1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm/ADT/APInt.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/ADT/DenseMap.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/Analysis/AliasAnalysis.h" 43 #include "llvm/Analysis/AssumptionCache.h" 44 #include "llvm/Analysis/BasicAliasAnalysis.h" 45 #include "llvm/Analysis/BlockFrequencyInfo.h" 46 #include "llvm/Analysis/CFG.h" 47 #include "llvm/Analysis/ConstantFolding.h" 48 #include "llvm/Analysis/GlobalsModRef.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/MemoryBuiltins.h" 53 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 54 #include "llvm/Analysis/ProfileSummaryInfo.h" 55 #include "llvm/Analysis/TargetFolder.h" 56 #include "llvm/Analysis/TargetLibraryInfo.h" 57 #include "llvm/Analysis/TargetTransformInfo.h" 58 #include "llvm/Analysis/Utils/Local.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/Analysis/VectorUtils.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/CFG.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DIBuilder.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/PassManager.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Use.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/InitializePasses.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/DebugCounter.h" 94 #include "llvm/Support/ErrorHandling.h" 95 #include "llvm/Support/KnownBits.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Transforms/InstCombine/InstCombine.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <memory> 104 #include <optional> 105 #include <string> 106 #include <utility> 107 108 #define DEBUG_TYPE "instcombine" 109 #include "llvm/Transforms/Utils/InstructionWorklist.h" 110 #include <optional> 111 112 using namespace llvm; 113 using namespace llvm::PatternMatch; 114 115 STATISTIC(NumWorklistIterations, 116 "Number of instruction combining iterations performed"); 117 STATISTIC(NumOneIteration, "Number of functions with one iteration"); 118 STATISTIC(NumTwoIterations, "Number of functions with two iterations"); 119 STATISTIC(NumThreeIterations, "Number of functions with three iterations"); 120 STATISTIC(NumFourOrMoreIterations, 121 "Number of functions with four or more iterations"); 122 123 STATISTIC(NumCombined , "Number of insts combined"); 124 STATISTIC(NumConstProp, "Number of constant folds"); 125 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 126 STATISTIC(NumSunkInst , "Number of instructions sunk"); 127 STATISTIC(NumExpand, "Number of expansions"); 128 STATISTIC(NumFactor , "Number of factorizations"); 129 STATISTIC(NumReassoc , "Number of reassociations"); 130 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 131 "Controls which instructions are visited"); 132 133 static cl::opt<bool> 134 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 135 cl::init(true)); 136 137 static cl::opt<unsigned> MaxSinkNumUsers( 138 "instcombine-max-sink-users", cl::init(32), 139 cl::desc("Maximum number of undroppable users for instruction sinking")); 140 141 static cl::opt<unsigned> 142 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 143 cl::desc("Maximum array size considered when doing a combine")); 144 145 // FIXME: Remove this flag when it is no longer necessary to convert 146 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 147 // increases variable availability at the cost of accuracy. Variables that 148 // cannot be promoted by mem2reg or SROA will be described as living in memory 149 // for their entire lifetime. However, passes like DSE and instcombine can 150 // delete stores to the alloca, leading to misleading and inaccurate debug 151 // information. This flag can be removed when those passes are fixed. 152 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 153 cl::Hidden, cl::init(true)); 154 155 std::optional<Instruction *> 156 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 157 // Handle target specific intrinsics 158 if (II.getCalledFunction()->isTargetIntrinsic()) { 159 return TTI.instCombineIntrinsic(*this, II); 160 } 161 return std::nullopt; 162 } 163 164 std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 165 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 166 bool &KnownBitsComputed) { 167 // Handle target specific intrinsics 168 if (II.getCalledFunction()->isTargetIntrinsic()) { 169 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 170 KnownBitsComputed); 171 } 172 return std::nullopt; 173 } 174 175 std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 176 IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts, 177 APInt &PoisonElts2, APInt &PoisonElts3, 178 std::function<void(Instruction *, unsigned, APInt, APInt &)> 179 SimplifyAndSetOp) { 180 // Handle target specific intrinsics 181 if (II.getCalledFunction()->isTargetIntrinsic()) { 182 return TTI.simplifyDemandedVectorEltsIntrinsic( 183 *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3, 184 SimplifyAndSetOp); 185 } 186 return std::nullopt; 187 } 188 189 bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const { 190 return TTI.isValidAddrSpaceCast(FromAS, ToAS); 191 } 192 193 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 194 return llvm::emitGEPOffset(&Builder, DL, GEP); 195 } 196 197 /// Legal integers and common types are considered desirable. This is used to 198 /// avoid creating instructions with types that may not be supported well by the 199 /// the backend. 200 /// NOTE: This treats i8, i16 and i32 specially because they are common 201 /// types in frontend languages. 202 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 203 switch (BitWidth) { 204 case 8: 205 case 16: 206 case 32: 207 return true; 208 default: 209 return DL.isLegalInteger(BitWidth); 210 } 211 } 212 213 /// Return true if it is desirable to convert an integer computation from a 214 /// given bit width to a new bit width. 215 /// We don't want to convert from a legal or desirable type (like i8) to an 216 /// illegal type or from a smaller to a larger illegal type. A width of '1' 217 /// is always treated as a desirable type because i1 is a fundamental type in 218 /// IR, and there are many specialized optimizations for i1 types. 219 /// Common/desirable widths are equally treated as legal to convert to, in 220 /// order to open up more combining opportunities. 221 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 222 unsigned ToWidth) const { 223 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 224 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 225 226 // Convert to desirable widths even if they are not legal types. 227 // Only shrink types, to prevent infinite loops. 228 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 229 return true; 230 231 // If this is a legal or desiable integer from type, and the result would be 232 // an illegal type, don't do the transformation. 233 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal) 234 return false; 235 236 // Otherwise, if both are illegal, do not increase the size of the result. We 237 // do allow things like i160 -> i64, but not i64 -> i160. 238 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 239 return false; 240 241 return true; 242 } 243 244 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 245 /// We don't want to convert from a legal to an illegal type or from a smaller 246 /// to a larger illegal type. i1 is always treated as a legal type because it is 247 /// a fundamental type in IR, and there are many specialized optimizations for 248 /// i1 types. 249 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 250 // TODO: This could be extended to allow vectors. Datalayout changes might be 251 // needed to properly support that. 252 if (!From->isIntegerTy() || !To->isIntegerTy()) 253 return false; 254 255 unsigned FromWidth = From->getPrimitiveSizeInBits(); 256 unsigned ToWidth = To->getPrimitiveSizeInBits(); 257 return shouldChangeType(FromWidth, ToWidth); 258 } 259 260 // Return true, if No Signed Wrap should be maintained for I. 261 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 262 // where both B and C should be ConstantInts, results in a constant that does 263 // not overflow. This function only handles the Add and Sub opcodes. For 264 // all other opcodes, the function conservatively returns false. 265 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 266 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 267 if (!OBO || !OBO->hasNoSignedWrap()) 268 return false; 269 270 // We reason about Add and Sub Only. 271 Instruction::BinaryOps Opcode = I.getOpcode(); 272 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 273 return false; 274 275 const APInt *BVal, *CVal; 276 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 277 return false; 278 279 bool Overflow = false; 280 if (Opcode == Instruction::Add) 281 (void)BVal->sadd_ov(*CVal, Overflow); 282 else 283 (void)BVal->ssub_ov(*CVal, Overflow); 284 285 return !Overflow; 286 } 287 288 static bool hasNoUnsignedWrap(BinaryOperator &I) { 289 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 290 return OBO && OBO->hasNoUnsignedWrap(); 291 } 292 293 static bool hasNoSignedWrap(BinaryOperator &I) { 294 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 295 return OBO && OBO->hasNoSignedWrap(); 296 } 297 298 /// Conservatively clears subclassOptionalData after a reassociation or 299 /// commutation. We preserve fast-math flags when applicable as they can be 300 /// preserved. 301 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 302 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 303 if (!FPMO) { 304 I.clearSubclassOptionalData(); 305 return; 306 } 307 308 FastMathFlags FMF = I.getFastMathFlags(); 309 I.clearSubclassOptionalData(); 310 I.setFastMathFlags(FMF); 311 } 312 313 /// Combine constant operands of associative operations either before or after a 314 /// cast to eliminate one of the associative operations: 315 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 316 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 317 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 318 InstCombinerImpl &IC) { 319 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 320 if (!Cast || !Cast->hasOneUse()) 321 return false; 322 323 // TODO: Enhance logic for other casts and remove this check. 324 auto CastOpcode = Cast->getOpcode(); 325 if (CastOpcode != Instruction::ZExt) 326 return false; 327 328 // TODO: Enhance logic for other BinOps and remove this check. 329 if (!BinOp1->isBitwiseLogicOp()) 330 return false; 331 332 auto AssocOpcode = BinOp1->getOpcode(); 333 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 334 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 335 return false; 336 337 Constant *C1, *C2; 338 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 339 !match(BinOp2->getOperand(1), m_Constant(C2))) 340 return false; 341 342 // TODO: This assumes a zext cast. 343 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 344 // to the destination type might lose bits. 345 346 // Fold the constants together in the destination type: 347 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 348 const DataLayout &DL = IC.getDataLayout(); 349 Type *DestTy = C1->getType(); 350 Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL); 351 if (!CastC2) 352 return false; 353 Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL); 354 if (!FoldedC) 355 return false; 356 357 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 358 IC.replaceOperand(*BinOp1, 1, FoldedC); 359 BinOp1->dropPoisonGeneratingFlags(); 360 Cast->dropPoisonGeneratingFlags(); 361 return true; 362 } 363 364 // Simplifies IntToPtr/PtrToInt RoundTrip Cast. 365 // inttoptr ( ptrtoint (x) ) --> x 366 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 367 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 368 if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) == 369 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 370 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 371 Type *CastTy = IntToPtr->getDestTy(); 372 if (PtrToInt && 373 CastTy->getPointerAddressSpace() == 374 PtrToInt->getSrcTy()->getPointerAddressSpace() && 375 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) == 376 DL.getTypeSizeInBits(PtrToInt->getDestTy())) 377 return PtrToInt->getOperand(0); 378 } 379 return nullptr; 380 } 381 382 /// This performs a few simplifications for operators that are associative or 383 /// commutative: 384 /// 385 /// Commutative operators: 386 /// 387 /// 1. Order operands such that they are listed from right (least complex) to 388 /// left (most complex). This puts constants before unary operators before 389 /// binary operators. 390 /// 391 /// Associative operators: 392 /// 393 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 394 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 395 /// 396 /// Associative and commutative operators: 397 /// 398 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 399 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 400 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 401 /// if C1 and C2 are constants. 402 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 403 Instruction::BinaryOps Opcode = I.getOpcode(); 404 bool Changed = false; 405 406 do { 407 // Order operands such that they are listed from right (least complex) to 408 // left (most complex). This puts constants before unary operators before 409 // binary operators. 410 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 411 getComplexity(I.getOperand(1))) 412 Changed = !I.swapOperands(); 413 414 if (I.isCommutative()) { 415 if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) { 416 replaceOperand(I, 0, Pair->first); 417 replaceOperand(I, 1, Pair->second); 418 Changed = true; 419 } 420 } 421 422 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 423 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 424 425 if (I.isAssociative()) { 426 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 427 if (Op0 && Op0->getOpcode() == Opcode) { 428 Value *A = Op0->getOperand(0); 429 Value *B = Op0->getOperand(1); 430 Value *C = I.getOperand(1); 431 432 // Does "B op C" simplify? 433 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 434 // It simplifies to V. Form "A op V". 435 replaceOperand(I, 0, A); 436 replaceOperand(I, 1, V); 437 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 438 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 439 440 // Conservatively clear all optional flags since they may not be 441 // preserved by the reassociation. Reset nsw/nuw based on the above 442 // analysis. 443 ClearSubclassDataAfterReassociation(I); 444 445 // Note: this is only valid because SimplifyBinOp doesn't look at 446 // the operands to Op0. 447 if (IsNUW) 448 I.setHasNoUnsignedWrap(true); 449 450 if (IsNSW) 451 I.setHasNoSignedWrap(true); 452 453 Changed = true; 454 ++NumReassoc; 455 continue; 456 } 457 } 458 459 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 460 if (Op1 && Op1->getOpcode() == Opcode) { 461 Value *A = I.getOperand(0); 462 Value *B = Op1->getOperand(0); 463 Value *C = Op1->getOperand(1); 464 465 // Does "A op B" simplify? 466 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 467 // It simplifies to V. Form "V op C". 468 replaceOperand(I, 0, V); 469 replaceOperand(I, 1, C); 470 // Conservatively clear the optional flags, since they may not be 471 // preserved by the reassociation. 472 ClearSubclassDataAfterReassociation(I); 473 Changed = true; 474 ++NumReassoc; 475 continue; 476 } 477 } 478 } 479 480 if (I.isAssociative() && I.isCommutative()) { 481 if (simplifyAssocCastAssoc(&I, *this)) { 482 Changed = true; 483 ++NumReassoc; 484 continue; 485 } 486 487 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 488 if (Op0 && Op0->getOpcode() == Opcode) { 489 Value *A = Op0->getOperand(0); 490 Value *B = Op0->getOperand(1); 491 Value *C = I.getOperand(1); 492 493 // Does "C op A" simplify? 494 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 495 // It simplifies to V. Form "V op B". 496 replaceOperand(I, 0, V); 497 replaceOperand(I, 1, B); 498 // Conservatively clear the optional flags, since they may not be 499 // preserved by the reassociation. 500 ClearSubclassDataAfterReassociation(I); 501 Changed = true; 502 ++NumReassoc; 503 continue; 504 } 505 } 506 507 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 508 if (Op1 && Op1->getOpcode() == Opcode) { 509 Value *A = I.getOperand(0); 510 Value *B = Op1->getOperand(0); 511 Value *C = Op1->getOperand(1); 512 513 // Does "C op A" simplify? 514 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 515 // It simplifies to V. Form "B op V". 516 replaceOperand(I, 0, B); 517 replaceOperand(I, 1, V); 518 // Conservatively clear the optional flags, since they may not be 519 // preserved by the reassociation. 520 ClearSubclassDataAfterReassociation(I); 521 Changed = true; 522 ++NumReassoc; 523 continue; 524 } 525 } 526 527 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 528 // if C1 and C2 are constants. 529 Value *A, *B; 530 Constant *C1, *C2, *CRes; 531 if (Op0 && Op1 && 532 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 533 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 534 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) && 535 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) { 536 bool IsNUW = hasNoUnsignedWrap(I) && 537 hasNoUnsignedWrap(*Op0) && 538 hasNoUnsignedWrap(*Op1); 539 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 540 BinaryOperator::CreateNUW(Opcode, A, B) : 541 BinaryOperator::Create(Opcode, A, B); 542 543 if (isa<FPMathOperator>(NewBO)) { 544 FastMathFlags Flags = I.getFastMathFlags() & 545 Op0->getFastMathFlags() & 546 Op1->getFastMathFlags(); 547 NewBO->setFastMathFlags(Flags); 548 } 549 InsertNewInstWith(NewBO, I.getIterator()); 550 NewBO->takeName(Op1); 551 replaceOperand(I, 0, NewBO); 552 replaceOperand(I, 1, CRes); 553 // Conservatively clear the optional flags, since they may not be 554 // preserved by the reassociation. 555 ClearSubclassDataAfterReassociation(I); 556 if (IsNUW) 557 I.setHasNoUnsignedWrap(true); 558 559 Changed = true; 560 continue; 561 } 562 } 563 564 // No further simplifications. 565 return Changed; 566 } while (true); 567 } 568 569 /// Return whether "X LOp (Y ROp Z)" is always equal to 570 /// "(X LOp Y) ROp (X LOp Z)". 571 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 572 Instruction::BinaryOps ROp) { 573 // X & (Y | Z) <--> (X & Y) | (X & Z) 574 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 575 if (LOp == Instruction::And) 576 return ROp == Instruction::Or || ROp == Instruction::Xor; 577 578 // X | (Y & Z) <--> (X | Y) & (X | Z) 579 if (LOp == Instruction::Or) 580 return ROp == Instruction::And; 581 582 // X * (Y + Z) <--> (X * Y) + (X * Z) 583 // X * (Y - Z) <--> (X * Y) - (X * Z) 584 if (LOp == Instruction::Mul) 585 return ROp == Instruction::Add || ROp == Instruction::Sub; 586 587 return false; 588 } 589 590 /// Return whether "(X LOp Y) ROp Z" is always equal to 591 /// "(X ROp Z) LOp (Y ROp Z)". 592 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 593 Instruction::BinaryOps ROp) { 594 if (Instruction::isCommutative(ROp)) 595 return leftDistributesOverRight(ROp, LOp); 596 597 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 598 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 599 600 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 601 // but this requires knowing that the addition does not overflow and other 602 // such subtleties. 603 } 604 605 /// This function returns identity value for given opcode, which can be used to 606 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 607 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 608 if (isa<Constant>(V)) 609 return nullptr; 610 611 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 612 } 613 614 /// This function predicates factorization using distributive laws. By default, 615 /// it just returns the 'Op' inputs. But for special-cases like 616 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 617 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 618 /// allow more factorization opportunities. 619 static Instruction::BinaryOps 620 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 621 Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) { 622 assert(Op && "Expected a binary operator"); 623 LHS = Op->getOperand(0); 624 RHS = Op->getOperand(1); 625 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 626 Constant *C; 627 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 628 // X << C --> X * (1 << C) 629 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 630 return Instruction::Mul; 631 } 632 // TODO: We can add other conversions e.g. shr => div etc. 633 } 634 if (Instruction::isBitwiseLogicOp(TopOpcode)) { 635 if (OtherOp && OtherOp->getOpcode() == Instruction::AShr && 636 match(Op, m_LShr(m_NonNegative(), m_Value()))) { 637 // lshr nneg C, X --> ashr nneg C, X 638 return Instruction::AShr; 639 } 640 } 641 return Op->getOpcode(); 642 } 643 644 /// This tries to simplify binary operations by factorizing out common terms 645 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 646 static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, 647 InstCombiner::BuilderTy &Builder, 648 Instruction::BinaryOps InnerOpcode, Value *A, 649 Value *B, Value *C, Value *D) { 650 assert(A && B && C && D && "All values must be provided"); 651 652 Value *V = nullptr; 653 Value *RetVal = nullptr; 654 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 655 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 656 657 // Does "X op' Y" always equal "Y op' X"? 658 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 659 660 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 661 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) { 662 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 663 // commutative case, "(A op' B) op (C op' A)"? 664 if (A == C || (InnerCommutative && A == D)) { 665 if (A != C) 666 std::swap(C, D); 667 // Consider forming "A op' (B op D)". 668 // If "B op D" simplifies then it can be formed with no cost. 669 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 670 671 // If "B op D" doesn't simplify then only go on if one of the existing 672 // operations "A op' B" and "C op' D" will be zapped as no longer used. 673 if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) 674 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 675 if (V) 676 RetVal = Builder.CreateBinOp(InnerOpcode, A, V); 677 } 678 } 679 680 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 681 if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) { 682 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 683 // commutative case, "(A op' B) op (B op' D)"? 684 if (B == D || (InnerCommutative && B == C)) { 685 if (B != D) 686 std::swap(C, D); 687 // Consider forming "(A op C) op' B". 688 // If "A op C" simplifies then it can be formed with no cost. 689 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 690 691 // If "A op C" doesn't simplify then only go on if one of the existing 692 // operations "A op' B" and "C op' D" will be zapped as no longer used. 693 if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) 694 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 695 if (V) 696 RetVal = Builder.CreateBinOp(InnerOpcode, V, B); 697 } 698 } 699 700 if (!RetVal) 701 return nullptr; 702 703 ++NumFactor; 704 RetVal->takeName(&I); 705 706 // Try to add no-overflow flags to the final value. 707 if (isa<OverflowingBinaryOperator>(RetVal)) { 708 bool HasNSW = false; 709 bool HasNUW = false; 710 if (isa<OverflowingBinaryOperator>(&I)) { 711 HasNSW = I.hasNoSignedWrap(); 712 HasNUW = I.hasNoUnsignedWrap(); 713 } 714 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 715 HasNSW &= LOBO->hasNoSignedWrap(); 716 HasNUW &= LOBO->hasNoUnsignedWrap(); 717 } 718 719 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 720 HasNSW &= ROBO->hasNoSignedWrap(); 721 HasNUW &= ROBO->hasNoUnsignedWrap(); 722 } 723 724 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) { 725 // We can propagate 'nsw' if we know that 726 // %Y = mul nsw i16 %X, C 727 // %Z = add nsw i16 %Y, %X 728 // => 729 // %Z = mul nsw i16 %X, C+1 730 // 731 // iff C+1 isn't INT_MIN 732 const APInt *CInt; 733 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 734 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW); 735 736 // nuw can be propagated with any constant or nuw value. 737 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW); 738 } 739 } 740 return RetVal; 741 } 742 743 // If `I` has one Const operand and the other matches `(ctpop (not x))`, 744 // replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`. 745 // This is only useful is the new subtract can fold so we only handle the 746 // following cases: 747 // 1) (add/sub/disjoint_or C, (ctpop (not x)) 748 // -> (add/sub/disjoint_or C', (ctpop x)) 749 // 1) (cmp pred C, (ctpop (not x)) 750 // -> (cmp pred C', (ctpop x)) 751 Instruction *InstCombinerImpl::tryFoldInstWithCtpopWithNot(Instruction *I) { 752 unsigned Opc = I->getOpcode(); 753 unsigned ConstIdx = 1; 754 switch (Opc) { 755 default: 756 return nullptr; 757 // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x)) 758 // We can fold the BitWidth(x) with add/sub/icmp as long the other operand 759 // is constant. 760 case Instruction::Sub: 761 ConstIdx = 0; 762 break; 763 case Instruction::ICmp: 764 // Signed predicates aren't correct in some edge cases like for i2 types, as 765 // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed 766 // comparisons against it are simplfied to unsigned. 767 if (cast<ICmpInst>(I)->isSigned()) 768 return nullptr; 769 break; 770 case Instruction::Or: 771 if (!match(I, m_DisjointOr(m_Value(), m_Value()))) 772 return nullptr; 773 [[fallthrough]]; 774 case Instruction::Add: 775 break; 776 } 777 778 Value *Op; 779 // Find ctpop. 780 if (!match(I->getOperand(1 - ConstIdx), 781 m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(Op))))) 782 return nullptr; 783 784 Constant *C; 785 // Check other operand is ImmConstant. 786 if (!match(I->getOperand(ConstIdx), m_ImmConstant(C))) 787 return nullptr; 788 789 Type *Ty = Op->getType(); 790 Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits()); 791 // Need extra check for icmp. Note if this check is true, it generally means 792 // the icmp will simplify to true/false. 793 if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality() && 794 !ConstantExpr::getICmp(ICmpInst::ICMP_UGT, C, BitWidthC)->isZeroValue()) 795 return nullptr; 796 797 // Check we can invert `(not x)` for free. 798 bool Consumes = false; 799 if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes) 800 return nullptr; 801 Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder); 802 assert(NotOp != nullptr && 803 "Desync between isFreeToInvert and getFreelyInverted"); 804 805 Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp); 806 807 Value *R = nullptr; 808 809 // Do the transformation here to avoid potentially introducing an infinite 810 // loop. 811 switch (Opc) { 812 case Instruction::Sub: 813 R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC)); 814 break; 815 case Instruction::Or: 816 case Instruction::Add: 817 R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp); 818 break; 819 case Instruction::ICmp: 820 R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(), 821 CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C)); 822 break; 823 default: 824 llvm_unreachable("Unhandled Opcode"); 825 } 826 assert(R != nullptr); 827 return replaceInstUsesWith(*I, R); 828 } 829 830 // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C)) 831 // IFF 832 // 1) the logic_shifts match 833 // 2) either both binops are binops and one is `and` or 834 // BinOp1 is `and` 835 // (logic_shift (inv_logic_shift C1, C), C) == C1 or 836 // 837 // -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C) 838 // 839 // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt)) 840 // IFF 841 // 1) the logic_shifts match 842 // 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`). 843 // 844 // -> (BinOp (logic_shift (BinOp X, Y)), Mask) 845 // 846 // (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt)) 847 // IFF 848 // 1) Binop1 is bitwise logical operator `and`, `or` or `xor` 849 // 2) Binop2 is `not` 850 // 851 // -> (arithmetic_shift Binop1((not X), Y), Amt) 852 853 Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) { 854 const DataLayout &DL = I.getModule()->getDataLayout(); 855 auto IsValidBinOpc = [](unsigned Opc) { 856 switch (Opc) { 857 default: 858 return false; 859 case Instruction::And: 860 case Instruction::Or: 861 case Instruction::Xor: 862 case Instruction::Add: 863 // Skip Sub as we only match constant masks which will canonicalize to use 864 // add. 865 return true; 866 } 867 }; 868 869 // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra 870 // constraints. 871 auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2, 872 unsigned ShOpc) { 873 assert(ShOpc != Instruction::AShr); 874 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) || 875 ShOpc == Instruction::Shl; 876 }; 877 878 auto GetInvShift = [](unsigned ShOpc) { 879 assert(ShOpc != Instruction::AShr); 880 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr; 881 }; 882 883 auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2, 884 unsigned ShOpc, Constant *CMask, 885 Constant *CShift) { 886 // If the BinOp1 is `and` we don't need to check the mask. 887 if (BinOpc1 == Instruction::And) 888 return true; 889 890 // For all other possible transfers we need complete distributable 891 // binop/shift (anything but `add` + `lshr`). 892 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc)) 893 return false; 894 895 // If BinOp2 is `and`, any mask works (this only really helps for non-splat 896 // vecs, otherwise the mask will be simplified and the following check will 897 // handle it). 898 if (BinOpc2 == Instruction::And) 899 return true; 900 901 // Otherwise, need mask that meets the below requirement. 902 // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask 903 Constant *MaskInvShift = 904 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL); 905 return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) == 906 CMask; 907 }; 908 909 auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * { 910 Constant *CMask, *CShift; 911 Value *X, *Y, *ShiftedX, *Mask, *Shift; 912 if (!match(I.getOperand(ShOpnum), 913 m_OneUse(m_Shift(m_Value(Y), m_Value(Shift))))) 914 return nullptr; 915 if (!match(I.getOperand(1 - ShOpnum), 916 m_BinOp(m_Value(ShiftedX), m_Value(Mask)))) 917 return nullptr; 918 919 if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift))))) 920 return nullptr; 921 922 // Make sure we are matching instruction shifts and not ConstantExpr 923 auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum)); 924 auto *IX = dyn_cast<Instruction>(ShiftedX); 925 if (!IY || !IX) 926 return nullptr; 927 928 // LHS and RHS need same shift opcode 929 unsigned ShOpc = IY->getOpcode(); 930 if (ShOpc != IX->getOpcode()) 931 return nullptr; 932 933 // Make sure binop is real instruction and not ConstantExpr 934 auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum)); 935 if (!BO2) 936 return nullptr; 937 938 unsigned BinOpc = BO2->getOpcode(); 939 // Make sure we have valid binops. 940 if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc)) 941 return nullptr; 942 943 if (ShOpc == Instruction::AShr) { 944 if (Instruction::isBitwiseLogicOp(I.getOpcode()) && 945 BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) { 946 Value *NotX = Builder.CreateNot(X); 947 Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX); 948 return BinaryOperator::Create( 949 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift); 950 } 951 952 return nullptr; 953 } 954 955 // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just 956 // distribute to drop the shift irrelevant of constants. 957 if (BinOpc == I.getOpcode() && 958 IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) { 959 Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y); 960 Value *NewBinOp1 = Builder.CreateBinOp( 961 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift); 962 return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask); 963 } 964 965 // Otherwise we can only distribute by constant shifting the mask, so 966 // ensure we have constants. 967 if (!match(Shift, m_ImmConstant(CShift))) 968 return nullptr; 969 if (!match(Mask, m_ImmConstant(CMask))) 970 return nullptr; 971 972 // Check if we can distribute the binops. 973 if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift)) 974 return nullptr; 975 976 Constant *NewCMask = 977 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL); 978 Value *NewBinOp2 = Builder.CreateBinOp( 979 static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask); 980 Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2); 981 return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc), 982 NewBinOp1, CShift); 983 }; 984 985 if (Instruction *R = MatchBinOp(0)) 986 return R; 987 return MatchBinOp(1); 988 } 989 990 // (Binop (zext C), (select C, T, F)) 991 // -> (select C, (binop 1, T), (binop 0, F)) 992 // 993 // (Binop (sext C), (select C, T, F)) 994 // -> (select C, (binop -1, T), (binop 0, F)) 995 // 996 // Attempt to simplify binary operations into a select with folded args, when 997 // one operand of the binop is a select instruction and the other operand is a 998 // zext/sext extension, whose value is the select condition. 999 Instruction * 1000 InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) { 1001 // TODO: this simplification may be extended to any speculatable instruction, 1002 // not just binops, and would possibly be handled better in FoldOpIntoSelect. 1003 Instruction::BinaryOps Opc = I.getOpcode(); 1004 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1005 Value *A, *CondVal, *TrueVal, *FalseVal; 1006 Value *CastOp; 1007 1008 auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) { 1009 return match(CastOp, m_ZExtOrSExt(m_Value(A))) && 1010 A->getType()->getScalarSizeInBits() == 1 && 1011 match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal), 1012 m_Value(FalseVal))); 1013 }; 1014 1015 // Make sure one side of the binop is a select instruction, and the other is a 1016 // zero/sign extension operating on a i1. 1017 if (MatchSelectAndCast(LHS, RHS)) 1018 CastOp = LHS; 1019 else if (MatchSelectAndCast(RHS, LHS)) 1020 CastOp = RHS; 1021 else 1022 return nullptr; 1023 1024 auto NewFoldedConst = [&](bool IsTrueArm, Value *V) { 1025 bool IsCastOpRHS = (CastOp == RHS); 1026 bool IsZExt = isa<ZExtInst>(CastOp); 1027 Constant *C; 1028 1029 if (IsTrueArm) { 1030 C = Constant::getNullValue(V->getType()); 1031 } else if (IsZExt) { 1032 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1033 C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1)); 1034 } else { 1035 C = Constant::getAllOnesValue(V->getType()); 1036 } 1037 1038 return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C) 1039 : Builder.CreateBinOp(Opc, C, V); 1040 }; 1041 1042 // If the value used in the zext/sext is the select condition, or the negated 1043 // of the select condition, the binop can be simplified. 1044 if (CondVal == A) { 1045 Value *NewTrueVal = NewFoldedConst(false, TrueVal); 1046 return SelectInst::Create(CondVal, NewTrueVal, 1047 NewFoldedConst(true, FalseVal)); 1048 } 1049 1050 if (match(A, m_Not(m_Specific(CondVal)))) { 1051 Value *NewTrueVal = NewFoldedConst(true, TrueVal); 1052 return SelectInst::Create(CondVal, NewTrueVal, 1053 NewFoldedConst(false, FalseVal)); 1054 } 1055 1056 return nullptr; 1057 } 1058 1059 Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) { 1060 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1061 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 1062 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 1063 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 1064 Value *A, *B, *C, *D; 1065 Instruction::BinaryOps LHSOpcode, RHSOpcode; 1066 1067 if (Op0) 1068 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1); 1069 if (Op1) 1070 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0); 1071 1072 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 1073 // a common term. 1074 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 1075 if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D)) 1076 return V; 1077 1078 // The instruction has the form "(A op' B) op (C)". Try to factorize common 1079 // term. 1080 if (Op0) 1081 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 1082 if (Value *V = 1083 tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident)) 1084 return V; 1085 1086 // The instruction has the form "(B) op (C op' D)". Try to factorize common 1087 // term. 1088 if (Op1) 1089 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 1090 if (Value *V = 1091 tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D)) 1092 return V; 1093 1094 return nullptr; 1095 } 1096 1097 /// This tries to simplify binary operations which some other binary operation 1098 /// distributes over either by factorizing out common terms 1099 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 1100 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 1101 /// Returns the simplified value, or null if it didn't simplify. 1102 Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) { 1103 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1104 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 1105 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 1106 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 1107 1108 // Factorization. 1109 if (Value *R = tryFactorizationFolds(I)) 1110 return R; 1111 1112 // Expansion. 1113 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 1114 // The instruction has the form "(A op' B) op C". See if expanding it out 1115 // to "(A op C) op' (B op C)" results in simplifications. 1116 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 1117 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 1118 1119 // Disable the use of undef because it's not safe to distribute undef. 1120 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 1121 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 1122 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 1123 1124 // Do "A op C" and "B op C" both simplify? 1125 if (L && R) { 1126 // They do! Return "L op' R". 1127 ++NumExpand; 1128 C = Builder.CreateBinOp(InnerOpcode, L, R); 1129 C->takeName(&I); 1130 return C; 1131 } 1132 1133 // Does "A op C" simplify to the identity value for the inner opcode? 1134 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 1135 // They do! Return "B op C". 1136 ++NumExpand; 1137 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 1138 C->takeName(&I); 1139 return C; 1140 } 1141 1142 // Does "B op C" simplify to the identity value for the inner opcode? 1143 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 1144 // They do! Return "A op C". 1145 ++NumExpand; 1146 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 1147 C->takeName(&I); 1148 return C; 1149 } 1150 } 1151 1152 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 1153 // The instruction has the form "A op (B op' C)". See if expanding it out 1154 // to "(A op B) op' (A op C)" results in simplifications. 1155 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 1156 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 1157 1158 // Disable the use of undef because it's not safe to distribute undef. 1159 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 1160 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 1161 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 1162 1163 // Do "A op B" and "A op C" both simplify? 1164 if (L && R) { 1165 // They do! Return "L op' R". 1166 ++NumExpand; 1167 A = Builder.CreateBinOp(InnerOpcode, L, R); 1168 A->takeName(&I); 1169 return A; 1170 } 1171 1172 // Does "A op B" simplify to the identity value for the inner opcode? 1173 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 1174 // They do! Return "A op C". 1175 ++NumExpand; 1176 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 1177 A->takeName(&I); 1178 return A; 1179 } 1180 1181 // Does "A op C" simplify to the identity value for the inner opcode? 1182 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 1183 // They do! Return "A op B". 1184 ++NumExpand; 1185 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 1186 A->takeName(&I); 1187 return A; 1188 } 1189 } 1190 1191 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 1192 } 1193 1194 static std::optional<std::pair<Value *, Value *>> 1195 matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) { 1196 if (LHS->getParent() != RHS->getParent()) 1197 return std::nullopt; 1198 1199 if (LHS->getNumIncomingValues() < 2) 1200 return std::nullopt; 1201 1202 if (!equal(LHS->blocks(), RHS->blocks())) 1203 return std::nullopt; 1204 1205 Value *L0 = LHS->getIncomingValue(0); 1206 Value *R0 = RHS->getIncomingValue(0); 1207 1208 for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) { 1209 Value *L1 = LHS->getIncomingValue(I); 1210 Value *R1 = RHS->getIncomingValue(I); 1211 1212 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1)) 1213 continue; 1214 1215 return std::nullopt; 1216 } 1217 1218 return std::optional(std::pair(L0, R0)); 1219 } 1220 1221 std::optional<std::pair<Value *, Value *>> 1222 InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) { 1223 Instruction *LHSInst = dyn_cast<Instruction>(LHS); 1224 Instruction *RHSInst = dyn_cast<Instruction>(RHS); 1225 if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode()) 1226 return std::nullopt; 1227 switch (LHSInst->getOpcode()) { 1228 case Instruction::PHI: 1229 return matchSymmetricPhiNodesPair(cast<PHINode>(LHS), cast<PHINode>(RHS)); 1230 case Instruction::Select: { 1231 Value *Cond = LHSInst->getOperand(0); 1232 Value *TrueVal = LHSInst->getOperand(1); 1233 Value *FalseVal = LHSInst->getOperand(2); 1234 if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) && 1235 FalseVal == RHSInst->getOperand(1)) 1236 return std::pair(TrueVal, FalseVal); 1237 return std::nullopt; 1238 } 1239 case Instruction::Call: { 1240 // Match min(a, b) and max(a, b) 1241 MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst); 1242 MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst); 1243 if (LHSMinMax && RHSMinMax && 1244 LHSMinMax->getPredicate() == 1245 ICmpInst::getSwappedPredicate(RHSMinMax->getPredicate()) && 1246 ((LHSMinMax->getLHS() == RHSMinMax->getLHS() && 1247 LHSMinMax->getRHS() == RHSMinMax->getRHS()) || 1248 (LHSMinMax->getLHS() == RHSMinMax->getRHS() && 1249 LHSMinMax->getRHS() == RHSMinMax->getLHS()))) 1250 return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS()); 1251 return std::nullopt; 1252 } 1253 default: 1254 return std::nullopt; 1255 } 1256 } 1257 1258 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 1259 Value *LHS, 1260 Value *RHS) { 1261 Value *A, *B, *C, *D, *E, *F; 1262 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 1263 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 1264 if (!LHSIsSelect && !RHSIsSelect) 1265 return nullptr; 1266 1267 FastMathFlags FMF; 1268 BuilderTy::FastMathFlagGuard Guard(Builder); 1269 if (isa<FPMathOperator>(&I)) { 1270 FMF = I.getFastMathFlags(); 1271 Builder.setFastMathFlags(FMF); 1272 } 1273 1274 Instruction::BinaryOps Opcode = I.getOpcode(); 1275 SimplifyQuery Q = SQ.getWithInstruction(&I); 1276 1277 Value *Cond, *True = nullptr, *False = nullptr; 1278 1279 // Special-case for add/negate combination. Replace the zero in the negation 1280 // with the trailing add operand: 1281 // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N) 1282 // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False 1283 auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * { 1284 // We need an 'add' and exactly 1 arm of the select to have been simplified. 1285 if (Opcode != Instruction::Add || (!True && !False) || (True && False)) 1286 return nullptr; 1287 1288 Value *N; 1289 if (True && match(FVal, m_Neg(m_Value(N)))) { 1290 Value *Sub = Builder.CreateSub(Z, N); 1291 return Builder.CreateSelect(Cond, True, Sub, I.getName()); 1292 } 1293 if (False && match(TVal, m_Neg(m_Value(N)))) { 1294 Value *Sub = Builder.CreateSub(Z, N); 1295 return Builder.CreateSelect(Cond, Sub, False, I.getName()); 1296 } 1297 return nullptr; 1298 }; 1299 1300 if (LHSIsSelect && RHSIsSelect && A == D) { 1301 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 1302 Cond = A; 1303 True = simplifyBinOp(Opcode, B, E, FMF, Q); 1304 False = simplifyBinOp(Opcode, C, F, FMF, Q); 1305 1306 if (LHS->hasOneUse() && RHS->hasOneUse()) { 1307 if (False && !True) 1308 True = Builder.CreateBinOp(Opcode, B, E); 1309 else if (True && !False) 1310 False = Builder.CreateBinOp(Opcode, C, F); 1311 } 1312 } else if (LHSIsSelect && LHS->hasOneUse()) { 1313 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 1314 Cond = A; 1315 True = simplifyBinOp(Opcode, B, RHS, FMF, Q); 1316 False = simplifyBinOp(Opcode, C, RHS, FMF, Q); 1317 if (Value *NewSel = foldAddNegate(B, C, RHS)) 1318 return NewSel; 1319 } else if (RHSIsSelect && RHS->hasOneUse()) { 1320 // X op (D ? E : F) -> D ? (X op E) : (X op F) 1321 Cond = D; 1322 True = simplifyBinOp(Opcode, LHS, E, FMF, Q); 1323 False = simplifyBinOp(Opcode, LHS, F, FMF, Q); 1324 if (Value *NewSel = foldAddNegate(E, F, LHS)) 1325 return NewSel; 1326 } 1327 1328 if (!True || !False) 1329 return nullptr; 1330 1331 Value *SI = Builder.CreateSelect(Cond, True, False); 1332 SI->takeName(&I); 1333 return SI; 1334 } 1335 1336 /// Freely adapt every user of V as-if V was changed to !V. 1337 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 1338 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) { 1339 assert(!isa<Constant>(I) && "Shouldn't invert users of constant"); 1340 for (User *U : make_early_inc_range(I->users())) { 1341 if (U == IgnoredUser) 1342 continue; // Don't consider this user. 1343 switch (cast<Instruction>(U)->getOpcode()) { 1344 case Instruction::Select: { 1345 auto *SI = cast<SelectInst>(U); 1346 SI->swapValues(); 1347 SI->swapProfMetadata(); 1348 break; 1349 } 1350 case Instruction::Br: 1351 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 1352 break; 1353 case Instruction::Xor: 1354 replaceInstUsesWith(cast<Instruction>(*U), I); 1355 // Add to worklist for DCE. 1356 addToWorklist(cast<Instruction>(U)); 1357 break; 1358 default: 1359 llvm_unreachable("Got unexpected user - out of sync with " 1360 "canFreelyInvertAllUsersOf() ?"); 1361 } 1362 } 1363 } 1364 1365 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 1366 /// constant zero (which is the 'negate' form). 1367 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 1368 Value *NegV; 1369 if (match(V, m_Neg(m_Value(NegV)))) 1370 return NegV; 1371 1372 // Constants can be considered to be negated values if they can be folded. 1373 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 1374 return ConstantExpr::getNeg(C); 1375 1376 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 1377 if (C->getType()->getElementType()->isIntegerTy()) 1378 return ConstantExpr::getNeg(C); 1379 1380 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 1381 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1382 Constant *Elt = CV->getAggregateElement(i); 1383 if (!Elt) 1384 return nullptr; 1385 1386 if (isa<UndefValue>(Elt)) 1387 continue; 1388 1389 if (!isa<ConstantInt>(Elt)) 1390 return nullptr; 1391 } 1392 return ConstantExpr::getNeg(CV); 1393 } 1394 1395 // Negate integer vector splats. 1396 if (auto *CV = dyn_cast<Constant>(V)) 1397 if (CV->getType()->isVectorTy() && 1398 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 1399 return ConstantExpr::getNeg(CV); 1400 1401 return nullptr; 1402 } 1403 1404 /// A binop with a constant operand and a sign-extended boolean operand may be 1405 /// converted into a select of constants by applying the binary operation to 1406 /// the constant with the two possible values of the extended boolean (0 or -1). 1407 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 1408 // TODO: Handle non-commutative binop (constant is operand 0). 1409 // TODO: Handle zext. 1410 // TODO: Peek through 'not' of cast. 1411 Value *BO0 = BO.getOperand(0); 1412 Value *BO1 = BO.getOperand(1); 1413 Value *X; 1414 Constant *C; 1415 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 1416 !X->getType()->isIntOrIntVectorTy(1)) 1417 return nullptr; 1418 1419 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 1420 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 1421 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 1422 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C); 1423 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C); 1424 return SelectInst::Create(X, TVal, FVal); 1425 } 1426 1427 static Constant *constantFoldOperationIntoSelectOperand(Instruction &I, 1428 SelectInst *SI, 1429 bool IsTrueArm) { 1430 SmallVector<Constant *> ConstOps; 1431 for (Value *Op : I.operands()) { 1432 CmpInst::Predicate Pred; 1433 Constant *C = nullptr; 1434 if (Op == SI) { 1435 C = dyn_cast<Constant>(IsTrueArm ? SI->getTrueValue() 1436 : SI->getFalseValue()); 1437 } else if (match(SI->getCondition(), 1438 m_ICmp(Pred, m_Specific(Op), m_Constant(C))) && 1439 Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 1440 isGuaranteedNotToBeUndefOrPoison(C)) { 1441 // Pass 1442 } else { 1443 C = dyn_cast<Constant>(Op); 1444 } 1445 if (C == nullptr) 1446 return nullptr; 1447 1448 ConstOps.push_back(C); 1449 } 1450 1451 return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout()); 1452 } 1453 1454 static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, 1455 Value *NewOp, InstCombiner &IC) { 1456 Instruction *Clone = I.clone(); 1457 Clone->replaceUsesOfWith(SI, NewOp); 1458 Clone->dropUBImplyingAttrsAndMetadata(); 1459 IC.InsertNewInstBefore(Clone, SI->getIterator()); 1460 return Clone; 1461 } 1462 1463 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, 1464 bool FoldWithMultiUse) { 1465 // Don't modify shared select instructions unless set FoldWithMultiUse 1466 if (!SI->hasOneUse() && !FoldWithMultiUse) 1467 return nullptr; 1468 1469 Value *TV = SI->getTrueValue(); 1470 Value *FV = SI->getFalseValue(); 1471 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1472 return nullptr; 1473 1474 // Bool selects with constant operands can be folded to logical ops. 1475 if (SI->getType()->isIntOrIntVectorTy(1)) 1476 return nullptr; 1477 1478 // If it's a bitcast involving vectors, make sure it has the same number of 1479 // elements on both sides. 1480 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1481 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1482 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1483 1484 // Verify that either both or neither are vectors. 1485 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1486 return nullptr; 1487 1488 // If vectors, verify that they have the same number of elements. 1489 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1490 return nullptr; 1491 } 1492 1493 // Test if a FCmpInst instruction is used exclusively by a select as 1494 // part of a minimum or maximum operation. If so, refrain from doing 1495 // any other folding. This helps out other analyses which understand 1496 // non-obfuscated minimum and maximum idioms. And in this case, at 1497 // least one of the comparison operands has at least one user besides 1498 // the compare (the select), which would often largely negate the 1499 // benefit of folding anyway. 1500 if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) { 1501 if (CI->hasOneUse()) { 1502 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1503 if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) 1504 return nullptr; 1505 } 1506 } 1507 1508 // Make sure that one of the select arms constant folds successfully. 1509 Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true); 1510 Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false); 1511 if (!NewTV && !NewFV) 1512 return nullptr; 1513 1514 // Create an instruction for the arm that did not fold. 1515 if (!NewTV) 1516 NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this); 1517 if (!NewFV) 1518 NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this); 1519 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1520 } 1521 1522 static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN, 1523 Value *InValue, BasicBlock *InBB, 1524 const DataLayout &DL, 1525 const SimplifyQuery SQ) { 1526 // NB: It is a precondition of this transform that the operands be 1527 // phi translatable! This is usually trivially satisfied by limiting it 1528 // to constant ops, and for selects we do a more sophisticated check. 1529 SmallVector<Value *> Ops; 1530 for (Value *Op : I.operands()) { 1531 if (Op == PN) 1532 Ops.push_back(InValue); 1533 else 1534 Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB)); 1535 } 1536 1537 // Don't consider the simplification successful if we get back a constant 1538 // expression. That's just an instruction in hiding. 1539 // Also reject the case where we simplify back to the phi node. We wouldn't 1540 // be able to remove it in that case. 1541 Value *NewVal = simplifyInstructionWithOperands( 1542 &I, Ops, SQ.getWithInstruction(InBB->getTerminator())); 1543 if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr())) 1544 return NewVal; 1545 1546 // Check if incoming PHI value can be replaced with constant 1547 // based on implied condition. 1548 BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator()); 1549 const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I); 1550 if (TerminatorBI && TerminatorBI->isConditional() && 1551 TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) { 1552 bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent(); 1553 std::optional<bool> ImpliedCond = 1554 isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(), 1555 Ops[0], Ops[1], DL, LHSIsTrue); 1556 if (ImpliedCond) 1557 return ConstantInt::getBool(I.getType(), ImpliedCond.value()); 1558 } 1559 1560 return nullptr; 1561 } 1562 1563 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1564 unsigned NumPHIValues = PN->getNumIncomingValues(); 1565 if (NumPHIValues == 0) 1566 return nullptr; 1567 1568 // We normally only transform phis with a single use. However, if a PHI has 1569 // multiple uses and they are all the same operation, we can fold *all* of the 1570 // uses into the PHI. 1571 if (!PN->hasOneUse()) { 1572 // Walk the use list for the instruction, comparing them to I. 1573 for (User *U : PN->users()) { 1574 Instruction *UI = cast<Instruction>(U); 1575 if (UI != &I && !I.isIdenticalTo(UI)) 1576 return nullptr; 1577 } 1578 // Otherwise, we can replace *all* users with the new PHI we form. 1579 } 1580 1581 // Check to see whether the instruction can be folded into each phi operand. 1582 // If there is one operand that does not fold, remember the BB it is in. 1583 // If there is more than one or if *it* is a PHI, bail out. 1584 SmallVector<Value *> NewPhiValues; 1585 BasicBlock *NonSimplifiedBB = nullptr; 1586 Value *NonSimplifiedInVal = nullptr; 1587 for (unsigned i = 0; i != NumPHIValues; ++i) { 1588 Value *InVal = PN->getIncomingValue(i); 1589 BasicBlock *InBB = PN->getIncomingBlock(i); 1590 1591 if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) { 1592 NewPhiValues.push_back(NewVal); 1593 continue; 1594 } 1595 1596 if (NonSimplifiedBB) return nullptr; // More than one non-simplified value. 1597 1598 NonSimplifiedBB = InBB; 1599 NonSimplifiedInVal = InVal; 1600 NewPhiValues.push_back(nullptr); 1601 1602 // If the InVal is an invoke at the end of the pred block, then we can't 1603 // insert a computation after it without breaking the edge. 1604 if (isa<InvokeInst>(InVal)) 1605 if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB) 1606 return nullptr; 1607 1608 // If the incoming non-constant value is reachable from the phis block, 1609 // we'll push the operation across a loop backedge. This could result in 1610 // an infinite combine loop, and is generally non-profitable (especially 1611 // if the operation was originally outside the loop). 1612 if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT, 1613 LI)) 1614 return nullptr; 1615 } 1616 1617 // If there is exactly one non-simplified value, we can insert a copy of the 1618 // operation in that block. However, if this is a critical edge, we would be 1619 // inserting the computation on some other paths (e.g. inside a loop). Only 1620 // do this if the pred block is unconditionally branching into the phi block. 1621 // Also, make sure that the pred block is not dead code. 1622 if (NonSimplifiedBB != nullptr) { 1623 BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator()); 1624 if (!BI || !BI->isUnconditional() || 1625 !DT.isReachableFromEntry(NonSimplifiedBB)) 1626 return nullptr; 1627 } 1628 1629 // Okay, we can do the transformation: create the new PHI node. 1630 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1631 InsertNewInstBefore(NewPN, PN->getIterator()); 1632 NewPN->takeName(PN); 1633 NewPN->setDebugLoc(PN->getDebugLoc()); 1634 1635 // If we are going to have to insert a new computation, do so right before the 1636 // predecessor's terminator. 1637 Instruction *Clone = nullptr; 1638 if (NonSimplifiedBB) { 1639 Clone = I.clone(); 1640 for (Use &U : Clone->operands()) { 1641 if (U == PN) 1642 U = NonSimplifiedInVal; 1643 else 1644 U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB); 1645 } 1646 InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator()); 1647 } 1648 1649 for (unsigned i = 0; i != NumPHIValues; ++i) { 1650 if (NewPhiValues[i]) 1651 NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i)); 1652 else 1653 NewPN->addIncoming(Clone, PN->getIncomingBlock(i)); 1654 } 1655 1656 for (User *U : make_early_inc_range(PN->users())) { 1657 Instruction *User = cast<Instruction>(U); 1658 if (User == &I) continue; 1659 replaceInstUsesWith(*User, NewPN); 1660 eraseInstFromFunction(*User); 1661 } 1662 1663 replaceAllDbgUsesWith(const_cast<PHINode &>(*PN), 1664 const_cast<PHINode &>(*NewPN), 1665 const_cast<PHINode &>(*PN), DT); 1666 return replaceInstUsesWith(I, NewPN); 1667 } 1668 1669 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1670 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1671 // we are guarding against replicating the binop in >1 predecessor. 1672 // This could miss matching a phi with 2 constant incoming values. 1673 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1674 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1675 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1676 Phi0->getNumOperands() != Phi1->getNumOperands()) 1677 return nullptr; 1678 1679 // TODO: Remove the restriction for binop being in the same block as the phis. 1680 if (BO.getParent() != Phi0->getParent() || 1681 BO.getParent() != Phi1->getParent()) 1682 return nullptr; 1683 1684 // Fold if there is at least one specific constant value in phi0 or phi1's 1685 // incoming values that comes from the same block and this specific constant 1686 // value can be used to do optimization for specific binary operator. 1687 // For example: 1688 // %phi0 = phi i32 [0, %bb0], [%i, %bb1] 1689 // %phi1 = phi i32 [%j, %bb0], [0, %bb1] 1690 // %add = add i32 %phi0, %phi1 1691 // ==> 1692 // %add = phi i32 [%j, %bb0], [%i, %bb1] 1693 Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(), 1694 /*AllowRHSConstant*/ false); 1695 if (C) { 1696 SmallVector<Value *, 4> NewIncomingValues; 1697 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) { 1698 auto &Phi0Use = std::get<0>(T); 1699 auto &Phi1Use = std::get<1>(T); 1700 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use)) 1701 return false; 1702 Value *Phi0UseV = Phi0Use.get(); 1703 Value *Phi1UseV = Phi1Use.get(); 1704 if (Phi0UseV == C) 1705 NewIncomingValues.push_back(Phi1UseV); 1706 else if (Phi1UseV == C) 1707 NewIncomingValues.push_back(Phi0UseV); 1708 else 1709 return false; 1710 return true; 1711 }; 1712 1713 if (all_of(zip(Phi0->operands(), Phi1->operands()), 1714 CanFoldIncomingValuePair)) { 1715 PHINode *NewPhi = 1716 PHINode::Create(Phi0->getType(), Phi0->getNumOperands()); 1717 assert(NewIncomingValues.size() == Phi0->getNumOperands() && 1718 "The number of collected incoming values should equal the number " 1719 "of the original PHINode operands!"); 1720 for (unsigned I = 0; I < Phi0->getNumOperands(); I++) 1721 NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I)); 1722 return NewPhi; 1723 } 1724 } 1725 1726 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1727 return nullptr; 1728 1729 // Match a pair of incoming constants for one of the predecessor blocks. 1730 BasicBlock *ConstBB, *OtherBB; 1731 Constant *C0, *C1; 1732 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 1733 ConstBB = Phi0->getIncomingBlock(0); 1734 OtherBB = Phi0->getIncomingBlock(1); 1735 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 1736 ConstBB = Phi0->getIncomingBlock(1); 1737 OtherBB = Phi0->getIncomingBlock(0); 1738 } else { 1739 return nullptr; 1740 } 1741 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 1742 return nullptr; 1743 1744 // The block that we are hoisting to must reach here unconditionally. 1745 // Otherwise, we could be speculatively executing an expensive or 1746 // non-speculative op. 1747 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 1748 if (!PredBlockBranch || PredBlockBranch->isConditional() || 1749 !DT.isReachableFromEntry(OtherBB)) 1750 return nullptr; 1751 1752 // TODO: This check could be tightened to only apply to binops (div/rem) that 1753 // are not safe to speculatively execute. But that could allow hoisting 1754 // potentially expensive instructions (fdiv for example). 1755 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 1756 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 1757 return nullptr; 1758 1759 // Fold constants for the predecessor block with constant incoming values. 1760 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL); 1761 if (!NewC) 1762 return nullptr; 1763 1764 // Make a new binop in the predecessor block with the non-constant incoming 1765 // values. 1766 Builder.SetInsertPoint(PredBlockBranch); 1767 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 1768 Phi0->getIncomingValueForBlock(OtherBB), 1769 Phi1->getIncomingValueForBlock(OtherBB)); 1770 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 1771 NotFoldedNewBO->copyIRFlags(&BO); 1772 1773 // Replace the binop with a phi of the new values. The old phis are dead. 1774 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 1775 NewPhi->addIncoming(NewBO, OtherBB); 1776 NewPhi->addIncoming(NewC, ConstBB); 1777 return NewPhi; 1778 } 1779 1780 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1781 if (!isa<Constant>(I.getOperand(1))) 1782 return nullptr; 1783 1784 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1785 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1786 return NewSel; 1787 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1788 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1789 return NewPhi; 1790 } 1791 return nullptr; 1792 } 1793 1794 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1795 // If this GEP has only 0 indices, it is the same pointer as 1796 // Src. If Src is not a trivial GEP too, don't combine 1797 // the indices. 1798 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1799 !Src.hasOneUse()) 1800 return false; 1801 return true; 1802 } 1803 1804 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1805 if (!isa<VectorType>(Inst.getType())) 1806 return nullptr; 1807 1808 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1809 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1810 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1811 cast<VectorType>(Inst.getType())->getElementCount()); 1812 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1813 cast<VectorType>(Inst.getType())->getElementCount()); 1814 1815 // If both operands of the binop are vector concatenations, then perform the 1816 // narrow binop on each pair of the source operands followed by concatenation 1817 // of the results. 1818 Value *L0, *L1, *R0, *R1; 1819 ArrayRef<int> Mask; 1820 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1821 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1822 LHS->hasOneUse() && RHS->hasOneUse() && 1823 cast<ShuffleVectorInst>(LHS)->isConcat() && 1824 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1825 // This transform does not have the speculative execution constraint as 1826 // below because the shuffle is a concatenation. The new binops are 1827 // operating on exactly the same elements as the existing binop. 1828 // TODO: We could ease the mask requirement to allow different undef lanes, 1829 // but that requires an analysis of the binop-with-undef output value. 1830 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1831 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1832 BO->copyIRFlags(&Inst); 1833 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1834 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1835 BO->copyIRFlags(&Inst); 1836 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1837 } 1838 1839 auto createBinOpReverse = [&](Value *X, Value *Y) { 1840 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName()); 1841 if (auto *BO = dyn_cast<BinaryOperator>(V)) 1842 BO->copyIRFlags(&Inst); 1843 Module *M = Inst.getModule(); 1844 Function *F = Intrinsic::getDeclaration( 1845 M, Intrinsic::experimental_vector_reverse, V->getType()); 1846 return CallInst::Create(F, V); 1847 }; 1848 1849 // NOTE: Reverse shuffles don't require the speculative execution protection 1850 // below because they don't affect which lanes take part in the computation. 1851 1852 Value *V1, *V2; 1853 if (match(LHS, m_VecReverse(m_Value(V1)))) { 1854 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2)) 1855 if (match(RHS, m_VecReverse(m_Value(V2))) && 1856 (LHS->hasOneUse() || RHS->hasOneUse() || 1857 (LHS == RHS && LHS->hasNUses(2)))) 1858 return createBinOpReverse(V1, V2); 1859 1860 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat)) 1861 if (LHS->hasOneUse() && isSplatValue(RHS)) 1862 return createBinOpReverse(V1, RHS); 1863 } 1864 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2)) 1865 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2))))) 1866 return createBinOpReverse(LHS, V2); 1867 1868 // It may not be safe to reorder shuffles and things like div, urem, etc. 1869 // because we may trap when executing those ops on unknown vector elements. 1870 // See PR20059. 1871 if (!isSafeToSpeculativelyExecute(&Inst)) 1872 return nullptr; 1873 1874 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1875 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1876 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1877 BO->copyIRFlags(&Inst); 1878 return new ShuffleVectorInst(XY, M); 1879 }; 1880 1881 // If both arguments of the binary operation are shuffles that use the same 1882 // mask and shuffle within a single vector, move the shuffle after the binop. 1883 if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) && 1884 match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) && 1885 V1->getType() == V2->getType() && 1886 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1887 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1888 return createBinOpShuffle(V1, V2, Mask); 1889 } 1890 1891 // If both arguments of a commutative binop are select-shuffles that use the 1892 // same mask with commuted operands, the shuffles are unnecessary. 1893 if (Inst.isCommutative() && 1894 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1895 match(RHS, 1896 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1897 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1898 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1899 // TODO: Allow shuffles that contain undefs in the mask? 1900 // That is legal, but it reduces undef knowledge. 1901 // TODO: Allow arbitrary shuffles by shuffling after binop? 1902 // That might be legal, but we have to deal with poison. 1903 if (LShuf->isSelect() && 1904 !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) && 1905 RShuf->isSelect() && 1906 !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) { 1907 // Example: 1908 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1909 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1910 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1911 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1912 NewBO->copyIRFlags(&Inst); 1913 return NewBO; 1914 } 1915 } 1916 1917 // If one argument is a shuffle within one vector and the other is a constant, 1918 // try moving the shuffle after the binary operation. This canonicalization 1919 // intends to move shuffles closer to other shuffles and binops closer to 1920 // other binops, so they can be folded. It may also enable demanded elements 1921 // transforms. 1922 Constant *C; 1923 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1924 if (InstVTy && 1925 match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(), 1926 m_Mask(Mask))), 1927 m_ImmConstant(C))) && 1928 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1929 InstVTy->getNumElements()) { 1930 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1931 "Shuffle should not change scalar type"); 1932 1933 // Find constant NewC that has property: 1934 // shuffle(NewC, ShMask) = C 1935 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1936 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1937 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1938 bool ConstOp1 = isa<Constant>(RHS); 1939 ArrayRef<int> ShMask = Mask; 1940 unsigned SrcVecNumElts = 1941 cast<FixedVectorType>(V1->getType())->getNumElements(); 1942 PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType()); 1943 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, PoisonScalar); 1944 bool MayChange = true; 1945 unsigned NumElts = InstVTy->getNumElements(); 1946 for (unsigned I = 0; I < NumElts; ++I) { 1947 Constant *CElt = C->getAggregateElement(I); 1948 if (ShMask[I] >= 0) { 1949 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1950 Constant *NewCElt = NewVecC[ShMask[I]]; 1951 // Bail out if: 1952 // 1. The constant vector contains a constant expression. 1953 // 2. The shuffle needs an element of the constant vector that can't 1954 // be mapped to a new constant vector. 1955 // 3. This is a widening shuffle that copies elements of V1 into the 1956 // extended elements (extending with poison is allowed). 1957 if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) || 1958 I >= SrcVecNumElts) { 1959 MayChange = false; 1960 break; 1961 } 1962 NewVecC[ShMask[I]] = CElt; 1963 } 1964 // If this is a widening shuffle, we must be able to extend with poison 1965 // elements. If the original binop does not produce a poison in the high 1966 // lanes, then this transform is not safe. 1967 // Similarly for poison lanes due to the shuffle mask, we can only 1968 // transform binops that preserve poison. 1969 // TODO: We could shuffle those non-poison constant values into the 1970 // result by using a constant vector (rather than an poison vector) 1971 // as operand 1 of the new binop, but that might be too aggressive 1972 // for target-independent shuffle creation. 1973 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1974 Constant *MaybePoison = 1975 ConstOp1 1976 ? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL) 1977 : ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL); 1978 if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) { 1979 MayChange = false; 1980 break; 1981 } 1982 } 1983 } 1984 if (MayChange) { 1985 Constant *NewC = ConstantVector::get(NewVecC); 1986 // It may not be safe to execute a binop on a vector with poison elements 1987 // because the entire instruction can be folded to undef or create poison 1988 // that did not exist in the original code. 1989 // TODO: The shift case should not be necessary. 1990 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1991 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1992 1993 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1994 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1995 Value *NewLHS = ConstOp1 ? V1 : NewC; 1996 Value *NewRHS = ConstOp1 ? NewC : V1; 1997 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1998 } 1999 } 2000 2001 // Try to reassociate to sink a splat shuffle after a binary operation. 2002 if (Inst.isAssociative() && Inst.isCommutative()) { 2003 // Canonicalize shuffle operand as LHS. 2004 if (isa<ShuffleVectorInst>(RHS)) 2005 std::swap(LHS, RHS); 2006 2007 Value *X; 2008 ArrayRef<int> MaskC; 2009 int SplatIndex; 2010 Value *Y, *OtherOp; 2011 if (!match(LHS, 2012 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 2013 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 2014 X->getType() != Inst.getType() || 2015 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 2016 return nullptr; 2017 2018 // FIXME: This may not be safe if the analysis allows undef elements. By 2019 // moving 'Y' before the splat shuffle, we are implicitly assuming 2020 // that it is not undef/poison at the splat index. 2021 if (isSplatValue(OtherOp, SplatIndex)) { 2022 std::swap(Y, OtherOp); 2023 } else if (!isSplatValue(Y, SplatIndex)) { 2024 return nullptr; 2025 } 2026 2027 // X and Y are splatted values, so perform the binary operation on those 2028 // values followed by a splat followed by the 2nd binary operation: 2029 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 2030 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 2031 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 2032 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 2033 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 2034 2035 // Intersect FMF on both new binops. Other (poison-generating) flags are 2036 // dropped to be safe. 2037 if (isa<FPMathOperator>(R)) { 2038 R->copyFastMathFlags(&Inst); 2039 R->andIRFlags(RHS); 2040 } 2041 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 2042 NewInstBO->copyIRFlags(R); 2043 return R; 2044 } 2045 2046 return nullptr; 2047 } 2048 2049 /// Try to narrow the width of a binop if at least 1 operand is an extend of 2050 /// of a value. This requires a potentially expensive known bits check to make 2051 /// sure the narrow op does not overflow. 2052 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 2053 // We need at least one extended operand. 2054 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 2055 2056 // If this is a sub, we swap the operands since we always want an extension 2057 // on the RHS. The LHS can be an extension or a constant. 2058 if (BO.getOpcode() == Instruction::Sub) 2059 std::swap(Op0, Op1); 2060 2061 Value *X; 2062 bool IsSext = match(Op0, m_SExt(m_Value(X))); 2063 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 2064 return nullptr; 2065 2066 // If both operands are the same extension from the same source type and we 2067 // can eliminate at least one (hasOneUse), this might work. 2068 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 2069 Value *Y; 2070 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 2071 cast<Operator>(Op1)->getOpcode() == CastOpc && 2072 (Op0->hasOneUse() || Op1->hasOneUse()))) { 2073 // If that did not match, see if we have a suitable constant operand. 2074 // Truncating and extending must produce the same constant. 2075 Constant *WideC; 2076 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 2077 return nullptr; 2078 Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc); 2079 if (!NarrowC) 2080 return nullptr; 2081 Y = NarrowC; 2082 } 2083 2084 // Swap back now that we found our operands. 2085 if (BO.getOpcode() == Instruction::Sub) 2086 std::swap(X, Y); 2087 2088 // Both operands have narrow versions. Last step: the math must not overflow 2089 // in the narrow width. 2090 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 2091 return nullptr; 2092 2093 // bo (ext X), (ext Y) --> ext (bo X, Y) 2094 // bo (ext X), C --> ext (bo X, C') 2095 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 2096 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 2097 if (IsSext) 2098 NewBinOp->setHasNoSignedWrap(); 2099 else 2100 NewBinOp->setHasNoUnsignedWrap(); 2101 } 2102 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 2103 } 2104 2105 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 2106 // At least one GEP must be inbounds. 2107 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 2108 return false; 2109 2110 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 2111 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 2112 } 2113 2114 /// Thread a GEP operation with constant indices through the constant true/false 2115 /// arms of a select. 2116 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 2117 InstCombiner::BuilderTy &Builder) { 2118 if (!GEP.hasAllConstantIndices()) 2119 return nullptr; 2120 2121 Instruction *Sel; 2122 Value *Cond; 2123 Constant *TrueC, *FalseC; 2124 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 2125 !match(Sel, 2126 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 2127 return nullptr; 2128 2129 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 2130 // Propagate 'inbounds' and metadata from existing instructions. 2131 // Note: using IRBuilder to create the constants for efficiency. 2132 SmallVector<Value *, 4> IndexC(GEP.indices()); 2133 bool IsInBounds = GEP.isInBounds(); 2134 Type *Ty = GEP.getSourceElementType(); 2135 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds); 2136 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds); 2137 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 2138 } 2139 2140 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 2141 GEPOperator *Src) { 2142 // Combine Indices - If the source pointer to this getelementptr instruction 2143 // is a getelementptr instruction with matching element type, combine the 2144 // indices of the two getelementptr instructions into a single instruction. 2145 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 2146 return nullptr; 2147 2148 // For constant GEPs, use a more general offset-based folding approach. 2149 Type *PtrTy = Src->getType()->getScalarType(); 2150 if (GEP.hasAllConstantIndices() && 2151 (Src->hasOneUse() || Src->hasAllConstantIndices())) { 2152 // Split Src into a variable part and a constant suffix. 2153 gep_type_iterator GTI = gep_type_begin(*Src); 2154 Type *BaseType = GTI.getIndexedType(); 2155 bool IsFirstType = true; 2156 unsigned NumVarIndices = 0; 2157 for (auto Pair : enumerate(Src->indices())) { 2158 if (!isa<ConstantInt>(Pair.value())) { 2159 BaseType = GTI.getIndexedType(); 2160 IsFirstType = false; 2161 NumVarIndices = Pair.index() + 1; 2162 } 2163 ++GTI; 2164 } 2165 2166 // Determine the offset for the constant suffix of Src. 2167 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); 2168 if (NumVarIndices != Src->getNumIndices()) { 2169 // FIXME: getIndexedOffsetInType() does not handled scalable vectors. 2170 if (BaseType->isScalableTy()) 2171 return nullptr; 2172 2173 SmallVector<Value *> ConstantIndices; 2174 if (!IsFirstType) 2175 ConstantIndices.push_back( 2176 Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); 2177 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); 2178 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); 2179 } 2180 2181 // Add the offset for GEP (which is fully constant). 2182 if (!GEP.accumulateConstantOffset(DL, Offset)) 2183 return nullptr; 2184 2185 APInt OffsetOld = Offset; 2186 // Convert the total offset back into indices. 2187 SmallVector<APInt> ConstIndices = 2188 DL.getGEPIndicesForOffset(BaseType, Offset); 2189 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) { 2190 // If both GEP are constant-indexed, and cannot be merged in either way, 2191 // convert them to a GEP of i8. 2192 if (Src->hasAllConstantIndices()) 2193 return replaceInstUsesWith( 2194 GEP, Builder.CreateGEP( 2195 Builder.getInt8Ty(), Src->getOperand(0), 2196 Builder.getInt(OffsetOld), "", 2197 isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)))); 2198 return nullptr; 2199 } 2200 2201 bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)); 2202 SmallVector<Value *> Indices; 2203 append_range(Indices, drop_end(Src->indices(), 2204 Src->getNumIndices() - NumVarIndices)); 2205 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { 2206 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); 2207 // Even if the total offset is inbounds, we may end up representing it 2208 // by first performing a larger negative offset, and then a smaller 2209 // positive one. The large negative offset might go out of bounds. Only 2210 // preserve inbounds if all signs are the same. 2211 IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative(); 2212 } 2213 2214 return replaceInstUsesWith( 2215 GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0), 2216 Indices, "", IsInBounds)); 2217 } 2218 2219 if (Src->getResultElementType() != GEP.getSourceElementType()) 2220 return nullptr; 2221 2222 SmallVector<Value*, 8> Indices; 2223 2224 // Find out whether the last index in the source GEP is a sequential idx. 2225 bool EndsWithSequential = false; 2226 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2227 I != E; ++I) 2228 EndsWithSequential = I.isSequential(); 2229 2230 // Can we combine the two pointer arithmetics offsets? 2231 if (EndsWithSequential) { 2232 // Replace: gep (gep %P, long B), long A, ... 2233 // With: T = long A+B; gep %P, T, ... 2234 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2235 Value *GO1 = GEP.getOperand(1); 2236 2237 // If they aren't the same type, then the input hasn't been processed 2238 // by the loop above yet (which canonicalizes sequential index types to 2239 // intptr_t). Just avoid transforming this until the input has been 2240 // normalized. 2241 if (SO1->getType() != GO1->getType()) 2242 return nullptr; 2243 2244 Value *Sum = 2245 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2246 // Only do the combine when we are sure the cost after the 2247 // merge is never more than that before the merge. 2248 if (Sum == nullptr) 2249 return nullptr; 2250 2251 // Update the GEP in place if possible. 2252 if (Src->getNumOperands() == 2) { 2253 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2254 replaceOperand(GEP, 0, Src->getOperand(0)); 2255 replaceOperand(GEP, 1, Sum); 2256 return &GEP; 2257 } 2258 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2259 Indices.push_back(Sum); 2260 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2261 } else if (isa<Constant>(*GEP.idx_begin()) && 2262 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2263 Src->getNumOperands() != 1) { 2264 // Otherwise we can do the fold if the first index of the GEP is a zero 2265 Indices.append(Src->op_begin()+1, Src->op_end()); 2266 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2267 } 2268 2269 if (!Indices.empty()) 2270 return replaceInstUsesWith( 2271 GEP, Builder.CreateGEP( 2272 Src->getSourceElementType(), Src->getOperand(0), Indices, "", 2273 isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)))); 2274 2275 return nullptr; 2276 } 2277 2278 Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, 2279 BuilderTy *Builder, 2280 bool &DoesConsume, unsigned Depth) { 2281 static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1)); 2282 // ~(~(X)) -> X. 2283 Value *A, *B; 2284 if (match(V, m_Not(m_Value(A)))) { 2285 DoesConsume = true; 2286 return A; 2287 } 2288 2289 Constant *C; 2290 // Constants can be considered to be not'ed values. 2291 if (match(V, m_ImmConstant(C))) 2292 return ConstantExpr::getNot(C); 2293 2294 if (Depth++ >= MaxAnalysisRecursionDepth) 2295 return nullptr; 2296 2297 // The rest of the cases require that we invert all uses so don't bother 2298 // doing the analysis if we know we can't use the result. 2299 if (!WillInvertAllUses) 2300 return nullptr; 2301 2302 // Compares can be inverted if all of their uses are being modified to use 2303 // the ~V. 2304 if (auto *I = dyn_cast<CmpInst>(V)) { 2305 if (Builder != nullptr) 2306 return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0), 2307 I->getOperand(1)); 2308 return NonNull; 2309 } 2310 2311 // If `V` is of the form `A + B` then `-1 - V` can be folded into 2312 // `(-1 - B) - A` if we are willing to invert all of the uses. 2313 if (match(V, m_Add(m_Value(A), m_Value(B)))) { 2314 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2315 DoesConsume, Depth)) 2316 return Builder ? Builder->CreateSub(BV, A) : NonNull; 2317 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2318 DoesConsume, Depth)) 2319 return Builder ? Builder->CreateSub(AV, B) : NonNull; 2320 return nullptr; 2321 } 2322 2323 // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded 2324 // into `A ^ B` if we are willing to invert all of the uses. 2325 if (match(V, m_Xor(m_Value(A), m_Value(B)))) { 2326 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2327 DoesConsume, Depth)) 2328 return Builder ? Builder->CreateXor(A, BV) : NonNull; 2329 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2330 DoesConsume, Depth)) 2331 return Builder ? Builder->CreateXor(AV, B) : NonNull; 2332 return nullptr; 2333 } 2334 2335 // If `V` is of the form `B - A` then `-1 - V` can be folded into 2336 // `A + (-1 - B)` if we are willing to invert all of the uses. 2337 if (match(V, m_Sub(m_Value(A), m_Value(B)))) { 2338 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2339 DoesConsume, Depth)) 2340 return Builder ? Builder->CreateAdd(AV, B) : NonNull; 2341 return nullptr; 2342 } 2343 2344 // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded 2345 // into `A s>> B` if we are willing to invert all of the uses. 2346 if (match(V, m_AShr(m_Value(A), m_Value(B)))) { 2347 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2348 DoesConsume, Depth)) 2349 return Builder ? Builder->CreateAShr(AV, B) : NonNull; 2350 return nullptr; 2351 } 2352 2353 Value *Cond; 2354 // LogicOps are special in that we canonicalize them at the cost of an 2355 // instruction. 2356 bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) && 2357 !shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V)); 2358 // Selects/min/max with invertible operands are freely invertible 2359 if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) { 2360 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr, 2361 DoesConsume, Depth)) 2362 return nullptr; 2363 if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2364 DoesConsume, Depth)) { 2365 if (Builder != nullptr) { 2366 Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2367 DoesConsume, Depth); 2368 assert(NotB != nullptr && 2369 "Unable to build inverted value for known freely invertable op"); 2370 if (auto *II = dyn_cast<IntrinsicInst>(V)) 2371 return Builder->CreateBinaryIntrinsic( 2372 getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB); 2373 return Builder->CreateSelect(Cond, NotA, NotB); 2374 } 2375 return NonNull; 2376 } 2377 } 2378 2379 return nullptr; 2380 } 2381 2382 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2383 Value *PtrOp = GEP.getOperand(0); 2384 SmallVector<Value *, 8> Indices(GEP.indices()); 2385 Type *GEPType = GEP.getType(); 2386 Type *GEPEltType = GEP.getSourceElementType(); 2387 bool IsGEPSrcEleScalable = GEPEltType->isScalableTy(); 2388 if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2389 SQ.getWithInstruction(&GEP))) 2390 return replaceInstUsesWith(GEP, V); 2391 2392 // For vector geps, use the generic demanded vector support. 2393 // Skip if GEP return type is scalable. The number of elements is unknown at 2394 // compile-time. 2395 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2396 auto VWidth = GEPFVTy->getNumElements(); 2397 APInt PoisonElts(VWidth, 0); 2398 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2399 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2400 PoisonElts)) { 2401 if (V != &GEP) 2402 return replaceInstUsesWith(GEP, V); 2403 return &GEP; 2404 } 2405 2406 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2407 // possible (decide on canonical form for pointer broadcast), 3) exploit 2408 // undef elements to decrease demanded bits 2409 } 2410 2411 // Eliminate unneeded casts for indices, and replace indices which displace 2412 // by multiples of a zero size type with zero. 2413 bool MadeChange = false; 2414 2415 // Index width may not be the same width as pointer width. 2416 // Data layout chooses the right type based on supported integer types. 2417 Type *NewScalarIndexTy = 2418 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2419 2420 gep_type_iterator GTI = gep_type_begin(GEP); 2421 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2422 ++I, ++GTI) { 2423 // Skip indices into struct types. 2424 if (GTI.isStruct()) 2425 continue; 2426 2427 Type *IndexTy = (*I)->getType(); 2428 Type *NewIndexType = 2429 IndexTy->isVectorTy() 2430 ? VectorType::get(NewScalarIndexTy, 2431 cast<VectorType>(IndexTy)->getElementCount()) 2432 : NewScalarIndexTy; 2433 2434 // If the element type has zero size then any index over it is equivalent 2435 // to an index of zero, so replace it with zero if it is not zero already. 2436 Type *EltTy = GTI.getIndexedType(); 2437 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2438 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2439 *I = Constant::getNullValue(NewIndexType); 2440 MadeChange = true; 2441 } 2442 2443 if (IndexTy != NewIndexType) { 2444 // If we are using a wider index than needed for this platform, shrink 2445 // it to what we need. If narrower, sign-extend it to what we need. 2446 // This explicit cast can make subsequent optimizations more obvious. 2447 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2448 MadeChange = true; 2449 } 2450 } 2451 if (MadeChange) 2452 return &GEP; 2453 2454 // Check to see if the inputs to the PHI node are getelementptr instructions. 2455 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2456 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2457 if (!Op1) 2458 return nullptr; 2459 2460 // Don't fold a GEP into itself through a PHI node. This can only happen 2461 // through the back-edge of a loop. Folding a GEP into itself means that 2462 // the value of the previous iteration needs to be stored in the meantime, 2463 // thus requiring an additional register variable to be live, but not 2464 // actually achieving anything (the GEP still needs to be executed once per 2465 // loop iteration). 2466 if (Op1 == &GEP) 2467 return nullptr; 2468 2469 int DI = -1; 2470 2471 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2472 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2473 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || 2474 Op1->getSourceElementType() != Op2->getSourceElementType()) 2475 return nullptr; 2476 2477 // As for Op1 above, don't try to fold a GEP into itself. 2478 if (Op2 == &GEP) 2479 return nullptr; 2480 2481 // Keep track of the type as we walk the GEP. 2482 Type *CurTy = nullptr; 2483 2484 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2485 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2486 return nullptr; 2487 2488 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2489 if (DI == -1) { 2490 // We have not seen any differences yet in the GEPs feeding the 2491 // PHI yet, so we record this one if it is allowed to be a 2492 // variable. 2493 2494 // The first two arguments can vary for any GEP, the rest have to be 2495 // static for struct slots 2496 if (J > 1) { 2497 assert(CurTy && "No current type?"); 2498 if (CurTy->isStructTy()) 2499 return nullptr; 2500 } 2501 2502 DI = J; 2503 } else { 2504 // The GEP is different by more than one input. While this could be 2505 // extended to support GEPs that vary by more than one variable it 2506 // doesn't make sense since it greatly increases the complexity and 2507 // would result in an R+R+R addressing mode which no backend 2508 // directly supports and would need to be broken into several 2509 // simpler instructions anyway. 2510 return nullptr; 2511 } 2512 } 2513 2514 // Sink down a layer of the type for the next iteration. 2515 if (J > 0) { 2516 if (J == 1) { 2517 CurTy = Op1->getSourceElementType(); 2518 } else { 2519 CurTy = 2520 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2521 } 2522 } 2523 } 2524 } 2525 2526 // If not all GEPs are identical we'll have to create a new PHI node. 2527 // Check that the old PHI node has only one use so that it will get 2528 // removed. 2529 if (DI != -1 && !PN->hasOneUse()) 2530 return nullptr; 2531 2532 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2533 if (DI == -1) { 2534 // All the GEPs feeding the PHI are identical. Clone one down into our 2535 // BB so that it can be merged with the current GEP. 2536 } else { 2537 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2538 // into the current block so it can be merged, and create a new PHI to 2539 // set that index. 2540 PHINode *NewPN; 2541 { 2542 IRBuilderBase::InsertPointGuard Guard(Builder); 2543 Builder.SetInsertPoint(PN); 2544 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2545 PN->getNumOperands()); 2546 } 2547 2548 for (auto &I : PN->operands()) 2549 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2550 PN->getIncomingBlock(I)); 2551 2552 NewGEP->setOperand(DI, NewPN); 2553 } 2554 2555 NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt()); 2556 return replaceOperand(GEP, 0, NewGEP); 2557 } 2558 2559 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2560 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2561 return I; 2562 2563 // Skip if GEP source element type is scalable. The type alloc size is unknown 2564 // at compile-time. 2565 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2566 unsigned AS = GEP.getPointerAddressSpace(); 2567 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2568 DL.getIndexSizeInBits(AS)) { 2569 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue(); 2570 2571 if (TyAllocSize == 1) { 2572 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), 2573 // but only if the result pointer is only used as if it were an integer, 2574 // or both point to the same underlying object (otherwise provenance is 2575 // not necessarily retained). 2576 Value *X = GEP.getPointerOperand(); 2577 Value *Y; 2578 if (match(GEP.getOperand(1), 2579 m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2580 GEPType == Y->getType()) { 2581 bool HasSameUnderlyingObject = 2582 getUnderlyingObject(X) == getUnderlyingObject(Y); 2583 bool Changed = false; 2584 GEP.replaceUsesWithIf(Y, [&](Use &U) { 2585 bool ShouldReplace = HasSameUnderlyingObject || 2586 isa<ICmpInst>(U.getUser()) || 2587 isa<PtrToIntInst>(U.getUser()); 2588 Changed |= ShouldReplace; 2589 return ShouldReplace; 2590 }); 2591 return Changed ? &GEP : nullptr; 2592 } 2593 } else { 2594 // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V) 2595 Value *V; 2596 if ((has_single_bit(TyAllocSize) && 2597 match(GEP.getOperand(1), 2598 m_Exact(m_Shr(m_Value(V), 2599 m_SpecificInt(countr_zero(TyAllocSize)))))) || 2600 match(GEP.getOperand(1), 2601 m_Exact(m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize))))) { 2602 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 2603 Builder.getInt8Ty(), GEP.getPointerOperand(), V); 2604 NewGEP->setIsInBounds(GEP.isInBounds()); 2605 return NewGEP; 2606 } 2607 } 2608 } 2609 } 2610 // We do not handle pointer-vector geps here. 2611 if (GEPType->isVectorTy()) 2612 return nullptr; 2613 2614 if (GEP.getNumIndices() == 1) { 2615 // Try to replace ADD + GEP with GEP + GEP. 2616 Value *Idx1, *Idx2; 2617 if (match(GEP.getOperand(1), 2618 m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) { 2619 // %idx = add i64 %idx1, %idx2 2620 // %gep = getelementptr i32, ptr %ptr, i64 %idx 2621 // as: 2622 // %newptr = getelementptr i32, ptr %ptr, i64 %idx1 2623 // %newgep = getelementptr i32, ptr %newptr, i64 %idx2 2624 auto *NewPtr = Builder.CreateGEP(GEP.getResultElementType(), 2625 GEP.getPointerOperand(), Idx1); 2626 return GetElementPtrInst::Create(GEP.getResultElementType(), NewPtr, 2627 Idx2); 2628 } 2629 ConstantInt *C; 2630 if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd( 2631 m_Value(Idx1), m_ConstantInt(C))))))) { 2632 // %add = add nsw i32 %idx1, idx2 2633 // %sidx = sext i32 %add to i64 2634 // %gep = getelementptr i32, ptr %ptr, i64 %sidx 2635 // as: 2636 // %newptr = getelementptr i32, ptr %ptr, i32 %idx1 2637 // %newgep = getelementptr i32, ptr %newptr, i32 idx2 2638 auto *NewPtr = Builder.CreateGEP( 2639 GEP.getResultElementType(), GEP.getPointerOperand(), 2640 Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType())); 2641 return GetElementPtrInst::Create( 2642 GEP.getResultElementType(), NewPtr, 2643 Builder.CreateSExt(C, GEP.getOperand(1)->getType())); 2644 } 2645 } 2646 2647 if (!GEP.isInBounds()) { 2648 unsigned IdxWidth = 2649 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2650 APInt BasePtrOffset(IdxWidth, 0); 2651 Value *UnderlyingPtrOp = 2652 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2653 BasePtrOffset); 2654 bool CanBeNull, CanBeFreed; 2655 uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes( 2656 DL, CanBeNull, CanBeFreed); 2657 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) { 2658 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2659 BasePtrOffset.isNonNegative()) { 2660 APInt AllocSize(IdxWidth, DerefBytes); 2661 if (BasePtrOffset.ule(AllocSize)) { 2662 return GetElementPtrInst::CreateInBounds( 2663 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2664 } 2665 } 2666 } 2667 } 2668 2669 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2670 return R; 2671 2672 return nullptr; 2673 } 2674 2675 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2676 Instruction *AI) { 2677 if (isa<ConstantPointerNull>(V)) 2678 return true; 2679 if (auto *LI = dyn_cast<LoadInst>(V)) 2680 return isa<GlobalVariable>(LI->getPointerOperand()); 2681 // Two distinct allocations will never be equal. 2682 return isAllocLikeFn(V, &TLI) && V != AI; 2683 } 2684 2685 /// Given a call CB which uses an address UsedV, return true if we can prove the 2686 /// call's only possible effect is storing to V. 2687 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2688 const TargetLibraryInfo &TLI) { 2689 if (!CB.use_empty()) 2690 // TODO: add recursion if returned attribute is present 2691 return false; 2692 2693 if (CB.isTerminator()) 2694 // TODO: remove implementation restriction 2695 return false; 2696 2697 if (!CB.willReturn() || !CB.doesNotThrow()) 2698 return false; 2699 2700 // If the only possible side effect of the call is writing to the alloca, 2701 // and the result isn't used, we can safely remove any reads implied by the 2702 // call including those which might read the alloca itself. 2703 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2704 return Dest && Dest->Ptr == UsedV; 2705 } 2706 2707 static bool isAllocSiteRemovable(Instruction *AI, 2708 SmallVectorImpl<WeakTrackingVH> &Users, 2709 const TargetLibraryInfo &TLI) { 2710 SmallVector<Instruction*, 4> Worklist; 2711 const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI); 2712 Worklist.push_back(AI); 2713 2714 do { 2715 Instruction *PI = Worklist.pop_back_val(); 2716 for (User *U : PI->users()) { 2717 Instruction *I = cast<Instruction>(U); 2718 switch (I->getOpcode()) { 2719 default: 2720 // Give up the moment we see something we can't handle. 2721 return false; 2722 2723 case Instruction::AddrSpaceCast: 2724 case Instruction::BitCast: 2725 case Instruction::GetElementPtr: 2726 Users.emplace_back(I); 2727 Worklist.push_back(I); 2728 continue; 2729 2730 case Instruction::ICmp: { 2731 ICmpInst *ICI = cast<ICmpInst>(I); 2732 // We can fold eq/ne comparisons with null to false/true, respectively. 2733 // We also fold comparisons in some conditions provided the alloc has 2734 // not escaped (see isNeverEqualToUnescapedAlloc). 2735 if (!ICI->isEquality()) 2736 return false; 2737 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2738 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2739 return false; 2740 2741 // Do not fold compares to aligned_alloc calls, as they may have to 2742 // return null in case the required alignment cannot be satisfied, 2743 // unless we can prove that both alignment and size are valid. 2744 auto AlignmentAndSizeKnownValid = [](CallBase *CB) { 2745 // Check if alignment and size of a call to aligned_alloc is valid, 2746 // that is alignment is a power-of-2 and the size is a multiple of the 2747 // alignment. 2748 const APInt *Alignment; 2749 const APInt *Size; 2750 return match(CB->getArgOperand(0), m_APInt(Alignment)) && 2751 match(CB->getArgOperand(1), m_APInt(Size)) && 2752 Alignment->isPowerOf2() && Size->urem(*Alignment).isZero(); 2753 }; 2754 auto *CB = dyn_cast<CallBase>(AI); 2755 LibFunc TheLibFunc; 2756 if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) && 2757 TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc && 2758 !AlignmentAndSizeKnownValid(CB)) 2759 return false; 2760 Users.emplace_back(I); 2761 continue; 2762 } 2763 2764 case Instruction::Call: 2765 // Ignore no-op and store intrinsics. 2766 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2767 switch (II->getIntrinsicID()) { 2768 default: 2769 return false; 2770 2771 case Intrinsic::memmove: 2772 case Intrinsic::memcpy: 2773 case Intrinsic::memset: { 2774 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2775 if (MI->isVolatile() || MI->getRawDest() != PI) 2776 return false; 2777 [[fallthrough]]; 2778 } 2779 case Intrinsic::assume: 2780 case Intrinsic::invariant_start: 2781 case Intrinsic::invariant_end: 2782 case Intrinsic::lifetime_start: 2783 case Intrinsic::lifetime_end: 2784 case Intrinsic::objectsize: 2785 Users.emplace_back(I); 2786 continue; 2787 case Intrinsic::launder_invariant_group: 2788 case Intrinsic::strip_invariant_group: 2789 Users.emplace_back(I); 2790 Worklist.push_back(I); 2791 continue; 2792 } 2793 } 2794 2795 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2796 Users.emplace_back(I); 2797 continue; 2798 } 2799 2800 if (getFreedOperand(cast<CallBase>(I), &TLI) == PI && 2801 getAllocationFamily(I, &TLI) == Family) { 2802 assert(Family); 2803 Users.emplace_back(I); 2804 continue; 2805 } 2806 2807 if (getReallocatedOperand(cast<CallBase>(I)) == PI && 2808 getAllocationFamily(I, &TLI) == Family) { 2809 assert(Family); 2810 Users.emplace_back(I); 2811 Worklist.push_back(I); 2812 continue; 2813 } 2814 2815 return false; 2816 2817 case Instruction::Store: { 2818 StoreInst *SI = cast<StoreInst>(I); 2819 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2820 return false; 2821 Users.emplace_back(I); 2822 continue; 2823 } 2824 } 2825 llvm_unreachable("missing a return?"); 2826 } 2827 } while (!Worklist.empty()); 2828 return true; 2829 } 2830 2831 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2832 assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI)); 2833 2834 // If we have a malloc call which is only used in any amount of comparisons to 2835 // null and free calls, delete the calls and replace the comparisons with true 2836 // or false as appropriate. 2837 2838 // This is based on the principle that we can substitute our own allocation 2839 // function (which will never return null) rather than knowledge of the 2840 // specific function being called. In some sense this can change the permitted 2841 // outputs of a program (when we convert a malloc to an alloca, the fact that 2842 // the allocation is now on the stack is potentially visible, for example), 2843 // but we believe in a permissible manner. 2844 SmallVector<WeakTrackingVH, 64> Users; 2845 2846 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2847 // before each store. 2848 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2849 SmallVector<DPValue *, 8> DPVs; 2850 std::unique_ptr<DIBuilder> DIB; 2851 if (isa<AllocaInst>(MI)) { 2852 findDbgUsers(DVIs, &MI, &DPVs); 2853 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2854 } 2855 2856 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2857 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2858 // Lowering all @llvm.objectsize calls first because they may 2859 // use a bitcast/GEP of the alloca we are removing. 2860 if (!Users[i]) 2861 continue; 2862 2863 Instruction *I = cast<Instruction>(&*Users[i]); 2864 2865 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2866 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2867 SmallVector<Instruction *> InsertedInstructions; 2868 Value *Result = lowerObjectSizeCall( 2869 II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions); 2870 for (Instruction *Inserted : InsertedInstructions) 2871 Worklist.add(Inserted); 2872 replaceInstUsesWith(*I, Result); 2873 eraseInstFromFunction(*I); 2874 Users[i] = nullptr; // Skip examining in the next loop. 2875 } 2876 } 2877 } 2878 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2879 if (!Users[i]) 2880 continue; 2881 2882 Instruction *I = cast<Instruction>(&*Users[i]); 2883 2884 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2885 replaceInstUsesWith(*C, 2886 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2887 C->isFalseWhenEqual())); 2888 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2889 for (auto *DVI : DVIs) 2890 if (DVI->isAddressOfVariable()) 2891 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2892 for (auto *DPV : DPVs) 2893 if (DPV->isAddressOfVariable()) 2894 ConvertDebugDeclareToDebugValue(DPV, SI, *DIB); 2895 } else { 2896 // Casts, GEP, or anything else: we're about to delete this instruction, 2897 // so it can not have any valid uses. 2898 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2899 } 2900 eraseInstFromFunction(*I); 2901 } 2902 2903 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2904 // Replace invoke with a NOP intrinsic to maintain the original CFG 2905 Module *M = II->getModule(); 2906 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2907 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2908 std::nullopt, "", II->getParent()); 2909 } 2910 2911 // Remove debug intrinsics which describe the value contained within the 2912 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2913 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2914 // 2915 // ``` 2916 // define void @foo(i32 %0) { 2917 // %a = alloca i32 ; Deleted. 2918 // store i32 %0, i32* %a 2919 // dbg.value(i32 %0, "arg0") ; Not deleted. 2920 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2921 // call void @trivially_inlinable_no_op(i32* %a) 2922 // ret void 2923 // } 2924 // ``` 2925 // 2926 // This may not be required if we stop describing the contents of allocas 2927 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2928 // the LowerDbgDeclare utility. 2929 // 2930 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2931 // "arg0" dbg.value may be stale after the call. However, failing to remove 2932 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2933 // 2934 // FIXME: the Assignment Tracking project has now likely made this 2935 // redundant (and it's sometimes harmful). 2936 for (auto *DVI : DVIs) 2937 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2938 DVI->eraseFromParent(); 2939 for (auto *DPV : DPVs) 2940 if (DPV->isAddressOfVariable() || DPV->getExpression()->startsWithDeref()) 2941 DPV->eraseFromParent(); 2942 2943 return eraseInstFromFunction(MI); 2944 } 2945 return nullptr; 2946 } 2947 2948 /// Move the call to free before a NULL test. 2949 /// 2950 /// Check if this free is accessed after its argument has been test 2951 /// against NULL (property 0). 2952 /// If yes, it is legal to move this call in its predecessor block. 2953 /// 2954 /// The move is performed only if the block containing the call to free 2955 /// will be removed, i.e.: 2956 /// 1. it has only one predecessor P, and P has two successors 2957 /// 2. it contains the call, noops, and an unconditional branch 2958 /// 3. its successor is the same as its predecessor's successor 2959 /// 2960 /// The profitability is out-of concern here and this function should 2961 /// be called only if the caller knows this transformation would be 2962 /// profitable (e.g., for code size). 2963 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2964 const DataLayout &DL) { 2965 Value *Op = FI.getArgOperand(0); 2966 BasicBlock *FreeInstrBB = FI.getParent(); 2967 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2968 2969 // Validate part of constraint #1: Only one predecessor 2970 // FIXME: We can extend the number of predecessor, but in that case, we 2971 // would duplicate the call to free in each predecessor and it may 2972 // not be profitable even for code size. 2973 if (!PredBB) 2974 return nullptr; 2975 2976 // Validate constraint #2: Does this block contains only the call to 2977 // free, noops, and an unconditional branch? 2978 BasicBlock *SuccBB; 2979 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2980 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2981 return nullptr; 2982 2983 // If there are only 2 instructions in the block, at this point, 2984 // this is the call to free and unconditional. 2985 // If there are more than 2 instructions, check that they are noops 2986 // i.e., they won't hurt the performance of the generated code. 2987 if (FreeInstrBB->size() != 2) { 2988 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2989 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2990 continue; 2991 auto *Cast = dyn_cast<CastInst>(&Inst); 2992 if (!Cast || !Cast->isNoopCast(DL)) 2993 return nullptr; 2994 } 2995 } 2996 // Validate the rest of constraint #1 by matching on the pred branch. 2997 Instruction *TI = PredBB->getTerminator(); 2998 BasicBlock *TrueBB, *FalseBB; 2999 ICmpInst::Predicate Pred; 3000 if (!match(TI, m_Br(m_ICmp(Pred, 3001 m_CombineOr(m_Specific(Op), 3002 m_Specific(Op->stripPointerCasts())), 3003 m_Zero()), 3004 TrueBB, FalseBB))) 3005 return nullptr; 3006 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 3007 return nullptr; 3008 3009 // Validate constraint #3: Ensure the null case just falls through. 3010 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 3011 return nullptr; 3012 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 3013 "Broken CFG: missing edge from predecessor to successor"); 3014 3015 // At this point, we know that everything in FreeInstrBB can be moved 3016 // before TI. 3017 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 3018 if (&Instr == FreeInstrBBTerminator) 3019 break; 3020 Instr.moveBeforePreserving(TI); 3021 } 3022 assert(FreeInstrBB->size() == 1 && 3023 "Only the branch instruction should remain"); 3024 3025 // Now that we've moved the call to free before the NULL check, we have to 3026 // remove any attributes on its parameter that imply it's non-null, because 3027 // those attributes might have only been valid because of the NULL check, and 3028 // we can get miscompiles if we keep them. This is conservative if non-null is 3029 // also implied by something other than the NULL check, but it's guaranteed to 3030 // be correct, and the conservativeness won't matter in practice, since the 3031 // attributes are irrelevant for the call to free itself and the pointer 3032 // shouldn't be used after the call. 3033 AttributeList Attrs = FI.getAttributes(); 3034 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 3035 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 3036 if (Dereferenceable.isValid()) { 3037 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 3038 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 3039 Attribute::Dereferenceable); 3040 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 3041 } 3042 FI.setAttributes(Attrs); 3043 3044 return &FI; 3045 } 3046 3047 Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) { 3048 // free undef -> unreachable. 3049 if (isa<UndefValue>(Op)) { 3050 // Leave a marker since we can't modify the CFG here. 3051 CreateNonTerminatorUnreachable(&FI); 3052 return eraseInstFromFunction(FI); 3053 } 3054 3055 // If we have 'free null' delete the instruction. This can happen in stl code 3056 // when lots of inlining happens. 3057 if (isa<ConstantPointerNull>(Op)) 3058 return eraseInstFromFunction(FI); 3059 3060 // If we had free(realloc(...)) with no intervening uses, then eliminate the 3061 // realloc() entirely. 3062 CallInst *CI = dyn_cast<CallInst>(Op); 3063 if (CI && CI->hasOneUse()) 3064 if (Value *ReallocatedOp = getReallocatedOperand(CI)) 3065 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp)); 3066 3067 // If we optimize for code size, try to move the call to free before the null 3068 // test so that simplify cfg can remove the empty block and dead code 3069 // elimination the branch. I.e., helps to turn something like: 3070 // if (foo) free(foo); 3071 // into 3072 // free(foo); 3073 // 3074 // Note that we can only do this for 'free' and not for any flavor of 3075 // 'operator delete'; there is no 'operator delete' symbol for which we are 3076 // permitted to invent a call, even if we're passing in a null pointer. 3077 if (MinimizeSize) { 3078 LibFunc Func; 3079 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 3080 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 3081 return I; 3082 } 3083 3084 return nullptr; 3085 } 3086 3087 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3088 // Nothing for now. 3089 return nullptr; 3090 } 3091 3092 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 3093 bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) { 3094 // Try to remove the previous instruction if it must lead to unreachable. 3095 // This includes instructions like stores and "llvm.assume" that may not get 3096 // removed by simple dead code elimination. 3097 bool Changed = false; 3098 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3099 // While we theoretically can erase EH, that would result in a block that 3100 // used to start with an EH no longer starting with EH, which is invalid. 3101 // To make it valid, we'd need to fixup predecessors to no longer refer to 3102 // this block, but that changes CFG, which is not allowed in InstCombine. 3103 if (Prev->isEHPad()) 3104 break; // Can not drop any more instructions. We're done here. 3105 3106 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3107 break; // Can not drop any more instructions. We're done here. 3108 // Otherwise, this instruction can be freely erased, 3109 // even if it is not side-effect free. 3110 3111 // A value may still have uses before we process it here (for example, in 3112 // another unreachable block), so convert those to poison. 3113 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3114 eraseInstFromFunction(*Prev); 3115 Changed = true; 3116 } 3117 return Changed; 3118 } 3119 3120 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3121 removeInstructionsBeforeUnreachable(I); 3122 return nullptr; 3123 } 3124 3125 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3126 assert(BI.isUnconditional() && "Only for unconditional branches."); 3127 3128 // If this store is the second-to-last instruction in the basic block 3129 // (excluding debug info and bitcasts of pointers) and if the block ends with 3130 // an unconditional branch, try to move the store to the successor block. 3131 3132 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3133 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3134 return BBI->isDebugOrPseudoInst() || 3135 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3136 }; 3137 3138 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3139 do { 3140 if (BBI != FirstInstr) 3141 --BBI; 3142 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3143 3144 return dyn_cast<StoreInst>(BBI); 3145 }; 3146 3147 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3148 if (mergeStoreIntoSuccessor(*SI)) 3149 return &BI; 3150 3151 return nullptr; 3152 } 3153 3154 void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To, 3155 SmallVectorImpl<BasicBlock *> &Worklist) { 3156 if (!DeadEdges.insert({From, To}).second) 3157 return; 3158 3159 // Replace phi node operands in successor with poison. 3160 for (PHINode &PN : To->phis()) 3161 for (Use &U : PN.incoming_values()) 3162 if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) { 3163 replaceUse(U, PoisonValue::get(PN.getType())); 3164 addToWorklist(&PN); 3165 MadeIRChange = true; 3166 } 3167 3168 Worklist.push_back(To); 3169 } 3170 3171 // Under the assumption that I is unreachable, remove it and following 3172 // instructions. Changes are reported directly to MadeIRChange. 3173 void InstCombinerImpl::handleUnreachableFrom( 3174 Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) { 3175 BasicBlock *BB = I->getParent(); 3176 for (Instruction &Inst : make_early_inc_range( 3177 make_range(std::next(BB->getTerminator()->getReverseIterator()), 3178 std::next(I->getReverseIterator())))) { 3179 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) { 3180 replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType())); 3181 MadeIRChange = true; 3182 } 3183 if (Inst.isEHPad() || Inst.getType()->isTokenTy()) 3184 continue; 3185 // RemoveDIs: erase debug-info on this instruction manually. 3186 Inst.dropDbgValues(); 3187 eraseInstFromFunction(Inst); 3188 MadeIRChange = true; 3189 } 3190 3191 // RemoveDIs: to match behaviour in dbg.value mode, drop debug-info on 3192 // terminator too. 3193 BB->getTerminator()->dropDbgValues(); 3194 3195 // Handle potentially dead successors. 3196 for (BasicBlock *Succ : successors(BB)) 3197 addDeadEdge(BB, Succ, Worklist); 3198 } 3199 3200 void InstCombinerImpl::handlePotentiallyDeadBlocks( 3201 SmallVectorImpl<BasicBlock *> &Worklist) { 3202 while (!Worklist.empty()) { 3203 BasicBlock *BB = Worklist.pop_back_val(); 3204 if (!all_of(predecessors(BB), [&](BasicBlock *Pred) { 3205 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); 3206 })) 3207 continue; 3208 3209 handleUnreachableFrom(&BB->front(), Worklist); 3210 } 3211 } 3212 3213 void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB, 3214 BasicBlock *LiveSucc) { 3215 SmallVector<BasicBlock *> Worklist; 3216 for (BasicBlock *Succ : successors(BB)) { 3217 // The live successor isn't dead. 3218 if (Succ == LiveSucc) 3219 continue; 3220 3221 addDeadEdge(BB, Succ, Worklist); 3222 } 3223 3224 handlePotentiallyDeadBlocks(Worklist); 3225 } 3226 3227 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3228 if (BI.isUnconditional()) 3229 return visitUnconditionalBranchInst(BI); 3230 3231 // Change br (not X), label True, label False to: br X, label False, True 3232 Value *Cond = BI.getCondition(); 3233 Value *X; 3234 if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) { 3235 // Swap Destinations and condition... 3236 BI.swapSuccessors(); 3237 return replaceOperand(BI, 0, X); 3238 } 3239 3240 // Canonicalize logical-and-with-invert as logical-or-with-invert. 3241 // This is done by inverting the condition and swapping successors: 3242 // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T 3243 Value *Y; 3244 if (isa<SelectInst>(Cond) && 3245 match(Cond, 3246 m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) { 3247 Value *NotX = Builder.CreateNot(X, "not." + X->getName()); 3248 Value *Or = Builder.CreateLogicalOr(NotX, Y); 3249 BI.swapSuccessors(); 3250 return replaceOperand(BI, 0, Or); 3251 } 3252 3253 // If the condition is irrelevant, remove the use so that other 3254 // transforms on the condition become more effective. 3255 if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1)) 3256 return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType())); 3257 3258 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3259 CmpInst::Predicate Pred; 3260 if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) && 3261 !isCanonicalPredicate(Pred)) { 3262 // Swap destinations and condition. 3263 auto *Cmp = cast<CmpInst>(Cond); 3264 Cmp->setPredicate(CmpInst::getInversePredicate(Pred)); 3265 BI.swapSuccessors(); 3266 Worklist.push(Cmp); 3267 return &BI; 3268 } 3269 3270 if (isa<UndefValue>(Cond)) { 3271 handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr); 3272 return nullptr; 3273 } 3274 if (auto *CI = dyn_cast<ConstantInt>(Cond)) { 3275 handlePotentiallyDeadSuccessors(BI.getParent(), 3276 BI.getSuccessor(!CI->getZExtValue())); 3277 return nullptr; 3278 } 3279 3280 DC.registerBranch(&BI); 3281 return nullptr; 3282 } 3283 3284 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3285 Value *Cond = SI.getCondition(); 3286 Value *Op0; 3287 ConstantInt *AddRHS; 3288 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3289 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3290 for (auto Case : SI.cases()) { 3291 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3292 assert(isa<ConstantInt>(NewCase) && 3293 "Result of expression should be constant"); 3294 Case.setValue(cast<ConstantInt>(NewCase)); 3295 } 3296 return replaceOperand(SI, 0, Op0); 3297 } 3298 3299 ConstantInt *SubLHS; 3300 if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) { 3301 // Change 'switch (1-X) case 1:' into 'switch (X) case 0'. 3302 for (auto Case : SI.cases()) { 3303 Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue()); 3304 assert(isa<ConstantInt>(NewCase) && 3305 "Result of expression should be constant"); 3306 Case.setValue(cast<ConstantInt>(NewCase)); 3307 } 3308 return replaceOperand(SI, 0, Op0); 3309 } 3310 3311 uint64_t ShiftAmt; 3312 if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) && 3313 ShiftAmt < Op0->getType()->getScalarSizeInBits() && 3314 all_of(SI.cases(), [&](const auto &Case) { 3315 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt; 3316 })) { 3317 // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'. 3318 OverflowingBinaryOperator *Shl = cast<OverflowingBinaryOperator>(Cond); 3319 if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() || 3320 Shl->hasOneUse()) { 3321 Value *NewCond = Op0; 3322 if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) { 3323 // If the shift may wrap, we need to mask off the shifted bits. 3324 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 3325 NewCond = Builder.CreateAnd( 3326 Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt)); 3327 } 3328 for (auto Case : SI.cases()) { 3329 const APInt &CaseVal = Case.getCaseValue()->getValue(); 3330 APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt) 3331 : CaseVal.lshr(ShiftAmt); 3332 Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase)); 3333 } 3334 return replaceOperand(SI, 0, NewCond); 3335 } 3336 } 3337 3338 // Fold switch(zext/sext(X)) into switch(X) if possible. 3339 if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) { 3340 bool IsZExt = isa<ZExtInst>(Cond); 3341 Type *SrcTy = Op0->getType(); 3342 unsigned NewWidth = SrcTy->getScalarSizeInBits(); 3343 3344 if (all_of(SI.cases(), [&](const auto &Case) { 3345 const APInt &CaseVal = Case.getCaseValue()->getValue(); 3346 return IsZExt ? CaseVal.isIntN(NewWidth) 3347 : CaseVal.isSignedIntN(NewWidth); 3348 })) { 3349 for (auto &Case : SI.cases()) { 3350 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3351 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3352 } 3353 return replaceOperand(SI, 0, Op0); 3354 } 3355 } 3356 3357 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3358 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3359 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3360 3361 // Compute the number of leading bits we can ignore. 3362 // TODO: A better way to determine this would use ComputeNumSignBits(). 3363 for (const auto &C : SI.cases()) { 3364 LeadingKnownZeros = 3365 std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero()); 3366 LeadingKnownOnes = 3367 std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one()); 3368 } 3369 3370 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3371 3372 // Shrink the condition operand if the new type is smaller than the old type. 3373 // But do not shrink to a non-standard type, because backend can't generate 3374 // good code for that yet. 3375 // TODO: We can make it aggressive again after fixing PR39569. 3376 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3377 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3378 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3379 Builder.SetInsertPoint(&SI); 3380 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3381 3382 for (auto Case : SI.cases()) { 3383 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3384 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3385 } 3386 return replaceOperand(SI, 0, NewCond); 3387 } 3388 3389 if (isa<UndefValue>(Cond)) { 3390 handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr); 3391 return nullptr; 3392 } 3393 if (auto *CI = dyn_cast<ConstantInt>(Cond)) { 3394 handlePotentiallyDeadSuccessors(SI.getParent(), 3395 SI.findCaseValue(CI)->getCaseSuccessor()); 3396 return nullptr; 3397 } 3398 3399 return nullptr; 3400 } 3401 3402 Instruction * 3403 InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) { 3404 auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand()); 3405 if (!WO) 3406 return nullptr; 3407 3408 Intrinsic::ID OvID = WO->getIntrinsicID(); 3409 const APInt *C = nullptr; 3410 if (match(WO->getRHS(), m_APIntAllowUndef(C))) { 3411 if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow || 3412 OvID == Intrinsic::umul_with_overflow)) { 3413 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X 3414 if (C->isAllOnes()) 3415 return BinaryOperator::CreateNeg(WO->getLHS()); 3416 // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n 3417 if (C->isPowerOf2()) { 3418 return BinaryOperator::CreateShl( 3419 WO->getLHS(), 3420 ConstantInt::get(WO->getLHS()->getType(), C->logBase2())); 3421 } 3422 } 3423 } 3424 3425 // We're extracting from an overflow intrinsic. See if we're the only user. 3426 // That allows us to simplify multiple result intrinsics to simpler things 3427 // that just get one value. 3428 if (!WO->hasOneUse()) 3429 return nullptr; 3430 3431 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3432 // and replace it with a traditional binary instruction. 3433 if (*EV.idx_begin() == 0) { 3434 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3435 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3436 // Replace the old instruction's uses with poison. 3437 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3438 eraseInstFromFunction(*WO); 3439 return BinaryOperator::Create(BinOp, LHS, RHS); 3440 } 3441 3442 assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst"); 3443 3444 // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS. 3445 if (OvID == Intrinsic::usub_with_overflow) 3446 return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS()); 3447 3448 // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but 3449 // +1 is not possible because we assume signed values. 3450 if (OvID == Intrinsic::smul_with_overflow && 3451 WO->getLHS()->getType()->isIntOrIntVectorTy(1)) 3452 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS()); 3453 3454 // If only the overflow result is used, and the right hand side is a 3455 // constant (or constant splat), we can remove the intrinsic by directly 3456 // checking for overflow. 3457 if (C) { 3458 // Compute the no-wrap range for LHS given RHS=C, then construct an 3459 // equivalent icmp, potentially using an offset. 3460 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 3461 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 3462 3463 CmpInst::Predicate Pred; 3464 APInt NewRHSC, Offset; 3465 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3466 auto *OpTy = WO->getRHS()->getType(); 3467 auto *NewLHS = WO->getLHS(); 3468 if (Offset != 0) 3469 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3470 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3471 ConstantInt::get(OpTy, NewRHSC)); 3472 } 3473 3474 return nullptr; 3475 } 3476 3477 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3478 Value *Agg = EV.getAggregateOperand(); 3479 3480 if (!EV.hasIndices()) 3481 return replaceInstUsesWith(EV, Agg); 3482 3483 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), 3484 SQ.getWithInstruction(&EV))) 3485 return replaceInstUsesWith(EV, V); 3486 3487 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3488 // We're extracting from an insertvalue instruction, compare the indices 3489 const unsigned *exti, *exte, *insi, *inse; 3490 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3491 exte = EV.idx_end(), inse = IV->idx_end(); 3492 exti != exte && insi != inse; 3493 ++exti, ++insi) { 3494 if (*insi != *exti) 3495 // The insert and extract both reference distinctly different elements. 3496 // This means the extract is not influenced by the insert, and we can 3497 // replace the aggregate operand of the extract with the aggregate 3498 // operand of the insert. i.e., replace 3499 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3500 // %E = extractvalue { i32, { i32 } } %I, 0 3501 // with 3502 // %E = extractvalue { i32, { i32 } } %A, 0 3503 return ExtractValueInst::Create(IV->getAggregateOperand(), 3504 EV.getIndices()); 3505 } 3506 if (exti == exte && insi == inse) 3507 // Both iterators are at the end: Index lists are identical. Replace 3508 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3509 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3510 // with "i32 42" 3511 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3512 if (exti == exte) { 3513 // The extract list is a prefix of the insert list. i.e. replace 3514 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3515 // %E = extractvalue { i32, { i32 } } %I, 1 3516 // with 3517 // %X = extractvalue { i32, { i32 } } %A, 1 3518 // %E = insertvalue { i32 } %X, i32 42, 0 3519 // by switching the order of the insert and extract (though the 3520 // insertvalue should be left in, since it may have other uses). 3521 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3522 EV.getIndices()); 3523 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3524 ArrayRef(insi, inse)); 3525 } 3526 if (insi == inse) 3527 // The insert list is a prefix of the extract list 3528 // We can simply remove the common indices from the extract and make it 3529 // operate on the inserted value instead of the insertvalue result. 3530 // i.e., replace 3531 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3532 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3533 // with 3534 // %E extractvalue { i32 } { i32 42 }, 0 3535 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3536 ArrayRef(exti, exte)); 3537 } 3538 3539 if (Instruction *R = foldExtractOfOverflowIntrinsic(EV)) 3540 return R; 3541 3542 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) { 3543 // Bail out if the aggregate contains scalable vector type 3544 if (auto *STy = dyn_cast<StructType>(Agg->getType()); 3545 STy && STy->containsScalableVectorType()) 3546 return nullptr; 3547 3548 // If the (non-volatile) load only has one use, we can rewrite this to a 3549 // load from a GEP. This reduces the size of the load. If a load is used 3550 // only by extractvalue instructions then this either must have been 3551 // optimized before, or it is a struct with padding, in which case we 3552 // don't want to do the transformation as it loses padding knowledge. 3553 if (L->isSimple() && L->hasOneUse()) { 3554 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3555 SmallVector<Value*, 4> Indices; 3556 // Prefix an i32 0 since we need the first element. 3557 Indices.push_back(Builder.getInt32(0)); 3558 for (unsigned Idx : EV.indices()) 3559 Indices.push_back(Builder.getInt32(Idx)); 3560 3561 // We need to insert these at the location of the old load, not at that of 3562 // the extractvalue. 3563 Builder.SetInsertPoint(L); 3564 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3565 L->getPointerOperand(), Indices); 3566 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3567 // Whatever aliasing information we had for the orignal load must also 3568 // hold for the smaller load, so propagate the annotations. 3569 NL->setAAMetadata(L->getAAMetadata()); 3570 // Returning the load directly will cause the main loop to insert it in 3571 // the wrong spot, so use replaceInstUsesWith(). 3572 return replaceInstUsesWith(EV, NL); 3573 } 3574 } 3575 3576 if (auto *PN = dyn_cast<PHINode>(Agg)) 3577 if (Instruction *Res = foldOpIntoPhi(EV, PN)) 3578 return Res; 3579 3580 // We could simplify extracts from other values. Note that nested extracts may 3581 // already be simplified implicitly by the above: extract (extract (insert) ) 3582 // will be translated into extract ( insert ( extract ) ) first and then just 3583 // the value inserted, if appropriate. Similarly for extracts from single-use 3584 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3585 // and if again single-use then via load (gep (gep)) to load (gep). 3586 // However, double extracts from e.g. function arguments or return values 3587 // aren't handled yet. 3588 return nullptr; 3589 } 3590 3591 /// Return 'true' if the given typeinfo will match anything. 3592 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3593 switch (Personality) { 3594 case EHPersonality::GNU_C: 3595 case EHPersonality::GNU_C_SjLj: 3596 case EHPersonality::Rust: 3597 // The GCC C EH and Rust personality only exists to support cleanups, so 3598 // it's not clear what the semantics of catch clauses are. 3599 return false; 3600 case EHPersonality::Unknown: 3601 return false; 3602 case EHPersonality::GNU_Ada: 3603 // While __gnat_all_others_value will match any Ada exception, it doesn't 3604 // match foreign exceptions (or didn't, before gcc-4.7). 3605 return false; 3606 case EHPersonality::GNU_CXX: 3607 case EHPersonality::GNU_CXX_SjLj: 3608 case EHPersonality::GNU_ObjC: 3609 case EHPersonality::MSVC_X86SEH: 3610 case EHPersonality::MSVC_TableSEH: 3611 case EHPersonality::MSVC_CXX: 3612 case EHPersonality::CoreCLR: 3613 case EHPersonality::Wasm_CXX: 3614 case EHPersonality::XL_CXX: 3615 return TypeInfo->isNullValue(); 3616 } 3617 llvm_unreachable("invalid enum"); 3618 } 3619 3620 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3621 return 3622 cast<ArrayType>(LHS->getType())->getNumElements() 3623 < 3624 cast<ArrayType>(RHS->getType())->getNumElements(); 3625 } 3626 3627 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3628 // The logic here should be correct for any real-world personality function. 3629 // However if that turns out not to be true, the offending logic can always 3630 // be conditioned on the personality function, like the catch-all logic is. 3631 EHPersonality Personality = 3632 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3633 3634 // Simplify the list of clauses, eg by removing repeated catch clauses 3635 // (these are often created by inlining). 3636 bool MakeNewInstruction = false; // If true, recreate using the following: 3637 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3638 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3639 3640 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3641 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3642 bool isLastClause = i + 1 == e; 3643 if (LI.isCatch(i)) { 3644 // A catch clause. 3645 Constant *CatchClause = LI.getClause(i); 3646 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3647 3648 // If we already saw this clause, there is no point in having a second 3649 // copy of it. 3650 if (AlreadyCaught.insert(TypeInfo).second) { 3651 // This catch clause was not already seen. 3652 NewClauses.push_back(CatchClause); 3653 } else { 3654 // Repeated catch clause - drop the redundant copy. 3655 MakeNewInstruction = true; 3656 } 3657 3658 // If this is a catch-all then there is no point in keeping any following 3659 // clauses or marking the landingpad as having a cleanup. 3660 if (isCatchAll(Personality, TypeInfo)) { 3661 if (!isLastClause) 3662 MakeNewInstruction = true; 3663 CleanupFlag = false; 3664 break; 3665 } 3666 } else { 3667 // A filter clause. If any of the filter elements were already caught 3668 // then they can be dropped from the filter. It is tempting to try to 3669 // exploit the filter further by saying that any typeinfo that does not 3670 // occur in the filter can't be caught later (and thus can be dropped). 3671 // However this would be wrong, since typeinfos can match without being 3672 // equal (for example if one represents a C++ class, and the other some 3673 // class derived from it). 3674 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3675 Constant *FilterClause = LI.getClause(i); 3676 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3677 unsigned NumTypeInfos = FilterType->getNumElements(); 3678 3679 // An empty filter catches everything, so there is no point in keeping any 3680 // following clauses or marking the landingpad as having a cleanup. By 3681 // dealing with this case here the following code is made a bit simpler. 3682 if (!NumTypeInfos) { 3683 NewClauses.push_back(FilterClause); 3684 if (!isLastClause) 3685 MakeNewInstruction = true; 3686 CleanupFlag = false; 3687 break; 3688 } 3689 3690 bool MakeNewFilter = false; // If true, make a new filter. 3691 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3692 if (isa<ConstantAggregateZero>(FilterClause)) { 3693 // Not an empty filter - it contains at least one null typeinfo. 3694 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3695 Constant *TypeInfo = 3696 Constant::getNullValue(FilterType->getElementType()); 3697 // If this typeinfo is a catch-all then the filter can never match. 3698 if (isCatchAll(Personality, TypeInfo)) { 3699 // Throw the filter away. 3700 MakeNewInstruction = true; 3701 continue; 3702 } 3703 3704 // There is no point in having multiple copies of this typeinfo, so 3705 // discard all but the first copy if there is more than one. 3706 NewFilterElts.push_back(TypeInfo); 3707 if (NumTypeInfos > 1) 3708 MakeNewFilter = true; 3709 } else { 3710 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3711 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3712 NewFilterElts.reserve(NumTypeInfos); 3713 3714 // Remove any filter elements that were already caught or that already 3715 // occurred in the filter. While there, see if any of the elements are 3716 // catch-alls. If so, the filter can be discarded. 3717 bool SawCatchAll = false; 3718 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3719 Constant *Elt = Filter->getOperand(j); 3720 Constant *TypeInfo = Elt->stripPointerCasts(); 3721 if (isCatchAll(Personality, TypeInfo)) { 3722 // This element is a catch-all. Bail out, noting this fact. 3723 SawCatchAll = true; 3724 break; 3725 } 3726 3727 // Even if we've seen a type in a catch clause, we don't want to 3728 // remove it from the filter. An unexpected type handler may be 3729 // set up for a call site which throws an exception of the same 3730 // type caught. In order for the exception thrown by the unexpected 3731 // handler to propagate correctly, the filter must be correctly 3732 // described for the call site. 3733 // 3734 // Example: 3735 // 3736 // void unexpected() { throw 1;} 3737 // void foo() throw (int) { 3738 // std::set_unexpected(unexpected); 3739 // try { 3740 // throw 2.0; 3741 // } catch (int i) {} 3742 // } 3743 3744 // There is no point in having multiple copies of the same typeinfo in 3745 // a filter, so only add it if we didn't already. 3746 if (SeenInFilter.insert(TypeInfo).second) 3747 NewFilterElts.push_back(cast<Constant>(Elt)); 3748 } 3749 // A filter containing a catch-all cannot match anything by definition. 3750 if (SawCatchAll) { 3751 // Throw the filter away. 3752 MakeNewInstruction = true; 3753 continue; 3754 } 3755 3756 // If we dropped something from the filter, make a new one. 3757 if (NewFilterElts.size() < NumTypeInfos) 3758 MakeNewFilter = true; 3759 } 3760 if (MakeNewFilter) { 3761 FilterType = ArrayType::get(FilterType->getElementType(), 3762 NewFilterElts.size()); 3763 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3764 MakeNewInstruction = true; 3765 } 3766 3767 NewClauses.push_back(FilterClause); 3768 3769 // If the new filter is empty then it will catch everything so there is 3770 // no point in keeping any following clauses or marking the landingpad 3771 // as having a cleanup. The case of the original filter being empty was 3772 // already handled above. 3773 if (MakeNewFilter && !NewFilterElts.size()) { 3774 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3775 CleanupFlag = false; 3776 break; 3777 } 3778 } 3779 } 3780 3781 // If several filters occur in a row then reorder them so that the shortest 3782 // filters come first (those with the smallest number of elements). This is 3783 // advantageous because shorter filters are more likely to match, speeding up 3784 // unwinding, but mostly because it increases the effectiveness of the other 3785 // filter optimizations below. 3786 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3787 unsigned j; 3788 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3789 for (j = i; j != e; ++j) 3790 if (!isa<ArrayType>(NewClauses[j]->getType())) 3791 break; 3792 3793 // Check whether the filters are already sorted by length. We need to know 3794 // if sorting them is actually going to do anything so that we only make a 3795 // new landingpad instruction if it does. 3796 for (unsigned k = i; k + 1 < j; ++k) 3797 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3798 // Not sorted, so sort the filters now. Doing an unstable sort would be 3799 // correct too but reordering filters pointlessly might confuse users. 3800 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3801 shorter_filter); 3802 MakeNewInstruction = true; 3803 break; 3804 } 3805 3806 // Look for the next batch of filters. 3807 i = j + 1; 3808 } 3809 3810 // If typeinfos matched if and only if equal, then the elements of a filter L 3811 // that occurs later than a filter F could be replaced by the intersection of 3812 // the elements of F and L. In reality two typeinfos can match without being 3813 // equal (for example if one represents a C++ class, and the other some class 3814 // derived from it) so it would be wrong to perform this transform in general. 3815 // However the transform is correct and useful if F is a subset of L. In that 3816 // case L can be replaced by F, and thus removed altogether since repeating a 3817 // filter is pointless. So here we look at all pairs of filters F and L where 3818 // L follows F in the list of clauses, and remove L if every element of F is 3819 // an element of L. This can occur when inlining C++ functions with exception 3820 // specifications. 3821 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3822 // Examine each filter in turn. 3823 Value *Filter = NewClauses[i]; 3824 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3825 if (!FTy) 3826 // Not a filter - skip it. 3827 continue; 3828 unsigned FElts = FTy->getNumElements(); 3829 // Examine each filter following this one. Doing this backwards means that 3830 // we don't have to worry about filters disappearing under us when removed. 3831 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3832 Value *LFilter = NewClauses[j]; 3833 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3834 if (!LTy) 3835 // Not a filter - skip it. 3836 continue; 3837 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3838 // an element of LFilter, then discard LFilter. 3839 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3840 // If Filter is empty then it is a subset of LFilter. 3841 if (!FElts) { 3842 // Discard LFilter. 3843 NewClauses.erase(J); 3844 MakeNewInstruction = true; 3845 // Move on to the next filter. 3846 continue; 3847 } 3848 unsigned LElts = LTy->getNumElements(); 3849 // If Filter is longer than LFilter then it cannot be a subset of it. 3850 if (FElts > LElts) 3851 // Move on to the next filter. 3852 continue; 3853 // At this point we know that LFilter has at least one element. 3854 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3855 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3856 // already know that Filter is not longer than LFilter). 3857 if (isa<ConstantAggregateZero>(Filter)) { 3858 assert(FElts <= LElts && "Should have handled this case earlier!"); 3859 // Discard LFilter. 3860 NewClauses.erase(J); 3861 MakeNewInstruction = true; 3862 } 3863 // Move on to the next filter. 3864 continue; 3865 } 3866 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3867 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3868 // Since Filter is non-empty and contains only zeros, it is a subset of 3869 // LFilter iff LFilter contains a zero. 3870 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3871 for (unsigned l = 0; l != LElts; ++l) 3872 if (LArray->getOperand(l)->isNullValue()) { 3873 // LFilter contains a zero - discard it. 3874 NewClauses.erase(J); 3875 MakeNewInstruction = true; 3876 break; 3877 } 3878 // Move on to the next filter. 3879 continue; 3880 } 3881 // At this point we know that both filters are ConstantArrays. Loop over 3882 // operands to see whether every element of Filter is also an element of 3883 // LFilter. Since filters tend to be short this is probably faster than 3884 // using a method that scales nicely. 3885 ConstantArray *FArray = cast<ConstantArray>(Filter); 3886 bool AllFound = true; 3887 for (unsigned f = 0; f != FElts; ++f) { 3888 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3889 AllFound = false; 3890 for (unsigned l = 0; l != LElts; ++l) { 3891 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3892 if (LTypeInfo == FTypeInfo) { 3893 AllFound = true; 3894 break; 3895 } 3896 } 3897 if (!AllFound) 3898 break; 3899 } 3900 if (AllFound) { 3901 // Discard LFilter. 3902 NewClauses.erase(J); 3903 MakeNewInstruction = true; 3904 } 3905 // Move on to the next filter. 3906 } 3907 } 3908 3909 // If we changed any of the clauses, replace the old landingpad instruction 3910 // with a new one. 3911 if (MakeNewInstruction) { 3912 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3913 NewClauses.size()); 3914 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3915 NLI->addClause(NewClauses[i]); 3916 // A landing pad with no clauses must have the cleanup flag set. It is 3917 // theoretically possible, though highly unlikely, that we eliminated all 3918 // clauses. If so, force the cleanup flag to true. 3919 if (NewClauses.empty()) 3920 CleanupFlag = true; 3921 NLI->setCleanup(CleanupFlag); 3922 return NLI; 3923 } 3924 3925 // Even if none of the clauses changed, we may nonetheless have understood 3926 // that the cleanup flag is pointless. Clear it if so. 3927 if (LI.isCleanup() != CleanupFlag) { 3928 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3929 LI.setCleanup(CleanupFlag); 3930 return &LI; 3931 } 3932 3933 return nullptr; 3934 } 3935 3936 Value * 3937 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3938 // Try to push freeze through instructions that propagate but don't produce 3939 // poison as far as possible. If an operand of freeze follows three 3940 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3941 // guaranteed-non-poison operands then push the freeze through to the one 3942 // operand that is not guaranteed non-poison. The actual transform is as 3943 // follows. 3944 // Op1 = ... ; Op1 can be posion 3945 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3946 // ; single guaranteed-non-poison operands 3947 // ... = Freeze(Op0) 3948 // => 3949 // Op1 = ... 3950 // Op1.fr = Freeze(Op1) 3951 // ... = Inst(Op1.fr, NonPoisonOps...) 3952 auto *OrigOp = OrigFI.getOperand(0); 3953 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3954 3955 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3956 // potentially reduces their optimization potential, so let's only do this iff 3957 // the OrigOp is only used by the freeze. 3958 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3959 return nullptr; 3960 3961 // We can't push the freeze through an instruction which can itself create 3962 // poison. If the only source of new poison is flags, we can simply 3963 // strip them (since we know the only use is the freeze and nothing can 3964 // benefit from them.) 3965 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), 3966 /*ConsiderFlagsAndMetadata*/ false)) 3967 return nullptr; 3968 3969 // If operand is guaranteed not to be poison, there is no need to add freeze 3970 // to the operand. So we first find the operand that is not guaranteed to be 3971 // poison. 3972 Use *MaybePoisonOperand = nullptr; 3973 for (Use &U : OrigOpInst->operands()) { 3974 if (isa<MetadataAsValue>(U.get()) || 3975 isGuaranteedNotToBeUndefOrPoison(U.get())) 3976 continue; 3977 if (!MaybePoisonOperand) 3978 MaybePoisonOperand = &U; 3979 else 3980 return nullptr; 3981 } 3982 3983 OrigOpInst->dropPoisonGeneratingFlagsAndMetadata(); 3984 3985 // If all operands are guaranteed to be non-poison, we can drop freeze. 3986 if (!MaybePoisonOperand) 3987 return OrigOp; 3988 3989 Builder.SetInsertPoint(OrigOpInst); 3990 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( 3991 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3992 3993 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3994 return OrigOp; 3995 } 3996 3997 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, 3998 PHINode *PN) { 3999 // Detect whether this is a recurrence with a start value and some number of 4000 // backedge values. We'll check whether we can push the freeze through the 4001 // backedge values (possibly dropping poison flags along the way) until we 4002 // reach the phi again. In that case, we can move the freeze to the start 4003 // value. 4004 Use *StartU = nullptr; 4005 SmallVector<Value *> Worklist; 4006 for (Use &U : PN->incoming_values()) { 4007 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { 4008 // Add backedge value to worklist. 4009 Worklist.push_back(U.get()); 4010 continue; 4011 } 4012 4013 // Don't bother handling multiple start values. 4014 if (StartU) 4015 return nullptr; 4016 StartU = &U; 4017 } 4018 4019 if (!StartU || Worklist.empty()) 4020 return nullptr; // Not a recurrence. 4021 4022 Value *StartV = StartU->get(); 4023 BasicBlock *StartBB = PN->getIncomingBlock(*StartU); 4024 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); 4025 // We can't insert freeze if the start value is the result of the 4026 // terminator (e.g. an invoke). 4027 if (StartNeedsFreeze && StartBB->getTerminator() == StartV) 4028 return nullptr; 4029 4030 SmallPtrSet<Value *, 32> Visited; 4031 SmallVector<Instruction *> DropFlags; 4032 while (!Worklist.empty()) { 4033 Value *V = Worklist.pop_back_val(); 4034 if (!Visited.insert(V).second) 4035 continue; 4036 4037 if (Visited.size() > 32) 4038 return nullptr; // Limit the total number of values we inspect. 4039 4040 // Assume that PN is non-poison, because it will be after the transform. 4041 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) 4042 continue; 4043 4044 Instruction *I = dyn_cast<Instruction>(V); 4045 if (!I || canCreateUndefOrPoison(cast<Operator>(I), 4046 /*ConsiderFlagsAndMetadata*/ false)) 4047 return nullptr; 4048 4049 DropFlags.push_back(I); 4050 append_range(Worklist, I->operands()); 4051 } 4052 4053 for (Instruction *I : DropFlags) 4054 I->dropPoisonGeneratingFlagsAndMetadata(); 4055 4056 if (StartNeedsFreeze) { 4057 Builder.SetInsertPoint(StartBB->getTerminator()); 4058 Value *FrozenStartV = Builder.CreateFreeze(StartV, 4059 StartV->getName() + ".fr"); 4060 replaceUse(*StartU, FrozenStartV); 4061 } 4062 return replaceInstUsesWith(FI, PN); 4063 } 4064 4065 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { 4066 Value *Op = FI.getOperand(0); 4067 4068 if (isa<Constant>(Op) || Op->hasOneUse()) 4069 return false; 4070 4071 // Move the freeze directly after the definition of its operand, so that 4072 // it dominates the maximum number of uses. Note that it may not dominate 4073 // *all* uses if the operand is an invoke/callbr and the use is in a phi on 4074 // the normal/default destination. This is why the domination check in the 4075 // replacement below is still necessary. 4076 BasicBlock::iterator MoveBefore; 4077 if (isa<Argument>(Op)) { 4078 MoveBefore = 4079 FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca(); 4080 } else { 4081 auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef(); 4082 if (!MoveBeforeOpt) 4083 return false; 4084 MoveBefore = *MoveBeforeOpt; 4085 } 4086 4087 // Don't move to the position of a debug intrinsic. 4088 if (isa<DbgInfoIntrinsic>(MoveBefore)) 4089 MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator(); 4090 // Re-point iterator to come after any debug-info records, if we're 4091 // running in "RemoveDIs" mode 4092 MoveBefore.setHeadBit(false); 4093 4094 bool Changed = false; 4095 if (&FI != &*MoveBefore) { 4096 FI.moveBefore(*MoveBefore->getParent(), MoveBefore); 4097 Changed = true; 4098 } 4099 4100 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 4101 bool Dominates = DT.dominates(&FI, U); 4102 Changed |= Dominates; 4103 return Dominates; 4104 }); 4105 4106 return Changed; 4107 } 4108 4109 // Check if any direct or bitcast user of this value is a shuffle instruction. 4110 static bool isUsedWithinShuffleVector(Value *V) { 4111 for (auto *U : V->users()) { 4112 if (isa<ShuffleVectorInst>(U)) 4113 return true; 4114 else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U)) 4115 return true; 4116 } 4117 return false; 4118 } 4119 4120 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 4121 Value *Op0 = I.getOperand(0); 4122 4123 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 4124 return replaceInstUsesWith(I, V); 4125 4126 // freeze (phi const, x) --> phi const, (freeze x) 4127 if (auto *PN = dyn_cast<PHINode>(Op0)) { 4128 if (Instruction *NV = foldOpIntoPhi(I, PN)) 4129 return NV; 4130 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) 4131 return NV; 4132 } 4133 4134 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 4135 return replaceInstUsesWith(I, NI); 4136 4137 // If I is freeze(undef), check its uses and fold it to a fixed constant. 4138 // - or: pick -1 4139 // - select's condition: if the true value is constant, choose it by making 4140 // the condition true. 4141 // - default: pick 0 4142 // 4143 // Note that this transform is intentionally done here rather than 4144 // via an analysis in InstSimplify or at individual user sites. That is 4145 // because we must produce the same value for all uses of the freeze - 4146 // it's the reason "freeze" exists! 4147 // 4148 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid 4149 // duplicating logic for binops at least. 4150 auto getUndefReplacement = [&I](Type *Ty) { 4151 Constant *BestValue = nullptr; 4152 Constant *NullValue = Constant::getNullValue(Ty); 4153 for (const auto *U : I.users()) { 4154 Constant *C = NullValue; 4155 if (match(U, m_Or(m_Value(), m_Value()))) 4156 C = ConstantInt::getAllOnesValue(Ty); 4157 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) 4158 C = ConstantInt::getTrue(Ty); 4159 4160 if (!BestValue) 4161 BestValue = C; 4162 else if (BestValue != C) 4163 BestValue = NullValue; 4164 } 4165 assert(BestValue && "Must have at least one use"); 4166 return BestValue; 4167 }; 4168 4169 if (match(Op0, m_Undef())) { 4170 // Don't fold freeze(undef/poison) if it's used as a vector operand in 4171 // a shuffle. This may improve codegen for shuffles that allow 4172 // unspecified inputs. 4173 if (isUsedWithinShuffleVector(&I)) 4174 return nullptr; 4175 return replaceInstUsesWith(I, getUndefReplacement(I.getType())); 4176 } 4177 4178 Constant *C; 4179 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { 4180 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); 4181 return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); 4182 } 4183 4184 // Replace uses of Op with freeze(Op). 4185 if (freezeOtherUses(I)) 4186 return &I; 4187 4188 return nullptr; 4189 } 4190 4191 /// Check for case where the call writes to an otherwise dead alloca. This 4192 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 4193 /// helper *only* analyzes the write; doesn't check any other legality aspect. 4194 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 4195 auto *CB = dyn_cast<CallBase>(I); 4196 if (!CB) 4197 // TODO: handle e.g. store to alloca here - only worth doing if we extend 4198 // to allow reload along used path as described below. Otherwise, this 4199 // is simply a store to a dead allocation which will be removed. 4200 return false; 4201 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 4202 if (!Dest) 4203 return false; 4204 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 4205 if (!AI) 4206 // TODO: allow malloc? 4207 return false; 4208 // TODO: allow memory access dominated by move point? Note that since AI 4209 // could have a reference to itself captured by the call, we would need to 4210 // account for cycles in doing so. 4211 SmallVector<const User *> AllocaUsers; 4212 SmallPtrSet<const User *, 4> Visited; 4213 auto pushUsers = [&](const Instruction &I) { 4214 for (const User *U : I.users()) { 4215 if (Visited.insert(U).second) 4216 AllocaUsers.push_back(U); 4217 } 4218 }; 4219 pushUsers(*AI); 4220 while (!AllocaUsers.empty()) { 4221 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 4222 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 4223 isa<AddrSpaceCastInst>(UserI)) { 4224 pushUsers(*UserI); 4225 continue; 4226 } 4227 if (UserI == CB) 4228 continue; 4229 // TODO: support lifetime.start/end here 4230 return false; 4231 } 4232 return true; 4233 } 4234 4235 /// Try to move the specified instruction from its current block into the 4236 /// beginning of DestBlock, which can only happen if it's safe to move the 4237 /// instruction past all of the instructions between it and the end of its 4238 /// block. 4239 bool InstCombinerImpl::tryToSinkInstruction(Instruction *I, 4240 BasicBlock *DestBlock) { 4241 BasicBlock *SrcBlock = I->getParent(); 4242 4243 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 4244 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 4245 I->isTerminator()) 4246 return false; 4247 4248 // Do not sink static or dynamic alloca instructions. Static allocas must 4249 // remain in the entry block, and dynamic allocas must not be sunk in between 4250 // a stacksave / stackrestore pair, which would incorrectly shorten its 4251 // lifetime. 4252 if (isa<AllocaInst>(I)) 4253 return false; 4254 4255 // Do not sink into catchswitch blocks. 4256 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 4257 return false; 4258 4259 // Do not sink convergent call instructions. 4260 if (auto *CI = dyn_cast<CallInst>(I)) { 4261 if (CI->isConvergent()) 4262 return false; 4263 } 4264 4265 // Unless we can prove that the memory write isn't visibile except on the 4266 // path we're sinking to, we must bail. 4267 if (I->mayWriteToMemory()) { 4268 if (!SoleWriteToDeadLocal(I, TLI)) 4269 return false; 4270 } 4271 4272 // We can only sink load instructions if there is nothing between the load and 4273 // the end of block that could change the value. 4274 if (I->mayReadFromMemory()) { 4275 // We don't want to do any sophisticated alias analysis, so we only check 4276 // the instructions after I in I's parent block if we try to sink to its 4277 // successor block. 4278 if (DestBlock->getUniquePredecessor() != I->getParent()) 4279 return false; 4280 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 4281 E = I->getParent()->end(); 4282 Scan != E; ++Scan) 4283 if (Scan->mayWriteToMemory()) 4284 return false; 4285 } 4286 4287 I->dropDroppableUses([&](const Use *U) { 4288 auto *I = dyn_cast<Instruction>(U->getUser()); 4289 if (I && I->getParent() != DestBlock) { 4290 Worklist.add(I); 4291 return true; 4292 } 4293 return false; 4294 }); 4295 /// FIXME: We could remove droppable uses that are not dominated by 4296 /// the new position. 4297 4298 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 4299 I->moveBefore(*DestBlock, InsertPos); 4300 ++NumSunkInst; 4301 4302 // Also sink all related debug uses from the source basic block. Otherwise we 4303 // get debug use before the def. Attempt to salvage debug uses first, to 4304 // maximise the range variables have location for. If we cannot salvage, then 4305 // mark the location undef: we know it was supposed to receive a new location 4306 // here, but that computation has been sunk. 4307 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 4308 findDbgUsers(DbgUsers, I); 4309 4310 // For all debug values in the destination block, the sunk instruction 4311 // will still be available, so they do not need to be dropped. 4312 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage; 4313 SmallVector<DPValue *, 2> DPValuesToSalvage; 4314 for (auto &DbgUser : DbgUsers) 4315 if (DbgUser->getParent() != DestBlock) 4316 DbgUsersToSalvage.push_back(DbgUser); 4317 4318 // Process the sinking DbgUsersToSalvage in reverse order, as we only want 4319 // to clone the last appearing debug intrinsic for each given variable. 4320 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 4321 for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage) 4322 if (DVI->getParent() == SrcBlock) 4323 DbgUsersToSink.push_back(DVI); 4324 llvm::sort(DbgUsersToSink, 4325 [](auto *A, auto *B) { return B->comesBefore(A); }); 4326 4327 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 4328 SmallSet<DebugVariable, 4> SunkVariables; 4329 for (auto *User : DbgUsersToSink) { 4330 // A dbg.declare instruction should not be cloned, since there can only be 4331 // one per variable fragment. It should be left in the original place 4332 // because the sunk instruction is not an alloca (otherwise we could not be 4333 // here). 4334 if (isa<DbgDeclareInst>(User)) 4335 continue; 4336 4337 DebugVariable DbgUserVariable = 4338 DebugVariable(User->getVariable(), User->getExpression(), 4339 User->getDebugLoc()->getInlinedAt()); 4340 4341 if (!SunkVariables.insert(DbgUserVariable).second) 4342 continue; 4343 4344 // Leave dbg.assign intrinsics in their original positions and there should 4345 // be no need to insert a clone. 4346 if (isa<DbgAssignIntrinsic>(User)) 4347 continue; 4348 4349 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 4350 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 4351 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 4352 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 4353 } 4354 4355 // Perform salvaging without the clones, then sink the clones. 4356 if (!DIIClones.empty()) { 4357 // RemoveDIs: pass in empty vector of DPValues until we get to instrumenting 4358 // this pass. 4359 SmallVector<DPValue *, 1> DummyDPValues; 4360 salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, DummyDPValues); 4361 // The clones are in reverse order of original appearance, reverse again to 4362 // maintain the original order. 4363 for (auto &DIIClone : llvm::reverse(DIIClones)) { 4364 DIIClone->insertBefore(&*InsertPos); 4365 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 4366 } 4367 } 4368 4369 return true; 4370 } 4371 4372 bool InstCombinerImpl::run() { 4373 while (!Worklist.isEmpty()) { 4374 // Walk deferred instructions in reverse order, and push them to the 4375 // worklist, which means they'll end up popped from the worklist in-order. 4376 while (Instruction *I = Worklist.popDeferred()) { 4377 // Check to see if we can DCE the instruction. We do this already here to 4378 // reduce the number of uses and thus allow other folds to trigger. 4379 // Note that eraseInstFromFunction() may push additional instructions on 4380 // the deferred worklist, so this will DCE whole instruction chains. 4381 if (isInstructionTriviallyDead(I, &TLI)) { 4382 eraseInstFromFunction(*I); 4383 ++NumDeadInst; 4384 continue; 4385 } 4386 4387 Worklist.push(I); 4388 } 4389 4390 Instruction *I = Worklist.removeOne(); 4391 if (I == nullptr) continue; // skip null values. 4392 4393 // Check to see if we can DCE the instruction. 4394 if (isInstructionTriviallyDead(I, &TLI)) { 4395 eraseInstFromFunction(*I); 4396 ++NumDeadInst; 4397 continue; 4398 } 4399 4400 if (!DebugCounter::shouldExecute(VisitCounter)) 4401 continue; 4402 4403 // See if we can trivially sink this instruction to its user if we can 4404 // prove that the successor is not executed more frequently than our block. 4405 // Return the UserBlock if successful. 4406 auto getOptionalSinkBlockForInst = 4407 [this](Instruction *I) -> std::optional<BasicBlock *> { 4408 if (!EnableCodeSinking) 4409 return std::nullopt; 4410 4411 BasicBlock *BB = I->getParent(); 4412 BasicBlock *UserParent = nullptr; 4413 unsigned NumUsers = 0; 4414 4415 for (auto *U : I->users()) { 4416 if (U->isDroppable()) 4417 continue; 4418 if (NumUsers > MaxSinkNumUsers) 4419 return std::nullopt; 4420 4421 Instruction *UserInst = cast<Instruction>(U); 4422 // Special handling for Phi nodes - get the block the use occurs in. 4423 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 4424 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 4425 if (PN->getIncomingValue(i) == I) { 4426 // Bail out if we have uses in different blocks. We don't do any 4427 // sophisticated analysis (i.e finding NearestCommonDominator of 4428 // these use blocks). 4429 if (UserParent && UserParent != PN->getIncomingBlock(i)) 4430 return std::nullopt; 4431 UserParent = PN->getIncomingBlock(i); 4432 } 4433 } 4434 assert(UserParent && "expected to find user block!"); 4435 } else { 4436 if (UserParent && UserParent != UserInst->getParent()) 4437 return std::nullopt; 4438 UserParent = UserInst->getParent(); 4439 } 4440 4441 // Make sure these checks are done only once, naturally we do the checks 4442 // the first time we get the userparent, this will save compile time. 4443 if (NumUsers == 0) { 4444 // Try sinking to another block. If that block is unreachable, then do 4445 // not bother. SimplifyCFG should handle it. 4446 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 4447 return std::nullopt; 4448 4449 auto *Term = UserParent->getTerminator(); 4450 // See if the user is one of our successors that has only one 4451 // predecessor, so that we don't have to split the critical edge. 4452 // Another option where we can sink is a block that ends with a 4453 // terminator that does not pass control to other block (such as 4454 // return or unreachable or resume). In this case: 4455 // - I dominates the User (by SSA form); 4456 // - the User will be executed at most once. 4457 // So sinking I down to User is always profitable or neutral. 4458 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) 4459 return std::nullopt; 4460 4461 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 4462 } 4463 4464 NumUsers++; 4465 } 4466 4467 // No user or only has droppable users. 4468 if (!UserParent) 4469 return std::nullopt; 4470 4471 return UserParent; 4472 }; 4473 4474 auto OptBB = getOptionalSinkBlockForInst(I); 4475 if (OptBB) { 4476 auto *UserParent = *OptBB; 4477 // Okay, the CFG is simple enough, try to sink this instruction. 4478 if (tryToSinkInstruction(I, UserParent)) { 4479 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 4480 MadeIRChange = true; 4481 // We'll add uses of the sunk instruction below, but since 4482 // sinking can expose opportunities for it's *operands* add 4483 // them to the worklist 4484 for (Use &U : I->operands()) 4485 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 4486 Worklist.push(OpI); 4487 } 4488 } 4489 4490 // Now that we have an instruction, try combining it to simplify it. 4491 Builder.SetInsertPoint(I); 4492 Builder.CollectMetadataToCopy( 4493 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4494 4495 #ifndef NDEBUG 4496 std::string OrigI; 4497 #endif 4498 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4499 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4500 4501 if (Instruction *Result = visit(*I)) { 4502 ++NumCombined; 4503 // Should we replace the old instruction with a new one? 4504 if (Result != I) { 4505 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4506 << " New = " << *Result << '\n'); 4507 4508 Result->copyMetadata(*I, 4509 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4510 // Everything uses the new instruction now. 4511 I->replaceAllUsesWith(Result); 4512 4513 // Move the name to the new instruction first. 4514 Result->takeName(I); 4515 4516 // Insert the new instruction into the basic block... 4517 BasicBlock *InstParent = I->getParent(); 4518 BasicBlock::iterator InsertPos = I->getIterator(); 4519 4520 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4521 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4522 // We need to fix up the insertion point. 4523 if (isa<PHINode>(I)) // PHI -> Non-PHI 4524 InsertPos = InstParent->getFirstInsertionPt(); 4525 else // Non-PHI -> PHI 4526 InsertPos = InstParent->getFirstNonPHIIt(); 4527 } 4528 4529 Result->insertInto(InstParent, InsertPos); 4530 4531 // Push the new instruction and any users onto the worklist. 4532 Worklist.pushUsersToWorkList(*Result); 4533 Worklist.push(Result); 4534 4535 eraseInstFromFunction(*I); 4536 } else { 4537 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4538 << " New = " << *I << '\n'); 4539 4540 // If the instruction was modified, it's possible that it is now dead. 4541 // if so, remove it. 4542 if (isInstructionTriviallyDead(I, &TLI)) { 4543 eraseInstFromFunction(*I); 4544 } else { 4545 Worklist.pushUsersToWorkList(*I); 4546 Worklist.push(I); 4547 } 4548 } 4549 MadeIRChange = true; 4550 } 4551 } 4552 4553 Worklist.zap(); 4554 return MadeIRChange; 4555 } 4556 4557 // Track the scopes used by !alias.scope and !noalias. In a function, a 4558 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4559 // by both sets. If not, the declaration of the scope can be safely omitted. 4560 // The MDNode of the scope can be omitted as well for the instructions that are 4561 // part of this function. We do not do that at this point, as this might become 4562 // too time consuming to do. 4563 class AliasScopeTracker { 4564 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4565 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4566 4567 public: 4568 void analyse(Instruction *I) { 4569 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4570 if (!I->hasMetadataOtherThanDebugLoc()) 4571 return; 4572 4573 auto Track = [](Metadata *ScopeList, auto &Container) { 4574 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4575 if (!MDScopeList || !Container.insert(MDScopeList).second) 4576 return; 4577 for (const auto &MDOperand : MDScopeList->operands()) 4578 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4579 Container.insert(MDScope); 4580 }; 4581 4582 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4583 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4584 } 4585 4586 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4587 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4588 if (!Decl) 4589 return false; 4590 4591 assert(Decl->use_empty() && 4592 "llvm.experimental.noalias.scope.decl in use ?"); 4593 const MDNode *MDSL = Decl->getScopeList(); 4594 assert(MDSL->getNumOperands() == 1 && 4595 "llvm.experimental.noalias.scope should refer to a single scope"); 4596 auto &MDOperand = MDSL->getOperand(0); 4597 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4598 return !UsedAliasScopesAndLists.contains(MD) || 4599 !UsedNoAliasScopesAndLists.contains(MD); 4600 4601 // Not an MDNode ? throw away. 4602 return true; 4603 } 4604 }; 4605 4606 /// Populate the IC worklist from a function, by walking it in reverse 4607 /// post-order and adding all reachable code to the worklist. 4608 /// 4609 /// This has a couple of tricks to make the code faster and more powerful. In 4610 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4611 /// them to the worklist (this significantly speeds up instcombine on code where 4612 /// many instructions are dead or constant). Additionally, if we find a branch 4613 /// whose condition is a known constant, we only visit the reachable successors. 4614 bool InstCombinerImpl::prepareWorklist( 4615 Function &F, ReversePostOrderTraversal<BasicBlock *> &RPOT) { 4616 bool MadeIRChange = false; 4617 SmallPtrSet<BasicBlock *, 32> LiveBlocks; 4618 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4619 DenseMap<Constant *, Constant *> FoldedConstants; 4620 AliasScopeTracker SeenAliasScopes; 4621 4622 auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) { 4623 for (BasicBlock *Succ : successors(BB)) 4624 if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second) 4625 for (PHINode &PN : Succ->phis()) 4626 for (Use &U : PN.incoming_values()) 4627 if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) { 4628 U.set(PoisonValue::get(PN.getType())); 4629 MadeIRChange = true; 4630 } 4631 }; 4632 4633 for (BasicBlock *BB : RPOT) { 4634 if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) { 4635 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); 4636 })) { 4637 HandleOnlyLiveSuccessor(BB, nullptr); 4638 continue; 4639 } 4640 LiveBlocks.insert(BB); 4641 4642 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4643 // ConstantProp instruction if trivially constant. 4644 if (!Inst.use_empty() && 4645 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4646 if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) { 4647 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4648 << '\n'); 4649 Inst.replaceAllUsesWith(C); 4650 ++NumConstProp; 4651 if (isInstructionTriviallyDead(&Inst, &TLI)) 4652 Inst.eraseFromParent(); 4653 MadeIRChange = true; 4654 continue; 4655 } 4656 4657 // See if we can constant fold its operands. 4658 for (Use &U : Inst.operands()) { 4659 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4660 continue; 4661 4662 auto *C = cast<Constant>(U); 4663 Constant *&FoldRes = FoldedConstants[C]; 4664 if (!FoldRes) 4665 FoldRes = ConstantFoldConstant(C, DL, &TLI); 4666 4667 if (FoldRes != C) { 4668 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4669 << "\n Old = " << *C 4670 << "\n New = " << *FoldRes << '\n'); 4671 U = FoldRes; 4672 MadeIRChange = true; 4673 } 4674 } 4675 4676 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4677 // these call instructions consumes non-trivial amount of time and 4678 // provides no value for the optimization. 4679 if (!Inst.isDebugOrPseudoInst()) { 4680 InstrsForInstructionWorklist.push_back(&Inst); 4681 SeenAliasScopes.analyse(&Inst); 4682 } 4683 } 4684 4685 // If this is a branch or switch on a constant, mark only the single 4686 // live successor. Otherwise assume all successors are live. 4687 Instruction *TI = BB->getTerminator(); 4688 if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) { 4689 if (isa<UndefValue>(BI->getCondition())) { 4690 // Branch on undef is UB. 4691 HandleOnlyLiveSuccessor(BB, nullptr); 4692 continue; 4693 } 4694 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 4695 bool CondVal = Cond->getZExtValue(); 4696 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal)); 4697 continue; 4698 } 4699 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4700 if (isa<UndefValue>(SI->getCondition())) { 4701 // Switch on undef is UB. 4702 HandleOnlyLiveSuccessor(BB, nullptr); 4703 continue; 4704 } 4705 if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4706 HandleOnlyLiveSuccessor(BB, 4707 SI->findCaseValue(Cond)->getCaseSuccessor()); 4708 continue; 4709 } 4710 } 4711 } 4712 4713 // Remove instructions inside unreachable blocks. This prevents the 4714 // instcombine code from having to deal with some bad special cases, and 4715 // reduces use counts of instructions. 4716 for (BasicBlock &BB : F) { 4717 if (LiveBlocks.count(&BB)) 4718 continue; 4719 4720 unsigned NumDeadInstInBB; 4721 unsigned NumDeadDbgInstInBB; 4722 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4723 removeAllNonTerminatorAndEHPadInstructions(&BB); 4724 4725 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4726 NumDeadInst += NumDeadInstInBB; 4727 } 4728 4729 // Once we've found all of the instructions to add to instcombine's worklist, 4730 // add them in reverse order. This way instcombine will visit from the top 4731 // of the function down. This jives well with the way that it adds all uses 4732 // of instructions to the worklist after doing a transformation, thus avoiding 4733 // some N^2 behavior in pathological cases. 4734 Worklist.reserve(InstrsForInstructionWorklist.size()); 4735 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4736 // DCE instruction if trivially dead. As we iterate in reverse program 4737 // order here, we will clean up whole chains of dead instructions. 4738 if (isInstructionTriviallyDead(Inst, &TLI) || 4739 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4740 ++NumDeadInst; 4741 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4742 salvageDebugInfo(*Inst); 4743 Inst->eraseFromParent(); 4744 MadeIRChange = true; 4745 continue; 4746 } 4747 4748 Worklist.push(Inst); 4749 } 4750 4751 return MadeIRChange; 4752 } 4753 4754 static bool combineInstructionsOverFunction( 4755 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4756 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4757 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4758 ProfileSummaryInfo *PSI, LoopInfo *LI, const InstCombineOptions &Opts) { 4759 auto &DL = F.getParent()->getDataLayout(); 4760 4761 /// Builder - This is an IRBuilder that automatically inserts new 4762 /// instructions into the worklist when they are created. 4763 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4764 F.getContext(), TargetFolder(DL), 4765 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4766 Worklist.add(I); 4767 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4768 AC.registerAssumption(Assume); 4769 })); 4770 4771 ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front()); 4772 4773 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4774 // by instcombiner. 4775 bool MadeIRChange = false; 4776 if (ShouldLowerDbgDeclare) 4777 MadeIRChange = LowerDbgDeclare(F); 4778 4779 // Iterate while there is work to do. 4780 unsigned Iteration = 0; 4781 while (true) { 4782 ++Iteration; 4783 4784 if (Iteration > Opts.MaxIterations && !Opts.VerifyFixpoint) { 4785 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations 4786 << " on " << F.getName() 4787 << " reached; stopping without verifying fixpoint\n"); 4788 break; 4789 } 4790 4791 ++NumWorklistIterations; 4792 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4793 << F.getName() << "\n"); 4794 4795 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4796 ORE, BFI, PSI, DL, LI); 4797 IC.MaxArraySizeForCombine = MaxArraySize; 4798 bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT); 4799 MadeChangeInThisIteration |= IC.run(); 4800 if (!MadeChangeInThisIteration) 4801 break; 4802 4803 MadeIRChange = true; 4804 if (Iteration > Opts.MaxIterations) { 4805 report_fatal_error( 4806 "Instruction Combining did not reach a fixpoint after " + 4807 Twine(Opts.MaxIterations) + " iterations"); 4808 } 4809 } 4810 4811 if (Iteration == 1) 4812 ++NumOneIteration; 4813 else if (Iteration == 2) 4814 ++NumTwoIterations; 4815 else if (Iteration == 3) 4816 ++NumThreeIterations; 4817 else 4818 ++NumFourOrMoreIterations; 4819 4820 return MadeIRChange; 4821 } 4822 4823 InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {} 4824 4825 void InstCombinePass::printPipeline( 4826 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 4827 static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline( 4828 OS, MapClassName2PassName); 4829 OS << '<'; 4830 OS << "max-iterations=" << Options.MaxIterations << ";"; 4831 OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;"; 4832 OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint"; 4833 OS << '>'; 4834 } 4835 4836 PreservedAnalyses InstCombinePass::run(Function &F, 4837 FunctionAnalysisManager &AM) { 4838 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4839 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4840 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4841 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4842 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4843 4844 // TODO: Only use LoopInfo when the option is set. This requires that the 4845 // callers in the pass pipeline explicitly set the option. 4846 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4847 if (!LI && Options.UseLoopInfo) 4848 LI = &AM.getResult<LoopAnalysis>(F); 4849 4850 auto *AA = &AM.getResult<AAManager>(F); 4851 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4852 ProfileSummaryInfo *PSI = 4853 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4854 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4855 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4856 4857 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4858 BFI, PSI, LI, Options)) 4859 // No changes, all analyses are preserved. 4860 return PreservedAnalyses::all(); 4861 4862 // Mark all the analyses that instcombine updates as preserved. 4863 PreservedAnalyses PA; 4864 PA.preserveSet<CFGAnalyses>(); 4865 return PA; 4866 } 4867 4868 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4869 AU.setPreservesCFG(); 4870 AU.addRequired<AAResultsWrapperPass>(); 4871 AU.addRequired<AssumptionCacheTracker>(); 4872 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4873 AU.addRequired<TargetTransformInfoWrapperPass>(); 4874 AU.addRequired<DominatorTreeWrapperPass>(); 4875 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4876 AU.addPreserved<DominatorTreeWrapperPass>(); 4877 AU.addPreserved<AAResultsWrapperPass>(); 4878 AU.addPreserved<BasicAAWrapperPass>(); 4879 AU.addPreserved<GlobalsAAWrapperPass>(); 4880 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4881 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4882 } 4883 4884 bool InstructionCombiningPass::runOnFunction(Function &F) { 4885 if (skipFunction(F)) 4886 return false; 4887 4888 // Required analyses. 4889 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4890 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4891 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4892 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4893 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4894 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4895 4896 // Optional analyses. 4897 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4898 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4899 ProfileSummaryInfo *PSI = 4900 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4901 BlockFrequencyInfo *BFI = 4902 (PSI && PSI->hasProfileSummary()) ? 4903 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4904 nullptr; 4905 4906 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4907 BFI, PSI, LI, InstCombineOptions()); 4908 } 4909 4910 char InstructionCombiningPass::ID = 0; 4911 4912 InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) { 4913 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4914 } 4915 4916 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4917 "Combine redundant instructions", false, false) 4918 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4919 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4920 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4921 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4922 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4923 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4924 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4925 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4926 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4927 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4928 "Combine redundant instructions", false, false) 4929 4930 // Initialization Routines 4931 void llvm::initializeInstCombine(PassRegistry &Registry) { 4932 initializeInstructionCombiningPassPass(Registry); 4933 } 4934 4935 FunctionPass *llvm::createInstructionCombiningPass() { 4936 return new InstructionCombiningPass(); 4937 } 4938