maximum operation. If so, refrain from doing 920 // any other folding. This helps out other analyses which understand 921 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 922 // and CodeGen. And in this case, at least one of the comparison 923 // operands has at least one user besides the compare (the select), 924 // which would often largely negate the benefit of folding anyway. 925 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 926 if (CI->hasOneUse()) { 927 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 928 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 929 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 930 return nullptr; 931 } 932 } 933 934 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 935 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 936 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 937 } 938 939 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 940 InstCombiner::BuilderTy &Builder) { 941 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 942 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 943 944 if (auto *InC = dyn_cast<Constant>(InV)) { 945 if (ConstIsRHS) 946 return ConstantExpr::get(I->getOpcode(), InC, C); 947 return ConstantExpr::get(I->getOpcode(), C, InC); 948 } 949 950 Value *Op0 = InV, *Op1 = C; 951 if (!ConstIsRHS) 952 std::swap(Op0, Op1); 953 954 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 955 auto *FPInst = dyn_cast<Instruction>(RI); 956 if (FPInst && isa<FPMathOperator>(FPInst)) 957 FPInst->copyFastMathFlags(I); 958 return RI; 959 } 960 961 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 962 unsigned NumPHIValues = PN->getNumIncomingValues(); 963 if (NumPHIValues == 0) 964 return nullptr; 965 966 // We normally only transform phis with a single use. However, if a PHI has 967 // multiple uses and they are all the same operation, we can fold *all* of the 968 // uses into the PHI. 969 if (!PN->hasOneUse()) { 970 // Walk the use list for the instruction, comparing them to I. 971 for (User *U : PN->users()) { 972 Instruction *UI = cast<Instruction>(U); 973 if (UI != &I && !I.isIdenticalTo(UI)) 974 return nullptr; 975 } 976 // Otherwise, we can replace *all* users with the new PHI we form. 977 } 978 979 // Check to see if all of the operands of the PHI are simple constants 980 // (constantint/constantfp/undef). If there is one non-constant value, 981 // remember the BB it is in. If there is more than one or if *it* is a PHI, 982 // bail out. We don't do arbitrary constant expressions here because moving 983 // their computation can be expensive without a cost model. 984 BasicBlock *NonConstBB = nullptr; 985 for (unsigned i = 0; i != NumPHIValues; ++i) { 986 Value *InVal = PN->getIncomingValue(i); 987 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 988 continue; 989 990 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 991 if (NonConstBB) return nullptr; // More than one non-const value. 992 993 NonConstBB = PN->getIncomingBlock(i); 994 995 // If the InVal is an invoke at the end of the pred block, then we can't 996 // insert a computation after it without breaking the edge. 997 if (isa<InvokeInst>(InVal)) 998 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 999 return nullptr; 1000 1001 // If the incoming non-constant value is in I's block, we will remove one 1002 // instruction, but insert another equivalent one, leading to infinite 1003 // instcombine. 1004 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 1005 return nullptr; 1006 } 1007 1008 // If there is exactly one non-constant value, we can insert a copy of the 1009 // operation in that block. However, if this is a critical edge, we would be 1010 // inserting the computation on some other paths (e.g. inside a loop). Only 1011 // do this if the pred block is unconditionally branching into the phi block. 1012 if (NonConstBB != nullptr) { 1013 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1014 if (!BI || !BI->isUnconditional()) return nullptr; 1015 } 1016 1017 // Okay, we can do the transformation: create the new PHI node. 1018 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1019 InsertNewInstBefore(NewPN, *PN); 1020 NewPN->takeName(PN); 1021 1022 // If we are going to have to insert a new computation, do so right before the 1023 // predecessor's terminator. 1024 if (NonConstBB) 1025 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1026 1027 // Next, add all of the operands to the PHI. 1028 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1029 // We only currently try to fold the condition of a select when it is a phi, 1030 // not the true/false values. 1031 Value *TrueV = SI->getTrueValue(); 1032 Value *FalseV = SI->getFalseValue(); 1033 BasicBlock *PhiTransBB = PN->getParent(); 1034 for (unsigned i = 0; i != NumPHIValues; ++i) { 1035 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1036 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1037 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1038 Value *InV = nullptr; 1039 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1040 // even if currently isNullValue gives false. 1041 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1042 // For vector constants, we cannot use isNullValue to fold into 1043 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1044 // elements in the vector, we will incorrectly fold InC to 1045 // `TrueVInPred`. 1046 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 1047 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1048 else { 1049 // Generate the select in the same block as PN's current incoming block. 1050 // Note: ThisBB need not be the NonConstBB because vector constants 1051 // which are constants by definition are handled here. 1052 // FIXME: This can lead to an increase in IR generation because we might 1053 // generate selects for vector constant phi operand, that could not be 1054 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1055 // non-vector phis, this transformation was always profitable because 1056 // the select would be generated exactly once in the NonConstBB. 1057 Builder.SetInsertPoint(ThisBB->getTerminator()); 1058 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1059 FalseVInPred, "phitmp"); 1060 } 1061 NewPN->addIncoming(InV, ThisBB); 1062 } 1063 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1064 Constant *C = cast<Constant>(I.getOperand(1)); 1065 for (unsigned i = 0; i != NumPHIValues; ++i) { 1066 Value *InV = nullptr; 1067 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1068 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1069 else if (isa<ICmpInst>(CI)) 1070 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 1071 C, "phitmp"); 1072 else 1073 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1074 C, "phitmp"); 1075 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1076 } 1077 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1078 for (unsigned i = 0; i != NumPHIValues; ++i) { 1079 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1080 Builder); 1081 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1082 } 1083 } else { 1084 CastInst *CI = cast<CastInst>(&I); 1085 Type *RetTy = CI->getType(); 1086 for (unsigned i = 0; i != NumPHIValues; ++i) { 1087 Value *InV; 1088 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1089 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1090 else 1091 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1092 I.getType(), "phitmp"); 1093 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1094 } 1095 } 1096 1097 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1098 Instruction *User = cast<Instruction>(*UI++); 1099 if (User == &I) continue; 1100 replaceInstUsesWith(*User, NewPN); 1101 eraseInstFromFunction(*User); 1102 } 1103 return replaceInstUsesWith(I, NewPN); 1104 } 1105 1106 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1107 if (!isa<Constant>(I.getOperand(1))) 1108 return nullptr; 1109 1110 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1111 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1112 return NewSel; 1113 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1114 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1115 return NewPhi; 1116 } 1117 return nullptr; 1118 } 1119 1120 /// Given a pointer type and a constant offset, determine whether or not there 1121 /// is a sequence of GEP indices into the pointed type that will land us at the 1122 /// specified offset. If so, fill them into NewIndices and return the resultant 1123 /// element type, otherwise return null. 1124 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1125 SmallVectorImpl<Value *> &NewIndices) { 1126 Type *Ty = PtrTy->getElementType(); 1127 if (!Ty->isSized()) 1128 return nullptr; 1129 1130 // Start with the index over the outer type. Note that the type size 1131 // might be zero (even if the offset isn't zero) if the indexed type 1132 // is something like [0 x {int, int}] 1133 Type *IndexTy = DL.getIndexType(PtrTy); 1134 int64_t FirstIdx = 0; 1135 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1136 FirstIdx = Offset/TySize; 1137 Offset -= FirstIdx*TySize; 1138 1139 // Handle hosts where % returns negative instead of values [0..TySize). 1140 if (Offset < 0) { 1141 --FirstIdx; 1142 Offset += TySize; 1143 assert(Offset >= 0); 1144 } 1145 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1146 } 1147 1148 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1149 1150 // Index into the types. If we fail, set OrigBase to null. 1151 while (Offset) { 1152 // Indexing into tail padding between struct/array elements. 1153 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1154 return nullptr; 1155 1156 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1157 const StructLayout *SL = DL.getStructLayout(STy); 1158 assert(Offset < (int64_t)SL->getSizeInBytes() && 1159 "Offset must stay within the indexed type"); 1160 1161 unsigned Elt = SL->getElementContainingOffset(Offset); 1162 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1163 Elt)); 1164 1165 Offset -= SL->getElementOffset(Elt); 1166 Ty = STy->getElementType(Elt); 1167 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1168 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1169 assert(EltSize && "Cannot index into a zero-sized array"); 1170 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1171 Offset %= EltSize; 1172 Ty = AT->getElementType(); 1173 } else { 1174 // Otherwise, we can't index into the middle of this atomic type, bail. 1175 return nullptr; 1176 } 1177 } 1178 1179 return Ty; 1180 } 1181 1182 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1183 // If this GEP has only 0 indices, it is the same pointer as 1184 // Src. If Src is not a trivial GEP too, don't combine 1185 // the indices. 1186 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1187 !Src.hasOneUse()) 1188 return false; 1189 return true; 1190 } 1191 1192 /// Return a value X such that Val = X * Scale, or null if none. 1193 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1194 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1195 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1196 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1197 Scale.getBitWidth() && "Scale not compatible with value!"); 1198 1199 // If Val is zero or Scale is one then Val = Val * Scale. 1200 if (match(Val, m_Zero()) || Scale == 1) { 1201 NoSignedWrap = true; 1202 return Val; 1203 } 1204 1205 // If Scale is zero then it does not divide Val. 1206 if (Scale.isMinValue()) 1207 return nullptr; 1208 1209 // Look through chains of multiplications, searching for a constant that is 1210 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1211 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1212 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1213 // down from Val: 1214 // 1215 // Val = M1 * X || Analysis starts here and works down 1216 // M1 = M2 * Y || Doesn't descend into terms with more 1217 // M2 = Z * 4 \/ than one use 1218 // 1219 // Then to modify a term at the bottom: 1220 // 1221 // Val = M1 * X 1222 // M1 = Z * Y || Replaced M2 with Z 1223 // 1224 // Then to work back up correcting nsw flags. 1225 1226 // Op - the term we are currently analyzing. Starts at Val then drills down. 1227 // Replaced with its descaled value before exiting from the drill down loop. 1228 Value *Op = Val; 1229 1230 // Parent - initially null, but after drilling down notes where Op came from. 1231 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1232 // 0'th operand of Val. 1233 std::pair<Instruction *, unsigned> Parent; 1234 1235 // Set if the transform requires a descaling at deeper levels that doesn't 1236 // overflow. 1237 bool RequireNoSignedWrap = false; 1238 1239 // Log base 2 of the scale. Negative if not a power of 2. 1240 int32_t logScale = Scale.exactLogBase2(); 1241 1242 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1243 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1244 // If Op is a constant divisible by Scale then descale to the quotient. 1245 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1246 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1247 if (!Remainder.isMinValue()) 1248 // Not divisible by Scale. 1249 return nullptr; 1250 // Replace with the quotient in the parent. 1251 Op = ConstantInt::get(CI->getType(), Quotient); 1252 NoSignedWrap = true; 1253 break; 1254 } 1255 1256 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1257 if (BO->getOpcode() == Instruction::Mul) { 1258 // Multiplication. 1259 NoSignedWrap = BO->hasNoSignedWrap(); 1260 if (RequireNoSignedWrap && !NoSignedWrap) 1261 return nullptr; 1262 1263 // There are three cases for multiplication: multiplication by exactly 1264 // the scale, multiplication by a constant different to the scale, and 1265 // multiplication by something else. 1266 Value *LHS = BO->getOperand(0); 1267 Value *RHS = BO->getOperand(1); 1268 1269 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1270 // Multiplication by a constant. 1271 if (CI->getValue() == Scale) { 1272 // Multiplication by exactly the scale, replace the multiplication 1273 // by its left-hand side in the parent. 1274 Op = LHS; 1275 break; 1276 } 1277 1278 // Otherwise drill down into the constant. 1279 if (!Op->hasOneUse()) 1280 return nullptr; 1281 1282 Parent = std::make_pair(BO, 1); 1283 continue; 1284 } 1285 1286 // Multiplication by something else. Drill down into the left-hand side 1287 // since that's where the reassociate pass puts the good stuff. 1288 if (!Op->hasOneUse()) 1289 return nullptr; 1290 1291 Parent = std::make_pair(BO, 0); 1292 continue; 1293 } 1294 1295 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1296 isa<ConstantInt>(BO->getOperand(1))) { 1297 // Multiplication by a power of 2. 1298 NoSignedWrap = BO->hasNoSignedWrap(); 1299 if (RequireNoSignedWrap && !NoSignedWrap) 1300 return nullptr; 1301 1302 Value *LHS = BO->getOperand(0); 1303 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1304 getLimitedValue(Scale.getBitWidth()); 1305 // Op = LHS << Amt. 1306 1307 if (Amt == logScale) { 1308 // Multiplication by exactly the scale, replace the multiplication 1309 // by its left-hand side in the parent. 1310 Op = LHS; 1311 break; 1312 } 1313 if (Amt < logScale || !Op->hasOneUse()) 1314 return nullptr; 1315 1316 // Multiplication by more than the scale. Reduce the multiplying amount 1317 // by the scale in the parent. 1318 Parent = std::make_pair(BO, 1); 1319 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1320 break; 1321 } 1322 } 1323 1324 if (!Op->hasOneUse()) 1325 return nullptr; 1326 1327 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1328 if (Cast->getOpcode() == Instruction::SExt) { 1329 // Op is sign-extended from a smaller type, descale in the smaller type. 1330 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1331 APInt SmallScale = Scale.trunc(SmallSize); 1332 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1333 // descale Op as (sext Y) * Scale. In order to have 1334 // sext (Y * SmallScale) = (sext Y) * Scale 1335 // some conditions need to hold however: SmallScale must sign-extend to 1336 // Scale and the multiplication Y * SmallScale should not overflow. 1337 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1338 // SmallScale does not sign-extend to Scale. 1339 return nullptr; 1340 assert(SmallScale.exactLogBase2() == logScale); 1341 // Require that Y * SmallScale must not overflow. 1342 RequireNoSignedWrap = true; 1343 1344 // Drill down through the cast. 1345 Parent = std::make_pair(Cast, 0); 1346 Scale = SmallScale; 1347 continue; 1348 } 1349 1350 if (Cast->getOpcode() == Instruction::Trunc) { 1351 // Op is truncated from a larger type, descale in the larger type. 1352 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1353 // trunc (Y * sext Scale) = (trunc Y) * Scale 1354 // always holds. However (trunc Y) * Scale may overflow even if 1355 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1356 // from this point up in the expression (see later). 1357 if (RequireNoSignedWrap) 1358 return nullptr; 1359 1360 // Drill down through the cast. 1361 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1362 Parent = std::make_pair(Cast, 0); 1363 Scale = Scale.sext(LargeSize); 1364 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1365 logScale = -1; 1366 assert(Scale.exactLogBase2() == logScale); 1367 continue; 1368 } 1369 } 1370 1371 // Unsupported expression, bail out. 1372 return nullptr; 1373 } 1374 1375 // If Op is zero then Val = Op * Scale. 1376 if (match(Op, m_Zero())) { 1377 NoSignedWrap = true; 1378 return Op; 1379 } 1380 1381 // We know that we can successfully descale, so from here on we can safely 1382 // modify the IR. Op holds the descaled version of the deepest term in the 1383 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1384 // not to overflow. 1385 1386 if (!Parent.first) 1387 // The expression only had one term. 1388 return Op; 1389 1390 // Rewrite the parent using the descaled version of its operand. 1391 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1392 assert(Op != Parent.first->getOperand(Parent.second) && 1393 "Descaling was a no-op?"); 1394 Parent.first->setOperand(Parent.second, Op); 1395 Worklist.Add(Parent.first); 1396 1397 // Now work back up the expression correcting nsw flags. The logic is based 1398 // on the following observation: if X * Y is known not to overflow as a signed 1399 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1400 // then X * Z will not overflow as a signed multiplication either. As we work 1401 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1402 // current level has strictly smaller absolute value than the original. 1403 Instruction *Ancestor = Parent.first; 1404 do { 1405 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1406 // If the multiplication wasn't nsw then we can't say anything about the 1407 // value of the descaled multiplication, and we have to clear nsw flags 1408 // from this point on up. 1409 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1410 NoSignedWrap &= OpNoSignedWrap; 1411 if (NoSignedWrap != OpNoSignedWrap) { 1412 BO->setHasNoSignedWrap(NoSignedWrap); 1413 Worklist.Add(Ancestor); 1414 } 1415 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1416 // The fact that the descaled input to the trunc has smaller absolute 1417 // value than the original input doesn't tell us anything useful about 1418 // the absolute values of the truncations. 1419 NoSignedWrap = false; 1420 } 1421 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1422 "Failed to keep proper track of nsw flags while drilling down?"); 1423 1424 if (Ancestor == Val) 1425 // Got to the top, all done! 1426 return Val; 1427 1428 // Move up one level in the expression. 1429 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1430 Ancestor = Ancestor->user_back(); 1431 } while (true); 1432 } 1433 1434 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) { 1435 if (!Inst.getType()->isVectorTy()) return nullptr; 1436 1437 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1438 unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements(); 1439 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1440 assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts); 1441 assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts); 1442 1443 // If both operands of the binop are vector concatenations, then perform the 1444 // narrow binop on each pair of the source operands followed by concatenation 1445 // of the results. 1446 Value *L0, *L1, *R0, *R1; 1447 Constant *Mask; 1448 if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) && 1449 match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) && 1450 LHS->hasOneUse() && RHS->hasOneUse() && 1451 cast<ShuffleVectorInst>(LHS)->isConcat() && 1452 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1453 // This transform does not have the speculative execution constraint as 1454 // below because the shuffle is a concatenation. The new binops are 1455 // operating on exactly the same elements as the existing binop. 1456 // TODO: We could ease the mask requirement to allow different undef lanes, 1457 // but that requires an analysis of the binop-with-undef output value. 1458 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1459 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1460 BO->copyIRFlags(&Inst); 1461 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1462 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1463 BO->copyIRFlags(&Inst); 1464 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1465 } 1466 1467 // It may not be safe to reorder shuffles and things like div, urem, etc. 1468 // because we may trap when executing those ops on unknown vector elements. 1469 // See PR20059. 1470 if (!isSafeToSpeculativelyExecute(&Inst)) 1471 return nullptr; 1472 1473 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { 1474 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1475 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1476 BO->copyIRFlags(&Inst); 1477 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1478 }; 1479 1480 // If both arguments of the binary operation are shuffles that use the same 1481 // mask and shuffle within a single vector, move the shuffle after the binop. 1482 Value *V1, *V2; 1483 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && 1484 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && 1485 V1->getType() == V2->getType() && 1486 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1487 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1488 return createBinOpShuffle(V1, V2, Mask); 1489 } 1490 1491 // If both arguments of a commutative binop are select-shuffles that use the 1492 // same mask with commuted operands, the shuffles are unnecessary. 1493 if (Inst.isCommutative() && 1494 match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) && 1495 match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1), 1496 m_Specific(Mask)))) { 1497 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1498 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1499 // TODO: Allow shuffles that contain undefs in the mask? 1500 // That is legal, but it reduces undef knowledge. 1501 // TODO: Allow arbitrary shuffles by shuffling after binop? 1502 // That might be legal, but we have to deal with poison. 1503 if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() && 1504 RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) { 1505 // Example: 1506 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1507 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1508 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1509 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1510 NewBO->copyIRFlags(&Inst); 1511 return NewBO; 1512 } 1513 } 1514 1515 // If one argument is a shuffle within one vector and the other is a constant, 1516 // try moving the shuffle after the binary operation. This canonicalization 1517 // intends to move shuffles closer to other shuffles and binops closer to 1518 // other binops, so they can be folded. It may also enable demanded elements 1519 // transforms. 1520 Constant *C; 1521 if (match(&Inst, m_c_BinOp( 1522 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), 1523 m_Constant(C))) && 1524 V1->getType()->getVectorNumElements() <= NumElts) { 1525 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() && 1526 "Shuffle should not change scalar type"); 1527 1528 // Find constant NewC that has property: 1529 // shuffle(NewC, ShMask) = C 1530 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1531 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1532 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1533 bool ConstOp1 = isa<Constant>(RHS); 1534 SmallVector<int, 16> ShMask; 1535 ShuffleVectorInst::getShuffleMask(Mask, ShMask); 1536 unsigned SrcVecNumElts = V1->getType()->getVectorNumElements(); 1537 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1538 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1539 bool MayChange = true; 1540 for (unsigned I = 0; I < NumElts; ++I) { 1541 Constant *CElt = C->getAggregateElement(I); 1542 if (ShMask[I] >= 0) { 1543 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1544 Constant *NewCElt = NewVecC[ShMask[I]]; 1545 // Bail out if: 1546 // 1. The constant vector contains a constant expression. 1547 // 2. The shuffle needs an element of the constant vector that can't 1548 // be mapped to a new constant vector. 1549 // 3. This is a widening shuffle that copies elements of V1 into the 1550 // extended elements (extending with undef is allowed). 1551 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1552 I >= SrcVecNumElts) { 1553 MayChange = false; 1554 break; 1555 } 1556 NewVecC[ShMask[I]] = CElt; 1557 } 1558 // If this is a widening shuffle, we must be able to extend with undef 1559 // elements. If the original binop does not produce an undef in the high 1560 // lanes, then this transform is not safe. 1561 // Similarly for undef lanes due to the shuffle mask, we can only 1562 // transform binops that preserve undef. 1563 // TODO: We could shuffle those non-undef constant values into the 1564 // result by using a constant vector (rather than an undef vector) 1565 // as operand 1 of the new binop, but that might be too aggressive 1566 // for target-independent shuffle creation. 1567 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1568 Constant *MaybeUndef = 1569 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1570 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1571 if (!isa<UndefValue>(MaybeUndef)) { 1572 MayChange = false; 1573 break; 1574 } 1575 } 1576 } 1577 if (MayChange) { 1578 Constant *NewC = ConstantVector::get(NewVecC); 1579 // It may not be safe to execute a binop on a vector with undef elements 1580 // because the entire instruction can be folded to undef or create poison 1581 // that did not exist in the original code. 1582 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1583 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1584 1585 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1586 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1587 Value *NewLHS = ConstOp1 ? V1 : NewC; 1588 Value *NewRHS = ConstOp1 ? NewC : V1; 1589 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1590 } 1591 } 1592 1593 return nullptr; 1594 } 1595 1596 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1597 /// of a value. This requires a potentially expensive known bits check to make 1598 /// sure the narrow op does not overflow. 1599 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) { 1600 // We need at least one extended operand. 1601 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1602 1603 // If this is a sub, we swap the operands since we always want an extension 1604 // on the RHS. The LHS can be an extension or a constant. 1605 if (BO.getOpcode() == Instruction::Sub) 1606 std::swap(Op0, Op1); 1607 1608 Value *X; 1609 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1610 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1611 return nullptr; 1612 1613 // If both operands are the same extension from the same source type and we 1614 // can eliminate at least one (hasOneUse), this might work. 1615 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1616 Value *Y; 1617 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1618 cast<Operator>(Op1)->getOpcode() == CastOpc && 1619 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1620 // If that did not match, see if we have a suitable constant operand. 1621 // Truncating and extending must produce the same constant. 1622 Constant *WideC; 1623 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1624 return nullptr; 1625 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1626 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1627 return nullptr; 1628 Y = NarrowC; 1629 } 1630 1631 // Swap back now that we found our operands. 1632 if (BO.getOpcode() == Instruction::Sub) 1633 std::swap(X, Y); 1634 1635 // Both operands have narrow versions. Last step: the math must not overflow 1636 // in the narrow width. 1637 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1638 return nullptr; 1639 1640 // bo (ext X), (ext Y) --> ext (bo X, Y) 1641 // bo (ext X), C --> ext (bo X, C') 1642 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1643 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1644 if (IsSext) 1645 NewBinOp->setHasNoSignedWrap(); 1646 else 1647 NewBinOp->setHasNoUnsignedWrap(); 1648 } 1649 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1650 } 1651 1652 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1653 // At least one GEP must be inbounds. 1654 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1655 return false; 1656 1657 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1658 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1659 } 1660 1661 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1662 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1663 Type *GEPType = GEP.getType(); 1664 Type *GEPEltType = GEP.getSourceElementType(); 1665 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1666 return replaceInstUsesWith(GEP, V); 1667 1668 // For vector geps, use the generic demanded vector support. 1669 if (GEP.getType()->isVectorTy()) { 1670 auto VWidth = GEP.getType()->getVectorNumElements(); 1671 APInt UndefElts(VWidth, 0); 1672 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1673 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1674 UndefElts)) { 1675 if (V != &GEP) 1676 return replaceInstUsesWith(GEP, V); 1677 return &GEP; 1678 } 1679 1680 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1681 // possible (decide on canonical form for pointer broadcast), 3) exploit 1682 // undef elements to decrease demanded bits 1683 } 1684 1685 Value *PtrOp = GEP.getOperand(0); 1686 1687 // Eliminate unneeded casts for indices, and replace indices which displace 1688 // by multiples of a zero size type with zero. 1689 bool MadeChange = false; 1690 1691 // Index width may not be the same width as pointer width. 1692 // Data layout chooses the right type based on supported integer types. 1693 Type *NewScalarIndexTy = 1694 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1695 1696 gep_type_iterator GTI = gep_type_begin(GEP); 1697 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1698 ++I, ++GTI) { 1699 // Skip indices into struct types. 1700 if (GTI.isStruct()) 1701 continue; 1702 1703 Type *IndexTy = (*I)->getType(); 1704 Type *NewIndexType = 1705 IndexTy->isVectorTy() 1706 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) 1707 : NewScalarIndexTy; 1708 1709 // If the element type has zero size then any index over it is equivalent 1710 // to an index of zero, so replace it with zero if it is not zero already. 1711 Type *EltTy = GTI.getIndexedType(); 1712 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1713 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1714 *I = Constant::getNullValue(NewIndexType); 1715 MadeChange = true; 1716 } 1717 1718 if (IndexTy != NewIndexType) { 1719 // If we are using a wider index than needed for this platform, shrink 1720 // it to what we need. If narrower, sign-extend it to what we need. 1721 // This explicit cast can make subsequent optimizations more obvious. 1722 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1723 MadeChange = true; 1724 } 1725 } 1726 if (MadeChange) 1727 return &GEP; 1728 1729 // Check to see if the inputs to the PHI node are getelementptr instructions. 1730 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1731 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1732 if (!Op1) 1733 return nullptr; 1734 1735 // Don't fold a GEP into itself through a PHI node. This can only happen 1736 // through the back-edge of a loop. Folding a GEP into itself means that 1737 // the value of the previous iteration needs to be stored in the meantime, 1738 // thus requiring an additional register variable to be live, but not 1739 // actually achieving anything (the GEP still needs to be executed once per 1740 // loop iteration). 1741 if (Op1 == &GEP) 1742 return nullptr; 1743 1744 int DI = -1; 1745 1746 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1747 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1748 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1749 return nullptr; 1750 1751 // As for Op1 above, don't try to fold a GEP into itself. 1752 if (Op2 == &GEP) 1753 return nullptr; 1754 1755 // Keep track of the type as we walk the GEP. 1756 Type *CurTy = nullptr; 1757 1758 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1759 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1760 return nullptr; 1761 1762 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1763 if (DI == -1) { 1764 // We have not seen any differences yet in the GEPs feeding the 1765 // PHI yet, so we record this one if it is allowed to be a 1766 // variable. 1767 1768 // The first two arguments can vary for any GEP, the rest have to be 1769 // static for struct slots 1770 if (J > 1) { 1771 assert(CurTy && "No current type?"); 1772 if (CurTy->isStructTy()) 1773 return nullptr; 1774 } 1775 1776 DI = J; 1777 } else { 1778 // The GEP is different by more than one input. While this could be 1779 // extended to support GEPs that vary by more than one variable it 1780 // doesn't make sense since it greatly increases the complexity and 1781 // would result in an R+R+R addressing mode which no backend 1782 // directly supports and would need to be broken into several 1783 // simpler instructions anyway. 1784 return nullptr; 1785 } 1786 } 1787 1788 // Sink down a layer of the type for the next iteration. 1789 if (J > 0) { 1790 if (J == 1) { 1791 CurTy = Op1->getSourceElementType(); 1792 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { 1793 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1794 } else { 1795 CurTy = nullptr; 1796 } 1797 } 1798 } 1799 } 1800 1801 // If not all GEPs are identical we'll have to create a new PHI node. 1802 // Check that the old PHI node has only one use so that it will get 1803 // removed. 1804 if (DI != -1 && !PN->hasOneUse()) 1805 return nullptr; 1806 1807 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1808 if (DI == -1) { 1809 // All the GEPs feeding the PHI are identical. Clone one down into our 1810 // BB so that it can be merged with the current GEP. 1811 GEP.getParent()->getInstList().insert( 1812 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1813 } else { 1814 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1815 // into the current block so it can be merged, and create a new PHI to 1816 // set that index. 1817 PHINode *NewPN; 1818 { 1819 IRBuilderBase::InsertPointGuard Guard(Builder); 1820 Builder.SetInsertPoint(PN); 1821 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1822 PN->getNumOperands()); 1823 } 1824 1825 for (auto &I : PN->operands()) 1826 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1827 PN->getIncomingBlock(I)); 1828 1829 NewGEP->setOperand(DI, NewPN); 1830 GEP.getParent()->getInstList().insert( 1831 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1832 NewGEP->setOperand(DI, NewPN); 1833 } 1834 1835 GEP.setOperand(0, NewGEP); 1836 PtrOp = NewGEP; 1837 } 1838 1839 // Combine Indices - If the source pointer to this getelementptr instruction 1840 // is a getelementptr instruction, combine the indices of the two 1841 // getelementptr instructions into a single instruction. 1842 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1843 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1844 return nullptr; 1845 1846 // Try to reassociate loop invariant GEP chains to enable LICM. 1847 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1848 Src->hasOneUse()) { 1849 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1850 Value *GO1 = GEP.getOperand(1); 1851 Value *SO1 = Src->getOperand(1); 1852 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1853 // invariant: this breaks the dependence between GEPs and allows LICM 1854 // to hoist the invariant part out of the loop. 1855 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1856 // We have to be careful here. 1857 // We have something like: 1858 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1859 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1860 // If we just swap idx & idx2 then we could inadvertantly 1861 // change %src from a vector to a scalar, or vice versa. 1862 // Cases: 1863 // 1) %base a scalar & idx a scalar & idx2 a vector 1864 // => Swapping idx & idx2 turns %src into a vector type. 1865 // 2) %base a scalar & idx a vector & idx2 a scalar 1866 // => Swapping idx & idx2 turns %src in a scalar type 1867 // 3) %base, %idx, and %idx2 are scalars 1868 // => %src & %gep are scalars 1869 // => swapping idx & idx2 is safe 1870 // 4) %base a vector 1871 // => %src is a vector 1872 // => swapping idx & idx2 is safe. 1873 auto *SO0 = Src->getOperand(0); 1874 auto *SO0Ty = SO0->getType(); 1875 if (!isa<VectorType>(GEPType) || // case 3 1876 isa<VectorType>(SO0Ty)) { // case 4 1877 Src->setOperand(1, GO1); 1878 GEP.setOperand(1, SO1); 1879 return &GEP; 1880 } else { 1881 // Case 1 or 2 1882 // -- have to recreate %src & %gep 1883 // put NewSrc at same location as %src 1884 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1885 auto *NewSrc = cast<GetElementPtrInst>( 1886 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); 1887 NewSrc->setIsInBounds(Src->isInBounds()); 1888 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 1889 NewGEP->setIsInBounds(GEP.isInBounds()); 1890 return NewGEP; 1891 } 1892 } 1893 } 1894 } 1895 1896 // Note that if our source is a gep chain itself then we wait for that 1897 // chain to be resolved before we perform this transformation. This 1898 // avoids us creating a TON of code in some cases. 1899 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1900 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1901 return nullptr; // Wait until our source is folded to completion. 1902 1903 SmallVector<Value*, 8> Indices; 1904 1905 // Find out whether the last index in the source GEP is a sequential idx. 1906 bool EndsWithSequential = false; 1907 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1908 I != E; ++I) 1909 EndsWithSequential = I.isSequential(); 1910 1911 // Can we combine the two pointer arithmetics offsets? 1912 if (EndsWithSequential) { 1913 // Replace: gep (gep %P, long B), long A, ... 1914 // With: T = long A+B; gep %P, T, ... 1915 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1916 Value *GO1 = GEP.getOperand(1); 1917 1918 // If they aren't the same type, then the input hasn't been processed 1919 // by the loop above yet (which canonicalizes sequential index types to 1920 // intptr_t). Just avoid transforming this until the input has been 1921 // normalized. 1922 if (SO1->getType() != GO1->getType()) 1923 return nullptr; 1924 1925 Value *Sum = 1926 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1927 // Only do the combine when we are sure the cost after the 1928 // merge is never more than that before the merge. 1929 if (Sum == nullptr) 1930 return nullptr; 1931 1932 // Update the GEP in place if possible. 1933 if (Src->getNumOperands() == 2) { 1934 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 1935 GEP.setOperand(0, Src->getOperand(0)); 1936 GEP.setOperand(1, Sum); 1937 return &GEP; 1938 } 1939 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1940 Indices.push_back(Sum); 1941 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1942 } else if (isa<Constant>(*GEP.idx_begin()) && 1943 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1944 Src->getNumOperands() != 1) { 1945 // Otherwise we can do the fold if the first index of the GEP is a zero 1946 Indices.append(Src->op_begin()+1, Src->op_end()); 1947 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1948 } 1949 1950 if (!Indices.empty()) 1951 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 1952 ? GetElementPtrInst::CreateInBounds( 1953 Src->getSourceElementType(), Src->getOperand(0), Indices, 1954 GEP.getName()) 1955 : GetElementPtrInst::Create(Src->getSourceElementType(), 1956 Src->getOperand(0), Indices, 1957 GEP.getName()); 1958 } 1959 1960 if (GEP.getNumIndices() == 1) { 1961 unsigned AS = GEP.getPointerAddressSpace(); 1962 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1963 DL.getIndexSizeInBits(AS)) { 1964 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); 1965 1966 bool Matched = false; 1967 uint64_t C; 1968 Value *V = nullptr; 1969 if (TyAllocSize == 1) { 1970 V = GEP.getOperand(1); 1971 Matched = true; 1972 } else if (match(GEP.getOperand(1), 1973 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1974 if (TyAllocSize == 1ULL << C) 1975 Matched = true; 1976 } else if (match(GEP.getOperand(1), 1977 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1978 if (TyAllocSize == C) 1979 Matched = true; 1980 } 1981 1982 if (Matched) { 1983 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1984 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1985 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1986 // pointer arithmetic. 1987 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1988 Operator *Index = cast<Operator>(V); 1989 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1990 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1991 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 1992 } 1993 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1994 // to (bitcast Y) 1995 Value *Y; 1996 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1997 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 1998 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 1999 } 2000 } 2001 } 2002 2003 // We do not handle pointer-vector geps here. 2004 if (GEPType->isVectorTy()) 2005 return nullptr; 2006 2007 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2008 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2009 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2010 2011 if (StrippedPtr != PtrOp) { 2012 bool HasZeroPointerIndex = false; 2013 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2014 2015 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2016 HasZeroPointerIndex = C->isZero(); 2017 2018 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2019 // into : GEP [10 x i8]* X, i32 0, ... 2020 // 2021 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2022 // into : GEP i8* X, ... 2023 // 2024 // This occurs when the program declares an array extern like "int X[];" 2025 if (HasZeroPointerIndex) { 2026 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2027 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2028 if (CATy->getElementType() == StrippedPtrEltTy) { 2029 // -> GEP i8* X, ... 2030 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 2031 GetElementPtrInst *Res = GetElementPtrInst::Create( 2032 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2033 Res->setIsInBounds(GEP.isInBounds()); 2034 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2035 return Res; 2036 // Insert Res, and create an addrspacecast. 2037 // e.g., 2038 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2039 // -> 2040 // %0 = GEP i8 addrspace(1)* X, ... 2041 // addrspacecast i8 addrspace(1)* %0 to i8* 2042 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2043 } 2044 2045 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2046 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2047 if (CATy->getElementType() == XATy->getElementType()) { 2048 // -> GEP [10 x i8]* X, i32 0, ... 2049 // At this point, we know that the cast source type is a pointer 2050 // to an array of the same type as the destination pointer 2051 // array. Because the array type is never stepped over (there 2052 // is a leading zero) we can fold the cast into this GEP. 2053 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2054 GEP.setOperand(0, StrippedPtr); 2055 GEP.setSourceElementType(XATy); 2056 return &GEP; 2057 } 2058 // Cannot replace the base pointer directly because StrippedPtr's 2059 // address space is different. Instead, create a new GEP followed by 2060 // an addrspacecast. 2061 // e.g., 2062 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2063 // i32 0, ... 2064 // -> 2065 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2066 // addrspacecast i8 addrspace(1)* %0 to i8* 2067 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 2068 Value *NewGEP = 2069 GEP.isInBounds() 2070 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2071 Idx, GEP.getName()) 2072 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2073 GEP.getName()); 2074 return new AddrSpaceCastInst(NewGEP, GEPType); 2075 } 2076 } 2077 } 2078 } else if (GEP.getNumOperands() == 2) { 2079 // Transform things like: 2080 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 2081 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 2082 if (StrippedPtrEltTy->isArrayTy() && 2083 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2084 DL.getTypeAllocSize(GEPEltType)) { 2085 Type *IdxType = DL.getIndexType(GEPType); 2086 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2087 Value *NewGEP = 2088 GEP.isInBounds() 2089 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2090 GEP.getName()) 2091 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2092 GEP.getName()); 2093 2094 // V and GEP are both pointer types --> BitCast 2095 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2096 } 2097 2098 // Transform things like: 2099 // %V = mul i64 %N, 4 2100 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2101 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2102 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2103 // Check that changing the type amounts to dividing the index by a scale 2104 // factor. 2105 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2106 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy); 2107 if (ResSize && SrcSize % ResSize == 0) { 2108 Value *Idx = GEP.getOperand(1); 2109 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2110 uint64_t Scale = SrcSize / ResSize; 2111 2112 // Earlier transforms ensure that the index has the right type 2113 // according to Data Layout, which considerably simplifies the 2114 // logic by eliminating implicit casts. 2115 assert(Idx->getType() == DL.getIndexType(GEPType) && 2116 "Index type does not match the Data Layout preferences"); 2117 2118 bool NSW; 2119 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2120 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2121 // If the multiplication NewIdx * Scale may overflow then the new 2122 // GEP may not be "inbounds". 2123 Value *NewGEP = 2124 GEP.isInBounds() && NSW 2125 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2126 NewIdx, GEP.getName()) 2127 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2128 GEP.getName()); 2129 2130 // The NewGEP must be pointer typed, so must the old one -> BitCast 2131 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2132 GEPType); 2133 } 2134 } 2135 } 2136 2137 // Similarly, transform things like: 2138 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2139 // (where tmp = 8*tmp2) into: 2140 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2141 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2142 StrippedPtrEltTy->isArrayTy()) { 2143 // Check that changing to the array element type amounts to dividing the 2144 // index by a scale factor. 2145 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2146 uint64_t ArrayEltSize = 2147 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()); 2148 if (ResSize && ArrayEltSize % ResSize == 0) { 2149 Value *Idx = GEP.getOperand(1); 2150 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2151 uint64_t Scale = ArrayEltSize / ResSize; 2152 2153 // Earlier transforms ensure that the index has the right type 2154 // according to the Data Layout, which considerably simplifies 2155 // the logic by eliminating implicit casts. 2156 assert(Idx->getType() == DL.getIndexType(GEPType) && 2157 "Index type does not match the Data Layout preferences"); 2158 2159 bool NSW; 2160 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2161 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2162 // If the multiplication NewIdx * Scale may overflow then the new 2163 // GEP may not be "inbounds". 2164 Type *IndTy = DL.getIndexType(GEPType); 2165 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2166 2167 Value *NewGEP = 2168 GEP.isInBounds() && NSW 2169 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2170 Off, GEP.getName()) 2171 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2172 GEP.getName()); 2173 // The NewGEP must be pointer typed, so must the old one -> BitCast 2174 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2175 GEPType); 2176 } 2177 } 2178 } 2179 } 2180 } 2181 2182 // addrspacecast between types is canonicalized as a bitcast, then an 2183 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2184 // through the addrspacecast. 2185 Value *ASCStrippedPtrOp = PtrOp; 2186 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2187 // X = bitcast A addrspace(1)* to B addrspace(1)* 2188 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2189 // Z = gep Y, <...constant indices...> 2190 // Into an addrspacecasted GEP of the struct. 2191 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2192 ASCStrippedPtrOp = BC; 2193 } 2194 2195 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2196 Value *SrcOp = BCI->getOperand(0); 2197 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2198 Type *SrcEltType = SrcType->getElementType(); 2199 2200 // GEP directly using the source operand if this GEP is accessing an element 2201 // of a bitcasted pointer to vector or array of the same dimensions: 2202 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2203 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2204 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2205 const DataLayout &DL) { 2206 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && 2207 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements() && 2208 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2209 }; 2210 if (GEP.getNumOperands() == 3 && 2211 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 2212 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2213 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 2214 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2215 2216 // Create a new GEP here, as using `setOperand()` followed by 2217 // `setSourceElementType()` won't actually update the type of the 2218 // existing GEP Value. Causing issues if this Value is accessed when 2219 // constructing an AddrSpaceCastInst 2220 Value *NGEP = 2221 GEP.isInBounds() 2222 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2223 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2224 NGEP->takeName(&GEP); 2225 2226 // Preserve GEP address space to satisfy users 2227 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2228 return new AddrSpaceCastInst(NGEP, GEPType); 2229 2230 return replaceInstUsesWith(GEP, NGEP); 2231 } 2232 2233 // See if we can simplify: 2234 // X = bitcast A* to B* 2235 // Y = gep X, <...constant indices...> 2236 // into a gep of the original struct. This is important for SROA and alias 2237 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2238 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2239 APInt Offset(OffsetBits, 0); 2240 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 2241 // If this GEP instruction doesn't move the pointer, just replace the GEP 2242 // with a bitcast of the real input to the dest type. 2243 if (!Offset) { 2244 // If the bitcast is of an allocation, and the allocation will be 2245 // converted to match the type of the cast, don't touch this. 2246 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 2247 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2248 if (Instruction *I = visitBitCast(*BCI)) { 2249 if (I != BCI) { 2250 I->takeName(BCI); 2251 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2252 replaceInstUsesWith(*BCI, I); 2253 } 2254 return &GEP; 2255 } 2256 } 2257 2258 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2259 return new AddrSpaceCastInst(SrcOp, GEPType); 2260 return new BitCastInst(SrcOp, GEPType); 2261 } 2262 2263 // Otherwise, if the offset is non-zero, we need to find out if there is a 2264 // field at Offset in 'A's type. If so, we can pull the cast through the 2265 // GEP. 2266 SmallVector<Value*, 8> NewIndices; 2267 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2268 Value *NGEP = 2269 GEP.isInBounds() 2270 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2271 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2272 2273 if (NGEP->getType() == GEPType) 2274 return replaceInstUsesWith(GEP, NGEP); 2275 NGEP->takeName(&GEP); 2276 2277 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2278 return new AddrSpaceCastInst(NGEP, GEPType); 2279 return new BitCastInst(NGEP, GEPType); 2280 } 2281 } 2282 } 2283 2284 if (!GEP.isInBounds()) { 2285 unsigned IdxWidth = 2286 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2287 APInt BasePtrOffset(IdxWidth, 0); 2288 Value *UnderlyingPtrOp = 2289 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2290 BasePtrOffset); 2291 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2292 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2293 BasePtrOffset.isNonNegative()) { 2294 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2295 if (BasePtrOffset.ule(AllocSize)) { 2296 return GetElementPtrInst::CreateInBounds( 2297 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2298 GEP.getName()); 2299 } 2300 } 2301 } 2302 } 2303 2304 return nullptr; 2305 } 2306 2307 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2308 Instruction *AI) { 2309 if (isa<ConstantPointerNull>(V)) 2310 return true; 2311 if (auto *LI = dyn_cast<LoadInst>(V)) 2312 return isa<GlobalVariable>(LI->getPointerOperand()); 2313 // Two distinct allocations will never be equal. 2314 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2315 // through bitcasts of V can cause 2316 // the result statement below to be true, even when AI and V (ex: 2317 // i8* ->i32* ->i8* of AI) are the same allocations. 2318 return isAllocLikeFn(V, TLI) && V != AI; 2319 } 2320 2321 static bool isAllocSiteRemovable(Instruction *AI, 2322 SmallVectorImpl<WeakTrackingVH> &Users, 2323 const TargetLibraryInfo *TLI) { 2324 SmallVector<Instruction*, 4> Worklist; 2325 Worklist.push_back(AI); 2326 2327 do { 2328 Instruction *PI = Worklist.pop_back_val(); 2329 for (User *U : PI->users()) { 2330 Instruction *I = cast<Instruction>(U); 2331 switch (I->getOpcode()) { 2332 default: 2333 // Give up the moment we see something we can't handle. 2334 return false; 2335 2336 case Instruction::AddrSpaceCast: 2337 case Instruction::BitCast: 2338 case Instruction::GetElementPtr: 2339 Users.emplace_back(I); 2340 Worklist.push_back(I); 2341 continue; 2342 2343 case Instruction::ICmp: { 2344 ICmpInst *ICI = cast<ICmpInst>(I); 2345 // We can fold eq/ne comparisons with null to false/true, respectively. 2346 // We also fold comparisons in some conditions provided the alloc has 2347 // not escaped (see isNeverEqualToUnescapedAlloc). 2348 if (!ICI->isEquality()) 2349 return false; 2350 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2351 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2352 return false; 2353 Users.emplace_back(I); 2354 continue; 2355 } 2356 2357 case Instruction::Call: 2358 // Ignore no-op and store intrinsics. 2359 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2360 switch (II->getIntrinsicID()) { 2361 default: 2362 return false; 2363 2364 case Intrinsic::memmove: 2365 case Intrinsic::memcpy: 2366 case Intrinsic::memset: { 2367 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2368 if (MI->isVolatile() || MI->getRawDest() != PI) 2369 return false; 2370 LLVM_FALLTHROUGH; 2371 } 2372 case Intrinsic::invariant_start: 2373 case Intrinsic::invariant_end: 2374 case Intrinsic::lifetime_start: 2375 case Intrinsic::lifetime_end: 2376 case Intrinsic::objectsize: 2377 Users.emplace_back(I); 2378 continue; 2379 } 2380 } 2381 2382 if (isFreeCall(I, TLI)) { 2383 Users.emplace_back(I); 2384 continue; 2385 } 2386 return false; 2387 2388 case Instruction::Store: { 2389 StoreInst *SI = cast<StoreInst>(I); 2390 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2391 return false; 2392 Users.emplace_back(I); 2393 continue; 2394 } 2395 } 2396 llvm_unreachable("missing a return?"); 2397 } 2398 } while (!Worklist.empty()); 2399 return true; 2400 } 2401 2402 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2403 // If we have a malloc call which is only used in any amount of comparisons to 2404 // null and free calls, delete the calls and replace the comparisons with true 2405 // or false as appropriate. 2406 2407 // This is based on the principle that we can substitute our own allocation 2408 // function (which will never return null) rather than knowledge of the 2409 // specific function being called. In some sense this can change the permitted 2410 // outputs of a program (when we convert a malloc to an alloca, the fact that 2411 // the allocation is now on the stack is potentially visible, for example), 2412 // but we believe in a permissible manner. 2413 SmallVector<WeakTrackingVH, 64> Users; 2414 2415 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2416 // before each store. 2417 TinyPtrVector<DbgVariableIntrinsic *> DIIs; 2418 std::unique_ptr<DIBuilder> DIB; 2419 if (isa<AllocaInst>(MI)) { 2420 DIIs = FindDbgAddrUses(&MI); 2421 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2422 } 2423 2424 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2425 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2426 // Lowering all @llvm.objectsize calls first because they may 2427 // use a bitcast/GEP of the alloca we are removing. 2428 if (!Users[i]) 2429 continue; 2430 2431 Instruction *I = cast<Instruction>(&*Users[i]); 2432 2433 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2434 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2435 Value *Result = 2436 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2437 replaceInstUsesWith(*I, Result); 2438 eraseInstFromFunction(*I); 2439 Users[i] = nullptr; // Skip examining in the next loop. 2440 } 2441 } 2442 } 2443 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2444 if (!Users[i]) 2445 continue; 2446 2447 Instruction *I = cast<Instruction>(&*Users[i]); 2448 2449 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2450 replaceInstUsesWith(*C, 2451 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2452 C->isFalseWhenEqual())); 2453 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2454 for (auto *DII : DIIs) 2455 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2456 } else { 2457 // Casts, GEP, or anything else: we're about to delete this instruction, 2458 // so it can not have any valid uses. 2459 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2460 } 2461 eraseInstFromFunction(*I); 2462 } 2463 2464 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2465 // Replace invoke with a NOP intrinsic to maintain the original CFG 2466 Module *M = II->getModule(); 2467 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2468 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2469 None, "", II->getParent()); 2470 } 2471 2472 for (auto *DII : DIIs) 2473 eraseInstFromFunction(*DII); 2474 2475 return eraseInstFromFunction(MI); 2476 } 2477 return nullptr; 2478 } 2479 2480 /// Move the call to free before a NULL test. 2481 /// 2482 /// Check if this free is accessed after its argument has been test 2483 /// against NULL (property 0). 2484 /// If yes, it is legal to move this call in its predecessor block. 2485 /// 2486 /// The move is performed only if the block containing the call to free 2487 /// will be removed, i.e.: 2488 /// 1. it has only one predecessor P, and P has two successors 2489 /// 2. it contains the call, noops, and an unconditional branch 2490 /// 3. its successor is the same as its predecessor's successor 2491 /// 2492 /// The profitability is out-of concern here and this function should 2493 /// be called only if the caller knows this transformation would be 2494 /// profitable (e.g., for code size). 2495 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2496 const DataLayout &DL) { 2497 Value *Op = FI.getArgOperand(0); 2498 BasicBlock *FreeInstrBB = FI.getParent(); 2499 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2500 2501 // Validate part of constraint #1: Only one predecessor 2502 // FIXME: We can extend the number of predecessor, but in that case, we 2503 // would duplicate the call to free in each predecessor and it may 2504 // not be profitable even for code size. 2505 if (!PredBB) 2506 return nullptr; 2507 2508 // Validate constraint #2: Does this block contains only the call to 2509 // free, noops, and an unconditional branch? 2510 BasicBlock *SuccBB; 2511 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2512 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2513 return nullptr; 2514 2515 // If there are only 2 instructions in the block, at this point, 2516 // this is the call to free and unconditional. 2517 // If there are more than 2 instructions, check that they are noops 2518 // i.e., they won't hurt the performance of the generated code. 2519 if (FreeInstrBB->size() != 2) { 2520 for (const Instruction &Inst : *FreeInstrBB) { 2521 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2522 continue; 2523 auto *Cast = dyn_cast<CastInst>(&Inst); 2524 if (!Cast || !Cast->isNoopCast(DL)) 2525 return nullptr; 2526 } 2527 } 2528 // Validate the rest of constraint #1 by matching on the pred branch. 2529 Instruction *TI = PredBB->getTerminator(); 2530 BasicBlock *TrueBB, *FalseBB; 2531 ICmpInst::Predicate Pred; 2532 if (!match(TI, m_Br(m_ICmp(Pred, 2533 m_CombineOr(m_Specific(Op), 2534 m_Specific(Op->stripPointerCasts())), 2535 m_Zero()), 2536 TrueBB, FalseBB))) 2537 return nullptr; 2538 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2539 return nullptr; 2540 2541 // Validate constraint #3: Ensure the null case just falls through. 2542 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2543 return nullptr; 2544 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2545 "Broken CFG: missing edge from predecessor to successor"); 2546 2547 // At this point, we know that everything in FreeInstrBB can be moved 2548 // before TI. 2549 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2550 It != End;) { 2551 Instruction &Instr = *It++; 2552 if (&Instr == FreeInstrBBTerminator) 2553 break; 2554 Instr.moveBefore(TI); 2555 } 2556 assert(FreeInstrBB->size() == 1 && 2557 "Only the branch instruction should remain"); 2558 return &FI; 2559 } 2560 2561 Instruction *InstCombiner::visitFree(CallInst &FI) { 2562 Value *Op = FI.getArgOperand(0); 2563 2564 // free undef -> unreachable. 2565 if (isa<UndefValue>(Op)) { 2566 // Leave a marker since we can't modify the CFG here. 2567 CreateNonTerminatorUnreachable(&FI); 2568 return eraseInstFromFunction(FI); 2569 } 2570 2571 // If we have 'free null' delete the instruction. This can happen in stl code 2572 // when lots of inlining happens. 2573 if (isa<ConstantPointerNull>(Op)) 2574 return eraseInstFromFunction(FI); 2575 2576 // If we optimize for code size, try to move the call to free before the null 2577 // test so that simplify cfg can remove the empty block and dead code 2578 // elimination the branch. I.e., helps to turn something like: 2579 // if (foo) free(foo); 2580 // into 2581 // free(foo); 2582 if (MinimizeSize) 2583 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2584 return I; 2585 2586 return nullptr; 2587 } 2588 2589 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2590 if (RI.getNumOperands() == 0) // ret void 2591 return nullptr; 2592 2593 Value *ResultOp = RI.getOperand(0); 2594 Type *VTy = ResultOp->getType(); 2595 if (!VTy->isIntegerTy()) 2596 return nullptr; 2597 2598 // There might be assume intrinsics dominating this return that completely 2599 // determine the value. If so, constant fold it. 2600 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2601 if (Known.isConstant()) 2602 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2603 2604 return nullptr; 2605 } 2606 2607 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2608 // Change br (not X), label True, label False to: br X, label False, True 2609 Value *X = nullptr; 2610 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2611 !isa<Constant>(X)) { 2612 // Swap Destinations and condition... 2613 BI.setCondition(X); 2614 BI.swapSuccessors(); 2615 return &BI; 2616 } 2617 2618 // If the condition is irrelevant, remove the use so that other 2619 // transforms on the condition become more effective. 2620 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2621 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2622 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2623 return &BI; 2624 } 2625 2626 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2627 CmpInst::Predicate Pred; 2628 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), 2629 m_BasicBlock(), m_BasicBlock())) && 2630 !isCanonicalPredicate(Pred)) { 2631 // Swap destinations and condition. 2632 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2633 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2634 BI.swapSuccessors(); 2635 Worklist.Add(Cond); 2636 return &BI; 2637 } 2638 2639 return nullptr; 2640 } 2641 2642 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2643 Value *Cond = SI.getCondition(); 2644 Value *Op0; 2645 ConstantInt *AddRHS; 2646 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2647 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2648 for (auto Case : SI.cases()) { 2649 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2650 assert(isa<ConstantInt>(NewCase) && 2651 "Result of expression should be constant"); 2652 Case.setValue(cast<ConstantInt>(NewCase)); 2653 } 2654 SI.setCondition(Op0); 2655 return &SI; 2656 } 2657 2658 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2659 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2660 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2661 2662 // Compute the number of leading bits we can ignore. 2663 // TODO: A better way to determine this would use ComputeNumSignBits(). 2664 for (auto &C : SI.cases()) { 2665 LeadingKnownZeros = std::min( 2666 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2667 LeadingKnownOnes = std::min( 2668 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2669 } 2670 2671 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2672 2673 // Shrink the condition operand if the new type is smaller than the old type. 2674 // But do not shrink to a non-standard type, because backend can't generate 2675 // good code for that yet. 2676 // TODO: We can make it aggressive again after fixing PR39569. 2677 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 2678 shouldChangeType(Known.getBitWidth(), NewWidth)) { 2679 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2680 Builder.SetInsertPoint(&SI); 2681 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2682 SI.setCondition(NewCond); 2683 2684 for (auto Case : SI.cases()) { 2685 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2686 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2687 } 2688 return &SI; 2689 } 2690 2691 return nullptr; 2692 } 2693 2694 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2695 Value *Agg = EV.getAggregateOperand(); 2696 2697 if (!EV.hasIndices()) 2698 return replaceInstUsesWith(EV, Agg); 2699 2700 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2701 SQ.getWithInstruction(&EV))) 2702 return replaceInstUsesWith(EV, V); 2703 2704 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2705 // We're extracting from an insertvalue instruction, compare the indices 2706 const unsigned *exti, *exte, *insi, *inse; 2707 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2708 exte = EV.idx_end(), inse = IV->idx_end(); 2709 exti != exte && insi != inse; 2710 ++exti, ++insi) { 2711 if (*insi != *exti) 2712 // The insert and extract both reference distinctly different elements. 2713 // This means the extract is not influenced by the insert, and we can 2714 // replace the aggregate operand of the extract with the aggregate 2715 // operand of the insert. i.e., replace 2716 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2717 // %E = extractvalue { i32, { i32 } } %I, 0 2718 // with 2719 // %E = extractvalue { i32, { i32 } } %A, 0 2720 return ExtractValueInst::Create(IV->getAggregateOperand(), 2721 EV.getIndices()); 2722 } 2723 if (exti == exte && insi == inse) 2724 // Both iterators are at the end: Index lists are identical. Replace 2725 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2726 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2727 // with "i32 42" 2728 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2729 if (exti == exte) { 2730 // The extract list is a prefix of the insert list. i.e. replace 2731 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2732 // %E = extractvalue { i32, { i32 } } %I, 1 2733 // with 2734 // %X = extractvalue { i32, { i32 } } %A, 1 2735 // %E = insertvalue { i32 } %X, i32 42, 0 2736 // by switching the order of the insert and extract (though the 2737 // insertvalue should be left in, since it may have other uses). 2738 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2739 EV.getIndices()); 2740 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2741 makeArrayRef(insi, inse)); 2742 } 2743 if (insi == inse) 2744 // The insert list is a prefix of the extract list 2745 // We can simply remove the common indices from the extract and make it 2746 // operate on the inserted value instead of the insertvalue result. 2747 // i.e., replace 2748 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2749 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2750 // with 2751 // %E extractvalue { i32 } { i32 42 }, 0 2752 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2753 makeArrayRef(exti, exte)); 2754 } 2755 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 2756 // We're extracting from an overflow intrinsic, see if we're the only user, 2757 // which allows us to simplify multiple result intrinsics to simpler 2758 // things that just get one value. 2759 if (WO->hasOneUse()) { 2760 // Check if we're grabbing only the result of a 'with overflow' intrinsic 2761 // and replace it with a traditional binary instruction. 2762 if (*EV.idx_begin() == 0) { 2763 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 2764 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 2765 replaceInstUsesWith(*WO, UndefValue::get(WO->getType())); 2766 eraseInstFromFunction(*WO); 2767 return BinaryOperator::Create(BinOp, LHS, RHS); 2768 } 2769 2770 // If the normal result of the add is dead, and the RHS is a constant, 2771 // we can transform this into a range comparison. 2772 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2773 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2774 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS())) 2775 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(), 2776 ConstantExpr::getNot(CI)); 2777 } 2778 } 2779 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2780 // If the (non-volatile) load only has one use, we can rewrite this to a 2781 // load from a GEP. This reduces the size of the load. If a load is used 2782 // only by extractvalue instructions then this either must have been 2783 // optimized before, or it is a struct with padding, in which case we 2784 // don't want to do the transformation as it loses padding knowledge. 2785 if (L->isSimple() && L->hasOneUse()) { 2786 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2787 SmallVector<Value*, 4> Indices; 2788 // Prefix an i32 0 since we need the first element. 2789 Indices.push_back(Builder.getInt32(0)); 2790 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2791 I != E; ++I) 2792 Indices.push_back(Builder.getInt32(*I)); 2793 2794 // We need to insert these at the location of the old load, not at that of 2795 // the extractvalue. 2796 Builder.SetInsertPoint(L); 2797 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2798 L->getPointerOperand(), Indices); 2799 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 2800 // Whatever aliasing information we had for the orignal load must also 2801 // hold for the smaller load, so propagate the annotations. 2802 AAMDNodes Nodes; 2803 L->getAAMetadata(Nodes); 2804 NL->setAAMetadata(Nodes); 2805 // Returning the load directly will cause the main loop to insert it in 2806 // the wrong spot, so use replaceInstUsesWith(). 2807 return replaceInstUsesWith(EV, NL); 2808 } 2809 // We could simplify extracts from other values. Note that nested extracts may 2810 // already be simplified implicitly by the above: extract (extract (insert) ) 2811 // will be translated into extract ( insert ( extract ) ) first and then just 2812 // the value inserted, if appropriate. Similarly for extracts from single-use 2813 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2814 // and if again single-use then via load (gep (gep)) to load (gep). 2815 // However, double extracts from e.g. function arguments or return values 2816 // aren't handled yet. 2817 return nullptr; 2818 } 2819 2820 /// Return 'true' if the given typeinfo will match anything. 2821 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2822 switch (Personality) { 2823 case EHPersonality::GNU_C: 2824 case EHPersonality::GNU_C_SjLj: 2825 case EHPersonality::Rust: 2826 // The GCC C EH and Rust personality only exists to support cleanups, so 2827 // it's not clear what the semantics of catch clauses are. 2828 return false; 2829 case EHPersonality::Unknown: 2830 return false; 2831 case EHPersonality::GNU_Ada: 2832 // While __gnat_all_others_value will match any Ada exception, it doesn't 2833 // match foreign exceptions (or didn't, before gcc-4.7). 2834 return false; 2835 case EHPersonality::GNU_CXX: 2836 case EHPersonality::GNU_CXX_SjLj: 2837 case EHPersonality::GNU_ObjC: 2838 case EHPersonality::MSVC_X86SEH: 2839 case EHPersonality::MSVC_Win64SEH: 2840 case EHPersonality::MSVC_CXX: 2841 case EHPersonality::CoreCLR: 2842 case EHPersonality::Wasm_CXX: 2843 return TypeInfo->isNullValue(); 2844 } 2845 llvm_unreachable("invalid enum"); 2846 } 2847 2848 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2849 return 2850 cast<ArrayType>(LHS->getType())->getNumElements() 2851 < 2852 cast<ArrayType>(RHS->getType())->getNumElements(); 2853 } 2854 2855 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2856 // The logic here should be correct for any real-world personality function. 2857 // However if that turns out not to be true, the offending logic can always 2858 // be conditioned on the personality function, like the catch-all logic is. 2859 EHPersonality Personality = 2860 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2861 2862 // Simplify the list of clauses, eg by removing repeated catch clauses 2863 // (these are often created by inlining). 2864 bool MakeNewInstruction = false; // If true, recreate using the following: 2865 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2866 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2867 2868 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2869 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2870 bool isLastClause = i + 1 == e; 2871 if (LI.isCatch(i)) { 2872 // A catch clause. 2873 Constant *CatchClause = LI.getClause(i); 2874 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2875 2876 // If we already saw this clause, there is no point in having a second 2877 // copy of it. 2878 if (AlreadyCaught.insert(TypeInfo).second) { 2879 // This catch clause was not already seen. 2880 NewClauses.push_back(CatchClause); 2881 } else { 2882 // Repeated catch clause - drop the redundant copy. 2883 MakeNewInstruction = true; 2884 } 2885 2886 // If this is a catch-all then there is no point in keeping any following 2887 // clauses or marking the landingpad as having a cleanup. 2888 if (isCatchAll(Personality, TypeInfo)) { 2889 if (!isLastClause) 2890 MakeNewInstruction = true; 2891 CleanupFlag = false; 2892 break; 2893 } 2894 } else { 2895 // A filter clause. If any of the filter elements were already caught 2896 // then they can be dropped from the filter. It is tempting to try to 2897 // exploit the filter further by saying that any typeinfo that does not 2898 // occur in the filter can't be caught later (and thus can be dropped). 2899 // However this would be wrong, since typeinfos can match without being 2900 // equal (for example if one represents a C++ class, and the other some 2901 // class derived from it). 2902 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2903 Constant *FilterClause = LI.getClause(i); 2904 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2905 unsigned NumTypeInfos = FilterType->getNumElements(); 2906 2907 // An empty filter catches everything, so there is no point in keeping any 2908 // following clauses or marking the landingpad as having a cleanup. By 2909 // dealing with this case here the following code is made a bit simpler. 2910 if (!NumTypeInfos) { 2911 NewClauses.push_back(FilterClause); 2912 if (!isLastClause) 2913 MakeNewInstruction = true; 2914 CleanupFlag = false; 2915 break; 2916 } 2917 2918 bool MakeNewFilter = false; // If true, make a new filter. 2919 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2920 if (isa<ConstantAggregateZero>(FilterClause)) { 2921 // Not an empty filter - it contains at least one null typeinfo. 2922 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2923 Constant *TypeInfo = 2924 Constant::getNullValue(FilterType->getElementType()); 2925 // If this typeinfo is a catch-all then the filter can never match. 2926 if (isCatchAll(Personality, TypeInfo)) { 2927 // Throw the filter away. 2928 MakeNewInstruction = true; 2929 continue; 2930 } 2931 2932 // There is no point in having multiple copies of this typeinfo, so 2933 // discard all but the first copy if there is more than one. 2934 NewFilterElts.push_back(TypeInfo); 2935 if (NumTypeInfos > 1) 2936 MakeNewFilter = true; 2937 } else { 2938 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2939 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2940 NewFilterElts.reserve(NumTypeInfos); 2941 2942 // Remove any filter elements that were already caught or that already 2943 // occurred in the filter. While there, see if any of the elements are 2944 // catch-alls. If so, the filter can be discarded. 2945 bool SawCatchAll = false; 2946 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2947 Constant *Elt = Filter->getOperand(j); 2948 Constant *TypeInfo = Elt->stripPointerCasts(); 2949 if (isCatchAll(Personality, TypeInfo)) { 2950 // This element is a catch-all. Bail out, noting this fact. 2951 SawCatchAll = true; 2952 break; 2953 } 2954 2955 // Even if we've seen a type in a catch clause, we don't want to 2956 // remove it from the filter. An unexpected type handler may be 2957 // set up for a call site which throws an exception of the same 2958 // type caught. In order for the exception thrown by the unexpected 2959 // handler to propagate correctly, the filter must be correctly 2960 // described for the call site. 2961 // 2962 // Example: 2963 // 2964 // void unexpected() { throw 1;} 2965 // void foo() throw (int) { 2966 // std::set_unexpected(unexpected); 2967 // try { 2968 // throw 2.0; 2969 // } catch (int i) {} 2970 // } 2971 2972 // There is no point in having multiple copies of the same typeinfo in 2973 // a filter, so only add it if we didn't already. 2974 if (SeenInFilter.insert(TypeInfo).second) 2975 NewFilterElts.push_back(cast<Constant>(Elt)); 2976 } 2977 // A filter containing a catch-all cannot match anything by definition. 2978 if (SawCatchAll) { 2979 // Throw the filter away. 2980 MakeNewInstruction = true; 2981 continue; 2982 } 2983 2984 // If we dropped something from the filter, make a new one. 2985 if (NewFilterElts.size() < NumTypeInfos) 2986 MakeNewFilter = true; 2987 } 2988 if (MakeNewFilter) { 2989 FilterType = ArrayType::get(FilterType->getElementType(), 2990 NewFilterElts.size()); 2991 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2992 MakeNewInstruction = true; 2993 } 2994 2995 NewClauses.push_back(FilterClause); 2996 2997 // If the new filter is empty then it will catch everything so there is 2998 // no point in keeping any following clauses or marking the landingpad 2999 // as having a cleanup. The case of the original filter being empty was 3000 // already handled above. 3001 if (MakeNewFilter && !NewFilterElts.size()) { 3002 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3003 CleanupFlag = false; 3004 break; 3005 } 3006 } 3007 } 3008 3009 // If several filters occur in a row then reorder them so that the shortest 3010 // filters come first (those with the smallest number of elements). This is 3011 // advantageous because shorter filters are more likely to match, speeding up 3012 // unwinding, but mostly because it increases the effectiveness of the other 3013 // filter optimizations below. 3014 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3015 unsigned j; 3016 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3017 for (j = i; j != e; ++j) 3018 if (!isa<ArrayType>(NewClauses[j]->getType())) 3019 break; 3020 3021 // Check whether the filters are already sorted by length. We need to know 3022 // if sorting them is actually going to do anything so that we only make a 3023 // new landingpad instruction if it does. 3024 for (unsigned k = i; k + 1 < j; ++k) 3025 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3026 // Not sorted, so sort the filters now. Doing an unstable sort would be 3027 // correct too but reordering filters pointlessly might confuse users. 3028 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3029 shorter_filter); 3030 MakeNewInstruction = true; 3031 break; 3032 } 3033 3034 // Look for the next batch of filters. 3035 i = j + 1; 3036 } 3037 3038 // If typeinfos matched if and only if equal, then the elements of a filter L 3039 // that occurs later than a filter F could be replaced by the intersection of 3040 // the elements of F and L. In reality two typeinfos can match without being 3041 // equal (for example if one represents a C++ class, and the other some class 3042 // derived from it) so it would be wrong to perform this transform in general. 3043 // However the transform is correct and useful if F is a subset of L. In that 3044 // case L can be replaced by F, and thus removed altogether since repeating a 3045 // filter is pointless. So here we look at all pairs of filters F and L where 3046 // L follows F in the list of clauses, and remove L if every element of F is 3047 // an element of L. This can occur when inlining C++ functions with exception 3048 // specifications. 3049 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3050 // Examine each filter in turn. 3051 Value *Filter = NewClauses[i]; 3052 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3053 if (!FTy) 3054 // Not a filter - skip it. 3055 continue; 3056 unsigned FElts = FTy->getNumElements(); 3057 // Examine each filter following this one. Doing this backwards means that 3058 // we don't have to worry about filters disappearing under us when removed. 3059 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3060 Value *LFilter = NewClauses[j]; 3061 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3062 if (!LTy) 3063 // Not a filter - skip it. 3064 continue; 3065 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3066 // an element of LFilter, then discard LFilter. 3067 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3068 // If Filter is empty then it is a subset of LFilter. 3069 if (!FElts) { 3070 // Discard LFilter. 3071 NewClauses.erase(J); 3072 MakeNewInstruction = true; 3073 // Move on to the next filter. 3074 continue; 3075 } 3076 unsigned LElts = LTy->getNumElements(); 3077 // If Filter is longer than LFilter then it cannot be a subset of it. 3078 if (FElts > LElts) 3079 // Move on to the next filter. 3080 continue; 3081 // At this point we know that LFilter has at least one element. 3082 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3083 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3084 // already know that Filter is not longer than LFilter). 3085 if (isa<ConstantAggregateZero>(Filter)) { 3086 assert(FElts <= LElts && "Should have handled this case earlier!"); 3087 // Discard LFilter. 3088 NewClauses.erase(J); 3089 MakeNewInstruction = true; 3090 } 3091 // Move on to the next filter. 3092 continue; 3093 } 3094 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3095 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3096 // Since Filter is non-empty and contains only zeros, it is a subset of 3097 // LFilter iff LFilter contains a zero. 3098 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3099 for (unsigned l = 0; l != LElts; ++l) 3100 if (LArray->getOperand(l)->isNullValue()) { 3101 // LFilter contains a zero - discard it. 3102 NewClauses.erase(J); 3103 MakeNewInstruction = true; 3104 break; 3105 } 3106 // Move on to the next filter. 3107 continue; 3108 } 3109 // At this point we know that both filters are ConstantArrays. Loop over 3110 // operands to see whether every element of Filter is also an element of 3111 // LFilter. Since filters tend to be short this is probably faster than 3112 // using a method that scales nicely. 3113 ConstantArray *FArray = cast<ConstantArray>(Filter); 3114 bool AllFound = true; 3115 for (unsigned f = 0; f != FElts; ++f) { 3116 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3117 AllFound = false; 3118 for (unsigned l = 0; l != LElts; ++l) { 3119 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3120 if (LTypeInfo == FTypeInfo) { 3121 AllFound = true; 3122 break; 3123 } 3124 } 3125 if (!AllFound) 3126 break; 3127 } 3128 if (AllFound) { 3129 // Discard LFilter. 3130 NewClauses.erase(J); 3131 MakeNewInstruction = true; 3132 } 3133 // Move on to the next filter. 3134 } 3135 } 3136 3137 // If we changed any of the clauses, replace the old landingpad instruction 3138 // with a new one. 3139 if (MakeNewInstruction) { 3140 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3141 NewClauses.size()); 3142 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3143 NLI->addClause(NewClauses[i]); 3144 // A landing pad with no clauses must have the cleanup flag set. It is 3145 // theoretically possible, though highly unlikely, that we eliminated all 3146 // clauses. If so, force the cleanup flag to true. 3147 if (NewClauses.empty()) 3148 CleanupFlag = true; 3149 NLI->setCleanup(CleanupFlag); 3150 return NLI; 3151 } 3152 3153 // Even if none of the clauses changed, we may nonetheless have understood 3154 // that the cleanup flag is pointless. Clear it if so. 3155 if (LI.isCleanup() != CleanupFlag) { 3156 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3157 LI.setCleanup(CleanupFlag); 3158 return &LI; 3159 } 3160 3161 return nullptr; 3162 } 3163 3164 Instruction *InstCombiner::visitFreeze(FreezeInst &I) { 3165 Value *Op0 = I.getOperand(0); 3166 3167 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3168 return replaceInstUsesWith(I, V); 3169 3170 return nullptr; 3171 } 3172 3173 /// Try to move the specified instruction from its current block into the 3174 /// beginning of DestBlock, which can only happen if it's safe to move the 3175 /// instruction past all of the instructions between it and the end of its 3176 /// block. 3177 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3178 assert(I->hasOneUse() && "Invariants didn't hold!"); 3179 BasicBlock *SrcBlock = I->getParent(); 3180 3181 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3182 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3183 I->isTerminator()) 3184 return false; 3185 3186 // Do not sink static or dynamic alloca instructions. Static allocas must 3187 // remain in the entry block, and dynamic allocas must not be sunk in between 3188 // a stacksave / stackrestore pair, which would incorrectly shorten its 3189 // lifetime. 3190 if (isa<AllocaInst>(I)) 3191 return false; 3192 3193 // Do not sink into catchswitch blocks. 3194 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3195 return false; 3196 3197 // Do not sink convergent call instructions. 3198 if (auto *CI = dyn_cast<CallInst>(I)) { 3199 if (CI->isConvergent()) 3200 return false; 3201 } 3202 // We can only sink load instructions if there is nothing between the load and 3203 // the end of block that could change the value. 3204 if (I->mayReadFromMemory()) { 3205 for (BasicBlock::iterator Scan = I->getIterator(), 3206 E = I->getParent()->end(); 3207 Scan != E; ++Scan) 3208 if (Scan->mayWriteToMemory()) 3209 return false; 3210 } 3211 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3212 I->moveBefore(&*InsertPos); 3213 ++NumSunkInst; 3214 3215 // Also sink all related debug uses from the source basic block. Otherwise we 3216 // get debug use before the def. Attempt to salvage debug uses first, to 3217 // maximise the range variables have location for. If we cannot salvage, then 3218 // mark the location undef: we know it was supposed to receive a new location 3219 // here, but that computation has been sunk. 3220 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3221 findDbgUsers(DbgUsers, I); 3222 for (auto *DII : reverse(DbgUsers)) { 3223 if (DII->getParent() == SrcBlock) { 3224 if (isa<DbgDeclareInst>(DII)) { 3225 // A dbg.declare instruction should not be cloned, since there can only be 3226 // one per variable fragment. It should be left in the original place since 3227 // sunk instruction is not an alloca(otherwise we could not be here). 3228 // But we need to update arguments of dbg.declare instruction, so that it 3229 // would not point into sunk instruction. 3230 if (!isa<CastInst>(I)) 3231 continue; // dbg.declare points at something it shouldn't 3232 3233 DII->setOperand( 3234 0, MetadataAsValue::get(I->getContext(), 3235 ValueAsMetadata::get(I->getOperand(0)))); 3236 continue; 3237 } 3238 3239 // dbg.value is in the same basic block as the sunk inst, see if we can 3240 // salvage it. Clone a new copy of the instruction: on success we need 3241 // both salvaged and unsalvaged copies. 3242 SmallVector<DbgVariableIntrinsic *, 1> TmpUser{ 3243 cast<DbgVariableIntrinsic>(DII->clone())}; 3244 3245 if (!salvageDebugInfoForDbgValues(*I, TmpUser)) { 3246 // We are unable to salvage: sink the cloned dbg.value, and mark the 3247 // original as undef, terminating any earlier variable location. 3248 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); 3249 TmpUser[0]->insertBefore(&*InsertPos); 3250 Value *Undef = UndefValue::get(I->getType()); 3251 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 3252 ValueAsMetadata::get(Undef))); 3253 } else { 3254 // We successfully salvaged: place the salvaged dbg.value in the 3255 // original location, and move the unmodified dbg.value to sink with 3256 // the sunk inst. 3257 TmpUser[0]->insertBefore(DII); 3258 DII->moveBefore(&*InsertPos); 3259 } 3260 } 3261 } 3262 return true; 3263 } 3264 3265 bool InstCombiner::run() { 3266 while (!Worklist.isEmpty()) { 3267 Instruction *I = Worklist.RemoveOne(); 3268 if (I == nullptr) continue; // skip null values. 3269 3270 // Check to see if we can DCE the instruction. 3271 if (isInstructionTriviallyDead(I, &TLI)) { 3272 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 3273 eraseInstFromFunction(*I); 3274 ++NumDeadInst; 3275 MadeIRChange = true; 3276 continue; 3277 } 3278 3279 if (!DebugCounter::shouldExecute(VisitCounter)) 3280 continue; 3281 3282 // Instruction isn't dead, see if we can constant propagate it. 3283 if (!I->use_empty() && 3284 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3285 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3286 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3287 << '\n'); 3288 3289 // Add operands to the worklist. 3290 replaceInstUsesWith(*I, C); 3291 ++NumConstProp; 3292 if (isInstructionTriviallyDead(I, &TLI)) 3293 eraseInstFromFunction(*I); 3294 MadeIRChange = true; 3295 continue; 3296 } 3297 } 3298 3299 // In general, it is possible for computeKnownBits to determine all bits in 3300 // a value even when the operands are not all constants. 3301 Type *Ty = I->getType(); 3302 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 3303 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 3304 if (Known.isConstant()) { 3305 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 3306 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C 3307 << " from: " << *I << '\n'); 3308 3309 // Add operands to the worklist. 3310 replaceInstUsesWith(*I, C); 3311 ++NumConstProp; 3312 if (isInstructionTriviallyDead(I, &TLI)) 3313 eraseInstFromFunction(*I); 3314 MadeIRChange = true; 3315 continue; 3316 } 3317 } 3318 3319 // See if we can trivially sink this instruction to a successor basic block. 3320 if (EnableCodeSinking && I->hasOneUse()) { 3321 BasicBlock *BB = I->getParent(); 3322 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 3323 BasicBlock *UserParent; 3324 3325 // Get the block the use occurs in. 3326 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3327 UserParent = PN->getIncomingBlock(*I->use_begin()); 3328 else 3329 UserParent = UserInst->getParent(); 3330 3331 if (UserParent != BB) { 3332 bool UserIsSuccessor = false; 3333 // See if the user is one of our successors. 3334 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 3335 if (*SI == UserParent) { 3336 UserIsSuccessor = true; 3337 break; 3338 } 3339 3340 // If the user is one of our immediate successors, and if that successor 3341 // only has us as a predecessors (we'd have to split the critical edge 3342 // otherwise), we can keep going. 3343 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3344 // Okay, the CFG is simple enough, try to sink this instruction. 3345 if (TryToSinkInstruction(I, UserParent)) { 3346 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3347 MadeIRChange = true; 3348 // We'll add uses of the sunk instruction below, but since sinking 3349 // can expose opportunities for it's *operands* add them to the 3350 // worklist 3351 for (Use &U : I->operands()) 3352 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3353 Worklist.Add(OpI); 3354 } 3355 } 3356 } 3357 } 3358 3359 // Now that we have an instruction, try combining it to simplify it. 3360 Builder.SetInsertPoint(I); 3361 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3362 3363 #ifndef NDEBUG 3364 std::string OrigI; 3365 #endif 3366 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3367 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3368 3369 if (Instruction *Result = visit(*I)) { 3370 ++NumCombined; 3371 // Should we replace the old instruction with a new one? 3372 if (Result != I) { 3373 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3374 << " New = " << *Result << '\n'); 3375 3376 if (I->getDebugLoc()) 3377 Result->setDebugLoc(I->getDebugLoc()); 3378 // Everything uses the new instruction now. 3379 I->replaceAllUsesWith(Result); 3380 3381 // Move the name to the new instruction first. 3382 Result->takeName(I); 3383 3384 // Insert the new instruction into the basic block... 3385 BasicBlock *InstParent = I->getParent(); 3386 BasicBlock::iterator InsertPos = I->getIterator(); 3387 3388 // If we replace a PHI with something that isn't a PHI, fix up the 3389 // insertion point. 3390 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3391 InsertPos = InstParent->getFirstInsertionPt(); 3392 3393 InstParent->getInstList().insert(InsertPos, Result); 3394 3395 // Push the new instruction and any users onto the worklist. 3396 Worklist.AddUsersToWorkList(*Result); 3397 Worklist.Add(Result); 3398 3399 eraseInstFromFunction(*I); 3400 } else { 3401 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3402 << " New = " << *I << '\n'); 3403 3404 // If the instruction was modified, it's possible that it is now dead. 3405 // if so, remove it. 3406 if (isInstructionTriviallyDead(I, &TLI)) { 3407 eraseInstFromFunction(*I); 3408 } else { 3409 Worklist.AddUsersToWorkList(*I); 3410 Worklist.Add(I); 3411 } 3412 } 3413 MadeIRChange = true; 3414 } 3415 } 3416 3417 Worklist.Zap(); 3418 return MadeIRChange; 3419 } 3420 3421 /// Walk the function in depth-first order, adding all reachable code to the 3422 /// worklist. 3423 /// 3424 /// This has a couple of tricks to make the code faster and more powerful. In 3425 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3426 /// them to the worklist (this significantly speeds up instcombine on code where 3427 /// many instructions are dead or constant). Additionally, if we find a branch 3428 /// whose condition is a known constant, we only visit the reachable successors. 3429 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3430 SmallPtrSetImpl<BasicBlock *> &Visited, 3431 InstCombineWorklist &ICWorklist, 3432 const TargetLibraryInfo *TLI) { 3433 bool MadeIRChange = false; 3434 SmallVector<BasicBlock*, 256> Worklist; 3435 Worklist.push_back(BB); 3436 3437 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3438 DenseMap<Constant *, Constant *> FoldedConstants; 3439 3440 do { 3441 BB = Worklist.pop_back_val(); 3442 3443 // We have now visited this block! If we've already been here, ignore it. 3444 if (!Visited.insert(BB).second) 3445 continue; 3446 3447 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3448 Instruction *Inst = &*BBI++; 3449 3450 // DCE instruction if trivially dead. 3451 if (isInstructionTriviallyDead(Inst, TLI)) { 3452 ++NumDeadInst; 3453 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3454 salvageDebugInfoOrMarkUndef(*Inst); 3455 Inst->eraseFromParent(); 3456 MadeIRChange = true; 3457 continue; 3458 } 3459 3460 // ConstantProp instruction if trivially constant. 3461 if (!Inst->use_empty() && 3462 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3463 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3464 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3465 << '\n'); 3466 Inst->replaceAllUsesWith(C); 3467 ++NumConstProp; 3468 if (isInstructionTriviallyDead(Inst, TLI)) 3469 Inst->eraseFromParent(); 3470 MadeIRChange = true; 3471 continue; 3472 } 3473 3474 // See if we can constant fold its operands. 3475 for (Use &U : Inst->operands()) { 3476 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3477 continue; 3478 3479 auto *C = cast<Constant>(U); 3480 Constant *&FoldRes = FoldedConstants[C]; 3481 if (!FoldRes) 3482 FoldRes = ConstantFoldConstant(C, DL, TLI); 3483 if (!FoldRes) 3484 FoldRes = C; 3485 3486 if (FoldRes != C) { 3487 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3488 << "\n Old = " << *C 3489 << "\n New = " << *FoldRes << '\n'); 3490 U = FoldRes; 3491 MadeIRChange = true; 3492 } 3493 } 3494 3495 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3496 // consumes non-trivial amount of time and provides no value for the optimization. 3497 if (!isa<DbgInfoIntrinsic>(Inst)) 3498 InstrsForInstCombineWorklist.push_back(Inst); 3499 } 3500 3501 // Recursively visit successors. If this is a branch or switch on a 3502 // constant, only visit the reachable successor. 3503 Instruction *TI = BB->getTerminator(); 3504 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3505 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3506 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3507 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3508 Worklist.push_back(ReachableBB); 3509 continue; 3510 } 3511 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3512 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3513 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3514 continue; 3515 } 3516 } 3517 3518 for (BasicBlock *SuccBB : successors(TI)) 3519 Worklist.push_back(SuccBB); 3520 } while (!Worklist.empty()); 3521 3522 // Once we've found all of the instructions to add to instcombine's worklist, 3523 // add them in reverse order. This way instcombine will visit from the top 3524 // of the function down. This jives well with the way that it adds all uses 3525 // of instructions to the worklist after doing a transformation, thus avoiding 3526 // some N^2 behavior in pathological cases. 3527 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3528 3529 return MadeIRChange; 3530 } 3531 3532 /// Populate the IC worklist from a function, and prune any dead basic 3533 /// blocks discovered in the process. 3534 /// 3535 /// This also does basic constant propagation and other forward fixing to make 3536 /// the combiner itself run much faster. 3537 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3538 TargetLibraryInfo *TLI, 3539 InstCombineWorklist &ICWorklist) { 3540 bool MadeIRChange = false; 3541 3542 // Do a depth-first traversal of the function, populate the worklist with 3543 // the reachable instructions. Ignore blocks that are not reachable. Keep 3544 // track of which blocks we visit. 3545 SmallPtrSet<BasicBlock *, 32> Visited; 3546 MadeIRChange |= 3547 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3548 3549 // Do a quick scan over the function. If we find any blocks that are 3550 // unreachable, remove any instructions inside of them. This prevents 3551 // the instcombine code from having to deal with some bad special cases. 3552 for (BasicBlock &BB : F) { 3553 if (Visited.count(&BB)) 3554 continue; 3555 3556 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3557 MadeIRChange |= NumDeadInstInBB > 0; 3558 NumDeadInst += NumDeadInstInBB; 3559 } 3560 3561 return MadeIRChange; 3562 } 3563 3564 static bool combineInstructionsOverFunction( 3565 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3566 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3567 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 3568 ProfileSummaryInfo *PSI, bool ExpensiveCombines, unsigned MaxIterations, 3569 LoopInfo *LI) { 3570 auto &DL = F.getParent()->getDataLayout(); 3571 if (EnableExpensiveCombines.getNumOccurrences()) 3572 ExpensiveCombines = EnableExpensiveCombines; 3573 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 3574 3575 /// Builder - This is an IRBuilder that automatically inserts new 3576 /// instructions into the worklist when they are created. 3577 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3578 F.getContext(), TargetFolder(DL), 3579 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3580 Worklist.Add(I); 3581 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3582 AC.registerAssumption(cast<CallInst>(I)); 3583 })); 3584 3585 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3586 // by instcombiner. 3587 bool MadeIRChange = false; 3588 if (ShouldLowerDbgDeclare) 3589 MadeIRChange = LowerDbgDeclare(F); 3590 3591 // Iterate while there is work to do. 3592 unsigned Iteration = 0; 3593 while (true) { 3594 ++Iteration; 3595 3596 if (Iteration > InfiniteLoopDetectionThreshold) { 3597 report_fatal_error( 3598 "Instruction Combining seems stuck in an infinite loop after " + 3599 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 3600 } 3601 3602 if (Iteration > MaxIterations) { 3603 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 3604 << " on " << F.getName() 3605 << " reached; stopping before reaching a fixpoint\n"); 3606 break; 3607 } 3608 3609 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3610 << F.getName() << "\n"); 3611 3612 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3613 3614 InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA, 3615 AC, TLI, DT, ORE, BFI, PSI, DL, LI); 3616 IC.MaxArraySizeForCombine = MaxArraySize; 3617 3618 if (!IC.run()) 3619 break; 3620 3621 MadeIRChange = true; 3622 } 3623 3624 return MadeIRChange; 3625 } 3626 3627 InstCombinePass::InstCombinePass(bool ExpensiveCombines) 3628 : ExpensiveCombines(ExpensiveCombines), MaxIterations(LimitMaxIterations) {} 3629 3630 InstCombinePass::InstCombinePass(bool ExpensiveCombines, unsigned MaxIterations) 3631 : ExpensiveCombines(ExpensiveCombines), MaxIterations(MaxIterations) {} 3632 3633 PreservedAnalyses InstCombinePass::run(Function &F, 3634 FunctionAnalysisManager &AM) { 3635 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3636 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3637 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3638 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3639 3640 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3641 3642 auto *AA = &AM.getResult<AAManager>(F); 3643 const ModuleAnalysisManager &MAM = 3644 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 3645 ProfileSummaryInfo *PSI = 3646 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 3647 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 3648 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 3649 3650 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI, 3651 PSI, ExpensiveCombines, MaxIterations, 3652 LI)) 3653 // No changes, all analyses are preserved. 3654 return PreservedAnalyses::all(); 3655 3656 // Mark all the analyses that instcombine updates as preserved. 3657 PreservedAnalyses PA; 3658 PA.preserveSet<CFGAnalyses>(); 3659 PA.preserve<AAManager>(); 3660 PA.preserve<BasicAA>(); 3661 PA.preserve<GlobalsAA>(); 3662 return PA; 3663 } 3664 3665 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3666 AU.setPreservesCFG(); 3667 AU.addRequired<AAResultsWrapperPass>(); 3668 AU.addRequired<AssumptionCacheTracker>(); 3669 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3670 AU.addRequired<DominatorTreeWrapperPass>(); 3671 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3672 AU.addPreserved<DominatorTreeWrapperPass>(); 3673 AU.addPreserved<AAResultsWrapperPass>(); 3674 AU.addPreserved<BasicAAWrapperPass>(); 3675 AU.addPreserved<GlobalsAAWrapperPass>(); 3676 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 3677 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 3678 } 3679 3680 bool InstructionCombiningPass::runOnFunction(Function &F) { 3681 if (skipFunction(F)) 3682 return false; 3683 3684 // Required analyses. 3685 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3686 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3687 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3688 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3689 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3690 3691 // Optional analyses. 3692 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3693 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3694 ProfileSummaryInfo *PSI = 3695 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3696 BlockFrequencyInfo *BFI = 3697 (PSI && PSI->hasProfileSummary()) ? 3698 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 3699 nullptr; 3700 3701 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI, 3702 PSI, ExpensiveCombines, MaxIterations, 3703 LI); 3704 } 3705 3706 char InstructionCombiningPass::ID = 0; 3707 3708 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines) 3709 : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines), 3710 MaxIterations(InstCombineDefaultMaxIterations) { 3711 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3712 } 3713 3714 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines, 3715 unsigned MaxIterations) 3716 : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines), 3717 MaxIterations(MaxIterations) { 3718 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3719 } 3720 3721 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3722 "Combine redundant instructions", false, false) 3723 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3724 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3725 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3726 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3727 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3728 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3729 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 3730 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 3731 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3732 "Combine redundant instructions", false, false) 3733 3734 // Initialization Routines 3735 void llvm::initializeInstCombine(PassRegistry &Registry) { 3736 initializeInstructionCombiningPassPass(Registry); 3737 } 3738 3739 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3740 initializeInstructionCombiningPassPass(*unwrap(R)); 3741 } 3742 3743 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3744 return new InstructionCombiningPass(ExpensiveCombines); 3745 } 3746 3747 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines, 3748 unsigned MaxIterations) { 3749 return new InstructionCombiningPass(ExpensiveCombines, MaxIterations); 3750 } 3751 3752 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3753 unwrap(PM)->add(createInstructionCombiningPass()); 3754 } 3755