1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <iterator> 41 #include <utility> 42 43 using namespace llvm; 44 using namespace PatternMatch; 45 46 #define DEBUG_TYPE "instcombine" 47 48 /// Return true if the value is cheaper to scalarize than it is to leave as a 49 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 50 /// one known element from a vector constant. 51 /// 52 /// FIXME: It's possible to create more instructions than previously existed. 53 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 54 // If we can pick a scalar constant value out of a vector, that is free. 55 if (auto *C = dyn_cast<Constant>(V)) 56 return IsConstantExtractIndex || C->getSplatValue(); 57 58 // An insertelement to the same constant index as our extract will simplify 59 // to the scalar inserted element. An insertelement to a different constant 60 // index is irrelevant to our extract. 61 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 62 return IsConstantExtractIndex; 63 64 if (match(V, m_OneUse(m_Load(m_Value())))) 65 return true; 66 67 if (match(V, m_OneUse(m_UnOp()))) 68 return true; 69 70 Value *V0, *V1; 71 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 72 if (cheapToScalarize(V0, IsConstantExtractIndex) || 73 cheapToScalarize(V1, IsConstantExtractIndex)) 74 return true; 75 76 CmpInst::Predicate UnusedPred; 77 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 78 if (cheapToScalarize(V0, IsConstantExtractIndex) || 79 cheapToScalarize(V1, IsConstantExtractIndex)) 80 return true; 81 82 return false; 83 } 84 85 // If we have a PHI node with a vector type that is only used to feed 86 // itself and be an operand of extractelement at a constant location, 87 // try to replace the PHI of the vector type with a PHI of a scalar type. 88 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 89 SmallVector<Instruction *, 2> Extracts; 90 // The users we want the PHI to have are: 91 // 1) The EI ExtractElement (we already know this) 92 // 2) Possibly more ExtractElements with the same index. 93 // 3) Another operand, which will feed back into the PHI. 94 Instruction *PHIUser = nullptr; 95 for (auto U : PN->users()) { 96 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 97 if (EI.getIndexOperand() == EU->getIndexOperand()) 98 Extracts.push_back(EU); 99 else 100 return nullptr; 101 } else if (!PHIUser) { 102 PHIUser = cast<Instruction>(U); 103 } else { 104 return nullptr; 105 } 106 } 107 108 if (!PHIUser) 109 return nullptr; 110 111 // Verify that this PHI user has one use, which is the PHI itself, 112 // and that it is a binary operation which is cheap to scalarize. 113 // otherwise return nullptr. 114 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 115 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 116 return nullptr; 117 118 // Create a scalar PHI node that will replace the vector PHI node 119 // just before the current PHI node. 120 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 121 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 122 // Scalarize each PHI operand. 123 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 124 Value *PHIInVal = PN->getIncomingValue(i); 125 BasicBlock *inBB = PN->getIncomingBlock(i); 126 Value *Elt = EI.getIndexOperand(); 127 // If the operand is the PHI induction variable: 128 if (PHIInVal == PHIUser) { 129 // Scalarize the binary operation. Its first operand is the 130 // scalar PHI, and the second operand is extracted from the other 131 // vector operand. 132 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 133 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 134 Value *Op = InsertNewInstWith( 135 ExtractElementInst::Create(B0->getOperand(opId), Elt, 136 B0->getOperand(opId)->getName() + ".Elt"), 137 *B0); 138 Value *newPHIUser = InsertNewInstWith( 139 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 140 scalarPHI, Op, B0), *B0); 141 scalarPHI->addIncoming(newPHIUser, inBB); 142 } else { 143 // Scalarize PHI input: 144 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 145 // Insert the new instruction into the predecessor basic block. 146 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 147 BasicBlock::iterator InsertPos; 148 if (pos && !isa<PHINode>(pos)) { 149 InsertPos = ++pos->getIterator(); 150 } else { 151 InsertPos = inBB->getFirstInsertionPt(); 152 } 153 154 InsertNewInstWith(newEI, *InsertPos); 155 156 scalarPHI->addIncoming(newEI, inBB); 157 } 158 } 159 160 for (auto E : Extracts) 161 replaceInstUsesWith(*E, scalarPHI); 162 163 return &EI; 164 } 165 166 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 167 InstCombiner::BuilderTy &Builder, 168 bool IsBigEndian) { 169 Value *X; 170 uint64_t ExtIndexC; 171 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 172 !X->getType()->isVectorTy() || 173 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 174 return nullptr; 175 176 // If this extractelement is using a bitcast from a vector of the same number 177 // of elements, see if we can find the source element from the source vector: 178 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 179 auto *SrcTy = cast<VectorType>(X->getType()); 180 Type *DestTy = Ext.getType(); 181 unsigned NumSrcElts = SrcTy->getNumElements(); 182 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 183 if (NumSrcElts == NumElts) 184 if (Value *Elt = findScalarElement(X, ExtIndexC)) 185 return new BitCastInst(Elt, DestTy); 186 187 // If the source elements are wider than the destination, try to shift and 188 // truncate a subset of scalar bits of an insert op. 189 if (NumSrcElts < NumElts) { 190 Value *Scalar; 191 uint64_t InsIndexC; 192 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 193 m_ConstantInt(InsIndexC)))) 194 return nullptr; 195 196 // The extract must be from the subset of vector elements that we inserted 197 // into. Example: if we inserted element 1 of a <2 x i64> and we are 198 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 199 // of elements 4-7 of the bitcasted vector. 200 unsigned NarrowingRatio = NumElts / NumSrcElts; 201 if (ExtIndexC / NarrowingRatio != InsIndexC) 202 return nullptr; 203 204 // We are extracting part of the original scalar. How that scalar is 205 // inserted into the vector depends on the endian-ness. Example: 206 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 207 // +--+--+--+--+--+--+--+--+ 208 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 209 // extelt <4 x i16> V', 3: | |S2|S3| 210 // +--+--+--+--+--+--+--+--+ 211 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 212 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 213 // In this example, we must right-shift little-endian. Big-endian is just a 214 // truncate. 215 unsigned Chunk = ExtIndexC % NarrowingRatio; 216 if (IsBigEndian) 217 Chunk = NarrowingRatio - 1 - Chunk; 218 219 // Bail out if this is an FP vector to FP vector sequence. That would take 220 // more instructions than we started with unless there is no shift, and it 221 // may not be handled as well in the backend. 222 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 223 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 224 if (NeedSrcBitcast && NeedDestBitcast) 225 return nullptr; 226 227 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 228 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 229 unsigned ShAmt = Chunk * DestWidth; 230 231 // TODO: This limitation is more strict than necessary. We could sum the 232 // number of new instructions and subtract the number eliminated to know if 233 // we can proceed. 234 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 235 if (NeedSrcBitcast || NeedDestBitcast) 236 return nullptr; 237 238 if (NeedSrcBitcast) { 239 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 240 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 241 } 242 243 if (ShAmt) { 244 // Bail out if we could end with more instructions than we started with. 245 if (!Ext.getVectorOperand()->hasOneUse()) 246 return nullptr; 247 Scalar = Builder.CreateLShr(Scalar, ShAmt); 248 } 249 250 if (NeedDestBitcast) { 251 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 252 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 253 } 254 return new TruncInst(Scalar, DestTy); 255 } 256 257 return nullptr; 258 } 259 260 /// Find elements of V demanded by UserInstr. 261 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 262 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 263 264 // Conservatively assume that all elements are needed. 265 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 266 267 switch (UserInstr->getOpcode()) { 268 case Instruction::ExtractElement: { 269 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 270 assert(EEI->getVectorOperand() == V); 271 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 272 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 273 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 274 } 275 break; 276 } 277 case Instruction::ShuffleVector: { 278 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 279 unsigned MaskNumElts = 280 cast<VectorType>(UserInstr->getType())->getNumElements(); 281 282 UsedElts = APInt(VWidth, 0); 283 for (unsigned i = 0; i < MaskNumElts; i++) { 284 unsigned MaskVal = Shuffle->getMaskValue(i); 285 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 286 continue; 287 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 288 UsedElts.setBit(MaskVal); 289 if (Shuffle->getOperand(1) == V && 290 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 291 UsedElts.setBit(MaskVal - VWidth); 292 } 293 break; 294 } 295 default: 296 break; 297 } 298 return UsedElts; 299 } 300 301 /// Find union of elements of V demanded by all its users. 302 /// If it is known by querying findDemandedEltsBySingleUser that 303 /// no user demands an element of V, then the corresponding bit 304 /// remains unset in the returned value. 305 static APInt findDemandedEltsByAllUsers(Value *V) { 306 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 307 308 APInt UnionUsedElts(VWidth, 0); 309 for (const Use &U : V->uses()) { 310 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 311 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 312 } else { 313 UnionUsedElts = APInt::getAllOnesValue(VWidth); 314 break; 315 } 316 317 if (UnionUsedElts.isAllOnesValue()) 318 break; 319 } 320 321 return UnionUsedElts; 322 } 323 324 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 325 Value *SrcVec = EI.getVectorOperand(); 326 Value *Index = EI.getIndexOperand(); 327 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 328 SQ.getWithInstruction(&EI))) 329 return replaceInstUsesWith(EI, V); 330 331 // If extracting a specified index from the vector, see if we can recursively 332 // find a previously computed scalar that was inserted into the vector. 333 auto *IndexC = dyn_cast<ConstantInt>(Index); 334 if (IndexC) { 335 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 336 unsigned NumElts = EC.Min; 337 338 // InstSimplify should handle cases where the index is invalid. 339 // For fixed-length vector, it's invalid to extract out-of-range element. 340 if (!EC.Scalable && IndexC->getValue().uge(NumElts)) 341 return nullptr; 342 343 // This instruction only demands the single element from the input vector. 344 // Skip for scalable type, the number of elements is unknown at 345 // compile-time. 346 if (!EC.Scalable && NumElts != 1) { 347 // If the input vector has a single use, simplify it based on this use 348 // property. 349 if (SrcVec->hasOneUse()) { 350 APInt UndefElts(NumElts, 0); 351 APInt DemandedElts(NumElts, 0); 352 DemandedElts.setBit(IndexC->getZExtValue()); 353 if (Value *V = 354 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 355 return replaceOperand(EI, 0, V); 356 } else { 357 // If the input vector has multiple uses, simplify it based on a union 358 // of all elements used. 359 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 360 if (!DemandedElts.isAllOnesValue()) { 361 APInt UndefElts(NumElts, 0); 362 if (Value *V = SimplifyDemandedVectorElts( 363 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 364 true /* AllowMultipleUsers */)) { 365 if (V != SrcVec) { 366 SrcVec->replaceAllUsesWith(V); 367 return &EI; 368 } 369 } 370 } 371 } 372 } 373 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 374 return I; 375 376 // If there's a vector PHI feeding a scalar use through this extractelement 377 // instruction, try to scalarize the PHI. 378 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 379 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 380 return ScalarPHI; 381 } 382 383 // TODO come up with a n-ary matcher that subsumes both unary and 384 // binary matchers. 385 UnaryOperator *UO; 386 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 387 // extelt (unop X), Index --> unop (extelt X, Index) 388 Value *X = UO->getOperand(0); 389 Value *E = Builder.CreateExtractElement(X, Index); 390 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 391 } 392 393 BinaryOperator *BO; 394 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 395 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 396 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 397 Value *E0 = Builder.CreateExtractElement(X, Index); 398 Value *E1 = Builder.CreateExtractElement(Y, Index); 399 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 400 } 401 402 Value *X, *Y; 403 CmpInst::Predicate Pred; 404 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 405 cheapToScalarize(SrcVec, IndexC)) { 406 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 407 Value *E0 = Builder.CreateExtractElement(X, Index); 408 Value *E1 = Builder.CreateExtractElement(Y, Index); 409 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 410 } 411 412 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 413 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 414 // Extracting the inserted element? 415 if (IE->getOperand(2) == Index) 416 return replaceInstUsesWith(EI, IE->getOperand(1)); 417 // If the inserted and extracted elements are constants, they must not 418 // be the same value, extract from the pre-inserted value instead. 419 if (isa<Constant>(IE->getOperand(2)) && IndexC) 420 return replaceOperand(EI, 0, IE->getOperand(0)); 421 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 422 // If this is extracting an element from a shufflevector, figure out where 423 // it came from and extract from the appropriate input element instead. 424 // Restrict the following transformation to fixed-length vector. 425 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 426 int SrcIdx = 427 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 428 Value *Src; 429 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 430 ->getNumElements(); 431 432 if (SrcIdx < 0) 433 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 434 if (SrcIdx < (int)LHSWidth) 435 Src = SVI->getOperand(0); 436 else { 437 SrcIdx -= LHSWidth; 438 Src = SVI->getOperand(1); 439 } 440 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 441 return ExtractElementInst::Create( 442 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 443 } 444 } else if (auto *CI = dyn_cast<CastInst>(I)) { 445 // Canonicalize extractelement(cast) -> cast(extractelement). 446 // Bitcasts can change the number of vector elements, and they cost 447 // nothing. 448 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 449 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 450 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 451 } 452 } 453 } 454 return nullptr; 455 } 456 457 /// If V is a shuffle of values that ONLY returns elements from either LHS or 458 /// RHS, return the shuffle mask and true. Otherwise, return false. 459 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 460 SmallVectorImpl<int> &Mask) { 461 assert(LHS->getType() == RHS->getType() && 462 "Invalid CollectSingleShuffleElements"); 463 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 464 465 if (isa<UndefValue>(V)) { 466 Mask.assign(NumElts, -1); 467 return true; 468 } 469 470 if (V == LHS) { 471 for (unsigned i = 0; i != NumElts; ++i) 472 Mask.push_back(i); 473 return true; 474 } 475 476 if (V == RHS) { 477 for (unsigned i = 0; i != NumElts; ++i) 478 Mask.push_back(i + NumElts); 479 return true; 480 } 481 482 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 483 // If this is an insert of an extract from some other vector, include it. 484 Value *VecOp = IEI->getOperand(0); 485 Value *ScalarOp = IEI->getOperand(1); 486 Value *IdxOp = IEI->getOperand(2); 487 488 if (!isa<ConstantInt>(IdxOp)) 489 return false; 490 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 491 492 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 493 // We can handle this if the vector we are inserting into is 494 // transitively ok. 495 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 496 // If so, update the mask to reflect the inserted undef. 497 Mask[InsertedIdx] = -1; 498 return true; 499 } 500 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 501 if (isa<ConstantInt>(EI->getOperand(1))) { 502 unsigned ExtractedIdx = 503 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 504 unsigned NumLHSElts = 505 cast<VectorType>(LHS->getType())->getNumElements(); 506 507 // This must be extracting from either LHS or RHS. 508 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 509 // We can handle this if the vector we are inserting into is 510 // transitively ok. 511 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 512 // If so, update the mask to reflect the inserted value. 513 if (EI->getOperand(0) == LHS) { 514 Mask[InsertedIdx % NumElts] = ExtractedIdx; 515 } else { 516 assert(EI->getOperand(0) == RHS); 517 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 518 } 519 return true; 520 } 521 } 522 } 523 } 524 } 525 526 return false; 527 } 528 529 /// If we have insertion into a vector that is wider than the vector that we 530 /// are extracting from, try to widen the source vector to allow a single 531 /// shufflevector to replace one or more insert/extract pairs. 532 static void replaceExtractElements(InsertElementInst *InsElt, 533 ExtractElementInst *ExtElt, 534 InstCombiner &IC) { 535 VectorType *InsVecType = InsElt->getType(); 536 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 537 unsigned NumInsElts = InsVecType->getNumElements(); 538 unsigned NumExtElts = ExtVecType->getNumElements(); 539 540 // The inserted-to vector must be wider than the extracted-from vector. 541 if (InsVecType->getElementType() != ExtVecType->getElementType() || 542 NumExtElts >= NumInsElts) 543 return; 544 545 // Create a shuffle mask to widen the extended-from vector using undefined 546 // values. The mask selects all of the values of the original vector followed 547 // by as many undefined values as needed to create a vector of the same length 548 // as the inserted-to vector. 549 SmallVector<int, 16> ExtendMask; 550 for (unsigned i = 0; i < NumExtElts; ++i) 551 ExtendMask.push_back(i); 552 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 553 ExtendMask.push_back(-1); 554 555 Value *ExtVecOp = ExtElt->getVectorOperand(); 556 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 557 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 558 ? ExtVecOpInst->getParent() 559 : ExtElt->getParent(); 560 561 // TODO: This restriction matches the basic block check below when creating 562 // new extractelement instructions. If that limitation is removed, this one 563 // could also be removed. But for now, we just bail out to ensure that we 564 // will replace the extractelement instruction that is feeding our 565 // insertelement instruction. This allows the insertelement to then be 566 // replaced by a shufflevector. If the insertelement is not replaced, we can 567 // induce infinite looping because there's an optimization for extractelement 568 // that will delete our widening shuffle. This would trigger another attempt 569 // here to create that shuffle, and we spin forever. 570 if (InsertionBlock != InsElt->getParent()) 571 return; 572 573 // TODO: This restriction matches the check in visitInsertElementInst() and 574 // prevents an infinite loop caused by not turning the extract/insert pair 575 // into a shuffle. We really should not need either check, but we're lacking 576 // folds for shufflevectors because we're afraid to generate shuffle masks 577 // that the backend can't handle. 578 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 579 return; 580 581 auto *WideVec = 582 new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), ExtendMask); 583 584 // Insert the new shuffle after the vector operand of the extract is defined 585 // (as long as it's not a PHI) or at the start of the basic block of the 586 // extract, so any subsequent extracts in the same basic block can use it. 587 // TODO: Insert before the earliest ExtractElementInst that is replaced. 588 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 589 WideVec->insertAfter(ExtVecOpInst); 590 else 591 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 592 593 // Replace extracts from the original narrow vector with extracts from the new 594 // wide vector. 595 for (User *U : ExtVecOp->users()) { 596 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 597 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 598 continue; 599 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 600 NewExt->insertAfter(OldExt); 601 IC.replaceInstUsesWith(*OldExt, NewExt); 602 } 603 } 604 605 /// We are building a shuffle to create V, which is a sequence of insertelement, 606 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 607 /// not rely on the second vector source. Return a std::pair containing the 608 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 609 /// parameter as required. 610 /// 611 /// Note: we intentionally don't try to fold earlier shuffles since they have 612 /// often been chosen carefully to be efficiently implementable on the target. 613 using ShuffleOps = std::pair<Value *, Value *>; 614 615 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 616 Value *PermittedRHS, 617 InstCombiner &IC) { 618 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 619 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 620 621 if (isa<UndefValue>(V)) { 622 Mask.assign(NumElts, -1); 623 return std::make_pair( 624 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 625 } 626 627 if (isa<ConstantAggregateZero>(V)) { 628 Mask.assign(NumElts, 0); 629 return std::make_pair(V, nullptr); 630 } 631 632 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 633 // If this is an insert of an extract from some other vector, include it. 634 Value *VecOp = IEI->getOperand(0); 635 Value *ScalarOp = IEI->getOperand(1); 636 Value *IdxOp = IEI->getOperand(2); 637 638 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 639 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 640 unsigned ExtractedIdx = 641 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 642 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 643 644 // Either the extracted from or inserted into vector must be RHSVec, 645 // otherwise we'd end up with a shuffle of three inputs. 646 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 647 Value *RHS = EI->getOperand(0); 648 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 649 assert(LR.second == nullptr || LR.second == RHS); 650 651 if (LR.first->getType() != RHS->getType()) { 652 // Although we are giving up for now, see if we can create extracts 653 // that match the inserts for another round of combining. 654 replaceExtractElements(IEI, EI, IC); 655 656 // We tried our best, but we can't find anything compatible with RHS 657 // further up the chain. Return a trivial shuffle. 658 for (unsigned i = 0; i < NumElts; ++i) 659 Mask[i] = i; 660 return std::make_pair(V, nullptr); 661 } 662 663 unsigned NumLHSElts = 664 cast<VectorType>(RHS->getType())->getNumElements(); 665 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 666 return std::make_pair(LR.first, RHS); 667 } 668 669 if (VecOp == PermittedRHS) { 670 // We've gone as far as we can: anything on the other side of the 671 // extractelement will already have been converted into a shuffle. 672 unsigned NumLHSElts = 673 cast<VectorType>(EI->getOperand(0)->getType())->getNumElements(); 674 for (unsigned i = 0; i != NumElts; ++i) 675 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 676 return std::make_pair(EI->getOperand(0), PermittedRHS); 677 } 678 679 // If this insertelement is a chain that comes from exactly these two 680 // vectors, return the vector and the effective shuffle. 681 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 682 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 683 Mask)) 684 return std::make_pair(EI->getOperand(0), PermittedRHS); 685 } 686 } 687 } 688 689 // Otherwise, we can't do anything fancy. Return an identity vector. 690 for (unsigned i = 0; i != NumElts; ++i) 691 Mask.push_back(i); 692 return std::make_pair(V, nullptr); 693 } 694 695 /// Try to find redundant insertvalue instructions, like the following ones: 696 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 697 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 698 /// Here the second instruction inserts values at the same indices, as the 699 /// first one, making the first one redundant. 700 /// It should be transformed to: 701 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 702 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 703 bool IsRedundant = false; 704 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 705 706 // If there is a chain of insertvalue instructions (each of them except the 707 // last one has only one use and it's another insertvalue insn from this 708 // chain), check if any of the 'children' uses the same indices as the first 709 // instruction. In this case, the first one is redundant. 710 Value *V = &I; 711 unsigned Depth = 0; 712 while (V->hasOneUse() && Depth < 10) { 713 User *U = V->user_back(); 714 auto UserInsInst = dyn_cast<InsertValueInst>(U); 715 if (!UserInsInst || U->getOperand(0) != V) 716 break; 717 if (UserInsInst->getIndices() == FirstIndices) { 718 IsRedundant = true; 719 break; 720 } 721 V = UserInsInst; 722 Depth++; 723 } 724 725 if (IsRedundant) 726 return replaceInstUsesWith(I, I.getOperand(0)); 727 return nullptr; 728 } 729 730 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 731 // Can not analyze scalable type, the number of elements is not a compile-time 732 // constant. 733 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 734 return false; 735 736 int MaskSize = Shuf.getShuffleMask().size(); 737 int VecSize = 738 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 739 740 // A vector select does not change the size of the operands. 741 if (MaskSize != VecSize) 742 return false; 743 744 // Each mask element must be undefined or choose a vector element from one of 745 // the source operands without crossing vector lanes. 746 for (int i = 0; i != MaskSize; ++i) { 747 int Elt = Shuf.getMaskValue(i); 748 if (Elt != -1 && Elt != i && Elt != i + VecSize) 749 return false; 750 } 751 752 return true; 753 } 754 755 /// Turn a chain of inserts that splats a value into an insert + shuffle: 756 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 757 /// shufflevector(insertelt(X, %k, 0), undef, zero) 758 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 759 // We are interested in the last insert in a chain. So if this insert has a 760 // single user and that user is an insert, bail. 761 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 762 return nullptr; 763 764 VectorType *VecTy = InsElt.getType(); 765 // Can not handle scalable type, the number of elements is not a compile-time 766 // constant. 767 if (isa<ScalableVectorType>(VecTy)) 768 return nullptr; 769 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 770 771 // Do not try to do this for a one-element vector, since that's a nop, 772 // and will cause an inf-loop. 773 if (NumElements == 1) 774 return nullptr; 775 776 Value *SplatVal = InsElt.getOperand(1); 777 InsertElementInst *CurrIE = &InsElt; 778 SmallBitVector ElementPresent(NumElements, false); 779 InsertElementInst *FirstIE = nullptr; 780 781 // Walk the chain backwards, keeping track of which indices we inserted into, 782 // until we hit something that isn't an insert of the splatted value. 783 while (CurrIE) { 784 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 785 if (!Idx || CurrIE->getOperand(1) != SplatVal) 786 return nullptr; 787 788 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 789 // Check none of the intermediate steps have any additional uses, except 790 // for the root insertelement instruction, which can be re-used, if it 791 // inserts at position 0. 792 if (CurrIE != &InsElt && 793 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 794 return nullptr; 795 796 ElementPresent[Idx->getZExtValue()] = true; 797 FirstIE = CurrIE; 798 CurrIE = NextIE; 799 } 800 801 // If this is just a single insertelement (not a sequence), we are done. 802 if (FirstIE == &InsElt) 803 return nullptr; 804 805 // If we are not inserting into an undef vector, make sure we've seen an 806 // insert into every element. 807 // TODO: If the base vector is not undef, it might be better to create a splat 808 // and then a select-shuffle (blend) with the base vector. 809 if (!isa<UndefValue>(FirstIE->getOperand(0))) 810 if (!ElementPresent.all()) 811 return nullptr; 812 813 // Create the insert + shuffle. 814 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 815 UndefValue *UndefVec = UndefValue::get(VecTy); 816 Constant *Zero = ConstantInt::get(Int32Ty, 0); 817 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 818 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 819 820 // Splat from element 0, but replace absent elements with undef in the mask. 821 SmallVector<int, 16> Mask(NumElements, 0); 822 for (unsigned i = 0; i != NumElements; ++i) 823 if (!ElementPresent[i]) 824 Mask[i] = -1; 825 826 return new ShuffleVectorInst(FirstIE, UndefVec, Mask); 827 } 828 829 /// Try to fold an insert element into an existing splat shuffle by changing 830 /// the shuffle's mask to include the index of this insert element. 831 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 832 // Check if the vector operand of this insert is a canonical splat shuffle. 833 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 834 if (!Shuf || !Shuf->isZeroEltSplat()) 835 return nullptr; 836 837 // Bail out early if shuffle is scalable type. The number of elements in 838 // shuffle mask is unknown at compile-time. 839 if (isa<ScalableVectorType>(Shuf->getType())) 840 return nullptr; 841 842 // Check for a constant insertion index. 843 uint64_t IdxC; 844 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 845 return nullptr; 846 847 // Check if the splat shuffle's input is the same as this insert's scalar op. 848 Value *X = InsElt.getOperand(1); 849 Value *Op0 = Shuf->getOperand(0); 850 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 851 return nullptr; 852 853 // Replace the shuffle mask element at the index of this insert with a zero. 854 // For example: 855 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 856 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 857 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 858 SmallVector<int, 16> NewMask(NumMaskElts); 859 for (unsigned i = 0; i != NumMaskElts; ++i) 860 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 861 862 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 863 } 864 865 /// Try to fold an extract+insert element into an existing identity shuffle by 866 /// changing the shuffle's mask to include the index of this insert element. 867 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 868 // Check if the vector operand of this insert is an identity shuffle. 869 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 870 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 871 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 872 return nullptr; 873 874 // Bail out early if shuffle is scalable type. The number of elements in 875 // shuffle mask is unknown at compile-time. 876 if (isa<ScalableVectorType>(Shuf->getType())) 877 return nullptr; 878 879 // Check for a constant insertion index. 880 uint64_t IdxC; 881 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 882 return nullptr; 883 884 // Check if this insert's scalar op is extracted from the identity shuffle's 885 // input vector. 886 Value *Scalar = InsElt.getOperand(1); 887 Value *X = Shuf->getOperand(0); 888 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 889 return nullptr; 890 891 // Replace the shuffle mask element at the index of this extract+insert with 892 // that same index value. 893 // For example: 894 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 895 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 896 SmallVector<int, 16> NewMask(NumMaskElts); 897 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 898 for (unsigned i = 0; i != NumMaskElts; ++i) { 899 if (i != IdxC) { 900 // All mask elements besides the inserted element remain the same. 901 NewMask[i] = OldMask[i]; 902 } else if (OldMask[i] == (int)IdxC) { 903 // If the mask element was already set, there's nothing to do 904 // (demanded elements analysis may unset it later). 905 return nullptr; 906 } else { 907 assert(OldMask[i] == UndefMaskElem && 908 "Unexpected shuffle mask element for identity shuffle"); 909 NewMask[i] = IdxC; 910 } 911 } 912 913 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 914 } 915 916 /// If we have an insertelement instruction feeding into another insertelement 917 /// and the 2nd is inserting a constant into the vector, canonicalize that 918 /// constant insertion before the insertion of a variable: 919 /// 920 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 921 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 922 /// 923 /// This has the potential of eliminating the 2nd insertelement instruction 924 /// via constant folding of the scalar constant into a vector constant. 925 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 926 InstCombiner::BuilderTy &Builder) { 927 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 928 if (!InsElt1 || !InsElt1->hasOneUse()) 929 return nullptr; 930 931 Value *X, *Y; 932 Constant *ScalarC; 933 ConstantInt *IdxC1, *IdxC2; 934 if (match(InsElt1->getOperand(0), m_Value(X)) && 935 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 936 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 937 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 938 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 939 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 940 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 941 } 942 943 return nullptr; 944 } 945 946 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 947 /// --> shufflevector X, CVec', Mask' 948 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 949 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 950 // Bail out if the parent has more than one use. In that case, we'd be 951 // replacing the insertelt with a shuffle, and that's not a clear win. 952 if (!Inst || !Inst->hasOneUse()) 953 return nullptr; 954 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 955 // The shuffle must have a constant vector operand. The insertelt must have 956 // a constant scalar being inserted at a constant position in the vector. 957 Constant *ShufConstVec, *InsEltScalar; 958 uint64_t InsEltIndex; 959 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 960 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 961 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 962 return nullptr; 963 964 // Adding an element to an arbitrary shuffle could be expensive, but a 965 // shuffle that selects elements from vectors without crossing lanes is 966 // assumed cheap. 967 // If we're just adding a constant into that shuffle, it will still be 968 // cheap. 969 if (!isShuffleEquivalentToSelect(*Shuf)) 970 return nullptr; 971 972 // From the above 'select' check, we know that the mask has the same number 973 // of elements as the vector input operands. We also know that each constant 974 // input element is used in its lane and can not be used more than once by 975 // the shuffle. Therefore, replace the constant in the shuffle's constant 976 // vector with the insertelt constant. Replace the constant in the shuffle's 977 // mask vector with the insertelt index plus the length of the vector 978 // (because the constant vector operand of a shuffle is always the 2nd 979 // operand). 980 ArrayRef<int> Mask = Shuf->getShuffleMask(); 981 unsigned NumElts = Mask.size(); 982 SmallVector<Constant *, 16> NewShufElts(NumElts); 983 SmallVector<int, 16> NewMaskElts(NumElts); 984 for (unsigned I = 0; I != NumElts; ++I) { 985 if (I == InsEltIndex) { 986 NewShufElts[I] = InsEltScalar; 987 NewMaskElts[I] = InsEltIndex + NumElts; 988 } else { 989 // Copy over the existing values. 990 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 991 NewMaskElts[I] = Mask[I]; 992 } 993 } 994 995 // Create new operands for a shuffle that includes the constant of the 996 // original insertelt. The old shuffle will be dead now. 997 return new ShuffleVectorInst(Shuf->getOperand(0), 998 ConstantVector::get(NewShufElts), NewMaskElts); 999 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1000 // Transform sequences of insertelements ops with constant data/indexes into 1001 // a single shuffle op. 1002 // Can not handle scalable type, the number of elements needed to create 1003 // shuffle mask is not a compile-time constant. 1004 if (isa<ScalableVectorType>(InsElt.getType())) 1005 return nullptr; 1006 unsigned NumElts = 1007 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1008 1009 uint64_t InsertIdx[2]; 1010 Constant *Val[2]; 1011 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1012 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1013 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1014 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1015 return nullptr; 1016 SmallVector<Constant *, 16> Values(NumElts); 1017 SmallVector<int, 16> Mask(NumElts); 1018 auto ValI = std::begin(Val); 1019 // Generate new constant vector and mask. 1020 // We have 2 values/masks from the insertelements instructions. Insert them 1021 // into new value/mask vectors. 1022 for (uint64_t I : InsertIdx) { 1023 if (!Values[I]) { 1024 Values[I] = *ValI; 1025 Mask[I] = NumElts + I; 1026 } 1027 ++ValI; 1028 } 1029 // Remaining values are filled with 'undef' values. 1030 for (unsigned I = 0; I < NumElts; ++I) { 1031 if (!Values[I]) { 1032 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1033 Mask[I] = I; 1034 } 1035 } 1036 // Create new operands for a shuffle that includes the constant of the 1037 // original insertelt. 1038 return new ShuffleVectorInst(IEI->getOperand(0), 1039 ConstantVector::get(Values), Mask); 1040 } 1041 return nullptr; 1042 } 1043 1044 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 1045 Value *VecOp = IE.getOperand(0); 1046 Value *ScalarOp = IE.getOperand(1); 1047 Value *IdxOp = IE.getOperand(2); 1048 1049 if (auto *V = SimplifyInsertElementInst( 1050 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1051 return replaceInstUsesWith(IE, V); 1052 1053 // If the scalar is bitcast and inserted into undef, do the insert in the 1054 // source type followed by bitcast. 1055 // TODO: Generalize for insert into any constant, not just undef? 1056 Value *ScalarSrc; 1057 if (match(VecOp, m_Undef()) && 1058 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1059 (ScalarSrc->getType()->isIntegerTy() || 1060 ScalarSrc->getType()->isFloatingPointTy())) { 1061 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1062 // bitcast (inselt undef, ScalarSrc, IdxOp) 1063 Type *ScalarTy = ScalarSrc->getType(); 1064 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1065 UndefValue *NewUndef = UndefValue::get(VecTy); 1066 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1067 return new BitCastInst(NewInsElt, IE.getType()); 1068 } 1069 1070 // If the vector and scalar are both bitcast from the same element type, do 1071 // the insert in that source type followed by bitcast. 1072 Value *VecSrc; 1073 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1074 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1075 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1076 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1077 cast<VectorType>(VecSrc->getType())->getElementType() == 1078 ScalarSrc->getType()) { 1079 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1080 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1081 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1082 return new BitCastInst(NewInsElt, IE.getType()); 1083 } 1084 1085 // If the inserted element was extracted from some other fixed-length vector 1086 // and both indexes are valid constants, try to turn this into a shuffle. 1087 // Can not handle scalable vector type, the number of elements needed to 1088 // create shuffle mask is not a compile-time constant. 1089 uint64_t InsertedIdx, ExtractedIdx; 1090 Value *ExtVecOp; 1091 if (isa<FixedVectorType>(IE.getType()) && 1092 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1093 match(ScalarOp, 1094 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1095 isa<FixedVectorType>(ExtVecOp->getType()) && 1096 ExtractedIdx < 1097 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1098 // TODO: Looking at the user(s) to determine if this insert is a 1099 // fold-to-shuffle opportunity does not match the usual instcombine 1100 // constraints. We should decide if the transform is worthy based only 1101 // on this instruction and its operands, but that may not work currently. 1102 // 1103 // Here, we are trying to avoid creating shuffles before reaching 1104 // the end of a chain of extract-insert pairs. This is complicated because 1105 // we do not generally form arbitrary shuffle masks in instcombine 1106 // (because those may codegen poorly), but collectShuffleElements() does 1107 // exactly that. 1108 // 1109 // The rules for determining what is an acceptable target-independent 1110 // shuffle mask are fuzzy because they evolve based on the backend's 1111 // capabilities and real-world impact. 1112 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1113 if (!Insert.hasOneUse()) 1114 return true; 1115 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1116 if (!InsertUser) 1117 return true; 1118 return false; 1119 }; 1120 1121 // Try to form a shuffle from a chain of extract-insert ops. 1122 if (isShuffleRootCandidate(IE)) { 1123 SmallVector<int, 16> Mask; 1124 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1125 1126 // The proposed shuffle may be trivial, in which case we shouldn't 1127 // perform the combine. 1128 if (LR.first != &IE && LR.second != &IE) { 1129 // We now have a shuffle of LHS, RHS, Mask. 1130 if (LR.second == nullptr) 1131 LR.second = UndefValue::get(LR.first->getType()); 1132 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1133 } 1134 } 1135 } 1136 1137 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1138 unsigned VWidth = VecTy->getNumElements(); 1139 APInt UndefElts(VWidth, 0); 1140 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1141 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1142 if (V != &IE) 1143 return replaceInstUsesWith(IE, V); 1144 return &IE; 1145 } 1146 } 1147 1148 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1149 return Shuf; 1150 1151 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1152 return NewInsElt; 1153 1154 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1155 return Broadcast; 1156 1157 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1158 return Splat; 1159 1160 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1161 return IdentityShuf; 1162 1163 return nullptr; 1164 } 1165 1166 /// Return true if we can evaluate the specified expression tree if the vector 1167 /// elements were shuffled in a different order. 1168 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1169 unsigned Depth = 5) { 1170 // We can always reorder the elements of a constant. 1171 if (isa<Constant>(V)) 1172 return true; 1173 1174 // We won't reorder vector arguments. No IPO here. 1175 Instruction *I = dyn_cast<Instruction>(V); 1176 if (!I) return false; 1177 1178 // Two users may expect different orders of the elements. Don't try it. 1179 if (!I->hasOneUse()) 1180 return false; 1181 1182 if (Depth == 0) return false; 1183 1184 switch (I->getOpcode()) { 1185 case Instruction::UDiv: 1186 case Instruction::SDiv: 1187 case Instruction::URem: 1188 case Instruction::SRem: 1189 // Propagating an undefined shuffle mask element to integer div/rem is not 1190 // allowed because those opcodes can create immediate undefined behavior 1191 // from an undefined element in an operand. 1192 if (llvm::any_of(Mask, [](int M){ return M == -1; })) 1193 return false; 1194 LLVM_FALLTHROUGH; 1195 case Instruction::Add: 1196 case Instruction::FAdd: 1197 case Instruction::Sub: 1198 case Instruction::FSub: 1199 case Instruction::Mul: 1200 case Instruction::FMul: 1201 case Instruction::FDiv: 1202 case Instruction::FRem: 1203 case Instruction::Shl: 1204 case Instruction::LShr: 1205 case Instruction::AShr: 1206 case Instruction::And: 1207 case Instruction::Or: 1208 case Instruction::Xor: 1209 case Instruction::ICmp: 1210 case Instruction::FCmp: 1211 case Instruction::Trunc: 1212 case Instruction::ZExt: 1213 case Instruction::SExt: 1214 case Instruction::FPToUI: 1215 case Instruction::FPToSI: 1216 case Instruction::UIToFP: 1217 case Instruction::SIToFP: 1218 case Instruction::FPTrunc: 1219 case Instruction::FPExt: 1220 case Instruction::GetElementPtr: { 1221 // Bail out if we would create longer vector ops. We could allow creating 1222 // longer vector ops, but that may result in more expensive codegen. 1223 Type *ITy = I->getType(); 1224 if (ITy->isVectorTy() && 1225 Mask.size() > cast<VectorType>(ITy)->getNumElements()) 1226 return false; 1227 for (Value *Operand : I->operands()) { 1228 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1229 return false; 1230 } 1231 return true; 1232 } 1233 case Instruction::InsertElement: { 1234 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1235 if (!CI) return false; 1236 int ElementNumber = CI->getLimitedValue(); 1237 1238 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1239 // can't put an element into multiple indices. 1240 bool SeenOnce = false; 1241 for (int i = 0, e = Mask.size(); i != e; ++i) { 1242 if (Mask[i] == ElementNumber) { 1243 if (SeenOnce) 1244 return false; 1245 SeenOnce = true; 1246 } 1247 } 1248 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1249 } 1250 } 1251 return false; 1252 } 1253 1254 /// Rebuild a new instruction just like 'I' but with the new operands given. 1255 /// In the event of type mismatch, the type of the operands is correct. 1256 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1257 // We don't want to use the IRBuilder here because we want the replacement 1258 // instructions to appear next to 'I', not the builder's insertion point. 1259 switch (I->getOpcode()) { 1260 case Instruction::Add: 1261 case Instruction::FAdd: 1262 case Instruction::Sub: 1263 case Instruction::FSub: 1264 case Instruction::Mul: 1265 case Instruction::FMul: 1266 case Instruction::UDiv: 1267 case Instruction::SDiv: 1268 case Instruction::FDiv: 1269 case Instruction::URem: 1270 case Instruction::SRem: 1271 case Instruction::FRem: 1272 case Instruction::Shl: 1273 case Instruction::LShr: 1274 case Instruction::AShr: 1275 case Instruction::And: 1276 case Instruction::Or: 1277 case Instruction::Xor: { 1278 BinaryOperator *BO = cast<BinaryOperator>(I); 1279 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1280 BinaryOperator *New = 1281 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1282 NewOps[0], NewOps[1], "", BO); 1283 if (isa<OverflowingBinaryOperator>(BO)) { 1284 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1285 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1286 } 1287 if (isa<PossiblyExactOperator>(BO)) { 1288 New->setIsExact(BO->isExact()); 1289 } 1290 if (isa<FPMathOperator>(BO)) 1291 New->copyFastMathFlags(I); 1292 return New; 1293 } 1294 case Instruction::ICmp: 1295 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1296 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1297 NewOps[0], NewOps[1]); 1298 case Instruction::FCmp: 1299 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1300 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1301 NewOps[0], NewOps[1]); 1302 case Instruction::Trunc: 1303 case Instruction::ZExt: 1304 case Instruction::SExt: 1305 case Instruction::FPToUI: 1306 case Instruction::FPToSI: 1307 case Instruction::UIToFP: 1308 case Instruction::SIToFP: 1309 case Instruction::FPTrunc: 1310 case Instruction::FPExt: { 1311 // It's possible that the mask has a different number of elements from 1312 // the original cast. We recompute the destination type to match the mask. 1313 Type *DestTy = VectorType::get( 1314 I->getType()->getScalarType(), 1315 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1316 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1317 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1318 "", I); 1319 } 1320 case Instruction::GetElementPtr: { 1321 Value *Ptr = NewOps[0]; 1322 ArrayRef<Value*> Idx = NewOps.slice(1); 1323 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1324 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1325 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1326 return GEP; 1327 } 1328 } 1329 llvm_unreachable("failed to rebuild vector instructions"); 1330 } 1331 1332 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1333 // Mask.size() does not need to be equal to the number of vector elements. 1334 1335 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1336 Type *EltTy = V->getType()->getScalarType(); 1337 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1338 if (isa<UndefValue>(V)) 1339 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1340 1341 if (isa<ConstantAggregateZero>(V)) 1342 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1343 1344 if (Constant *C = dyn_cast<Constant>(V)) 1345 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1346 Mask); 1347 1348 Instruction *I = cast<Instruction>(V); 1349 switch (I->getOpcode()) { 1350 case Instruction::Add: 1351 case Instruction::FAdd: 1352 case Instruction::Sub: 1353 case Instruction::FSub: 1354 case Instruction::Mul: 1355 case Instruction::FMul: 1356 case Instruction::UDiv: 1357 case Instruction::SDiv: 1358 case Instruction::FDiv: 1359 case Instruction::URem: 1360 case Instruction::SRem: 1361 case Instruction::FRem: 1362 case Instruction::Shl: 1363 case Instruction::LShr: 1364 case Instruction::AShr: 1365 case Instruction::And: 1366 case Instruction::Or: 1367 case Instruction::Xor: 1368 case Instruction::ICmp: 1369 case Instruction::FCmp: 1370 case Instruction::Trunc: 1371 case Instruction::ZExt: 1372 case Instruction::SExt: 1373 case Instruction::FPToUI: 1374 case Instruction::FPToSI: 1375 case Instruction::UIToFP: 1376 case Instruction::SIToFP: 1377 case Instruction::FPTrunc: 1378 case Instruction::FPExt: 1379 case Instruction::Select: 1380 case Instruction::GetElementPtr: { 1381 SmallVector<Value*, 8> NewOps; 1382 bool NeedsRebuild = 1383 (Mask.size() != cast<VectorType>(I->getType())->getNumElements()); 1384 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1385 Value *V; 1386 // Recursively call evaluateInDifferentElementOrder on vector arguments 1387 // as well. E.g. GetElementPtr may have scalar operands even if the 1388 // return value is a vector, so we need to examine the operand type. 1389 if (I->getOperand(i)->getType()->isVectorTy()) 1390 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1391 else 1392 V = I->getOperand(i); 1393 NewOps.push_back(V); 1394 NeedsRebuild |= (V != I->getOperand(i)); 1395 } 1396 if (NeedsRebuild) { 1397 return buildNew(I, NewOps); 1398 } 1399 return I; 1400 } 1401 case Instruction::InsertElement: { 1402 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1403 1404 // The insertelement was inserting at Element. Figure out which element 1405 // that becomes after shuffling. The answer is guaranteed to be unique 1406 // by CanEvaluateShuffled. 1407 bool Found = false; 1408 int Index = 0; 1409 for (int e = Mask.size(); Index != e; ++Index) { 1410 if (Mask[Index] == Element) { 1411 Found = true; 1412 break; 1413 } 1414 } 1415 1416 // If element is not in Mask, no need to handle the operand 1 (element to 1417 // be inserted). Just evaluate values in operand 0 according to Mask. 1418 if (!Found) 1419 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1420 1421 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1422 return InsertElementInst::Create(V, I->getOperand(1), 1423 ConstantInt::get(I32Ty, Index), "", I); 1424 } 1425 } 1426 llvm_unreachable("failed to reorder elements of vector instruction!"); 1427 } 1428 1429 // Returns true if the shuffle is extracting a contiguous range of values from 1430 // LHS, for example: 1431 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1432 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1433 // Shuffles to: |EE|FF|GG|HH| 1434 // +--+--+--+--+ 1435 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1436 ArrayRef<int> Mask) { 1437 unsigned LHSElems = 1438 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1439 unsigned MaskElems = Mask.size(); 1440 unsigned BegIdx = Mask.front(); 1441 unsigned EndIdx = Mask.back(); 1442 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1443 return false; 1444 for (unsigned I = 0; I != MaskElems; ++I) 1445 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1446 return false; 1447 return true; 1448 } 1449 1450 /// These are the ingredients in an alternate form binary operator as described 1451 /// below. 1452 struct BinopElts { 1453 BinaryOperator::BinaryOps Opcode; 1454 Value *Op0; 1455 Value *Op1; 1456 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1457 Value *V0 = nullptr, Value *V1 = nullptr) : 1458 Opcode(Opc), Op0(V0), Op1(V1) {} 1459 operator bool() const { return Opcode != 0; } 1460 }; 1461 1462 /// Binops may be transformed into binops with different opcodes and operands. 1463 /// Reverse the usual canonicalization to enable folds with the non-canonical 1464 /// form of the binop. If a transform is possible, return the elements of the 1465 /// new binop. If not, return invalid elements. 1466 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1467 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1468 Type *Ty = BO->getType(); 1469 switch (BO->getOpcode()) { 1470 case Instruction::Shl: { 1471 // shl X, C --> mul X, (1 << C) 1472 Constant *C; 1473 if (match(BO1, m_Constant(C))) { 1474 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1475 return { Instruction::Mul, BO0, ShlOne }; 1476 } 1477 break; 1478 } 1479 case Instruction::Or: { 1480 // or X, C --> add X, C (when X and C have no common bits set) 1481 const APInt *C; 1482 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1483 return { Instruction::Add, BO0, BO1 }; 1484 break; 1485 } 1486 default: 1487 break; 1488 } 1489 return {}; 1490 } 1491 1492 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1493 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1494 1495 // Are we shuffling together some value and that same value after it has been 1496 // modified by a binop with a constant? 1497 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1498 Constant *C; 1499 bool Op0IsBinop; 1500 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1501 Op0IsBinop = true; 1502 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1503 Op0IsBinop = false; 1504 else 1505 return nullptr; 1506 1507 // The identity constant for a binop leaves a variable operand unchanged. For 1508 // a vector, this is a splat of something like 0, -1, or 1. 1509 // If there's no identity constant for this binop, we're done. 1510 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1511 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1512 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1513 if (!IdC) 1514 return nullptr; 1515 1516 // Shuffle identity constants into the lanes that return the original value. 1517 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1518 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1519 // The existing binop constant vector remains in the same operand position. 1520 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1521 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1522 ConstantExpr::getShuffleVector(IdC, C, Mask); 1523 1524 bool MightCreatePoisonOrUB = 1525 is_contained(Mask, UndefMaskElem) && 1526 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1527 if (MightCreatePoisonOrUB) 1528 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true); 1529 1530 // shuf (bop X, C), X, M --> bop X, C' 1531 // shuf X, (bop X, C), M --> bop X, C' 1532 Value *X = Op0IsBinop ? Op1 : Op0; 1533 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1534 NewBO->copyIRFlags(BO); 1535 1536 // An undef shuffle mask element may propagate as an undef constant element in 1537 // the new binop. That would produce poison where the original code might not. 1538 // If we already made a safe constant, then there's no danger. 1539 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1540 NewBO->dropPoisonGeneratingFlags(); 1541 return NewBO; 1542 } 1543 1544 /// If we have an insert of a scalar to a non-zero element of an undefined 1545 /// vector and then shuffle that value, that's the same as inserting to the zero 1546 /// element and shuffling. Splatting from the zero element is recognized as the 1547 /// canonical form of splat. 1548 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1549 InstCombiner::BuilderTy &Builder) { 1550 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1551 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1552 Value *X; 1553 uint64_t IndexC; 1554 1555 // Match a shuffle that is a splat to a non-zero element. 1556 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 1557 m_ConstantInt(IndexC)))) || 1558 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1559 return nullptr; 1560 1561 // Insert into element 0 of an undef vector. 1562 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1563 Constant *Zero = Builder.getInt32(0); 1564 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1565 1566 // Splat from element 0. Any mask element that is undefined remains undefined. 1567 // For example: 1568 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1569 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1570 unsigned NumMaskElts = Shuf.getType()->getNumElements(); 1571 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1572 for (unsigned i = 0; i != NumMaskElts; ++i) 1573 if (Mask[i] == UndefMaskElem) 1574 NewMask[i] = Mask[i]; 1575 1576 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1577 } 1578 1579 /// Try to fold shuffles that are the equivalent of a vector select. 1580 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1581 InstCombiner::BuilderTy &Builder, 1582 const DataLayout &DL) { 1583 if (!Shuf.isSelect()) 1584 return nullptr; 1585 1586 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1587 // Commuting undef to operand 0 conflicts with another canonicalization. 1588 unsigned NumElts = Shuf.getType()->getNumElements(); 1589 if (!isa<UndefValue>(Shuf.getOperand(1)) && 1590 Shuf.getMaskValue(0) >= (int)NumElts) { 1591 // TODO: Can we assert that both operands of a shuffle-select are not undef 1592 // (otherwise, it would have been folded by instsimplify? 1593 Shuf.commute(); 1594 return &Shuf; 1595 } 1596 1597 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1598 return I; 1599 1600 BinaryOperator *B0, *B1; 1601 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1602 !match(Shuf.getOperand(1), m_BinOp(B1))) 1603 return nullptr; 1604 1605 Value *X, *Y; 1606 Constant *C0, *C1; 1607 bool ConstantsAreOp1; 1608 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1609 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1610 ConstantsAreOp1 = true; 1611 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1612 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1613 ConstantsAreOp1 = false; 1614 else 1615 return nullptr; 1616 1617 // We need matching binops to fold the lanes together. 1618 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1619 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1620 bool DropNSW = false; 1621 if (ConstantsAreOp1 && Opc0 != Opc1) { 1622 // TODO: We drop "nsw" if shift is converted into multiply because it may 1623 // not be correct when the shift amount is BitWidth - 1. We could examine 1624 // each vector element to determine if it is safe to keep that flag. 1625 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1626 DropNSW = true; 1627 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1628 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1629 Opc0 = AltB0.Opcode; 1630 C0 = cast<Constant>(AltB0.Op1); 1631 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1632 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1633 Opc1 = AltB1.Opcode; 1634 C1 = cast<Constant>(AltB1.Op1); 1635 } 1636 } 1637 1638 if (Opc0 != Opc1) 1639 return nullptr; 1640 1641 // The opcodes must be the same. Use a new name to make that clear. 1642 BinaryOperator::BinaryOps BOpc = Opc0; 1643 1644 // Select the constant elements needed for the single binop. 1645 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1646 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1647 1648 // We are moving a binop after a shuffle. When a shuffle has an undefined 1649 // mask element, the result is undefined, but it is not poison or undefined 1650 // behavior. That is not necessarily true for div/rem/shift. 1651 bool MightCreatePoisonOrUB = 1652 is_contained(Mask, UndefMaskElem) && 1653 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1654 if (MightCreatePoisonOrUB) 1655 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); 1656 1657 Value *V; 1658 if (X == Y) { 1659 // Remove a binop and the shuffle by rearranging the constant: 1660 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1661 // shuffle (op C0, V), (op C1, V), M --> op C', V 1662 V = X; 1663 } else { 1664 // If there are 2 different variable operands, we must create a new shuffle 1665 // (select) first, so check uses to ensure that we don't end up with more 1666 // instructions than we started with. 1667 if (!B0->hasOneUse() && !B1->hasOneUse()) 1668 return nullptr; 1669 1670 // If we use the original shuffle mask and op1 is *variable*, we would be 1671 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1672 // poison. We do not have to guard against UB when *constants* are op1 1673 // because safe constants guarantee that we do not overflow sdiv/srem (and 1674 // there's no danger for other opcodes). 1675 // TODO: To allow this case, create a new shuffle mask with no undefs. 1676 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1677 return nullptr; 1678 1679 // Note: In general, we do not create new shuffles in InstCombine because we 1680 // do not know if a target can lower an arbitrary shuffle optimally. In this 1681 // case, the shuffle uses the existing mask, so there is no additional risk. 1682 1683 // Select the variable vectors first, then perform the binop: 1684 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1685 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1686 V = Builder.CreateShuffleVector(X, Y, Mask); 1687 } 1688 1689 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1690 BinaryOperator::Create(BOpc, NewC, V); 1691 1692 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1693 // 1. If we changed an opcode, poison conditions might have changed. 1694 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1695 // where the original code did not. But if we already made a safe constant, 1696 // then there's no danger. 1697 NewBO->copyIRFlags(B0); 1698 NewBO->andIRFlags(B1); 1699 if (DropNSW) 1700 NewBO->setHasNoSignedWrap(false); 1701 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1702 NewBO->dropPoisonGeneratingFlags(); 1703 return NewBO; 1704 } 1705 1706 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 1707 /// Example (little endian): 1708 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 1709 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 1710 bool IsBigEndian) { 1711 // This must be a bitcasted shuffle of 1 vector integer operand. 1712 Type *DestType = Shuf.getType(); 1713 Value *X; 1714 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 1715 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 1716 return nullptr; 1717 1718 // The source type must have the same number of elements as the shuffle, 1719 // and the source element type must be larger than the shuffle element type. 1720 Type *SrcType = X->getType(); 1721 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 1722 cast<VectorType>(SrcType)->getNumElements() != 1723 cast<VectorType>(DestType)->getNumElements() || 1724 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 1725 return nullptr; 1726 1727 assert(Shuf.changesLength() && !Shuf.increasesLength() && 1728 "Expected a shuffle that decreases length"); 1729 1730 // Last, check that the mask chooses the correct low bits for each narrow 1731 // element in the result. 1732 uint64_t TruncRatio = 1733 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 1734 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1735 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1736 if (Mask[i] == UndefMaskElem) 1737 continue; 1738 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 1739 assert(LSBIndex <= std::numeric_limits<int32_t>::max() && 1740 "Overflowed 32-bits"); 1741 if (Mask[i] != (int)LSBIndex) 1742 return nullptr; 1743 } 1744 1745 return new TruncInst(X, DestType); 1746 } 1747 1748 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 1749 /// narrowing (concatenating with undef and extracting back to the original 1750 /// length). This allows replacing the wide select with a narrow select. 1751 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 1752 InstCombiner::BuilderTy &Builder) { 1753 // This must be a narrowing identity shuffle. It extracts the 1st N elements 1754 // of the 1st vector operand of a shuffle. 1755 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 1756 return nullptr; 1757 1758 // The vector being shuffled must be a vector select that we can eliminate. 1759 // TODO: The one-use requirement could be eased if X and/or Y are constants. 1760 Value *Cond, *X, *Y; 1761 if (!match(Shuf.getOperand(0), 1762 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 1763 return nullptr; 1764 1765 // We need a narrow condition value. It must be extended with undef elements 1766 // and have the same number of elements as this shuffle. 1767 unsigned NarrowNumElts = Shuf.getType()->getNumElements(); 1768 Value *NarrowCond; 1769 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 1770 cast<VectorType>(NarrowCond->getType())->getNumElements() != 1771 NarrowNumElts || 1772 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 1773 return nullptr; 1774 1775 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 1776 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 1777 Value *Undef = UndefValue::get(X->getType()); 1778 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask()); 1779 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask()); 1780 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 1781 } 1782 1783 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 1784 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 1785 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1786 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 1787 return nullptr; 1788 1789 Value *X, *Y; 1790 ArrayRef<int> Mask; 1791 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 1792 return nullptr; 1793 1794 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 1795 // then combining may result in worse codegen. 1796 if (!Op0->hasOneUse()) 1797 return nullptr; 1798 1799 // We are extracting a subvector from a shuffle. Remove excess elements from 1800 // the 1st shuffle mask to eliminate the extract. 1801 // 1802 // This transform is conservatively limited to identity extracts because we do 1803 // not allow arbitrary shuffle mask creation as a target-independent transform 1804 // (because we can't guarantee that will lower efficiently). 1805 // 1806 // If the extracting shuffle has an undef mask element, it transfers to the 1807 // new shuffle mask. Otherwise, copy the original mask element. Example: 1808 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 1809 // shuf X, Y, <C0, undef, C2, undef> 1810 unsigned NumElts = Shuf.getType()->getNumElements(); 1811 SmallVector<int, 16> NewMask(NumElts); 1812 assert(NumElts < Mask.size() && 1813 "Identity with extract must have less elements than its inputs"); 1814 1815 for (unsigned i = 0; i != NumElts; ++i) { 1816 int ExtractMaskElt = Shuf.getMaskValue(i); 1817 int MaskElt = Mask[i]; 1818 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 1819 } 1820 return new ShuffleVectorInst(X, Y, NewMask); 1821 } 1822 1823 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 1824 /// operand with the operand of an insertelement. 1825 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 1826 InstCombiner &IC) { 1827 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 1828 SmallVector<int, 16> Mask; 1829 Shuf.getShuffleMask(Mask); 1830 1831 // The shuffle must not change vector sizes. 1832 // TODO: This restriction could be removed if the insert has only one use 1833 // (because the transform would require a new length-changing shuffle). 1834 int NumElts = Mask.size(); 1835 if (NumElts != (int)(cast<VectorType>(V0->getType())->getNumElements())) 1836 return nullptr; 1837 1838 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 1839 // not be able to handle it there if the insertelement has >1 use. 1840 // If the shuffle has an insertelement operand but does not choose the 1841 // inserted scalar element from that value, then we can replace that shuffle 1842 // operand with the source vector of the insertelement. 1843 Value *X; 1844 uint64_t IdxC; 1845 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1846 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 1847 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1848 return IC.replaceOperand(Shuf, 0, X); 1849 } 1850 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1851 // Offset the index constant by the vector width because we are checking for 1852 // accesses to the 2nd vector input of the shuffle. 1853 IdxC += NumElts; 1854 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 1855 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1856 return IC.replaceOperand(Shuf, 1, X); 1857 } 1858 1859 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 1860 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 1861 // We need an insertelement with a constant index. 1862 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 1863 m_ConstantInt(IndexC)))) 1864 return false; 1865 1866 // Test the shuffle mask to see if it splices the inserted scalar into the 1867 // operand 1 vector of the shuffle. 1868 int NewInsIndex = -1; 1869 for (int i = 0; i != NumElts; ++i) { 1870 // Ignore undef mask elements. 1871 if (Mask[i] == -1) 1872 continue; 1873 1874 // The shuffle takes elements of operand 1 without lane changes. 1875 if (Mask[i] == NumElts + i) 1876 continue; 1877 1878 // The shuffle must choose the inserted scalar exactly once. 1879 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 1880 return false; 1881 1882 // The shuffle is placing the inserted scalar into element i. 1883 NewInsIndex = i; 1884 } 1885 1886 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 1887 1888 // Index is updated to the potentially translated insertion lane. 1889 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 1890 return true; 1891 }; 1892 1893 // If the shuffle is unnecessary, insert the scalar operand directly into 1894 // operand 1 of the shuffle. Example: 1895 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 1896 Value *Scalar; 1897 ConstantInt *IndexC; 1898 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1899 return InsertElementInst::Create(V1, Scalar, IndexC); 1900 1901 // Try again after commuting shuffle. Example: 1902 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 1903 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 1904 std::swap(V0, V1); 1905 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1906 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1907 return InsertElementInst::Create(V1, Scalar, IndexC); 1908 1909 return nullptr; 1910 } 1911 1912 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 1913 // Match the operands as identity with padding (also known as concatenation 1914 // with undef) shuffles of the same source type. The backend is expected to 1915 // recreate these concatenations from a shuffle of narrow operands. 1916 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 1917 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 1918 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 1919 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 1920 return nullptr; 1921 1922 // We limit this transform to power-of-2 types because we expect that the 1923 // backend can convert the simplified IR patterns to identical nodes as the 1924 // original IR. 1925 // TODO: If we can verify the same behavior for arbitrary types, the 1926 // power-of-2 checks can be removed. 1927 Value *X = Shuffle0->getOperand(0); 1928 Value *Y = Shuffle1->getOperand(0); 1929 if (X->getType() != Y->getType() || 1930 !isPowerOf2_32(Shuf.getType()->getNumElements()) || 1931 !isPowerOf2_32(Shuffle0->getType()->getNumElements()) || 1932 !isPowerOf2_32(cast<VectorType>(X->getType())->getNumElements()) || 1933 isa<UndefValue>(X) || isa<UndefValue>(Y)) 1934 return nullptr; 1935 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 1936 isa<UndefValue>(Shuffle1->getOperand(1)) && 1937 "Unexpected operand for identity shuffle"); 1938 1939 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 1940 // operands directly by adjusting the shuffle mask to account for the narrower 1941 // types: 1942 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 1943 int NarrowElts = cast<VectorType>(X->getType())->getNumElements(); 1944 int WideElts = Shuffle0->getType()->getNumElements(); 1945 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 1946 1947 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1948 SmallVector<int, 16> NewMask(Mask.size(), -1); 1949 for (int i = 0, e = Mask.size(); i != e; ++i) { 1950 if (Mask[i] == -1) 1951 continue; 1952 1953 // If this shuffle is choosing an undef element from 1 of the sources, that 1954 // element is undef. 1955 if (Mask[i] < WideElts) { 1956 if (Shuffle0->getMaskValue(Mask[i]) == -1) 1957 continue; 1958 } else { 1959 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 1960 continue; 1961 } 1962 1963 // If this shuffle is choosing from the 1st narrow op, the mask element is 1964 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 1965 // element is offset down to adjust for the narrow vector widths. 1966 if (Mask[i] < WideElts) { 1967 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 1968 NewMask[i] = Mask[i]; 1969 } else { 1970 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 1971 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 1972 } 1973 } 1974 return new ShuffleVectorInst(X, Y, NewMask); 1975 } 1976 1977 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1978 Value *LHS = SVI.getOperand(0); 1979 Value *RHS = SVI.getOperand(1); 1980 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 1981 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 1982 SVI.getType(), ShufQuery)) 1983 return replaceInstUsesWith(SVI, V); 1984 1985 // shuffle x, x, mask --> shuffle x, undef, mask' 1986 unsigned VWidth = SVI.getType()->getNumElements(); 1987 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); 1988 ArrayRef<int> Mask = SVI.getShuffleMask(); 1989 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1990 1991 // Peek through a bitcasted shuffle operand by scaling the mask. If the 1992 // simulated shuffle can simplify, then this shuffle is unnecessary: 1993 // shuf (bitcast X), undef, Mask --> bitcast X' 1994 // TODO: This could be extended to allow length-changing shuffles. 1995 // The transform might also be obsoleted if we allowed canonicalization 1996 // of bitcasted shuffles. 1997 Value *X; 1998 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 1999 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2000 // Try to create a scaled mask constant. 2001 auto *XType = cast<VectorType>(X->getType()); 2002 unsigned XNumElts = XType->getNumElements(); 2003 SmallVector<int, 16> ScaledMask; 2004 if (XNumElts >= VWidth) { 2005 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2006 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2007 } else { 2008 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2009 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2010 ScaledMask.clear(); 2011 } 2012 if (!ScaledMask.empty()) { 2013 // If the shuffled source vector simplifies, cast that value to this 2014 // shuffle's type. 2015 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2016 ScaledMask, XType, ShufQuery)) 2017 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2018 } 2019 } 2020 2021 if (LHS == RHS) { 2022 assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?"); 2023 // Remap any references to RHS to use LHS. 2024 SmallVector<int, 16> Elts; 2025 for (unsigned i = 0; i != VWidth; ++i) { 2026 // Propagate undef elements or force mask to LHS. 2027 if (Mask[i] < 0) 2028 Elts.push_back(UndefMaskElem); 2029 else 2030 Elts.push_back(Mask[i] % LHSWidth); 2031 } 2032 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 2033 } 2034 2035 // shuffle undef, x, mask --> shuffle x, undef, mask' 2036 if (isa<UndefValue>(LHS)) { 2037 SVI.commute(); 2038 return &SVI; 2039 } 2040 2041 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2042 return I; 2043 2044 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2045 return I; 2046 2047 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2048 return I; 2049 2050 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2051 return I; 2052 2053 APInt UndefElts(VWidth, 0); 2054 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2055 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2056 if (V != &SVI) 2057 return replaceInstUsesWith(SVI, V); 2058 return &SVI; 2059 } 2060 2061 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2062 return I; 2063 2064 // These transforms have the potential to lose undef knowledge, so they are 2065 // intentionally placed after SimplifyDemandedVectorElts(). 2066 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2067 return I; 2068 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2069 return I; 2070 2071 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 2072 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2073 return replaceInstUsesWith(SVI, V); 2074 } 2075 2076 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2077 // a non-vector type. We can instead bitcast the original vector followed by 2078 // an extract of the desired element: 2079 // 2080 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2081 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2082 // %1 = bitcast <4 x i8> %sroa to i32 2083 // Becomes: 2084 // %bc = bitcast <16 x i8> %in to <4 x i32> 2085 // %ext = extractelement <4 x i32> %bc, i32 0 2086 // 2087 // If the shuffle is extracting a contiguous range of values from the input 2088 // vector then each use which is a bitcast of the extracted size can be 2089 // replaced. This will work if the vector types are compatible, and the begin 2090 // index is aligned to a value in the casted vector type. If the begin index 2091 // isn't aligned then we can shuffle the original vector (keeping the same 2092 // vector type) before extracting. 2093 // 2094 // This code will bail out if the target type is fundamentally incompatible 2095 // with vectors of the source type. 2096 // 2097 // Example of <16 x i8>, target type i32: 2098 // Index range [4,8): v-----------v Will work. 2099 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2100 // <16 x i8>: | | | | | | | | | | | | | | | | | 2101 // <4 x i32>: | | | | | 2102 // +-----------+-----------+-----------+-----------+ 2103 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2104 // Target type i40: ^--------------^ Won't work, bail. 2105 bool MadeChange = false; 2106 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2107 Value *V = LHS; 2108 unsigned MaskElems = Mask.size(); 2109 VectorType *SrcTy = cast<VectorType>(V->getType()); 2110 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2111 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2112 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2113 unsigned SrcNumElems = SrcTy->getNumElements(); 2114 SmallVector<BitCastInst *, 8> BCs; 2115 DenseMap<Type *, Value *> NewBCs; 2116 for (User *U : SVI.users()) 2117 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2118 if (!BC->use_empty()) 2119 // Only visit bitcasts that weren't previously handled. 2120 BCs.push_back(BC); 2121 for (BitCastInst *BC : BCs) { 2122 unsigned BegIdx = Mask.front(); 2123 Type *TgtTy = BC->getDestTy(); 2124 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2125 if (!TgtElemBitWidth) 2126 continue; 2127 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2128 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2129 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2130 if (!VecBitWidthsEqual) 2131 continue; 2132 if (!VectorType::isValidElementType(TgtTy)) 2133 continue; 2134 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2135 if (!BegIsAligned) { 2136 // Shuffle the input so [0,NumElements) contains the output, and 2137 // [NumElems,SrcNumElems) is undef. 2138 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2139 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2140 ShuffleMask[I] = Idx; 2141 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2142 ShuffleMask, 2143 SVI.getName() + ".extract"); 2144 BegIdx = 0; 2145 } 2146 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2147 assert(SrcElemsPerTgtElem); 2148 BegIdx /= SrcElemsPerTgtElem; 2149 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2150 auto *NewBC = 2151 BCAlreadyExists 2152 ? NewBCs[CastSrcTy] 2153 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2154 if (!BCAlreadyExists) 2155 NewBCs[CastSrcTy] = NewBC; 2156 auto *Ext = Builder.CreateExtractElement( 2157 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2158 // The shufflevector isn't being replaced: the bitcast that used it 2159 // is. InstCombine will visit the newly-created instructions. 2160 replaceInstUsesWith(*BC, Ext); 2161 MadeChange = true; 2162 } 2163 } 2164 2165 // If the LHS is a shufflevector itself, see if we can combine it with this 2166 // one without producing an unusual shuffle. 2167 // Cases that might be simplified: 2168 // 1. 2169 // x1=shuffle(v1,v2,mask1) 2170 // x=shuffle(x1,undef,mask) 2171 // ==> 2172 // x=shuffle(v1,undef,newMask) 2173 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2174 // 2. 2175 // x1=shuffle(v1,undef,mask1) 2176 // x=shuffle(x1,x2,mask) 2177 // where v1.size() == mask1.size() 2178 // ==> 2179 // x=shuffle(v1,x2,newMask) 2180 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2181 // 3. 2182 // x2=shuffle(v2,undef,mask2) 2183 // x=shuffle(x1,x2,mask) 2184 // where v2.size() == mask2.size() 2185 // ==> 2186 // x=shuffle(x1,v2,newMask) 2187 // newMask[i] = (mask[i] < x1.size()) 2188 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2189 // 4. 2190 // x1=shuffle(v1,undef,mask1) 2191 // x2=shuffle(v2,undef,mask2) 2192 // x=shuffle(x1,x2,mask) 2193 // where v1.size() == v2.size() 2194 // ==> 2195 // x=shuffle(v1,v2,newMask) 2196 // newMask[i] = (mask[i] < x1.size()) 2197 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2198 // 2199 // Here we are really conservative: 2200 // we are absolutely afraid of producing a shuffle mask not in the input 2201 // program, because the code gen may not be smart enough to turn a merged 2202 // shuffle into two specific shuffles: it may produce worse code. As such, 2203 // we only merge two shuffles if the result is either a splat or one of the 2204 // input shuffle masks. In this case, merging the shuffles just removes 2205 // one instruction, which we know is safe. This is good for things like 2206 // turning: (splat(splat)) -> splat, or 2207 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2208 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2209 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2210 if (LHSShuffle) 2211 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2212 LHSShuffle = nullptr; 2213 if (RHSShuffle) 2214 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2215 RHSShuffle = nullptr; 2216 if (!LHSShuffle && !RHSShuffle) 2217 return MadeChange ? &SVI : nullptr; 2218 2219 Value* LHSOp0 = nullptr; 2220 Value* LHSOp1 = nullptr; 2221 Value* RHSOp0 = nullptr; 2222 unsigned LHSOp0Width = 0; 2223 unsigned RHSOp0Width = 0; 2224 if (LHSShuffle) { 2225 LHSOp0 = LHSShuffle->getOperand(0); 2226 LHSOp1 = LHSShuffle->getOperand(1); 2227 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); 2228 } 2229 if (RHSShuffle) { 2230 RHSOp0 = RHSShuffle->getOperand(0); 2231 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); 2232 } 2233 Value* newLHS = LHS; 2234 Value* newRHS = RHS; 2235 if (LHSShuffle) { 2236 // case 1 2237 if (isa<UndefValue>(RHS)) { 2238 newLHS = LHSOp0; 2239 newRHS = LHSOp1; 2240 } 2241 // case 2 or 4 2242 else if (LHSOp0Width == LHSWidth) { 2243 newLHS = LHSOp0; 2244 } 2245 } 2246 // case 3 or 4 2247 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2248 newRHS = RHSOp0; 2249 } 2250 // case 4 2251 if (LHSOp0 == RHSOp0) { 2252 newLHS = LHSOp0; 2253 newRHS = nullptr; 2254 } 2255 2256 if (newLHS == LHS && newRHS == RHS) 2257 return MadeChange ? &SVI : nullptr; 2258 2259 ArrayRef<int> LHSMask; 2260 ArrayRef<int> RHSMask; 2261 if (newLHS != LHS) 2262 LHSMask = LHSShuffle->getShuffleMask(); 2263 if (RHSShuffle && newRHS != RHS) 2264 RHSMask = RHSShuffle->getShuffleMask(); 2265 2266 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2267 SmallVector<int, 16> newMask; 2268 bool isSplat = true; 2269 int SplatElt = -1; 2270 // Create a new mask for the new ShuffleVectorInst so that the new 2271 // ShuffleVectorInst is equivalent to the original one. 2272 for (unsigned i = 0; i < VWidth; ++i) { 2273 int eltMask; 2274 if (Mask[i] < 0) { 2275 // This element is an undef value. 2276 eltMask = -1; 2277 } else if (Mask[i] < (int)LHSWidth) { 2278 // This element is from left hand side vector operand. 2279 // 2280 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2281 // new mask value for the element. 2282 if (newLHS != LHS) { 2283 eltMask = LHSMask[Mask[i]]; 2284 // If the value selected is an undef value, explicitly specify it 2285 // with a -1 mask value. 2286 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2287 eltMask = -1; 2288 } else 2289 eltMask = Mask[i]; 2290 } else { 2291 // This element is from right hand side vector operand 2292 // 2293 // If the value selected is an undef value, explicitly specify it 2294 // with a -1 mask value. (case 1) 2295 if (isa<UndefValue>(RHS)) 2296 eltMask = -1; 2297 // If RHS is going to be replaced (case 3 or 4), calculate the 2298 // new mask value for the element. 2299 else if (newRHS != RHS) { 2300 eltMask = RHSMask[Mask[i]-LHSWidth]; 2301 // If the value selected is an undef value, explicitly specify it 2302 // with a -1 mask value. 2303 if (eltMask >= (int)RHSOp0Width) { 2304 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2305 && "should have been check above"); 2306 eltMask = -1; 2307 } 2308 } else 2309 eltMask = Mask[i]-LHSWidth; 2310 2311 // If LHS's width is changed, shift the mask value accordingly. 2312 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2313 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2314 // If newRHS == newLHS, we want to remap any references from newRHS to 2315 // newLHS so that we can properly identify splats that may occur due to 2316 // obfuscation across the two vectors. 2317 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2318 eltMask += newLHSWidth; 2319 } 2320 2321 // Check if this could still be a splat. 2322 if (eltMask >= 0) { 2323 if (SplatElt >= 0 && SplatElt != eltMask) 2324 isSplat = false; 2325 SplatElt = eltMask; 2326 } 2327 2328 newMask.push_back(eltMask); 2329 } 2330 2331 // If the result mask is equal to one of the original shuffle masks, 2332 // or is a splat, do the replacement. 2333 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2334 SmallVector<Constant*, 16> Elts; 2335 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2336 if (newMask[i] < 0) { 2337 Elts.push_back(UndefValue::get(Int32Ty)); 2338 } else { 2339 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2340 } 2341 } 2342 if (!newRHS) 2343 newRHS = UndefValue::get(newLHS->getType()); 2344 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2345 } 2346 2347 return MadeChange ? &SVI : nullptr; 2348 } 2349