1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombiner.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 #define DEBUG_TYPE "instcombine" 45 46 using namespace llvm; 47 using namespace PatternMatch; 48 49 STATISTIC(NumAggregateReconstructionsSimplified, 50 "Number of aggregate reconstructions turned into reuse of the " 51 "original aggregate"); 52 53 /// Return true if the value is cheaper to scalarize than it is to leave as a 54 /// vector operation. If the extract index \p EI is a constant integer then 55 /// some operations may be cheap to scalarize. 56 /// 57 /// FIXME: It's possible to create more instructions than previously existed. 58 static bool cheapToScalarize(Value *V, Value *EI) { 59 ConstantInt *CEI = dyn_cast<ConstantInt>(EI); 60 61 // If we can pick a scalar constant value out of a vector, that is free. 62 if (auto *C = dyn_cast<Constant>(V)) 63 return CEI || C->getSplatValue(); 64 65 if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) { 66 ElementCount EC = cast<VectorType>(V->getType())->getElementCount(); 67 // Index needs to be lower than the minimum size of the vector, because 68 // for scalable vector, the vector size is known at run time. 69 return CEI->getValue().ult(EC.getKnownMinValue()); 70 } 71 72 // An insertelement to the same constant index as our extract will simplify 73 // to the scalar inserted element. An insertelement to a different constant 74 // index is irrelevant to our extract. 75 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 76 return CEI; 77 78 if (match(V, m_OneUse(m_Load(m_Value())))) 79 return true; 80 81 if (match(V, m_OneUse(m_UnOp()))) 82 return true; 83 84 Value *V0, *V1; 85 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 86 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 87 return true; 88 89 CmpInst::Predicate UnusedPred; 90 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 91 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 92 return true; 93 94 return false; 95 } 96 97 // If we have a PHI node with a vector type that is only used to feed 98 // itself and be an operand of extractelement at a constant location, 99 // try to replace the PHI of the vector type with a PHI of a scalar type. 100 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 101 PHINode *PN) { 102 SmallVector<Instruction *, 2> Extracts; 103 // The users we want the PHI to have are: 104 // 1) The EI ExtractElement (we already know this) 105 // 2) Possibly more ExtractElements with the same index. 106 // 3) Another operand, which will feed back into the PHI. 107 Instruction *PHIUser = nullptr; 108 for (auto U : PN->users()) { 109 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 110 if (EI.getIndexOperand() == EU->getIndexOperand()) 111 Extracts.push_back(EU); 112 else 113 return nullptr; 114 } else if (!PHIUser) { 115 PHIUser = cast<Instruction>(U); 116 } else { 117 return nullptr; 118 } 119 } 120 121 if (!PHIUser) 122 return nullptr; 123 124 // Verify that this PHI user has one use, which is the PHI itself, 125 // and that it is a binary operation which is cheap to scalarize. 126 // otherwise return nullptr. 127 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 128 !(isa<BinaryOperator>(PHIUser)) || 129 !cheapToScalarize(PHIUser, EI.getIndexOperand())) 130 return nullptr; 131 132 // Create a scalar PHI node that will replace the vector PHI node 133 // just before the current PHI node. 134 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 135 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 136 // Scalarize each PHI operand. 137 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 138 Value *PHIInVal = PN->getIncomingValue(i); 139 BasicBlock *inBB = PN->getIncomingBlock(i); 140 Value *Elt = EI.getIndexOperand(); 141 // If the operand is the PHI induction variable: 142 if (PHIInVal == PHIUser) { 143 // Scalarize the binary operation. Its first operand is the 144 // scalar PHI, and the second operand is extracted from the other 145 // vector operand. 146 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 147 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 148 Value *Op = InsertNewInstWith( 149 ExtractElementInst::Create(B0->getOperand(opId), Elt, 150 B0->getOperand(opId)->getName() + ".Elt"), 151 *B0); 152 Value *newPHIUser = InsertNewInstWith( 153 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 154 scalarPHI, Op, B0), *B0); 155 scalarPHI->addIncoming(newPHIUser, inBB); 156 } else { 157 // Scalarize PHI input: 158 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 159 // Insert the new instruction into the predecessor basic block. 160 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 161 BasicBlock::iterator InsertPos; 162 if (pos && !isa<PHINode>(pos)) { 163 InsertPos = ++pos->getIterator(); 164 } else { 165 InsertPos = inBB->getFirstInsertionPt(); 166 } 167 168 InsertNewInstWith(newEI, *InsertPos); 169 170 scalarPHI->addIncoming(newEI, inBB); 171 } 172 } 173 174 for (auto E : Extracts) 175 replaceInstUsesWith(*E, scalarPHI); 176 177 return &EI; 178 } 179 180 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) { 181 Value *X; 182 uint64_t ExtIndexC; 183 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 184 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 185 return nullptr; 186 187 ElementCount NumElts = 188 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 189 Type *DestTy = Ext.getType(); 190 bool IsBigEndian = DL.isBigEndian(); 191 192 // If we are casting an integer to vector and extracting a portion, that is 193 // a shift-right and truncate. 194 // TODO: Allow FP dest type by casting the trunc to FP? 195 if (X->getType()->isIntegerTy() && DestTy->isIntegerTy() && 196 isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) { 197 assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) && 198 "Expected fixed vector type for bitcast from scalar integer"); 199 200 // Big endian requires adjusting the extract index since MSB is at index 0. 201 // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8 202 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8 203 if (IsBigEndian) 204 ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC; 205 unsigned ShiftAmountC = ExtIndexC * DestTy->getPrimitiveSizeInBits(); 206 if (!ShiftAmountC || Ext.getVectorOperand()->hasOneUse()) { 207 Value *Lshr = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset"); 208 return new TruncInst(Lshr, DestTy); 209 } 210 } 211 212 if (!X->getType()->isVectorTy()) 213 return nullptr; 214 215 // If this extractelement is using a bitcast from a vector of the same number 216 // of elements, see if we can find the source element from the source vector: 217 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 218 auto *SrcTy = cast<VectorType>(X->getType()); 219 ElementCount NumSrcElts = SrcTy->getElementCount(); 220 if (NumSrcElts == NumElts) 221 if (Value *Elt = findScalarElement(X, ExtIndexC)) 222 return new BitCastInst(Elt, DestTy); 223 224 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 225 "Src and Dst must be the same sort of vector type"); 226 227 // If the source elements are wider than the destination, try to shift and 228 // truncate a subset of scalar bits of an insert op. 229 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 230 Value *Scalar; 231 Value *Vec; 232 uint64_t InsIndexC; 233 if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar), 234 m_ConstantInt(InsIndexC)))) 235 return nullptr; 236 237 // The extract must be from the subset of vector elements that we inserted 238 // into. Example: if we inserted element 1 of a <2 x i64> and we are 239 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 240 // of elements 4-7 of the bitcasted vector. 241 unsigned NarrowingRatio = 242 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 243 244 if (ExtIndexC / NarrowingRatio != InsIndexC) { 245 // Remove insertelement, if we don't use the inserted element. 246 // extractelement (bitcast (insertelement (Vec, b)), a) -> 247 // extractelement (bitcast (Vec), a) 248 // FIXME: this should be removed to SimplifyDemandedVectorElts, 249 // once scale vectors are supported. 250 if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) { 251 Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType()); 252 return ExtractElementInst::Create(NewBC, Ext.getIndexOperand()); 253 } 254 return nullptr; 255 } 256 257 // We are extracting part of the original scalar. How that scalar is 258 // inserted into the vector depends on the endian-ness. Example: 259 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 260 // +--+--+--+--+--+--+--+--+ 261 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 262 // extelt <4 x i16> V', 3: | |S2|S3| 263 // +--+--+--+--+--+--+--+--+ 264 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 265 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 266 // In this example, we must right-shift little-endian. Big-endian is just a 267 // truncate. 268 unsigned Chunk = ExtIndexC % NarrowingRatio; 269 if (IsBigEndian) 270 Chunk = NarrowingRatio - 1 - Chunk; 271 272 // Bail out if this is an FP vector to FP vector sequence. That would take 273 // more instructions than we started with unless there is no shift, and it 274 // may not be handled as well in the backend. 275 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 276 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 277 if (NeedSrcBitcast && NeedDestBitcast) 278 return nullptr; 279 280 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 281 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 282 unsigned ShAmt = Chunk * DestWidth; 283 284 // TODO: This limitation is more strict than necessary. We could sum the 285 // number of new instructions and subtract the number eliminated to know if 286 // we can proceed. 287 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 288 if (NeedSrcBitcast || NeedDestBitcast) 289 return nullptr; 290 291 if (NeedSrcBitcast) { 292 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 293 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 294 } 295 296 if (ShAmt) { 297 // Bail out if we could end with more instructions than we started with. 298 if (!Ext.getVectorOperand()->hasOneUse()) 299 return nullptr; 300 Scalar = Builder.CreateLShr(Scalar, ShAmt); 301 } 302 303 if (NeedDestBitcast) { 304 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 305 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 306 } 307 return new TruncInst(Scalar, DestTy); 308 } 309 310 return nullptr; 311 } 312 313 /// Find elements of V demanded by UserInstr. 314 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 315 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 316 317 // Conservatively assume that all elements are needed. 318 APInt UsedElts(APInt::getAllOnes(VWidth)); 319 320 switch (UserInstr->getOpcode()) { 321 case Instruction::ExtractElement: { 322 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 323 assert(EEI->getVectorOperand() == V); 324 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 325 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 326 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 327 } 328 break; 329 } 330 case Instruction::ShuffleVector: { 331 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 332 unsigned MaskNumElts = 333 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 334 335 UsedElts = APInt(VWidth, 0); 336 for (unsigned i = 0; i < MaskNumElts; i++) { 337 unsigned MaskVal = Shuffle->getMaskValue(i); 338 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 339 continue; 340 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 341 UsedElts.setBit(MaskVal); 342 if (Shuffle->getOperand(1) == V && 343 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 344 UsedElts.setBit(MaskVal - VWidth); 345 } 346 break; 347 } 348 default: 349 break; 350 } 351 return UsedElts; 352 } 353 354 /// Find union of elements of V demanded by all its users. 355 /// If it is known by querying findDemandedEltsBySingleUser that 356 /// no user demands an element of V, then the corresponding bit 357 /// remains unset in the returned value. 358 static APInt findDemandedEltsByAllUsers(Value *V) { 359 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 360 361 APInt UnionUsedElts(VWidth, 0); 362 for (const Use &U : V->uses()) { 363 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 364 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 365 } else { 366 UnionUsedElts = APInt::getAllOnes(VWidth); 367 break; 368 } 369 370 if (UnionUsedElts.isAllOnes()) 371 break; 372 } 373 374 return UnionUsedElts; 375 } 376 377 /// Given a constant index for a extractelement or insertelement instruction, 378 /// return it with the canonical type if it isn't already canonical. We 379 /// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't 380 /// matter, we just want a consistent type to simplify CSE. 381 ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) { 382 const unsigned IndexBW = IndexC->getType()->getBitWidth(); 383 if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64) 384 return nullptr; 385 return ConstantInt::get(IndexC->getContext(), 386 IndexC->getValue().zextOrTrunc(64)); 387 } 388 389 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 390 Value *SrcVec = EI.getVectorOperand(); 391 Value *Index = EI.getIndexOperand(); 392 if (Value *V = simplifyExtractElementInst(SrcVec, Index, 393 SQ.getWithInstruction(&EI))) 394 return replaceInstUsesWith(EI, V); 395 396 // If extracting a specified index from the vector, see if we can recursively 397 // find a previously computed scalar that was inserted into the vector. 398 auto *IndexC = dyn_cast<ConstantInt>(Index); 399 if (IndexC) { 400 // Canonicalize type of constant indices to i64 to simplify CSE 401 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 402 return replaceOperand(EI, 1, NewIdx); 403 404 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 405 unsigned NumElts = EC.getKnownMinValue(); 406 407 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 408 Intrinsic::ID IID = II->getIntrinsicID(); 409 // Index needs to be lower than the minimum size of the vector, because 410 // for scalable vector, the vector size is known at run time. 411 if (IID == Intrinsic::experimental_stepvector && 412 IndexC->getValue().ult(NumElts)) { 413 Type *Ty = EI.getType(); 414 unsigned BitWidth = Ty->getIntegerBitWidth(); 415 Value *Idx; 416 // Return index when its value does not exceed the allowed limit 417 // for the element type of the vector, otherwise return undefined. 418 if (IndexC->getValue().getActiveBits() <= BitWidth) 419 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 420 else 421 Idx = UndefValue::get(Ty); 422 return replaceInstUsesWith(EI, Idx); 423 } 424 } 425 426 // InstSimplify should handle cases where the index is invalid. 427 // For fixed-length vector, it's invalid to extract out-of-range element. 428 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 429 return nullptr; 430 431 if (Instruction *I = foldBitcastExtElt(EI)) 432 return I; 433 434 // If there's a vector PHI feeding a scalar use through this extractelement 435 // instruction, try to scalarize the PHI. 436 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 437 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 438 return ScalarPHI; 439 } 440 441 // TODO come up with a n-ary matcher that subsumes both unary and 442 // binary matchers. 443 UnaryOperator *UO; 444 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { 445 // extelt (unop X), Index --> unop (extelt X, Index) 446 Value *X = UO->getOperand(0); 447 Value *E = Builder.CreateExtractElement(X, Index); 448 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 449 } 450 451 BinaryOperator *BO; 452 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) { 453 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 454 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 455 Value *E0 = Builder.CreateExtractElement(X, Index); 456 Value *E1 = Builder.CreateExtractElement(Y, Index); 457 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 458 } 459 460 Value *X, *Y; 461 CmpInst::Predicate Pred; 462 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 463 cheapToScalarize(SrcVec, Index)) { 464 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 465 Value *E0 = Builder.CreateExtractElement(X, Index); 466 Value *E1 = Builder.CreateExtractElement(Y, Index); 467 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 468 } 469 470 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 471 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 472 // instsimplify already handled the case where the indices are constants 473 // and equal by value, if both are constants, they must not be the same 474 // value, extract from the pre-inserted value instead. 475 if (isa<Constant>(IE->getOperand(2)) && IndexC) 476 return replaceOperand(EI, 0, IE->getOperand(0)); 477 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 478 auto *VecType = cast<VectorType>(GEP->getType()); 479 ElementCount EC = VecType->getElementCount(); 480 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 481 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 482 // Find out why we have a vector result - these are a few examples: 483 // 1. We have a scalar pointer and a vector of indices, or 484 // 2. We have a vector of pointers and a scalar index, or 485 // 3. We have a vector of pointers and a vector of indices, etc. 486 // Here we only consider combining when there is exactly one vector 487 // operand, since the optimization is less obviously a win due to 488 // needing more than one extractelements. 489 490 unsigned VectorOps = 491 llvm::count_if(GEP->operands(), [](const Value *V) { 492 return isa<VectorType>(V->getType()); 493 }); 494 if (VectorOps == 1) { 495 Value *NewPtr = GEP->getPointerOperand(); 496 if (isa<VectorType>(NewPtr->getType())) 497 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 498 499 SmallVector<Value *> NewOps; 500 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 501 Value *Op = GEP->getOperand(I); 502 if (isa<VectorType>(Op->getType())) 503 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 504 else 505 NewOps.push_back(Op); 506 } 507 508 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 509 GEP->getSourceElementType(), NewPtr, NewOps); 510 NewGEP->setIsInBounds(GEP->isInBounds()); 511 return NewGEP; 512 } 513 } 514 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 515 // If this is extracting an element from a shufflevector, figure out where 516 // it came from and extract from the appropriate input element instead. 517 // Restrict the following transformation to fixed-length vector. 518 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 519 int SrcIdx = 520 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 521 Value *Src; 522 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 523 ->getNumElements(); 524 525 if (SrcIdx < 0) 526 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 527 if (SrcIdx < (int)LHSWidth) 528 Src = SVI->getOperand(0); 529 else { 530 SrcIdx -= LHSWidth; 531 Src = SVI->getOperand(1); 532 } 533 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 534 return ExtractElementInst::Create( 535 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 536 } 537 } else if (auto *CI = dyn_cast<CastInst>(I)) { 538 // Canonicalize extractelement(cast) -> cast(extractelement). 539 // Bitcasts can change the number of vector elements, and they cost 540 // nothing. 541 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 542 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 543 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 544 } 545 } 546 } 547 548 // Run demanded elements after other transforms as this can drop flags on 549 // binops. If there's two paths to the same final result, we prefer the 550 // one which doesn't force us to drop flags. 551 if (IndexC) { 552 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 553 unsigned NumElts = EC.getKnownMinValue(); 554 // This instruction only demands the single element from the input vector. 555 // Skip for scalable type, the number of elements is unknown at 556 // compile-time. 557 if (!EC.isScalable() && NumElts != 1) { 558 // If the input vector has a single use, simplify it based on this use 559 // property. 560 if (SrcVec->hasOneUse()) { 561 APInt UndefElts(NumElts, 0); 562 APInt DemandedElts(NumElts, 0); 563 DemandedElts.setBit(IndexC->getZExtValue()); 564 if (Value *V = 565 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 566 return replaceOperand(EI, 0, V); 567 } else { 568 // If the input vector has multiple uses, simplify it based on a union 569 // of all elements used. 570 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 571 if (!DemandedElts.isAllOnes()) { 572 APInt UndefElts(NumElts, 0); 573 if (Value *V = SimplifyDemandedVectorElts( 574 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 575 true /* AllowMultipleUsers */)) { 576 if (V != SrcVec) { 577 SrcVec->replaceAllUsesWith(V); 578 return &EI; 579 } 580 } 581 } 582 } 583 } 584 } 585 return nullptr; 586 } 587 588 /// If V is a shuffle of values that ONLY returns elements from either LHS or 589 /// RHS, return the shuffle mask and true. Otherwise, return false. 590 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 591 SmallVectorImpl<int> &Mask) { 592 assert(LHS->getType() == RHS->getType() && 593 "Invalid CollectSingleShuffleElements"); 594 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 595 596 if (match(V, m_Undef())) { 597 Mask.assign(NumElts, -1); 598 return true; 599 } 600 601 if (V == LHS) { 602 for (unsigned i = 0; i != NumElts; ++i) 603 Mask.push_back(i); 604 return true; 605 } 606 607 if (V == RHS) { 608 for (unsigned i = 0; i != NumElts; ++i) 609 Mask.push_back(i + NumElts); 610 return true; 611 } 612 613 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 614 // If this is an insert of an extract from some other vector, include it. 615 Value *VecOp = IEI->getOperand(0); 616 Value *ScalarOp = IEI->getOperand(1); 617 Value *IdxOp = IEI->getOperand(2); 618 619 if (!isa<ConstantInt>(IdxOp)) 620 return false; 621 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 622 623 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 624 // We can handle this if the vector we are inserting into is 625 // transitively ok. 626 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 627 // If so, update the mask to reflect the inserted undef. 628 Mask[InsertedIdx] = -1; 629 return true; 630 } 631 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 632 if (isa<ConstantInt>(EI->getOperand(1))) { 633 unsigned ExtractedIdx = 634 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 635 unsigned NumLHSElts = 636 cast<FixedVectorType>(LHS->getType())->getNumElements(); 637 638 // This must be extracting from either LHS or RHS. 639 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 640 // We can handle this if the vector we are inserting into is 641 // transitively ok. 642 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 643 // If so, update the mask to reflect the inserted value. 644 if (EI->getOperand(0) == LHS) { 645 Mask[InsertedIdx % NumElts] = ExtractedIdx; 646 } else { 647 assert(EI->getOperand(0) == RHS); 648 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 649 } 650 return true; 651 } 652 } 653 } 654 } 655 } 656 657 return false; 658 } 659 660 /// If we have insertion into a vector that is wider than the vector that we 661 /// are extracting from, try to widen the source vector to allow a single 662 /// shufflevector to replace one or more insert/extract pairs. 663 static void replaceExtractElements(InsertElementInst *InsElt, 664 ExtractElementInst *ExtElt, 665 InstCombinerImpl &IC) { 666 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 667 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 668 unsigned NumInsElts = InsVecType->getNumElements(); 669 unsigned NumExtElts = ExtVecType->getNumElements(); 670 671 // The inserted-to vector must be wider than the extracted-from vector. 672 if (InsVecType->getElementType() != ExtVecType->getElementType() || 673 NumExtElts >= NumInsElts) 674 return; 675 676 // Create a shuffle mask to widen the extended-from vector using poison 677 // values. The mask selects all of the values of the original vector followed 678 // by as many poison values as needed to create a vector of the same length 679 // as the inserted-to vector. 680 SmallVector<int, 16> ExtendMask; 681 for (unsigned i = 0; i < NumExtElts; ++i) 682 ExtendMask.push_back(i); 683 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 684 ExtendMask.push_back(-1); 685 686 Value *ExtVecOp = ExtElt->getVectorOperand(); 687 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 688 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 689 ? ExtVecOpInst->getParent() 690 : ExtElt->getParent(); 691 692 // TODO: This restriction matches the basic block check below when creating 693 // new extractelement instructions. If that limitation is removed, this one 694 // could also be removed. But for now, we just bail out to ensure that we 695 // will replace the extractelement instruction that is feeding our 696 // insertelement instruction. This allows the insertelement to then be 697 // replaced by a shufflevector. If the insertelement is not replaced, we can 698 // induce infinite looping because there's an optimization for extractelement 699 // that will delete our widening shuffle. This would trigger another attempt 700 // here to create that shuffle, and we spin forever. 701 if (InsertionBlock != InsElt->getParent()) 702 return; 703 704 // TODO: This restriction matches the check in visitInsertElementInst() and 705 // prevents an infinite loop caused by not turning the extract/insert pair 706 // into a shuffle. We really should not need either check, but we're lacking 707 // folds for shufflevectors because we're afraid to generate shuffle masks 708 // that the backend can't handle. 709 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 710 return; 711 712 auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); 713 714 // Insert the new shuffle after the vector operand of the extract is defined 715 // (as long as it's not a PHI) or at the start of the basic block of the 716 // extract, so any subsequent extracts in the same basic block can use it. 717 // TODO: Insert before the earliest ExtractElementInst that is replaced. 718 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 719 WideVec->insertAfter(ExtVecOpInst); 720 else 721 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 722 723 // Replace extracts from the original narrow vector with extracts from the new 724 // wide vector. 725 for (User *U : ExtVecOp->users()) { 726 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 727 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 728 continue; 729 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 730 NewExt->insertAfter(OldExt); 731 IC.replaceInstUsesWith(*OldExt, NewExt); 732 } 733 } 734 735 /// We are building a shuffle to create V, which is a sequence of insertelement, 736 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 737 /// not rely on the second vector source. Return a std::pair containing the 738 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 739 /// parameter as required. 740 /// 741 /// Note: we intentionally don't try to fold earlier shuffles since they have 742 /// often been chosen carefully to be efficiently implementable on the target. 743 using ShuffleOps = std::pair<Value *, Value *>; 744 745 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 746 Value *PermittedRHS, 747 InstCombinerImpl &IC) { 748 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 749 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 750 751 if (match(V, m_Undef())) { 752 Mask.assign(NumElts, -1); 753 return std::make_pair( 754 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 755 } 756 757 if (isa<ConstantAggregateZero>(V)) { 758 Mask.assign(NumElts, 0); 759 return std::make_pair(V, nullptr); 760 } 761 762 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 763 // If this is an insert of an extract from some other vector, include it. 764 Value *VecOp = IEI->getOperand(0); 765 Value *ScalarOp = IEI->getOperand(1); 766 Value *IdxOp = IEI->getOperand(2); 767 768 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 769 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 770 unsigned ExtractedIdx = 771 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 772 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 773 774 // Either the extracted from or inserted into vector must be RHSVec, 775 // otherwise we'd end up with a shuffle of three inputs. 776 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 777 Value *RHS = EI->getOperand(0); 778 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 779 assert(LR.second == nullptr || LR.second == RHS); 780 781 if (LR.first->getType() != RHS->getType()) { 782 // Although we are giving up for now, see if we can create extracts 783 // that match the inserts for another round of combining. 784 replaceExtractElements(IEI, EI, IC); 785 786 // We tried our best, but we can't find anything compatible with RHS 787 // further up the chain. Return a trivial shuffle. 788 for (unsigned i = 0; i < NumElts; ++i) 789 Mask[i] = i; 790 return std::make_pair(V, nullptr); 791 } 792 793 unsigned NumLHSElts = 794 cast<FixedVectorType>(RHS->getType())->getNumElements(); 795 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 796 return std::make_pair(LR.first, RHS); 797 } 798 799 if (VecOp == PermittedRHS) { 800 // We've gone as far as we can: anything on the other side of the 801 // extractelement will already have been converted into a shuffle. 802 unsigned NumLHSElts = 803 cast<FixedVectorType>(EI->getOperand(0)->getType()) 804 ->getNumElements(); 805 for (unsigned i = 0; i != NumElts; ++i) 806 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 807 return std::make_pair(EI->getOperand(0), PermittedRHS); 808 } 809 810 // If this insertelement is a chain that comes from exactly these two 811 // vectors, return the vector and the effective shuffle. 812 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 813 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 814 Mask)) 815 return std::make_pair(EI->getOperand(0), PermittedRHS); 816 } 817 } 818 } 819 820 // Otherwise, we can't do anything fancy. Return an identity vector. 821 for (unsigned i = 0; i != NumElts; ++i) 822 Mask.push_back(i); 823 return std::make_pair(V, nullptr); 824 } 825 826 /// Look for chain of insertvalue's that fully define an aggregate, and trace 827 /// back the values inserted, see if they are all were extractvalue'd from 828 /// the same source aggregate from the exact same element indexes. 829 /// If they were, just reuse the source aggregate. 830 /// This potentially deals with PHI indirections. 831 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 832 InsertValueInst &OrigIVI) { 833 Type *AggTy = OrigIVI.getType(); 834 unsigned NumAggElts; 835 switch (AggTy->getTypeID()) { 836 case Type::StructTyID: 837 NumAggElts = AggTy->getStructNumElements(); 838 break; 839 case Type::ArrayTyID: 840 NumAggElts = AggTy->getArrayNumElements(); 841 break; 842 default: 843 llvm_unreachable("Unhandled aggregate type?"); 844 } 845 846 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 847 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 848 // FIXME: any interesting patterns to be caught with larger limit? 849 assert(NumAggElts > 0 && "Aggregate should have elements."); 850 if (NumAggElts > 2) 851 return nullptr; 852 853 static constexpr auto NotFound = None; 854 static constexpr auto FoundMismatch = nullptr; 855 856 // Try to find a value of each element of an aggregate. 857 // FIXME: deal with more complex, not one-dimensional, aggregate types 858 SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 859 860 // Do we know values for each element of the aggregate? 861 auto KnowAllElts = [&AggElts]() { 862 return all_of(AggElts, 863 [](Optional<Instruction *> Elt) { return Elt != NotFound; }); 864 }; 865 866 int Depth = 0; 867 868 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 869 // every element being overwritten twice, which should never happen. 870 static const int DepthLimit = 2 * NumAggElts; 871 872 // Recurse up the chain of `insertvalue` aggregate operands until either we've 873 // reconstructed full initializer or can't visit any more `insertvalue`'s. 874 for (InsertValueInst *CurrIVI = &OrigIVI; 875 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 876 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 877 ++Depth) { 878 auto *InsertedValue = 879 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 880 if (!InsertedValue) 881 return nullptr; // Inserted value must be produced by an instruction. 882 883 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 884 885 // Don't bother with more than single-level aggregates. 886 if (Indices.size() != 1) 887 return nullptr; // FIXME: deal with more complex aggregates? 888 889 // Now, we may have already previously recorded the value for this element 890 // of an aggregate. If we did, that means the CurrIVI will later be 891 // overwritten with the already-recorded value. But if not, let's record it! 892 Optional<Instruction *> &Elt = AggElts[Indices.front()]; 893 Elt = Elt.value_or(InsertedValue); 894 895 // FIXME: should we handle chain-terminating undef base operand? 896 } 897 898 // Was that sufficient to deduce the full initializer for the aggregate? 899 if (!KnowAllElts()) 900 return nullptr; // Give up then. 901 902 // We now want to find the source[s] of the aggregate elements we've found. 903 // And with "source" we mean the original aggregate[s] from which 904 // the inserted elements were extracted. This may require PHI translation. 905 906 enum class AggregateDescription { 907 /// When analyzing the value that was inserted into an aggregate, we did 908 /// not manage to find defining `extractvalue` instruction to analyze. 909 NotFound, 910 /// When analyzing the value that was inserted into an aggregate, we did 911 /// manage to find defining `extractvalue` instruction[s], and everything 912 /// matched perfectly - aggregate type, element insertion/extraction index. 913 Found, 914 /// When analyzing the value that was inserted into an aggregate, we did 915 /// manage to find defining `extractvalue` instruction, but there was 916 /// a mismatch: either the source type from which the extraction was didn't 917 /// match the aggregate type into which the insertion was, 918 /// or the extraction/insertion channels mismatched, 919 /// or different elements had different source aggregates. 920 FoundMismatch 921 }; 922 auto Describe = [](Optional<Value *> SourceAggregate) { 923 if (SourceAggregate == NotFound) 924 return AggregateDescription::NotFound; 925 if (*SourceAggregate == FoundMismatch) 926 return AggregateDescription::FoundMismatch; 927 return AggregateDescription::Found; 928 }; 929 930 // Given the value \p Elt that was being inserted into element \p EltIdx of an 931 // aggregate AggTy, see if \p Elt was originally defined by an 932 // appropriate extractvalue (same element index, same aggregate type). 933 // If found, return the source aggregate from which the extraction was. 934 // If \p PredBB is provided, does PHI translation of an \p Elt first. 935 auto FindSourceAggregate = 936 [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 937 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 938 // For now(?), only deal with, at most, a single level of PHI indirection. 939 if (UseBB && PredBB) 940 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 941 // FIXME: deal with multiple levels of PHI indirection? 942 943 // Did we find an extraction? 944 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 945 if (!EVI) 946 return NotFound; 947 948 Value *SourceAggregate = EVI->getAggregateOperand(); 949 950 // Is the extraction from the same type into which the insertion was? 951 if (SourceAggregate->getType() != AggTy) 952 return FoundMismatch; 953 // And the element index doesn't change between extraction and insertion? 954 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 955 return FoundMismatch; 956 957 return SourceAggregate; // AggregateDescription::Found 958 }; 959 960 // Given elements AggElts that were constructing an aggregate OrigIVI, 961 // see if we can find appropriate source aggregate for each of the elements, 962 // and see it's the same aggregate for each element. If so, return it. 963 auto FindCommonSourceAggregate = 964 [&](Optional<BasicBlock *> UseBB, 965 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 966 Optional<Value *> SourceAggregate; 967 968 for (auto I : enumerate(AggElts)) { 969 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 970 "We don't store nullptr in SourceAggregate!"); 971 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 972 (I.index() != 0) && 973 "SourceAggregate should be valid after the first element,"); 974 975 // For this element, is there a plausible source aggregate? 976 // FIXME: we could special-case undef element, IFF we know that in the 977 // source aggregate said element isn't poison. 978 Optional<Value *> SourceAggregateForElement = 979 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 980 981 // Okay, what have we found? Does that correlate with previous findings? 982 983 // Regardless of whether or not we have previously found source 984 // aggregate for previous elements (if any), if we didn't find one for 985 // this element, passthrough whatever we have just found. 986 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 987 return SourceAggregateForElement; 988 989 // Okay, we have found source aggregate for this element. 990 // Let's see what we already know from previous elements, if any. 991 switch (Describe(SourceAggregate)) { 992 case AggregateDescription::NotFound: 993 // This is apparently the first element that we have examined. 994 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 995 continue; // Great, now look at next element. 996 case AggregateDescription::Found: 997 // We have previously already successfully examined other elements. 998 // Is this the same source aggregate we've found for other elements? 999 if (*SourceAggregateForElement != *SourceAggregate) 1000 return FoundMismatch; 1001 continue; // Still the same aggregate, look at next element. 1002 case AggregateDescription::FoundMismatch: 1003 llvm_unreachable("Can't happen. We would have early-exited then."); 1004 }; 1005 } 1006 1007 assert(Describe(SourceAggregate) == AggregateDescription::Found && 1008 "Must be a valid Value"); 1009 return *SourceAggregate; 1010 }; 1011 1012 Optional<Value *> SourceAggregate; 1013 1014 // Can we find the source aggregate without looking at predecessors? 1015 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 1016 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 1017 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 1018 return nullptr; // Conflicting source aggregates! 1019 ++NumAggregateReconstructionsSimplified; 1020 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 1021 } 1022 1023 // Okay, apparently we need to look at predecessors. 1024 1025 // We should be smart about picking the "use" basic block, which will be the 1026 // merge point for aggregate, where we'll insert the final PHI that will be 1027 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 1028 // We should look in which blocks each of the AggElts is being defined, 1029 // they all should be defined in the same basic block. 1030 BasicBlock *UseBB = nullptr; 1031 1032 for (const Optional<Instruction *> &I : AggElts) { 1033 BasicBlock *BB = (*I)->getParent(); 1034 // If it's the first instruction we've encountered, record the basic block. 1035 if (!UseBB) { 1036 UseBB = BB; 1037 continue; 1038 } 1039 // Otherwise, this must be the same basic block we've seen previously. 1040 if (UseBB != BB) 1041 return nullptr; 1042 } 1043 1044 // If *all* of the elements are basic-block-independent, meaning they are 1045 // either function arguments, or constant expressions, then if we didn't 1046 // handle them without predecessor-aware handling, we won't handle them now. 1047 if (!UseBB) 1048 return nullptr; 1049 1050 // If we didn't manage to find source aggregate without looking at 1051 // predecessors, and there are no predecessors to look at, then we're done. 1052 if (pred_empty(UseBB)) 1053 return nullptr; 1054 1055 // Arbitrary predecessor count limit. 1056 static const int PredCountLimit = 64; 1057 1058 // Cache the (non-uniqified!) list of predecessors in a vector, 1059 // checking the limit at the same time for efficiency. 1060 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1061 for (BasicBlock *Pred : predecessors(UseBB)) { 1062 // Don't bother if there are too many predecessors. 1063 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1064 return nullptr; 1065 Preds.emplace_back(Pred); 1066 } 1067 1068 // For each predecessor, what is the source aggregate, 1069 // from which all the elements were originally extracted from? 1070 // Note that we want for the map to have stable iteration order! 1071 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1072 for (BasicBlock *Pred : Preds) { 1073 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1074 SourceAggregates.insert({Pred, nullptr}); 1075 // Did we already evaluate this predecessor? 1076 if (!IV.second) 1077 continue; 1078 1079 // Let's hope that when coming from predecessor Pred, all elements of the 1080 // aggregate produced by OrigIVI must have been originally extracted from 1081 // the same aggregate. Is that so? Can we find said original aggregate? 1082 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1083 if (Describe(SourceAggregate) != AggregateDescription::Found) 1084 return nullptr; // Give up. 1085 IV.first->second = *SourceAggregate; 1086 } 1087 1088 // All good! Now we just need to thread the source aggregates here. 1089 // Note that we have to insert the new PHI here, ourselves, because we can't 1090 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1091 // Note that the same block can be a predecessor more than once, 1092 // and we need to preserve that invariant for the PHI node. 1093 BuilderTy::InsertPointGuard Guard(Builder); 1094 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 1095 auto *PHI = 1096 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1097 for (BasicBlock *Pred : Preds) 1098 PHI->addIncoming(SourceAggregates[Pred], Pred); 1099 1100 ++NumAggregateReconstructionsSimplified; 1101 return replaceInstUsesWith(OrigIVI, PHI); 1102 } 1103 1104 /// Try to find redundant insertvalue instructions, like the following ones: 1105 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1106 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1107 /// Here the second instruction inserts values at the same indices, as the 1108 /// first one, making the first one redundant. 1109 /// It should be transformed to: 1110 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1111 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1112 bool IsRedundant = false; 1113 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1114 1115 // If there is a chain of insertvalue instructions (each of them except the 1116 // last one has only one use and it's another insertvalue insn from this 1117 // chain), check if any of the 'children' uses the same indices as the first 1118 // instruction. In this case, the first one is redundant. 1119 Value *V = &I; 1120 unsigned Depth = 0; 1121 while (V->hasOneUse() && Depth < 10) { 1122 User *U = V->user_back(); 1123 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1124 if (!UserInsInst || U->getOperand(0) != V) 1125 break; 1126 if (UserInsInst->getIndices() == FirstIndices) { 1127 IsRedundant = true; 1128 break; 1129 } 1130 V = UserInsInst; 1131 Depth++; 1132 } 1133 1134 if (IsRedundant) 1135 return replaceInstUsesWith(I, I.getOperand(0)); 1136 1137 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1138 return NewI; 1139 1140 return nullptr; 1141 } 1142 1143 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1144 // Can not analyze scalable type, the number of elements is not a compile-time 1145 // constant. 1146 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1147 return false; 1148 1149 int MaskSize = Shuf.getShuffleMask().size(); 1150 int VecSize = 1151 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1152 1153 // A vector select does not change the size of the operands. 1154 if (MaskSize != VecSize) 1155 return false; 1156 1157 // Each mask element must be undefined or choose a vector element from one of 1158 // the source operands without crossing vector lanes. 1159 for (int i = 0; i != MaskSize; ++i) { 1160 int Elt = Shuf.getMaskValue(i); 1161 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1162 return false; 1163 } 1164 1165 return true; 1166 } 1167 1168 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1169 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1170 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1171 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1172 // We are interested in the last insert in a chain. So if this insert has a 1173 // single user and that user is an insert, bail. 1174 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1175 return nullptr; 1176 1177 VectorType *VecTy = InsElt.getType(); 1178 // Can not handle scalable type, the number of elements is not a compile-time 1179 // constant. 1180 if (isa<ScalableVectorType>(VecTy)) 1181 return nullptr; 1182 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1183 1184 // Do not try to do this for a one-element vector, since that's a nop, 1185 // and will cause an inf-loop. 1186 if (NumElements == 1) 1187 return nullptr; 1188 1189 Value *SplatVal = InsElt.getOperand(1); 1190 InsertElementInst *CurrIE = &InsElt; 1191 SmallBitVector ElementPresent(NumElements, false); 1192 InsertElementInst *FirstIE = nullptr; 1193 1194 // Walk the chain backwards, keeping track of which indices we inserted into, 1195 // until we hit something that isn't an insert of the splatted value. 1196 while (CurrIE) { 1197 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1198 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1199 return nullptr; 1200 1201 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1202 // Check none of the intermediate steps have any additional uses, except 1203 // for the root insertelement instruction, which can be re-used, if it 1204 // inserts at position 0. 1205 if (CurrIE != &InsElt && 1206 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1207 return nullptr; 1208 1209 ElementPresent[Idx->getZExtValue()] = true; 1210 FirstIE = CurrIE; 1211 CurrIE = NextIE; 1212 } 1213 1214 // If this is just a single insertelement (not a sequence), we are done. 1215 if (FirstIE == &InsElt) 1216 return nullptr; 1217 1218 // If we are not inserting into an undef vector, make sure we've seen an 1219 // insert into every element. 1220 // TODO: If the base vector is not undef, it might be better to create a splat 1221 // and then a select-shuffle (blend) with the base vector. 1222 if (!match(FirstIE->getOperand(0), m_Undef())) 1223 if (!ElementPresent.all()) 1224 return nullptr; 1225 1226 // Create the insert + shuffle. 1227 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1228 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1229 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1230 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1231 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); 1232 1233 // Splat from element 0, but replace absent elements with undef in the mask. 1234 SmallVector<int, 16> Mask(NumElements, 0); 1235 for (unsigned i = 0; i != NumElements; ++i) 1236 if (!ElementPresent[i]) 1237 Mask[i] = -1; 1238 1239 return new ShuffleVectorInst(FirstIE, Mask); 1240 } 1241 1242 /// Try to fold an insert element into an existing splat shuffle by changing 1243 /// the shuffle's mask to include the index of this insert element. 1244 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1245 // Check if the vector operand of this insert is a canonical splat shuffle. 1246 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1247 if (!Shuf || !Shuf->isZeroEltSplat()) 1248 return nullptr; 1249 1250 // Bail out early if shuffle is scalable type. The number of elements in 1251 // shuffle mask is unknown at compile-time. 1252 if (isa<ScalableVectorType>(Shuf->getType())) 1253 return nullptr; 1254 1255 // Check for a constant insertion index. 1256 uint64_t IdxC; 1257 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1258 return nullptr; 1259 1260 // Check if the splat shuffle's input is the same as this insert's scalar op. 1261 Value *X = InsElt.getOperand(1); 1262 Value *Op0 = Shuf->getOperand(0); 1263 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1264 return nullptr; 1265 1266 // Replace the shuffle mask element at the index of this insert with a zero. 1267 // For example: 1268 // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1 1269 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef> 1270 unsigned NumMaskElts = 1271 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1272 SmallVector<int, 16> NewMask(NumMaskElts); 1273 for (unsigned i = 0; i != NumMaskElts; ++i) 1274 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1275 1276 return new ShuffleVectorInst(Op0, NewMask); 1277 } 1278 1279 /// Try to fold an extract+insert element into an existing identity shuffle by 1280 /// changing the shuffle's mask to include the index of this insert element. 1281 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1282 // Check if the vector operand of this insert is an identity shuffle. 1283 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1284 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1285 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1286 return nullptr; 1287 1288 // Bail out early if shuffle is scalable type. The number of elements in 1289 // shuffle mask is unknown at compile-time. 1290 if (isa<ScalableVectorType>(Shuf->getType())) 1291 return nullptr; 1292 1293 // Check for a constant insertion index. 1294 uint64_t IdxC; 1295 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1296 return nullptr; 1297 1298 // Check if this insert's scalar op is extracted from the identity shuffle's 1299 // input vector. 1300 Value *Scalar = InsElt.getOperand(1); 1301 Value *X = Shuf->getOperand(0); 1302 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1303 return nullptr; 1304 1305 // Replace the shuffle mask element at the index of this extract+insert with 1306 // that same index value. 1307 // For example: 1308 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1309 unsigned NumMaskElts = 1310 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1311 SmallVector<int, 16> NewMask(NumMaskElts); 1312 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1313 for (unsigned i = 0; i != NumMaskElts; ++i) { 1314 if (i != IdxC) { 1315 // All mask elements besides the inserted element remain the same. 1316 NewMask[i] = OldMask[i]; 1317 } else if (OldMask[i] == (int)IdxC) { 1318 // If the mask element was already set, there's nothing to do 1319 // (demanded elements analysis may unset it later). 1320 return nullptr; 1321 } else { 1322 assert(OldMask[i] == UndefMaskElem && 1323 "Unexpected shuffle mask element for identity shuffle"); 1324 NewMask[i] = IdxC; 1325 } 1326 } 1327 1328 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1329 } 1330 1331 /// If we have an insertelement instruction feeding into another insertelement 1332 /// and the 2nd is inserting a constant into the vector, canonicalize that 1333 /// constant insertion before the insertion of a variable: 1334 /// 1335 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1336 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1337 /// 1338 /// This has the potential of eliminating the 2nd insertelement instruction 1339 /// via constant folding of the scalar constant into a vector constant. 1340 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1341 InstCombiner::BuilderTy &Builder) { 1342 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1343 if (!InsElt1 || !InsElt1->hasOneUse()) 1344 return nullptr; 1345 1346 Value *X, *Y; 1347 Constant *ScalarC; 1348 ConstantInt *IdxC1, *IdxC2; 1349 if (match(InsElt1->getOperand(0), m_Value(X)) && 1350 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1351 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1352 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1353 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1354 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1355 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1356 } 1357 1358 return nullptr; 1359 } 1360 1361 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1362 /// --> shufflevector X, CVec', Mask' 1363 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1364 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1365 // Bail out if the parent has more than one use. In that case, we'd be 1366 // replacing the insertelt with a shuffle, and that's not a clear win. 1367 if (!Inst || !Inst->hasOneUse()) 1368 return nullptr; 1369 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1370 // The shuffle must have a constant vector operand. The insertelt must have 1371 // a constant scalar being inserted at a constant position in the vector. 1372 Constant *ShufConstVec, *InsEltScalar; 1373 uint64_t InsEltIndex; 1374 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1375 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1376 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1377 return nullptr; 1378 1379 // Adding an element to an arbitrary shuffle could be expensive, but a 1380 // shuffle that selects elements from vectors without crossing lanes is 1381 // assumed cheap. 1382 // If we're just adding a constant into that shuffle, it will still be 1383 // cheap. 1384 if (!isShuffleEquivalentToSelect(*Shuf)) 1385 return nullptr; 1386 1387 // From the above 'select' check, we know that the mask has the same number 1388 // of elements as the vector input operands. We also know that each constant 1389 // input element is used in its lane and can not be used more than once by 1390 // the shuffle. Therefore, replace the constant in the shuffle's constant 1391 // vector with the insertelt constant. Replace the constant in the shuffle's 1392 // mask vector with the insertelt index plus the length of the vector 1393 // (because the constant vector operand of a shuffle is always the 2nd 1394 // operand). 1395 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1396 unsigned NumElts = Mask.size(); 1397 SmallVector<Constant *, 16> NewShufElts(NumElts); 1398 SmallVector<int, 16> NewMaskElts(NumElts); 1399 for (unsigned I = 0; I != NumElts; ++I) { 1400 if (I == InsEltIndex) { 1401 NewShufElts[I] = InsEltScalar; 1402 NewMaskElts[I] = InsEltIndex + NumElts; 1403 } else { 1404 // Copy over the existing values. 1405 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1406 NewMaskElts[I] = Mask[I]; 1407 } 1408 1409 // Bail if we failed to find an element. 1410 if (!NewShufElts[I]) 1411 return nullptr; 1412 } 1413 1414 // Create new operands for a shuffle that includes the constant of the 1415 // original insertelt. The old shuffle will be dead now. 1416 return new ShuffleVectorInst(Shuf->getOperand(0), 1417 ConstantVector::get(NewShufElts), NewMaskElts); 1418 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1419 // Transform sequences of insertelements ops with constant data/indexes into 1420 // a single shuffle op. 1421 // Can not handle scalable type, the number of elements needed to create 1422 // shuffle mask is not a compile-time constant. 1423 if (isa<ScalableVectorType>(InsElt.getType())) 1424 return nullptr; 1425 unsigned NumElts = 1426 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1427 1428 uint64_t InsertIdx[2]; 1429 Constant *Val[2]; 1430 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1431 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1432 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1433 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1434 return nullptr; 1435 SmallVector<Constant *, 16> Values(NumElts); 1436 SmallVector<int, 16> Mask(NumElts); 1437 auto ValI = std::begin(Val); 1438 // Generate new constant vector and mask. 1439 // We have 2 values/masks from the insertelements instructions. Insert them 1440 // into new value/mask vectors. 1441 for (uint64_t I : InsertIdx) { 1442 if (!Values[I]) { 1443 Values[I] = *ValI; 1444 Mask[I] = NumElts + I; 1445 } 1446 ++ValI; 1447 } 1448 // Remaining values are filled with 'undef' values. 1449 for (unsigned I = 0; I < NumElts; ++I) { 1450 if (!Values[I]) { 1451 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1452 Mask[I] = I; 1453 } 1454 } 1455 // Create new operands for a shuffle that includes the constant of the 1456 // original insertelt. 1457 return new ShuffleVectorInst(IEI->getOperand(0), 1458 ConstantVector::get(Values), Mask); 1459 } 1460 return nullptr; 1461 } 1462 1463 /// If both the base vector and the inserted element are extended from the same 1464 /// type, do the insert element in the narrow source type followed by extend. 1465 /// TODO: This can be extended to include other cast opcodes, but particularly 1466 /// if we create a wider insertelement, make sure codegen is not harmed. 1467 static Instruction *narrowInsElt(InsertElementInst &InsElt, 1468 InstCombiner::BuilderTy &Builder) { 1469 // We are creating a vector extend. If the original vector extend has another 1470 // use, that would mean we end up with 2 vector extends, so avoid that. 1471 // TODO: We could ease the use-clause to "if at least one op has one use" 1472 // (assuming that the source types match - see next TODO comment). 1473 Value *Vec = InsElt.getOperand(0); 1474 if (!Vec->hasOneUse()) 1475 return nullptr; 1476 1477 Value *Scalar = InsElt.getOperand(1); 1478 Value *X, *Y; 1479 CastInst::CastOps CastOpcode; 1480 if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) 1481 CastOpcode = Instruction::FPExt; 1482 else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) 1483 CastOpcode = Instruction::SExt; 1484 else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) 1485 CastOpcode = Instruction::ZExt; 1486 else 1487 return nullptr; 1488 1489 // TODO: We can allow mismatched types by creating an intermediate cast. 1490 if (X->getType()->getScalarType() != Y->getType()) 1491 return nullptr; 1492 1493 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) 1494 Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); 1495 return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); 1496 } 1497 1498 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1499 Value *VecOp = IE.getOperand(0); 1500 Value *ScalarOp = IE.getOperand(1); 1501 Value *IdxOp = IE.getOperand(2); 1502 1503 if (auto *V = simplifyInsertElementInst( 1504 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1505 return replaceInstUsesWith(IE, V); 1506 1507 // Canonicalize type of constant indices to i64 to simplify CSE 1508 if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) 1509 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 1510 return replaceOperand(IE, 2, NewIdx); 1511 1512 // If the scalar is bitcast and inserted into undef, do the insert in the 1513 // source type followed by bitcast. 1514 // TODO: Generalize for insert into any constant, not just undef? 1515 Value *ScalarSrc; 1516 if (match(VecOp, m_Undef()) && 1517 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1518 (ScalarSrc->getType()->isIntegerTy() || 1519 ScalarSrc->getType()->isFloatingPointTy())) { 1520 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1521 // bitcast (inselt undef, ScalarSrc, IdxOp) 1522 Type *ScalarTy = ScalarSrc->getType(); 1523 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1524 UndefValue *NewUndef = UndefValue::get(VecTy); 1525 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1526 return new BitCastInst(NewInsElt, IE.getType()); 1527 } 1528 1529 // If the vector and scalar are both bitcast from the same element type, do 1530 // the insert in that source type followed by bitcast. 1531 Value *VecSrc; 1532 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1533 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1534 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1535 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1536 cast<VectorType>(VecSrc->getType())->getElementType() == 1537 ScalarSrc->getType()) { 1538 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1539 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1540 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1541 return new BitCastInst(NewInsElt, IE.getType()); 1542 } 1543 1544 // If the inserted element was extracted from some other fixed-length vector 1545 // and both indexes are valid constants, try to turn this into a shuffle. 1546 // Can not handle scalable vector type, the number of elements needed to 1547 // create shuffle mask is not a compile-time constant. 1548 uint64_t InsertedIdx, ExtractedIdx; 1549 Value *ExtVecOp; 1550 if (isa<FixedVectorType>(IE.getType()) && 1551 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1552 match(ScalarOp, 1553 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1554 isa<FixedVectorType>(ExtVecOp->getType()) && 1555 ExtractedIdx < 1556 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1557 // TODO: Looking at the user(s) to determine if this insert is a 1558 // fold-to-shuffle opportunity does not match the usual instcombine 1559 // constraints. We should decide if the transform is worthy based only 1560 // on this instruction and its operands, but that may not work currently. 1561 // 1562 // Here, we are trying to avoid creating shuffles before reaching 1563 // the end of a chain of extract-insert pairs. This is complicated because 1564 // we do not generally form arbitrary shuffle masks in instcombine 1565 // (because those may codegen poorly), but collectShuffleElements() does 1566 // exactly that. 1567 // 1568 // The rules for determining what is an acceptable target-independent 1569 // shuffle mask are fuzzy because they evolve based on the backend's 1570 // capabilities and real-world impact. 1571 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1572 if (!Insert.hasOneUse()) 1573 return true; 1574 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1575 if (!InsertUser) 1576 return true; 1577 return false; 1578 }; 1579 1580 // Try to form a shuffle from a chain of extract-insert ops. 1581 if (isShuffleRootCandidate(IE)) { 1582 SmallVector<int, 16> Mask; 1583 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1584 1585 // The proposed shuffle may be trivial, in which case we shouldn't 1586 // perform the combine. 1587 if (LR.first != &IE && LR.second != &IE) { 1588 // We now have a shuffle of LHS, RHS, Mask. 1589 if (LR.second == nullptr) 1590 LR.second = UndefValue::get(LR.first->getType()); 1591 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1592 } 1593 } 1594 } 1595 1596 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1597 unsigned VWidth = VecTy->getNumElements(); 1598 APInt UndefElts(VWidth, 0); 1599 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1600 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1601 if (V != &IE) 1602 return replaceInstUsesWith(IE, V); 1603 return &IE; 1604 } 1605 } 1606 1607 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1608 return Shuf; 1609 1610 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1611 return NewInsElt; 1612 1613 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1614 return Broadcast; 1615 1616 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1617 return Splat; 1618 1619 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1620 return IdentityShuf; 1621 1622 if (Instruction *Ext = narrowInsElt(IE, Builder)) 1623 return Ext; 1624 1625 return nullptr; 1626 } 1627 1628 /// Return true if we can evaluate the specified expression tree if the vector 1629 /// elements were shuffled in a different order. 1630 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1631 unsigned Depth = 5) { 1632 // We can always reorder the elements of a constant. 1633 if (isa<Constant>(V)) 1634 return true; 1635 1636 // We won't reorder vector arguments. No IPO here. 1637 Instruction *I = dyn_cast<Instruction>(V); 1638 if (!I) return false; 1639 1640 // Two users may expect different orders of the elements. Don't try it. 1641 if (!I->hasOneUse()) 1642 return false; 1643 1644 if (Depth == 0) return false; 1645 1646 switch (I->getOpcode()) { 1647 case Instruction::UDiv: 1648 case Instruction::SDiv: 1649 case Instruction::URem: 1650 case Instruction::SRem: 1651 // Propagating an undefined shuffle mask element to integer div/rem is not 1652 // allowed because those opcodes can create immediate undefined behavior 1653 // from an undefined element in an operand. 1654 if (llvm::is_contained(Mask, -1)) 1655 return false; 1656 LLVM_FALLTHROUGH; 1657 case Instruction::Add: 1658 case Instruction::FAdd: 1659 case Instruction::Sub: 1660 case Instruction::FSub: 1661 case Instruction::Mul: 1662 case Instruction::FMul: 1663 case Instruction::FDiv: 1664 case Instruction::FRem: 1665 case Instruction::Shl: 1666 case Instruction::LShr: 1667 case Instruction::AShr: 1668 case Instruction::And: 1669 case Instruction::Or: 1670 case Instruction::Xor: 1671 case Instruction::ICmp: 1672 case Instruction::FCmp: 1673 case Instruction::Trunc: 1674 case Instruction::ZExt: 1675 case Instruction::SExt: 1676 case Instruction::FPToUI: 1677 case Instruction::FPToSI: 1678 case Instruction::UIToFP: 1679 case Instruction::SIToFP: 1680 case Instruction::FPTrunc: 1681 case Instruction::FPExt: 1682 case Instruction::GetElementPtr: { 1683 // Bail out if we would create longer vector ops. We could allow creating 1684 // longer vector ops, but that may result in more expensive codegen. 1685 Type *ITy = I->getType(); 1686 if (ITy->isVectorTy() && 1687 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1688 return false; 1689 for (Value *Operand : I->operands()) { 1690 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1691 return false; 1692 } 1693 return true; 1694 } 1695 case Instruction::InsertElement: { 1696 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1697 if (!CI) return false; 1698 int ElementNumber = CI->getLimitedValue(); 1699 1700 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1701 // can't put an element into multiple indices. 1702 bool SeenOnce = false; 1703 for (int i = 0, e = Mask.size(); i != e; ++i) { 1704 if (Mask[i] == ElementNumber) { 1705 if (SeenOnce) 1706 return false; 1707 SeenOnce = true; 1708 } 1709 } 1710 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1711 } 1712 } 1713 return false; 1714 } 1715 1716 /// Rebuild a new instruction just like 'I' but with the new operands given. 1717 /// In the event of type mismatch, the type of the operands is correct. 1718 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1719 // We don't want to use the IRBuilder here because we want the replacement 1720 // instructions to appear next to 'I', not the builder's insertion point. 1721 switch (I->getOpcode()) { 1722 case Instruction::Add: 1723 case Instruction::FAdd: 1724 case Instruction::Sub: 1725 case Instruction::FSub: 1726 case Instruction::Mul: 1727 case Instruction::FMul: 1728 case Instruction::UDiv: 1729 case Instruction::SDiv: 1730 case Instruction::FDiv: 1731 case Instruction::URem: 1732 case Instruction::SRem: 1733 case Instruction::FRem: 1734 case Instruction::Shl: 1735 case Instruction::LShr: 1736 case Instruction::AShr: 1737 case Instruction::And: 1738 case Instruction::Or: 1739 case Instruction::Xor: { 1740 BinaryOperator *BO = cast<BinaryOperator>(I); 1741 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1742 BinaryOperator *New = 1743 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1744 NewOps[0], NewOps[1], "", BO); 1745 if (isa<OverflowingBinaryOperator>(BO)) { 1746 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1747 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1748 } 1749 if (isa<PossiblyExactOperator>(BO)) { 1750 New->setIsExact(BO->isExact()); 1751 } 1752 if (isa<FPMathOperator>(BO)) 1753 New->copyFastMathFlags(I); 1754 return New; 1755 } 1756 case Instruction::ICmp: 1757 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1758 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1759 NewOps[0], NewOps[1]); 1760 case Instruction::FCmp: 1761 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1762 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1763 NewOps[0], NewOps[1]); 1764 case Instruction::Trunc: 1765 case Instruction::ZExt: 1766 case Instruction::SExt: 1767 case Instruction::FPToUI: 1768 case Instruction::FPToSI: 1769 case Instruction::UIToFP: 1770 case Instruction::SIToFP: 1771 case Instruction::FPTrunc: 1772 case Instruction::FPExt: { 1773 // It's possible that the mask has a different number of elements from 1774 // the original cast. We recompute the destination type to match the mask. 1775 Type *DestTy = VectorType::get( 1776 I->getType()->getScalarType(), 1777 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1778 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1779 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1780 "", I); 1781 } 1782 case Instruction::GetElementPtr: { 1783 Value *Ptr = NewOps[0]; 1784 ArrayRef<Value*> Idx = NewOps.slice(1); 1785 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1786 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1787 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1788 return GEP; 1789 } 1790 } 1791 llvm_unreachable("failed to rebuild vector instructions"); 1792 } 1793 1794 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1795 // Mask.size() does not need to be equal to the number of vector elements. 1796 1797 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1798 Type *EltTy = V->getType()->getScalarType(); 1799 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1800 if (match(V, m_Undef())) 1801 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1802 1803 if (isa<ConstantAggregateZero>(V)) 1804 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1805 1806 if (Constant *C = dyn_cast<Constant>(V)) 1807 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 1808 Mask); 1809 1810 Instruction *I = cast<Instruction>(V); 1811 switch (I->getOpcode()) { 1812 case Instruction::Add: 1813 case Instruction::FAdd: 1814 case Instruction::Sub: 1815 case Instruction::FSub: 1816 case Instruction::Mul: 1817 case Instruction::FMul: 1818 case Instruction::UDiv: 1819 case Instruction::SDiv: 1820 case Instruction::FDiv: 1821 case Instruction::URem: 1822 case Instruction::SRem: 1823 case Instruction::FRem: 1824 case Instruction::Shl: 1825 case Instruction::LShr: 1826 case Instruction::AShr: 1827 case Instruction::And: 1828 case Instruction::Or: 1829 case Instruction::Xor: 1830 case Instruction::ICmp: 1831 case Instruction::FCmp: 1832 case Instruction::Trunc: 1833 case Instruction::ZExt: 1834 case Instruction::SExt: 1835 case Instruction::FPToUI: 1836 case Instruction::FPToSI: 1837 case Instruction::UIToFP: 1838 case Instruction::SIToFP: 1839 case Instruction::FPTrunc: 1840 case Instruction::FPExt: 1841 case Instruction::Select: 1842 case Instruction::GetElementPtr: { 1843 SmallVector<Value*, 8> NewOps; 1844 bool NeedsRebuild = 1845 (Mask.size() != 1846 cast<FixedVectorType>(I->getType())->getNumElements()); 1847 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1848 Value *V; 1849 // Recursively call evaluateInDifferentElementOrder on vector arguments 1850 // as well. E.g. GetElementPtr may have scalar operands even if the 1851 // return value is a vector, so we need to examine the operand type. 1852 if (I->getOperand(i)->getType()->isVectorTy()) 1853 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1854 else 1855 V = I->getOperand(i); 1856 NewOps.push_back(V); 1857 NeedsRebuild |= (V != I->getOperand(i)); 1858 } 1859 if (NeedsRebuild) { 1860 return buildNew(I, NewOps); 1861 } 1862 return I; 1863 } 1864 case Instruction::InsertElement: { 1865 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1866 1867 // The insertelement was inserting at Element. Figure out which element 1868 // that becomes after shuffling. The answer is guaranteed to be unique 1869 // by CanEvaluateShuffled. 1870 bool Found = false; 1871 int Index = 0; 1872 for (int e = Mask.size(); Index != e; ++Index) { 1873 if (Mask[Index] == Element) { 1874 Found = true; 1875 break; 1876 } 1877 } 1878 1879 // If element is not in Mask, no need to handle the operand 1 (element to 1880 // be inserted). Just evaluate values in operand 0 according to Mask. 1881 if (!Found) 1882 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1883 1884 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1885 return InsertElementInst::Create(V, I->getOperand(1), 1886 ConstantInt::get(I32Ty, Index), "", I); 1887 } 1888 } 1889 llvm_unreachable("failed to reorder elements of vector instruction!"); 1890 } 1891 1892 // Returns true if the shuffle is extracting a contiguous range of values from 1893 // LHS, for example: 1894 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1895 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1896 // Shuffles to: |EE|FF|GG|HH| 1897 // +--+--+--+--+ 1898 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1899 ArrayRef<int> Mask) { 1900 unsigned LHSElems = 1901 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1902 unsigned MaskElems = Mask.size(); 1903 unsigned BegIdx = Mask.front(); 1904 unsigned EndIdx = Mask.back(); 1905 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1906 return false; 1907 for (unsigned I = 0; I != MaskElems; ++I) 1908 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1909 return false; 1910 return true; 1911 } 1912 1913 /// These are the ingredients in an alternate form binary operator as described 1914 /// below. 1915 struct BinopElts { 1916 BinaryOperator::BinaryOps Opcode; 1917 Value *Op0; 1918 Value *Op1; 1919 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1920 Value *V0 = nullptr, Value *V1 = nullptr) : 1921 Opcode(Opc), Op0(V0), Op1(V1) {} 1922 operator bool() const { return Opcode != 0; } 1923 }; 1924 1925 /// Binops may be transformed into binops with different opcodes and operands. 1926 /// Reverse the usual canonicalization to enable folds with the non-canonical 1927 /// form of the binop. If a transform is possible, return the elements of the 1928 /// new binop. If not, return invalid elements. 1929 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1930 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1931 Type *Ty = BO->getType(); 1932 switch (BO->getOpcode()) { 1933 case Instruction::Shl: { 1934 // shl X, C --> mul X, (1 << C) 1935 Constant *C; 1936 if (match(BO1, m_Constant(C))) { 1937 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1938 return {Instruction::Mul, BO0, ShlOne}; 1939 } 1940 break; 1941 } 1942 case Instruction::Or: { 1943 // or X, C --> add X, C (when X and C have no common bits set) 1944 const APInt *C; 1945 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1946 return {Instruction::Add, BO0, BO1}; 1947 break; 1948 } 1949 case Instruction::Sub: 1950 // sub 0, X --> mul X, -1 1951 if (match(BO0, m_ZeroInt())) 1952 return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)}; 1953 break; 1954 default: 1955 break; 1956 } 1957 return {}; 1958 } 1959 1960 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1961 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1962 1963 // Are we shuffling together some value and that same value after it has been 1964 // modified by a binop with a constant? 1965 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1966 Constant *C; 1967 bool Op0IsBinop; 1968 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1969 Op0IsBinop = true; 1970 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1971 Op0IsBinop = false; 1972 else 1973 return nullptr; 1974 1975 // The identity constant for a binop leaves a variable operand unchanged. For 1976 // a vector, this is a splat of something like 0, -1, or 1. 1977 // If there's no identity constant for this binop, we're done. 1978 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1979 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1980 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1981 if (!IdC) 1982 return nullptr; 1983 1984 // Shuffle identity constants into the lanes that return the original value. 1985 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1986 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1987 // The existing binop constant vector remains in the same operand position. 1988 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1989 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1990 ConstantExpr::getShuffleVector(IdC, C, Mask); 1991 1992 bool MightCreatePoisonOrUB = 1993 is_contained(Mask, UndefMaskElem) && 1994 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1995 if (MightCreatePoisonOrUB) 1996 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1997 1998 // shuf (bop X, C), X, M --> bop X, C' 1999 // shuf X, (bop X, C), M --> bop X, C' 2000 Value *X = Op0IsBinop ? Op1 : Op0; 2001 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 2002 NewBO->copyIRFlags(BO); 2003 2004 // An undef shuffle mask element may propagate as an undef constant element in 2005 // the new binop. That would produce poison where the original code might not. 2006 // If we already made a safe constant, then there's no danger. 2007 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2008 NewBO->dropPoisonGeneratingFlags(); 2009 return NewBO; 2010 } 2011 2012 /// If we have an insert of a scalar to a non-zero element of an undefined 2013 /// vector and then shuffle that value, that's the same as inserting to the zero 2014 /// element and shuffling. Splatting from the zero element is recognized as the 2015 /// canonical form of splat. 2016 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 2017 InstCombiner::BuilderTy &Builder) { 2018 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2019 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2020 Value *X; 2021 uint64_t IndexC; 2022 2023 // Match a shuffle that is a splat to a non-zero element. 2024 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 2025 m_ConstantInt(IndexC)))) || 2026 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 2027 return nullptr; 2028 2029 // Insert into element 0 of an undef vector. 2030 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 2031 Constant *Zero = Builder.getInt32(0); 2032 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 2033 2034 // Splat from element 0. Any mask element that is undefined remains undefined. 2035 // For example: 2036 // shuf (inselt undef, X, 2), _, <2,2,undef> 2037 // --> shuf (inselt undef, X, 0), poison, <0,0,undef> 2038 unsigned NumMaskElts = 2039 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2040 SmallVector<int, 16> NewMask(NumMaskElts, 0); 2041 for (unsigned i = 0; i != NumMaskElts; ++i) 2042 if (Mask[i] == UndefMaskElem) 2043 NewMask[i] = Mask[i]; 2044 2045 return new ShuffleVectorInst(NewIns, NewMask); 2046 } 2047 2048 /// Try to fold shuffles that are the equivalent of a vector select. 2049 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) { 2050 if (!Shuf.isSelect()) 2051 return nullptr; 2052 2053 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 2054 // Commuting undef to operand 0 conflicts with another canonicalization. 2055 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2056 if (!match(Shuf.getOperand(1), m_Undef()) && 2057 Shuf.getMaskValue(0) >= (int)NumElts) { 2058 // TODO: Can we assert that both operands of a shuffle-select are not undef 2059 // (otherwise, it would have been folded by instsimplify? 2060 Shuf.commute(); 2061 return &Shuf; 2062 } 2063 2064 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 2065 return I; 2066 2067 BinaryOperator *B0, *B1; 2068 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 2069 !match(Shuf.getOperand(1), m_BinOp(B1))) 2070 return nullptr; 2071 2072 // If one operand is "0 - X", allow that to be viewed as "X * -1" 2073 // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired 2074 // with a multiply, we will exit because C0/C1 will not be set. 2075 Value *X, *Y; 2076 Constant *C0 = nullptr, *C1 = nullptr; 2077 bool ConstantsAreOp1; 2078 if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 2079 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 2080 ConstantsAreOp1 = false; 2081 else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)), 2082 m_Neg(m_Value(X)))) && 2083 match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)), 2084 m_Neg(m_Value(Y))))) 2085 ConstantsAreOp1 = true; 2086 else 2087 return nullptr; 2088 2089 // We need matching binops to fold the lanes together. 2090 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 2091 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 2092 bool DropNSW = false; 2093 if (ConstantsAreOp1 && Opc0 != Opc1) { 2094 // TODO: We drop "nsw" if shift is converted into multiply because it may 2095 // not be correct when the shift amount is BitWidth - 1. We could examine 2096 // each vector element to determine if it is safe to keep that flag. 2097 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 2098 DropNSW = true; 2099 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 2100 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 2101 Opc0 = AltB0.Opcode; 2102 C0 = cast<Constant>(AltB0.Op1); 2103 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 2104 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 2105 Opc1 = AltB1.Opcode; 2106 C1 = cast<Constant>(AltB1.Op1); 2107 } 2108 } 2109 2110 if (Opc0 != Opc1 || !C0 || !C1) 2111 return nullptr; 2112 2113 // The opcodes must be the same. Use a new name to make that clear. 2114 BinaryOperator::BinaryOps BOpc = Opc0; 2115 2116 // Select the constant elements needed for the single binop. 2117 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2118 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2119 2120 // We are moving a binop after a shuffle. When a shuffle has an undefined 2121 // mask element, the result is undefined, but it is not poison or undefined 2122 // behavior. That is not necessarily true for div/rem/shift. 2123 bool MightCreatePoisonOrUB = 2124 is_contained(Mask, UndefMaskElem) && 2125 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2126 if (MightCreatePoisonOrUB) 2127 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2128 ConstantsAreOp1); 2129 2130 Value *V; 2131 if (X == Y) { 2132 // Remove a binop and the shuffle by rearranging the constant: 2133 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2134 // shuffle (op C0, V), (op C1, V), M --> op C', V 2135 V = X; 2136 } else { 2137 // If there are 2 different variable operands, we must create a new shuffle 2138 // (select) first, so check uses to ensure that we don't end up with more 2139 // instructions than we started with. 2140 if (!B0->hasOneUse() && !B1->hasOneUse()) 2141 return nullptr; 2142 2143 // If we use the original shuffle mask and op1 is *variable*, we would be 2144 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2145 // poison. We do not have to guard against UB when *constants* are op1 2146 // because safe constants guarantee that we do not overflow sdiv/srem (and 2147 // there's no danger for other opcodes). 2148 // TODO: To allow this case, create a new shuffle mask with no undefs. 2149 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2150 return nullptr; 2151 2152 // Note: In general, we do not create new shuffles in InstCombine because we 2153 // do not know if a target can lower an arbitrary shuffle optimally. In this 2154 // case, the shuffle uses the existing mask, so there is no additional risk. 2155 2156 // Select the variable vectors first, then perform the binop: 2157 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2158 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2159 V = Builder.CreateShuffleVector(X, Y, Mask); 2160 } 2161 2162 Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) : 2163 Builder.CreateBinOp(BOpc, NewC, V); 2164 2165 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2166 // 1. If we changed an opcode, poison conditions might have changed. 2167 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2168 // where the original code did not. But if we already made a safe constant, 2169 // then there's no danger. 2170 if (auto *NewI = dyn_cast<Instruction>(NewBO)) { 2171 NewI->copyIRFlags(B0); 2172 NewI->andIRFlags(B1); 2173 if (DropNSW) 2174 NewI->setHasNoSignedWrap(false); 2175 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2176 NewI->dropPoisonGeneratingFlags(); 2177 } 2178 return replaceInstUsesWith(Shuf, NewBO); 2179 } 2180 2181 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2182 /// Example (little endian): 2183 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2184 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2185 bool IsBigEndian) { 2186 // This must be a bitcasted shuffle of 1 vector integer operand. 2187 Type *DestType = Shuf.getType(); 2188 Value *X; 2189 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2190 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2191 return nullptr; 2192 2193 // The source type must have the same number of elements as the shuffle, 2194 // and the source element type must be larger than the shuffle element type. 2195 Type *SrcType = X->getType(); 2196 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2197 cast<FixedVectorType>(SrcType)->getNumElements() != 2198 cast<FixedVectorType>(DestType)->getNumElements() || 2199 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2200 return nullptr; 2201 2202 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2203 "Expected a shuffle that decreases length"); 2204 2205 // Last, check that the mask chooses the correct low bits for each narrow 2206 // element in the result. 2207 uint64_t TruncRatio = 2208 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2209 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2210 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2211 if (Mask[i] == UndefMaskElem) 2212 continue; 2213 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2214 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2215 if (Mask[i] != (int)LSBIndex) 2216 return nullptr; 2217 } 2218 2219 return new TruncInst(X, DestType); 2220 } 2221 2222 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2223 /// narrowing (concatenating with undef and extracting back to the original 2224 /// length). This allows replacing the wide select with a narrow select. 2225 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2226 InstCombiner::BuilderTy &Builder) { 2227 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2228 // of the 1st vector operand of a shuffle. 2229 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2230 return nullptr; 2231 2232 // The vector being shuffled must be a vector select that we can eliminate. 2233 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2234 Value *Cond, *X, *Y; 2235 if (!match(Shuf.getOperand(0), 2236 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2237 return nullptr; 2238 2239 // We need a narrow condition value. It must be extended with undef elements 2240 // and have the same number of elements as this shuffle. 2241 unsigned NarrowNumElts = 2242 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2243 Value *NarrowCond; 2244 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2245 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2246 NarrowNumElts || 2247 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2248 return nullptr; 2249 2250 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2251 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2252 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2253 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2254 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2255 } 2256 2257 /// Canonicalize FP negate after shuffle. 2258 static Instruction *foldFNegShuffle(ShuffleVectorInst &Shuf, 2259 InstCombiner::BuilderTy &Builder) { 2260 Instruction *FNeg0; 2261 Value *X; 2262 if (!match(Shuf.getOperand(0), m_CombineAnd(m_Instruction(FNeg0), 2263 m_FNeg(m_Value(X))))) 2264 return nullptr; 2265 2266 // shuffle (fneg X), Mask --> fneg (shuffle X, Mask) 2267 if (FNeg0->hasOneUse() && match(Shuf.getOperand(1), m_Undef())) { 2268 Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2269 return UnaryOperator::CreateFNegFMF(NewShuf, FNeg0); 2270 } 2271 2272 Instruction *FNeg1; 2273 Value *Y; 2274 if (!match(Shuf.getOperand(1), m_CombineAnd(m_Instruction(FNeg1), 2275 m_FNeg(m_Value(Y))))) 2276 return nullptr; 2277 2278 // shuffle (fneg X), (fneg Y), Mask --> fneg (shuffle X, Y, Mask) 2279 if (FNeg0->hasOneUse() || FNeg1->hasOneUse()) { 2280 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); 2281 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewShuf); 2282 NewFNeg->copyIRFlags(FNeg0); 2283 NewFNeg->andIRFlags(FNeg1); 2284 return NewFNeg; 2285 } 2286 2287 return nullptr; 2288 } 2289 2290 /// Canonicalize casts after shuffle. 2291 static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf, 2292 InstCombiner::BuilderTy &Builder) { 2293 // Do we have 2 matching cast operands? 2294 auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0)); 2295 auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1)); 2296 if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() || 2297 Cast0->getSrcTy() != Cast1->getSrcTy()) 2298 return nullptr; 2299 2300 // TODO: Allow other opcodes? That would require easing the type restrictions 2301 // below here. 2302 CastInst::CastOps CastOpcode = Cast0->getOpcode(); 2303 switch (CastOpcode) { 2304 case Instruction::FPToSI: 2305 case Instruction::FPToUI: 2306 case Instruction::SIToFP: 2307 case Instruction::UIToFP: 2308 break; 2309 default: 2310 return nullptr; 2311 } 2312 2313 VectorType *ShufTy = Shuf.getType(); 2314 VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType()); 2315 VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy()); 2316 2317 // TODO: Allow length-increasing shuffles? 2318 if (ShufTy->getElementCount().getKnownMinValue() > 2319 ShufOpTy->getElementCount().getKnownMinValue()) 2320 return nullptr; 2321 2322 // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)? 2323 assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) && 2324 "Expected fixed vector operands for casts and binary shuffle"); 2325 if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits()) 2326 return nullptr; 2327 2328 // At least one of the operands must have only one use (the shuffle). 2329 if (!Cast0->hasOneUse() && !Cast1->hasOneUse()) 2330 return nullptr; 2331 2332 // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask) 2333 Value *X = Cast0->getOperand(0); 2334 Value *Y = Cast1->getOperand(0); 2335 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); 2336 return CastInst::Create(CastOpcode, NewShuf, ShufTy); 2337 } 2338 2339 /// Try to fold an extract subvector operation. 2340 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2341 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2342 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) 2343 return nullptr; 2344 2345 // Check if we are extracting all bits of an inserted scalar: 2346 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2347 Value *X; 2348 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2349 X->getType()->getPrimitiveSizeInBits() == 2350 Shuf.getType()->getPrimitiveSizeInBits()) 2351 return new BitCastInst(X, Shuf.getType()); 2352 2353 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2354 Value *Y; 2355 ArrayRef<int> Mask; 2356 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2357 return nullptr; 2358 2359 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2360 // then combining may result in worse codegen. 2361 if (!Op0->hasOneUse()) 2362 return nullptr; 2363 2364 // We are extracting a subvector from a shuffle. Remove excess elements from 2365 // the 1st shuffle mask to eliminate the extract. 2366 // 2367 // This transform is conservatively limited to identity extracts because we do 2368 // not allow arbitrary shuffle mask creation as a target-independent transform 2369 // (because we can't guarantee that will lower efficiently). 2370 // 2371 // If the extracting shuffle has an undef mask element, it transfers to the 2372 // new shuffle mask. Otherwise, copy the original mask element. Example: 2373 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2374 // shuf X, Y, <C0, undef, C2, undef> 2375 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2376 SmallVector<int, 16> NewMask(NumElts); 2377 assert(NumElts < Mask.size() && 2378 "Identity with extract must have less elements than its inputs"); 2379 2380 for (unsigned i = 0; i != NumElts; ++i) { 2381 int ExtractMaskElt = Shuf.getMaskValue(i); 2382 int MaskElt = Mask[i]; 2383 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2384 } 2385 return new ShuffleVectorInst(X, Y, NewMask); 2386 } 2387 2388 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2389 /// operand with the operand of an insertelement. 2390 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2391 InstCombinerImpl &IC) { 2392 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2393 SmallVector<int, 16> Mask; 2394 Shuf.getShuffleMask(Mask); 2395 2396 int NumElts = Mask.size(); 2397 int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements(); 2398 2399 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2400 // not be able to handle it there if the insertelement has >1 use. 2401 // If the shuffle has an insertelement operand but does not choose the 2402 // inserted scalar element from that value, then we can replace that shuffle 2403 // operand with the source vector of the insertelement. 2404 Value *X; 2405 uint64_t IdxC; 2406 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2407 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2408 if (!is_contained(Mask, (int)IdxC)) 2409 return IC.replaceOperand(Shuf, 0, X); 2410 } 2411 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2412 // Offset the index constant by the vector width because we are checking for 2413 // accesses to the 2nd vector input of the shuffle. 2414 IdxC += InpNumElts; 2415 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2416 if (!is_contained(Mask, (int)IdxC)) 2417 return IC.replaceOperand(Shuf, 1, X); 2418 } 2419 // For the rest of the transform, the shuffle must not change vector sizes. 2420 // TODO: This restriction could be removed if the insert has only one use 2421 // (because the transform would require a new length-changing shuffle). 2422 if (NumElts != InpNumElts) 2423 return nullptr; 2424 2425 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2426 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2427 // We need an insertelement with a constant index. 2428 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2429 m_ConstantInt(IndexC)))) 2430 return false; 2431 2432 // Test the shuffle mask to see if it splices the inserted scalar into the 2433 // operand 1 vector of the shuffle. 2434 int NewInsIndex = -1; 2435 for (int i = 0; i != NumElts; ++i) { 2436 // Ignore undef mask elements. 2437 if (Mask[i] == -1) 2438 continue; 2439 2440 // The shuffle takes elements of operand 1 without lane changes. 2441 if (Mask[i] == NumElts + i) 2442 continue; 2443 2444 // The shuffle must choose the inserted scalar exactly once. 2445 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2446 return false; 2447 2448 // The shuffle is placing the inserted scalar into element i. 2449 NewInsIndex = i; 2450 } 2451 2452 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2453 2454 // Index is updated to the potentially translated insertion lane. 2455 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2456 return true; 2457 }; 2458 2459 // If the shuffle is unnecessary, insert the scalar operand directly into 2460 // operand 1 of the shuffle. Example: 2461 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2462 Value *Scalar; 2463 ConstantInt *IndexC; 2464 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2465 return InsertElementInst::Create(V1, Scalar, IndexC); 2466 2467 // Try again after commuting shuffle. Example: 2468 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2469 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2470 std::swap(V0, V1); 2471 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2472 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2473 return InsertElementInst::Create(V1, Scalar, IndexC); 2474 2475 return nullptr; 2476 } 2477 2478 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2479 // Match the operands as identity with padding (also known as concatenation 2480 // with undef) shuffles of the same source type. The backend is expected to 2481 // recreate these concatenations from a shuffle of narrow operands. 2482 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2483 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2484 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2485 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2486 return nullptr; 2487 2488 // We limit this transform to power-of-2 types because we expect that the 2489 // backend can convert the simplified IR patterns to identical nodes as the 2490 // original IR. 2491 // TODO: If we can verify the same behavior for arbitrary types, the 2492 // power-of-2 checks can be removed. 2493 Value *X = Shuffle0->getOperand(0); 2494 Value *Y = Shuffle1->getOperand(0); 2495 if (X->getType() != Y->getType() || 2496 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2497 !isPowerOf2_32( 2498 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2499 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2500 match(X, m_Undef()) || match(Y, m_Undef())) 2501 return nullptr; 2502 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2503 match(Shuffle1->getOperand(1), m_Undef()) && 2504 "Unexpected operand for identity shuffle"); 2505 2506 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2507 // operands directly by adjusting the shuffle mask to account for the narrower 2508 // types: 2509 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2510 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2511 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2512 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2513 2514 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2515 SmallVector<int, 16> NewMask(Mask.size(), -1); 2516 for (int i = 0, e = Mask.size(); i != e; ++i) { 2517 if (Mask[i] == -1) 2518 continue; 2519 2520 // If this shuffle is choosing an undef element from 1 of the sources, that 2521 // element is undef. 2522 if (Mask[i] < WideElts) { 2523 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2524 continue; 2525 } else { 2526 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2527 continue; 2528 } 2529 2530 // If this shuffle is choosing from the 1st narrow op, the mask element is 2531 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2532 // element is offset down to adjust for the narrow vector widths. 2533 if (Mask[i] < WideElts) { 2534 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2535 NewMask[i] = Mask[i]; 2536 } else { 2537 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2538 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2539 } 2540 } 2541 return new ShuffleVectorInst(X, Y, NewMask); 2542 } 2543 2544 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2545 Value *LHS = SVI.getOperand(0); 2546 Value *RHS = SVI.getOperand(1); 2547 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2548 if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2549 SVI.getType(), ShufQuery)) 2550 return replaceInstUsesWith(SVI, V); 2551 2552 // Bail out for scalable vectors 2553 if (isa<ScalableVectorType>(LHS->getType())) 2554 return nullptr; 2555 2556 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2557 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2558 2559 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2560 // 2561 // if X and Y are of the same (vector) type, and the element size is not 2562 // changed by the bitcasts, we can distribute the bitcasts through the 2563 // shuffle, hopefully reducing the number of instructions. We make sure that 2564 // at least one bitcast only has one use, so we don't *increase* the number of 2565 // instructions here. 2566 Value *X, *Y; 2567 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2568 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2569 X->getType()->getScalarSizeInBits() == 2570 SVI.getType()->getScalarSizeInBits() && 2571 (LHS->hasOneUse() || RHS->hasOneUse())) { 2572 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2573 SVI.getName() + ".uncasted"); 2574 return new BitCastInst(V, SVI.getType()); 2575 } 2576 2577 ArrayRef<int> Mask = SVI.getShuffleMask(); 2578 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2579 2580 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2581 // simulated shuffle can simplify, then this shuffle is unnecessary: 2582 // shuf (bitcast X), undef, Mask --> bitcast X' 2583 // TODO: This could be extended to allow length-changing shuffles. 2584 // The transform might also be obsoleted if we allowed canonicalization 2585 // of bitcasted shuffles. 2586 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2587 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2588 // Try to create a scaled mask constant. 2589 auto *XType = cast<FixedVectorType>(X->getType()); 2590 unsigned XNumElts = XType->getNumElements(); 2591 SmallVector<int, 16> ScaledMask; 2592 if (XNumElts >= VWidth) { 2593 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2594 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2595 } else { 2596 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2597 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2598 ScaledMask.clear(); 2599 } 2600 if (!ScaledMask.empty()) { 2601 // If the shuffled source vector simplifies, cast that value to this 2602 // shuffle's type. 2603 if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType), 2604 ScaledMask, XType, ShufQuery)) 2605 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2606 } 2607 } 2608 2609 // shuffle x, x, mask --> shuffle x, undef, mask' 2610 if (LHS == RHS) { 2611 assert(!match(RHS, m_Undef()) && 2612 "Shuffle with 2 undef ops not simplified?"); 2613 return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth)); 2614 } 2615 2616 // shuffle undef, x, mask --> shuffle x, undef, mask' 2617 if (match(LHS, m_Undef())) { 2618 SVI.commute(); 2619 return &SVI; 2620 } 2621 2622 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2623 return I; 2624 2625 if (Instruction *I = foldSelectShuffle(SVI)) 2626 return I; 2627 2628 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2629 return I; 2630 2631 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2632 return I; 2633 2634 if (Instruction *I = foldFNegShuffle(SVI, Builder)) 2635 return I; 2636 2637 if (Instruction *I = foldCastShuffle(SVI, Builder)) 2638 return I; 2639 2640 APInt UndefElts(VWidth, 0); 2641 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2642 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2643 if (V != &SVI) 2644 return replaceInstUsesWith(SVI, V); 2645 return &SVI; 2646 } 2647 2648 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2649 return I; 2650 2651 // These transforms have the potential to lose undef knowledge, so they are 2652 // intentionally placed after SimplifyDemandedVectorElts(). 2653 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2654 return I; 2655 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2656 return I; 2657 2658 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { 2659 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2660 return replaceInstUsesWith(SVI, V); 2661 } 2662 2663 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2664 // a non-vector type. We can instead bitcast the original vector followed by 2665 // an extract of the desired element: 2666 // 2667 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2668 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2669 // %1 = bitcast <4 x i8> %sroa to i32 2670 // Becomes: 2671 // %bc = bitcast <16 x i8> %in to <4 x i32> 2672 // %ext = extractelement <4 x i32> %bc, i32 0 2673 // 2674 // If the shuffle is extracting a contiguous range of values from the input 2675 // vector then each use which is a bitcast of the extracted size can be 2676 // replaced. This will work if the vector types are compatible, and the begin 2677 // index is aligned to a value in the casted vector type. If the begin index 2678 // isn't aligned then we can shuffle the original vector (keeping the same 2679 // vector type) before extracting. 2680 // 2681 // This code will bail out if the target type is fundamentally incompatible 2682 // with vectors of the source type. 2683 // 2684 // Example of <16 x i8>, target type i32: 2685 // Index range [4,8): v-----------v Will work. 2686 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2687 // <16 x i8>: | | | | | | | | | | | | | | | | | 2688 // <4 x i32>: | | | | | 2689 // +-----------+-----------+-----------+-----------+ 2690 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2691 // Target type i40: ^--------------^ Won't work, bail. 2692 bool MadeChange = false; 2693 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2694 Value *V = LHS; 2695 unsigned MaskElems = Mask.size(); 2696 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2697 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2698 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2699 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2700 unsigned SrcNumElems = SrcTy->getNumElements(); 2701 SmallVector<BitCastInst *, 8> BCs; 2702 DenseMap<Type *, Value *> NewBCs; 2703 for (User *U : SVI.users()) 2704 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2705 if (!BC->use_empty()) 2706 // Only visit bitcasts that weren't previously handled. 2707 BCs.push_back(BC); 2708 for (BitCastInst *BC : BCs) { 2709 unsigned BegIdx = Mask.front(); 2710 Type *TgtTy = BC->getDestTy(); 2711 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2712 if (!TgtElemBitWidth) 2713 continue; 2714 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2715 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2716 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2717 if (!VecBitWidthsEqual) 2718 continue; 2719 if (!VectorType::isValidElementType(TgtTy)) 2720 continue; 2721 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2722 if (!BegIsAligned) { 2723 // Shuffle the input so [0,NumElements) contains the output, and 2724 // [NumElems,SrcNumElems) is undef. 2725 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2726 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2727 ShuffleMask[I] = Idx; 2728 V = Builder.CreateShuffleVector(V, ShuffleMask, 2729 SVI.getName() + ".extract"); 2730 BegIdx = 0; 2731 } 2732 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2733 assert(SrcElemsPerTgtElem); 2734 BegIdx /= SrcElemsPerTgtElem; 2735 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2736 auto *NewBC = 2737 BCAlreadyExists 2738 ? NewBCs[CastSrcTy] 2739 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2740 if (!BCAlreadyExists) 2741 NewBCs[CastSrcTy] = NewBC; 2742 auto *Ext = Builder.CreateExtractElement( 2743 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2744 // The shufflevector isn't being replaced: the bitcast that used it 2745 // is. InstCombine will visit the newly-created instructions. 2746 replaceInstUsesWith(*BC, Ext); 2747 MadeChange = true; 2748 } 2749 } 2750 2751 // If the LHS is a shufflevector itself, see if we can combine it with this 2752 // one without producing an unusual shuffle. 2753 // Cases that might be simplified: 2754 // 1. 2755 // x1=shuffle(v1,v2,mask1) 2756 // x=shuffle(x1,undef,mask) 2757 // ==> 2758 // x=shuffle(v1,undef,newMask) 2759 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2760 // 2. 2761 // x1=shuffle(v1,undef,mask1) 2762 // x=shuffle(x1,x2,mask) 2763 // where v1.size() == mask1.size() 2764 // ==> 2765 // x=shuffle(v1,x2,newMask) 2766 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2767 // 3. 2768 // x2=shuffle(v2,undef,mask2) 2769 // x=shuffle(x1,x2,mask) 2770 // where v2.size() == mask2.size() 2771 // ==> 2772 // x=shuffle(x1,v2,newMask) 2773 // newMask[i] = (mask[i] < x1.size()) 2774 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2775 // 4. 2776 // x1=shuffle(v1,undef,mask1) 2777 // x2=shuffle(v2,undef,mask2) 2778 // x=shuffle(x1,x2,mask) 2779 // where v1.size() == v2.size() 2780 // ==> 2781 // x=shuffle(v1,v2,newMask) 2782 // newMask[i] = (mask[i] < x1.size()) 2783 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2784 // 2785 // Here we are really conservative: 2786 // we are absolutely afraid of producing a shuffle mask not in the input 2787 // program, because the code gen may not be smart enough to turn a merged 2788 // shuffle into two specific shuffles: it may produce worse code. As such, 2789 // we only merge two shuffles if the result is either a splat or one of the 2790 // input shuffle masks. In this case, merging the shuffles just removes 2791 // one instruction, which we know is safe. This is good for things like 2792 // turning: (splat(splat)) -> splat, or 2793 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2794 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2795 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2796 if (LHSShuffle) 2797 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef())) 2798 LHSShuffle = nullptr; 2799 if (RHSShuffle) 2800 if (!match(RHSShuffle->getOperand(1), m_Undef())) 2801 RHSShuffle = nullptr; 2802 if (!LHSShuffle && !RHSShuffle) 2803 return MadeChange ? &SVI : nullptr; 2804 2805 Value* LHSOp0 = nullptr; 2806 Value* LHSOp1 = nullptr; 2807 Value* RHSOp0 = nullptr; 2808 unsigned LHSOp0Width = 0; 2809 unsigned RHSOp0Width = 0; 2810 if (LHSShuffle) { 2811 LHSOp0 = LHSShuffle->getOperand(0); 2812 LHSOp1 = LHSShuffle->getOperand(1); 2813 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 2814 } 2815 if (RHSShuffle) { 2816 RHSOp0 = RHSShuffle->getOperand(0); 2817 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 2818 } 2819 Value* newLHS = LHS; 2820 Value* newRHS = RHS; 2821 if (LHSShuffle) { 2822 // case 1 2823 if (match(RHS, m_Undef())) { 2824 newLHS = LHSOp0; 2825 newRHS = LHSOp1; 2826 } 2827 // case 2 or 4 2828 else if (LHSOp0Width == LHSWidth) { 2829 newLHS = LHSOp0; 2830 } 2831 } 2832 // case 3 or 4 2833 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2834 newRHS = RHSOp0; 2835 } 2836 // case 4 2837 if (LHSOp0 == RHSOp0) { 2838 newLHS = LHSOp0; 2839 newRHS = nullptr; 2840 } 2841 2842 if (newLHS == LHS && newRHS == RHS) 2843 return MadeChange ? &SVI : nullptr; 2844 2845 ArrayRef<int> LHSMask; 2846 ArrayRef<int> RHSMask; 2847 if (newLHS != LHS) 2848 LHSMask = LHSShuffle->getShuffleMask(); 2849 if (RHSShuffle && newRHS != RHS) 2850 RHSMask = RHSShuffle->getShuffleMask(); 2851 2852 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2853 SmallVector<int, 16> newMask; 2854 bool isSplat = true; 2855 int SplatElt = -1; 2856 // Create a new mask for the new ShuffleVectorInst so that the new 2857 // ShuffleVectorInst is equivalent to the original one. 2858 for (unsigned i = 0; i < VWidth; ++i) { 2859 int eltMask; 2860 if (Mask[i] < 0) { 2861 // This element is an undef value. 2862 eltMask = -1; 2863 } else if (Mask[i] < (int)LHSWidth) { 2864 // This element is from left hand side vector operand. 2865 // 2866 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2867 // new mask value for the element. 2868 if (newLHS != LHS) { 2869 eltMask = LHSMask[Mask[i]]; 2870 // If the value selected is an undef value, explicitly specify it 2871 // with a -1 mask value. 2872 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2873 eltMask = -1; 2874 } else 2875 eltMask = Mask[i]; 2876 } else { 2877 // This element is from right hand side vector operand 2878 // 2879 // If the value selected is an undef value, explicitly specify it 2880 // with a -1 mask value. (case 1) 2881 if (match(RHS, m_Undef())) 2882 eltMask = -1; 2883 // If RHS is going to be replaced (case 3 or 4), calculate the 2884 // new mask value for the element. 2885 else if (newRHS != RHS) { 2886 eltMask = RHSMask[Mask[i]-LHSWidth]; 2887 // If the value selected is an undef value, explicitly specify it 2888 // with a -1 mask value. 2889 if (eltMask >= (int)RHSOp0Width) { 2890 assert(match(RHSShuffle->getOperand(1), m_Undef()) && 2891 "should have been check above"); 2892 eltMask = -1; 2893 } 2894 } else 2895 eltMask = Mask[i]-LHSWidth; 2896 2897 // If LHS's width is changed, shift the mask value accordingly. 2898 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2899 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2900 // If newRHS == newLHS, we want to remap any references from newRHS to 2901 // newLHS so that we can properly identify splats that may occur due to 2902 // obfuscation across the two vectors. 2903 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2904 eltMask += newLHSWidth; 2905 } 2906 2907 // Check if this could still be a splat. 2908 if (eltMask >= 0) { 2909 if (SplatElt >= 0 && SplatElt != eltMask) 2910 isSplat = false; 2911 SplatElt = eltMask; 2912 } 2913 2914 newMask.push_back(eltMask); 2915 } 2916 2917 // If the result mask is equal to one of the original shuffle masks, 2918 // or is a splat, do the replacement. 2919 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2920 if (!newRHS) 2921 newRHS = UndefValue::get(newLHS->getType()); 2922 return new ShuffleVectorInst(newLHS, newRHS, newMask); 2923 } 2924 2925 return MadeChange ? &SVI : nullptr; 2926 } 2927