1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 39 #include "llvm/Transforms/InstCombine/InstCombiner.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 STATISTIC(NumAggregateReconstructionsSimplified, 51 "Number of aggregate reconstructions turned into reuse of the " 52 "original aggregate"); 53 54 /// Return true if the value is cheaper to scalarize than it is to leave as a 55 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 56 /// one known element from a vector constant. 57 /// 58 /// FIXME: It's possible to create more instructions than previously existed. 59 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 60 // If we can pick a scalar constant value out of a vector, that is free. 61 if (auto *C = dyn_cast<Constant>(V)) 62 return IsConstantExtractIndex || C->getSplatValue(); 63 64 // An insertelement to the same constant index as our extract will simplify 65 // to the scalar inserted element. An insertelement to a different constant 66 // index is irrelevant to our extract. 67 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 68 return IsConstantExtractIndex; 69 70 if (match(V, m_OneUse(m_Load(m_Value())))) 71 return true; 72 73 if (match(V, m_OneUse(m_UnOp()))) 74 return true; 75 76 Value *V0, *V1; 77 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 78 if (cheapToScalarize(V0, IsConstantExtractIndex) || 79 cheapToScalarize(V1, IsConstantExtractIndex)) 80 return true; 81 82 CmpInst::Predicate UnusedPred; 83 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 84 if (cheapToScalarize(V0, IsConstantExtractIndex) || 85 cheapToScalarize(V1, IsConstantExtractIndex)) 86 return true; 87 88 return false; 89 } 90 91 // If we have a PHI node with a vector type that is only used to feed 92 // itself and be an operand of extractelement at a constant location, 93 // try to replace the PHI of the vector type with a PHI of a scalar type. 94 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 95 PHINode *PN) { 96 SmallVector<Instruction *, 2> Extracts; 97 // The users we want the PHI to have are: 98 // 1) The EI ExtractElement (we already know this) 99 // 2) Possibly more ExtractElements with the same index. 100 // 3) Another operand, which will feed back into the PHI. 101 Instruction *PHIUser = nullptr; 102 for (auto U : PN->users()) { 103 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 104 if (EI.getIndexOperand() == EU->getIndexOperand()) 105 Extracts.push_back(EU); 106 else 107 return nullptr; 108 } else if (!PHIUser) { 109 PHIUser = cast<Instruction>(U); 110 } else { 111 return nullptr; 112 } 113 } 114 115 if (!PHIUser) 116 return nullptr; 117 118 // Verify that this PHI user has one use, which is the PHI itself, 119 // and that it is a binary operation which is cheap to scalarize. 120 // otherwise return nullptr. 121 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 122 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 123 return nullptr; 124 125 // Create a scalar PHI node that will replace the vector PHI node 126 // just before the current PHI node. 127 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 128 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 129 // Scalarize each PHI operand. 130 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 131 Value *PHIInVal = PN->getIncomingValue(i); 132 BasicBlock *inBB = PN->getIncomingBlock(i); 133 Value *Elt = EI.getIndexOperand(); 134 // If the operand is the PHI induction variable: 135 if (PHIInVal == PHIUser) { 136 // Scalarize the binary operation. Its first operand is the 137 // scalar PHI, and the second operand is extracted from the other 138 // vector operand. 139 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 140 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 141 Value *Op = InsertNewInstWith( 142 ExtractElementInst::Create(B0->getOperand(opId), Elt, 143 B0->getOperand(opId)->getName() + ".Elt"), 144 *B0); 145 Value *newPHIUser = InsertNewInstWith( 146 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 147 scalarPHI, Op, B0), *B0); 148 scalarPHI->addIncoming(newPHIUser, inBB); 149 } else { 150 // Scalarize PHI input: 151 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 152 // Insert the new instruction into the predecessor basic block. 153 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 154 BasicBlock::iterator InsertPos; 155 if (pos && !isa<PHINode>(pos)) { 156 InsertPos = ++pos->getIterator(); 157 } else { 158 InsertPos = inBB->getFirstInsertionPt(); 159 } 160 161 InsertNewInstWith(newEI, *InsertPos); 162 163 scalarPHI->addIncoming(newEI, inBB); 164 } 165 } 166 167 for (auto E : Extracts) 168 replaceInstUsesWith(*E, scalarPHI); 169 170 return &EI; 171 } 172 173 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 174 InstCombiner::BuilderTy &Builder, 175 bool IsBigEndian) { 176 Value *X; 177 uint64_t ExtIndexC; 178 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 179 !X->getType()->isVectorTy() || 180 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 181 return nullptr; 182 183 // If this extractelement is using a bitcast from a vector of the same number 184 // of elements, see if we can find the source element from the source vector: 185 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 186 auto *SrcTy = cast<VectorType>(X->getType()); 187 Type *DestTy = Ext.getType(); 188 ElementCount NumSrcElts = SrcTy->getElementCount(); 189 ElementCount NumElts = 190 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 191 if (NumSrcElts == NumElts) 192 if (Value *Elt = findScalarElement(X, ExtIndexC)) 193 return new BitCastInst(Elt, DestTy); 194 195 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 196 "Src and Dst must be the same sort of vector type"); 197 198 // If the source elements are wider than the destination, try to shift and 199 // truncate a subset of scalar bits of an insert op. 200 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 201 Value *Scalar; 202 uint64_t InsIndexC; 203 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 204 m_ConstantInt(InsIndexC)))) 205 return nullptr; 206 207 // The extract must be from the subset of vector elements that we inserted 208 // into. Example: if we inserted element 1 of a <2 x i64> and we are 209 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 210 // of elements 4-7 of the bitcasted vector. 211 unsigned NarrowingRatio = 212 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 213 if (ExtIndexC / NarrowingRatio != InsIndexC) 214 return nullptr; 215 216 // We are extracting part of the original scalar. How that scalar is 217 // inserted into the vector depends on the endian-ness. Example: 218 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 219 // +--+--+--+--+--+--+--+--+ 220 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 221 // extelt <4 x i16> V', 3: | |S2|S3| 222 // +--+--+--+--+--+--+--+--+ 223 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 224 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 225 // In this example, we must right-shift little-endian. Big-endian is just a 226 // truncate. 227 unsigned Chunk = ExtIndexC % NarrowingRatio; 228 if (IsBigEndian) 229 Chunk = NarrowingRatio - 1 - Chunk; 230 231 // Bail out if this is an FP vector to FP vector sequence. That would take 232 // more instructions than we started with unless there is no shift, and it 233 // may not be handled as well in the backend. 234 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 235 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 236 if (NeedSrcBitcast && NeedDestBitcast) 237 return nullptr; 238 239 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 240 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 241 unsigned ShAmt = Chunk * DestWidth; 242 243 // TODO: This limitation is more strict than necessary. We could sum the 244 // number of new instructions and subtract the number eliminated to know if 245 // we can proceed. 246 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 247 if (NeedSrcBitcast || NeedDestBitcast) 248 return nullptr; 249 250 if (NeedSrcBitcast) { 251 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 252 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 253 } 254 255 if (ShAmt) { 256 // Bail out if we could end with more instructions than we started with. 257 if (!Ext.getVectorOperand()->hasOneUse()) 258 return nullptr; 259 Scalar = Builder.CreateLShr(Scalar, ShAmt); 260 } 261 262 if (NeedDestBitcast) { 263 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 264 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 265 } 266 return new TruncInst(Scalar, DestTy); 267 } 268 269 return nullptr; 270 } 271 272 /// Find elements of V demanded by UserInstr. 273 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 274 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 275 276 // Conservatively assume that all elements are needed. 277 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 278 279 switch (UserInstr->getOpcode()) { 280 case Instruction::ExtractElement: { 281 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 282 assert(EEI->getVectorOperand() == V); 283 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 284 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 285 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 286 } 287 break; 288 } 289 case Instruction::ShuffleVector: { 290 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 291 unsigned MaskNumElts = 292 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 293 294 UsedElts = APInt(VWidth, 0); 295 for (unsigned i = 0; i < MaskNumElts; i++) { 296 unsigned MaskVal = Shuffle->getMaskValue(i); 297 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 298 continue; 299 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 300 UsedElts.setBit(MaskVal); 301 if (Shuffle->getOperand(1) == V && 302 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 303 UsedElts.setBit(MaskVal - VWidth); 304 } 305 break; 306 } 307 default: 308 break; 309 } 310 return UsedElts; 311 } 312 313 /// Find union of elements of V demanded by all its users. 314 /// If it is known by querying findDemandedEltsBySingleUser that 315 /// no user demands an element of V, then the corresponding bit 316 /// remains unset in the returned value. 317 static APInt findDemandedEltsByAllUsers(Value *V) { 318 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 319 320 APInt UnionUsedElts(VWidth, 0); 321 for (const Use &U : V->uses()) { 322 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 323 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 324 } else { 325 UnionUsedElts = APInt::getAllOnesValue(VWidth); 326 break; 327 } 328 329 if (UnionUsedElts.isAllOnesValue()) 330 break; 331 } 332 333 return UnionUsedElts; 334 } 335 336 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 337 Value *SrcVec = EI.getVectorOperand(); 338 Value *Index = EI.getIndexOperand(); 339 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 340 SQ.getWithInstruction(&EI))) 341 return replaceInstUsesWith(EI, V); 342 343 // If extracting a specified index from the vector, see if we can recursively 344 // find a previously computed scalar that was inserted into the vector. 345 auto *IndexC = dyn_cast<ConstantInt>(Index); 346 if (IndexC) { 347 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 348 unsigned NumElts = EC.getKnownMinValue(); 349 350 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 351 Intrinsic::ID IID = II->getIntrinsicID(); 352 // Index needs to be lower than the minimum size of the vector, because 353 // for scalable vector, the vector size is known at run time. 354 if (IID == Intrinsic::experimental_stepvector && 355 IndexC->getValue().ult(NumElts)) { 356 Type *Ty = EI.getType(); 357 unsigned BitWidth = Ty->getIntegerBitWidth(); 358 Value *Idx; 359 // Return index when its value does not exceed the allowed limit 360 // for the element type of the vector, otherwise return undefined. 361 if (IndexC->getValue().getActiveBits() <= BitWidth) 362 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 363 else 364 Idx = UndefValue::get(Ty); 365 return replaceInstUsesWith(EI, Idx); 366 } 367 } 368 369 // InstSimplify should handle cases where the index is invalid. 370 // For fixed-length vector, it's invalid to extract out-of-range element. 371 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 372 return nullptr; 373 374 // This instruction only demands the single element from the input vector. 375 // Skip for scalable type, the number of elements is unknown at 376 // compile-time. 377 if (!EC.isScalable() && NumElts != 1) { 378 // If the input vector has a single use, simplify it based on this use 379 // property. 380 if (SrcVec->hasOneUse()) { 381 APInt UndefElts(NumElts, 0); 382 APInt DemandedElts(NumElts, 0); 383 DemandedElts.setBit(IndexC->getZExtValue()); 384 if (Value *V = 385 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 386 return replaceOperand(EI, 0, V); 387 } else { 388 // If the input vector has multiple uses, simplify it based on a union 389 // of all elements used. 390 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 391 if (!DemandedElts.isAllOnesValue()) { 392 APInt UndefElts(NumElts, 0); 393 if (Value *V = SimplifyDemandedVectorElts( 394 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 395 true /* AllowMultipleUsers */)) { 396 if (V != SrcVec) { 397 SrcVec->replaceAllUsesWith(V); 398 return &EI; 399 } 400 } 401 } 402 } 403 } 404 405 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 406 return I; 407 408 // If there's a vector PHI feeding a scalar use through this extractelement 409 // instruction, try to scalarize the PHI. 410 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 411 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 412 return ScalarPHI; 413 } 414 415 // TODO come up with a n-ary matcher that subsumes both unary and 416 // binary matchers. 417 UnaryOperator *UO; 418 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 419 // extelt (unop X), Index --> unop (extelt X, Index) 420 Value *X = UO->getOperand(0); 421 Value *E = Builder.CreateExtractElement(X, Index); 422 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 423 } 424 425 BinaryOperator *BO; 426 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 427 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 428 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 429 Value *E0 = Builder.CreateExtractElement(X, Index); 430 Value *E1 = Builder.CreateExtractElement(Y, Index); 431 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 432 } 433 434 Value *X, *Y; 435 CmpInst::Predicate Pred; 436 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 437 cheapToScalarize(SrcVec, IndexC)) { 438 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 439 Value *E0 = Builder.CreateExtractElement(X, Index); 440 Value *E1 = Builder.CreateExtractElement(Y, Index); 441 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 442 } 443 444 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 445 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 446 // Extracting the inserted element? 447 if (IE->getOperand(2) == Index) 448 return replaceInstUsesWith(EI, IE->getOperand(1)); 449 // If the inserted and extracted elements are constants, they must not 450 // be the same value, extract from the pre-inserted value instead. 451 if (isa<Constant>(IE->getOperand(2)) && IndexC) 452 return replaceOperand(EI, 0, IE->getOperand(0)); 453 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 454 auto *VecType = cast<VectorType>(GEP->getType()); 455 ElementCount EC = VecType->getElementCount(); 456 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 457 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 458 // Find out why we have a vector result - these are a few examples: 459 // 1. We have a scalar pointer and a vector of indices, or 460 // 2. We have a vector of pointers and a scalar index, or 461 // 3. We have a vector of pointers and a vector of indices, etc. 462 // Here we only consider combining when there is exactly one vector 463 // operand, since the optimization is less obviously a win due to 464 // needing more than one extractelements. 465 466 unsigned VectorOps = 467 llvm::count_if(GEP->operands(), [](const Value *V) { 468 return isa<VectorType>(V->getType()); 469 }); 470 if (VectorOps > 1) 471 return nullptr; 472 assert(VectorOps == 1 && "Expected exactly one vector GEP operand!"); 473 474 Value *NewPtr = GEP->getPointerOperand(); 475 if (isa<VectorType>(NewPtr->getType())) 476 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 477 478 SmallVector<Value *> NewOps; 479 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 480 Value *Op = GEP->getOperand(I); 481 if (isa<VectorType>(Op->getType())) 482 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 483 else 484 NewOps.push_back(Op); 485 } 486 487 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 488 cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr, 489 NewOps); 490 NewGEP->setIsInBounds(GEP->isInBounds()); 491 return NewGEP; 492 } 493 return nullptr; 494 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 495 // If this is extracting an element from a shufflevector, figure out where 496 // it came from and extract from the appropriate input element instead. 497 // Restrict the following transformation to fixed-length vector. 498 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 499 int SrcIdx = 500 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 501 Value *Src; 502 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 503 ->getNumElements(); 504 505 if (SrcIdx < 0) 506 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 507 if (SrcIdx < (int)LHSWidth) 508 Src = SVI->getOperand(0); 509 else { 510 SrcIdx -= LHSWidth; 511 Src = SVI->getOperand(1); 512 } 513 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 514 return ExtractElementInst::Create( 515 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 516 } 517 } else if (auto *CI = dyn_cast<CastInst>(I)) { 518 // Canonicalize extractelement(cast) -> cast(extractelement). 519 // Bitcasts can change the number of vector elements, and they cost 520 // nothing. 521 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 522 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 523 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 524 } 525 } 526 } 527 return nullptr; 528 } 529 530 /// If V is a shuffle of values that ONLY returns elements from either LHS or 531 /// RHS, return the shuffle mask and true. Otherwise, return false. 532 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 533 SmallVectorImpl<int> &Mask) { 534 assert(LHS->getType() == RHS->getType() && 535 "Invalid CollectSingleShuffleElements"); 536 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 537 538 if (match(V, m_Undef())) { 539 Mask.assign(NumElts, -1); 540 return true; 541 } 542 543 if (V == LHS) { 544 for (unsigned i = 0; i != NumElts; ++i) 545 Mask.push_back(i); 546 return true; 547 } 548 549 if (V == RHS) { 550 for (unsigned i = 0; i != NumElts; ++i) 551 Mask.push_back(i + NumElts); 552 return true; 553 } 554 555 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 556 // If this is an insert of an extract from some other vector, include it. 557 Value *VecOp = IEI->getOperand(0); 558 Value *ScalarOp = IEI->getOperand(1); 559 Value *IdxOp = IEI->getOperand(2); 560 561 if (!isa<ConstantInt>(IdxOp)) 562 return false; 563 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 564 565 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 566 // We can handle this if the vector we are inserting into is 567 // transitively ok. 568 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 569 // If so, update the mask to reflect the inserted undef. 570 Mask[InsertedIdx] = -1; 571 return true; 572 } 573 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 574 if (isa<ConstantInt>(EI->getOperand(1))) { 575 unsigned ExtractedIdx = 576 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 577 unsigned NumLHSElts = 578 cast<FixedVectorType>(LHS->getType())->getNumElements(); 579 580 // This must be extracting from either LHS or RHS. 581 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 582 // We can handle this if the vector we are inserting into is 583 // transitively ok. 584 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 585 // If so, update the mask to reflect the inserted value. 586 if (EI->getOperand(0) == LHS) { 587 Mask[InsertedIdx % NumElts] = ExtractedIdx; 588 } else { 589 assert(EI->getOperand(0) == RHS); 590 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 591 } 592 return true; 593 } 594 } 595 } 596 } 597 } 598 599 return false; 600 } 601 602 /// If we have insertion into a vector that is wider than the vector that we 603 /// are extracting from, try to widen the source vector to allow a single 604 /// shufflevector to replace one or more insert/extract pairs. 605 static void replaceExtractElements(InsertElementInst *InsElt, 606 ExtractElementInst *ExtElt, 607 InstCombinerImpl &IC) { 608 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 609 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 610 unsigned NumInsElts = InsVecType->getNumElements(); 611 unsigned NumExtElts = ExtVecType->getNumElements(); 612 613 // The inserted-to vector must be wider than the extracted-from vector. 614 if (InsVecType->getElementType() != ExtVecType->getElementType() || 615 NumExtElts >= NumInsElts) 616 return; 617 618 // Create a shuffle mask to widen the extended-from vector using poison 619 // values. The mask selects all of the values of the original vector followed 620 // by as many poison values as needed to create a vector of the same length 621 // as the inserted-to vector. 622 SmallVector<int, 16> ExtendMask; 623 for (unsigned i = 0; i < NumExtElts; ++i) 624 ExtendMask.push_back(i); 625 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 626 ExtendMask.push_back(-1); 627 628 Value *ExtVecOp = ExtElt->getVectorOperand(); 629 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 630 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 631 ? ExtVecOpInst->getParent() 632 : ExtElt->getParent(); 633 634 // TODO: This restriction matches the basic block check below when creating 635 // new extractelement instructions. If that limitation is removed, this one 636 // could also be removed. But for now, we just bail out to ensure that we 637 // will replace the extractelement instruction that is feeding our 638 // insertelement instruction. This allows the insertelement to then be 639 // replaced by a shufflevector. If the insertelement is not replaced, we can 640 // induce infinite looping because there's an optimization for extractelement 641 // that will delete our widening shuffle. This would trigger another attempt 642 // here to create that shuffle, and we spin forever. 643 if (InsertionBlock != InsElt->getParent()) 644 return; 645 646 // TODO: This restriction matches the check in visitInsertElementInst() and 647 // prevents an infinite loop caused by not turning the extract/insert pair 648 // into a shuffle. We really should not need either check, but we're lacking 649 // folds for shufflevectors because we're afraid to generate shuffle masks 650 // that the backend can't handle. 651 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 652 return; 653 654 auto *WideVec = 655 new ShuffleVectorInst(ExtVecOp, PoisonValue::get(ExtVecType), ExtendMask); 656 657 // Insert the new shuffle after the vector operand of the extract is defined 658 // (as long as it's not a PHI) or at the start of the basic block of the 659 // extract, so any subsequent extracts in the same basic block can use it. 660 // TODO: Insert before the earliest ExtractElementInst that is replaced. 661 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 662 WideVec->insertAfter(ExtVecOpInst); 663 else 664 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 665 666 // Replace extracts from the original narrow vector with extracts from the new 667 // wide vector. 668 for (User *U : ExtVecOp->users()) { 669 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 670 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 671 continue; 672 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 673 NewExt->insertAfter(OldExt); 674 IC.replaceInstUsesWith(*OldExt, NewExt); 675 } 676 } 677 678 /// We are building a shuffle to create V, which is a sequence of insertelement, 679 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 680 /// not rely on the second vector source. Return a std::pair containing the 681 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 682 /// parameter as required. 683 /// 684 /// Note: we intentionally don't try to fold earlier shuffles since they have 685 /// often been chosen carefully to be efficiently implementable on the target. 686 using ShuffleOps = std::pair<Value *, Value *>; 687 688 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 689 Value *PermittedRHS, 690 InstCombinerImpl &IC) { 691 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 692 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 693 694 if (match(V, m_Undef())) { 695 Mask.assign(NumElts, -1); 696 return std::make_pair( 697 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 698 } 699 700 if (isa<ConstantAggregateZero>(V)) { 701 Mask.assign(NumElts, 0); 702 return std::make_pair(V, nullptr); 703 } 704 705 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 706 // If this is an insert of an extract from some other vector, include it. 707 Value *VecOp = IEI->getOperand(0); 708 Value *ScalarOp = IEI->getOperand(1); 709 Value *IdxOp = IEI->getOperand(2); 710 711 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 712 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 713 unsigned ExtractedIdx = 714 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 715 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 716 717 // Either the extracted from or inserted into vector must be RHSVec, 718 // otherwise we'd end up with a shuffle of three inputs. 719 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 720 Value *RHS = EI->getOperand(0); 721 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 722 assert(LR.second == nullptr || LR.second == RHS); 723 724 if (LR.first->getType() != RHS->getType()) { 725 // Although we are giving up for now, see if we can create extracts 726 // that match the inserts for another round of combining. 727 replaceExtractElements(IEI, EI, IC); 728 729 // We tried our best, but we can't find anything compatible with RHS 730 // further up the chain. Return a trivial shuffle. 731 for (unsigned i = 0; i < NumElts; ++i) 732 Mask[i] = i; 733 return std::make_pair(V, nullptr); 734 } 735 736 unsigned NumLHSElts = 737 cast<FixedVectorType>(RHS->getType())->getNumElements(); 738 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 739 return std::make_pair(LR.first, RHS); 740 } 741 742 if (VecOp == PermittedRHS) { 743 // We've gone as far as we can: anything on the other side of the 744 // extractelement will already have been converted into a shuffle. 745 unsigned NumLHSElts = 746 cast<FixedVectorType>(EI->getOperand(0)->getType()) 747 ->getNumElements(); 748 for (unsigned i = 0; i != NumElts; ++i) 749 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 750 return std::make_pair(EI->getOperand(0), PermittedRHS); 751 } 752 753 // If this insertelement is a chain that comes from exactly these two 754 // vectors, return the vector and the effective shuffle. 755 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 756 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 757 Mask)) 758 return std::make_pair(EI->getOperand(0), PermittedRHS); 759 } 760 } 761 } 762 763 // Otherwise, we can't do anything fancy. Return an identity vector. 764 for (unsigned i = 0; i != NumElts; ++i) 765 Mask.push_back(i); 766 return std::make_pair(V, nullptr); 767 } 768 769 /// Look for chain of insertvalue's that fully define an aggregate, and trace 770 /// back the values inserted, see if they are all were extractvalue'd from 771 /// the same source aggregate from the exact same element indexes. 772 /// If they were, just reuse the source aggregate. 773 /// This potentially deals with PHI indirections. 774 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 775 InsertValueInst &OrigIVI) { 776 Type *AggTy = OrigIVI.getType(); 777 unsigned NumAggElts; 778 switch (AggTy->getTypeID()) { 779 case Type::StructTyID: 780 NumAggElts = AggTy->getStructNumElements(); 781 break; 782 case Type::ArrayTyID: 783 NumAggElts = AggTy->getArrayNumElements(); 784 break; 785 default: 786 llvm_unreachable("Unhandled aggregate type?"); 787 } 788 789 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 790 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 791 // FIXME: any interesting patterns to be caught with larger limit? 792 assert(NumAggElts > 0 && "Aggregate should have elements."); 793 if (NumAggElts > 2) 794 return nullptr; 795 796 static constexpr auto NotFound = None; 797 static constexpr auto FoundMismatch = nullptr; 798 799 // Try to find a value of each element of an aggregate. 800 // FIXME: deal with more complex, not one-dimensional, aggregate types 801 SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 802 803 // Do we know values for each element of the aggregate? 804 auto KnowAllElts = [&AggElts]() { 805 return all_of(AggElts, 806 [](Optional<Instruction *> Elt) { return Elt != NotFound; }); 807 }; 808 809 int Depth = 0; 810 811 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 812 // every element being overwritten twice, which should never happen. 813 static const int DepthLimit = 2 * NumAggElts; 814 815 // Recurse up the chain of `insertvalue` aggregate operands until either we've 816 // reconstructed full initializer or can't visit any more `insertvalue`'s. 817 for (InsertValueInst *CurrIVI = &OrigIVI; 818 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 819 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 820 ++Depth) { 821 auto *InsertedValue = 822 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 823 if (!InsertedValue) 824 return nullptr; // Inserted value must be produced by an instruction. 825 826 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 827 828 // Don't bother with more than single-level aggregates. 829 if (Indices.size() != 1) 830 return nullptr; // FIXME: deal with more complex aggregates? 831 832 // Now, we may have already previously recorded the value for this element 833 // of an aggregate. If we did, that means the CurrIVI will later be 834 // overwritten with the already-recorded value. But if not, let's record it! 835 Optional<Instruction *> &Elt = AggElts[Indices.front()]; 836 Elt = Elt.getValueOr(InsertedValue); 837 838 // FIXME: should we handle chain-terminating undef base operand? 839 } 840 841 // Was that sufficient to deduce the full initializer for the aggregate? 842 if (!KnowAllElts()) 843 return nullptr; // Give up then. 844 845 // We now want to find the source[s] of the aggregate elements we've found. 846 // And with "source" we mean the original aggregate[s] from which 847 // the inserted elements were extracted. This may require PHI translation. 848 849 enum class AggregateDescription { 850 /// When analyzing the value that was inserted into an aggregate, we did 851 /// not manage to find defining `extractvalue` instruction to analyze. 852 NotFound, 853 /// When analyzing the value that was inserted into an aggregate, we did 854 /// manage to find defining `extractvalue` instruction[s], and everything 855 /// matched perfectly - aggregate type, element insertion/extraction index. 856 Found, 857 /// When analyzing the value that was inserted into an aggregate, we did 858 /// manage to find defining `extractvalue` instruction, but there was 859 /// a mismatch: either the source type from which the extraction was didn't 860 /// match the aggregate type into which the insertion was, 861 /// or the extraction/insertion channels mismatched, 862 /// or different elements had different source aggregates. 863 FoundMismatch 864 }; 865 auto Describe = [](Optional<Value *> SourceAggregate) { 866 if (SourceAggregate == NotFound) 867 return AggregateDescription::NotFound; 868 if (*SourceAggregate == FoundMismatch) 869 return AggregateDescription::FoundMismatch; 870 return AggregateDescription::Found; 871 }; 872 873 // Given the value \p Elt that was being inserted into element \p EltIdx of an 874 // aggregate AggTy, see if \p Elt was originally defined by an 875 // appropriate extractvalue (same element index, same aggregate type). 876 // If found, return the source aggregate from which the extraction was. 877 // If \p PredBB is provided, does PHI translation of an \p Elt first. 878 auto FindSourceAggregate = 879 [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 880 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 881 // For now(?), only deal with, at most, a single level of PHI indirection. 882 if (UseBB && PredBB) 883 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 884 // FIXME: deal with multiple levels of PHI indirection? 885 886 // Did we find an extraction? 887 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 888 if (!EVI) 889 return NotFound; 890 891 Value *SourceAggregate = EVI->getAggregateOperand(); 892 893 // Is the extraction from the same type into which the insertion was? 894 if (SourceAggregate->getType() != AggTy) 895 return FoundMismatch; 896 // And the element index doesn't change between extraction and insertion? 897 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 898 return FoundMismatch; 899 900 return SourceAggregate; // AggregateDescription::Found 901 }; 902 903 // Given elements AggElts that were constructing an aggregate OrigIVI, 904 // see if we can find appropriate source aggregate for each of the elements, 905 // and see it's the same aggregate for each element. If so, return it. 906 auto FindCommonSourceAggregate = 907 [&](Optional<BasicBlock *> UseBB, 908 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 909 Optional<Value *> SourceAggregate; 910 911 for (auto I : enumerate(AggElts)) { 912 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 913 "We don't store nullptr in SourceAggregate!"); 914 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 915 (I.index() != 0) && 916 "SourceAggregate should be valid after the the first element,"); 917 918 // For this element, is there a plausible source aggregate? 919 // FIXME: we could special-case undef element, IFF we know that in the 920 // source aggregate said element isn't poison. 921 Optional<Value *> SourceAggregateForElement = 922 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 923 924 // Okay, what have we found? Does that correlate with previous findings? 925 926 // Regardless of whether or not we have previously found source 927 // aggregate for previous elements (if any), if we didn't find one for 928 // this element, passthrough whatever we have just found. 929 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 930 return SourceAggregateForElement; 931 932 // Okay, we have found source aggregate for this element. 933 // Let's see what we already know from previous elements, if any. 934 switch (Describe(SourceAggregate)) { 935 case AggregateDescription::NotFound: 936 // This is apparently the first element that we have examined. 937 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 938 continue; // Great, now look at next element. 939 case AggregateDescription::Found: 940 // We have previously already successfully examined other elements. 941 // Is this the same source aggregate we've found for other elements? 942 if (*SourceAggregateForElement != *SourceAggregate) 943 return FoundMismatch; 944 continue; // Still the same aggregate, look at next element. 945 case AggregateDescription::FoundMismatch: 946 llvm_unreachable("Can't happen. We would have early-exited then."); 947 }; 948 } 949 950 assert(Describe(SourceAggregate) == AggregateDescription::Found && 951 "Must be a valid Value"); 952 return *SourceAggregate; 953 }; 954 955 Optional<Value *> SourceAggregate; 956 957 // Can we find the source aggregate without looking at predecessors? 958 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 959 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 960 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 961 return nullptr; // Conflicting source aggregates! 962 ++NumAggregateReconstructionsSimplified; 963 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 964 } 965 966 // Okay, apparently we need to look at predecessors. 967 968 // We should be smart about picking the "use" basic block, which will be the 969 // merge point for aggregate, where we'll insert the final PHI that will be 970 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 971 // We should look in which blocks each of the AggElts is being defined, 972 // they all should be defined in the same basic block. 973 BasicBlock *UseBB = nullptr; 974 975 for (const Optional<Instruction *> &I : AggElts) { 976 BasicBlock *BB = (*I)->getParent(); 977 // If it's the first instruction we've encountered, record the basic block. 978 if (!UseBB) { 979 UseBB = BB; 980 continue; 981 } 982 // Otherwise, this must be the same basic block we've seen previously. 983 if (UseBB != BB) 984 return nullptr; 985 } 986 987 // If *all* of the elements are basic-block-independent, meaning they are 988 // either function arguments, or constant expressions, then if we didn't 989 // handle them without predecessor-aware handling, we won't handle them now. 990 if (!UseBB) 991 return nullptr; 992 993 // If we didn't manage to find source aggregate without looking at 994 // predecessors, and there are no predecessors to look at, then we're done. 995 if (pred_empty(UseBB)) 996 return nullptr; 997 998 // Arbitrary predecessor count limit. 999 static const int PredCountLimit = 64; 1000 1001 // Cache the (non-uniqified!) list of predecessors in a vector, 1002 // checking the limit at the same time for efficiency. 1003 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1004 for (BasicBlock *Pred : predecessors(UseBB)) { 1005 // Don't bother if there are too many predecessors. 1006 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1007 return nullptr; 1008 Preds.emplace_back(Pred); 1009 } 1010 1011 // For each predecessor, what is the source aggregate, 1012 // from which all the elements were originally extracted from? 1013 // Note that we want for the map to have stable iteration order! 1014 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1015 for (BasicBlock *Pred : Preds) { 1016 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1017 SourceAggregates.insert({Pred, nullptr}); 1018 // Did we already evaluate this predecessor? 1019 if (!IV.second) 1020 continue; 1021 1022 // Let's hope that when coming from predecessor Pred, all elements of the 1023 // aggregate produced by OrigIVI must have been originally extracted from 1024 // the same aggregate. Is that so? Can we find said original aggregate? 1025 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1026 if (Describe(SourceAggregate) != AggregateDescription::Found) 1027 return nullptr; // Give up. 1028 IV.first->second = *SourceAggregate; 1029 } 1030 1031 // All good! Now we just need to thread the source aggregates here. 1032 // Note that we have to insert the new PHI here, ourselves, because we can't 1033 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1034 // Note that the same block can be a predecessor more than once, 1035 // and we need to preserve that invariant for the PHI node. 1036 BuilderTy::InsertPointGuard Guard(Builder); 1037 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 1038 auto *PHI = 1039 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1040 for (BasicBlock *Pred : Preds) 1041 PHI->addIncoming(SourceAggregates[Pred], Pred); 1042 1043 ++NumAggregateReconstructionsSimplified; 1044 return replaceInstUsesWith(OrigIVI, PHI); 1045 } 1046 1047 /// Try to find redundant insertvalue instructions, like the following ones: 1048 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1049 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1050 /// Here the second instruction inserts values at the same indices, as the 1051 /// first one, making the first one redundant. 1052 /// It should be transformed to: 1053 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1054 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1055 bool IsRedundant = false; 1056 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1057 1058 // If there is a chain of insertvalue instructions (each of them except the 1059 // last one has only one use and it's another insertvalue insn from this 1060 // chain), check if any of the 'children' uses the same indices as the first 1061 // instruction. In this case, the first one is redundant. 1062 Value *V = &I; 1063 unsigned Depth = 0; 1064 while (V->hasOneUse() && Depth < 10) { 1065 User *U = V->user_back(); 1066 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1067 if (!UserInsInst || U->getOperand(0) != V) 1068 break; 1069 if (UserInsInst->getIndices() == FirstIndices) { 1070 IsRedundant = true; 1071 break; 1072 } 1073 V = UserInsInst; 1074 Depth++; 1075 } 1076 1077 if (IsRedundant) 1078 return replaceInstUsesWith(I, I.getOperand(0)); 1079 1080 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1081 return NewI; 1082 1083 return nullptr; 1084 } 1085 1086 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1087 // Can not analyze scalable type, the number of elements is not a compile-time 1088 // constant. 1089 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1090 return false; 1091 1092 int MaskSize = Shuf.getShuffleMask().size(); 1093 int VecSize = 1094 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1095 1096 // A vector select does not change the size of the operands. 1097 if (MaskSize != VecSize) 1098 return false; 1099 1100 // Each mask element must be undefined or choose a vector element from one of 1101 // the source operands without crossing vector lanes. 1102 for (int i = 0; i != MaskSize; ++i) { 1103 int Elt = Shuf.getMaskValue(i); 1104 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1105 return false; 1106 } 1107 1108 return true; 1109 } 1110 1111 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1112 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1113 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1114 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1115 // We are interested in the last insert in a chain. So if this insert has a 1116 // single user and that user is an insert, bail. 1117 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1118 return nullptr; 1119 1120 VectorType *VecTy = InsElt.getType(); 1121 // Can not handle scalable type, the number of elements is not a compile-time 1122 // constant. 1123 if (isa<ScalableVectorType>(VecTy)) 1124 return nullptr; 1125 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1126 1127 // Do not try to do this for a one-element vector, since that's a nop, 1128 // and will cause an inf-loop. 1129 if (NumElements == 1) 1130 return nullptr; 1131 1132 Value *SplatVal = InsElt.getOperand(1); 1133 InsertElementInst *CurrIE = &InsElt; 1134 SmallBitVector ElementPresent(NumElements, false); 1135 InsertElementInst *FirstIE = nullptr; 1136 1137 // Walk the chain backwards, keeping track of which indices we inserted into, 1138 // until we hit something that isn't an insert of the splatted value. 1139 while (CurrIE) { 1140 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1141 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1142 return nullptr; 1143 1144 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1145 // Check none of the intermediate steps have any additional uses, except 1146 // for the root insertelement instruction, which can be re-used, if it 1147 // inserts at position 0. 1148 if (CurrIE != &InsElt && 1149 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1150 return nullptr; 1151 1152 ElementPresent[Idx->getZExtValue()] = true; 1153 FirstIE = CurrIE; 1154 CurrIE = NextIE; 1155 } 1156 1157 // If this is just a single insertelement (not a sequence), we are done. 1158 if (FirstIE == &InsElt) 1159 return nullptr; 1160 1161 // If we are not inserting into an undef vector, make sure we've seen an 1162 // insert into every element. 1163 // TODO: If the base vector is not undef, it might be better to create a splat 1164 // and then a select-shuffle (blend) with the base vector. 1165 if (!match(FirstIE->getOperand(0), m_Undef())) 1166 if (!ElementPresent.all()) 1167 return nullptr; 1168 1169 // Create the insert + shuffle. 1170 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1171 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1172 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1173 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1174 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); 1175 1176 // Splat from element 0, but replace absent elements with undef in the mask. 1177 SmallVector<int, 16> Mask(NumElements, 0); 1178 for (unsigned i = 0; i != NumElements; ++i) 1179 if (!ElementPresent[i]) 1180 Mask[i] = -1; 1181 1182 return new ShuffleVectorInst(FirstIE, PoisonVec, Mask); 1183 } 1184 1185 /// Try to fold an insert element into an existing splat shuffle by changing 1186 /// the shuffle's mask to include the index of this insert element. 1187 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1188 // Check if the vector operand of this insert is a canonical splat shuffle. 1189 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1190 if (!Shuf || !Shuf->isZeroEltSplat()) 1191 return nullptr; 1192 1193 // Bail out early if shuffle is scalable type. The number of elements in 1194 // shuffle mask is unknown at compile-time. 1195 if (isa<ScalableVectorType>(Shuf->getType())) 1196 return nullptr; 1197 1198 // Check for a constant insertion index. 1199 uint64_t IdxC; 1200 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1201 return nullptr; 1202 1203 // Check if the splat shuffle's input is the same as this insert's scalar op. 1204 Value *X = InsElt.getOperand(1); 1205 Value *Op0 = Shuf->getOperand(0); 1206 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1207 return nullptr; 1208 1209 // Replace the shuffle mask element at the index of this insert with a zero. 1210 // For example: 1211 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 1212 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 1213 unsigned NumMaskElts = 1214 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1215 SmallVector<int, 16> NewMask(NumMaskElts); 1216 for (unsigned i = 0; i != NumMaskElts; ++i) 1217 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1218 1219 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 1220 } 1221 1222 /// Try to fold an extract+insert element into an existing identity shuffle by 1223 /// changing the shuffle's mask to include the index of this insert element. 1224 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1225 // Check if the vector operand of this insert is an identity shuffle. 1226 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1227 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1228 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1229 return nullptr; 1230 1231 // Bail out early if shuffle is scalable type. The number of elements in 1232 // shuffle mask is unknown at compile-time. 1233 if (isa<ScalableVectorType>(Shuf->getType())) 1234 return nullptr; 1235 1236 // Check for a constant insertion index. 1237 uint64_t IdxC; 1238 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1239 return nullptr; 1240 1241 // Check if this insert's scalar op is extracted from the identity shuffle's 1242 // input vector. 1243 Value *Scalar = InsElt.getOperand(1); 1244 Value *X = Shuf->getOperand(0); 1245 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1246 return nullptr; 1247 1248 // Replace the shuffle mask element at the index of this extract+insert with 1249 // that same index value. 1250 // For example: 1251 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1252 unsigned NumMaskElts = 1253 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1254 SmallVector<int, 16> NewMask(NumMaskElts); 1255 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1256 for (unsigned i = 0; i != NumMaskElts; ++i) { 1257 if (i != IdxC) { 1258 // All mask elements besides the inserted element remain the same. 1259 NewMask[i] = OldMask[i]; 1260 } else if (OldMask[i] == (int)IdxC) { 1261 // If the mask element was already set, there's nothing to do 1262 // (demanded elements analysis may unset it later). 1263 return nullptr; 1264 } else { 1265 assert(OldMask[i] == UndefMaskElem && 1266 "Unexpected shuffle mask element for identity shuffle"); 1267 NewMask[i] = IdxC; 1268 } 1269 } 1270 1271 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1272 } 1273 1274 /// If we have an insertelement instruction feeding into another insertelement 1275 /// and the 2nd is inserting a constant into the vector, canonicalize that 1276 /// constant insertion before the insertion of a variable: 1277 /// 1278 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1279 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1280 /// 1281 /// This has the potential of eliminating the 2nd insertelement instruction 1282 /// via constant folding of the scalar constant into a vector constant. 1283 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1284 InstCombiner::BuilderTy &Builder) { 1285 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1286 if (!InsElt1 || !InsElt1->hasOneUse()) 1287 return nullptr; 1288 1289 Value *X, *Y; 1290 Constant *ScalarC; 1291 ConstantInt *IdxC1, *IdxC2; 1292 if (match(InsElt1->getOperand(0), m_Value(X)) && 1293 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1294 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1295 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1296 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1297 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1298 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1299 } 1300 1301 return nullptr; 1302 } 1303 1304 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1305 /// --> shufflevector X, CVec', Mask' 1306 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1307 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1308 // Bail out if the parent has more than one use. In that case, we'd be 1309 // replacing the insertelt with a shuffle, and that's not a clear win. 1310 if (!Inst || !Inst->hasOneUse()) 1311 return nullptr; 1312 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1313 // The shuffle must have a constant vector operand. The insertelt must have 1314 // a constant scalar being inserted at a constant position in the vector. 1315 Constant *ShufConstVec, *InsEltScalar; 1316 uint64_t InsEltIndex; 1317 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1318 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1319 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1320 return nullptr; 1321 1322 // Adding an element to an arbitrary shuffle could be expensive, but a 1323 // shuffle that selects elements from vectors without crossing lanes is 1324 // assumed cheap. 1325 // If we're just adding a constant into that shuffle, it will still be 1326 // cheap. 1327 if (!isShuffleEquivalentToSelect(*Shuf)) 1328 return nullptr; 1329 1330 // From the above 'select' check, we know that the mask has the same number 1331 // of elements as the vector input operands. We also know that each constant 1332 // input element is used in its lane and can not be used more than once by 1333 // the shuffle. Therefore, replace the constant in the shuffle's constant 1334 // vector with the insertelt constant. Replace the constant in the shuffle's 1335 // mask vector with the insertelt index plus the length of the vector 1336 // (because the constant vector operand of a shuffle is always the 2nd 1337 // operand). 1338 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1339 unsigned NumElts = Mask.size(); 1340 SmallVector<Constant *, 16> NewShufElts(NumElts); 1341 SmallVector<int, 16> NewMaskElts(NumElts); 1342 for (unsigned I = 0; I != NumElts; ++I) { 1343 if (I == InsEltIndex) { 1344 NewShufElts[I] = InsEltScalar; 1345 NewMaskElts[I] = InsEltIndex + NumElts; 1346 } else { 1347 // Copy over the existing values. 1348 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1349 NewMaskElts[I] = Mask[I]; 1350 } 1351 } 1352 1353 // Create new operands for a shuffle that includes the constant of the 1354 // original insertelt. The old shuffle will be dead now. 1355 return new ShuffleVectorInst(Shuf->getOperand(0), 1356 ConstantVector::get(NewShufElts), NewMaskElts); 1357 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1358 // Transform sequences of insertelements ops with constant data/indexes into 1359 // a single shuffle op. 1360 // Can not handle scalable type, the number of elements needed to create 1361 // shuffle mask is not a compile-time constant. 1362 if (isa<ScalableVectorType>(InsElt.getType())) 1363 return nullptr; 1364 unsigned NumElts = 1365 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1366 1367 uint64_t InsertIdx[2]; 1368 Constant *Val[2]; 1369 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1370 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1371 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1372 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1373 return nullptr; 1374 SmallVector<Constant *, 16> Values(NumElts); 1375 SmallVector<int, 16> Mask(NumElts); 1376 auto ValI = std::begin(Val); 1377 // Generate new constant vector and mask. 1378 // We have 2 values/masks from the insertelements instructions. Insert them 1379 // into new value/mask vectors. 1380 for (uint64_t I : InsertIdx) { 1381 if (!Values[I]) { 1382 Values[I] = *ValI; 1383 Mask[I] = NumElts + I; 1384 } 1385 ++ValI; 1386 } 1387 // Remaining values are filled with 'undef' values. 1388 for (unsigned I = 0; I < NumElts; ++I) { 1389 if (!Values[I]) { 1390 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1391 Mask[I] = I; 1392 } 1393 } 1394 // Create new operands for a shuffle that includes the constant of the 1395 // original insertelt. 1396 return new ShuffleVectorInst(IEI->getOperand(0), 1397 ConstantVector::get(Values), Mask); 1398 } 1399 return nullptr; 1400 } 1401 1402 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1403 Value *VecOp = IE.getOperand(0); 1404 Value *ScalarOp = IE.getOperand(1); 1405 Value *IdxOp = IE.getOperand(2); 1406 1407 if (auto *V = SimplifyInsertElementInst( 1408 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1409 return replaceInstUsesWith(IE, V); 1410 1411 // If the scalar is bitcast and inserted into undef, do the insert in the 1412 // source type followed by bitcast. 1413 // TODO: Generalize for insert into any constant, not just undef? 1414 Value *ScalarSrc; 1415 if (match(VecOp, m_Undef()) && 1416 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1417 (ScalarSrc->getType()->isIntegerTy() || 1418 ScalarSrc->getType()->isFloatingPointTy())) { 1419 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1420 // bitcast (inselt undef, ScalarSrc, IdxOp) 1421 Type *ScalarTy = ScalarSrc->getType(); 1422 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1423 UndefValue *NewUndef = UndefValue::get(VecTy); 1424 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1425 return new BitCastInst(NewInsElt, IE.getType()); 1426 } 1427 1428 // If the vector and scalar are both bitcast from the same element type, do 1429 // the insert in that source type followed by bitcast. 1430 Value *VecSrc; 1431 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1432 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1433 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1434 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1435 cast<VectorType>(VecSrc->getType())->getElementType() == 1436 ScalarSrc->getType()) { 1437 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1438 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1439 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1440 return new BitCastInst(NewInsElt, IE.getType()); 1441 } 1442 1443 // If the inserted element was extracted from some other fixed-length vector 1444 // and both indexes are valid constants, try to turn this into a shuffle. 1445 // Can not handle scalable vector type, the number of elements needed to 1446 // create shuffle mask is not a compile-time constant. 1447 uint64_t InsertedIdx, ExtractedIdx; 1448 Value *ExtVecOp; 1449 if (isa<FixedVectorType>(IE.getType()) && 1450 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1451 match(ScalarOp, 1452 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1453 isa<FixedVectorType>(ExtVecOp->getType()) && 1454 ExtractedIdx < 1455 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1456 // TODO: Looking at the user(s) to determine if this insert is a 1457 // fold-to-shuffle opportunity does not match the usual instcombine 1458 // constraints. We should decide if the transform is worthy based only 1459 // on this instruction and its operands, but that may not work currently. 1460 // 1461 // Here, we are trying to avoid creating shuffles before reaching 1462 // the end of a chain of extract-insert pairs. This is complicated because 1463 // we do not generally form arbitrary shuffle masks in instcombine 1464 // (because those may codegen poorly), but collectShuffleElements() does 1465 // exactly that. 1466 // 1467 // The rules for determining what is an acceptable target-independent 1468 // shuffle mask are fuzzy because they evolve based on the backend's 1469 // capabilities and real-world impact. 1470 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1471 if (!Insert.hasOneUse()) 1472 return true; 1473 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1474 if (!InsertUser) 1475 return true; 1476 return false; 1477 }; 1478 1479 // Try to form a shuffle from a chain of extract-insert ops. 1480 if (isShuffleRootCandidate(IE)) { 1481 SmallVector<int, 16> Mask; 1482 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1483 1484 // The proposed shuffle may be trivial, in which case we shouldn't 1485 // perform the combine. 1486 if (LR.first != &IE && LR.second != &IE) { 1487 // We now have a shuffle of LHS, RHS, Mask. 1488 if (LR.second == nullptr) 1489 LR.second = UndefValue::get(LR.first->getType()); 1490 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1491 } 1492 } 1493 } 1494 1495 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1496 unsigned VWidth = VecTy->getNumElements(); 1497 APInt UndefElts(VWidth, 0); 1498 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1499 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1500 if (V != &IE) 1501 return replaceInstUsesWith(IE, V); 1502 return &IE; 1503 } 1504 } 1505 1506 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1507 return Shuf; 1508 1509 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1510 return NewInsElt; 1511 1512 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1513 return Broadcast; 1514 1515 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1516 return Splat; 1517 1518 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1519 return IdentityShuf; 1520 1521 return nullptr; 1522 } 1523 1524 /// Return true if we can evaluate the specified expression tree if the vector 1525 /// elements were shuffled in a different order. 1526 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1527 unsigned Depth = 5) { 1528 // We can always reorder the elements of a constant. 1529 if (isa<Constant>(V)) 1530 return true; 1531 1532 // We won't reorder vector arguments. No IPO here. 1533 Instruction *I = dyn_cast<Instruction>(V); 1534 if (!I) return false; 1535 1536 // Two users may expect different orders of the elements. Don't try it. 1537 if (!I->hasOneUse()) 1538 return false; 1539 1540 if (Depth == 0) return false; 1541 1542 switch (I->getOpcode()) { 1543 case Instruction::UDiv: 1544 case Instruction::SDiv: 1545 case Instruction::URem: 1546 case Instruction::SRem: 1547 // Propagating an undefined shuffle mask element to integer div/rem is not 1548 // allowed because those opcodes can create immediate undefined behavior 1549 // from an undefined element in an operand. 1550 if (llvm::is_contained(Mask, -1)) 1551 return false; 1552 LLVM_FALLTHROUGH; 1553 case Instruction::Add: 1554 case Instruction::FAdd: 1555 case Instruction::Sub: 1556 case Instruction::FSub: 1557 case Instruction::Mul: 1558 case Instruction::FMul: 1559 case Instruction::FDiv: 1560 case Instruction::FRem: 1561 case Instruction::Shl: 1562 case Instruction::LShr: 1563 case Instruction::AShr: 1564 case Instruction::And: 1565 case Instruction::Or: 1566 case Instruction::Xor: 1567 case Instruction::ICmp: 1568 case Instruction::FCmp: 1569 case Instruction::Trunc: 1570 case Instruction::ZExt: 1571 case Instruction::SExt: 1572 case Instruction::FPToUI: 1573 case Instruction::FPToSI: 1574 case Instruction::UIToFP: 1575 case Instruction::SIToFP: 1576 case Instruction::FPTrunc: 1577 case Instruction::FPExt: 1578 case Instruction::GetElementPtr: { 1579 // Bail out if we would create longer vector ops. We could allow creating 1580 // longer vector ops, but that may result in more expensive codegen. 1581 Type *ITy = I->getType(); 1582 if (ITy->isVectorTy() && 1583 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1584 return false; 1585 for (Value *Operand : I->operands()) { 1586 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1587 return false; 1588 } 1589 return true; 1590 } 1591 case Instruction::InsertElement: { 1592 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1593 if (!CI) return false; 1594 int ElementNumber = CI->getLimitedValue(); 1595 1596 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1597 // can't put an element into multiple indices. 1598 bool SeenOnce = false; 1599 for (int i = 0, e = Mask.size(); i != e; ++i) { 1600 if (Mask[i] == ElementNumber) { 1601 if (SeenOnce) 1602 return false; 1603 SeenOnce = true; 1604 } 1605 } 1606 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1607 } 1608 } 1609 return false; 1610 } 1611 1612 /// Rebuild a new instruction just like 'I' but with the new operands given. 1613 /// In the event of type mismatch, the type of the operands is correct. 1614 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1615 // We don't want to use the IRBuilder here because we want the replacement 1616 // instructions to appear next to 'I', not the builder's insertion point. 1617 switch (I->getOpcode()) { 1618 case Instruction::Add: 1619 case Instruction::FAdd: 1620 case Instruction::Sub: 1621 case Instruction::FSub: 1622 case Instruction::Mul: 1623 case Instruction::FMul: 1624 case Instruction::UDiv: 1625 case Instruction::SDiv: 1626 case Instruction::FDiv: 1627 case Instruction::URem: 1628 case Instruction::SRem: 1629 case Instruction::FRem: 1630 case Instruction::Shl: 1631 case Instruction::LShr: 1632 case Instruction::AShr: 1633 case Instruction::And: 1634 case Instruction::Or: 1635 case Instruction::Xor: { 1636 BinaryOperator *BO = cast<BinaryOperator>(I); 1637 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1638 BinaryOperator *New = 1639 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1640 NewOps[0], NewOps[1], "", BO); 1641 if (isa<OverflowingBinaryOperator>(BO)) { 1642 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1643 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1644 } 1645 if (isa<PossiblyExactOperator>(BO)) { 1646 New->setIsExact(BO->isExact()); 1647 } 1648 if (isa<FPMathOperator>(BO)) 1649 New->copyFastMathFlags(I); 1650 return New; 1651 } 1652 case Instruction::ICmp: 1653 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1654 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1655 NewOps[0], NewOps[1]); 1656 case Instruction::FCmp: 1657 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1658 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1659 NewOps[0], NewOps[1]); 1660 case Instruction::Trunc: 1661 case Instruction::ZExt: 1662 case Instruction::SExt: 1663 case Instruction::FPToUI: 1664 case Instruction::FPToSI: 1665 case Instruction::UIToFP: 1666 case Instruction::SIToFP: 1667 case Instruction::FPTrunc: 1668 case Instruction::FPExt: { 1669 // It's possible that the mask has a different number of elements from 1670 // the original cast. We recompute the destination type to match the mask. 1671 Type *DestTy = VectorType::get( 1672 I->getType()->getScalarType(), 1673 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1674 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1675 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1676 "", I); 1677 } 1678 case Instruction::GetElementPtr: { 1679 Value *Ptr = NewOps[0]; 1680 ArrayRef<Value*> Idx = NewOps.slice(1); 1681 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1682 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1683 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1684 return GEP; 1685 } 1686 } 1687 llvm_unreachable("failed to rebuild vector instructions"); 1688 } 1689 1690 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1691 // Mask.size() does not need to be equal to the number of vector elements. 1692 1693 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1694 Type *EltTy = V->getType()->getScalarType(); 1695 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1696 if (match(V, m_Undef())) 1697 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1698 1699 if (isa<ConstantAggregateZero>(V)) 1700 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1701 1702 if (Constant *C = dyn_cast<Constant>(V)) 1703 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 1704 Mask); 1705 1706 Instruction *I = cast<Instruction>(V); 1707 switch (I->getOpcode()) { 1708 case Instruction::Add: 1709 case Instruction::FAdd: 1710 case Instruction::Sub: 1711 case Instruction::FSub: 1712 case Instruction::Mul: 1713 case Instruction::FMul: 1714 case Instruction::UDiv: 1715 case Instruction::SDiv: 1716 case Instruction::FDiv: 1717 case Instruction::URem: 1718 case Instruction::SRem: 1719 case Instruction::FRem: 1720 case Instruction::Shl: 1721 case Instruction::LShr: 1722 case Instruction::AShr: 1723 case Instruction::And: 1724 case Instruction::Or: 1725 case Instruction::Xor: 1726 case Instruction::ICmp: 1727 case Instruction::FCmp: 1728 case Instruction::Trunc: 1729 case Instruction::ZExt: 1730 case Instruction::SExt: 1731 case Instruction::FPToUI: 1732 case Instruction::FPToSI: 1733 case Instruction::UIToFP: 1734 case Instruction::SIToFP: 1735 case Instruction::FPTrunc: 1736 case Instruction::FPExt: 1737 case Instruction::Select: 1738 case Instruction::GetElementPtr: { 1739 SmallVector<Value*, 8> NewOps; 1740 bool NeedsRebuild = 1741 (Mask.size() != 1742 cast<FixedVectorType>(I->getType())->getNumElements()); 1743 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1744 Value *V; 1745 // Recursively call evaluateInDifferentElementOrder on vector arguments 1746 // as well. E.g. GetElementPtr may have scalar operands even if the 1747 // return value is a vector, so we need to examine the operand type. 1748 if (I->getOperand(i)->getType()->isVectorTy()) 1749 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1750 else 1751 V = I->getOperand(i); 1752 NewOps.push_back(V); 1753 NeedsRebuild |= (V != I->getOperand(i)); 1754 } 1755 if (NeedsRebuild) { 1756 return buildNew(I, NewOps); 1757 } 1758 return I; 1759 } 1760 case Instruction::InsertElement: { 1761 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1762 1763 // The insertelement was inserting at Element. Figure out which element 1764 // that becomes after shuffling. The answer is guaranteed to be unique 1765 // by CanEvaluateShuffled. 1766 bool Found = false; 1767 int Index = 0; 1768 for (int e = Mask.size(); Index != e; ++Index) { 1769 if (Mask[Index] == Element) { 1770 Found = true; 1771 break; 1772 } 1773 } 1774 1775 // If element is not in Mask, no need to handle the operand 1 (element to 1776 // be inserted). Just evaluate values in operand 0 according to Mask. 1777 if (!Found) 1778 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1779 1780 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1781 return InsertElementInst::Create(V, I->getOperand(1), 1782 ConstantInt::get(I32Ty, Index), "", I); 1783 } 1784 } 1785 llvm_unreachable("failed to reorder elements of vector instruction!"); 1786 } 1787 1788 // Returns true if the shuffle is extracting a contiguous range of values from 1789 // LHS, for example: 1790 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1791 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1792 // Shuffles to: |EE|FF|GG|HH| 1793 // +--+--+--+--+ 1794 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1795 ArrayRef<int> Mask) { 1796 unsigned LHSElems = 1797 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1798 unsigned MaskElems = Mask.size(); 1799 unsigned BegIdx = Mask.front(); 1800 unsigned EndIdx = Mask.back(); 1801 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1802 return false; 1803 for (unsigned I = 0; I != MaskElems; ++I) 1804 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1805 return false; 1806 return true; 1807 } 1808 1809 /// These are the ingredients in an alternate form binary operator as described 1810 /// below. 1811 struct BinopElts { 1812 BinaryOperator::BinaryOps Opcode; 1813 Value *Op0; 1814 Value *Op1; 1815 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1816 Value *V0 = nullptr, Value *V1 = nullptr) : 1817 Opcode(Opc), Op0(V0), Op1(V1) {} 1818 operator bool() const { return Opcode != 0; } 1819 }; 1820 1821 /// Binops may be transformed into binops with different opcodes and operands. 1822 /// Reverse the usual canonicalization to enable folds with the non-canonical 1823 /// form of the binop. If a transform is possible, return the elements of the 1824 /// new binop. If not, return invalid elements. 1825 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1826 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1827 Type *Ty = BO->getType(); 1828 switch (BO->getOpcode()) { 1829 case Instruction::Shl: { 1830 // shl X, C --> mul X, (1 << C) 1831 Constant *C; 1832 if (match(BO1, m_Constant(C))) { 1833 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1834 return { Instruction::Mul, BO0, ShlOne }; 1835 } 1836 break; 1837 } 1838 case Instruction::Or: { 1839 // or X, C --> add X, C (when X and C have no common bits set) 1840 const APInt *C; 1841 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1842 return { Instruction::Add, BO0, BO1 }; 1843 break; 1844 } 1845 default: 1846 break; 1847 } 1848 return {}; 1849 } 1850 1851 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1852 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1853 1854 // Are we shuffling together some value and that same value after it has been 1855 // modified by a binop with a constant? 1856 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1857 Constant *C; 1858 bool Op0IsBinop; 1859 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1860 Op0IsBinop = true; 1861 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1862 Op0IsBinop = false; 1863 else 1864 return nullptr; 1865 1866 // The identity constant for a binop leaves a variable operand unchanged. For 1867 // a vector, this is a splat of something like 0, -1, or 1. 1868 // If there's no identity constant for this binop, we're done. 1869 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1870 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1871 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1872 if (!IdC) 1873 return nullptr; 1874 1875 // Shuffle identity constants into the lanes that return the original value. 1876 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1877 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1878 // The existing binop constant vector remains in the same operand position. 1879 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1880 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1881 ConstantExpr::getShuffleVector(IdC, C, Mask); 1882 1883 bool MightCreatePoisonOrUB = 1884 is_contained(Mask, UndefMaskElem) && 1885 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1886 if (MightCreatePoisonOrUB) 1887 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1888 1889 // shuf (bop X, C), X, M --> bop X, C' 1890 // shuf X, (bop X, C), M --> bop X, C' 1891 Value *X = Op0IsBinop ? Op1 : Op0; 1892 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1893 NewBO->copyIRFlags(BO); 1894 1895 // An undef shuffle mask element may propagate as an undef constant element in 1896 // the new binop. That would produce poison where the original code might not. 1897 // If we already made a safe constant, then there's no danger. 1898 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1899 NewBO->dropPoisonGeneratingFlags(); 1900 return NewBO; 1901 } 1902 1903 /// If we have an insert of a scalar to a non-zero element of an undefined 1904 /// vector and then shuffle that value, that's the same as inserting to the zero 1905 /// element and shuffling. Splatting from the zero element is recognized as the 1906 /// canonical form of splat. 1907 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1908 InstCombiner::BuilderTy &Builder) { 1909 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1910 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1911 Value *X; 1912 uint64_t IndexC; 1913 1914 // Match a shuffle that is a splat to a non-zero element. 1915 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 1916 m_ConstantInt(IndexC)))) || 1917 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1918 return nullptr; 1919 1920 // Insert into element 0 of an undef vector. 1921 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1922 Constant *Zero = Builder.getInt32(0); 1923 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1924 1925 // Splat from element 0. Any mask element that is undefined remains undefined. 1926 // For example: 1927 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1928 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1929 unsigned NumMaskElts = 1930 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 1931 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1932 for (unsigned i = 0; i != NumMaskElts; ++i) 1933 if (Mask[i] == UndefMaskElem) 1934 NewMask[i] = Mask[i]; 1935 1936 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1937 } 1938 1939 /// Try to fold shuffles that are the equivalent of a vector select. 1940 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1941 InstCombiner::BuilderTy &Builder, 1942 const DataLayout &DL) { 1943 if (!Shuf.isSelect()) 1944 return nullptr; 1945 1946 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1947 // Commuting undef to operand 0 conflicts with another canonicalization. 1948 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 1949 if (!match(Shuf.getOperand(1), m_Undef()) && 1950 Shuf.getMaskValue(0) >= (int)NumElts) { 1951 // TODO: Can we assert that both operands of a shuffle-select are not undef 1952 // (otherwise, it would have been folded by instsimplify? 1953 Shuf.commute(); 1954 return &Shuf; 1955 } 1956 1957 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1958 return I; 1959 1960 BinaryOperator *B0, *B1; 1961 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1962 !match(Shuf.getOperand(1), m_BinOp(B1))) 1963 return nullptr; 1964 1965 Value *X, *Y; 1966 Constant *C0, *C1; 1967 bool ConstantsAreOp1; 1968 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1969 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1970 ConstantsAreOp1 = true; 1971 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1972 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1973 ConstantsAreOp1 = false; 1974 else 1975 return nullptr; 1976 1977 // We need matching binops to fold the lanes together. 1978 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1979 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1980 bool DropNSW = false; 1981 if (ConstantsAreOp1 && Opc0 != Opc1) { 1982 // TODO: We drop "nsw" if shift is converted into multiply because it may 1983 // not be correct when the shift amount is BitWidth - 1. We could examine 1984 // each vector element to determine if it is safe to keep that flag. 1985 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1986 DropNSW = true; 1987 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1988 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1989 Opc0 = AltB0.Opcode; 1990 C0 = cast<Constant>(AltB0.Op1); 1991 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1992 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1993 Opc1 = AltB1.Opcode; 1994 C1 = cast<Constant>(AltB1.Op1); 1995 } 1996 } 1997 1998 if (Opc0 != Opc1) 1999 return nullptr; 2000 2001 // The opcodes must be the same. Use a new name to make that clear. 2002 BinaryOperator::BinaryOps BOpc = Opc0; 2003 2004 // Select the constant elements needed for the single binop. 2005 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2006 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2007 2008 // We are moving a binop after a shuffle. When a shuffle has an undefined 2009 // mask element, the result is undefined, but it is not poison or undefined 2010 // behavior. That is not necessarily true for div/rem/shift. 2011 bool MightCreatePoisonOrUB = 2012 is_contained(Mask, UndefMaskElem) && 2013 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2014 if (MightCreatePoisonOrUB) 2015 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2016 ConstantsAreOp1); 2017 2018 Value *V; 2019 if (X == Y) { 2020 // Remove a binop and the shuffle by rearranging the constant: 2021 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2022 // shuffle (op C0, V), (op C1, V), M --> op C', V 2023 V = X; 2024 } else { 2025 // If there are 2 different variable operands, we must create a new shuffle 2026 // (select) first, so check uses to ensure that we don't end up with more 2027 // instructions than we started with. 2028 if (!B0->hasOneUse() && !B1->hasOneUse()) 2029 return nullptr; 2030 2031 // If we use the original shuffle mask and op1 is *variable*, we would be 2032 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2033 // poison. We do not have to guard against UB when *constants* are op1 2034 // because safe constants guarantee that we do not overflow sdiv/srem (and 2035 // there's no danger for other opcodes). 2036 // TODO: To allow this case, create a new shuffle mask with no undefs. 2037 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2038 return nullptr; 2039 2040 // Note: In general, we do not create new shuffles in InstCombine because we 2041 // do not know if a target can lower an arbitrary shuffle optimally. In this 2042 // case, the shuffle uses the existing mask, so there is no additional risk. 2043 2044 // Select the variable vectors first, then perform the binop: 2045 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2046 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2047 V = Builder.CreateShuffleVector(X, Y, Mask); 2048 } 2049 2050 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 2051 BinaryOperator::Create(BOpc, NewC, V); 2052 2053 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2054 // 1. If we changed an opcode, poison conditions might have changed. 2055 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2056 // where the original code did not. But if we already made a safe constant, 2057 // then there's no danger. 2058 NewBO->copyIRFlags(B0); 2059 NewBO->andIRFlags(B1); 2060 if (DropNSW) 2061 NewBO->setHasNoSignedWrap(false); 2062 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2063 NewBO->dropPoisonGeneratingFlags(); 2064 return NewBO; 2065 } 2066 2067 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2068 /// Example (little endian): 2069 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2070 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2071 bool IsBigEndian) { 2072 // This must be a bitcasted shuffle of 1 vector integer operand. 2073 Type *DestType = Shuf.getType(); 2074 Value *X; 2075 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2076 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2077 return nullptr; 2078 2079 // The source type must have the same number of elements as the shuffle, 2080 // and the source element type must be larger than the shuffle element type. 2081 Type *SrcType = X->getType(); 2082 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2083 cast<FixedVectorType>(SrcType)->getNumElements() != 2084 cast<FixedVectorType>(DestType)->getNumElements() || 2085 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2086 return nullptr; 2087 2088 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2089 "Expected a shuffle that decreases length"); 2090 2091 // Last, check that the mask chooses the correct low bits for each narrow 2092 // element in the result. 2093 uint64_t TruncRatio = 2094 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2095 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2096 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2097 if (Mask[i] == UndefMaskElem) 2098 continue; 2099 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2100 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2101 if (Mask[i] != (int)LSBIndex) 2102 return nullptr; 2103 } 2104 2105 return new TruncInst(X, DestType); 2106 } 2107 2108 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2109 /// narrowing (concatenating with undef and extracting back to the original 2110 /// length). This allows replacing the wide select with a narrow select. 2111 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2112 InstCombiner::BuilderTy &Builder) { 2113 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2114 // of the 1st vector operand of a shuffle. 2115 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2116 return nullptr; 2117 2118 // The vector being shuffled must be a vector select that we can eliminate. 2119 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2120 Value *Cond, *X, *Y; 2121 if (!match(Shuf.getOperand(0), 2122 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2123 return nullptr; 2124 2125 // We need a narrow condition value. It must be extended with undef elements 2126 // and have the same number of elements as this shuffle. 2127 unsigned NarrowNumElts = 2128 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2129 Value *NarrowCond; 2130 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2131 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2132 NarrowNumElts || 2133 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2134 return nullptr; 2135 2136 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2137 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2138 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2139 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2140 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2141 } 2142 2143 /// Try to fold an extract subvector operation. 2144 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2145 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2146 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) 2147 return nullptr; 2148 2149 // Check if we are extracting all bits of an inserted scalar: 2150 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2151 Value *X; 2152 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2153 X->getType()->getPrimitiveSizeInBits() == 2154 Shuf.getType()->getPrimitiveSizeInBits()) 2155 return new BitCastInst(X, Shuf.getType()); 2156 2157 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2158 Value *Y; 2159 ArrayRef<int> Mask; 2160 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2161 return nullptr; 2162 2163 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2164 // then combining may result in worse codegen. 2165 if (!Op0->hasOneUse()) 2166 return nullptr; 2167 2168 // We are extracting a subvector from a shuffle. Remove excess elements from 2169 // the 1st shuffle mask to eliminate the extract. 2170 // 2171 // This transform is conservatively limited to identity extracts because we do 2172 // not allow arbitrary shuffle mask creation as a target-independent transform 2173 // (because we can't guarantee that will lower efficiently). 2174 // 2175 // If the extracting shuffle has an undef mask element, it transfers to the 2176 // new shuffle mask. Otherwise, copy the original mask element. Example: 2177 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2178 // shuf X, Y, <C0, undef, C2, undef> 2179 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2180 SmallVector<int, 16> NewMask(NumElts); 2181 assert(NumElts < Mask.size() && 2182 "Identity with extract must have less elements than its inputs"); 2183 2184 for (unsigned i = 0; i != NumElts; ++i) { 2185 int ExtractMaskElt = Shuf.getMaskValue(i); 2186 int MaskElt = Mask[i]; 2187 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2188 } 2189 return new ShuffleVectorInst(X, Y, NewMask); 2190 } 2191 2192 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2193 /// operand with the operand of an insertelement. 2194 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2195 InstCombinerImpl &IC) { 2196 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2197 SmallVector<int, 16> Mask; 2198 Shuf.getShuffleMask(Mask); 2199 2200 // The shuffle must not change vector sizes. 2201 // TODO: This restriction could be removed if the insert has only one use 2202 // (because the transform would require a new length-changing shuffle). 2203 int NumElts = Mask.size(); 2204 if (NumElts != (int)(cast<FixedVectorType>(V0->getType())->getNumElements())) 2205 return nullptr; 2206 2207 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2208 // not be able to handle it there if the insertelement has >1 use. 2209 // If the shuffle has an insertelement operand but does not choose the 2210 // inserted scalar element from that value, then we can replace that shuffle 2211 // operand with the source vector of the insertelement. 2212 Value *X; 2213 uint64_t IdxC; 2214 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2215 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2216 if (!is_contained(Mask, (int)IdxC)) 2217 return IC.replaceOperand(Shuf, 0, X); 2218 } 2219 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2220 // Offset the index constant by the vector width because we are checking for 2221 // accesses to the 2nd vector input of the shuffle. 2222 IdxC += NumElts; 2223 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2224 if (!is_contained(Mask, (int)IdxC)) 2225 return IC.replaceOperand(Shuf, 1, X); 2226 } 2227 2228 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2229 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2230 // We need an insertelement with a constant index. 2231 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2232 m_ConstantInt(IndexC)))) 2233 return false; 2234 2235 // Test the shuffle mask to see if it splices the inserted scalar into the 2236 // operand 1 vector of the shuffle. 2237 int NewInsIndex = -1; 2238 for (int i = 0; i != NumElts; ++i) { 2239 // Ignore undef mask elements. 2240 if (Mask[i] == -1) 2241 continue; 2242 2243 // The shuffle takes elements of operand 1 without lane changes. 2244 if (Mask[i] == NumElts + i) 2245 continue; 2246 2247 // The shuffle must choose the inserted scalar exactly once. 2248 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2249 return false; 2250 2251 // The shuffle is placing the inserted scalar into element i. 2252 NewInsIndex = i; 2253 } 2254 2255 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2256 2257 // Index is updated to the potentially translated insertion lane. 2258 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2259 return true; 2260 }; 2261 2262 // If the shuffle is unnecessary, insert the scalar operand directly into 2263 // operand 1 of the shuffle. Example: 2264 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2265 Value *Scalar; 2266 ConstantInt *IndexC; 2267 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2268 return InsertElementInst::Create(V1, Scalar, IndexC); 2269 2270 // Try again after commuting shuffle. Example: 2271 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2272 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2273 std::swap(V0, V1); 2274 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2275 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2276 return InsertElementInst::Create(V1, Scalar, IndexC); 2277 2278 return nullptr; 2279 } 2280 2281 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2282 // Match the operands as identity with padding (also known as concatenation 2283 // with undef) shuffles of the same source type. The backend is expected to 2284 // recreate these concatenations from a shuffle of narrow operands. 2285 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2286 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2287 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2288 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2289 return nullptr; 2290 2291 // We limit this transform to power-of-2 types because we expect that the 2292 // backend can convert the simplified IR patterns to identical nodes as the 2293 // original IR. 2294 // TODO: If we can verify the same behavior for arbitrary types, the 2295 // power-of-2 checks can be removed. 2296 Value *X = Shuffle0->getOperand(0); 2297 Value *Y = Shuffle1->getOperand(0); 2298 if (X->getType() != Y->getType() || 2299 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2300 !isPowerOf2_32( 2301 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2302 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2303 match(X, m_Undef()) || match(Y, m_Undef())) 2304 return nullptr; 2305 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2306 match(Shuffle1->getOperand(1), m_Undef()) && 2307 "Unexpected operand for identity shuffle"); 2308 2309 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2310 // operands directly by adjusting the shuffle mask to account for the narrower 2311 // types: 2312 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2313 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2314 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2315 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2316 2317 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2318 SmallVector<int, 16> NewMask(Mask.size(), -1); 2319 for (int i = 0, e = Mask.size(); i != e; ++i) { 2320 if (Mask[i] == -1) 2321 continue; 2322 2323 // If this shuffle is choosing an undef element from 1 of the sources, that 2324 // element is undef. 2325 if (Mask[i] < WideElts) { 2326 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2327 continue; 2328 } else { 2329 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2330 continue; 2331 } 2332 2333 // If this shuffle is choosing from the 1st narrow op, the mask element is 2334 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2335 // element is offset down to adjust for the narrow vector widths. 2336 if (Mask[i] < WideElts) { 2337 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2338 NewMask[i] = Mask[i]; 2339 } else { 2340 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2341 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2342 } 2343 } 2344 return new ShuffleVectorInst(X, Y, NewMask); 2345 } 2346 2347 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2348 Value *LHS = SVI.getOperand(0); 2349 Value *RHS = SVI.getOperand(1); 2350 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2351 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2352 SVI.getType(), ShufQuery)) 2353 return replaceInstUsesWith(SVI, V); 2354 2355 // Bail out for scalable vectors 2356 if (isa<ScalableVectorType>(LHS->getType())) 2357 return nullptr; 2358 2359 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2360 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2361 2362 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2363 // 2364 // if X and Y are of the same (vector) type, and the element size is not 2365 // changed by the bitcasts, we can distribute the bitcasts through the 2366 // shuffle, hopefully reducing the number of instructions. We make sure that 2367 // at least one bitcast only has one use, so we don't *increase* the number of 2368 // instructions here. 2369 Value *X, *Y; 2370 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2371 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2372 X->getType()->getScalarSizeInBits() == 2373 SVI.getType()->getScalarSizeInBits() && 2374 (LHS->hasOneUse() || RHS->hasOneUse())) { 2375 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2376 SVI.getName() + ".uncasted"); 2377 return new BitCastInst(V, SVI.getType()); 2378 } 2379 2380 ArrayRef<int> Mask = SVI.getShuffleMask(); 2381 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2382 2383 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2384 // simulated shuffle can simplify, then this shuffle is unnecessary: 2385 // shuf (bitcast X), undef, Mask --> bitcast X' 2386 // TODO: This could be extended to allow length-changing shuffles. 2387 // The transform might also be obsoleted if we allowed canonicalization 2388 // of bitcasted shuffles. 2389 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2390 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2391 // Try to create a scaled mask constant. 2392 auto *XType = cast<FixedVectorType>(X->getType()); 2393 unsigned XNumElts = XType->getNumElements(); 2394 SmallVector<int, 16> ScaledMask; 2395 if (XNumElts >= VWidth) { 2396 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2397 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2398 } else { 2399 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2400 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2401 ScaledMask.clear(); 2402 } 2403 if (!ScaledMask.empty()) { 2404 // If the shuffled source vector simplifies, cast that value to this 2405 // shuffle's type. 2406 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2407 ScaledMask, XType, ShufQuery)) 2408 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2409 } 2410 } 2411 2412 // shuffle x, x, mask --> shuffle x, undef, mask' 2413 if (LHS == RHS) { 2414 assert(!match(RHS, m_Undef()) && 2415 "Shuffle with 2 undef ops not simplified?"); 2416 // Remap any references to RHS to use LHS. 2417 SmallVector<int, 16> Elts; 2418 for (unsigned i = 0; i != VWidth; ++i) { 2419 // Propagate undef elements or force mask to LHS. 2420 if (Mask[i] < 0) 2421 Elts.push_back(UndefMaskElem); 2422 else 2423 Elts.push_back(Mask[i] % LHSWidth); 2424 } 2425 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 2426 } 2427 2428 // shuffle undef, x, mask --> shuffle x, undef, mask' 2429 if (match(LHS, m_Undef())) { 2430 SVI.commute(); 2431 return &SVI; 2432 } 2433 2434 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2435 return I; 2436 2437 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2438 return I; 2439 2440 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2441 return I; 2442 2443 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2444 return I; 2445 2446 APInt UndefElts(VWidth, 0); 2447 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2448 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2449 if (V != &SVI) 2450 return replaceInstUsesWith(SVI, V); 2451 return &SVI; 2452 } 2453 2454 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2455 return I; 2456 2457 // These transforms have the potential to lose undef knowledge, so they are 2458 // intentionally placed after SimplifyDemandedVectorElts(). 2459 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2460 return I; 2461 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2462 return I; 2463 2464 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { 2465 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2466 return replaceInstUsesWith(SVI, V); 2467 } 2468 2469 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2470 // a non-vector type. We can instead bitcast the original vector followed by 2471 // an extract of the desired element: 2472 // 2473 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2474 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2475 // %1 = bitcast <4 x i8> %sroa to i32 2476 // Becomes: 2477 // %bc = bitcast <16 x i8> %in to <4 x i32> 2478 // %ext = extractelement <4 x i32> %bc, i32 0 2479 // 2480 // If the shuffle is extracting a contiguous range of values from the input 2481 // vector then each use which is a bitcast of the extracted size can be 2482 // replaced. This will work if the vector types are compatible, and the begin 2483 // index is aligned to a value in the casted vector type. If the begin index 2484 // isn't aligned then we can shuffle the original vector (keeping the same 2485 // vector type) before extracting. 2486 // 2487 // This code will bail out if the target type is fundamentally incompatible 2488 // with vectors of the source type. 2489 // 2490 // Example of <16 x i8>, target type i32: 2491 // Index range [4,8): v-----------v Will work. 2492 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2493 // <16 x i8>: | | | | | | | | | | | | | | | | | 2494 // <4 x i32>: | | | | | 2495 // +-----------+-----------+-----------+-----------+ 2496 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2497 // Target type i40: ^--------------^ Won't work, bail. 2498 bool MadeChange = false; 2499 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2500 Value *V = LHS; 2501 unsigned MaskElems = Mask.size(); 2502 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2503 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2504 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2505 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2506 unsigned SrcNumElems = SrcTy->getNumElements(); 2507 SmallVector<BitCastInst *, 8> BCs; 2508 DenseMap<Type *, Value *> NewBCs; 2509 for (User *U : SVI.users()) 2510 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2511 if (!BC->use_empty()) 2512 // Only visit bitcasts that weren't previously handled. 2513 BCs.push_back(BC); 2514 for (BitCastInst *BC : BCs) { 2515 unsigned BegIdx = Mask.front(); 2516 Type *TgtTy = BC->getDestTy(); 2517 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2518 if (!TgtElemBitWidth) 2519 continue; 2520 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2521 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2522 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2523 if (!VecBitWidthsEqual) 2524 continue; 2525 if (!VectorType::isValidElementType(TgtTy)) 2526 continue; 2527 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2528 if (!BegIsAligned) { 2529 // Shuffle the input so [0,NumElements) contains the output, and 2530 // [NumElems,SrcNumElems) is undef. 2531 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2532 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2533 ShuffleMask[I] = Idx; 2534 V = Builder.CreateShuffleVector(V, ShuffleMask, 2535 SVI.getName() + ".extract"); 2536 BegIdx = 0; 2537 } 2538 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2539 assert(SrcElemsPerTgtElem); 2540 BegIdx /= SrcElemsPerTgtElem; 2541 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2542 auto *NewBC = 2543 BCAlreadyExists 2544 ? NewBCs[CastSrcTy] 2545 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2546 if (!BCAlreadyExists) 2547 NewBCs[CastSrcTy] = NewBC; 2548 auto *Ext = Builder.CreateExtractElement( 2549 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2550 // The shufflevector isn't being replaced: the bitcast that used it 2551 // is. InstCombine will visit the newly-created instructions. 2552 replaceInstUsesWith(*BC, Ext); 2553 MadeChange = true; 2554 } 2555 } 2556 2557 // If the LHS is a shufflevector itself, see if we can combine it with this 2558 // one without producing an unusual shuffle. 2559 // Cases that might be simplified: 2560 // 1. 2561 // x1=shuffle(v1,v2,mask1) 2562 // x=shuffle(x1,undef,mask) 2563 // ==> 2564 // x=shuffle(v1,undef,newMask) 2565 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2566 // 2. 2567 // x1=shuffle(v1,undef,mask1) 2568 // x=shuffle(x1,x2,mask) 2569 // where v1.size() == mask1.size() 2570 // ==> 2571 // x=shuffle(v1,x2,newMask) 2572 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2573 // 3. 2574 // x2=shuffle(v2,undef,mask2) 2575 // x=shuffle(x1,x2,mask) 2576 // where v2.size() == mask2.size() 2577 // ==> 2578 // x=shuffle(x1,v2,newMask) 2579 // newMask[i] = (mask[i] < x1.size()) 2580 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2581 // 4. 2582 // x1=shuffle(v1,undef,mask1) 2583 // x2=shuffle(v2,undef,mask2) 2584 // x=shuffle(x1,x2,mask) 2585 // where v1.size() == v2.size() 2586 // ==> 2587 // x=shuffle(v1,v2,newMask) 2588 // newMask[i] = (mask[i] < x1.size()) 2589 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2590 // 2591 // Here we are really conservative: 2592 // we are absolutely afraid of producing a shuffle mask not in the input 2593 // program, because the code gen may not be smart enough to turn a merged 2594 // shuffle into two specific shuffles: it may produce worse code. As such, 2595 // we only merge two shuffles if the result is either a splat or one of the 2596 // input shuffle masks. In this case, merging the shuffles just removes 2597 // one instruction, which we know is safe. This is good for things like 2598 // turning: (splat(splat)) -> splat, or 2599 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2600 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2601 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2602 if (LHSShuffle) 2603 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef())) 2604 LHSShuffle = nullptr; 2605 if (RHSShuffle) 2606 if (!match(RHSShuffle->getOperand(1), m_Undef())) 2607 RHSShuffle = nullptr; 2608 if (!LHSShuffle && !RHSShuffle) 2609 return MadeChange ? &SVI : nullptr; 2610 2611 Value* LHSOp0 = nullptr; 2612 Value* LHSOp1 = nullptr; 2613 Value* RHSOp0 = nullptr; 2614 unsigned LHSOp0Width = 0; 2615 unsigned RHSOp0Width = 0; 2616 if (LHSShuffle) { 2617 LHSOp0 = LHSShuffle->getOperand(0); 2618 LHSOp1 = LHSShuffle->getOperand(1); 2619 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 2620 } 2621 if (RHSShuffle) { 2622 RHSOp0 = RHSShuffle->getOperand(0); 2623 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 2624 } 2625 Value* newLHS = LHS; 2626 Value* newRHS = RHS; 2627 if (LHSShuffle) { 2628 // case 1 2629 if (match(RHS, m_Undef())) { 2630 newLHS = LHSOp0; 2631 newRHS = LHSOp1; 2632 } 2633 // case 2 or 4 2634 else if (LHSOp0Width == LHSWidth) { 2635 newLHS = LHSOp0; 2636 } 2637 } 2638 // case 3 or 4 2639 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2640 newRHS = RHSOp0; 2641 } 2642 // case 4 2643 if (LHSOp0 == RHSOp0) { 2644 newLHS = LHSOp0; 2645 newRHS = nullptr; 2646 } 2647 2648 if (newLHS == LHS && newRHS == RHS) 2649 return MadeChange ? &SVI : nullptr; 2650 2651 ArrayRef<int> LHSMask; 2652 ArrayRef<int> RHSMask; 2653 if (newLHS != LHS) 2654 LHSMask = LHSShuffle->getShuffleMask(); 2655 if (RHSShuffle && newRHS != RHS) 2656 RHSMask = RHSShuffle->getShuffleMask(); 2657 2658 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2659 SmallVector<int, 16> newMask; 2660 bool isSplat = true; 2661 int SplatElt = -1; 2662 // Create a new mask for the new ShuffleVectorInst so that the new 2663 // ShuffleVectorInst is equivalent to the original one. 2664 for (unsigned i = 0; i < VWidth; ++i) { 2665 int eltMask; 2666 if (Mask[i] < 0) { 2667 // This element is an undef value. 2668 eltMask = -1; 2669 } else if (Mask[i] < (int)LHSWidth) { 2670 // This element is from left hand side vector operand. 2671 // 2672 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2673 // new mask value for the element. 2674 if (newLHS != LHS) { 2675 eltMask = LHSMask[Mask[i]]; 2676 // If the value selected is an undef value, explicitly specify it 2677 // with a -1 mask value. 2678 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2679 eltMask = -1; 2680 } else 2681 eltMask = Mask[i]; 2682 } else { 2683 // This element is from right hand side vector operand 2684 // 2685 // If the value selected is an undef value, explicitly specify it 2686 // with a -1 mask value. (case 1) 2687 if (match(RHS, m_Undef())) 2688 eltMask = -1; 2689 // If RHS is going to be replaced (case 3 or 4), calculate the 2690 // new mask value for the element. 2691 else if (newRHS != RHS) { 2692 eltMask = RHSMask[Mask[i]-LHSWidth]; 2693 // If the value selected is an undef value, explicitly specify it 2694 // with a -1 mask value. 2695 if (eltMask >= (int)RHSOp0Width) { 2696 assert(match(RHSShuffle->getOperand(1), m_Undef()) && 2697 "should have been check above"); 2698 eltMask = -1; 2699 } 2700 } else 2701 eltMask = Mask[i]-LHSWidth; 2702 2703 // If LHS's width is changed, shift the mask value accordingly. 2704 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2705 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2706 // If newRHS == newLHS, we want to remap any references from newRHS to 2707 // newLHS so that we can properly identify splats that may occur due to 2708 // obfuscation across the two vectors. 2709 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2710 eltMask += newLHSWidth; 2711 } 2712 2713 // Check if this could still be a splat. 2714 if (eltMask >= 0) { 2715 if (SplatElt >= 0 && SplatElt != eltMask) 2716 isSplat = false; 2717 SplatElt = eltMask; 2718 } 2719 2720 newMask.push_back(eltMask); 2721 } 2722 2723 // If the result mask is equal to one of the original shuffle masks, 2724 // or is a splat, do the replacement. 2725 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2726 if (!newRHS) 2727 newRHS = UndefValue::get(newLHS->getType()); 2728 return new ShuffleVectorInst(newLHS, newRHS, newMask); 2729 } 2730 2731 return MadeChange ? &SVI : nullptr; 2732 } 2733