1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombiner.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 #define DEBUG_TYPE "instcombine" 45 46 using namespace llvm; 47 using namespace PatternMatch; 48 49 STATISTIC(NumAggregateReconstructionsSimplified, 50 "Number of aggregate reconstructions turned into reuse of the " 51 "original aggregate"); 52 53 /// Return true if the value is cheaper to scalarize than it is to leave as a 54 /// vector operation. If the extract index \p EI is a constant integer then 55 /// some operations may be cheap to scalarize. 56 /// 57 /// FIXME: It's possible to create more instructions than previously existed. 58 static bool cheapToScalarize(Value *V, Value *EI) { 59 ConstantInt *CEI = dyn_cast<ConstantInt>(EI); 60 61 // If we can pick a scalar constant value out of a vector, that is free. 62 if (auto *C = dyn_cast<Constant>(V)) 63 return CEI || C->getSplatValue(); 64 65 if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) { 66 ElementCount EC = cast<VectorType>(V->getType())->getElementCount(); 67 // Index needs to be lower than the minimum size of the vector, because 68 // for scalable vector, the vector size is known at run time. 69 return CEI->getValue().ult(EC.getKnownMinValue()); 70 } 71 72 // An insertelement to the same constant index as our extract will simplify 73 // to the scalar inserted element. An insertelement to a different constant 74 // index is irrelevant to our extract. 75 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 76 return CEI; 77 78 if (match(V, m_OneUse(m_Load(m_Value())))) 79 return true; 80 81 if (match(V, m_OneUse(m_UnOp()))) 82 return true; 83 84 Value *V0, *V1; 85 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 86 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 87 return true; 88 89 CmpInst::Predicate UnusedPred; 90 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 91 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 92 return true; 93 94 return false; 95 } 96 97 // If we have a PHI node with a vector type that is only used to feed 98 // itself and be an operand of extractelement at a constant location, 99 // try to replace the PHI of the vector type with a PHI of a scalar type. 100 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 101 PHINode *PN) { 102 SmallVector<Instruction *, 2> Extracts; 103 // The users we want the PHI to have are: 104 // 1) The EI ExtractElement (we already know this) 105 // 2) Possibly more ExtractElements with the same index. 106 // 3) Another operand, which will feed back into the PHI. 107 Instruction *PHIUser = nullptr; 108 for (auto *U : PN->users()) { 109 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 110 if (EI.getIndexOperand() == EU->getIndexOperand()) 111 Extracts.push_back(EU); 112 else 113 return nullptr; 114 } else if (!PHIUser) { 115 PHIUser = cast<Instruction>(U); 116 } else { 117 return nullptr; 118 } 119 } 120 121 if (!PHIUser) 122 return nullptr; 123 124 // Verify that this PHI user has one use, which is the PHI itself, 125 // and that it is a binary operation which is cheap to scalarize. 126 // otherwise return nullptr. 127 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 128 !(isa<BinaryOperator>(PHIUser)) || 129 !cheapToScalarize(PHIUser, EI.getIndexOperand())) 130 return nullptr; 131 132 // Create a scalar PHI node that will replace the vector PHI node 133 // just before the current PHI node. 134 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 135 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 136 // Scalarize each PHI operand. 137 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 138 Value *PHIInVal = PN->getIncomingValue(i); 139 BasicBlock *inBB = PN->getIncomingBlock(i); 140 Value *Elt = EI.getIndexOperand(); 141 // If the operand is the PHI induction variable: 142 if (PHIInVal == PHIUser) { 143 // Scalarize the binary operation. Its first operand is the 144 // scalar PHI, and the second operand is extracted from the other 145 // vector operand. 146 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 147 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 148 Value *Op = InsertNewInstWith( 149 ExtractElementInst::Create(B0->getOperand(opId), Elt, 150 B0->getOperand(opId)->getName() + ".Elt"), 151 *B0); 152 Value *newPHIUser = InsertNewInstWith( 153 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 154 scalarPHI, Op, B0), *B0); 155 scalarPHI->addIncoming(newPHIUser, inBB); 156 } else { 157 // Scalarize PHI input: 158 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 159 // Insert the new instruction into the predecessor basic block. 160 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 161 BasicBlock::iterator InsertPos; 162 if (pos && !isa<PHINode>(pos)) { 163 InsertPos = ++pos->getIterator(); 164 } else { 165 InsertPos = inBB->getFirstInsertionPt(); 166 } 167 168 InsertNewInstWith(newEI, *InsertPos); 169 170 scalarPHI->addIncoming(newEI, inBB); 171 } 172 } 173 174 for (auto *E : Extracts) { 175 replaceInstUsesWith(*E, scalarPHI); 176 // Add old extract to worklist for DCE. 177 addToWorklist(E); 178 } 179 180 return &EI; 181 } 182 183 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) { 184 Value *X; 185 uint64_t ExtIndexC; 186 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 187 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 188 return nullptr; 189 190 ElementCount NumElts = 191 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 192 Type *DestTy = Ext.getType(); 193 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 194 bool IsBigEndian = DL.isBigEndian(); 195 196 // If we are casting an integer to vector and extracting a portion, that is 197 // a shift-right and truncate. 198 if (X->getType()->isIntegerTy()) { 199 assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) && 200 "Expected fixed vector type for bitcast from scalar integer"); 201 202 // Big endian requires adjusting the extract index since MSB is at index 0. 203 // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8 204 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8 205 if (IsBigEndian) 206 ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC; 207 unsigned ShiftAmountC = ExtIndexC * DestWidth; 208 if (!ShiftAmountC || 209 (isDesirableIntType(X->getType()->getPrimitiveSizeInBits()) && 210 Ext.getVectorOperand()->hasOneUse())) { 211 if (ShiftAmountC) 212 X = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset"); 213 if (DestTy->isFloatingPointTy()) { 214 Type *DstIntTy = IntegerType::getIntNTy(X->getContext(), DestWidth); 215 Value *Trunc = Builder.CreateTrunc(X, DstIntTy); 216 return new BitCastInst(Trunc, DestTy); 217 } 218 return new TruncInst(X, DestTy); 219 } 220 } 221 222 if (!X->getType()->isVectorTy()) 223 return nullptr; 224 225 // If this extractelement is using a bitcast from a vector of the same number 226 // of elements, see if we can find the source element from the source vector: 227 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 228 auto *SrcTy = cast<VectorType>(X->getType()); 229 ElementCount NumSrcElts = SrcTy->getElementCount(); 230 if (NumSrcElts == NumElts) 231 if (Value *Elt = findScalarElement(X, ExtIndexC)) 232 return new BitCastInst(Elt, DestTy); 233 234 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 235 "Src and Dst must be the same sort of vector type"); 236 237 // If the source elements are wider than the destination, try to shift and 238 // truncate a subset of scalar bits of an insert op. 239 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 240 Value *Scalar; 241 Value *Vec; 242 uint64_t InsIndexC; 243 if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar), 244 m_ConstantInt(InsIndexC)))) 245 return nullptr; 246 247 // The extract must be from the subset of vector elements that we inserted 248 // into. Example: if we inserted element 1 of a <2 x i64> and we are 249 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 250 // of elements 4-7 of the bitcasted vector. 251 unsigned NarrowingRatio = 252 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 253 254 if (ExtIndexC / NarrowingRatio != InsIndexC) { 255 // Remove insertelement, if we don't use the inserted element. 256 // extractelement (bitcast (insertelement (Vec, b)), a) -> 257 // extractelement (bitcast (Vec), a) 258 // FIXME: this should be removed to SimplifyDemandedVectorElts, 259 // once scale vectors are supported. 260 if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) { 261 Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType()); 262 return ExtractElementInst::Create(NewBC, Ext.getIndexOperand()); 263 } 264 return nullptr; 265 } 266 267 // We are extracting part of the original scalar. How that scalar is 268 // inserted into the vector depends on the endian-ness. Example: 269 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 270 // +--+--+--+--+--+--+--+--+ 271 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 272 // extelt <4 x i16> V', 3: | |S2|S3| 273 // +--+--+--+--+--+--+--+--+ 274 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 275 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 276 // In this example, we must right-shift little-endian. Big-endian is just a 277 // truncate. 278 unsigned Chunk = ExtIndexC % NarrowingRatio; 279 if (IsBigEndian) 280 Chunk = NarrowingRatio - 1 - Chunk; 281 282 // Bail out if this is an FP vector to FP vector sequence. That would take 283 // more instructions than we started with unless there is no shift, and it 284 // may not be handled as well in the backend. 285 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 286 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 287 if (NeedSrcBitcast && NeedDestBitcast) 288 return nullptr; 289 290 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 291 unsigned ShAmt = Chunk * DestWidth; 292 293 // TODO: This limitation is more strict than necessary. We could sum the 294 // number of new instructions and subtract the number eliminated to know if 295 // we can proceed. 296 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 297 if (NeedSrcBitcast || NeedDestBitcast) 298 return nullptr; 299 300 if (NeedSrcBitcast) { 301 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 302 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 303 } 304 305 if (ShAmt) { 306 // Bail out if we could end with more instructions than we started with. 307 if (!Ext.getVectorOperand()->hasOneUse()) 308 return nullptr; 309 Scalar = Builder.CreateLShr(Scalar, ShAmt); 310 } 311 312 if (NeedDestBitcast) { 313 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 314 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 315 } 316 return new TruncInst(Scalar, DestTy); 317 } 318 319 return nullptr; 320 } 321 322 /// Find elements of V demanded by UserInstr. 323 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 324 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 325 326 // Conservatively assume that all elements are needed. 327 APInt UsedElts(APInt::getAllOnes(VWidth)); 328 329 switch (UserInstr->getOpcode()) { 330 case Instruction::ExtractElement: { 331 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 332 assert(EEI->getVectorOperand() == V); 333 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 334 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 335 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 336 } 337 break; 338 } 339 case Instruction::ShuffleVector: { 340 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 341 unsigned MaskNumElts = 342 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 343 344 UsedElts = APInt(VWidth, 0); 345 for (unsigned i = 0; i < MaskNumElts; i++) { 346 unsigned MaskVal = Shuffle->getMaskValue(i); 347 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 348 continue; 349 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 350 UsedElts.setBit(MaskVal); 351 if (Shuffle->getOperand(1) == V && 352 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 353 UsedElts.setBit(MaskVal - VWidth); 354 } 355 break; 356 } 357 default: 358 break; 359 } 360 return UsedElts; 361 } 362 363 /// Find union of elements of V demanded by all its users. 364 /// If it is known by querying findDemandedEltsBySingleUser that 365 /// no user demands an element of V, then the corresponding bit 366 /// remains unset in the returned value. 367 static APInt findDemandedEltsByAllUsers(Value *V) { 368 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 369 370 APInt UnionUsedElts(VWidth, 0); 371 for (const Use &U : V->uses()) { 372 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 373 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 374 } else { 375 UnionUsedElts = APInt::getAllOnes(VWidth); 376 break; 377 } 378 379 if (UnionUsedElts.isAllOnes()) 380 break; 381 } 382 383 return UnionUsedElts; 384 } 385 386 /// Given a constant index for a extractelement or insertelement instruction, 387 /// return it with the canonical type if it isn't already canonical. We 388 /// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't 389 /// matter, we just want a consistent type to simplify CSE. 390 static ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) { 391 const unsigned IndexBW = IndexC->getType()->getBitWidth(); 392 if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64) 393 return nullptr; 394 return ConstantInt::get(IndexC->getContext(), 395 IndexC->getValue().zextOrTrunc(64)); 396 } 397 398 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 399 Value *SrcVec = EI.getVectorOperand(); 400 Value *Index = EI.getIndexOperand(); 401 if (Value *V = simplifyExtractElementInst(SrcVec, Index, 402 SQ.getWithInstruction(&EI))) 403 return replaceInstUsesWith(EI, V); 404 405 // extractelt (select %x, %vec1, %vec2), %const -> 406 // select %x, %vec1[%const], %vec2[%const] 407 // TODO: Support constant folding of multiple select operands: 408 // extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2) 409 // If the extractelement will for instance try to do out of bounds accesses 410 // because of the values of %c1 and/or %c2, the sequence could be optimized 411 // early. This is currently not possible because constant folding will reach 412 // an unreachable assertion if it doesn't find a constant operand. 413 if (SelectInst *SI = dyn_cast<SelectInst>(EI.getVectorOperand())) 414 if (SI->getCondition()->getType()->isIntegerTy() && 415 isa<Constant>(EI.getIndexOperand())) 416 if (Instruction *R = FoldOpIntoSelect(EI, SI)) 417 return R; 418 419 // If extracting a specified index from the vector, see if we can recursively 420 // find a previously computed scalar that was inserted into the vector. 421 auto *IndexC = dyn_cast<ConstantInt>(Index); 422 if (IndexC) { 423 // Canonicalize type of constant indices to i64 to simplify CSE 424 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 425 return replaceOperand(EI, 1, NewIdx); 426 427 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 428 unsigned NumElts = EC.getKnownMinValue(); 429 430 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 431 Intrinsic::ID IID = II->getIntrinsicID(); 432 // Index needs to be lower than the minimum size of the vector, because 433 // for scalable vector, the vector size is known at run time. 434 if (IID == Intrinsic::experimental_stepvector && 435 IndexC->getValue().ult(NumElts)) { 436 Type *Ty = EI.getType(); 437 unsigned BitWidth = Ty->getIntegerBitWidth(); 438 Value *Idx; 439 // Return index when its value does not exceed the allowed limit 440 // for the element type of the vector, otherwise return undefined. 441 if (IndexC->getValue().getActiveBits() <= BitWidth) 442 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 443 else 444 Idx = UndefValue::get(Ty); 445 return replaceInstUsesWith(EI, Idx); 446 } 447 } 448 449 // InstSimplify should handle cases where the index is invalid. 450 // For fixed-length vector, it's invalid to extract out-of-range element. 451 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 452 return nullptr; 453 454 if (Instruction *I = foldBitcastExtElt(EI)) 455 return I; 456 457 // If there's a vector PHI feeding a scalar use through this extractelement 458 // instruction, try to scalarize the PHI. 459 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 460 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 461 return ScalarPHI; 462 } 463 464 // TODO come up with a n-ary matcher that subsumes both unary and 465 // binary matchers. 466 UnaryOperator *UO; 467 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { 468 // extelt (unop X), Index --> unop (extelt X, Index) 469 Value *X = UO->getOperand(0); 470 Value *E = Builder.CreateExtractElement(X, Index); 471 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 472 } 473 474 BinaryOperator *BO; 475 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) { 476 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 477 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 478 Value *E0 = Builder.CreateExtractElement(X, Index); 479 Value *E1 = Builder.CreateExtractElement(Y, Index); 480 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 481 } 482 483 Value *X, *Y; 484 CmpInst::Predicate Pred; 485 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 486 cheapToScalarize(SrcVec, Index)) { 487 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 488 Value *E0 = Builder.CreateExtractElement(X, Index); 489 Value *E1 = Builder.CreateExtractElement(Y, Index); 490 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 491 } 492 493 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 494 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 495 // instsimplify already handled the case where the indices are constants 496 // and equal by value, if both are constants, they must not be the same 497 // value, extract from the pre-inserted value instead. 498 if (isa<Constant>(IE->getOperand(2)) && IndexC) 499 return replaceOperand(EI, 0, IE->getOperand(0)); 500 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 501 auto *VecType = cast<VectorType>(GEP->getType()); 502 ElementCount EC = VecType->getElementCount(); 503 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 504 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 505 // Find out why we have a vector result - these are a few examples: 506 // 1. We have a scalar pointer and a vector of indices, or 507 // 2. We have a vector of pointers and a scalar index, or 508 // 3. We have a vector of pointers and a vector of indices, etc. 509 // Here we only consider combining when there is exactly one vector 510 // operand, since the optimization is less obviously a win due to 511 // needing more than one extractelements. 512 513 unsigned VectorOps = 514 llvm::count_if(GEP->operands(), [](const Value *V) { 515 return isa<VectorType>(V->getType()); 516 }); 517 if (VectorOps == 1) { 518 Value *NewPtr = GEP->getPointerOperand(); 519 if (isa<VectorType>(NewPtr->getType())) 520 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 521 522 SmallVector<Value *> NewOps; 523 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 524 Value *Op = GEP->getOperand(I); 525 if (isa<VectorType>(Op->getType())) 526 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 527 else 528 NewOps.push_back(Op); 529 } 530 531 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 532 GEP->getSourceElementType(), NewPtr, NewOps); 533 NewGEP->setIsInBounds(GEP->isInBounds()); 534 return NewGEP; 535 } 536 } 537 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 538 // If this is extracting an element from a shufflevector, figure out where 539 // it came from and extract from the appropriate input element instead. 540 // Restrict the following transformation to fixed-length vector. 541 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 542 int SrcIdx = 543 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 544 Value *Src; 545 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 546 ->getNumElements(); 547 548 if (SrcIdx < 0) 549 return replaceInstUsesWith(EI, PoisonValue::get(EI.getType())); 550 if (SrcIdx < (int)LHSWidth) 551 Src = SVI->getOperand(0); 552 else { 553 SrcIdx -= LHSWidth; 554 Src = SVI->getOperand(1); 555 } 556 Type *Int64Ty = Type::getInt64Ty(EI.getContext()); 557 return ExtractElementInst::Create( 558 Src, ConstantInt::get(Int64Ty, SrcIdx, false)); 559 } 560 } else if (auto *CI = dyn_cast<CastInst>(I)) { 561 // Canonicalize extractelement(cast) -> cast(extractelement). 562 // Bitcasts can change the number of vector elements, and they cost 563 // nothing. 564 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 565 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 566 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 567 } 568 } 569 } 570 571 // Run demanded elements after other transforms as this can drop flags on 572 // binops. If there's two paths to the same final result, we prefer the 573 // one which doesn't force us to drop flags. 574 if (IndexC) { 575 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 576 unsigned NumElts = EC.getKnownMinValue(); 577 // This instruction only demands the single element from the input vector. 578 // Skip for scalable type, the number of elements is unknown at 579 // compile-time. 580 if (!EC.isScalable() && NumElts != 1) { 581 // If the input vector has a single use, simplify it based on this use 582 // property. 583 if (SrcVec->hasOneUse()) { 584 APInt UndefElts(NumElts, 0); 585 APInt DemandedElts(NumElts, 0); 586 DemandedElts.setBit(IndexC->getZExtValue()); 587 if (Value *V = 588 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 589 return replaceOperand(EI, 0, V); 590 } else { 591 // If the input vector has multiple uses, simplify it based on a union 592 // of all elements used. 593 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 594 if (!DemandedElts.isAllOnes()) { 595 APInt UndefElts(NumElts, 0); 596 if (Value *V = SimplifyDemandedVectorElts( 597 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 598 true /* AllowMultipleUsers */)) { 599 if (V != SrcVec) { 600 Worklist.addValue(SrcVec); 601 SrcVec->replaceAllUsesWith(V); 602 return &EI; 603 } 604 } 605 } 606 } 607 } 608 } 609 return nullptr; 610 } 611 612 /// If V is a shuffle of values that ONLY returns elements from either LHS or 613 /// RHS, return the shuffle mask and true. Otherwise, return false. 614 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 615 SmallVectorImpl<int> &Mask) { 616 assert(LHS->getType() == RHS->getType() && 617 "Invalid CollectSingleShuffleElements"); 618 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 619 620 if (match(V, m_Undef())) { 621 Mask.assign(NumElts, -1); 622 return true; 623 } 624 625 if (V == LHS) { 626 for (unsigned i = 0; i != NumElts; ++i) 627 Mask.push_back(i); 628 return true; 629 } 630 631 if (V == RHS) { 632 for (unsigned i = 0; i != NumElts; ++i) 633 Mask.push_back(i + NumElts); 634 return true; 635 } 636 637 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 638 // If this is an insert of an extract from some other vector, include it. 639 Value *VecOp = IEI->getOperand(0); 640 Value *ScalarOp = IEI->getOperand(1); 641 Value *IdxOp = IEI->getOperand(2); 642 643 if (!isa<ConstantInt>(IdxOp)) 644 return false; 645 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 646 647 if (isa<PoisonValue>(ScalarOp)) { // inserting poison into vector. 648 // We can handle this if the vector we are inserting into is 649 // transitively ok. 650 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 651 // If so, update the mask to reflect the inserted poison. 652 Mask[InsertedIdx] = -1; 653 return true; 654 } 655 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 656 if (isa<ConstantInt>(EI->getOperand(1))) { 657 unsigned ExtractedIdx = 658 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 659 unsigned NumLHSElts = 660 cast<FixedVectorType>(LHS->getType())->getNumElements(); 661 662 // This must be extracting from either LHS or RHS. 663 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 664 // We can handle this if the vector we are inserting into is 665 // transitively ok. 666 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 667 // If so, update the mask to reflect the inserted value. 668 if (EI->getOperand(0) == LHS) { 669 Mask[InsertedIdx % NumElts] = ExtractedIdx; 670 } else { 671 assert(EI->getOperand(0) == RHS); 672 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 673 } 674 return true; 675 } 676 } 677 } 678 } 679 } 680 681 return false; 682 } 683 684 /// If we have insertion into a vector that is wider than the vector that we 685 /// are extracting from, try to widen the source vector to allow a single 686 /// shufflevector to replace one or more insert/extract pairs. 687 static bool replaceExtractElements(InsertElementInst *InsElt, 688 ExtractElementInst *ExtElt, 689 InstCombinerImpl &IC) { 690 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 691 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 692 unsigned NumInsElts = InsVecType->getNumElements(); 693 unsigned NumExtElts = ExtVecType->getNumElements(); 694 695 // The inserted-to vector must be wider than the extracted-from vector. 696 if (InsVecType->getElementType() != ExtVecType->getElementType() || 697 NumExtElts >= NumInsElts) 698 return false; 699 700 // Create a shuffle mask to widen the extended-from vector using poison 701 // values. The mask selects all of the values of the original vector followed 702 // by as many poison values as needed to create a vector of the same length 703 // as the inserted-to vector. 704 SmallVector<int, 16> ExtendMask; 705 for (unsigned i = 0; i < NumExtElts; ++i) 706 ExtendMask.push_back(i); 707 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 708 ExtendMask.push_back(-1); 709 710 Value *ExtVecOp = ExtElt->getVectorOperand(); 711 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 712 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 713 ? ExtVecOpInst->getParent() 714 : ExtElt->getParent(); 715 716 // TODO: This restriction matches the basic block check below when creating 717 // new extractelement instructions. If that limitation is removed, this one 718 // could also be removed. But for now, we just bail out to ensure that we 719 // will replace the extractelement instruction that is feeding our 720 // insertelement instruction. This allows the insertelement to then be 721 // replaced by a shufflevector. If the insertelement is not replaced, we can 722 // induce infinite looping because there's an optimization for extractelement 723 // that will delete our widening shuffle. This would trigger another attempt 724 // here to create that shuffle, and we spin forever. 725 if (InsertionBlock != InsElt->getParent()) 726 return false; 727 728 // TODO: This restriction matches the check in visitInsertElementInst() and 729 // prevents an infinite loop caused by not turning the extract/insert pair 730 // into a shuffle. We really should not need either check, but we're lacking 731 // folds for shufflevectors because we're afraid to generate shuffle masks 732 // that the backend can't handle. 733 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 734 return false; 735 736 auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); 737 738 // Insert the new shuffle after the vector operand of the extract is defined 739 // (as long as it's not a PHI) or at the start of the basic block of the 740 // extract, so any subsequent extracts in the same basic block can use it. 741 // TODO: Insert before the earliest ExtractElementInst that is replaced. 742 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 743 WideVec->insertAfter(ExtVecOpInst); 744 else 745 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 746 747 // Replace extracts from the original narrow vector with extracts from the new 748 // wide vector. 749 for (User *U : ExtVecOp->users()) { 750 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 751 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 752 continue; 753 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 754 IC.InsertNewInstWith(NewExt, *OldExt); 755 IC.replaceInstUsesWith(*OldExt, NewExt); 756 // Add the old extracts to the worklist for DCE. We can't remove the 757 // extracts directly, because they may still be used by the calling code. 758 IC.addToWorklist(OldExt); 759 } 760 761 return true; 762 } 763 764 /// We are building a shuffle to create V, which is a sequence of insertelement, 765 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 766 /// not rely on the second vector source. Return a std::pair containing the 767 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 768 /// parameter as required. 769 /// 770 /// Note: we intentionally don't try to fold earlier shuffles since they have 771 /// often been chosen carefully to be efficiently implementable on the target. 772 using ShuffleOps = std::pair<Value *, Value *>; 773 774 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 775 Value *PermittedRHS, 776 InstCombinerImpl &IC, bool &Rerun) { 777 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 778 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 779 780 if (match(V, m_Undef())) { 781 Mask.assign(NumElts, -1); 782 return std::make_pair( 783 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 784 } 785 786 if (isa<ConstantAggregateZero>(V)) { 787 Mask.assign(NumElts, 0); 788 return std::make_pair(V, nullptr); 789 } 790 791 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 792 // If this is an insert of an extract from some other vector, include it. 793 Value *VecOp = IEI->getOperand(0); 794 Value *ScalarOp = IEI->getOperand(1); 795 Value *IdxOp = IEI->getOperand(2); 796 797 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 798 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 799 unsigned ExtractedIdx = 800 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 801 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 802 803 // Either the extracted from or inserted into vector must be RHSVec, 804 // otherwise we'd end up with a shuffle of three inputs. 805 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 806 Value *RHS = EI->getOperand(0); 807 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC, Rerun); 808 assert(LR.second == nullptr || LR.second == RHS); 809 810 if (LR.first->getType() != RHS->getType()) { 811 // Although we are giving up for now, see if we can create extracts 812 // that match the inserts for another round of combining. 813 if (replaceExtractElements(IEI, EI, IC)) 814 Rerun = true; 815 816 // We tried our best, but we can't find anything compatible with RHS 817 // further up the chain. Return a trivial shuffle. 818 for (unsigned i = 0; i < NumElts; ++i) 819 Mask[i] = i; 820 return std::make_pair(V, nullptr); 821 } 822 823 unsigned NumLHSElts = 824 cast<FixedVectorType>(RHS->getType())->getNumElements(); 825 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 826 return std::make_pair(LR.first, RHS); 827 } 828 829 if (VecOp == PermittedRHS) { 830 // We've gone as far as we can: anything on the other side of the 831 // extractelement will already have been converted into a shuffle. 832 unsigned NumLHSElts = 833 cast<FixedVectorType>(EI->getOperand(0)->getType()) 834 ->getNumElements(); 835 for (unsigned i = 0; i != NumElts; ++i) 836 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 837 return std::make_pair(EI->getOperand(0), PermittedRHS); 838 } 839 840 // If this insertelement is a chain that comes from exactly these two 841 // vectors, return the vector and the effective shuffle. 842 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 843 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 844 Mask)) 845 return std::make_pair(EI->getOperand(0), PermittedRHS); 846 } 847 } 848 } 849 850 // Otherwise, we can't do anything fancy. Return an identity vector. 851 for (unsigned i = 0; i != NumElts; ++i) 852 Mask.push_back(i); 853 return std::make_pair(V, nullptr); 854 } 855 856 /// Look for chain of insertvalue's that fully define an aggregate, and trace 857 /// back the values inserted, see if they are all were extractvalue'd from 858 /// the same source aggregate from the exact same element indexes. 859 /// If they were, just reuse the source aggregate. 860 /// This potentially deals with PHI indirections. 861 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 862 InsertValueInst &OrigIVI) { 863 Type *AggTy = OrigIVI.getType(); 864 unsigned NumAggElts; 865 switch (AggTy->getTypeID()) { 866 case Type::StructTyID: 867 NumAggElts = AggTy->getStructNumElements(); 868 break; 869 case Type::ArrayTyID: 870 NumAggElts = AggTy->getArrayNumElements(); 871 break; 872 default: 873 llvm_unreachable("Unhandled aggregate type?"); 874 } 875 876 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 877 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 878 // FIXME: any interesting patterns to be caught with larger limit? 879 assert(NumAggElts > 0 && "Aggregate should have elements."); 880 if (NumAggElts > 2) 881 return nullptr; 882 883 static constexpr auto NotFound = std::nullopt; 884 static constexpr auto FoundMismatch = nullptr; 885 886 // Try to find a value of each element of an aggregate. 887 // FIXME: deal with more complex, not one-dimensional, aggregate types 888 SmallVector<std::optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 889 890 // Do we know values for each element of the aggregate? 891 auto KnowAllElts = [&AggElts]() { 892 return !llvm::is_contained(AggElts, NotFound); 893 }; 894 895 int Depth = 0; 896 897 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 898 // every element being overwritten twice, which should never happen. 899 static const int DepthLimit = 2 * NumAggElts; 900 901 // Recurse up the chain of `insertvalue` aggregate operands until either we've 902 // reconstructed full initializer or can't visit any more `insertvalue`'s. 903 for (InsertValueInst *CurrIVI = &OrigIVI; 904 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 905 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 906 ++Depth) { 907 auto *InsertedValue = 908 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 909 if (!InsertedValue) 910 return nullptr; // Inserted value must be produced by an instruction. 911 912 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 913 914 // Don't bother with more than single-level aggregates. 915 if (Indices.size() != 1) 916 return nullptr; // FIXME: deal with more complex aggregates? 917 918 // Now, we may have already previously recorded the value for this element 919 // of an aggregate. If we did, that means the CurrIVI will later be 920 // overwritten with the already-recorded value. But if not, let's record it! 921 std::optional<Instruction *> &Elt = AggElts[Indices.front()]; 922 Elt = Elt.value_or(InsertedValue); 923 924 // FIXME: should we handle chain-terminating undef base operand? 925 } 926 927 // Was that sufficient to deduce the full initializer for the aggregate? 928 if (!KnowAllElts()) 929 return nullptr; // Give up then. 930 931 // We now want to find the source[s] of the aggregate elements we've found. 932 // And with "source" we mean the original aggregate[s] from which 933 // the inserted elements were extracted. This may require PHI translation. 934 935 enum class AggregateDescription { 936 /// When analyzing the value that was inserted into an aggregate, we did 937 /// not manage to find defining `extractvalue` instruction to analyze. 938 NotFound, 939 /// When analyzing the value that was inserted into an aggregate, we did 940 /// manage to find defining `extractvalue` instruction[s], and everything 941 /// matched perfectly - aggregate type, element insertion/extraction index. 942 Found, 943 /// When analyzing the value that was inserted into an aggregate, we did 944 /// manage to find defining `extractvalue` instruction, but there was 945 /// a mismatch: either the source type from which the extraction was didn't 946 /// match the aggregate type into which the insertion was, 947 /// or the extraction/insertion channels mismatched, 948 /// or different elements had different source aggregates. 949 FoundMismatch 950 }; 951 auto Describe = [](std::optional<Value *> SourceAggregate) { 952 if (SourceAggregate == NotFound) 953 return AggregateDescription::NotFound; 954 if (*SourceAggregate == FoundMismatch) 955 return AggregateDescription::FoundMismatch; 956 return AggregateDescription::Found; 957 }; 958 959 // Given the value \p Elt that was being inserted into element \p EltIdx of an 960 // aggregate AggTy, see if \p Elt was originally defined by an 961 // appropriate extractvalue (same element index, same aggregate type). 962 // If found, return the source aggregate from which the extraction was. 963 // If \p PredBB is provided, does PHI translation of an \p Elt first. 964 auto FindSourceAggregate = 965 [&](Instruction *Elt, unsigned EltIdx, std::optional<BasicBlock *> UseBB, 966 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> { 967 // For now(?), only deal with, at most, a single level of PHI indirection. 968 if (UseBB && PredBB) 969 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 970 // FIXME: deal with multiple levels of PHI indirection? 971 972 // Did we find an extraction? 973 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 974 if (!EVI) 975 return NotFound; 976 977 Value *SourceAggregate = EVI->getAggregateOperand(); 978 979 // Is the extraction from the same type into which the insertion was? 980 if (SourceAggregate->getType() != AggTy) 981 return FoundMismatch; 982 // And the element index doesn't change between extraction and insertion? 983 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 984 return FoundMismatch; 985 986 return SourceAggregate; // AggregateDescription::Found 987 }; 988 989 // Given elements AggElts that were constructing an aggregate OrigIVI, 990 // see if we can find appropriate source aggregate for each of the elements, 991 // and see it's the same aggregate for each element. If so, return it. 992 auto FindCommonSourceAggregate = 993 [&](std::optional<BasicBlock *> UseBB, 994 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> { 995 std::optional<Value *> SourceAggregate; 996 997 for (auto I : enumerate(AggElts)) { 998 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 999 "We don't store nullptr in SourceAggregate!"); 1000 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 1001 (I.index() != 0) && 1002 "SourceAggregate should be valid after the first element,"); 1003 1004 // For this element, is there a plausible source aggregate? 1005 // FIXME: we could special-case undef element, IFF we know that in the 1006 // source aggregate said element isn't poison. 1007 std::optional<Value *> SourceAggregateForElement = 1008 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 1009 1010 // Okay, what have we found? Does that correlate with previous findings? 1011 1012 // Regardless of whether or not we have previously found source 1013 // aggregate for previous elements (if any), if we didn't find one for 1014 // this element, passthrough whatever we have just found. 1015 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 1016 return SourceAggregateForElement; 1017 1018 // Okay, we have found source aggregate for this element. 1019 // Let's see what we already know from previous elements, if any. 1020 switch (Describe(SourceAggregate)) { 1021 case AggregateDescription::NotFound: 1022 // This is apparently the first element that we have examined. 1023 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 1024 continue; // Great, now look at next element. 1025 case AggregateDescription::Found: 1026 // We have previously already successfully examined other elements. 1027 // Is this the same source aggregate we've found for other elements? 1028 if (*SourceAggregateForElement != *SourceAggregate) 1029 return FoundMismatch; 1030 continue; // Still the same aggregate, look at next element. 1031 case AggregateDescription::FoundMismatch: 1032 llvm_unreachable("Can't happen. We would have early-exited then."); 1033 }; 1034 } 1035 1036 assert(Describe(SourceAggregate) == AggregateDescription::Found && 1037 "Must be a valid Value"); 1038 return *SourceAggregate; 1039 }; 1040 1041 std::optional<Value *> SourceAggregate; 1042 1043 // Can we find the source aggregate without looking at predecessors? 1044 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/std::nullopt, 1045 /*PredBB=*/std::nullopt); 1046 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 1047 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 1048 return nullptr; // Conflicting source aggregates! 1049 ++NumAggregateReconstructionsSimplified; 1050 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 1051 } 1052 1053 // Okay, apparently we need to look at predecessors. 1054 1055 // We should be smart about picking the "use" basic block, which will be the 1056 // merge point for aggregate, where we'll insert the final PHI that will be 1057 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 1058 // We should look in which blocks each of the AggElts is being defined, 1059 // they all should be defined in the same basic block. 1060 BasicBlock *UseBB = nullptr; 1061 1062 for (const std::optional<Instruction *> &I : AggElts) { 1063 BasicBlock *BB = (*I)->getParent(); 1064 // If it's the first instruction we've encountered, record the basic block. 1065 if (!UseBB) { 1066 UseBB = BB; 1067 continue; 1068 } 1069 // Otherwise, this must be the same basic block we've seen previously. 1070 if (UseBB != BB) 1071 return nullptr; 1072 } 1073 1074 // If *all* of the elements are basic-block-independent, meaning they are 1075 // either function arguments, or constant expressions, then if we didn't 1076 // handle them without predecessor-aware handling, we won't handle them now. 1077 if (!UseBB) 1078 return nullptr; 1079 1080 // If we didn't manage to find source aggregate without looking at 1081 // predecessors, and there are no predecessors to look at, then we're done. 1082 if (pred_empty(UseBB)) 1083 return nullptr; 1084 1085 // Arbitrary predecessor count limit. 1086 static const int PredCountLimit = 64; 1087 1088 // Cache the (non-uniqified!) list of predecessors in a vector, 1089 // checking the limit at the same time for efficiency. 1090 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1091 for (BasicBlock *Pred : predecessors(UseBB)) { 1092 // Don't bother if there are too many predecessors. 1093 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1094 return nullptr; 1095 Preds.emplace_back(Pred); 1096 } 1097 1098 // For each predecessor, what is the source aggregate, 1099 // from which all the elements were originally extracted from? 1100 // Note that we want for the map to have stable iteration order! 1101 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1102 for (BasicBlock *Pred : Preds) { 1103 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1104 SourceAggregates.insert({Pred, nullptr}); 1105 // Did we already evaluate this predecessor? 1106 if (!IV.second) 1107 continue; 1108 1109 // Let's hope that when coming from predecessor Pred, all elements of the 1110 // aggregate produced by OrigIVI must have been originally extracted from 1111 // the same aggregate. Is that so? Can we find said original aggregate? 1112 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1113 if (Describe(SourceAggregate) != AggregateDescription::Found) 1114 return nullptr; // Give up. 1115 IV.first->second = *SourceAggregate; 1116 } 1117 1118 // All good! Now we just need to thread the source aggregates here. 1119 // Note that we have to insert the new PHI here, ourselves, because we can't 1120 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1121 // Note that the same block can be a predecessor more than once, 1122 // and we need to preserve that invariant for the PHI node. 1123 BuilderTy::InsertPointGuard Guard(Builder); 1124 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 1125 auto *PHI = 1126 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1127 for (BasicBlock *Pred : Preds) 1128 PHI->addIncoming(SourceAggregates[Pred], Pred); 1129 1130 ++NumAggregateReconstructionsSimplified; 1131 return replaceInstUsesWith(OrigIVI, PHI); 1132 } 1133 1134 /// Try to find redundant insertvalue instructions, like the following ones: 1135 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1136 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1137 /// Here the second instruction inserts values at the same indices, as the 1138 /// first one, making the first one redundant. 1139 /// It should be transformed to: 1140 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1141 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1142 if (Value *V = simplifyInsertValueInst( 1143 I.getAggregateOperand(), I.getInsertedValueOperand(), I.getIndices(), 1144 SQ.getWithInstruction(&I))) 1145 return replaceInstUsesWith(I, V); 1146 1147 bool IsRedundant = false; 1148 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1149 1150 // If there is a chain of insertvalue instructions (each of them except the 1151 // last one has only one use and it's another insertvalue insn from this 1152 // chain), check if any of the 'children' uses the same indices as the first 1153 // instruction. In this case, the first one is redundant. 1154 Value *V = &I; 1155 unsigned Depth = 0; 1156 while (V->hasOneUse() && Depth < 10) { 1157 User *U = V->user_back(); 1158 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1159 if (!UserInsInst || U->getOperand(0) != V) 1160 break; 1161 if (UserInsInst->getIndices() == FirstIndices) { 1162 IsRedundant = true; 1163 break; 1164 } 1165 V = UserInsInst; 1166 Depth++; 1167 } 1168 1169 if (IsRedundant) 1170 return replaceInstUsesWith(I, I.getOperand(0)); 1171 1172 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1173 return NewI; 1174 1175 return nullptr; 1176 } 1177 1178 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1179 // Can not analyze scalable type, the number of elements is not a compile-time 1180 // constant. 1181 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1182 return false; 1183 1184 int MaskSize = Shuf.getShuffleMask().size(); 1185 int VecSize = 1186 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1187 1188 // A vector select does not change the size of the operands. 1189 if (MaskSize != VecSize) 1190 return false; 1191 1192 // Each mask element must be undefined or choose a vector element from one of 1193 // the source operands without crossing vector lanes. 1194 for (int i = 0; i != MaskSize; ++i) { 1195 int Elt = Shuf.getMaskValue(i); 1196 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1197 return false; 1198 } 1199 1200 return true; 1201 } 1202 1203 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1204 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1205 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1206 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1207 // We are interested in the last insert in a chain. So if this insert has a 1208 // single user and that user is an insert, bail. 1209 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1210 return nullptr; 1211 1212 VectorType *VecTy = InsElt.getType(); 1213 // Can not handle scalable type, the number of elements is not a compile-time 1214 // constant. 1215 if (isa<ScalableVectorType>(VecTy)) 1216 return nullptr; 1217 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1218 1219 // Do not try to do this for a one-element vector, since that's a nop, 1220 // and will cause an inf-loop. 1221 if (NumElements == 1) 1222 return nullptr; 1223 1224 Value *SplatVal = InsElt.getOperand(1); 1225 InsertElementInst *CurrIE = &InsElt; 1226 SmallBitVector ElementPresent(NumElements, false); 1227 InsertElementInst *FirstIE = nullptr; 1228 1229 // Walk the chain backwards, keeping track of which indices we inserted into, 1230 // until we hit something that isn't an insert of the splatted value. 1231 while (CurrIE) { 1232 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1233 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1234 return nullptr; 1235 1236 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1237 // Check none of the intermediate steps have any additional uses, except 1238 // for the root insertelement instruction, which can be re-used, if it 1239 // inserts at position 0. 1240 if (CurrIE != &InsElt && 1241 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1242 return nullptr; 1243 1244 ElementPresent[Idx->getZExtValue()] = true; 1245 FirstIE = CurrIE; 1246 CurrIE = NextIE; 1247 } 1248 1249 // If this is just a single insertelement (not a sequence), we are done. 1250 if (FirstIE == &InsElt) 1251 return nullptr; 1252 1253 // If we are not inserting into a poison vector, make sure we've seen an 1254 // insert into every element. 1255 // TODO: If the base vector is not undef, it might be better to create a splat 1256 // and then a select-shuffle (blend) with the base vector. 1257 if (!match(FirstIE->getOperand(0), m_Poison())) 1258 if (!ElementPresent.all()) 1259 return nullptr; 1260 1261 // Create the insert + shuffle. 1262 Type *Int64Ty = Type::getInt64Ty(InsElt.getContext()); 1263 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1264 Constant *Zero = ConstantInt::get(Int64Ty, 0); 1265 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1266 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); 1267 1268 // Splat from element 0, but replace absent elements with poison in the mask. 1269 SmallVector<int, 16> Mask(NumElements, 0); 1270 for (unsigned i = 0; i != NumElements; ++i) 1271 if (!ElementPresent[i]) 1272 Mask[i] = -1; 1273 1274 return new ShuffleVectorInst(FirstIE, Mask); 1275 } 1276 1277 /// Try to fold an insert element into an existing splat shuffle by changing 1278 /// the shuffle's mask to include the index of this insert element. 1279 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1280 // Check if the vector operand of this insert is a canonical splat shuffle. 1281 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1282 if (!Shuf || !Shuf->isZeroEltSplat()) 1283 return nullptr; 1284 1285 // Bail out early if shuffle is scalable type. The number of elements in 1286 // shuffle mask is unknown at compile-time. 1287 if (isa<ScalableVectorType>(Shuf->getType())) 1288 return nullptr; 1289 1290 // Check for a constant insertion index. 1291 uint64_t IdxC; 1292 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1293 return nullptr; 1294 1295 // Check if the splat shuffle's input is the same as this insert's scalar op. 1296 Value *X = InsElt.getOperand(1); 1297 Value *Op0 = Shuf->getOperand(0); 1298 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1299 return nullptr; 1300 1301 // Replace the shuffle mask element at the index of this insert with a zero. 1302 // For example: 1303 // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1 1304 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef> 1305 unsigned NumMaskElts = 1306 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1307 SmallVector<int, 16> NewMask(NumMaskElts); 1308 for (unsigned i = 0; i != NumMaskElts; ++i) 1309 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1310 1311 return new ShuffleVectorInst(Op0, NewMask); 1312 } 1313 1314 /// Try to fold an extract+insert element into an existing identity shuffle by 1315 /// changing the shuffle's mask to include the index of this insert element. 1316 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1317 // Check if the vector operand of this insert is an identity shuffle. 1318 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1319 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1320 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1321 return nullptr; 1322 1323 // Bail out early if shuffle is scalable type. The number of elements in 1324 // shuffle mask is unknown at compile-time. 1325 if (isa<ScalableVectorType>(Shuf->getType())) 1326 return nullptr; 1327 1328 // Check for a constant insertion index. 1329 uint64_t IdxC; 1330 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1331 return nullptr; 1332 1333 // Check if this insert's scalar op is extracted from the identity shuffle's 1334 // input vector. 1335 Value *Scalar = InsElt.getOperand(1); 1336 Value *X = Shuf->getOperand(0); 1337 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1338 return nullptr; 1339 1340 // Replace the shuffle mask element at the index of this extract+insert with 1341 // that same index value. 1342 // For example: 1343 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1344 unsigned NumMaskElts = 1345 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1346 SmallVector<int, 16> NewMask(NumMaskElts); 1347 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1348 for (unsigned i = 0; i != NumMaskElts; ++i) { 1349 if (i != IdxC) { 1350 // All mask elements besides the inserted element remain the same. 1351 NewMask[i] = OldMask[i]; 1352 } else if (OldMask[i] == (int)IdxC) { 1353 // If the mask element was already set, there's nothing to do 1354 // (demanded elements analysis may unset it later). 1355 return nullptr; 1356 } else { 1357 assert(OldMask[i] == PoisonMaskElem && 1358 "Unexpected shuffle mask element for identity shuffle"); 1359 NewMask[i] = IdxC; 1360 } 1361 } 1362 1363 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1364 } 1365 1366 /// If we have an insertelement instruction feeding into another insertelement 1367 /// and the 2nd is inserting a constant into the vector, canonicalize that 1368 /// constant insertion before the insertion of a variable: 1369 /// 1370 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1371 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1372 /// 1373 /// This has the potential of eliminating the 2nd insertelement instruction 1374 /// via constant folding of the scalar constant into a vector constant. 1375 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1376 InstCombiner::BuilderTy &Builder) { 1377 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1378 if (!InsElt1 || !InsElt1->hasOneUse()) 1379 return nullptr; 1380 1381 Value *X, *Y; 1382 Constant *ScalarC; 1383 ConstantInt *IdxC1, *IdxC2; 1384 if (match(InsElt1->getOperand(0), m_Value(X)) && 1385 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1386 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1387 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1388 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1389 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1390 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1391 } 1392 1393 return nullptr; 1394 } 1395 1396 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1397 /// --> shufflevector X, CVec', Mask' 1398 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1399 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1400 // Bail out if the parent has more than one use. In that case, we'd be 1401 // replacing the insertelt with a shuffle, and that's not a clear win. 1402 if (!Inst || !Inst->hasOneUse()) 1403 return nullptr; 1404 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1405 // The shuffle must have a constant vector operand. The insertelt must have 1406 // a constant scalar being inserted at a constant position in the vector. 1407 Constant *ShufConstVec, *InsEltScalar; 1408 uint64_t InsEltIndex; 1409 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1410 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1411 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1412 return nullptr; 1413 1414 // Adding an element to an arbitrary shuffle could be expensive, but a 1415 // shuffle that selects elements from vectors without crossing lanes is 1416 // assumed cheap. 1417 // If we're just adding a constant into that shuffle, it will still be 1418 // cheap. 1419 if (!isShuffleEquivalentToSelect(*Shuf)) 1420 return nullptr; 1421 1422 // From the above 'select' check, we know that the mask has the same number 1423 // of elements as the vector input operands. We also know that each constant 1424 // input element is used in its lane and can not be used more than once by 1425 // the shuffle. Therefore, replace the constant in the shuffle's constant 1426 // vector with the insertelt constant. Replace the constant in the shuffle's 1427 // mask vector with the insertelt index plus the length of the vector 1428 // (because the constant vector operand of a shuffle is always the 2nd 1429 // operand). 1430 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1431 unsigned NumElts = Mask.size(); 1432 SmallVector<Constant *, 16> NewShufElts(NumElts); 1433 SmallVector<int, 16> NewMaskElts(NumElts); 1434 for (unsigned I = 0; I != NumElts; ++I) { 1435 if (I == InsEltIndex) { 1436 NewShufElts[I] = InsEltScalar; 1437 NewMaskElts[I] = InsEltIndex + NumElts; 1438 } else { 1439 // Copy over the existing values. 1440 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1441 NewMaskElts[I] = Mask[I]; 1442 } 1443 1444 // Bail if we failed to find an element. 1445 if (!NewShufElts[I]) 1446 return nullptr; 1447 } 1448 1449 // Create new operands for a shuffle that includes the constant of the 1450 // original insertelt. The old shuffle will be dead now. 1451 return new ShuffleVectorInst(Shuf->getOperand(0), 1452 ConstantVector::get(NewShufElts), NewMaskElts); 1453 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1454 // Transform sequences of insertelements ops with constant data/indexes into 1455 // a single shuffle op. 1456 // Can not handle scalable type, the number of elements needed to create 1457 // shuffle mask is not a compile-time constant. 1458 if (isa<ScalableVectorType>(InsElt.getType())) 1459 return nullptr; 1460 unsigned NumElts = 1461 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1462 1463 uint64_t InsertIdx[2]; 1464 Constant *Val[2]; 1465 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1466 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1467 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1468 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1469 return nullptr; 1470 SmallVector<Constant *, 16> Values(NumElts); 1471 SmallVector<int, 16> Mask(NumElts); 1472 auto ValI = std::begin(Val); 1473 // Generate new constant vector and mask. 1474 // We have 2 values/masks from the insertelements instructions. Insert them 1475 // into new value/mask vectors. 1476 for (uint64_t I : InsertIdx) { 1477 if (!Values[I]) { 1478 Values[I] = *ValI; 1479 Mask[I] = NumElts + I; 1480 } 1481 ++ValI; 1482 } 1483 // Remaining values are filled with 'poison' values. 1484 for (unsigned I = 0; I < NumElts; ++I) { 1485 if (!Values[I]) { 1486 Values[I] = PoisonValue::get(InsElt.getType()->getElementType()); 1487 Mask[I] = I; 1488 } 1489 } 1490 // Create new operands for a shuffle that includes the constant of the 1491 // original insertelt. 1492 return new ShuffleVectorInst(IEI->getOperand(0), 1493 ConstantVector::get(Values), Mask); 1494 } 1495 return nullptr; 1496 } 1497 1498 /// If both the base vector and the inserted element are extended from the same 1499 /// type, do the insert element in the narrow source type followed by extend. 1500 /// TODO: This can be extended to include other cast opcodes, but particularly 1501 /// if we create a wider insertelement, make sure codegen is not harmed. 1502 static Instruction *narrowInsElt(InsertElementInst &InsElt, 1503 InstCombiner::BuilderTy &Builder) { 1504 // We are creating a vector extend. If the original vector extend has another 1505 // use, that would mean we end up with 2 vector extends, so avoid that. 1506 // TODO: We could ease the use-clause to "if at least one op has one use" 1507 // (assuming that the source types match - see next TODO comment). 1508 Value *Vec = InsElt.getOperand(0); 1509 if (!Vec->hasOneUse()) 1510 return nullptr; 1511 1512 Value *Scalar = InsElt.getOperand(1); 1513 Value *X, *Y; 1514 CastInst::CastOps CastOpcode; 1515 if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) 1516 CastOpcode = Instruction::FPExt; 1517 else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) 1518 CastOpcode = Instruction::SExt; 1519 else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) 1520 CastOpcode = Instruction::ZExt; 1521 else 1522 return nullptr; 1523 1524 // TODO: We can allow mismatched types by creating an intermediate cast. 1525 if (X->getType()->getScalarType() != Y->getType()) 1526 return nullptr; 1527 1528 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) 1529 Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); 1530 return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); 1531 } 1532 1533 /// If we are inserting 2 halves of a value into adjacent elements of a vector, 1534 /// try to convert to a single insert with appropriate bitcasts. 1535 static Instruction *foldTruncInsEltPair(InsertElementInst &InsElt, 1536 bool IsBigEndian, 1537 InstCombiner::BuilderTy &Builder) { 1538 Value *VecOp = InsElt.getOperand(0); 1539 Value *ScalarOp = InsElt.getOperand(1); 1540 Value *IndexOp = InsElt.getOperand(2); 1541 1542 // Pattern depends on endian because we expect lower index is inserted first. 1543 // Big endian: 1544 // inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1 1545 // Little endian: 1546 // inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1 1547 // Note: It is not safe to do this transform with an arbitrary base vector 1548 // because the bitcast of that vector to fewer/larger elements could 1549 // allow poison to spill into an element that was not poison before. 1550 // TODO: Detect smaller fractions of the scalar. 1551 // TODO: One-use checks are conservative. 1552 auto *VTy = dyn_cast<FixedVectorType>(InsElt.getType()); 1553 Value *Scalar0, *BaseVec; 1554 uint64_t Index0, Index1; 1555 if (!VTy || (VTy->getNumElements() & 1) || 1556 !match(IndexOp, m_ConstantInt(Index1)) || 1557 !match(VecOp, m_InsertElt(m_Value(BaseVec), m_Value(Scalar0), 1558 m_ConstantInt(Index0))) || 1559 !match(BaseVec, m_Undef())) 1560 return nullptr; 1561 1562 // The first insert must be to the index one less than this one, and 1563 // the first insert must be to an even index. 1564 if (Index0 + 1 != Index1 || Index0 & 1) 1565 return nullptr; 1566 1567 // For big endian, the high half of the value should be inserted first. 1568 // For little endian, the low half of the value should be inserted first. 1569 Value *X; 1570 uint64_t ShAmt; 1571 if (IsBigEndian) { 1572 if (!match(ScalarOp, m_Trunc(m_Value(X))) || 1573 !match(Scalar0, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt))))) 1574 return nullptr; 1575 } else { 1576 if (!match(Scalar0, m_Trunc(m_Value(X))) || 1577 !match(ScalarOp, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt))))) 1578 return nullptr; 1579 } 1580 1581 Type *SrcTy = X->getType(); 1582 unsigned ScalarWidth = SrcTy->getScalarSizeInBits(); 1583 unsigned VecEltWidth = VTy->getScalarSizeInBits(); 1584 if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth) 1585 return nullptr; 1586 1587 // Bitcast the base vector to a vector type with the source element type. 1588 Type *CastTy = FixedVectorType::get(SrcTy, VTy->getNumElements() / 2); 1589 Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy); 1590 1591 // Scale the insert index for a vector with half as many elements. 1592 // bitcast (inselt (bitcast BaseVec), X, NewIndex) 1593 uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2; 1594 Value *NewInsert = Builder.CreateInsertElement(CastBaseVec, X, NewIndex); 1595 return new BitCastInst(NewInsert, VTy); 1596 } 1597 1598 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1599 Value *VecOp = IE.getOperand(0); 1600 Value *ScalarOp = IE.getOperand(1); 1601 Value *IdxOp = IE.getOperand(2); 1602 1603 if (auto *V = simplifyInsertElementInst( 1604 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1605 return replaceInstUsesWith(IE, V); 1606 1607 // Canonicalize type of constant indices to i64 to simplify CSE 1608 if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) { 1609 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 1610 return replaceOperand(IE, 2, NewIdx); 1611 1612 Value *BaseVec, *OtherScalar; 1613 uint64_t OtherIndexVal; 1614 if (match(VecOp, m_OneUse(m_InsertElt(m_Value(BaseVec), 1615 m_Value(OtherScalar), 1616 m_ConstantInt(OtherIndexVal)))) && 1617 !isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) { 1618 Value *NewIns = Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp); 1619 return InsertElementInst::Create(NewIns, OtherScalar, 1620 Builder.getInt64(OtherIndexVal)); 1621 } 1622 } 1623 1624 // If the scalar is bitcast and inserted into undef, do the insert in the 1625 // source type followed by bitcast. 1626 // TODO: Generalize for insert into any constant, not just undef? 1627 Value *ScalarSrc; 1628 if (match(VecOp, m_Undef()) && 1629 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1630 (ScalarSrc->getType()->isIntegerTy() || 1631 ScalarSrc->getType()->isFloatingPointTy())) { 1632 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1633 // bitcast (inselt undef, ScalarSrc, IdxOp) 1634 Type *ScalarTy = ScalarSrc->getType(); 1635 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1636 UndefValue *NewUndef = UndefValue::get(VecTy); 1637 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1638 return new BitCastInst(NewInsElt, IE.getType()); 1639 } 1640 1641 // If the vector and scalar are both bitcast from the same element type, do 1642 // the insert in that source type followed by bitcast. 1643 Value *VecSrc; 1644 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1645 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1646 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1647 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1648 cast<VectorType>(VecSrc->getType())->getElementType() == 1649 ScalarSrc->getType()) { 1650 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1651 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1652 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1653 return new BitCastInst(NewInsElt, IE.getType()); 1654 } 1655 1656 // If the inserted element was extracted from some other fixed-length vector 1657 // and both indexes are valid constants, try to turn this into a shuffle. 1658 // Can not handle scalable vector type, the number of elements needed to 1659 // create shuffle mask is not a compile-time constant. 1660 uint64_t InsertedIdx, ExtractedIdx; 1661 Value *ExtVecOp; 1662 if (isa<FixedVectorType>(IE.getType()) && 1663 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1664 match(ScalarOp, 1665 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1666 isa<FixedVectorType>(ExtVecOp->getType()) && 1667 ExtractedIdx < 1668 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1669 // TODO: Looking at the user(s) to determine if this insert is a 1670 // fold-to-shuffle opportunity does not match the usual instcombine 1671 // constraints. We should decide if the transform is worthy based only 1672 // on this instruction and its operands, but that may not work currently. 1673 // 1674 // Here, we are trying to avoid creating shuffles before reaching 1675 // the end of a chain of extract-insert pairs. This is complicated because 1676 // we do not generally form arbitrary shuffle masks in instcombine 1677 // (because those may codegen poorly), but collectShuffleElements() does 1678 // exactly that. 1679 // 1680 // The rules for determining what is an acceptable target-independent 1681 // shuffle mask are fuzzy because they evolve based on the backend's 1682 // capabilities and real-world impact. 1683 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1684 if (!Insert.hasOneUse()) 1685 return true; 1686 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1687 if (!InsertUser) 1688 return true; 1689 return false; 1690 }; 1691 1692 // Try to form a shuffle from a chain of extract-insert ops. 1693 if (isShuffleRootCandidate(IE)) { 1694 bool Rerun = true; 1695 while (Rerun) { 1696 Rerun = false; 1697 1698 SmallVector<int, 16> Mask; 1699 ShuffleOps LR = 1700 collectShuffleElements(&IE, Mask, nullptr, *this, Rerun); 1701 1702 // The proposed shuffle may be trivial, in which case we shouldn't 1703 // perform the combine. 1704 if (LR.first != &IE && LR.second != &IE) { 1705 // We now have a shuffle of LHS, RHS, Mask. 1706 if (LR.second == nullptr) 1707 LR.second = PoisonValue::get(LR.first->getType()); 1708 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1709 } 1710 } 1711 } 1712 } 1713 1714 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1715 unsigned VWidth = VecTy->getNumElements(); 1716 APInt UndefElts(VWidth, 0); 1717 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1718 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1719 if (V != &IE) 1720 return replaceInstUsesWith(IE, V); 1721 return &IE; 1722 } 1723 } 1724 1725 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1726 return Shuf; 1727 1728 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1729 return NewInsElt; 1730 1731 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1732 return Broadcast; 1733 1734 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1735 return Splat; 1736 1737 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1738 return IdentityShuf; 1739 1740 if (Instruction *Ext = narrowInsElt(IE, Builder)) 1741 return Ext; 1742 1743 if (Instruction *Ext = foldTruncInsEltPair(IE, DL.isBigEndian(), Builder)) 1744 return Ext; 1745 1746 return nullptr; 1747 } 1748 1749 /// Return true if we can evaluate the specified expression tree if the vector 1750 /// elements were shuffled in a different order. 1751 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1752 unsigned Depth = 5) { 1753 // We can always reorder the elements of a constant. 1754 if (isa<Constant>(V)) 1755 return true; 1756 1757 // We won't reorder vector arguments. No IPO here. 1758 Instruction *I = dyn_cast<Instruction>(V); 1759 if (!I) return false; 1760 1761 // Two users may expect different orders of the elements. Don't try it. 1762 if (!I->hasOneUse()) 1763 return false; 1764 1765 if (Depth == 0) return false; 1766 1767 switch (I->getOpcode()) { 1768 case Instruction::UDiv: 1769 case Instruction::SDiv: 1770 case Instruction::URem: 1771 case Instruction::SRem: 1772 // Propagating an undefined shuffle mask element to integer div/rem is not 1773 // allowed because those opcodes can create immediate undefined behavior 1774 // from an undefined element in an operand. 1775 if (llvm::is_contained(Mask, -1)) 1776 return false; 1777 [[fallthrough]]; 1778 case Instruction::Add: 1779 case Instruction::FAdd: 1780 case Instruction::Sub: 1781 case Instruction::FSub: 1782 case Instruction::Mul: 1783 case Instruction::FMul: 1784 case Instruction::FDiv: 1785 case Instruction::FRem: 1786 case Instruction::Shl: 1787 case Instruction::LShr: 1788 case Instruction::AShr: 1789 case Instruction::And: 1790 case Instruction::Or: 1791 case Instruction::Xor: 1792 case Instruction::ICmp: 1793 case Instruction::FCmp: 1794 case Instruction::Trunc: 1795 case Instruction::ZExt: 1796 case Instruction::SExt: 1797 case Instruction::FPToUI: 1798 case Instruction::FPToSI: 1799 case Instruction::UIToFP: 1800 case Instruction::SIToFP: 1801 case Instruction::FPTrunc: 1802 case Instruction::FPExt: 1803 case Instruction::GetElementPtr: { 1804 // Bail out if we would create longer vector ops. We could allow creating 1805 // longer vector ops, but that may result in more expensive codegen. 1806 Type *ITy = I->getType(); 1807 if (ITy->isVectorTy() && 1808 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1809 return false; 1810 for (Value *Operand : I->operands()) { 1811 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1812 return false; 1813 } 1814 return true; 1815 } 1816 case Instruction::InsertElement: { 1817 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1818 if (!CI) return false; 1819 int ElementNumber = CI->getLimitedValue(); 1820 1821 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1822 // can't put an element into multiple indices. 1823 bool SeenOnce = false; 1824 for (int I : Mask) { 1825 if (I == ElementNumber) { 1826 if (SeenOnce) 1827 return false; 1828 SeenOnce = true; 1829 } 1830 } 1831 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1832 } 1833 } 1834 return false; 1835 } 1836 1837 /// Rebuild a new instruction just like 'I' but with the new operands given. 1838 /// In the event of type mismatch, the type of the operands is correct. 1839 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps, 1840 IRBuilderBase &Builder) { 1841 Builder.SetInsertPoint(I); 1842 switch (I->getOpcode()) { 1843 case Instruction::Add: 1844 case Instruction::FAdd: 1845 case Instruction::Sub: 1846 case Instruction::FSub: 1847 case Instruction::Mul: 1848 case Instruction::FMul: 1849 case Instruction::UDiv: 1850 case Instruction::SDiv: 1851 case Instruction::FDiv: 1852 case Instruction::URem: 1853 case Instruction::SRem: 1854 case Instruction::FRem: 1855 case Instruction::Shl: 1856 case Instruction::LShr: 1857 case Instruction::AShr: 1858 case Instruction::And: 1859 case Instruction::Or: 1860 case Instruction::Xor: { 1861 BinaryOperator *BO = cast<BinaryOperator>(I); 1862 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1863 Value *New = Builder.CreateBinOp(cast<BinaryOperator>(I)->getOpcode(), 1864 NewOps[0], NewOps[1]); 1865 if (auto *NewI = dyn_cast<Instruction>(New)) { 1866 if (isa<OverflowingBinaryOperator>(BO)) { 1867 NewI->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1868 NewI->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1869 } 1870 if (isa<PossiblyExactOperator>(BO)) { 1871 NewI->setIsExact(BO->isExact()); 1872 } 1873 if (isa<FPMathOperator>(BO)) 1874 NewI->copyFastMathFlags(I); 1875 } 1876 return New; 1877 } 1878 case Instruction::ICmp: 1879 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1880 return Builder.CreateICmp(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 1881 NewOps[1]); 1882 case Instruction::FCmp: 1883 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1884 return Builder.CreateFCmp(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 1885 NewOps[1]); 1886 case Instruction::Trunc: 1887 case Instruction::ZExt: 1888 case Instruction::SExt: 1889 case Instruction::FPToUI: 1890 case Instruction::FPToSI: 1891 case Instruction::UIToFP: 1892 case Instruction::SIToFP: 1893 case Instruction::FPTrunc: 1894 case Instruction::FPExt: { 1895 // It's possible that the mask has a different number of elements from 1896 // the original cast. We recompute the destination type to match the mask. 1897 Type *DestTy = VectorType::get( 1898 I->getType()->getScalarType(), 1899 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1900 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1901 return Builder.CreateCast(cast<CastInst>(I)->getOpcode(), NewOps[0], 1902 DestTy); 1903 } 1904 case Instruction::GetElementPtr: { 1905 Value *Ptr = NewOps[0]; 1906 ArrayRef<Value*> Idx = NewOps.slice(1); 1907 return Builder.CreateGEP(cast<GEPOperator>(I)->getSourceElementType(), 1908 Ptr, Idx, "", 1909 cast<GEPOperator>(I)->isInBounds()); 1910 } 1911 } 1912 llvm_unreachable("failed to rebuild vector instructions"); 1913 } 1914 1915 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask, 1916 IRBuilderBase &Builder) { 1917 // Mask.size() does not need to be equal to the number of vector elements. 1918 1919 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1920 Type *EltTy = V->getType()->getScalarType(); 1921 if (match(V, m_Undef())) 1922 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1923 1924 if (isa<ConstantAggregateZero>(V)) 1925 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1926 1927 if (Constant *C = dyn_cast<Constant>(V)) 1928 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 1929 Mask); 1930 1931 Instruction *I = cast<Instruction>(V); 1932 switch (I->getOpcode()) { 1933 case Instruction::Add: 1934 case Instruction::FAdd: 1935 case Instruction::Sub: 1936 case Instruction::FSub: 1937 case Instruction::Mul: 1938 case Instruction::FMul: 1939 case Instruction::UDiv: 1940 case Instruction::SDiv: 1941 case Instruction::FDiv: 1942 case Instruction::URem: 1943 case Instruction::SRem: 1944 case Instruction::FRem: 1945 case Instruction::Shl: 1946 case Instruction::LShr: 1947 case Instruction::AShr: 1948 case Instruction::And: 1949 case Instruction::Or: 1950 case Instruction::Xor: 1951 case Instruction::ICmp: 1952 case Instruction::FCmp: 1953 case Instruction::Trunc: 1954 case Instruction::ZExt: 1955 case Instruction::SExt: 1956 case Instruction::FPToUI: 1957 case Instruction::FPToSI: 1958 case Instruction::UIToFP: 1959 case Instruction::SIToFP: 1960 case Instruction::FPTrunc: 1961 case Instruction::FPExt: 1962 case Instruction::Select: 1963 case Instruction::GetElementPtr: { 1964 SmallVector<Value*, 8> NewOps; 1965 bool NeedsRebuild = 1966 (Mask.size() != 1967 cast<FixedVectorType>(I->getType())->getNumElements()); 1968 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1969 Value *V; 1970 // Recursively call evaluateInDifferentElementOrder on vector arguments 1971 // as well. E.g. GetElementPtr may have scalar operands even if the 1972 // return value is a vector, so we need to examine the operand type. 1973 if (I->getOperand(i)->getType()->isVectorTy()) 1974 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask, Builder); 1975 else 1976 V = I->getOperand(i); 1977 NewOps.push_back(V); 1978 NeedsRebuild |= (V != I->getOperand(i)); 1979 } 1980 if (NeedsRebuild) 1981 return buildNew(I, NewOps, Builder); 1982 return I; 1983 } 1984 case Instruction::InsertElement: { 1985 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1986 1987 // The insertelement was inserting at Element. Figure out which element 1988 // that becomes after shuffling. The answer is guaranteed to be unique 1989 // by CanEvaluateShuffled. 1990 bool Found = false; 1991 int Index = 0; 1992 for (int e = Mask.size(); Index != e; ++Index) { 1993 if (Mask[Index] == Element) { 1994 Found = true; 1995 break; 1996 } 1997 } 1998 1999 // If element is not in Mask, no need to handle the operand 1 (element to 2000 // be inserted). Just evaluate values in operand 0 according to Mask. 2001 if (!Found) 2002 return evaluateInDifferentElementOrder(I->getOperand(0), Mask, Builder); 2003 2004 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask, 2005 Builder); 2006 Builder.SetInsertPoint(I); 2007 return Builder.CreateInsertElement(V, I->getOperand(1), Index); 2008 } 2009 } 2010 llvm_unreachable("failed to reorder elements of vector instruction!"); 2011 } 2012 2013 // Returns true if the shuffle is extracting a contiguous range of values from 2014 // LHS, for example: 2015 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2016 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 2017 // Shuffles to: |EE|FF|GG|HH| 2018 // +--+--+--+--+ 2019 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 2020 ArrayRef<int> Mask) { 2021 unsigned LHSElems = 2022 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 2023 unsigned MaskElems = Mask.size(); 2024 unsigned BegIdx = Mask.front(); 2025 unsigned EndIdx = Mask.back(); 2026 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 2027 return false; 2028 for (unsigned I = 0; I != MaskElems; ++I) 2029 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 2030 return false; 2031 return true; 2032 } 2033 2034 /// These are the ingredients in an alternate form binary operator as described 2035 /// below. 2036 struct BinopElts { 2037 BinaryOperator::BinaryOps Opcode; 2038 Value *Op0; 2039 Value *Op1; 2040 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 2041 Value *V0 = nullptr, Value *V1 = nullptr) : 2042 Opcode(Opc), Op0(V0), Op1(V1) {} 2043 operator bool() const { return Opcode != 0; } 2044 }; 2045 2046 /// Binops may be transformed into binops with different opcodes and operands. 2047 /// Reverse the usual canonicalization to enable folds with the non-canonical 2048 /// form of the binop. If a transform is possible, return the elements of the 2049 /// new binop. If not, return invalid elements. 2050 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 2051 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 2052 Type *Ty = BO->getType(); 2053 switch (BO->getOpcode()) { 2054 case Instruction::Shl: { 2055 // shl X, C --> mul X, (1 << C) 2056 Constant *C; 2057 if (match(BO1, m_Constant(C))) { 2058 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 2059 return {Instruction::Mul, BO0, ShlOne}; 2060 } 2061 break; 2062 } 2063 case Instruction::Or: { 2064 // or X, C --> add X, C (when X and C have no common bits set) 2065 const APInt *C; 2066 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 2067 return {Instruction::Add, BO0, BO1}; 2068 break; 2069 } 2070 case Instruction::Sub: 2071 // sub 0, X --> mul X, -1 2072 if (match(BO0, m_ZeroInt())) 2073 return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)}; 2074 break; 2075 default: 2076 break; 2077 } 2078 return {}; 2079 } 2080 2081 /// A select shuffle of a select shuffle with a shared operand can be reduced 2082 /// to a single select shuffle. This is an obvious improvement in IR, and the 2083 /// backend is expected to lower select shuffles efficiently. 2084 static Instruction *foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf) { 2085 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 2086 2087 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2088 SmallVector<int, 16> Mask; 2089 Shuf.getShuffleMask(Mask); 2090 unsigned NumElts = Mask.size(); 2091 2092 // Canonicalize a select shuffle with common operand as Op1. 2093 auto *ShufOp = dyn_cast<ShuffleVectorInst>(Op0); 2094 if (ShufOp && ShufOp->isSelect() && 2095 (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) { 2096 std::swap(Op0, Op1); 2097 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2098 } 2099 2100 ShufOp = dyn_cast<ShuffleVectorInst>(Op1); 2101 if (!ShufOp || !ShufOp->isSelect() || 2102 (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0)) 2103 return nullptr; 2104 2105 Value *X = ShufOp->getOperand(0), *Y = ShufOp->getOperand(1); 2106 SmallVector<int, 16> Mask1; 2107 ShufOp->getShuffleMask(Mask1); 2108 assert(Mask1.size() == NumElts && "Vector size changed with select shuffle"); 2109 2110 // Canonicalize common operand (Op0) as X (first operand of first shuffle). 2111 if (Y == Op0) { 2112 std::swap(X, Y); 2113 ShuffleVectorInst::commuteShuffleMask(Mask1, NumElts); 2114 } 2115 2116 // If the mask chooses from X (operand 0), it stays the same. 2117 // If the mask chooses from the earlier shuffle, the other mask value is 2118 // transferred to the combined select shuffle: 2119 // shuf X, (shuf X, Y, M1), M --> shuf X, Y, M' 2120 SmallVector<int, 16> NewMask(NumElts); 2121 for (unsigned i = 0; i != NumElts; ++i) 2122 NewMask[i] = Mask[i] < (signed)NumElts ? Mask[i] : Mask1[i]; 2123 2124 // A select mask with undef elements might look like an identity mask. 2125 assert((ShuffleVectorInst::isSelectMask(NewMask) || 2126 ShuffleVectorInst::isIdentityMask(NewMask)) && 2127 "Unexpected shuffle mask"); 2128 return new ShuffleVectorInst(X, Y, NewMask); 2129 } 2130 2131 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 2132 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 2133 2134 // Are we shuffling together some value and that same value after it has been 2135 // modified by a binop with a constant? 2136 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2137 Constant *C; 2138 bool Op0IsBinop; 2139 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 2140 Op0IsBinop = true; 2141 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 2142 Op0IsBinop = false; 2143 else 2144 return nullptr; 2145 2146 // The identity constant for a binop leaves a variable operand unchanged. For 2147 // a vector, this is a splat of something like 0, -1, or 1. 2148 // If there's no identity constant for this binop, we're done. 2149 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 2150 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 2151 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 2152 if (!IdC) 2153 return nullptr; 2154 2155 // Shuffle identity constants into the lanes that return the original value. 2156 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 2157 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 2158 // The existing binop constant vector remains in the same operand position. 2159 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2160 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 2161 ConstantExpr::getShuffleVector(IdC, C, Mask); 2162 2163 bool MightCreatePoisonOrUB = 2164 is_contained(Mask, PoisonMaskElem) && 2165 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 2166 if (MightCreatePoisonOrUB) 2167 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 2168 2169 // shuf (bop X, C), X, M --> bop X, C' 2170 // shuf X, (bop X, C), M --> bop X, C' 2171 Value *X = Op0IsBinop ? Op1 : Op0; 2172 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 2173 NewBO->copyIRFlags(BO); 2174 2175 // An undef shuffle mask element may propagate as an undef constant element in 2176 // the new binop. That would produce poison where the original code might not. 2177 // If we already made a safe constant, then there's no danger. 2178 if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB) 2179 NewBO->dropPoisonGeneratingFlags(); 2180 return NewBO; 2181 } 2182 2183 /// If we have an insert of a scalar to a non-zero element of an undefined 2184 /// vector and then shuffle that value, that's the same as inserting to the zero 2185 /// element and shuffling. Splatting from the zero element is recognized as the 2186 /// canonical form of splat. 2187 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 2188 InstCombiner::BuilderTy &Builder) { 2189 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2190 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2191 Value *X; 2192 uint64_t IndexC; 2193 2194 // Match a shuffle that is a splat to a non-zero element. 2195 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 2196 m_ConstantInt(IndexC)))) || 2197 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 2198 return nullptr; 2199 2200 // Insert into element 0 of an undef vector. 2201 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 2202 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, (uint64_t)0); 2203 2204 // Splat from element 0. Any mask element that is undefined remains undefined. 2205 // For example: 2206 // shuf (inselt undef, X, 2), _, <2,2,undef> 2207 // --> shuf (inselt undef, X, 0), poison, <0,0,undef> 2208 unsigned NumMaskElts = 2209 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2210 SmallVector<int, 16> NewMask(NumMaskElts, 0); 2211 for (unsigned i = 0; i != NumMaskElts; ++i) 2212 if (Mask[i] == PoisonMaskElem) 2213 NewMask[i] = Mask[i]; 2214 2215 return new ShuffleVectorInst(NewIns, NewMask); 2216 } 2217 2218 /// Try to fold shuffles that are the equivalent of a vector select. 2219 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) { 2220 if (!Shuf.isSelect()) 2221 return nullptr; 2222 2223 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 2224 // Commuting undef to operand 0 conflicts with another canonicalization. 2225 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2226 if (!match(Shuf.getOperand(1), m_Undef()) && 2227 Shuf.getMaskValue(0) >= (int)NumElts) { 2228 // TODO: Can we assert that both operands of a shuffle-select are not undef 2229 // (otherwise, it would have been folded by instsimplify? 2230 Shuf.commute(); 2231 return &Shuf; 2232 } 2233 2234 if (Instruction *I = foldSelectShuffleOfSelectShuffle(Shuf)) 2235 return I; 2236 2237 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 2238 return I; 2239 2240 BinaryOperator *B0, *B1; 2241 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 2242 !match(Shuf.getOperand(1), m_BinOp(B1))) 2243 return nullptr; 2244 2245 // If one operand is "0 - X", allow that to be viewed as "X * -1" 2246 // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired 2247 // with a multiply, we will exit because C0/C1 will not be set. 2248 Value *X, *Y; 2249 Constant *C0 = nullptr, *C1 = nullptr; 2250 bool ConstantsAreOp1; 2251 if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 2252 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 2253 ConstantsAreOp1 = false; 2254 else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)), 2255 m_Neg(m_Value(X)))) && 2256 match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)), 2257 m_Neg(m_Value(Y))))) 2258 ConstantsAreOp1 = true; 2259 else 2260 return nullptr; 2261 2262 // We need matching binops to fold the lanes together. 2263 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 2264 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 2265 bool DropNSW = false; 2266 if (ConstantsAreOp1 && Opc0 != Opc1) { 2267 // TODO: We drop "nsw" if shift is converted into multiply because it may 2268 // not be correct when the shift amount is BitWidth - 1. We could examine 2269 // each vector element to determine if it is safe to keep that flag. 2270 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 2271 DropNSW = true; 2272 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 2273 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 2274 Opc0 = AltB0.Opcode; 2275 C0 = cast<Constant>(AltB0.Op1); 2276 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 2277 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 2278 Opc1 = AltB1.Opcode; 2279 C1 = cast<Constant>(AltB1.Op1); 2280 } 2281 } 2282 2283 if (Opc0 != Opc1 || !C0 || !C1) 2284 return nullptr; 2285 2286 // The opcodes must be the same. Use a new name to make that clear. 2287 BinaryOperator::BinaryOps BOpc = Opc0; 2288 2289 // Select the constant elements needed for the single binop. 2290 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2291 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2292 2293 // We are moving a binop after a shuffle. When a shuffle has an undefined 2294 // mask element, the result is undefined, but it is not poison or undefined 2295 // behavior. That is not necessarily true for div/rem/shift. 2296 bool MightCreatePoisonOrUB = 2297 is_contained(Mask, PoisonMaskElem) && 2298 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2299 if (MightCreatePoisonOrUB) 2300 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2301 ConstantsAreOp1); 2302 2303 Value *V; 2304 if (X == Y) { 2305 // Remove a binop and the shuffle by rearranging the constant: 2306 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2307 // shuffle (op C0, V), (op C1, V), M --> op C', V 2308 V = X; 2309 } else { 2310 // If there are 2 different variable operands, we must create a new shuffle 2311 // (select) first, so check uses to ensure that we don't end up with more 2312 // instructions than we started with. 2313 if (!B0->hasOneUse() && !B1->hasOneUse()) 2314 return nullptr; 2315 2316 // If we use the original shuffle mask and op1 is *variable*, we would be 2317 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2318 // poison. We do not have to guard against UB when *constants* are op1 2319 // because safe constants guarantee that we do not overflow sdiv/srem (and 2320 // there's no danger for other opcodes). 2321 // TODO: To allow this case, create a new shuffle mask with no undefs. 2322 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2323 return nullptr; 2324 2325 // Note: In general, we do not create new shuffles in InstCombine because we 2326 // do not know if a target can lower an arbitrary shuffle optimally. In this 2327 // case, the shuffle uses the existing mask, so there is no additional risk. 2328 2329 // Select the variable vectors first, then perform the binop: 2330 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2331 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2332 V = Builder.CreateShuffleVector(X, Y, Mask); 2333 } 2334 2335 Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) : 2336 Builder.CreateBinOp(BOpc, NewC, V); 2337 2338 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2339 // 1. If we changed an opcode, poison conditions might have changed. 2340 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2341 // where the original code did not. But if we already made a safe constant, 2342 // then there's no danger. 2343 if (auto *NewI = dyn_cast<Instruction>(NewBO)) { 2344 NewI->copyIRFlags(B0); 2345 NewI->andIRFlags(B1); 2346 if (DropNSW) 2347 NewI->setHasNoSignedWrap(false); 2348 if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB) 2349 NewI->dropPoisonGeneratingFlags(); 2350 } 2351 return replaceInstUsesWith(Shuf, NewBO); 2352 } 2353 2354 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2355 /// Example (little endian): 2356 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2357 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2358 bool IsBigEndian) { 2359 // This must be a bitcasted shuffle of 1 vector integer operand. 2360 Type *DestType = Shuf.getType(); 2361 Value *X; 2362 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2363 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2364 return nullptr; 2365 2366 // The source type must have the same number of elements as the shuffle, 2367 // and the source element type must be larger than the shuffle element type. 2368 Type *SrcType = X->getType(); 2369 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2370 cast<FixedVectorType>(SrcType)->getNumElements() != 2371 cast<FixedVectorType>(DestType)->getNumElements() || 2372 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2373 return nullptr; 2374 2375 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2376 "Expected a shuffle that decreases length"); 2377 2378 // Last, check that the mask chooses the correct low bits for each narrow 2379 // element in the result. 2380 uint64_t TruncRatio = 2381 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2382 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2383 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2384 if (Mask[i] == PoisonMaskElem) 2385 continue; 2386 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2387 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2388 if (Mask[i] != (int)LSBIndex) 2389 return nullptr; 2390 } 2391 2392 return new TruncInst(X, DestType); 2393 } 2394 2395 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2396 /// narrowing (concatenating with undef and extracting back to the original 2397 /// length). This allows replacing the wide select with a narrow select. 2398 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2399 InstCombiner::BuilderTy &Builder) { 2400 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2401 // of the 1st vector operand of a shuffle. 2402 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2403 return nullptr; 2404 2405 // The vector being shuffled must be a vector select that we can eliminate. 2406 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2407 Value *Cond, *X, *Y; 2408 if (!match(Shuf.getOperand(0), 2409 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2410 return nullptr; 2411 2412 // We need a narrow condition value. It must be extended with undef elements 2413 // and have the same number of elements as this shuffle. 2414 unsigned NarrowNumElts = 2415 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2416 Value *NarrowCond; 2417 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2418 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2419 NarrowNumElts || 2420 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2421 return nullptr; 2422 2423 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2424 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2425 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2426 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2427 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2428 } 2429 2430 /// Canonicalize FP negate/abs after shuffle. 2431 static Instruction *foldShuffleOfUnaryOps(ShuffleVectorInst &Shuf, 2432 InstCombiner::BuilderTy &Builder) { 2433 auto *S0 = dyn_cast<Instruction>(Shuf.getOperand(0)); 2434 Value *X; 2435 if (!S0 || !match(S0, m_CombineOr(m_FNeg(m_Value(X)), m_FAbs(m_Value(X))))) 2436 return nullptr; 2437 2438 bool IsFNeg = S0->getOpcode() == Instruction::FNeg; 2439 2440 // Match 1-input (unary) shuffle. 2441 // shuffle (fneg/fabs X), Mask --> fneg/fabs (shuffle X, Mask) 2442 if (S0->hasOneUse() && match(Shuf.getOperand(1), m_Undef())) { 2443 Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2444 if (IsFNeg) 2445 return UnaryOperator::CreateFNegFMF(NewShuf, S0); 2446 2447 Function *FAbs = Intrinsic::getDeclaration(Shuf.getModule(), 2448 Intrinsic::fabs, Shuf.getType()); 2449 CallInst *NewF = CallInst::Create(FAbs, {NewShuf}); 2450 NewF->setFastMathFlags(S0->getFastMathFlags()); 2451 return NewF; 2452 } 2453 2454 // Match 2-input (binary) shuffle. 2455 auto *S1 = dyn_cast<Instruction>(Shuf.getOperand(1)); 2456 Value *Y; 2457 if (!S1 || !match(S1, m_CombineOr(m_FNeg(m_Value(Y)), m_FAbs(m_Value(Y)))) || 2458 S0->getOpcode() != S1->getOpcode() || 2459 (!S0->hasOneUse() && !S1->hasOneUse())) 2460 return nullptr; 2461 2462 // shuf (fneg/fabs X), (fneg/fabs Y), Mask --> fneg/fabs (shuf X, Y, Mask) 2463 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); 2464 Instruction *NewF; 2465 if (IsFNeg) { 2466 NewF = UnaryOperator::CreateFNeg(NewShuf); 2467 } else { 2468 Function *FAbs = Intrinsic::getDeclaration(Shuf.getModule(), 2469 Intrinsic::fabs, Shuf.getType()); 2470 NewF = CallInst::Create(FAbs, {NewShuf}); 2471 } 2472 NewF->copyIRFlags(S0); 2473 NewF->andIRFlags(S1); 2474 return NewF; 2475 } 2476 2477 /// Canonicalize casts after shuffle. 2478 static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf, 2479 InstCombiner::BuilderTy &Builder) { 2480 // Do we have 2 matching cast operands? 2481 auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0)); 2482 auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1)); 2483 if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() || 2484 Cast0->getSrcTy() != Cast1->getSrcTy()) 2485 return nullptr; 2486 2487 // TODO: Allow other opcodes? That would require easing the type restrictions 2488 // below here. 2489 CastInst::CastOps CastOpcode = Cast0->getOpcode(); 2490 switch (CastOpcode) { 2491 case Instruction::FPToSI: 2492 case Instruction::FPToUI: 2493 case Instruction::SIToFP: 2494 case Instruction::UIToFP: 2495 break; 2496 default: 2497 return nullptr; 2498 } 2499 2500 VectorType *ShufTy = Shuf.getType(); 2501 VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType()); 2502 VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy()); 2503 2504 // TODO: Allow length-increasing shuffles? 2505 if (ShufTy->getElementCount().getKnownMinValue() > 2506 ShufOpTy->getElementCount().getKnownMinValue()) 2507 return nullptr; 2508 2509 // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)? 2510 assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) && 2511 "Expected fixed vector operands for casts and binary shuffle"); 2512 if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits()) 2513 return nullptr; 2514 2515 // At least one of the operands must have only one use (the shuffle). 2516 if (!Cast0->hasOneUse() && !Cast1->hasOneUse()) 2517 return nullptr; 2518 2519 // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask) 2520 Value *X = Cast0->getOperand(0); 2521 Value *Y = Cast1->getOperand(0); 2522 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); 2523 return CastInst::Create(CastOpcode, NewShuf, ShufTy); 2524 } 2525 2526 /// Try to fold an extract subvector operation. 2527 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2528 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2529 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) 2530 return nullptr; 2531 2532 // Check if we are extracting all bits of an inserted scalar: 2533 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2534 Value *X; 2535 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2536 X->getType()->getPrimitiveSizeInBits() == 2537 Shuf.getType()->getPrimitiveSizeInBits()) 2538 return new BitCastInst(X, Shuf.getType()); 2539 2540 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2541 Value *Y; 2542 ArrayRef<int> Mask; 2543 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2544 return nullptr; 2545 2546 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2547 // then combining may result in worse codegen. 2548 if (!Op0->hasOneUse()) 2549 return nullptr; 2550 2551 // We are extracting a subvector from a shuffle. Remove excess elements from 2552 // the 1st shuffle mask to eliminate the extract. 2553 // 2554 // This transform is conservatively limited to identity extracts because we do 2555 // not allow arbitrary shuffle mask creation as a target-independent transform 2556 // (because we can't guarantee that will lower efficiently). 2557 // 2558 // If the extracting shuffle has an undef mask element, it transfers to the 2559 // new shuffle mask. Otherwise, copy the original mask element. Example: 2560 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2561 // shuf X, Y, <C0, undef, C2, undef> 2562 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2563 SmallVector<int, 16> NewMask(NumElts); 2564 assert(NumElts < Mask.size() && 2565 "Identity with extract must have less elements than its inputs"); 2566 2567 for (unsigned i = 0; i != NumElts; ++i) { 2568 int ExtractMaskElt = Shuf.getMaskValue(i); 2569 int MaskElt = Mask[i]; 2570 NewMask[i] = ExtractMaskElt == PoisonMaskElem ? ExtractMaskElt : MaskElt; 2571 } 2572 return new ShuffleVectorInst(X, Y, NewMask); 2573 } 2574 2575 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2576 /// operand with the operand of an insertelement. 2577 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2578 InstCombinerImpl &IC) { 2579 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2580 SmallVector<int, 16> Mask; 2581 Shuf.getShuffleMask(Mask); 2582 2583 int NumElts = Mask.size(); 2584 int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements(); 2585 2586 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2587 // not be able to handle it there if the insertelement has >1 use. 2588 // If the shuffle has an insertelement operand but does not choose the 2589 // inserted scalar element from that value, then we can replace that shuffle 2590 // operand with the source vector of the insertelement. 2591 Value *X; 2592 uint64_t IdxC; 2593 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2594 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2595 if (!is_contained(Mask, (int)IdxC)) 2596 return IC.replaceOperand(Shuf, 0, X); 2597 } 2598 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2599 // Offset the index constant by the vector width because we are checking for 2600 // accesses to the 2nd vector input of the shuffle. 2601 IdxC += InpNumElts; 2602 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2603 if (!is_contained(Mask, (int)IdxC)) 2604 return IC.replaceOperand(Shuf, 1, X); 2605 } 2606 // For the rest of the transform, the shuffle must not change vector sizes. 2607 // TODO: This restriction could be removed if the insert has only one use 2608 // (because the transform would require a new length-changing shuffle). 2609 if (NumElts != InpNumElts) 2610 return nullptr; 2611 2612 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2613 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2614 // We need an insertelement with a constant index. 2615 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2616 m_ConstantInt(IndexC)))) 2617 return false; 2618 2619 // Test the shuffle mask to see if it splices the inserted scalar into the 2620 // operand 1 vector of the shuffle. 2621 int NewInsIndex = -1; 2622 for (int i = 0; i != NumElts; ++i) { 2623 // Ignore undef mask elements. 2624 if (Mask[i] == -1) 2625 continue; 2626 2627 // The shuffle takes elements of operand 1 without lane changes. 2628 if (Mask[i] == NumElts + i) 2629 continue; 2630 2631 // The shuffle must choose the inserted scalar exactly once. 2632 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2633 return false; 2634 2635 // The shuffle is placing the inserted scalar into element i. 2636 NewInsIndex = i; 2637 } 2638 2639 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2640 2641 // Index is updated to the potentially translated insertion lane. 2642 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2643 return true; 2644 }; 2645 2646 // If the shuffle is unnecessary, insert the scalar operand directly into 2647 // operand 1 of the shuffle. Example: 2648 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2649 Value *Scalar; 2650 ConstantInt *IndexC; 2651 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2652 return InsertElementInst::Create(V1, Scalar, IndexC); 2653 2654 // Try again after commuting shuffle. Example: 2655 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2656 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2657 std::swap(V0, V1); 2658 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2659 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2660 return InsertElementInst::Create(V1, Scalar, IndexC); 2661 2662 return nullptr; 2663 } 2664 2665 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2666 // Match the operands as identity with padding (also known as concatenation 2667 // with undef) shuffles of the same source type. The backend is expected to 2668 // recreate these concatenations from a shuffle of narrow operands. 2669 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2670 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2671 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2672 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2673 return nullptr; 2674 2675 // We limit this transform to power-of-2 types because we expect that the 2676 // backend can convert the simplified IR patterns to identical nodes as the 2677 // original IR. 2678 // TODO: If we can verify the same behavior for arbitrary types, the 2679 // power-of-2 checks can be removed. 2680 Value *X = Shuffle0->getOperand(0); 2681 Value *Y = Shuffle1->getOperand(0); 2682 if (X->getType() != Y->getType() || 2683 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2684 !isPowerOf2_32( 2685 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2686 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2687 match(X, m_Undef()) || match(Y, m_Undef())) 2688 return nullptr; 2689 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2690 match(Shuffle1->getOperand(1), m_Undef()) && 2691 "Unexpected operand for identity shuffle"); 2692 2693 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2694 // operands directly by adjusting the shuffle mask to account for the narrower 2695 // types: 2696 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2697 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2698 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2699 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2700 2701 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2702 SmallVector<int, 16> NewMask(Mask.size(), -1); 2703 for (int i = 0, e = Mask.size(); i != e; ++i) { 2704 if (Mask[i] == -1) 2705 continue; 2706 2707 // If this shuffle is choosing an undef element from 1 of the sources, that 2708 // element is undef. 2709 if (Mask[i] < WideElts) { 2710 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2711 continue; 2712 } else { 2713 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2714 continue; 2715 } 2716 2717 // If this shuffle is choosing from the 1st narrow op, the mask element is 2718 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2719 // element is offset down to adjust for the narrow vector widths. 2720 if (Mask[i] < WideElts) { 2721 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2722 NewMask[i] = Mask[i]; 2723 } else { 2724 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2725 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2726 } 2727 } 2728 return new ShuffleVectorInst(X, Y, NewMask); 2729 } 2730 2731 // Splatting the first element of the result of a BinOp, where any of the 2732 // BinOp's operands are the result of a first element splat can be simplified to 2733 // splatting the first element of the result of the BinOp 2734 Instruction *InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst &SVI) { 2735 if (!match(SVI.getOperand(1), m_Undef()) || 2736 !match(SVI.getShuffleMask(), m_ZeroMask()) || 2737 !SVI.getOperand(0)->hasOneUse()) 2738 return nullptr; 2739 2740 Value *Op0 = SVI.getOperand(0); 2741 Value *X, *Y; 2742 if (!match(Op0, m_BinOp(m_Shuffle(m_Value(X), m_Undef(), m_ZeroMask()), 2743 m_Value(Y))) && 2744 !match(Op0, m_BinOp(m_Value(X), 2745 m_Shuffle(m_Value(Y), m_Undef(), m_ZeroMask())))) 2746 return nullptr; 2747 if (X->getType() != Y->getType()) 2748 return nullptr; 2749 2750 auto *BinOp = cast<BinaryOperator>(Op0); 2751 if (!isSafeToSpeculativelyExecute(BinOp)) 2752 return nullptr; 2753 2754 Value *NewBO = Builder.CreateBinOp(BinOp->getOpcode(), X, Y); 2755 if (auto NewBOI = dyn_cast<Instruction>(NewBO)) 2756 NewBOI->copyIRFlags(BinOp); 2757 2758 return new ShuffleVectorInst(NewBO, SVI.getShuffleMask()); 2759 } 2760 2761 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2762 Value *LHS = SVI.getOperand(0); 2763 Value *RHS = SVI.getOperand(1); 2764 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2765 if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2766 SVI.getType(), ShufQuery)) 2767 return replaceInstUsesWith(SVI, V); 2768 2769 if (Instruction *I = simplifyBinOpSplats(SVI)) 2770 return I; 2771 2772 if (isa<ScalableVectorType>(LHS->getType())) 2773 return nullptr; 2774 2775 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2776 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2777 2778 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2779 // 2780 // if X and Y are of the same (vector) type, and the element size is not 2781 // changed by the bitcasts, we can distribute the bitcasts through the 2782 // shuffle, hopefully reducing the number of instructions. We make sure that 2783 // at least one bitcast only has one use, so we don't *increase* the number of 2784 // instructions here. 2785 Value *X, *Y; 2786 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2787 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2788 X->getType()->getScalarSizeInBits() == 2789 SVI.getType()->getScalarSizeInBits() && 2790 (LHS->hasOneUse() || RHS->hasOneUse())) { 2791 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2792 SVI.getName() + ".uncasted"); 2793 return new BitCastInst(V, SVI.getType()); 2794 } 2795 2796 ArrayRef<int> Mask = SVI.getShuffleMask(); 2797 2798 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2799 // simulated shuffle can simplify, then this shuffle is unnecessary: 2800 // shuf (bitcast X), undef, Mask --> bitcast X' 2801 // TODO: This could be extended to allow length-changing shuffles. 2802 // The transform might also be obsoleted if we allowed canonicalization 2803 // of bitcasted shuffles. 2804 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2805 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2806 // Try to create a scaled mask constant. 2807 auto *XType = cast<FixedVectorType>(X->getType()); 2808 unsigned XNumElts = XType->getNumElements(); 2809 SmallVector<int, 16> ScaledMask; 2810 if (XNumElts >= VWidth) { 2811 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2812 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2813 } else { 2814 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2815 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2816 ScaledMask.clear(); 2817 } 2818 if (!ScaledMask.empty()) { 2819 // If the shuffled source vector simplifies, cast that value to this 2820 // shuffle's type. 2821 if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType), 2822 ScaledMask, XType, ShufQuery)) 2823 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2824 } 2825 } 2826 2827 // shuffle x, x, mask --> shuffle x, undef, mask' 2828 if (LHS == RHS) { 2829 assert(!match(RHS, m_Undef()) && 2830 "Shuffle with 2 undef ops not simplified?"); 2831 return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth)); 2832 } 2833 2834 // shuffle undef, x, mask --> shuffle x, undef, mask' 2835 if (match(LHS, m_Undef())) { 2836 SVI.commute(); 2837 return &SVI; 2838 } 2839 2840 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2841 return I; 2842 2843 if (Instruction *I = foldSelectShuffle(SVI)) 2844 return I; 2845 2846 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2847 return I; 2848 2849 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2850 return I; 2851 2852 if (Instruction *I = foldShuffleOfUnaryOps(SVI, Builder)) 2853 return I; 2854 2855 if (Instruction *I = foldCastShuffle(SVI, Builder)) 2856 return I; 2857 2858 APInt UndefElts(VWidth, 0); 2859 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2860 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2861 if (V != &SVI) 2862 return replaceInstUsesWith(SVI, V); 2863 return &SVI; 2864 } 2865 2866 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2867 return I; 2868 2869 // These transforms have the potential to lose undef knowledge, so they are 2870 // intentionally placed after SimplifyDemandedVectorElts(). 2871 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2872 return I; 2873 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2874 return I; 2875 2876 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { 2877 Value *V = evaluateInDifferentElementOrder(LHS, Mask, Builder); 2878 return replaceInstUsesWith(SVI, V); 2879 } 2880 2881 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2882 // a non-vector type. We can instead bitcast the original vector followed by 2883 // an extract of the desired element: 2884 // 2885 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2886 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2887 // %1 = bitcast <4 x i8> %sroa to i32 2888 // Becomes: 2889 // %bc = bitcast <16 x i8> %in to <4 x i32> 2890 // %ext = extractelement <4 x i32> %bc, i32 0 2891 // 2892 // If the shuffle is extracting a contiguous range of values from the input 2893 // vector then each use which is a bitcast of the extracted size can be 2894 // replaced. This will work if the vector types are compatible, and the begin 2895 // index is aligned to a value in the casted vector type. If the begin index 2896 // isn't aligned then we can shuffle the original vector (keeping the same 2897 // vector type) before extracting. 2898 // 2899 // This code will bail out if the target type is fundamentally incompatible 2900 // with vectors of the source type. 2901 // 2902 // Example of <16 x i8>, target type i32: 2903 // Index range [4,8): v-----------v Will work. 2904 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2905 // <16 x i8>: | | | | | | | | | | | | | | | | | 2906 // <4 x i32>: | | | | | 2907 // +-----------+-----------+-----------+-----------+ 2908 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2909 // Target type i40: ^--------------^ Won't work, bail. 2910 bool MadeChange = false; 2911 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2912 Value *V = LHS; 2913 unsigned MaskElems = Mask.size(); 2914 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2915 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedValue(); 2916 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2917 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2918 unsigned SrcNumElems = SrcTy->getNumElements(); 2919 SmallVector<BitCastInst *, 8> BCs; 2920 DenseMap<Type *, Value *> NewBCs; 2921 for (User *U : SVI.users()) 2922 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2923 if (!BC->use_empty()) 2924 // Only visit bitcasts that weren't previously handled. 2925 BCs.push_back(BC); 2926 for (BitCastInst *BC : BCs) { 2927 unsigned BegIdx = Mask.front(); 2928 Type *TgtTy = BC->getDestTy(); 2929 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2930 if (!TgtElemBitWidth) 2931 continue; 2932 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2933 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2934 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2935 if (!VecBitWidthsEqual) 2936 continue; 2937 if (!VectorType::isValidElementType(TgtTy)) 2938 continue; 2939 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2940 if (!BegIsAligned) { 2941 // Shuffle the input so [0,NumElements) contains the output, and 2942 // [NumElems,SrcNumElems) is undef. 2943 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2944 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2945 ShuffleMask[I] = Idx; 2946 V = Builder.CreateShuffleVector(V, ShuffleMask, 2947 SVI.getName() + ".extract"); 2948 BegIdx = 0; 2949 } 2950 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2951 assert(SrcElemsPerTgtElem); 2952 BegIdx /= SrcElemsPerTgtElem; 2953 bool BCAlreadyExists = NewBCs.contains(CastSrcTy); 2954 auto *NewBC = 2955 BCAlreadyExists 2956 ? NewBCs[CastSrcTy] 2957 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2958 if (!BCAlreadyExists) 2959 NewBCs[CastSrcTy] = NewBC; 2960 auto *Ext = Builder.CreateExtractElement(NewBC, BegIdx, 2961 SVI.getName() + ".extract"); 2962 // The shufflevector isn't being replaced: the bitcast that used it 2963 // is. InstCombine will visit the newly-created instructions. 2964 replaceInstUsesWith(*BC, Ext); 2965 MadeChange = true; 2966 } 2967 } 2968 2969 // If the LHS is a shufflevector itself, see if we can combine it with this 2970 // one without producing an unusual shuffle. 2971 // Cases that might be simplified: 2972 // 1. 2973 // x1=shuffle(v1,v2,mask1) 2974 // x=shuffle(x1,undef,mask) 2975 // ==> 2976 // x=shuffle(v1,undef,newMask) 2977 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2978 // 2. 2979 // x1=shuffle(v1,undef,mask1) 2980 // x=shuffle(x1,x2,mask) 2981 // where v1.size() == mask1.size() 2982 // ==> 2983 // x=shuffle(v1,x2,newMask) 2984 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2985 // 3. 2986 // x2=shuffle(v2,undef,mask2) 2987 // x=shuffle(x1,x2,mask) 2988 // where v2.size() == mask2.size() 2989 // ==> 2990 // x=shuffle(x1,v2,newMask) 2991 // newMask[i] = (mask[i] < x1.size()) 2992 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2993 // 4. 2994 // x1=shuffle(v1,undef,mask1) 2995 // x2=shuffle(v2,undef,mask2) 2996 // x=shuffle(x1,x2,mask) 2997 // where v1.size() == v2.size() 2998 // ==> 2999 // x=shuffle(v1,v2,newMask) 3000 // newMask[i] = (mask[i] < x1.size()) 3001 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 3002 // 3003 // Here we are really conservative: 3004 // we are absolutely afraid of producing a shuffle mask not in the input 3005 // program, because the code gen may not be smart enough to turn a merged 3006 // shuffle into two specific shuffles: it may produce worse code. As such, 3007 // we only merge two shuffles if the result is either a splat or one of the 3008 // input shuffle masks. In this case, merging the shuffles just removes 3009 // one instruction, which we know is safe. This is good for things like 3010 // turning: (splat(splat)) -> splat, or 3011 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 3012 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 3013 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 3014 if (LHSShuffle) 3015 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef())) 3016 LHSShuffle = nullptr; 3017 if (RHSShuffle) 3018 if (!match(RHSShuffle->getOperand(1), m_Undef())) 3019 RHSShuffle = nullptr; 3020 if (!LHSShuffle && !RHSShuffle) 3021 return MadeChange ? &SVI : nullptr; 3022 3023 Value* LHSOp0 = nullptr; 3024 Value* LHSOp1 = nullptr; 3025 Value* RHSOp0 = nullptr; 3026 unsigned LHSOp0Width = 0; 3027 unsigned RHSOp0Width = 0; 3028 if (LHSShuffle) { 3029 LHSOp0 = LHSShuffle->getOperand(0); 3030 LHSOp1 = LHSShuffle->getOperand(1); 3031 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 3032 } 3033 if (RHSShuffle) { 3034 RHSOp0 = RHSShuffle->getOperand(0); 3035 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 3036 } 3037 Value* newLHS = LHS; 3038 Value* newRHS = RHS; 3039 if (LHSShuffle) { 3040 // case 1 3041 if (match(RHS, m_Undef())) { 3042 newLHS = LHSOp0; 3043 newRHS = LHSOp1; 3044 } 3045 // case 2 or 4 3046 else if (LHSOp0Width == LHSWidth) { 3047 newLHS = LHSOp0; 3048 } 3049 } 3050 // case 3 or 4 3051 if (RHSShuffle && RHSOp0Width == LHSWidth) { 3052 newRHS = RHSOp0; 3053 } 3054 // case 4 3055 if (LHSOp0 == RHSOp0) { 3056 newLHS = LHSOp0; 3057 newRHS = nullptr; 3058 } 3059 3060 if (newLHS == LHS && newRHS == RHS) 3061 return MadeChange ? &SVI : nullptr; 3062 3063 ArrayRef<int> LHSMask; 3064 ArrayRef<int> RHSMask; 3065 if (newLHS != LHS) 3066 LHSMask = LHSShuffle->getShuffleMask(); 3067 if (RHSShuffle && newRHS != RHS) 3068 RHSMask = RHSShuffle->getShuffleMask(); 3069 3070 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 3071 SmallVector<int, 16> newMask; 3072 bool isSplat = true; 3073 int SplatElt = -1; 3074 // Create a new mask for the new ShuffleVectorInst so that the new 3075 // ShuffleVectorInst is equivalent to the original one. 3076 for (unsigned i = 0; i < VWidth; ++i) { 3077 int eltMask; 3078 if (Mask[i] < 0) { 3079 // This element is a poison value. 3080 eltMask = -1; 3081 } else if (Mask[i] < (int)LHSWidth) { 3082 // This element is from left hand side vector operand. 3083 // 3084 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 3085 // new mask value for the element. 3086 if (newLHS != LHS) { 3087 eltMask = LHSMask[Mask[i]]; 3088 // If the value selected is an poison value, explicitly specify it 3089 // with a -1 mask value. 3090 if (eltMask >= (int)LHSOp0Width && isa<PoisonValue>(LHSOp1)) 3091 eltMask = -1; 3092 } else 3093 eltMask = Mask[i]; 3094 } else { 3095 // This element is from right hand side vector operand 3096 // 3097 // If the value selected is a poison value, explicitly specify it 3098 // with a -1 mask value. (case 1) 3099 if (match(RHS, m_Poison())) 3100 eltMask = -1; 3101 // If RHS is going to be replaced (case 3 or 4), calculate the 3102 // new mask value for the element. 3103 else if (newRHS != RHS) { 3104 eltMask = RHSMask[Mask[i]-LHSWidth]; 3105 // If the value selected is an poison value, explicitly specify it 3106 // with a -1 mask value. 3107 if (eltMask >= (int)RHSOp0Width) { 3108 assert(match(RHSShuffle->getOperand(1), m_Poison()) && 3109 "should have been check above"); 3110 eltMask = -1; 3111 } 3112 } else 3113 eltMask = Mask[i]-LHSWidth; 3114 3115 // If LHS's width is changed, shift the mask value accordingly. 3116 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 3117 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 3118 // If newRHS == newLHS, we want to remap any references from newRHS to 3119 // newLHS so that we can properly identify splats that may occur due to 3120 // obfuscation across the two vectors. 3121 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 3122 eltMask += newLHSWidth; 3123 } 3124 3125 // Check if this could still be a splat. 3126 if (eltMask >= 0) { 3127 if (SplatElt >= 0 && SplatElt != eltMask) 3128 isSplat = false; 3129 SplatElt = eltMask; 3130 } 3131 3132 newMask.push_back(eltMask); 3133 } 3134 3135 // If the result mask is equal to one of the original shuffle masks, 3136 // or is a splat, do the replacement. 3137 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 3138 if (!newRHS) 3139 newRHS = PoisonValue::get(newLHS->getType()); 3140 return new ShuffleVectorInst(newLHS, newRHS, newMask); 3141 } 3142 3143 return MadeChange ? &SVI : nullptr; 3144 } 3145