1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombiner.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 #define DEBUG_TYPE "instcombine" 45 46 using namespace llvm; 47 using namespace PatternMatch; 48 49 STATISTIC(NumAggregateReconstructionsSimplified, 50 "Number of aggregate reconstructions turned into reuse of the " 51 "original aggregate"); 52 53 /// Return true if the value is cheaper to scalarize than it is to leave as a 54 /// vector operation. If the extract index \p EI is a constant integer then 55 /// some operations may be cheap to scalarize. 56 /// 57 /// FIXME: It's possible to create more instructions than previously existed. 58 static bool cheapToScalarize(Value *V, Value *EI) { 59 ConstantInt *CEI = dyn_cast<ConstantInt>(EI); 60 61 // If we can pick a scalar constant value out of a vector, that is free. 62 if (auto *C = dyn_cast<Constant>(V)) 63 return CEI || C->getSplatValue(); 64 65 if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) { 66 ElementCount EC = cast<VectorType>(V->getType())->getElementCount(); 67 // Index needs to be lower than the minimum size of the vector, because 68 // for scalable vector, the vector size is known at run time. 69 return CEI->getValue().ult(EC.getKnownMinValue()); 70 } 71 72 // An insertelement to the same constant index as our extract will simplify 73 // to the scalar inserted element. An insertelement to a different constant 74 // index is irrelevant to our extract. 75 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 76 return CEI; 77 78 if (match(V, m_OneUse(m_Load(m_Value())))) 79 return true; 80 81 if (match(V, m_OneUse(m_UnOp()))) 82 return true; 83 84 Value *V0, *V1; 85 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 86 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 87 return true; 88 89 CmpInst::Predicate UnusedPred; 90 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 91 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 92 return true; 93 94 return false; 95 } 96 97 // If we have a PHI node with a vector type that is only used to feed 98 // itself and be an operand of extractelement at a constant location, 99 // try to replace the PHI of the vector type with a PHI of a scalar type. 100 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 101 PHINode *PN) { 102 SmallVector<Instruction *, 2> Extracts; 103 // The users we want the PHI to have are: 104 // 1) The EI ExtractElement (we already know this) 105 // 2) Possibly more ExtractElements with the same index. 106 // 3) Another operand, which will feed back into the PHI. 107 Instruction *PHIUser = nullptr; 108 for (auto *U : PN->users()) { 109 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 110 if (EI.getIndexOperand() == EU->getIndexOperand()) 111 Extracts.push_back(EU); 112 else 113 return nullptr; 114 } else if (!PHIUser) { 115 PHIUser = cast<Instruction>(U); 116 } else { 117 return nullptr; 118 } 119 } 120 121 if (!PHIUser) 122 return nullptr; 123 124 // Verify that this PHI user has one use, which is the PHI itself, 125 // and that it is a binary operation which is cheap to scalarize. 126 // otherwise return nullptr. 127 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 128 !(isa<BinaryOperator>(PHIUser)) || 129 !cheapToScalarize(PHIUser, EI.getIndexOperand())) 130 return nullptr; 131 132 // Create a scalar PHI node that will replace the vector PHI node 133 // just before the current PHI node. 134 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 135 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 136 // Scalarize each PHI operand. 137 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 138 Value *PHIInVal = PN->getIncomingValue(i); 139 BasicBlock *inBB = PN->getIncomingBlock(i); 140 Value *Elt = EI.getIndexOperand(); 141 // If the operand is the PHI induction variable: 142 if (PHIInVal == PHIUser) { 143 // Scalarize the binary operation. Its first operand is the 144 // scalar PHI, and the second operand is extracted from the other 145 // vector operand. 146 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 147 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 148 Value *Op = InsertNewInstWith( 149 ExtractElementInst::Create(B0->getOperand(opId), Elt, 150 B0->getOperand(opId)->getName() + ".Elt"), 151 *B0); 152 Value *newPHIUser = InsertNewInstWith( 153 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 154 scalarPHI, Op, B0), *B0); 155 scalarPHI->addIncoming(newPHIUser, inBB); 156 } else { 157 // Scalarize PHI input: 158 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 159 // Insert the new instruction into the predecessor basic block. 160 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 161 BasicBlock::iterator InsertPos; 162 if (pos && !isa<PHINode>(pos)) { 163 InsertPos = ++pos->getIterator(); 164 } else { 165 InsertPos = inBB->getFirstInsertionPt(); 166 } 167 168 InsertNewInstWith(newEI, *InsertPos); 169 170 scalarPHI->addIncoming(newEI, inBB); 171 } 172 } 173 174 for (auto *E : Extracts) 175 replaceInstUsesWith(*E, scalarPHI); 176 177 return &EI; 178 } 179 180 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) { 181 Value *X; 182 uint64_t ExtIndexC; 183 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 184 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 185 return nullptr; 186 187 ElementCount NumElts = 188 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 189 Type *DestTy = Ext.getType(); 190 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 191 bool IsBigEndian = DL.isBigEndian(); 192 193 // If we are casting an integer to vector and extracting a portion, that is 194 // a shift-right and truncate. 195 if (X->getType()->isIntegerTy()) { 196 assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) && 197 "Expected fixed vector type for bitcast from scalar integer"); 198 199 // Big endian requires adjusting the extract index since MSB is at index 0. 200 // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8 201 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8 202 if (IsBigEndian) 203 ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC; 204 unsigned ShiftAmountC = ExtIndexC * DestWidth; 205 if (!ShiftAmountC || 206 (isDesirableIntType(X->getType()->getPrimitiveSizeInBits()) && 207 Ext.getVectorOperand()->hasOneUse())) { 208 if (ShiftAmountC) 209 X = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset"); 210 if (DestTy->isFloatingPointTy()) { 211 Type *DstIntTy = IntegerType::getIntNTy(X->getContext(), DestWidth); 212 Value *Trunc = Builder.CreateTrunc(X, DstIntTy); 213 return new BitCastInst(Trunc, DestTy); 214 } 215 return new TruncInst(X, DestTy); 216 } 217 } 218 219 if (!X->getType()->isVectorTy()) 220 return nullptr; 221 222 // If this extractelement is using a bitcast from a vector of the same number 223 // of elements, see if we can find the source element from the source vector: 224 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 225 auto *SrcTy = cast<VectorType>(X->getType()); 226 ElementCount NumSrcElts = SrcTy->getElementCount(); 227 if (NumSrcElts == NumElts) 228 if (Value *Elt = findScalarElement(X, ExtIndexC)) 229 return new BitCastInst(Elt, DestTy); 230 231 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 232 "Src and Dst must be the same sort of vector type"); 233 234 // If the source elements are wider than the destination, try to shift and 235 // truncate a subset of scalar bits of an insert op. 236 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 237 Value *Scalar; 238 Value *Vec; 239 uint64_t InsIndexC; 240 if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar), 241 m_ConstantInt(InsIndexC)))) 242 return nullptr; 243 244 // The extract must be from the subset of vector elements that we inserted 245 // into. Example: if we inserted element 1 of a <2 x i64> and we are 246 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 247 // of elements 4-7 of the bitcasted vector. 248 unsigned NarrowingRatio = 249 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 250 251 if (ExtIndexC / NarrowingRatio != InsIndexC) { 252 // Remove insertelement, if we don't use the inserted element. 253 // extractelement (bitcast (insertelement (Vec, b)), a) -> 254 // extractelement (bitcast (Vec), a) 255 // FIXME: this should be removed to SimplifyDemandedVectorElts, 256 // once scale vectors are supported. 257 if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) { 258 Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType()); 259 return ExtractElementInst::Create(NewBC, Ext.getIndexOperand()); 260 } 261 return nullptr; 262 } 263 264 // We are extracting part of the original scalar. How that scalar is 265 // inserted into the vector depends on the endian-ness. Example: 266 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 267 // +--+--+--+--+--+--+--+--+ 268 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 269 // extelt <4 x i16> V', 3: | |S2|S3| 270 // +--+--+--+--+--+--+--+--+ 271 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 272 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 273 // In this example, we must right-shift little-endian. Big-endian is just a 274 // truncate. 275 unsigned Chunk = ExtIndexC % NarrowingRatio; 276 if (IsBigEndian) 277 Chunk = NarrowingRatio - 1 - Chunk; 278 279 // Bail out if this is an FP vector to FP vector sequence. That would take 280 // more instructions than we started with unless there is no shift, and it 281 // may not be handled as well in the backend. 282 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 283 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 284 if (NeedSrcBitcast && NeedDestBitcast) 285 return nullptr; 286 287 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 288 unsigned ShAmt = Chunk * DestWidth; 289 290 // TODO: This limitation is more strict than necessary. We could sum the 291 // number of new instructions and subtract the number eliminated to know if 292 // we can proceed. 293 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 294 if (NeedSrcBitcast || NeedDestBitcast) 295 return nullptr; 296 297 if (NeedSrcBitcast) { 298 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 299 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 300 } 301 302 if (ShAmt) { 303 // Bail out if we could end with more instructions than we started with. 304 if (!Ext.getVectorOperand()->hasOneUse()) 305 return nullptr; 306 Scalar = Builder.CreateLShr(Scalar, ShAmt); 307 } 308 309 if (NeedDestBitcast) { 310 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 311 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 312 } 313 return new TruncInst(Scalar, DestTy); 314 } 315 316 return nullptr; 317 } 318 319 /// Find elements of V demanded by UserInstr. 320 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 321 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 322 323 // Conservatively assume that all elements are needed. 324 APInt UsedElts(APInt::getAllOnes(VWidth)); 325 326 switch (UserInstr->getOpcode()) { 327 case Instruction::ExtractElement: { 328 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 329 assert(EEI->getVectorOperand() == V); 330 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 331 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 332 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 333 } 334 break; 335 } 336 case Instruction::ShuffleVector: { 337 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 338 unsigned MaskNumElts = 339 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 340 341 UsedElts = APInt(VWidth, 0); 342 for (unsigned i = 0; i < MaskNumElts; i++) { 343 unsigned MaskVal = Shuffle->getMaskValue(i); 344 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 345 continue; 346 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 347 UsedElts.setBit(MaskVal); 348 if (Shuffle->getOperand(1) == V && 349 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 350 UsedElts.setBit(MaskVal - VWidth); 351 } 352 break; 353 } 354 default: 355 break; 356 } 357 return UsedElts; 358 } 359 360 /// Find union of elements of V demanded by all its users. 361 /// If it is known by querying findDemandedEltsBySingleUser that 362 /// no user demands an element of V, then the corresponding bit 363 /// remains unset in the returned value. 364 static APInt findDemandedEltsByAllUsers(Value *V) { 365 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 366 367 APInt UnionUsedElts(VWidth, 0); 368 for (const Use &U : V->uses()) { 369 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 370 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 371 } else { 372 UnionUsedElts = APInt::getAllOnes(VWidth); 373 break; 374 } 375 376 if (UnionUsedElts.isAllOnes()) 377 break; 378 } 379 380 return UnionUsedElts; 381 } 382 383 /// Given a constant index for a extractelement or insertelement instruction, 384 /// return it with the canonical type if it isn't already canonical. We 385 /// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't 386 /// matter, we just want a consistent type to simplify CSE. 387 ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) { 388 const unsigned IndexBW = IndexC->getType()->getBitWidth(); 389 if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64) 390 return nullptr; 391 return ConstantInt::get(IndexC->getContext(), 392 IndexC->getValue().zextOrTrunc(64)); 393 } 394 395 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 396 Value *SrcVec = EI.getVectorOperand(); 397 Value *Index = EI.getIndexOperand(); 398 if (Value *V = simplifyExtractElementInst(SrcVec, Index, 399 SQ.getWithInstruction(&EI))) 400 return replaceInstUsesWith(EI, V); 401 402 // extractelt (select %x, %vec1, %vec2), %const -> 403 // select %x, %vec1[%const], %vec2[%const] 404 // TODO: Support constant folding of multiple select operands: 405 // extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2) 406 // If the extractelement will for instance try to do out of bounds accesses 407 // because of the values of %c1 and/or %c2, the sequence could be optimized 408 // early. This is currently not possible because constant folding will reach 409 // an unreachable assertion if it doesn't find a constant operand. 410 if (SelectInst *SI = dyn_cast<SelectInst>(EI.getVectorOperand())) 411 if (SI->getCondition()->getType()->isIntegerTy() && 412 isa<Constant>(EI.getIndexOperand())) 413 if (Instruction *R = FoldOpIntoSelect(EI, SI)) 414 return R; 415 416 // If extracting a specified index from the vector, see if we can recursively 417 // find a previously computed scalar that was inserted into the vector. 418 auto *IndexC = dyn_cast<ConstantInt>(Index); 419 if (IndexC) { 420 // Canonicalize type of constant indices to i64 to simplify CSE 421 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 422 return replaceOperand(EI, 1, NewIdx); 423 424 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 425 unsigned NumElts = EC.getKnownMinValue(); 426 427 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 428 Intrinsic::ID IID = II->getIntrinsicID(); 429 // Index needs to be lower than the minimum size of the vector, because 430 // for scalable vector, the vector size is known at run time. 431 if (IID == Intrinsic::experimental_stepvector && 432 IndexC->getValue().ult(NumElts)) { 433 Type *Ty = EI.getType(); 434 unsigned BitWidth = Ty->getIntegerBitWidth(); 435 Value *Idx; 436 // Return index when its value does not exceed the allowed limit 437 // for the element type of the vector, otherwise return undefined. 438 if (IndexC->getValue().getActiveBits() <= BitWidth) 439 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 440 else 441 Idx = UndefValue::get(Ty); 442 return replaceInstUsesWith(EI, Idx); 443 } 444 } 445 446 // InstSimplify should handle cases where the index is invalid. 447 // For fixed-length vector, it's invalid to extract out-of-range element. 448 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 449 return nullptr; 450 451 if (Instruction *I = foldBitcastExtElt(EI)) 452 return I; 453 454 // If there's a vector PHI feeding a scalar use through this extractelement 455 // instruction, try to scalarize the PHI. 456 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 457 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 458 return ScalarPHI; 459 } 460 461 // TODO come up with a n-ary matcher that subsumes both unary and 462 // binary matchers. 463 UnaryOperator *UO; 464 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { 465 // extelt (unop X), Index --> unop (extelt X, Index) 466 Value *X = UO->getOperand(0); 467 Value *E = Builder.CreateExtractElement(X, Index); 468 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 469 } 470 471 BinaryOperator *BO; 472 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) { 473 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 474 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 475 Value *E0 = Builder.CreateExtractElement(X, Index); 476 Value *E1 = Builder.CreateExtractElement(Y, Index); 477 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 478 } 479 480 Value *X, *Y; 481 CmpInst::Predicate Pred; 482 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 483 cheapToScalarize(SrcVec, Index)) { 484 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 485 Value *E0 = Builder.CreateExtractElement(X, Index); 486 Value *E1 = Builder.CreateExtractElement(Y, Index); 487 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 488 } 489 490 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 491 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 492 // instsimplify already handled the case where the indices are constants 493 // and equal by value, if both are constants, they must not be the same 494 // value, extract from the pre-inserted value instead. 495 if (isa<Constant>(IE->getOperand(2)) && IndexC) 496 return replaceOperand(EI, 0, IE->getOperand(0)); 497 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 498 auto *VecType = cast<VectorType>(GEP->getType()); 499 ElementCount EC = VecType->getElementCount(); 500 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 501 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 502 // Find out why we have a vector result - these are a few examples: 503 // 1. We have a scalar pointer and a vector of indices, or 504 // 2. We have a vector of pointers and a scalar index, or 505 // 3. We have a vector of pointers and a vector of indices, etc. 506 // Here we only consider combining when there is exactly one vector 507 // operand, since the optimization is less obviously a win due to 508 // needing more than one extractelements. 509 510 unsigned VectorOps = 511 llvm::count_if(GEP->operands(), [](const Value *V) { 512 return isa<VectorType>(V->getType()); 513 }); 514 if (VectorOps == 1) { 515 Value *NewPtr = GEP->getPointerOperand(); 516 if (isa<VectorType>(NewPtr->getType())) 517 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 518 519 SmallVector<Value *> NewOps; 520 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 521 Value *Op = GEP->getOperand(I); 522 if (isa<VectorType>(Op->getType())) 523 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 524 else 525 NewOps.push_back(Op); 526 } 527 528 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 529 GEP->getSourceElementType(), NewPtr, NewOps); 530 NewGEP->setIsInBounds(GEP->isInBounds()); 531 return NewGEP; 532 } 533 } 534 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 535 // If this is extracting an element from a shufflevector, figure out where 536 // it came from and extract from the appropriate input element instead. 537 // Restrict the following transformation to fixed-length vector. 538 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 539 int SrcIdx = 540 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 541 Value *Src; 542 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 543 ->getNumElements(); 544 545 if (SrcIdx < 0) 546 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 547 if (SrcIdx < (int)LHSWidth) 548 Src = SVI->getOperand(0); 549 else { 550 SrcIdx -= LHSWidth; 551 Src = SVI->getOperand(1); 552 } 553 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 554 return ExtractElementInst::Create( 555 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 556 } 557 } else if (auto *CI = dyn_cast<CastInst>(I)) { 558 // Canonicalize extractelement(cast) -> cast(extractelement). 559 // Bitcasts can change the number of vector elements, and they cost 560 // nothing. 561 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 562 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 563 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 564 } 565 } 566 } 567 568 // Run demanded elements after other transforms as this can drop flags on 569 // binops. If there's two paths to the same final result, we prefer the 570 // one which doesn't force us to drop flags. 571 if (IndexC) { 572 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 573 unsigned NumElts = EC.getKnownMinValue(); 574 // This instruction only demands the single element from the input vector. 575 // Skip for scalable type, the number of elements is unknown at 576 // compile-time. 577 if (!EC.isScalable() && NumElts != 1) { 578 // If the input vector has a single use, simplify it based on this use 579 // property. 580 if (SrcVec->hasOneUse()) { 581 APInt UndefElts(NumElts, 0); 582 APInt DemandedElts(NumElts, 0); 583 DemandedElts.setBit(IndexC->getZExtValue()); 584 if (Value *V = 585 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 586 return replaceOperand(EI, 0, V); 587 } else { 588 // If the input vector has multiple uses, simplify it based on a union 589 // of all elements used. 590 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 591 if (!DemandedElts.isAllOnes()) { 592 APInt UndefElts(NumElts, 0); 593 if (Value *V = SimplifyDemandedVectorElts( 594 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 595 true /* AllowMultipleUsers */)) { 596 if (V != SrcVec) { 597 SrcVec->replaceAllUsesWith(V); 598 return &EI; 599 } 600 } 601 } 602 } 603 } 604 } 605 return nullptr; 606 } 607 608 /// If V is a shuffle of values that ONLY returns elements from either LHS or 609 /// RHS, return the shuffle mask and true. Otherwise, return false. 610 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 611 SmallVectorImpl<int> &Mask) { 612 assert(LHS->getType() == RHS->getType() && 613 "Invalid CollectSingleShuffleElements"); 614 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 615 616 if (match(V, m_Undef())) { 617 Mask.assign(NumElts, -1); 618 return true; 619 } 620 621 if (V == LHS) { 622 for (unsigned i = 0; i != NumElts; ++i) 623 Mask.push_back(i); 624 return true; 625 } 626 627 if (V == RHS) { 628 for (unsigned i = 0; i != NumElts; ++i) 629 Mask.push_back(i + NumElts); 630 return true; 631 } 632 633 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 634 // If this is an insert of an extract from some other vector, include it. 635 Value *VecOp = IEI->getOperand(0); 636 Value *ScalarOp = IEI->getOperand(1); 637 Value *IdxOp = IEI->getOperand(2); 638 639 if (!isa<ConstantInt>(IdxOp)) 640 return false; 641 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 642 643 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 644 // We can handle this if the vector we are inserting into is 645 // transitively ok. 646 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 647 // If so, update the mask to reflect the inserted undef. 648 Mask[InsertedIdx] = -1; 649 return true; 650 } 651 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 652 if (isa<ConstantInt>(EI->getOperand(1))) { 653 unsigned ExtractedIdx = 654 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 655 unsigned NumLHSElts = 656 cast<FixedVectorType>(LHS->getType())->getNumElements(); 657 658 // This must be extracting from either LHS or RHS. 659 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 660 // We can handle this if the vector we are inserting into is 661 // transitively ok. 662 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 663 // If so, update the mask to reflect the inserted value. 664 if (EI->getOperand(0) == LHS) { 665 Mask[InsertedIdx % NumElts] = ExtractedIdx; 666 } else { 667 assert(EI->getOperand(0) == RHS); 668 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 669 } 670 return true; 671 } 672 } 673 } 674 } 675 } 676 677 return false; 678 } 679 680 /// If we have insertion into a vector that is wider than the vector that we 681 /// are extracting from, try to widen the source vector to allow a single 682 /// shufflevector to replace one or more insert/extract pairs. 683 static void replaceExtractElements(InsertElementInst *InsElt, 684 ExtractElementInst *ExtElt, 685 InstCombinerImpl &IC) { 686 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 687 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 688 unsigned NumInsElts = InsVecType->getNumElements(); 689 unsigned NumExtElts = ExtVecType->getNumElements(); 690 691 // The inserted-to vector must be wider than the extracted-from vector. 692 if (InsVecType->getElementType() != ExtVecType->getElementType() || 693 NumExtElts >= NumInsElts) 694 return; 695 696 // Create a shuffle mask to widen the extended-from vector using poison 697 // values. The mask selects all of the values of the original vector followed 698 // by as many poison values as needed to create a vector of the same length 699 // as the inserted-to vector. 700 SmallVector<int, 16> ExtendMask; 701 for (unsigned i = 0; i < NumExtElts; ++i) 702 ExtendMask.push_back(i); 703 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 704 ExtendMask.push_back(-1); 705 706 Value *ExtVecOp = ExtElt->getVectorOperand(); 707 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 708 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 709 ? ExtVecOpInst->getParent() 710 : ExtElt->getParent(); 711 712 // TODO: This restriction matches the basic block check below when creating 713 // new extractelement instructions. If that limitation is removed, this one 714 // could also be removed. But for now, we just bail out to ensure that we 715 // will replace the extractelement instruction that is feeding our 716 // insertelement instruction. This allows the insertelement to then be 717 // replaced by a shufflevector. If the insertelement is not replaced, we can 718 // induce infinite looping because there's an optimization for extractelement 719 // that will delete our widening shuffle. This would trigger another attempt 720 // here to create that shuffle, and we spin forever. 721 if (InsertionBlock != InsElt->getParent()) 722 return; 723 724 // TODO: This restriction matches the check in visitInsertElementInst() and 725 // prevents an infinite loop caused by not turning the extract/insert pair 726 // into a shuffle. We really should not need either check, but we're lacking 727 // folds for shufflevectors because we're afraid to generate shuffle masks 728 // that the backend can't handle. 729 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 730 return; 731 732 auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); 733 734 // Insert the new shuffle after the vector operand of the extract is defined 735 // (as long as it's not a PHI) or at the start of the basic block of the 736 // extract, so any subsequent extracts in the same basic block can use it. 737 // TODO: Insert before the earliest ExtractElementInst that is replaced. 738 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 739 WideVec->insertAfter(ExtVecOpInst); 740 else 741 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 742 743 // Replace extracts from the original narrow vector with extracts from the new 744 // wide vector. 745 for (User *U : ExtVecOp->users()) { 746 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 747 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 748 continue; 749 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 750 NewExt->insertAfter(OldExt); 751 IC.replaceInstUsesWith(*OldExt, NewExt); 752 } 753 } 754 755 /// We are building a shuffle to create V, which is a sequence of insertelement, 756 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 757 /// not rely on the second vector source. Return a std::pair containing the 758 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 759 /// parameter as required. 760 /// 761 /// Note: we intentionally don't try to fold earlier shuffles since they have 762 /// often been chosen carefully to be efficiently implementable on the target. 763 using ShuffleOps = std::pair<Value *, Value *>; 764 765 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 766 Value *PermittedRHS, 767 InstCombinerImpl &IC) { 768 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 769 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 770 771 if (match(V, m_Undef())) { 772 Mask.assign(NumElts, -1); 773 return std::make_pair( 774 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 775 } 776 777 if (isa<ConstantAggregateZero>(V)) { 778 Mask.assign(NumElts, 0); 779 return std::make_pair(V, nullptr); 780 } 781 782 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 783 // If this is an insert of an extract from some other vector, include it. 784 Value *VecOp = IEI->getOperand(0); 785 Value *ScalarOp = IEI->getOperand(1); 786 Value *IdxOp = IEI->getOperand(2); 787 788 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 789 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 790 unsigned ExtractedIdx = 791 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 792 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 793 794 // Either the extracted from or inserted into vector must be RHSVec, 795 // otherwise we'd end up with a shuffle of three inputs. 796 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 797 Value *RHS = EI->getOperand(0); 798 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 799 assert(LR.second == nullptr || LR.second == RHS); 800 801 if (LR.first->getType() != RHS->getType()) { 802 // Although we are giving up for now, see if we can create extracts 803 // that match the inserts for another round of combining. 804 replaceExtractElements(IEI, EI, IC); 805 806 // We tried our best, but we can't find anything compatible with RHS 807 // further up the chain. Return a trivial shuffle. 808 for (unsigned i = 0; i < NumElts; ++i) 809 Mask[i] = i; 810 return std::make_pair(V, nullptr); 811 } 812 813 unsigned NumLHSElts = 814 cast<FixedVectorType>(RHS->getType())->getNumElements(); 815 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 816 return std::make_pair(LR.first, RHS); 817 } 818 819 if (VecOp == PermittedRHS) { 820 // We've gone as far as we can: anything on the other side of the 821 // extractelement will already have been converted into a shuffle. 822 unsigned NumLHSElts = 823 cast<FixedVectorType>(EI->getOperand(0)->getType()) 824 ->getNumElements(); 825 for (unsigned i = 0; i != NumElts; ++i) 826 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 827 return std::make_pair(EI->getOperand(0), PermittedRHS); 828 } 829 830 // If this insertelement is a chain that comes from exactly these two 831 // vectors, return the vector and the effective shuffle. 832 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 833 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 834 Mask)) 835 return std::make_pair(EI->getOperand(0), PermittedRHS); 836 } 837 } 838 } 839 840 // Otherwise, we can't do anything fancy. Return an identity vector. 841 for (unsigned i = 0; i != NumElts; ++i) 842 Mask.push_back(i); 843 return std::make_pair(V, nullptr); 844 } 845 846 /// Look for chain of insertvalue's that fully define an aggregate, and trace 847 /// back the values inserted, see if they are all were extractvalue'd from 848 /// the same source aggregate from the exact same element indexes. 849 /// If they were, just reuse the source aggregate. 850 /// This potentially deals with PHI indirections. 851 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 852 InsertValueInst &OrigIVI) { 853 Type *AggTy = OrigIVI.getType(); 854 unsigned NumAggElts; 855 switch (AggTy->getTypeID()) { 856 case Type::StructTyID: 857 NumAggElts = AggTy->getStructNumElements(); 858 break; 859 case Type::ArrayTyID: 860 NumAggElts = AggTy->getArrayNumElements(); 861 break; 862 default: 863 llvm_unreachable("Unhandled aggregate type?"); 864 } 865 866 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 867 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 868 // FIXME: any interesting patterns to be caught with larger limit? 869 assert(NumAggElts > 0 && "Aggregate should have elements."); 870 if (NumAggElts > 2) 871 return nullptr; 872 873 static constexpr auto NotFound = std::nullopt; 874 static constexpr auto FoundMismatch = nullptr; 875 876 // Try to find a value of each element of an aggregate. 877 // FIXME: deal with more complex, not one-dimensional, aggregate types 878 SmallVector<std::optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 879 880 // Do we know values for each element of the aggregate? 881 auto KnowAllElts = [&AggElts]() { 882 return !llvm::is_contained(AggElts, NotFound); 883 }; 884 885 int Depth = 0; 886 887 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 888 // every element being overwritten twice, which should never happen. 889 static const int DepthLimit = 2 * NumAggElts; 890 891 // Recurse up the chain of `insertvalue` aggregate operands until either we've 892 // reconstructed full initializer or can't visit any more `insertvalue`'s. 893 for (InsertValueInst *CurrIVI = &OrigIVI; 894 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 895 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 896 ++Depth) { 897 auto *InsertedValue = 898 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 899 if (!InsertedValue) 900 return nullptr; // Inserted value must be produced by an instruction. 901 902 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 903 904 // Don't bother with more than single-level aggregates. 905 if (Indices.size() != 1) 906 return nullptr; // FIXME: deal with more complex aggregates? 907 908 // Now, we may have already previously recorded the value for this element 909 // of an aggregate. If we did, that means the CurrIVI will later be 910 // overwritten with the already-recorded value. But if not, let's record it! 911 std::optional<Instruction *> &Elt = AggElts[Indices.front()]; 912 Elt = Elt.value_or(InsertedValue); 913 914 // FIXME: should we handle chain-terminating undef base operand? 915 } 916 917 // Was that sufficient to deduce the full initializer for the aggregate? 918 if (!KnowAllElts()) 919 return nullptr; // Give up then. 920 921 // We now want to find the source[s] of the aggregate elements we've found. 922 // And with "source" we mean the original aggregate[s] from which 923 // the inserted elements were extracted. This may require PHI translation. 924 925 enum class AggregateDescription { 926 /// When analyzing the value that was inserted into an aggregate, we did 927 /// not manage to find defining `extractvalue` instruction to analyze. 928 NotFound, 929 /// When analyzing the value that was inserted into an aggregate, we did 930 /// manage to find defining `extractvalue` instruction[s], and everything 931 /// matched perfectly - aggregate type, element insertion/extraction index. 932 Found, 933 /// When analyzing the value that was inserted into an aggregate, we did 934 /// manage to find defining `extractvalue` instruction, but there was 935 /// a mismatch: either the source type from which the extraction was didn't 936 /// match the aggregate type into which the insertion was, 937 /// or the extraction/insertion channels mismatched, 938 /// or different elements had different source aggregates. 939 FoundMismatch 940 }; 941 auto Describe = [](std::optional<Value *> SourceAggregate) { 942 if (SourceAggregate == NotFound) 943 return AggregateDescription::NotFound; 944 if (*SourceAggregate == FoundMismatch) 945 return AggregateDescription::FoundMismatch; 946 return AggregateDescription::Found; 947 }; 948 949 // Given the value \p Elt that was being inserted into element \p EltIdx of an 950 // aggregate AggTy, see if \p Elt was originally defined by an 951 // appropriate extractvalue (same element index, same aggregate type). 952 // If found, return the source aggregate from which the extraction was. 953 // If \p PredBB is provided, does PHI translation of an \p Elt first. 954 auto FindSourceAggregate = 955 [&](Instruction *Elt, unsigned EltIdx, std::optional<BasicBlock *> UseBB, 956 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> { 957 // For now(?), only deal with, at most, a single level of PHI indirection. 958 if (UseBB && PredBB) 959 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 960 // FIXME: deal with multiple levels of PHI indirection? 961 962 // Did we find an extraction? 963 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 964 if (!EVI) 965 return NotFound; 966 967 Value *SourceAggregate = EVI->getAggregateOperand(); 968 969 // Is the extraction from the same type into which the insertion was? 970 if (SourceAggregate->getType() != AggTy) 971 return FoundMismatch; 972 // And the element index doesn't change between extraction and insertion? 973 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 974 return FoundMismatch; 975 976 return SourceAggregate; // AggregateDescription::Found 977 }; 978 979 // Given elements AggElts that were constructing an aggregate OrigIVI, 980 // see if we can find appropriate source aggregate for each of the elements, 981 // and see it's the same aggregate for each element. If so, return it. 982 auto FindCommonSourceAggregate = 983 [&](std::optional<BasicBlock *> UseBB, 984 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> { 985 std::optional<Value *> SourceAggregate; 986 987 for (auto I : enumerate(AggElts)) { 988 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 989 "We don't store nullptr in SourceAggregate!"); 990 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 991 (I.index() != 0) && 992 "SourceAggregate should be valid after the first element,"); 993 994 // For this element, is there a plausible source aggregate? 995 // FIXME: we could special-case undef element, IFF we know that in the 996 // source aggregate said element isn't poison. 997 std::optional<Value *> SourceAggregateForElement = 998 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 999 1000 // Okay, what have we found? Does that correlate with previous findings? 1001 1002 // Regardless of whether or not we have previously found source 1003 // aggregate for previous elements (if any), if we didn't find one for 1004 // this element, passthrough whatever we have just found. 1005 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 1006 return SourceAggregateForElement; 1007 1008 // Okay, we have found source aggregate for this element. 1009 // Let's see what we already know from previous elements, if any. 1010 switch (Describe(SourceAggregate)) { 1011 case AggregateDescription::NotFound: 1012 // This is apparently the first element that we have examined. 1013 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 1014 continue; // Great, now look at next element. 1015 case AggregateDescription::Found: 1016 // We have previously already successfully examined other elements. 1017 // Is this the same source aggregate we've found for other elements? 1018 if (*SourceAggregateForElement != *SourceAggregate) 1019 return FoundMismatch; 1020 continue; // Still the same aggregate, look at next element. 1021 case AggregateDescription::FoundMismatch: 1022 llvm_unreachable("Can't happen. We would have early-exited then."); 1023 }; 1024 } 1025 1026 assert(Describe(SourceAggregate) == AggregateDescription::Found && 1027 "Must be a valid Value"); 1028 return *SourceAggregate; 1029 }; 1030 1031 std::optional<Value *> SourceAggregate; 1032 1033 // Can we find the source aggregate without looking at predecessors? 1034 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/std::nullopt, 1035 /*PredBB=*/std::nullopt); 1036 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 1037 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 1038 return nullptr; // Conflicting source aggregates! 1039 ++NumAggregateReconstructionsSimplified; 1040 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 1041 } 1042 1043 // Okay, apparently we need to look at predecessors. 1044 1045 // We should be smart about picking the "use" basic block, which will be the 1046 // merge point for aggregate, where we'll insert the final PHI that will be 1047 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 1048 // We should look in which blocks each of the AggElts is being defined, 1049 // they all should be defined in the same basic block. 1050 BasicBlock *UseBB = nullptr; 1051 1052 for (const std::optional<Instruction *> &I : AggElts) { 1053 BasicBlock *BB = (*I)->getParent(); 1054 // If it's the first instruction we've encountered, record the basic block. 1055 if (!UseBB) { 1056 UseBB = BB; 1057 continue; 1058 } 1059 // Otherwise, this must be the same basic block we've seen previously. 1060 if (UseBB != BB) 1061 return nullptr; 1062 } 1063 1064 // If *all* of the elements are basic-block-independent, meaning they are 1065 // either function arguments, or constant expressions, then if we didn't 1066 // handle them without predecessor-aware handling, we won't handle them now. 1067 if (!UseBB) 1068 return nullptr; 1069 1070 // If we didn't manage to find source aggregate without looking at 1071 // predecessors, and there are no predecessors to look at, then we're done. 1072 if (pred_empty(UseBB)) 1073 return nullptr; 1074 1075 // Arbitrary predecessor count limit. 1076 static const int PredCountLimit = 64; 1077 1078 // Cache the (non-uniqified!) list of predecessors in a vector, 1079 // checking the limit at the same time for efficiency. 1080 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1081 for (BasicBlock *Pred : predecessors(UseBB)) { 1082 // Don't bother if there are too many predecessors. 1083 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1084 return nullptr; 1085 Preds.emplace_back(Pred); 1086 } 1087 1088 // For each predecessor, what is the source aggregate, 1089 // from which all the elements were originally extracted from? 1090 // Note that we want for the map to have stable iteration order! 1091 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1092 for (BasicBlock *Pred : Preds) { 1093 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1094 SourceAggregates.insert({Pred, nullptr}); 1095 // Did we already evaluate this predecessor? 1096 if (!IV.second) 1097 continue; 1098 1099 // Let's hope that when coming from predecessor Pred, all elements of the 1100 // aggregate produced by OrigIVI must have been originally extracted from 1101 // the same aggregate. Is that so? Can we find said original aggregate? 1102 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1103 if (Describe(SourceAggregate) != AggregateDescription::Found) 1104 return nullptr; // Give up. 1105 IV.first->second = *SourceAggregate; 1106 } 1107 1108 // All good! Now we just need to thread the source aggregates here. 1109 // Note that we have to insert the new PHI here, ourselves, because we can't 1110 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1111 // Note that the same block can be a predecessor more than once, 1112 // and we need to preserve that invariant for the PHI node. 1113 BuilderTy::InsertPointGuard Guard(Builder); 1114 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 1115 auto *PHI = 1116 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1117 for (BasicBlock *Pred : Preds) 1118 PHI->addIncoming(SourceAggregates[Pred], Pred); 1119 1120 ++NumAggregateReconstructionsSimplified; 1121 return replaceInstUsesWith(OrigIVI, PHI); 1122 } 1123 1124 /// Try to find redundant insertvalue instructions, like the following ones: 1125 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1126 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1127 /// Here the second instruction inserts values at the same indices, as the 1128 /// first one, making the first one redundant. 1129 /// It should be transformed to: 1130 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1131 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1132 bool IsRedundant = false; 1133 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1134 1135 // If there is a chain of insertvalue instructions (each of them except the 1136 // last one has only one use and it's another insertvalue insn from this 1137 // chain), check if any of the 'children' uses the same indices as the first 1138 // instruction. In this case, the first one is redundant. 1139 Value *V = &I; 1140 unsigned Depth = 0; 1141 while (V->hasOneUse() && Depth < 10) { 1142 User *U = V->user_back(); 1143 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1144 if (!UserInsInst || U->getOperand(0) != V) 1145 break; 1146 if (UserInsInst->getIndices() == FirstIndices) { 1147 IsRedundant = true; 1148 break; 1149 } 1150 V = UserInsInst; 1151 Depth++; 1152 } 1153 1154 if (IsRedundant) 1155 return replaceInstUsesWith(I, I.getOperand(0)); 1156 1157 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1158 return NewI; 1159 1160 return nullptr; 1161 } 1162 1163 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1164 // Can not analyze scalable type, the number of elements is not a compile-time 1165 // constant. 1166 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1167 return false; 1168 1169 int MaskSize = Shuf.getShuffleMask().size(); 1170 int VecSize = 1171 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1172 1173 // A vector select does not change the size of the operands. 1174 if (MaskSize != VecSize) 1175 return false; 1176 1177 // Each mask element must be undefined or choose a vector element from one of 1178 // the source operands without crossing vector lanes. 1179 for (int i = 0; i != MaskSize; ++i) { 1180 int Elt = Shuf.getMaskValue(i); 1181 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1182 return false; 1183 } 1184 1185 return true; 1186 } 1187 1188 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1189 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1190 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1191 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1192 // We are interested in the last insert in a chain. So if this insert has a 1193 // single user and that user is an insert, bail. 1194 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1195 return nullptr; 1196 1197 VectorType *VecTy = InsElt.getType(); 1198 // Can not handle scalable type, the number of elements is not a compile-time 1199 // constant. 1200 if (isa<ScalableVectorType>(VecTy)) 1201 return nullptr; 1202 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1203 1204 // Do not try to do this for a one-element vector, since that's a nop, 1205 // and will cause an inf-loop. 1206 if (NumElements == 1) 1207 return nullptr; 1208 1209 Value *SplatVal = InsElt.getOperand(1); 1210 InsertElementInst *CurrIE = &InsElt; 1211 SmallBitVector ElementPresent(NumElements, false); 1212 InsertElementInst *FirstIE = nullptr; 1213 1214 // Walk the chain backwards, keeping track of which indices we inserted into, 1215 // until we hit something that isn't an insert of the splatted value. 1216 while (CurrIE) { 1217 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1218 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1219 return nullptr; 1220 1221 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1222 // Check none of the intermediate steps have any additional uses, except 1223 // for the root insertelement instruction, which can be re-used, if it 1224 // inserts at position 0. 1225 if (CurrIE != &InsElt && 1226 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1227 return nullptr; 1228 1229 ElementPresent[Idx->getZExtValue()] = true; 1230 FirstIE = CurrIE; 1231 CurrIE = NextIE; 1232 } 1233 1234 // If this is just a single insertelement (not a sequence), we are done. 1235 if (FirstIE == &InsElt) 1236 return nullptr; 1237 1238 // If we are not inserting into an undef vector, make sure we've seen an 1239 // insert into every element. 1240 // TODO: If the base vector is not undef, it might be better to create a splat 1241 // and then a select-shuffle (blend) with the base vector. 1242 if (!match(FirstIE->getOperand(0), m_Undef())) 1243 if (!ElementPresent.all()) 1244 return nullptr; 1245 1246 // Create the insert + shuffle. 1247 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1248 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1249 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1250 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1251 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); 1252 1253 // Splat from element 0, but replace absent elements with undef in the mask. 1254 SmallVector<int, 16> Mask(NumElements, 0); 1255 for (unsigned i = 0; i != NumElements; ++i) 1256 if (!ElementPresent[i]) 1257 Mask[i] = -1; 1258 1259 return new ShuffleVectorInst(FirstIE, Mask); 1260 } 1261 1262 /// Try to fold an insert element into an existing splat shuffle by changing 1263 /// the shuffle's mask to include the index of this insert element. 1264 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1265 // Check if the vector operand of this insert is a canonical splat shuffle. 1266 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1267 if (!Shuf || !Shuf->isZeroEltSplat()) 1268 return nullptr; 1269 1270 // Bail out early if shuffle is scalable type. The number of elements in 1271 // shuffle mask is unknown at compile-time. 1272 if (isa<ScalableVectorType>(Shuf->getType())) 1273 return nullptr; 1274 1275 // Check for a constant insertion index. 1276 uint64_t IdxC; 1277 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1278 return nullptr; 1279 1280 // Check if the splat shuffle's input is the same as this insert's scalar op. 1281 Value *X = InsElt.getOperand(1); 1282 Value *Op0 = Shuf->getOperand(0); 1283 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1284 return nullptr; 1285 1286 // Replace the shuffle mask element at the index of this insert with a zero. 1287 // For example: 1288 // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1 1289 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef> 1290 unsigned NumMaskElts = 1291 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1292 SmallVector<int, 16> NewMask(NumMaskElts); 1293 for (unsigned i = 0; i != NumMaskElts; ++i) 1294 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1295 1296 return new ShuffleVectorInst(Op0, NewMask); 1297 } 1298 1299 /// Try to fold an extract+insert element into an existing identity shuffle by 1300 /// changing the shuffle's mask to include the index of this insert element. 1301 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1302 // Check if the vector operand of this insert is an identity shuffle. 1303 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1304 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1305 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1306 return nullptr; 1307 1308 // Bail out early if shuffle is scalable type. The number of elements in 1309 // shuffle mask is unknown at compile-time. 1310 if (isa<ScalableVectorType>(Shuf->getType())) 1311 return nullptr; 1312 1313 // Check for a constant insertion index. 1314 uint64_t IdxC; 1315 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1316 return nullptr; 1317 1318 // Check if this insert's scalar op is extracted from the identity shuffle's 1319 // input vector. 1320 Value *Scalar = InsElt.getOperand(1); 1321 Value *X = Shuf->getOperand(0); 1322 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1323 return nullptr; 1324 1325 // Replace the shuffle mask element at the index of this extract+insert with 1326 // that same index value. 1327 // For example: 1328 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1329 unsigned NumMaskElts = 1330 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1331 SmallVector<int, 16> NewMask(NumMaskElts); 1332 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1333 for (unsigned i = 0; i != NumMaskElts; ++i) { 1334 if (i != IdxC) { 1335 // All mask elements besides the inserted element remain the same. 1336 NewMask[i] = OldMask[i]; 1337 } else if (OldMask[i] == (int)IdxC) { 1338 // If the mask element was already set, there's nothing to do 1339 // (demanded elements analysis may unset it later). 1340 return nullptr; 1341 } else { 1342 assert(OldMask[i] == UndefMaskElem && 1343 "Unexpected shuffle mask element for identity shuffle"); 1344 NewMask[i] = IdxC; 1345 } 1346 } 1347 1348 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1349 } 1350 1351 /// If we have an insertelement instruction feeding into another insertelement 1352 /// and the 2nd is inserting a constant into the vector, canonicalize that 1353 /// constant insertion before the insertion of a variable: 1354 /// 1355 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1356 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1357 /// 1358 /// This has the potential of eliminating the 2nd insertelement instruction 1359 /// via constant folding of the scalar constant into a vector constant. 1360 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1361 InstCombiner::BuilderTy &Builder) { 1362 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1363 if (!InsElt1 || !InsElt1->hasOneUse()) 1364 return nullptr; 1365 1366 Value *X, *Y; 1367 Constant *ScalarC; 1368 ConstantInt *IdxC1, *IdxC2; 1369 if (match(InsElt1->getOperand(0), m_Value(X)) && 1370 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1371 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1372 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1373 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1374 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1375 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1376 } 1377 1378 return nullptr; 1379 } 1380 1381 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1382 /// --> shufflevector X, CVec', Mask' 1383 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1384 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1385 // Bail out if the parent has more than one use. In that case, we'd be 1386 // replacing the insertelt with a shuffle, and that's not a clear win. 1387 if (!Inst || !Inst->hasOneUse()) 1388 return nullptr; 1389 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1390 // The shuffle must have a constant vector operand. The insertelt must have 1391 // a constant scalar being inserted at a constant position in the vector. 1392 Constant *ShufConstVec, *InsEltScalar; 1393 uint64_t InsEltIndex; 1394 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1395 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1396 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1397 return nullptr; 1398 1399 // Adding an element to an arbitrary shuffle could be expensive, but a 1400 // shuffle that selects elements from vectors without crossing lanes is 1401 // assumed cheap. 1402 // If we're just adding a constant into that shuffle, it will still be 1403 // cheap. 1404 if (!isShuffleEquivalentToSelect(*Shuf)) 1405 return nullptr; 1406 1407 // From the above 'select' check, we know that the mask has the same number 1408 // of elements as the vector input operands. We also know that each constant 1409 // input element is used in its lane and can not be used more than once by 1410 // the shuffle. Therefore, replace the constant in the shuffle's constant 1411 // vector with the insertelt constant. Replace the constant in the shuffle's 1412 // mask vector with the insertelt index plus the length of the vector 1413 // (because the constant vector operand of a shuffle is always the 2nd 1414 // operand). 1415 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1416 unsigned NumElts = Mask.size(); 1417 SmallVector<Constant *, 16> NewShufElts(NumElts); 1418 SmallVector<int, 16> NewMaskElts(NumElts); 1419 for (unsigned I = 0; I != NumElts; ++I) { 1420 if (I == InsEltIndex) { 1421 NewShufElts[I] = InsEltScalar; 1422 NewMaskElts[I] = InsEltIndex + NumElts; 1423 } else { 1424 // Copy over the existing values. 1425 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1426 NewMaskElts[I] = Mask[I]; 1427 } 1428 1429 // Bail if we failed to find an element. 1430 if (!NewShufElts[I]) 1431 return nullptr; 1432 } 1433 1434 // Create new operands for a shuffle that includes the constant of the 1435 // original insertelt. The old shuffle will be dead now. 1436 return new ShuffleVectorInst(Shuf->getOperand(0), 1437 ConstantVector::get(NewShufElts), NewMaskElts); 1438 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1439 // Transform sequences of insertelements ops with constant data/indexes into 1440 // a single shuffle op. 1441 // Can not handle scalable type, the number of elements needed to create 1442 // shuffle mask is not a compile-time constant. 1443 if (isa<ScalableVectorType>(InsElt.getType())) 1444 return nullptr; 1445 unsigned NumElts = 1446 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1447 1448 uint64_t InsertIdx[2]; 1449 Constant *Val[2]; 1450 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1451 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1452 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1453 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1454 return nullptr; 1455 SmallVector<Constant *, 16> Values(NumElts); 1456 SmallVector<int, 16> Mask(NumElts); 1457 auto ValI = std::begin(Val); 1458 // Generate new constant vector and mask. 1459 // We have 2 values/masks from the insertelements instructions. Insert them 1460 // into new value/mask vectors. 1461 for (uint64_t I : InsertIdx) { 1462 if (!Values[I]) { 1463 Values[I] = *ValI; 1464 Mask[I] = NumElts + I; 1465 } 1466 ++ValI; 1467 } 1468 // Remaining values are filled with 'undef' values. 1469 for (unsigned I = 0; I < NumElts; ++I) { 1470 if (!Values[I]) { 1471 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1472 Mask[I] = I; 1473 } 1474 } 1475 // Create new operands for a shuffle that includes the constant of the 1476 // original insertelt. 1477 return new ShuffleVectorInst(IEI->getOperand(0), 1478 ConstantVector::get(Values), Mask); 1479 } 1480 return nullptr; 1481 } 1482 1483 /// If both the base vector and the inserted element are extended from the same 1484 /// type, do the insert element in the narrow source type followed by extend. 1485 /// TODO: This can be extended to include other cast opcodes, but particularly 1486 /// if we create a wider insertelement, make sure codegen is not harmed. 1487 static Instruction *narrowInsElt(InsertElementInst &InsElt, 1488 InstCombiner::BuilderTy &Builder) { 1489 // We are creating a vector extend. If the original vector extend has another 1490 // use, that would mean we end up with 2 vector extends, so avoid that. 1491 // TODO: We could ease the use-clause to "if at least one op has one use" 1492 // (assuming that the source types match - see next TODO comment). 1493 Value *Vec = InsElt.getOperand(0); 1494 if (!Vec->hasOneUse()) 1495 return nullptr; 1496 1497 Value *Scalar = InsElt.getOperand(1); 1498 Value *X, *Y; 1499 CastInst::CastOps CastOpcode; 1500 if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) 1501 CastOpcode = Instruction::FPExt; 1502 else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) 1503 CastOpcode = Instruction::SExt; 1504 else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) 1505 CastOpcode = Instruction::ZExt; 1506 else 1507 return nullptr; 1508 1509 // TODO: We can allow mismatched types by creating an intermediate cast. 1510 if (X->getType()->getScalarType() != Y->getType()) 1511 return nullptr; 1512 1513 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) 1514 Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); 1515 return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); 1516 } 1517 1518 /// If we are inserting 2 halves of a value into adjacent elements of a vector, 1519 /// try to convert to a single insert with appropriate bitcasts. 1520 static Instruction *foldTruncInsEltPair(InsertElementInst &InsElt, 1521 bool IsBigEndian, 1522 InstCombiner::BuilderTy &Builder) { 1523 Value *VecOp = InsElt.getOperand(0); 1524 Value *ScalarOp = InsElt.getOperand(1); 1525 Value *IndexOp = InsElt.getOperand(2); 1526 1527 // Pattern depends on endian because we expect lower index is inserted first. 1528 // Big endian: 1529 // inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1 1530 // Little endian: 1531 // inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1 1532 // Note: It is not safe to do this transform with an arbitrary base vector 1533 // because the bitcast of that vector to fewer/larger elements could 1534 // allow poison to spill into an element that was not poison before. 1535 // TODO: Detect smaller fractions of the scalar. 1536 // TODO: One-use checks are conservative. 1537 auto *VTy = dyn_cast<FixedVectorType>(InsElt.getType()); 1538 Value *Scalar0, *BaseVec; 1539 uint64_t Index0, Index1; 1540 if (!VTy || (VTy->getNumElements() & 1) || 1541 !match(IndexOp, m_ConstantInt(Index1)) || 1542 !match(VecOp, m_InsertElt(m_Value(BaseVec), m_Value(Scalar0), 1543 m_ConstantInt(Index0))) || 1544 !match(BaseVec, m_Undef())) 1545 return nullptr; 1546 1547 // The first insert must be to the index one less than this one, and 1548 // the first insert must be to an even index. 1549 if (Index0 + 1 != Index1 || Index0 & 1) 1550 return nullptr; 1551 1552 // For big endian, the high half of the value should be inserted first. 1553 // For little endian, the low half of the value should be inserted first. 1554 Value *X; 1555 uint64_t ShAmt; 1556 if (IsBigEndian) { 1557 if (!match(ScalarOp, m_Trunc(m_Value(X))) || 1558 !match(Scalar0, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt))))) 1559 return nullptr; 1560 } else { 1561 if (!match(Scalar0, m_Trunc(m_Value(X))) || 1562 !match(ScalarOp, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt))))) 1563 return nullptr; 1564 } 1565 1566 Type *SrcTy = X->getType(); 1567 unsigned ScalarWidth = SrcTy->getScalarSizeInBits(); 1568 unsigned VecEltWidth = VTy->getScalarSizeInBits(); 1569 if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth) 1570 return nullptr; 1571 1572 // Bitcast the base vector to a vector type with the source element type. 1573 Type *CastTy = FixedVectorType::get(SrcTy, VTy->getNumElements() / 2); 1574 Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy); 1575 1576 // Scale the insert index for a vector with half as many elements. 1577 // bitcast (inselt (bitcast BaseVec), X, NewIndex) 1578 uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2; 1579 Value *NewInsert = Builder.CreateInsertElement(CastBaseVec, X, NewIndex); 1580 return new BitCastInst(NewInsert, VTy); 1581 } 1582 1583 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1584 Value *VecOp = IE.getOperand(0); 1585 Value *ScalarOp = IE.getOperand(1); 1586 Value *IdxOp = IE.getOperand(2); 1587 1588 if (auto *V = simplifyInsertElementInst( 1589 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1590 return replaceInstUsesWith(IE, V); 1591 1592 // Canonicalize type of constant indices to i64 to simplify CSE 1593 if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) { 1594 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 1595 return replaceOperand(IE, 2, NewIdx); 1596 1597 Value *BaseVec, *OtherScalar; 1598 uint64_t OtherIndexVal; 1599 if (match(VecOp, m_OneUse(m_InsertElt(m_Value(BaseVec), 1600 m_Value(OtherScalar), 1601 m_ConstantInt(OtherIndexVal)))) && 1602 !isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) { 1603 Value *NewIns = Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp); 1604 return InsertElementInst::Create(NewIns, OtherScalar, 1605 Builder.getInt64(OtherIndexVal)); 1606 } 1607 } 1608 1609 // If the scalar is bitcast and inserted into undef, do the insert in the 1610 // source type followed by bitcast. 1611 // TODO: Generalize for insert into any constant, not just undef? 1612 Value *ScalarSrc; 1613 if (match(VecOp, m_Undef()) && 1614 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1615 (ScalarSrc->getType()->isIntegerTy() || 1616 ScalarSrc->getType()->isFloatingPointTy())) { 1617 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1618 // bitcast (inselt undef, ScalarSrc, IdxOp) 1619 Type *ScalarTy = ScalarSrc->getType(); 1620 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1621 UndefValue *NewUndef = UndefValue::get(VecTy); 1622 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1623 return new BitCastInst(NewInsElt, IE.getType()); 1624 } 1625 1626 // If the vector and scalar are both bitcast from the same element type, do 1627 // the insert in that source type followed by bitcast. 1628 Value *VecSrc; 1629 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1630 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1631 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1632 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1633 cast<VectorType>(VecSrc->getType())->getElementType() == 1634 ScalarSrc->getType()) { 1635 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1636 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1637 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1638 return new BitCastInst(NewInsElt, IE.getType()); 1639 } 1640 1641 // If the inserted element was extracted from some other fixed-length vector 1642 // and both indexes are valid constants, try to turn this into a shuffle. 1643 // Can not handle scalable vector type, the number of elements needed to 1644 // create shuffle mask is not a compile-time constant. 1645 uint64_t InsertedIdx, ExtractedIdx; 1646 Value *ExtVecOp; 1647 if (isa<FixedVectorType>(IE.getType()) && 1648 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1649 match(ScalarOp, 1650 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1651 isa<FixedVectorType>(ExtVecOp->getType()) && 1652 ExtractedIdx < 1653 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1654 // TODO: Looking at the user(s) to determine if this insert is a 1655 // fold-to-shuffle opportunity does not match the usual instcombine 1656 // constraints. We should decide if the transform is worthy based only 1657 // on this instruction and its operands, but that may not work currently. 1658 // 1659 // Here, we are trying to avoid creating shuffles before reaching 1660 // the end of a chain of extract-insert pairs. This is complicated because 1661 // we do not generally form arbitrary shuffle masks in instcombine 1662 // (because those may codegen poorly), but collectShuffleElements() does 1663 // exactly that. 1664 // 1665 // The rules for determining what is an acceptable target-independent 1666 // shuffle mask are fuzzy because they evolve based on the backend's 1667 // capabilities and real-world impact. 1668 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1669 if (!Insert.hasOneUse()) 1670 return true; 1671 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1672 if (!InsertUser) 1673 return true; 1674 return false; 1675 }; 1676 1677 // Try to form a shuffle from a chain of extract-insert ops. 1678 if (isShuffleRootCandidate(IE)) { 1679 SmallVector<int, 16> Mask; 1680 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1681 1682 // The proposed shuffle may be trivial, in which case we shouldn't 1683 // perform the combine. 1684 if (LR.first != &IE && LR.second != &IE) { 1685 // We now have a shuffle of LHS, RHS, Mask. 1686 if (LR.second == nullptr) 1687 LR.second = UndefValue::get(LR.first->getType()); 1688 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1689 } 1690 } 1691 } 1692 1693 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1694 unsigned VWidth = VecTy->getNumElements(); 1695 APInt UndefElts(VWidth, 0); 1696 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1697 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1698 if (V != &IE) 1699 return replaceInstUsesWith(IE, V); 1700 return &IE; 1701 } 1702 } 1703 1704 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1705 return Shuf; 1706 1707 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1708 return NewInsElt; 1709 1710 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1711 return Broadcast; 1712 1713 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1714 return Splat; 1715 1716 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1717 return IdentityShuf; 1718 1719 if (Instruction *Ext = narrowInsElt(IE, Builder)) 1720 return Ext; 1721 1722 if (Instruction *Ext = foldTruncInsEltPair(IE, DL.isBigEndian(), Builder)) 1723 return Ext; 1724 1725 return nullptr; 1726 } 1727 1728 /// Return true if we can evaluate the specified expression tree if the vector 1729 /// elements were shuffled in a different order. 1730 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1731 unsigned Depth = 5) { 1732 // We can always reorder the elements of a constant. 1733 if (isa<Constant>(V)) 1734 return true; 1735 1736 // We won't reorder vector arguments. No IPO here. 1737 Instruction *I = dyn_cast<Instruction>(V); 1738 if (!I) return false; 1739 1740 // Two users may expect different orders of the elements. Don't try it. 1741 if (!I->hasOneUse()) 1742 return false; 1743 1744 if (Depth == 0) return false; 1745 1746 switch (I->getOpcode()) { 1747 case Instruction::UDiv: 1748 case Instruction::SDiv: 1749 case Instruction::URem: 1750 case Instruction::SRem: 1751 // Propagating an undefined shuffle mask element to integer div/rem is not 1752 // allowed because those opcodes can create immediate undefined behavior 1753 // from an undefined element in an operand. 1754 if (llvm::is_contained(Mask, -1)) 1755 return false; 1756 [[fallthrough]]; 1757 case Instruction::Add: 1758 case Instruction::FAdd: 1759 case Instruction::Sub: 1760 case Instruction::FSub: 1761 case Instruction::Mul: 1762 case Instruction::FMul: 1763 case Instruction::FDiv: 1764 case Instruction::FRem: 1765 case Instruction::Shl: 1766 case Instruction::LShr: 1767 case Instruction::AShr: 1768 case Instruction::And: 1769 case Instruction::Or: 1770 case Instruction::Xor: 1771 case Instruction::ICmp: 1772 case Instruction::FCmp: 1773 case Instruction::Trunc: 1774 case Instruction::ZExt: 1775 case Instruction::SExt: 1776 case Instruction::FPToUI: 1777 case Instruction::FPToSI: 1778 case Instruction::UIToFP: 1779 case Instruction::SIToFP: 1780 case Instruction::FPTrunc: 1781 case Instruction::FPExt: 1782 case Instruction::GetElementPtr: { 1783 // Bail out if we would create longer vector ops. We could allow creating 1784 // longer vector ops, but that may result in more expensive codegen. 1785 Type *ITy = I->getType(); 1786 if (ITy->isVectorTy() && 1787 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1788 return false; 1789 for (Value *Operand : I->operands()) { 1790 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1791 return false; 1792 } 1793 return true; 1794 } 1795 case Instruction::InsertElement: { 1796 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1797 if (!CI) return false; 1798 int ElementNumber = CI->getLimitedValue(); 1799 1800 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1801 // can't put an element into multiple indices. 1802 bool SeenOnce = false; 1803 for (int I : Mask) { 1804 if (I == ElementNumber) { 1805 if (SeenOnce) 1806 return false; 1807 SeenOnce = true; 1808 } 1809 } 1810 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1811 } 1812 } 1813 return false; 1814 } 1815 1816 /// Rebuild a new instruction just like 'I' but with the new operands given. 1817 /// In the event of type mismatch, the type of the operands is correct. 1818 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1819 // We don't want to use the IRBuilder here because we want the replacement 1820 // instructions to appear next to 'I', not the builder's insertion point. 1821 switch (I->getOpcode()) { 1822 case Instruction::Add: 1823 case Instruction::FAdd: 1824 case Instruction::Sub: 1825 case Instruction::FSub: 1826 case Instruction::Mul: 1827 case Instruction::FMul: 1828 case Instruction::UDiv: 1829 case Instruction::SDiv: 1830 case Instruction::FDiv: 1831 case Instruction::URem: 1832 case Instruction::SRem: 1833 case Instruction::FRem: 1834 case Instruction::Shl: 1835 case Instruction::LShr: 1836 case Instruction::AShr: 1837 case Instruction::And: 1838 case Instruction::Or: 1839 case Instruction::Xor: { 1840 BinaryOperator *BO = cast<BinaryOperator>(I); 1841 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1842 BinaryOperator *New = 1843 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1844 NewOps[0], NewOps[1], "", BO); 1845 if (isa<OverflowingBinaryOperator>(BO)) { 1846 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1847 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1848 } 1849 if (isa<PossiblyExactOperator>(BO)) { 1850 New->setIsExact(BO->isExact()); 1851 } 1852 if (isa<FPMathOperator>(BO)) 1853 New->copyFastMathFlags(I); 1854 return New; 1855 } 1856 case Instruction::ICmp: 1857 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1858 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1859 NewOps[0], NewOps[1]); 1860 case Instruction::FCmp: 1861 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1862 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1863 NewOps[0], NewOps[1]); 1864 case Instruction::Trunc: 1865 case Instruction::ZExt: 1866 case Instruction::SExt: 1867 case Instruction::FPToUI: 1868 case Instruction::FPToSI: 1869 case Instruction::UIToFP: 1870 case Instruction::SIToFP: 1871 case Instruction::FPTrunc: 1872 case Instruction::FPExt: { 1873 // It's possible that the mask has a different number of elements from 1874 // the original cast. We recompute the destination type to match the mask. 1875 Type *DestTy = VectorType::get( 1876 I->getType()->getScalarType(), 1877 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1878 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1879 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1880 "", I); 1881 } 1882 case Instruction::GetElementPtr: { 1883 Value *Ptr = NewOps[0]; 1884 ArrayRef<Value*> Idx = NewOps.slice(1); 1885 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1886 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1887 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1888 return GEP; 1889 } 1890 } 1891 llvm_unreachable("failed to rebuild vector instructions"); 1892 } 1893 1894 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1895 // Mask.size() does not need to be equal to the number of vector elements. 1896 1897 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1898 Type *EltTy = V->getType()->getScalarType(); 1899 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1900 if (match(V, m_Undef())) 1901 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1902 1903 if (isa<ConstantAggregateZero>(V)) 1904 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1905 1906 if (Constant *C = dyn_cast<Constant>(V)) 1907 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 1908 Mask); 1909 1910 Instruction *I = cast<Instruction>(V); 1911 switch (I->getOpcode()) { 1912 case Instruction::Add: 1913 case Instruction::FAdd: 1914 case Instruction::Sub: 1915 case Instruction::FSub: 1916 case Instruction::Mul: 1917 case Instruction::FMul: 1918 case Instruction::UDiv: 1919 case Instruction::SDiv: 1920 case Instruction::FDiv: 1921 case Instruction::URem: 1922 case Instruction::SRem: 1923 case Instruction::FRem: 1924 case Instruction::Shl: 1925 case Instruction::LShr: 1926 case Instruction::AShr: 1927 case Instruction::And: 1928 case Instruction::Or: 1929 case Instruction::Xor: 1930 case Instruction::ICmp: 1931 case Instruction::FCmp: 1932 case Instruction::Trunc: 1933 case Instruction::ZExt: 1934 case Instruction::SExt: 1935 case Instruction::FPToUI: 1936 case Instruction::FPToSI: 1937 case Instruction::UIToFP: 1938 case Instruction::SIToFP: 1939 case Instruction::FPTrunc: 1940 case Instruction::FPExt: 1941 case Instruction::Select: 1942 case Instruction::GetElementPtr: { 1943 SmallVector<Value*, 8> NewOps; 1944 bool NeedsRebuild = 1945 (Mask.size() != 1946 cast<FixedVectorType>(I->getType())->getNumElements()); 1947 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1948 Value *V; 1949 // Recursively call evaluateInDifferentElementOrder on vector arguments 1950 // as well. E.g. GetElementPtr may have scalar operands even if the 1951 // return value is a vector, so we need to examine the operand type. 1952 if (I->getOperand(i)->getType()->isVectorTy()) 1953 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1954 else 1955 V = I->getOperand(i); 1956 NewOps.push_back(V); 1957 NeedsRebuild |= (V != I->getOperand(i)); 1958 } 1959 if (NeedsRebuild) { 1960 return buildNew(I, NewOps); 1961 } 1962 return I; 1963 } 1964 case Instruction::InsertElement: { 1965 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1966 1967 // The insertelement was inserting at Element. Figure out which element 1968 // that becomes after shuffling. The answer is guaranteed to be unique 1969 // by CanEvaluateShuffled. 1970 bool Found = false; 1971 int Index = 0; 1972 for (int e = Mask.size(); Index != e; ++Index) { 1973 if (Mask[Index] == Element) { 1974 Found = true; 1975 break; 1976 } 1977 } 1978 1979 // If element is not in Mask, no need to handle the operand 1 (element to 1980 // be inserted). Just evaluate values in operand 0 according to Mask. 1981 if (!Found) 1982 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1983 1984 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1985 return InsertElementInst::Create(V, I->getOperand(1), 1986 ConstantInt::get(I32Ty, Index), "", I); 1987 } 1988 } 1989 llvm_unreachable("failed to reorder elements of vector instruction!"); 1990 } 1991 1992 // Returns true if the shuffle is extracting a contiguous range of values from 1993 // LHS, for example: 1994 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1995 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1996 // Shuffles to: |EE|FF|GG|HH| 1997 // +--+--+--+--+ 1998 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1999 ArrayRef<int> Mask) { 2000 unsigned LHSElems = 2001 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 2002 unsigned MaskElems = Mask.size(); 2003 unsigned BegIdx = Mask.front(); 2004 unsigned EndIdx = Mask.back(); 2005 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 2006 return false; 2007 for (unsigned I = 0; I != MaskElems; ++I) 2008 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 2009 return false; 2010 return true; 2011 } 2012 2013 /// These are the ingredients in an alternate form binary operator as described 2014 /// below. 2015 struct BinopElts { 2016 BinaryOperator::BinaryOps Opcode; 2017 Value *Op0; 2018 Value *Op1; 2019 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 2020 Value *V0 = nullptr, Value *V1 = nullptr) : 2021 Opcode(Opc), Op0(V0), Op1(V1) {} 2022 operator bool() const { return Opcode != 0; } 2023 }; 2024 2025 /// Binops may be transformed into binops with different opcodes and operands. 2026 /// Reverse the usual canonicalization to enable folds with the non-canonical 2027 /// form of the binop. If a transform is possible, return the elements of the 2028 /// new binop. If not, return invalid elements. 2029 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 2030 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 2031 Type *Ty = BO->getType(); 2032 switch (BO->getOpcode()) { 2033 case Instruction::Shl: { 2034 // shl X, C --> mul X, (1 << C) 2035 Constant *C; 2036 if (match(BO1, m_Constant(C))) { 2037 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 2038 return {Instruction::Mul, BO0, ShlOne}; 2039 } 2040 break; 2041 } 2042 case Instruction::Or: { 2043 // or X, C --> add X, C (when X and C have no common bits set) 2044 const APInt *C; 2045 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 2046 return {Instruction::Add, BO0, BO1}; 2047 break; 2048 } 2049 case Instruction::Sub: 2050 // sub 0, X --> mul X, -1 2051 if (match(BO0, m_ZeroInt())) 2052 return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)}; 2053 break; 2054 default: 2055 break; 2056 } 2057 return {}; 2058 } 2059 2060 /// A select shuffle of a select shuffle with a shared operand can be reduced 2061 /// to a single select shuffle. This is an obvious improvement in IR, and the 2062 /// backend is expected to lower select shuffles efficiently. 2063 static Instruction *foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf) { 2064 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 2065 2066 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2067 SmallVector<int, 16> Mask; 2068 Shuf.getShuffleMask(Mask); 2069 unsigned NumElts = Mask.size(); 2070 2071 // Canonicalize a select shuffle with common operand as Op1. 2072 auto *ShufOp = dyn_cast<ShuffleVectorInst>(Op0); 2073 if (ShufOp && ShufOp->isSelect() && 2074 (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) { 2075 std::swap(Op0, Op1); 2076 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2077 } 2078 2079 ShufOp = dyn_cast<ShuffleVectorInst>(Op1); 2080 if (!ShufOp || !ShufOp->isSelect() || 2081 (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0)) 2082 return nullptr; 2083 2084 Value *X = ShufOp->getOperand(0), *Y = ShufOp->getOperand(1); 2085 SmallVector<int, 16> Mask1; 2086 ShufOp->getShuffleMask(Mask1); 2087 assert(Mask1.size() == NumElts && "Vector size changed with select shuffle"); 2088 2089 // Canonicalize common operand (Op0) as X (first operand of first shuffle). 2090 if (Y == Op0) { 2091 std::swap(X, Y); 2092 ShuffleVectorInst::commuteShuffleMask(Mask1, NumElts); 2093 } 2094 2095 // If the mask chooses from X (operand 0), it stays the same. 2096 // If the mask chooses from the earlier shuffle, the other mask value is 2097 // transferred to the combined select shuffle: 2098 // shuf X, (shuf X, Y, M1), M --> shuf X, Y, M' 2099 SmallVector<int, 16> NewMask(NumElts); 2100 for (unsigned i = 0; i != NumElts; ++i) 2101 NewMask[i] = Mask[i] < (signed)NumElts ? Mask[i] : Mask1[i]; 2102 2103 // A select mask with undef elements might look like an identity mask. 2104 assert((ShuffleVectorInst::isSelectMask(NewMask) || 2105 ShuffleVectorInst::isIdentityMask(NewMask)) && 2106 "Unexpected shuffle mask"); 2107 return new ShuffleVectorInst(X, Y, NewMask); 2108 } 2109 2110 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 2111 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 2112 2113 // Are we shuffling together some value and that same value after it has been 2114 // modified by a binop with a constant? 2115 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2116 Constant *C; 2117 bool Op0IsBinop; 2118 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 2119 Op0IsBinop = true; 2120 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 2121 Op0IsBinop = false; 2122 else 2123 return nullptr; 2124 2125 // The identity constant for a binop leaves a variable operand unchanged. For 2126 // a vector, this is a splat of something like 0, -1, or 1. 2127 // If there's no identity constant for this binop, we're done. 2128 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 2129 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 2130 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 2131 if (!IdC) 2132 return nullptr; 2133 2134 // Shuffle identity constants into the lanes that return the original value. 2135 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 2136 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 2137 // The existing binop constant vector remains in the same operand position. 2138 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2139 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 2140 ConstantExpr::getShuffleVector(IdC, C, Mask); 2141 2142 bool MightCreatePoisonOrUB = 2143 is_contained(Mask, UndefMaskElem) && 2144 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 2145 if (MightCreatePoisonOrUB) 2146 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 2147 2148 // shuf (bop X, C), X, M --> bop X, C' 2149 // shuf X, (bop X, C), M --> bop X, C' 2150 Value *X = Op0IsBinop ? Op1 : Op0; 2151 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 2152 NewBO->copyIRFlags(BO); 2153 2154 // An undef shuffle mask element may propagate as an undef constant element in 2155 // the new binop. That would produce poison where the original code might not. 2156 // If we already made a safe constant, then there's no danger. 2157 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2158 NewBO->dropPoisonGeneratingFlags(); 2159 return NewBO; 2160 } 2161 2162 /// If we have an insert of a scalar to a non-zero element of an undefined 2163 /// vector and then shuffle that value, that's the same as inserting to the zero 2164 /// element and shuffling. Splatting from the zero element is recognized as the 2165 /// canonical form of splat. 2166 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 2167 InstCombiner::BuilderTy &Builder) { 2168 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2169 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2170 Value *X; 2171 uint64_t IndexC; 2172 2173 // Match a shuffle that is a splat to a non-zero element. 2174 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 2175 m_ConstantInt(IndexC)))) || 2176 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 2177 return nullptr; 2178 2179 // Insert into element 0 of an undef vector. 2180 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 2181 Constant *Zero = Builder.getInt32(0); 2182 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 2183 2184 // Splat from element 0. Any mask element that is undefined remains undefined. 2185 // For example: 2186 // shuf (inselt undef, X, 2), _, <2,2,undef> 2187 // --> shuf (inselt undef, X, 0), poison, <0,0,undef> 2188 unsigned NumMaskElts = 2189 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2190 SmallVector<int, 16> NewMask(NumMaskElts, 0); 2191 for (unsigned i = 0; i != NumMaskElts; ++i) 2192 if (Mask[i] == UndefMaskElem) 2193 NewMask[i] = Mask[i]; 2194 2195 return new ShuffleVectorInst(NewIns, NewMask); 2196 } 2197 2198 /// Try to fold shuffles that are the equivalent of a vector select. 2199 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) { 2200 if (!Shuf.isSelect()) 2201 return nullptr; 2202 2203 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 2204 // Commuting undef to operand 0 conflicts with another canonicalization. 2205 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2206 if (!match(Shuf.getOperand(1), m_Undef()) && 2207 Shuf.getMaskValue(0) >= (int)NumElts) { 2208 // TODO: Can we assert that both operands of a shuffle-select are not undef 2209 // (otherwise, it would have been folded by instsimplify? 2210 Shuf.commute(); 2211 return &Shuf; 2212 } 2213 2214 if (Instruction *I = foldSelectShuffleOfSelectShuffle(Shuf)) 2215 return I; 2216 2217 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 2218 return I; 2219 2220 BinaryOperator *B0, *B1; 2221 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 2222 !match(Shuf.getOperand(1), m_BinOp(B1))) 2223 return nullptr; 2224 2225 // If one operand is "0 - X", allow that to be viewed as "X * -1" 2226 // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired 2227 // with a multiply, we will exit because C0/C1 will not be set. 2228 Value *X, *Y; 2229 Constant *C0 = nullptr, *C1 = nullptr; 2230 bool ConstantsAreOp1; 2231 if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 2232 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 2233 ConstantsAreOp1 = false; 2234 else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)), 2235 m_Neg(m_Value(X)))) && 2236 match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)), 2237 m_Neg(m_Value(Y))))) 2238 ConstantsAreOp1 = true; 2239 else 2240 return nullptr; 2241 2242 // We need matching binops to fold the lanes together. 2243 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 2244 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 2245 bool DropNSW = false; 2246 if (ConstantsAreOp1 && Opc0 != Opc1) { 2247 // TODO: We drop "nsw" if shift is converted into multiply because it may 2248 // not be correct when the shift amount is BitWidth - 1. We could examine 2249 // each vector element to determine if it is safe to keep that flag. 2250 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 2251 DropNSW = true; 2252 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 2253 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 2254 Opc0 = AltB0.Opcode; 2255 C0 = cast<Constant>(AltB0.Op1); 2256 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 2257 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 2258 Opc1 = AltB1.Opcode; 2259 C1 = cast<Constant>(AltB1.Op1); 2260 } 2261 } 2262 2263 if (Opc0 != Opc1 || !C0 || !C1) 2264 return nullptr; 2265 2266 // The opcodes must be the same. Use a new name to make that clear. 2267 BinaryOperator::BinaryOps BOpc = Opc0; 2268 2269 // Select the constant elements needed for the single binop. 2270 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2271 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2272 2273 // We are moving a binop after a shuffle. When a shuffle has an undefined 2274 // mask element, the result is undefined, but it is not poison or undefined 2275 // behavior. That is not necessarily true for div/rem/shift. 2276 bool MightCreatePoisonOrUB = 2277 is_contained(Mask, UndefMaskElem) && 2278 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2279 if (MightCreatePoisonOrUB) 2280 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2281 ConstantsAreOp1); 2282 2283 Value *V; 2284 if (X == Y) { 2285 // Remove a binop and the shuffle by rearranging the constant: 2286 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2287 // shuffle (op C0, V), (op C1, V), M --> op C', V 2288 V = X; 2289 } else { 2290 // If there are 2 different variable operands, we must create a new shuffle 2291 // (select) first, so check uses to ensure that we don't end up with more 2292 // instructions than we started with. 2293 if (!B0->hasOneUse() && !B1->hasOneUse()) 2294 return nullptr; 2295 2296 // If we use the original shuffle mask and op1 is *variable*, we would be 2297 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2298 // poison. We do not have to guard against UB when *constants* are op1 2299 // because safe constants guarantee that we do not overflow sdiv/srem (and 2300 // there's no danger for other opcodes). 2301 // TODO: To allow this case, create a new shuffle mask with no undefs. 2302 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2303 return nullptr; 2304 2305 // Note: In general, we do not create new shuffles in InstCombine because we 2306 // do not know if a target can lower an arbitrary shuffle optimally. In this 2307 // case, the shuffle uses the existing mask, so there is no additional risk. 2308 2309 // Select the variable vectors first, then perform the binop: 2310 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2311 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2312 V = Builder.CreateShuffleVector(X, Y, Mask); 2313 } 2314 2315 Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) : 2316 Builder.CreateBinOp(BOpc, NewC, V); 2317 2318 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2319 // 1. If we changed an opcode, poison conditions might have changed. 2320 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2321 // where the original code did not. But if we already made a safe constant, 2322 // then there's no danger. 2323 if (auto *NewI = dyn_cast<Instruction>(NewBO)) { 2324 NewI->copyIRFlags(B0); 2325 NewI->andIRFlags(B1); 2326 if (DropNSW) 2327 NewI->setHasNoSignedWrap(false); 2328 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2329 NewI->dropPoisonGeneratingFlags(); 2330 } 2331 return replaceInstUsesWith(Shuf, NewBO); 2332 } 2333 2334 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2335 /// Example (little endian): 2336 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2337 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2338 bool IsBigEndian) { 2339 // This must be a bitcasted shuffle of 1 vector integer operand. 2340 Type *DestType = Shuf.getType(); 2341 Value *X; 2342 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2343 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2344 return nullptr; 2345 2346 // The source type must have the same number of elements as the shuffle, 2347 // and the source element type must be larger than the shuffle element type. 2348 Type *SrcType = X->getType(); 2349 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2350 cast<FixedVectorType>(SrcType)->getNumElements() != 2351 cast<FixedVectorType>(DestType)->getNumElements() || 2352 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2353 return nullptr; 2354 2355 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2356 "Expected a shuffle that decreases length"); 2357 2358 // Last, check that the mask chooses the correct low bits for each narrow 2359 // element in the result. 2360 uint64_t TruncRatio = 2361 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2362 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2363 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2364 if (Mask[i] == UndefMaskElem) 2365 continue; 2366 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2367 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2368 if (Mask[i] != (int)LSBIndex) 2369 return nullptr; 2370 } 2371 2372 return new TruncInst(X, DestType); 2373 } 2374 2375 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2376 /// narrowing (concatenating with undef and extracting back to the original 2377 /// length). This allows replacing the wide select with a narrow select. 2378 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2379 InstCombiner::BuilderTy &Builder) { 2380 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2381 // of the 1st vector operand of a shuffle. 2382 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2383 return nullptr; 2384 2385 // The vector being shuffled must be a vector select that we can eliminate. 2386 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2387 Value *Cond, *X, *Y; 2388 if (!match(Shuf.getOperand(0), 2389 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2390 return nullptr; 2391 2392 // We need a narrow condition value. It must be extended with undef elements 2393 // and have the same number of elements as this shuffle. 2394 unsigned NarrowNumElts = 2395 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2396 Value *NarrowCond; 2397 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2398 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2399 NarrowNumElts || 2400 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2401 return nullptr; 2402 2403 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2404 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2405 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2406 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2407 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2408 } 2409 2410 /// Canonicalize FP negate after shuffle. 2411 static Instruction *foldFNegShuffle(ShuffleVectorInst &Shuf, 2412 InstCombiner::BuilderTy &Builder) { 2413 Instruction *FNeg0; 2414 Value *X; 2415 if (!match(Shuf.getOperand(0), m_CombineAnd(m_Instruction(FNeg0), 2416 m_FNeg(m_Value(X))))) 2417 return nullptr; 2418 2419 // shuffle (fneg X), Mask --> fneg (shuffle X, Mask) 2420 if (FNeg0->hasOneUse() && match(Shuf.getOperand(1), m_Undef())) { 2421 Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2422 return UnaryOperator::CreateFNegFMF(NewShuf, FNeg0); 2423 } 2424 2425 Instruction *FNeg1; 2426 Value *Y; 2427 if (!match(Shuf.getOperand(1), m_CombineAnd(m_Instruction(FNeg1), 2428 m_FNeg(m_Value(Y))))) 2429 return nullptr; 2430 2431 // shuffle (fneg X), (fneg Y), Mask --> fneg (shuffle X, Y, Mask) 2432 if (FNeg0->hasOneUse() || FNeg1->hasOneUse()) { 2433 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); 2434 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewShuf); 2435 NewFNeg->copyIRFlags(FNeg0); 2436 NewFNeg->andIRFlags(FNeg1); 2437 return NewFNeg; 2438 } 2439 2440 return nullptr; 2441 } 2442 2443 /// Canonicalize casts after shuffle. 2444 static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf, 2445 InstCombiner::BuilderTy &Builder) { 2446 // Do we have 2 matching cast operands? 2447 auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0)); 2448 auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1)); 2449 if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() || 2450 Cast0->getSrcTy() != Cast1->getSrcTy()) 2451 return nullptr; 2452 2453 // TODO: Allow other opcodes? That would require easing the type restrictions 2454 // below here. 2455 CastInst::CastOps CastOpcode = Cast0->getOpcode(); 2456 switch (CastOpcode) { 2457 case Instruction::FPToSI: 2458 case Instruction::FPToUI: 2459 case Instruction::SIToFP: 2460 case Instruction::UIToFP: 2461 break; 2462 default: 2463 return nullptr; 2464 } 2465 2466 VectorType *ShufTy = Shuf.getType(); 2467 VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType()); 2468 VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy()); 2469 2470 // TODO: Allow length-increasing shuffles? 2471 if (ShufTy->getElementCount().getKnownMinValue() > 2472 ShufOpTy->getElementCount().getKnownMinValue()) 2473 return nullptr; 2474 2475 // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)? 2476 assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) && 2477 "Expected fixed vector operands for casts and binary shuffle"); 2478 if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits()) 2479 return nullptr; 2480 2481 // At least one of the operands must have only one use (the shuffle). 2482 if (!Cast0->hasOneUse() && !Cast1->hasOneUse()) 2483 return nullptr; 2484 2485 // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask) 2486 Value *X = Cast0->getOperand(0); 2487 Value *Y = Cast1->getOperand(0); 2488 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); 2489 return CastInst::Create(CastOpcode, NewShuf, ShufTy); 2490 } 2491 2492 /// Try to fold an extract subvector operation. 2493 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2494 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2495 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) 2496 return nullptr; 2497 2498 // Check if we are extracting all bits of an inserted scalar: 2499 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2500 Value *X; 2501 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2502 X->getType()->getPrimitiveSizeInBits() == 2503 Shuf.getType()->getPrimitiveSizeInBits()) 2504 return new BitCastInst(X, Shuf.getType()); 2505 2506 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2507 Value *Y; 2508 ArrayRef<int> Mask; 2509 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2510 return nullptr; 2511 2512 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2513 // then combining may result in worse codegen. 2514 if (!Op0->hasOneUse()) 2515 return nullptr; 2516 2517 // We are extracting a subvector from a shuffle. Remove excess elements from 2518 // the 1st shuffle mask to eliminate the extract. 2519 // 2520 // This transform is conservatively limited to identity extracts because we do 2521 // not allow arbitrary shuffle mask creation as a target-independent transform 2522 // (because we can't guarantee that will lower efficiently). 2523 // 2524 // If the extracting shuffle has an undef mask element, it transfers to the 2525 // new shuffle mask. Otherwise, copy the original mask element. Example: 2526 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2527 // shuf X, Y, <C0, undef, C2, undef> 2528 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2529 SmallVector<int, 16> NewMask(NumElts); 2530 assert(NumElts < Mask.size() && 2531 "Identity with extract must have less elements than its inputs"); 2532 2533 for (unsigned i = 0; i != NumElts; ++i) { 2534 int ExtractMaskElt = Shuf.getMaskValue(i); 2535 int MaskElt = Mask[i]; 2536 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2537 } 2538 return new ShuffleVectorInst(X, Y, NewMask); 2539 } 2540 2541 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2542 /// operand with the operand of an insertelement. 2543 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2544 InstCombinerImpl &IC) { 2545 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2546 SmallVector<int, 16> Mask; 2547 Shuf.getShuffleMask(Mask); 2548 2549 int NumElts = Mask.size(); 2550 int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements(); 2551 2552 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2553 // not be able to handle it there if the insertelement has >1 use. 2554 // If the shuffle has an insertelement operand but does not choose the 2555 // inserted scalar element from that value, then we can replace that shuffle 2556 // operand with the source vector of the insertelement. 2557 Value *X; 2558 uint64_t IdxC; 2559 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2560 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2561 if (!is_contained(Mask, (int)IdxC)) 2562 return IC.replaceOperand(Shuf, 0, X); 2563 } 2564 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2565 // Offset the index constant by the vector width because we are checking for 2566 // accesses to the 2nd vector input of the shuffle. 2567 IdxC += InpNumElts; 2568 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2569 if (!is_contained(Mask, (int)IdxC)) 2570 return IC.replaceOperand(Shuf, 1, X); 2571 } 2572 // For the rest of the transform, the shuffle must not change vector sizes. 2573 // TODO: This restriction could be removed if the insert has only one use 2574 // (because the transform would require a new length-changing shuffle). 2575 if (NumElts != InpNumElts) 2576 return nullptr; 2577 2578 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2579 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2580 // We need an insertelement with a constant index. 2581 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2582 m_ConstantInt(IndexC)))) 2583 return false; 2584 2585 // Test the shuffle mask to see if it splices the inserted scalar into the 2586 // operand 1 vector of the shuffle. 2587 int NewInsIndex = -1; 2588 for (int i = 0; i != NumElts; ++i) { 2589 // Ignore undef mask elements. 2590 if (Mask[i] == -1) 2591 continue; 2592 2593 // The shuffle takes elements of operand 1 without lane changes. 2594 if (Mask[i] == NumElts + i) 2595 continue; 2596 2597 // The shuffle must choose the inserted scalar exactly once. 2598 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2599 return false; 2600 2601 // The shuffle is placing the inserted scalar into element i. 2602 NewInsIndex = i; 2603 } 2604 2605 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2606 2607 // Index is updated to the potentially translated insertion lane. 2608 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2609 return true; 2610 }; 2611 2612 // If the shuffle is unnecessary, insert the scalar operand directly into 2613 // operand 1 of the shuffle. Example: 2614 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2615 Value *Scalar; 2616 ConstantInt *IndexC; 2617 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2618 return InsertElementInst::Create(V1, Scalar, IndexC); 2619 2620 // Try again after commuting shuffle. Example: 2621 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2622 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2623 std::swap(V0, V1); 2624 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2625 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2626 return InsertElementInst::Create(V1, Scalar, IndexC); 2627 2628 return nullptr; 2629 } 2630 2631 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2632 // Match the operands as identity with padding (also known as concatenation 2633 // with undef) shuffles of the same source type. The backend is expected to 2634 // recreate these concatenations from a shuffle of narrow operands. 2635 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2636 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2637 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2638 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2639 return nullptr; 2640 2641 // We limit this transform to power-of-2 types because we expect that the 2642 // backend can convert the simplified IR patterns to identical nodes as the 2643 // original IR. 2644 // TODO: If we can verify the same behavior for arbitrary types, the 2645 // power-of-2 checks can be removed. 2646 Value *X = Shuffle0->getOperand(0); 2647 Value *Y = Shuffle1->getOperand(0); 2648 if (X->getType() != Y->getType() || 2649 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2650 !isPowerOf2_32( 2651 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2652 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2653 match(X, m_Undef()) || match(Y, m_Undef())) 2654 return nullptr; 2655 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2656 match(Shuffle1->getOperand(1), m_Undef()) && 2657 "Unexpected operand for identity shuffle"); 2658 2659 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2660 // operands directly by adjusting the shuffle mask to account for the narrower 2661 // types: 2662 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2663 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2664 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2665 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2666 2667 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2668 SmallVector<int, 16> NewMask(Mask.size(), -1); 2669 for (int i = 0, e = Mask.size(); i != e; ++i) { 2670 if (Mask[i] == -1) 2671 continue; 2672 2673 // If this shuffle is choosing an undef element from 1 of the sources, that 2674 // element is undef. 2675 if (Mask[i] < WideElts) { 2676 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2677 continue; 2678 } else { 2679 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2680 continue; 2681 } 2682 2683 // If this shuffle is choosing from the 1st narrow op, the mask element is 2684 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2685 // element is offset down to adjust for the narrow vector widths. 2686 if (Mask[i] < WideElts) { 2687 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2688 NewMask[i] = Mask[i]; 2689 } else { 2690 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2691 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2692 } 2693 } 2694 return new ShuffleVectorInst(X, Y, NewMask); 2695 } 2696 2697 // Splatting the first element of the result of a BinOp, where any of the 2698 // BinOp's operands are the result of a first element splat can be simplified to 2699 // splatting the first element of the result of the BinOp 2700 Instruction *InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst &SVI) { 2701 if (!match(SVI.getOperand(1), m_Undef()) || 2702 !match(SVI.getShuffleMask(), m_ZeroMask())) 2703 return nullptr; 2704 2705 Value *Op0 = SVI.getOperand(0); 2706 Value *X, *Y; 2707 if (!match(Op0, m_BinOp(m_Shuffle(m_Value(X), m_Undef(), m_ZeroMask()), 2708 m_Value(Y))) && 2709 !match(Op0, m_BinOp(m_Value(X), 2710 m_Shuffle(m_Value(Y), m_Undef(), m_ZeroMask())))) 2711 return nullptr; 2712 if (X->getType() != Y->getType()) 2713 return nullptr; 2714 2715 auto *BinOp = cast<BinaryOperator>(Op0); 2716 if (!isSafeToSpeculativelyExecute(BinOp)) 2717 return nullptr; 2718 2719 Value *NewBO = Builder.CreateBinOp(BinOp->getOpcode(), X, Y); 2720 if (auto NewBOI = dyn_cast<Instruction>(NewBO)) 2721 NewBOI->copyIRFlags(BinOp); 2722 2723 return new ShuffleVectorInst(NewBO, SVI.getShuffleMask()); 2724 } 2725 2726 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2727 Value *LHS = SVI.getOperand(0); 2728 Value *RHS = SVI.getOperand(1); 2729 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2730 if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2731 SVI.getType(), ShufQuery)) 2732 return replaceInstUsesWith(SVI, V); 2733 2734 if (Instruction *I = simplifyBinOpSplats(SVI)) 2735 return I; 2736 2737 if (isa<ScalableVectorType>(LHS->getType())) 2738 return nullptr; 2739 2740 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2741 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2742 2743 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2744 // 2745 // if X and Y are of the same (vector) type, and the element size is not 2746 // changed by the bitcasts, we can distribute the bitcasts through the 2747 // shuffle, hopefully reducing the number of instructions. We make sure that 2748 // at least one bitcast only has one use, so we don't *increase* the number of 2749 // instructions here. 2750 Value *X, *Y; 2751 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2752 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2753 X->getType()->getScalarSizeInBits() == 2754 SVI.getType()->getScalarSizeInBits() && 2755 (LHS->hasOneUse() || RHS->hasOneUse())) { 2756 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2757 SVI.getName() + ".uncasted"); 2758 return new BitCastInst(V, SVI.getType()); 2759 } 2760 2761 ArrayRef<int> Mask = SVI.getShuffleMask(); 2762 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2763 2764 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2765 // simulated shuffle can simplify, then this shuffle is unnecessary: 2766 // shuf (bitcast X), undef, Mask --> bitcast X' 2767 // TODO: This could be extended to allow length-changing shuffles. 2768 // The transform might also be obsoleted if we allowed canonicalization 2769 // of bitcasted shuffles. 2770 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2771 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2772 // Try to create a scaled mask constant. 2773 auto *XType = cast<FixedVectorType>(X->getType()); 2774 unsigned XNumElts = XType->getNumElements(); 2775 SmallVector<int, 16> ScaledMask; 2776 if (XNumElts >= VWidth) { 2777 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2778 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2779 } else { 2780 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2781 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2782 ScaledMask.clear(); 2783 } 2784 if (!ScaledMask.empty()) { 2785 // If the shuffled source vector simplifies, cast that value to this 2786 // shuffle's type. 2787 if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType), 2788 ScaledMask, XType, ShufQuery)) 2789 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2790 } 2791 } 2792 2793 // shuffle x, x, mask --> shuffle x, undef, mask' 2794 if (LHS == RHS) { 2795 assert(!match(RHS, m_Undef()) && 2796 "Shuffle with 2 undef ops not simplified?"); 2797 return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth)); 2798 } 2799 2800 // shuffle undef, x, mask --> shuffle x, undef, mask' 2801 if (match(LHS, m_Undef())) { 2802 SVI.commute(); 2803 return &SVI; 2804 } 2805 2806 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2807 return I; 2808 2809 if (Instruction *I = foldSelectShuffle(SVI)) 2810 return I; 2811 2812 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2813 return I; 2814 2815 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2816 return I; 2817 2818 if (Instruction *I = foldFNegShuffle(SVI, Builder)) 2819 return I; 2820 2821 if (Instruction *I = foldCastShuffle(SVI, Builder)) 2822 return I; 2823 2824 APInt UndefElts(VWidth, 0); 2825 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2826 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2827 if (V != &SVI) 2828 return replaceInstUsesWith(SVI, V); 2829 return &SVI; 2830 } 2831 2832 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2833 return I; 2834 2835 // These transforms have the potential to lose undef knowledge, so they are 2836 // intentionally placed after SimplifyDemandedVectorElts(). 2837 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2838 return I; 2839 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2840 return I; 2841 2842 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { 2843 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2844 return replaceInstUsesWith(SVI, V); 2845 } 2846 2847 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2848 // a non-vector type. We can instead bitcast the original vector followed by 2849 // an extract of the desired element: 2850 // 2851 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2852 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2853 // %1 = bitcast <4 x i8> %sroa to i32 2854 // Becomes: 2855 // %bc = bitcast <16 x i8> %in to <4 x i32> 2856 // %ext = extractelement <4 x i32> %bc, i32 0 2857 // 2858 // If the shuffle is extracting a contiguous range of values from the input 2859 // vector then each use which is a bitcast of the extracted size can be 2860 // replaced. This will work if the vector types are compatible, and the begin 2861 // index is aligned to a value in the casted vector type. If the begin index 2862 // isn't aligned then we can shuffle the original vector (keeping the same 2863 // vector type) before extracting. 2864 // 2865 // This code will bail out if the target type is fundamentally incompatible 2866 // with vectors of the source type. 2867 // 2868 // Example of <16 x i8>, target type i32: 2869 // Index range [4,8): v-----------v Will work. 2870 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2871 // <16 x i8>: | | | | | | | | | | | | | | | | | 2872 // <4 x i32>: | | | | | 2873 // +-----------+-----------+-----------+-----------+ 2874 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2875 // Target type i40: ^--------------^ Won't work, bail. 2876 bool MadeChange = false; 2877 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2878 Value *V = LHS; 2879 unsigned MaskElems = Mask.size(); 2880 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2881 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedValue(); 2882 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2883 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2884 unsigned SrcNumElems = SrcTy->getNumElements(); 2885 SmallVector<BitCastInst *, 8> BCs; 2886 DenseMap<Type *, Value *> NewBCs; 2887 for (User *U : SVI.users()) 2888 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2889 if (!BC->use_empty()) 2890 // Only visit bitcasts that weren't previously handled. 2891 BCs.push_back(BC); 2892 for (BitCastInst *BC : BCs) { 2893 unsigned BegIdx = Mask.front(); 2894 Type *TgtTy = BC->getDestTy(); 2895 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2896 if (!TgtElemBitWidth) 2897 continue; 2898 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2899 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2900 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2901 if (!VecBitWidthsEqual) 2902 continue; 2903 if (!VectorType::isValidElementType(TgtTy)) 2904 continue; 2905 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2906 if (!BegIsAligned) { 2907 // Shuffle the input so [0,NumElements) contains the output, and 2908 // [NumElems,SrcNumElems) is undef. 2909 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2910 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2911 ShuffleMask[I] = Idx; 2912 V = Builder.CreateShuffleVector(V, ShuffleMask, 2913 SVI.getName() + ".extract"); 2914 BegIdx = 0; 2915 } 2916 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2917 assert(SrcElemsPerTgtElem); 2918 BegIdx /= SrcElemsPerTgtElem; 2919 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2920 auto *NewBC = 2921 BCAlreadyExists 2922 ? NewBCs[CastSrcTy] 2923 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2924 if (!BCAlreadyExists) 2925 NewBCs[CastSrcTy] = NewBC; 2926 auto *Ext = Builder.CreateExtractElement( 2927 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2928 // The shufflevector isn't being replaced: the bitcast that used it 2929 // is. InstCombine will visit the newly-created instructions. 2930 replaceInstUsesWith(*BC, Ext); 2931 MadeChange = true; 2932 } 2933 } 2934 2935 // If the LHS is a shufflevector itself, see if we can combine it with this 2936 // one without producing an unusual shuffle. 2937 // Cases that might be simplified: 2938 // 1. 2939 // x1=shuffle(v1,v2,mask1) 2940 // x=shuffle(x1,undef,mask) 2941 // ==> 2942 // x=shuffle(v1,undef,newMask) 2943 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2944 // 2. 2945 // x1=shuffle(v1,undef,mask1) 2946 // x=shuffle(x1,x2,mask) 2947 // where v1.size() == mask1.size() 2948 // ==> 2949 // x=shuffle(v1,x2,newMask) 2950 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2951 // 3. 2952 // x2=shuffle(v2,undef,mask2) 2953 // x=shuffle(x1,x2,mask) 2954 // where v2.size() == mask2.size() 2955 // ==> 2956 // x=shuffle(x1,v2,newMask) 2957 // newMask[i] = (mask[i] < x1.size()) 2958 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2959 // 4. 2960 // x1=shuffle(v1,undef,mask1) 2961 // x2=shuffle(v2,undef,mask2) 2962 // x=shuffle(x1,x2,mask) 2963 // where v1.size() == v2.size() 2964 // ==> 2965 // x=shuffle(v1,v2,newMask) 2966 // newMask[i] = (mask[i] < x1.size()) 2967 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2968 // 2969 // Here we are really conservative: 2970 // we are absolutely afraid of producing a shuffle mask not in the input 2971 // program, because the code gen may not be smart enough to turn a merged 2972 // shuffle into two specific shuffles: it may produce worse code. As such, 2973 // we only merge two shuffles if the result is either a splat or one of the 2974 // input shuffle masks. In this case, merging the shuffles just removes 2975 // one instruction, which we know is safe. This is good for things like 2976 // turning: (splat(splat)) -> splat, or 2977 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2978 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2979 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2980 if (LHSShuffle) 2981 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef())) 2982 LHSShuffle = nullptr; 2983 if (RHSShuffle) 2984 if (!match(RHSShuffle->getOperand(1), m_Undef())) 2985 RHSShuffle = nullptr; 2986 if (!LHSShuffle && !RHSShuffle) 2987 return MadeChange ? &SVI : nullptr; 2988 2989 Value* LHSOp0 = nullptr; 2990 Value* LHSOp1 = nullptr; 2991 Value* RHSOp0 = nullptr; 2992 unsigned LHSOp0Width = 0; 2993 unsigned RHSOp0Width = 0; 2994 if (LHSShuffle) { 2995 LHSOp0 = LHSShuffle->getOperand(0); 2996 LHSOp1 = LHSShuffle->getOperand(1); 2997 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 2998 } 2999 if (RHSShuffle) { 3000 RHSOp0 = RHSShuffle->getOperand(0); 3001 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 3002 } 3003 Value* newLHS = LHS; 3004 Value* newRHS = RHS; 3005 if (LHSShuffle) { 3006 // case 1 3007 if (match(RHS, m_Undef())) { 3008 newLHS = LHSOp0; 3009 newRHS = LHSOp1; 3010 } 3011 // case 2 or 4 3012 else if (LHSOp0Width == LHSWidth) { 3013 newLHS = LHSOp0; 3014 } 3015 } 3016 // case 3 or 4 3017 if (RHSShuffle && RHSOp0Width == LHSWidth) { 3018 newRHS = RHSOp0; 3019 } 3020 // case 4 3021 if (LHSOp0 == RHSOp0) { 3022 newLHS = LHSOp0; 3023 newRHS = nullptr; 3024 } 3025 3026 if (newLHS == LHS && newRHS == RHS) 3027 return MadeChange ? &SVI : nullptr; 3028 3029 ArrayRef<int> LHSMask; 3030 ArrayRef<int> RHSMask; 3031 if (newLHS != LHS) 3032 LHSMask = LHSShuffle->getShuffleMask(); 3033 if (RHSShuffle && newRHS != RHS) 3034 RHSMask = RHSShuffle->getShuffleMask(); 3035 3036 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 3037 SmallVector<int, 16> newMask; 3038 bool isSplat = true; 3039 int SplatElt = -1; 3040 // Create a new mask for the new ShuffleVectorInst so that the new 3041 // ShuffleVectorInst is equivalent to the original one. 3042 for (unsigned i = 0; i < VWidth; ++i) { 3043 int eltMask; 3044 if (Mask[i] < 0) { 3045 // This element is an undef value. 3046 eltMask = -1; 3047 } else if (Mask[i] < (int)LHSWidth) { 3048 // This element is from left hand side vector operand. 3049 // 3050 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 3051 // new mask value for the element. 3052 if (newLHS != LHS) { 3053 eltMask = LHSMask[Mask[i]]; 3054 // If the value selected is an undef value, explicitly specify it 3055 // with a -1 mask value. 3056 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 3057 eltMask = -1; 3058 } else 3059 eltMask = Mask[i]; 3060 } else { 3061 // This element is from right hand side vector operand 3062 // 3063 // If the value selected is an undef value, explicitly specify it 3064 // with a -1 mask value. (case 1) 3065 if (match(RHS, m_Undef())) 3066 eltMask = -1; 3067 // If RHS is going to be replaced (case 3 or 4), calculate the 3068 // new mask value for the element. 3069 else if (newRHS != RHS) { 3070 eltMask = RHSMask[Mask[i]-LHSWidth]; 3071 // If the value selected is an undef value, explicitly specify it 3072 // with a -1 mask value. 3073 if (eltMask >= (int)RHSOp0Width) { 3074 assert(match(RHSShuffle->getOperand(1), m_Undef()) && 3075 "should have been check above"); 3076 eltMask = -1; 3077 } 3078 } else 3079 eltMask = Mask[i]-LHSWidth; 3080 3081 // If LHS's width is changed, shift the mask value accordingly. 3082 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 3083 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 3084 // If newRHS == newLHS, we want to remap any references from newRHS to 3085 // newLHS so that we can properly identify splats that may occur due to 3086 // obfuscation across the two vectors. 3087 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 3088 eltMask += newLHSWidth; 3089 } 3090 3091 // Check if this could still be a splat. 3092 if (eltMask >= 0) { 3093 if (SplatElt >= 0 && SplatElt != eltMask) 3094 isSplat = false; 3095 SplatElt = eltMask; 3096 } 3097 3098 newMask.push_back(eltMask); 3099 } 3100 3101 // If the result mask is equal to one of the original shuffle masks, 3102 // or is a splat, do the replacement. 3103 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 3104 if (!newRHS) 3105 newRHS = UndefValue::get(newLHS->getType()); 3106 return new ShuffleVectorInst(newLHS, newRHS, newMask); 3107 } 3108 3109 return MadeChange ? &SVI : nullptr; 3110 } 3111