1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 39 #include "llvm/Transforms/InstCombine/InstCombiner.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 STATISTIC(NumAggregateReconstructionsSimplified, 51 "Number of aggregate reconstructions turned into reuse of the " 52 "original aggregate"); 53 54 /// Return true if the value is cheaper to scalarize than it is to leave as a 55 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 56 /// one known element from a vector constant. 57 /// 58 /// FIXME: It's possible to create more instructions than previously existed. 59 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 60 // If we can pick a scalar constant value out of a vector, that is free. 61 if (auto *C = dyn_cast<Constant>(V)) 62 return IsConstantExtractIndex || C->getSplatValue(); 63 64 // An insertelement to the same constant index as our extract will simplify 65 // to the scalar inserted element. An insertelement to a different constant 66 // index is irrelevant to our extract. 67 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 68 return IsConstantExtractIndex; 69 70 if (match(V, m_OneUse(m_Load(m_Value())))) 71 return true; 72 73 if (match(V, m_OneUse(m_UnOp()))) 74 return true; 75 76 Value *V0, *V1; 77 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 78 if (cheapToScalarize(V0, IsConstantExtractIndex) || 79 cheapToScalarize(V1, IsConstantExtractIndex)) 80 return true; 81 82 CmpInst::Predicate UnusedPred; 83 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 84 if (cheapToScalarize(V0, IsConstantExtractIndex) || 85 cheapToScalarize(V1, IsConstantExtractIndex)) 86 return true; 87 88 return false; 89 } 90 91 // If we have a PHI node with a vector type that is only used to feed 92 // itself and be an operand of extractelement at a constant location, 93 // try to replace the PHI of the vector type with a PHI of a scalar type. 94 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 95 PHINode *PN) { 96 SmallVector<Instruction *, 2> Extracts; 97 // The users we want the PHI to have are: 98 // 1) The EI ExtractElement (we already know this) 99 // 2) Possibly more ExtractElements with the same index. 100 // 3) Another operand, which will feed back into the PHI. 101 Instruction *PHIUser = nullptr; 102 for (auto U : PN->users()) { 103 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 104 if (EI.getIndexOperand() == EU->getIndexOperand()) 105 Extracts.push_back(EU); 106 else 107 return nullptr; 108 } else if (!PHIUser) { 109 PHIUser = cast<Instruction>(U); 110 } else { 111 return nullptr; 112 } 113 } 114 115 if (!PHIUser) 116 return nullptr; 117 118 // Verify that this PHI user has one use, which is the PHI itself, 119 // and that it is a binary operation which is cheap to scalarize. 120 // otherwise return nullptr. 121 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 122 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 123 return nullptr; 124 125 // Create a scalar PHI node that will replace the vector PHI node 126 // just before the current PHI node. 127 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 128 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 129 // Scalarize each PHI operand. 130 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 131 Value *PHIInVal = PN->getIncomingValue(i); 132 BasicBlock *inBB = PN->getIncomingBlock(i); 133 Value *Elt = EI.getIndexOperand(); 134 // If the operand is the PHI induction variable: 135 if (PHIInVal == PHIUser) { 136 // Scalarize the binary operation. Its first operand is the 137 // scalar PHI, and the second operand is extracted from the other 138 // vector operand. 139 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 140 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 141 Value *Op = InsertNewInstWith( 142 ExtractElementInst::Create(B0->getOperand(opId), Elt, 143 B0->getOperand(opId)->getName() + ".Elt"), 144 *B0); 145 Value *newPHIUser = InsertNewInstWith( 146 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 147 scalarPHI, Op, B0), *B0); 148 scalarPHI->addIncoming(newPHIUser, inBB); 149 } else { 150 // Scalarize PHI input: 151 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 152 // Insert the new instruction into the predecessor basic block. 153 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 154 BasicBlock::iterator InsertPos; 155 if (pos && !isa<PHINode>(pos)) { 156 InsertPos = ++pos->getIterator(); 157 } else { 158 InsertPos = inBB->getFirstInsertionPt(); 159 } 160 161 InsertNewInstWith(newEI, *InsertPos); 162 163 scalarPHI->addIncoming(newEI, inBB); 164 } 165 } 166 167 for (auto E : Extracts) 168 replaceInstUsesWith(*E, scalarPHI); 169 170 return &EI; 171 } 172 173 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 174 InstCombiner::BuilderTy &Builder, 175 bool IsBigEndian) { 176 Value *X; 177 uint64_t ExtIndexC; 178 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 179 !X->getType()->isVectorTy() || 180 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 181 return nullptr; 182 183 // If this extractelement is using a bitcast from a vector of the same number 184 // of elements, see if we can find the source element from the source vector: 185 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 186 auto *SrcTy = cast<VectorType>(X->getType()); 187 Type *DestTy = Ext.getType(); 188 ElementCount NumSrcElts = SrcTy->getElementCount(); 189 ElementCount NumElts = 190 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 191 if (NumSrcElts == NumElts) 192 if (Value *Elt = findScalarElement(X, ExtIndexC)) 193 return new BitCastInst(Elt, DestTy); 194 195 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 196 "Src and Dst must be the same sort of vector type"); 197 198 // If the source elements are wider than the destination, try to shift and 199 // truncate a subset of scalar bits of an insert op. 200 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 201 Value *Scalar; 202 uint64_t InsIndexC; 203 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 204 m_ConstantInt(InsIndexC)))) 205 return nullptr; 206 207 // The extract must be from the subset of vector elements that we inserted 208 // into. Example: if we inserted element 1 of a <2 x i64> and we are 209 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 210 // of elements 4-7 of the bitcasted vector. 211 unsigned NarrowingRatio = 212 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 213 if (ExtIndexC / NarrowingRatio != InsIndexC) 214 return nullptr; 215 216 // We are extracting part of the original scalar. How that scalar is 217 // inserted into the vector depends on the endian-ness. Example: 218 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 219 // +--+--+--+--+--+--+--+--+ 220 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 221 // extelt <4 x i16> V', 3: | |S2|S3| 222 // +--+--+--+--+--+--+--+--+ 223 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 224 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 225 // In this example, we must right-shift little-endian. Big-endian is just a 226 // truncate. 227 unsigned Chunk = ExtIndexC % NarrowingRatio; 228 if (IsBigEndian) 229 Chunk = NarrowingRatio - 1 - Chunk; 230 231 // Bail out if this is an FP vector to FP vector sequence. That would take 232 // more instructions than we started with unless there is no shift, and it 233 // may not be handled as well in the backend. 234 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 235 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 236 if (NeedSrcBitcast && NeedDestBitcast) 237 return nullptr; 238 239 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 240 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 241 unsigned ShAmt = Chunk * DestWidth; 242 243 // TODO: This limitation is more strict than necessary. We could sum the 244 // number of new instructions and subtract the number eliminated to know if 245 // we can proceed. 246 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 247 if (NeedSrcBitcast || NeedDestBitcast) 248 return nullptr; 249 250 if (NeedSrcBitcast) { 251 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 252 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 253 } 254 255 if (ShAmt) { 256 // Bail out if we could end with more instructions than we started with. 257 if (!Ext.getVectorOperand()->hasOneUse()) 258 return nullptr; 259 Scalar = Builder.CreateLShr(Scalar, ShAmt); 260 } 261 262 if (NeedDestBitcast) { 263 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 264 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 265 } 266 return new TruncInst(Scalar, DestTy); 267 } 268 269 return nullptr; 270 } 271 272 /// Find elements of V demanded by UserInstr. 273 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 274 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 275 276 // Conservatively assume that all elements are needed. 277 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 278 279 switch (UserInstr->getOpcode()) { 280 case Instruction::ExtractElement: { 281 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 282 assert(EEI->getVectorOperand() == V); 283 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 284 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 285 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 286 } 287 break; 288 } 289 case Instruction::ShuffleVector: { 290 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 291 unsigned MaskNumElts = 292 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 293 294 UsedElts = APInt(VWidth, 0); 295 for (unsigned i = 0; i < MaskNumElts; i++) { 296 unsigned MaskVal = Shuffle->getMaskValue(i); 297 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 298 continue; 299 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 300 UsedElts.setBit(MaskVal); 301 if (Shuffle->getOperand(1) == V && 302 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 303 UsedElts.setBit(MaskVal - VWidth); 304 } 305 break; 306 } 307 default: 308 break; 309 } 310 return UsedElts; 311 } 312 313 /// Find union of elements of V demanded by all its users. 314 /// If it is known by querying findDemandedEltsBySingleUser that 315 /// no user demands an element of V, then the corresponding bit 316 /// remains unset in the returned value. 317 static APInt findDemandedEltsByAllUsers(Value *V) { 318 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 319 320 APInt UnionUsedElts(VWidth, 0); 321 for (const Use &U : V->uses()) { 322 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 323 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 324 } else { 325 UnionUsedElts = APInt::getAllOnesValue(VWidth); 326 break; 327 } 328 329 if (UnionUsedElts.isAllOnesValue()) 330 break; 331 } 332 333 return UnionUsedElts; 334 } 335 336 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 337 Value *SrcVec = EI.getVectorOperand(); 338 Value *Index = EI.getIndexOperand(); 339 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 340 SQ.getWithInstruction(&EI))) 341 return replaceInstUsesWith(EI, V); 342 343 // If extracting a specified index from the vector, see if we can recursively 344 // find a previously computed scalar that was inserted into the vector. 345 auto *IndexC = dyn_cast<ConstantInt>(Index); 346 if (IndexC) { 347 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 348 unsigned NumElts = EC.getKnownMinValue(); 349 350 // InstSimplify should handle cases where the index is invalid. 351 // For fixed-length vector, it's invalid to extract out-of-range element. 352 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 353 return nullptr; 354 355 // This instruction only demands the single element from the input vector. 356 // Skip for scalable type, the number of elements is unknown at 357 // compile-time. 358 if (!EC.isScalable() && NumElts != 1) { 359 // If the input vector has a single use, simplify it based on this use 360 // property. 361 if (SrcVec->hasOneUse()) { 362 APInt UndefElts(NumElts, 0); 363 APInt DemandedElts(NumElts, 0); 364 DemandedElts.setBit(IndexC->getZExtValue()); 365 if (Value *V = 366 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 367 return replaceOperand(EI, 0, V); 368 } else { 369 // If the input vector has multiple uses, simplify it based on a union 370 // of all elements used. 371 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 372 if (!DemandedElts.isAllOnesValue()) { 373 APInt UndefElts(NumElts, 0); 374 if (Value *V = SimplifyDemandedVectorElts( 375 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 376 true /* AllowMultipleUsers */)) { 377 if (V != SrcVec) { 378 SrcVec->replaceAllUsesWith(V); 379 return &EI; 380 } 381 } 382 } 383 } 384 } 385 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 386 return I; 387 388 // If there's a vector PHI feeding a scalar use through this extractelement 389 // instruction, try to scalarize the PHI. 390 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 391 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 392 return ScalarPHI; 393 } 394 395 // TODO come up with a n-ary matcher that subsumes both unary and 396 // binary matchers. 397 UnaryOperator *UO; 398 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 399 // extelt (unop X), Index --> unop (extelt X, Index) 400 Value *X = UO->getOperand(0); 401 Value *E = Builder.CreateExtractElement(X, Index); 402 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 403 } 404 405 BinaryOperator *BO; 406 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 407 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 408 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 409 Value *E0 = Builder.CreateExtractElement(X, Index); 410 Value *E1 = Builder.CreateExtractElement(Y, Index); 411 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 412 } 413 414 Value *X, *Y; 415 CmpInst::Predicate Pred; 416 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 417 cheapToScalarize(SrcVec, IndexC)) { 418 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 419 Value *E0 = Builder.CreateExtractElement(X, Index); 420 Value *E1 = Builder.CreateExtractElement(Y, Index); 421 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 422 } 423 424 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 425 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 426 // Extracting the inserted element? 427 if (IE->getOperand(2) == Index) 428 return replaceInstUsesWith(EI, IE->getOperand(1)); 429 // If the inserted and extracted elements are constants, they must not 430 // be the same value, extract from the pre-inserted value instead. 431 if (isa<Constant>(IE->getOperand(2)) && IndexC) 432 return replaceOperand(EI, 0, IE->getOperand(0)); 433 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 434 // If this is extracting an element from a shufflevector, figure out where 435 // it came from and extract from the appropriate input element instead. 436 // Restrict the following transformation to fixed-length vector. 437 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 438 int SrcIdx = 439 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 440 Value *Src; 441 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 442 ->getNumElements(); 443 444 if (SrcIdx < 0) 445 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 446 if (SrcIdx < (int)LHSWidth) 447 Src = SVI->getOperand(0); 448 else { 449 SrcIdx -= LHSWidth; 450 Src = SVI->getOperand(1); 451 } 452 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 453 return ExtractElementInst::Create( 454 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 455 } 456 } else if (auto *CI = dyn_cast<CastInst>(I)) { 457 // Canonicalize extractelement(cast) -> cast(extractelement). 458 // Bitcasts can change the number of vector elements, and they cost 459 // nothing. 460 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 461 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 462 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 463 } 464 } 465 } 466 return nullptr; 467 } 468 469 /// If V is a shuffle of values that ONLY returns elements from either LHS or 470 /// RHS, return the shuffle mask and true. Otherwise, return false. 471 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 472 SmallVectorImpl<int> &Mask) { 473 assert(LHS->getType() == RHS->getType() && 474 "Invalid CollectSingleShuffleElements"); 475 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 476 477 if (isa<UndefValue>(V)) { 478 Mask.assign(NumElts, -1); 479 return true; 480 } 481 482 if (V == LHS) { 483 for (unsigned i = 0; i != NumElts; ++i) 484 Mask.push_back(i); 485 return true; 486 } 487 488 if (V == RHS) { 489 for (unsigned i = 0; i != NumElts; ++i) 490 Mask.push_back(i + NumElts); 491 return true; 492 } 493 494 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 495 // If this is an insert of an extract from some other vector, include it. 496 Value *VecOp = IEI->getOperand(0); 497 Value *ScalarOp = IEI->getOperand(1); 498 Value *IdxOp = IEI->getOperand(2); 499 500 if (!isa<ConstantInt>(IdxOp)) 501 return false; 502 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 503 504 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 505 // We can handle this if the vector we are inserting into is 506 // transitively ok. 507 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 508 // If so, update the mask to reflect the inserted undef. 509 Mask[InsertedIdx] = -1; 510 return true; 511 } 512 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 513 if (isa<ConstantInt>(EI->getOperand(1))) { 514 unsigned ExtractedIdx = 515 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 516 unsigned NumLHSElts = 517 cast<FixedVectorType>(LHS->getType())->getNumElements(); 518 519 // This must be extracting from either LHS or RHS. 520 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 521 // We can handle this if the vector we are inserting into is 522 // transitively ok. 523 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 524 // If so, update the mask to reflect the inserted value. 525 if (EI->getOperand(0) == LHS) { 526 Mask[InsertedIdx % NumElts] = ExtractedIdx; 527 } else { 528 assert(EI->getOperand(0) == RHS); 529 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 530 } 531 return true; 532 } 533 } 534 } 535 } 536 } 537 538 return false; 539 } 540 541 /// If we have insertion into a vector that is wider than the vector that we 542 /// are extracting from, try to widen the source vector to allow a single 543 /// shufflevector to replace one or more insert/extract pairs. 544 static void replaceExtractElements(InsertElementInst *InsElt, 545 ExtractElementInst *ExtElt, 546 InstCombinerImpl &IC) { 547 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 548 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 549 unsigned NumInsElts = InsVecType->getNumElements(); 550 unsigned NumExtElts = ExtVecType->getNumElements(); 551 552 // The inserted-to vector must be wider than the extracted-from vector. 553 if (InsVecType->getElementType() != ExtVecType->getElementType() || 554 NumExtElts >= NumInsElts) 555 return; 556 557 // Create a shuffle mask to widen the extended-from vector using undefined 558 // values. The mask selects all of the values of the original vector followed 559 // by as many undefined values as needed to create a vector of the same length 560 // as the inserted-to vector. 561 SmallVector<int, 16> ExtendMask; 562 for (unsigned i = 0; i < NumExtElts; ++i) 563 ExtendMask.push_back(i); 564 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 565 ExtendMask.push_back(-1); 566 567 Value *ExtVecOp = ExtElt->getVectorOperand(); 568 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 569 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 570 ? ExtVecOpInst->getParent() 571 : ExtElt->getParent(); 572 573 // TODO: This restriction matches the basic block check below when creating 574 // new extractelement instructions. If that limitation is removed, this one 575 // could also be removed. But for now, we just bail out to ensure that we 576 // will replace the extractelement instruction that is feeding our 577 // insertelement instruction. This allows the insertelement to then be 578 // replaced by a shufflevector. If the insertelement is not replaced, we can 579 // induce infinite looping because there's an optimization for extractelement 580 // that will delete our widening shuffle. This would trigger another attempt 581 // here to create that shuffle, and we spin forever. 582 if (InsertionBlock != InsElt->getParent()) 583 return; 584 585 // TODO: This restriction matches the check in visitInsertElementInst() and 586 // prevents an infinite loop caused by not turning the extract/insert pair 587 // into a shuffle. We really should not need either check, but we're lacking 588 // folds for shufflevectors because we're afraid to generate shuffle masks 589 // that the backend can't handle. 590 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 591 return; 592 593 auto *WideVec = 594 new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), ExtendMask); 595 596 // Insert the new shuffle after the vector operand of the extract is defined 597 // (as long as it's not a PHI) or at the start of the basic block of the 598 // extract, so any subsequent extracts in the same basic block can use it. 599 // TODO: Insert before the earliest ExtractElementInst that is replaced. 600 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 601 WideVec->insertAfter(ExtVecOpInst); 602 else 603 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 604 605 // Replace extracts from the original narrow vector with extracts from the new 606 // wide vector. 607 for (User *U : ExtVecOp->users()) { 608 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 609 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 610 continue; 611 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 612 NewExt->insertAfter(OldExt); 613 IC.replaceInstUsesWith(*OldExt, NewExt); 614 } 615 } 616 617 /// We are building a shuffle to create V, which is a sequence of insertelement, 618 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 619 /// not rely on the second vector source. Return a std::pair containing the 620 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 621 /// parameter as required. 622 /// 623 /// Note: we intentionally don't try to fold earlier shuffles since they have 624 /// often been chosen carefully to be efficiently implementable on the target. 625 using ShuffleOps = std::pair<Value *, Value *>; 626 627 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 628 Value *PermittedRHS, 629 InstCombinerImpl &IC) { 630 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 631 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 632 633 if (isa<UndefValue>(V)) { 634 Mask.assign(NumElts, -1); 635 return std::make_pair( 636 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 637 } 638 639 if (isa<ConstantAggregateZero>(V)) { 640 Mask.assign(NumElts, 0); 641 return std::make_pair(V, nullptr); 642 } 643 644 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 645 // If this is an insert of an extract from some other vector, include it. 646 Value *VecOp = IEI->getOperand(0); 647 Value *ScalarOp = IEI->getOperand(1); 648 Value *IdxOp = IEI->getOperand(2); 649 650 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 651 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 652 unsigned ExtractedIdx = 653 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 654 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 655 656 // Either the extracted from or inserted into vector must be RHSVec, 657 // otherwise we'd end up with a shuffle of three inputs. 658 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 659 Value *RHS = EI->getOperand(0); 660 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 661 assert(LR.second == nullptr || LR.second == RHS); 662 663 if (LR.first->getType() != RHS->getType()) { 664 // Although we are giving up for now, see if we can create extracts 665 // that match the inserts for another round of combining. 666 replaceExtractElements(IEI, EI, IC); 667 668 // We tried our best, but we can't find anything compatible with RHS 669 // further up the chain. Return a trivial shuffle. 670 for (unsigned i = 0; i < NumElts; ++i) 671 Mask[i] = i; 672 return std::make_pair(V, nullptr); 673 } 674 675 unsigned NumLHSElts = 676 cast<FixedVectorType>(RHS->getType())->getNumElements(); 677 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 678 return std::make_pair(LR.first, RHS); 679 } 680 681 if (VecOp == PermittedRHS) { 682 // We've gone as far as we can: anything on the other side of the 683 // extractelement will already have been converted into a shuffle. 684 unsigned NumLHSElts = 685 cast<FixedVectorType>(EI->getOperand(0)->getType()) 686 ->getNumElements(); 687 for (unsigned i = 0; i != NumElts; ++i) 688 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 689 return std::make_pair(EI->getOperand(0), PermittedRHS); 690 } 691 692 // If this insertelement is a chain that comes from exactly these two 693 // vectors, return the vector and the effective shuffle. 694 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 695 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 696 Mask)) 697 return std::make_pair(EI->getOperand(0), PermittedRHS); 698 } 699 } 700 } 701 702 // Otherwise, we can't do anything fancy. Return an identity vector. 703 for (unsigned i = 0; i != NumElts; ++i) 704 Mask.push_back(i); 705 return std::make_pair(V, nullptr); 706 } 707 708 /// Look for chain of insertvalue's that fully define an aggregate, and trace 709 /// back the values inserted, see if they are all were extractvalue'd from 710 /// the same source aggregate from the exact same element indexes. 711 /// If they were, just reuse the source aggregate. 712 /// This potentially deals with PHI indirections. 713 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 714 InsertValueInst &OrigIVI) { 715 Type *AggTy = OrigIVI.getType(); 716 unsigned NumAggElts; 717 switch (AggTy->getTypeID()) { 718 case Type::StructTyID: 719 NumAggElts = AggTy->getStructNumElements(); 720 break; 721 case Type::ArrayTyID: 722 NumAggElts = AggTy->getArrayNumElements(); 723 break; 724 default: 725 llvm_unreachable("Unhandled aggregate type?"); 726 } 727 728 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 729 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 730 // FIXME: any interesting patterns to be caught with larger limit? 731 assert(NumAggElts > 0 && "Aggregate should have elements."); 732 if (NumAggElts > 2) 733 return nullptr; 734 735 static constexpr auto NotFound = None; 736 static constexpr auto FoundMismatch = nullptr; 737 738 // Try to find a value of each element of an aggregate. 739 // FIXME: deal with more complex, not one-dimensional, aggregate types 740 SmallVector<Optional<Value *>, 2> AggElts(NumAggElts, NotFound); 741 742 // Do we know values for each element of the aggregate? 743 auto KnowAllElts = [&AggElts]() { 744 return all_of(AggElts, 745 [](Optional<Value *> Elt) { return Elt != NotFound; }); 746 }; 747 748 int Depth = 0; 749 750 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 751 // every element being overwritten twice, which should never happen. 752 static const int DepthLimit = 2 * NumAggElts; 753 754 // Recurse up the chain of `insertvalue` aggregate operands until either we've 755 // reconstructed full initializer or can't visit any more `insertvalue`'s. 756 for (InsertValueInst *CurrIVI = &OrigIVI; 757 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 758 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 759 ++Depth) { 760 Value *InsertedValue = CurrIVI->getInsertedValueOperand(); 761 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 762 763 // Don't bother with more than single-level aggregates. 764 if (Indices.size() != 1) 765 return nullptr; // FIXME: deal with more complex aggregates? 766 767 // Now, we may have already previously recorded the value for this element 768 // of an aggregate. If we did, that means the CurrIVI will later be 769 // overwritten with the already-recorded value. But if not, let's record it! 770 Optional<Value *> &Elt = AggElts[Indices.front()]; 771 Elt = Elt.getValueOr(InsertedValue); 772 773 // FIXME: should we handle chain-terminating undef base operand? 774 } 775 776 // Was that sufficient to deduce the full initializer for the aggregate? 777 if (!KnowAllElts()) 778 return nullptr; // Give up then. 779 780 // We now want to find the source[s] of the aggregate elements we've found. 781 // And with "source" we mean the original aggregate[s] from which 782 // the inserted elements were extracted. This may require PHI translation. 783 784 enum class AggregateDescription { 785 /// When analyzing the value that was inserted into an aggregate, we did 786 /// not manage to find defining `extractvalue` instruction to analyze. 787 NotFound, 788 /// When analyzing the value that was inserted into an aggregate, we did 789 /// manage to find defining `extractvalue` instruction[s], and everything 790 /// matched perfectly - aggregate type, element insertion/extraction index. 791 Found, 792 /// When analyzing the value that was inserted into an aggregate, we did 793 /// manage to find defining `extractvalue` instruction, but there was 794 /// a mismatch: either the source type from which the extraction was didn't 795 /// match the aggregate type into which the insertion was, 796 /// or the extraction/insertion channels mismatched, 797 /// or different elements had different source aggregates. 798 FoundMismatch 799 }; 800 auto Describe = [](Optional<Value *> SourceAggregate) { 801 if (SourceAggregate == NotFound) 802 return AggregateDescription::NotFound; 803 if (*SourceAggregate == FoundMismatch) 804 return AggregateDescription::FoundMismatch; 805 return AggregateDescription::Found; 806 }; 807 808 // Given the value \p Elt that was being inserted into element \p EltIdx of an 809 // aggregate AggTy, see if \p Elt was originally defined by an 810 // appropriate extractvalue (same element index, same aggregate type). 811 // If found, return the source aggregate from which the extraction was. 812 // If \p PredBB is provided, does PHI translation of an \p Elt first. 813 auto FindSourceAggregate = 814 [&](Value *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 815 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 816 // For now(?), only deal with, at most, a single level of PHI indirection. 817 if (UseBB && PredBB) 818 Elt = Elt->DoPHITranslation(*UseBB, *PredBB); 819 // FIXME: deal with multiple levels of PHI indirection? 820 821 // Did we find an extraction? 822 auto *EVI = dyn_cast<ExtractValueInst>(Elt); 823 if (!EVI) 824 return NotFound; 825 826 Value *SourceAggregate = EVI->getAggregateOperand(); 827 828 // Is the extraction from the same type into which the insertion was? 829 if (SourceAggregate->getType() != AggTy) 830 return FoundMismatch; 831 // And the element index doesn't change between extraction and insertion? 832 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 833 return FoundMismatch; 834 835 return SourceAggregate; // AggregateDescription::Found 836 }; 837 838 // Given elements AggElts that were constructing an aggregate OrigIVI, 839 // see if we can find appropriate source aggregate for each of the elements, 840 // and see it's the same aggregate for each element. If so, return it. 841 auto FindCommonSourceAggregate = 842 [&](Optional<BasicBlock *> UseBB, 843 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 844 Optional<Value *> SourceAggregate; 845 846 for (auto I : enumerate(AggElts)) { 847 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 848 "We don't store nullptr in SourceAggregate!"); 849 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 850 (I.index() != 0) && 851 "SourceAggregate should be valid after the the first element,"); 852 853 // For this element, is there a plausible source aggregate? 854 // FIXME: we could special-case undef element, IFF we know that in the 855 // source aggregate said element isn't poison. 856 Optional<Value *> SourceAggregateForElement = 857 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 858 859 // Okay, what have we found? Does that correlate with previous findings? 860 861 // Regardless of whether or not we have previously found source 862 // aggregate for previous elements (if any), if we didn't find one for 863 // this element, passthrough whatever we have just found. 864 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 865 return SourceAggregateForElement; 866 867 // Okay, we have found source aggregate for this element. 868 // Let's see what we already know from previous elements, if any. 869 switch (Describe(SourceAggregate)) { 870 case AggregateDescription::NotFound: 871 // This is apparently the first element that we have examined. 872 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 873 continue; // Great, now look at next element. 874 case AggregateDescription::Found: 875 // We have previously already successfully examined other elements. 876 // Is this the same source aggregate we've found for other elements? 877 if (*SourceAggregateForElement != *SourceAggregate) 878 return FoundMismatch; 879 continue; // Still the same aggregate, look at next element. 880 case AggregateDescription::FoundMismatch: 881 llvm_unreachable("Can't happen. We would have early-exited then."); 882 }; 883 } 884 885 assert(Describe(SourceAggregate) == AggregateDescription::Found && 886 "Must be a valid Value"); 887 return *SourceAggregate; 888 }; 889 890 Optional<Value *> SourceAggregate; 891 892 // Can we find the source aggregate without looking at predecessors? 893 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 894 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 895 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 896 return nullptr; // Conflicting source aggregates! 897 ++NumAggregateReconstructionsSimplified; 898 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 899 } 900 901 // Okay, apparently we need to look at predecessors. 902 903 // We should be smart about picking the "use" basic block, which will be the 904 // merge point for aggregate, where we'll insert the final PHI that will be 905 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 906 // We should look in which blocks each of the AggElts is being defined, 907 // they all should be defined in the same basic block. 908 BasicBlock *UseBB = nullptr; 909 910 for (const Optional<Value *> &Elt : AggElts) { 911 // If this element's value was not defined by an instruction, ignore it. 912 auto *I = dyn_cast<Instruction>(*Elt); 913 if (!I) 914 continue; 915 // Otherwise, in which basic block is this instruction located? 916 BasicBlock *BB = I->getParent(); 917 // If it's the first instruction we've encountered, record the basic block. 918 if (!UseBB) { 919 UseBB = BB; 920 continue; 921 } 922 // Otherwise, this must be the same basic block we've seen previously. 923 if (UseBB != BB) 924 return nullptr; 925 } 926 927 // If *all* of the elements are basic-block-independent, meaning they are 928 // either function arguments, or constant expressions, then if we didn't 929 // handle them without predecessor-aware handling, we won't handle them now. 930 if (!UseBB) 931 return nullptr; 932 933 // If we didn't manage to find source aggregate without looking at 934 // predecessors, and there are no predecessors to look at, then we're done. 935 if (pred_empty(UseBB)) 936 return nullptr; 937 938 // Arbitrary predecessor count limit. 939 static const int PredCountLimit = 64; 940 941 // Cache the (non-uniqified!) list of predecessors in a vector, 942 // checking the limit at the same time for efficiency. 943 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 944 for (BasicBlock *Pred : predecessors(UseBB)) { 945 // Don't bother if there are too many predecessors. 946 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 947 return nullptr; 948 Preds.emplace_back(Pred); 949 } 950 951 // For each predecessor, what is the source aggregate, 952 // from which all the elements were originally extracted from? 953 // Note that we want for the map to have stable iteration order! 954 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 955 for (BasicBlock *Pred : Preds) { 956 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 957 SourceAggregates.insert({Pred, nullptr}); 958 // Did we already evaluate this predecessor? 959 if (!IV.second) 960 continue; 961 962 // Let's hope that when coming from predecessor Pred, all elements of the 963 // aggregate produced by OrigIVI must have been originally extracted from 964 // the same aggregate. Is that so? Can we find said original aggregate? 965 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 966 if (Describe(SourceAggregate) != AggregateDescription::Found) 967 return nullptr; // Give up. 968 IV.first->second = *SourceAggregate; 969 } 970 971 // All good! Now we just need to thread the source aggregates here. 972 // Note that we have to insert the new PHI here, ourselves, because we can't 973 // rely on InstCombinerImpl::run() inserting it into the right basic block. 974 // Note that the same block can be a predecessor more than once, 975 // and we need to preserve that invariant for the PHI node. 976 BuilderTy::InsertPointGuard Guard(Builder); 977 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 978 auto *PHI = 979 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 980 for (BasicBlock *Pred : Preds) 981 PHI->addIncoming(SourceAggregates[Pred], Pred); 982 983 ++NumAggregateReconstructionsSimplified; 984 return replaceInstUsesWith(OrigIVI, PHI); 985 } 986 987 /// Try to find redundant insertvalue instructions, like the following ones: 988 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 989 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 990 /// Here the second instruction inserts values at the same indices, as the 991 /// first one, making the first one redundant. 992 /// It should be transformed to: 993 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 994 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 995 bool IsRedundant = false; 996 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 997 998 // If there is a chain of insertvalue instructions (each of them except the 999 // last one has only one use and it's another insertvalue insn from this 1000 // chain), check if any of the 'children' uses the same indices as the first 1001 // instruction. In this case, the first one is redundant. 1002 Value *V = &I; 1003 unsigned Depth = 0; 1004 while (V->hasOneUse() && Depth < 10) { 1005 User *U = V->user_back(); 1006 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1007 if (!UserInsInst || U->getOperand(0) != V) 1008 break; 1009 if (UserInsInst->getIndices() == FirstIndices) { 1010 IsRedundant = true; 1011 break; 1012 } 1013 V = UserInsInst; 1014 Depth++; 1015 } 1016 1017 if (IsRedundant) 1018 return replaceInstUsesWith(I, I.getOperand(0)); 1019 1020 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1021 return NewI; 1022 1023 return nullptr; 1024 } 1025 1026 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1027 // Can not analyze scalable type, the number of elements is not a compile-time 1028 // constant. 1029 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1030 return false; 1031 1032 int MaskSize = Shuf.getShuffleMask().size(); 1033 int VecSize = 1034 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1035 1036 // A vector select does not change the size of the operands. 1037 if (MaskSize != VecSize) 1038 return false; 1039 1040 // Each mask element must be undefined or choose a vector element from one of 1041 // the source operands without crossing vector lanes. 1042 for (int i = 0; i != MaskSize; ++i) { 1043 int Elt = Shuf.getMaskValue(i); 1044 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1045 return false; 1046 } 1047 1048 return true; 1049 } 1050 1051 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1052 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1053 /// shufflevector(insertelt(X, %k, 0), undef, zero) 1054 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1055 // We are interested in the last insert in a chain. So if this insert has a 1056 // single user and that user is an insert, bail. 1057 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1058 return nullptr; 1059 1060 VectorType *VecTy = InsElt.getType(); 1061 // Can not handle scalable type, the number of elements is not a compile-time 1062 // constant. 1063 if (isa<ScalableVectorType>(VecTy)) 1064 return nullptr; 1065 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1066 1067 // Do not try to do this for a one-element vector, since that's a nop, 1068 // and will cause an inf-loop. 1069 if (NumElements == 1) 1070 return nullptr; 1071 1072 Value *SplatVal = InsElt.getOperand(1); 1073 InsertElementInst *CurrIE = &InsElt; 1074 SmallBitVector ElementPresent(NumElements, false); 1075 InsertElementInst *FirstIE = nullptr; 1076 1077 // Walk the chain backwards, keeping track of which indices we inserted into, 1078 // until we hit something that isn't an insert of the splatted value. 1079 while (CurrIE) { 1080 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1081 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1082 return nullptr; 1083 1084 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1085 // Check none of the intermediate steps have any additional uses, except 1086 // for the root insertelement instruction, which can be re-used, if it 1087 // inserts at position 0. 1088 if (CurrIE != &InsElt && 1089 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1090 return nullptr; 1091 1092 ElementPresent[Idx->getZExtValue()] = true; 1093 FirstIE = CurrIE; 1094 CurrIE = NextIE; 1095 } 1096 1097 // If this is just a single insertelement (not a sequence), we are done. 1098 if (FirstIE == &InsElt) 1099 return nullptr; 1100 1101 // If we are not inserting into an undef vector, make sure we've seen an 1102 // insert into every element. 1103 // TODO: If the base vector is not undef, it might be better to create a splat 1104 // and then a select-shuffle (blend) with the base vector. 1105 if (!isa<UndefValue>(FirstIE->getOperand(0))) 1106 if (!ElementPresent.all()) 1107 return nullptr; 1108 1109 // Create the insert + shuffle. 1110 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1111 UndefValue *UndefVec = UndefValue::get(VecTy); 1112 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1113 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1114 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 1115 1116 // Splat from element 0, but replace absent elements with undef in the mask. 1117 SmallVector<int, 16> Mask(NumElements, 0); 1118 for (unsigned i = 0; i != NumElements; ++i) 1119 if (!ElementPresent[i]) 1120 Mask[i] = -1; 1121 1122 return new ShuffleVectorInst(FirstIE, UndefVec, Mask); 1123 } 1124 1125 /// Try to fold an insert element into an existing splat shuffle by changing 1126 /// the shuffle's mask to include the index of this insert element. 1127 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1128 // Check if the vector operand of this insert is a canonical splat shuffle. 1129 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1130 if (!Shuf || !Shuf->isZeroEltSplat()) 1131 return nullptr; 1132 1133 // Bail out early if shuffle is scalable type. The number of elements in 1134 // shuffle mask is unknown at compile-time. 1135 if (isa<ScalableVectorType>(Shuf->getType())) 1136 return nullptr; 1137 1138 // Check for a constant insertion index. 1139 uint64_t IdxC; 1140 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1141 return nullptr; 1142 1143 // Check if the splat shuffle's input is the same as this insert's scalar op. 1144 Value *X = InsElt.getOperand(1); 1145 Value *Op0 = Shuf->getOperand(0); 1146 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1147 return nullptr; 1148 1149 // Replace the shuffle mask element at the index of this insert with a zero. 1150 // For example: 1151 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 1152 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 1153 unsigned NumMaskElts = 1154 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1155 SmallVector<int, 16> NewMask(NumMaskElts); 1156 for (unsigned i = 0; i != NumMaskElts; ++i) 1157 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1158 1159 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 1160 } 1161 1162 /// Try to fold an extract+insert element into an existing identity shuffle by 1163 /// changing the shuffle's mask to include the index of this insert element. 1164 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1165 // Check if the vector operand of this insert is an identity shuffle. 1166 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1167 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 1168 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1169 return nullptr; 1170 1171 // Bail out early if shuffle is scalable type. The number of elements in 1172 // shuffle mask is unknown at compile-time. 1173 if (isa<ScalableVectorType>(Shuf->getType())) 1174 return nullptr; 1175 1176 // Check for a constant insertion index. 1177 uint64_t IdxC; 1178 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1179 return nullptr; 1180 1181 // Check if this insert's scalar op is extracted from the identity shuffle's 1182 // input vector. 1183 Value *Scalar = InsElt.getOperand(1); 1184 Value *X = Shuf->getOperand(0); 1185 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1186 return nullptr; 1187 1188 // Replace the shuffle mask element at the index of this extract+insert with 1189 // that same index value. 1190 // For example: 1191 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1192 unsigned NumMaskElts = 1193 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1194 SmallVector<int, 16> NewMask(NumMaskElts); 1195 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1196 for (unsigned i = 0; i != NumMaskElts; ++i) { 1197 if (i != IdxC) { 1198 // All mask elements besides the inserted element remain the same. 1199 NewMask[i] = OldMask[i]; 1200 } else if (OldMask[i] == (int)IdxC) { 1201 // If the mask element was already set, there's nothing to do 1202 // (demanded elements analysis may unset it later). 1203 return nullptr; 1204 } else { 1205 assert(OldMask[i] == UndefMaskElem && 1206 "Unexpected shuffle mask element for identity shuffle"); 1207 NewMask[i] = IdxC; 1208 } 1209 } 1210 1211 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1212 } 1213 1214 /// If we have an insertelement instruction feeding into another insertelement 1215 /// and the 2nd is inserting a constant into the vector, canonicalize that 1216 /// constant insertion before the insertion of a variable: 1217 /// 1218 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1219 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1220 /// 1221 /// This has the potential of eliminating the 2nd insertelement instruction 1222 /// via constant folding of the scalar constant into a vector constant. 1223 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1224 InstCombiner::BuilderTy &Builder) { 1225 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1226 if (!InsElt1 || !InsElt1->hasOneUse()) 1227 return nullptr; 1228 1229 Value *X, *Y; 1230 Constant *ScalarC; 1231 ConstantInt *IdxC1, *IdxC2; 1232 if (match(InsElt1->getOperand(0), m_Value(X)) && 1233 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1234 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1235 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1236 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1237 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1238 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1239 } 1240 1241 return nullptr; 1242 } 1243 1244 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1245 /// --> shufflevector X, CVec', Mask' 1246 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1247 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1248 // Bail out if the parent has more than one use. In that case, we'd be 1249 // replacing the insertelt with a shuffle, and that's not a clear win. 1250 if (!Inst || !Inst->hasOneUse()) 1251 return nullptr; 1252 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1253 // The shuffle must have a constant vector operand. The insertelt must have 1254 // a constant scalar being inserted at a constant position in the vector. 1255 Constant *ShufConstVec, *InsEltScalar; 1256 uint64_t InsEltIndex; 1257 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1258 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1259 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1260 return nullptr; 1261 1262 // Adding an element to an arbitrary shuffle could be expensive, but a 1263 // shuffle that selects elements from vectors without crossing lanes is 1264 // assumed cheap. 1265 // If we're just adding a constant into that shuffle, it will still be 1266 // cheap. 1267 if (!isShuffleEquivalentToSelect(*Shuf)) 1268 return nullptr; 1269 1270 // From the above 'select' check, we know that the mask has the same number 1271 // of elements as the vector input operands. We also know that each constant 1272 // input element is used in its lane and can not be used more than once by 1273 // the shuffle. Therefore, replace the constant in the shuffle's constant 1274 // vector with the insertelt constant. Replace the constant in the shuffle's 1275 // mask vector with the insertelt index plus the length of the vector 1276 // (because the constant vector operand of a shuffle is always the 2nd 1277 // operand). 1278 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1279 unsigned NumElts = Mask.size(); 1280 SmallVector<Constant *, 16> NewShufElts(NumElts); 1281 SmallVector<int, 16> NewMaskElts(NumElts); 1282 for (unsigned I = 0; I != NumElts; ++I) { 1283 if (I == InsEltIndex) { 1284 NewShufElts[I] = InsEltScalar; 1285 NewMaskElts[I] = InsEltIndex + NumElts; 1286 } else { 1287 // Copy over the existing values. 1288 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1289 NewMaskElts[I] = Mask[I]; 1290 } 1291 } 1292 1293 // Create new operands for a shuffle that includes the constant of the 1294 // original insertelt. The old shuffle will be dead now. 1295 return new ShuffleVectorInst(Shuf->getOperand(0), 1296 ConstantVector::get(NewShufElts), NewMaskElts); 1297 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1298 // Transform sequences of insertelements ops with constant data/indexes into 1299 // a single shuffle op. 1300 // Can not handle scalable type, the number of elements needed to create 1301 // shuffle mask is not a compile-time constant. 1302 if (isa<ScalableVectorType>(InsElt.getType())) 1303 return nullptr; 1304 unsigned NumElts = 1305 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1306 1307 uint64_t InsertIdx[2]; 1308 Constant *Val[2]; 1309 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1310 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1311 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1312 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1313 return nullptr; 1314 SmallVector<Constant *, 16> Values(NumElts); 1315 SmallVector<int, 16> Mask(NumElts); 1316 auto ValI = std::begin(Val); 1317 // Generate new constant vector and mask. 1318 // We have 2 values/masks from the insertelements instructions. Insert them 1319 // into new value/mask vectors. 1320 for (uint64_t I : InsertIdx) { 1321 if (!Values[I]) { 1322 Values[I] = *ValI; 1323 Mask[I] = NumElts + I; 1324 } 1325 ++ValI; 1326 } 1327 // Remaining values are filled with 'undef' values. 1328 for (unsigned I = 0; I < NumElts; ++I) { 1329 if (!Values[I]) { 1330 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1331 Mask[I] = I; 1332 } 1333 } 1334 // Create new operands for a shuffle that includes the constant of the 1335 // original insertelt. 1336 return new ShuffleVectorInst(IEI->getOperand(0), 1337 ConstantVector::get(Values), Mask); 1338 } 1339 return nullptr; 1340 } 1341 1342 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1343 Value *VecOp = IE.getOperand(0); 1344 Value *ScalarOp = IE.getOperand(1); 1345 Value *IdxOp = IE.getOperand(2); 1346 1347 if (auto *V = SimplifyInsertElementInst( 1348 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1349 return replaceInstUsesWith(IE, V); 1350 1351 // If the scalar is bitcast and inserted into undef, do the insert in the 1352 // source type followed by bitcast. 1353 // TODO: Generalize for insert into any constant, not just undef? 1354 Value *ScalarSrc; 1355 if (match(VecOp, m_Undef()) && 1356 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1357 (ScalarSrc->getType()->isIntegerTy() || 1358 ScalarSrc->getType()->isFloatingPointTy())) { 1359 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1360 // bitcast (inselt undef, ScalarSrc, IdxOp) 1361 Type *ScalarTy = ScalarSrc->getType(); 1362 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1363 UndefValue *NewUndef = UndefValue::get(VecTy); 1364 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1365 return new BitCastInst(NewInsElt, IE.getType()); 1366 } 1367 1368 // If the vector and scalar are both bitcast from the same element type, do 1369 // the insert in that source type followed by bitcast. 1370 Value *VecSrc; 1371 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1372 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1373 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1374 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1375 cast<VectorType>(VecSrc->getType())->getElementType() == 1376 ScalarSrc->getType()) { 1377 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1378 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1379 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1380 return new BitCastInst(NewInsElt, IE.getType()); 1381 } 1382 1383 // If the inserted element was extracted from some other fixed-length vector 1384 // and both indexes are valid constants, try to turn this into a shuffle. 1385 // Can not handle scalable vector type, the number of elements needed to 1386 // create shuffle mask is not a compile-time constant. 1387 uint64_t InsertedIdx, ExtractedIdx; 1388 Value *ExtVecOp; 1389 if (isa<FixedVectorType>(IE.getType()) && 1390 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1391 match(ScalarOp, 1392 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1393 isa<FixedVectorType>(ExtVecOp->getType()) && 1394 ExtractedIdx < 1395 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1396 // TODO: Looking at the user(s) to determine if this insert is a 1397 // fold-to-shuffle opportunity does not match the usual instcombine 1398 // constraints. We should decide if the transform is worthy based only 1399 // on this instruction and its operands, but that may not work currently. 1400 // 1401 // Here, we are trying to avoid creating shuffles before reaching 1402 // the end of a chain of extract-insert pairs. This is complicated because 1403 // we do not generally form arbitrary shuffle masks in instcombine 1404 // (because those may codegen poorly), but collectShuffleElements() does 1405 // exactly that. 1406 // 1407 // The rules for determining what is an acceptable target-independent 1408 // shuffle mask are fuzzy because they evolve based on the backend's 1409 // capabilities and real-world impact. 1410 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1411 if (!Insert.hasOneUse()) 1412 return true; 1413 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1414 if (!InsertUser) 1415 return true; 1416 return false; 1417 }; 1418 1419 // Try to form a shuffle from a chain of extract-insert ops. 1420 if (isShuffleRootCandidate(IE)) { 1421 SmallVector<int, 16> Mask; 1422 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1423 1424 // The proposed shuffle may be trivial, in which case we shouldn't 1425 // perform the combine. 1426 if (LR.first != &IE && LR.second != &IE) { 1427 // We now have a shuffle of LHS, RHS, Mask. 1428 if (LR.second == nullptr) 1429 LR.second = UndefValue::get(LR.first->getType()); 1430 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1431 } 1432 } 1433 } 1434 1435 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1436 unsigned VWidth = VecTy->getNumElements(); 1437 APInt UndefElts(VWidth, 0); 1438 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1439 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1440 if (V != &IE) 1441 return replaceInstUsesWith(IE, V); 1442 return &IE; 1443 } 1444 } 1445 1446 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1447 return Shuf; 1448 1449 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1450 return NewInsElt; 1451 1452 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1453 return Broadcast; 1454 1455 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1456 return Splat; 1457 1458 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1459 return IdentityShuf; 1460 1461 return nullptr; 1462 } 1463 1464 /// Return true if we can evaluate the specified expression tree if the vector 1465 /// elements were shuffled in a different order. 1466 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1467 unsigned Depth = 5) { 1468 // We can always reorder the elements of a constant. 1469 if (isa<Constant>(V)) 1470 return true; 1471 1472 // We won't reorder vector arguments. No IPO here. 1473 Instruction *I = dyn_cast<Instruction>(V); 1474 if (!I) return false; 1475 1476 // Two users may expect different orders of the elements. Don't try it. 1477 if (!I->hasOneUse()) 1478 return false; 1479 1480 if (Depth == 0) return false; 1481 1482 switch (I->getOpcode()) { 1483 case Instruction::UDiv: 1484 case Instruction::SDiv: 1485 case Instruction::URem: 1486 case Instruction::SRem: 1487 // Propagating an undefined shuffle mask element to integer div/rem is not 1488 // allowed because those opcodes can create immediate undefined behavior 1489 // from an undefined element in an operand. 1490 if (llvm::is_contained(Mask, -1)) 1491 return false; 1492 LLVM_FALLTHROUGH; 1493 case Instruction::Add: 1494 case Instruction::FAdd: 1495 case Instruction::Sub: 1496 case Instruction::FSub: 1497 case Instruction::Mul: 1498 case Instruction::FMul: 1499 case Instruction::FDiv: 1500 case Instruction::FRem: 1501 case Instruction::Shl: 1502 case Instruction::LShr: 1503 case Instruction::AShr: 1504 case Instruction::And: 1505 case Instruction::Or: 1506 case Instruction::Xor: 1507 case Instruction::ICmp: 1508 case Instruction::FCmp: 1509 case Instruction::Trunc: 1510 case Instruction::ZExt: 1511 case Instruction::SExt: 1512 case Instruction::FPToUI: 1513 case Instruction::FPToSI: 1514 case Instruction::UIToFP: 1515 case Instruction::SIToFP: 1516 case Instruction::FPTrunc: 1517 case Instruction::FPExt: 1518 case Instruction::GetElementPtr: { 1519 // Bail out if we would create longer vector ops. We could allow creating 1520 // longer vector ops, but that may result in more expensive codegen. 1521 Type *ITy = I->getType(); 1522 if (ITy->isVectorTy() && 1523 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1524 return false; 1525 for (Value *Operand : I->operands()) { 1526 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1527 return false; 1528 } 1529 return true; 1530 } 1531 case Instruction::InsertElement: { 1532 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1533 if (!CI) return false; 1534 int ElementNumber = CI->getLimitedValue(); 1535 1536 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1537 // can't put an element into multiple indices. 1538 bool SeenOnce = false; 1539 for (int i = 0, e = Mask.size(); i != e; ++i) { 1540 if (Mask[i] == ElementNumber) { 1541 if (SeenOnce) 1542 return false; 1543 SeenOnce = true; 1544 } 1545 } 1546 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1547 } 1548 } 1549 return false; 1550 } 1551 1552 /// Rebuild a new instruction just like 'I' but with the new operands given. 1553 /// In the event of type mismatch, the type of the operands is correct. 1554 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1555 // We don't want to use the IRBuilder here because we want the replacement 1556 // instructions to appear next to 'I', not the builder's insertion point. 1557 switch (I->getOpcode()) { 1558 case Instruction::Add: 1559 case Instruction::FAdd: 1560 case Instruction::Sub: 1561 case Instruction::FSub: 1562 case Instruction::Mul: 1563 case Instruction::FMul: 1564 case Instruction::UDiv: 1565 case Instruction::SDiv: 1566 case Instruction::FDiv: 1567 case Instruction::URem: 1568 case Instruction::SRem: 1569 case Instruction::FRem: 1570 case Instruction::Shl: 1571 case Instruction::LShr: 1572 case Instruction::AShr: 1573 case Instruction::And: 1574 case Instruction::Or: 1575 case Instruction::Xor: { 1576 BinaryOperator *BO = cast<BinaryOperator>(I); 1577 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1578 BinaryOperator *New = 1579 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1580 NewOps[0], NewOps[1], "", BO); 1581 if (isa<OverflowingBinaryOperator>(BO)) { 1582 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1583 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1584 } 1585 if (isa<PossiblyExactOperator>(BO)) { 1586 New->setIsExact(BO->isExact()); 1587 } 1588 if (isa<FPMathOperator>(BO)) 1589 New->copyFastMathFlags(I); 1590 return New; 1591 } 1592 case Instruction::ICmp: 1593 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1594 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1595 NewOps[0], NewOps[1]); 1596 case Instruction::FCmp: 1597 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1598 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1599 NewOps[0], NewOps[1]); 1600 case Instruction::Trunc: 1601 case Instruction::ZExt: 1602 case Instruction::SExt: 1603 case Instruction::FPToUI: 1604 case Instruction::FPToSI: 1605 case Instruction::UIToFP: 1606 case Instruction::SIToFP: 1607 case Instruction::FPTrunc: 1608 case Instruction::FPExt: { 1609 // It's possible that the mask has a different number of elements from 1610 // the original cast. We recompute the destination type to match the mask. 1611 Type *DestTy = VectorType::get( 1612 I->getType()->getScalarType(), 1613 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1614 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1615 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1616 "", I); 1617 } 1618 case Instruction::GetElementPtr: { 1619 Value *Ptr = NewOps[0]; 1620 ArrayRef<Value*> Idx = NewOps.slice(1); 1621 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1622 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1623 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1624 return GEP; 1625 } 1626 } 1627 llvm_unreachable("failed to rebuild vector instructions"); 1628 } 1629 1630 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1631 // Mask.size() does not need to be equal to the number of vector elements. 1632 1633 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1634 Type *EltTy = V->getType()->getScalarType(); 1635 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1636 if (isa<UndefValue>(V)) 1637 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1638 1639 if (isa<ConstantAggregateZero>(V)) 1640 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1641 1642 if (Constant *C = dyn_cast<Constant>(V)) 1643 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1644 Mask); 1645 1646 Instruction *I = cast<Instruction>(V); 1647 switch (I->getOpcode()) { 1648 case Instruction::Add: 1649 case Instruction::FAdd: 1650 case Instruction::Sub: 1651 case Instruction::FSub: 1652 case Instruction::Mul: 1653 case Instruction::FMul: 1654 case Instruction::UDiv: 1655 case Instruction::SDiv: 1656 case Instruction::FDiv: 1657 case Instruction::URem: 1658 case Instruction::SRem: 1659 case Instruction::FRem: 1660 case Instruction::Shl: 1661 case Instruction::LShr: 1662 case Instruction::AShr: 1663 case Instruction::And: 1664 case Instruction::Or: 1665 case Instruction::Xor: 1666 case Instruction::ICmp: 1667 case Instruction::FCmp: 1668 case Instruction::Trunc: 1669 case Instruction::ZExt: 1670 case Instruction::SExt: 1671 case Instruction::FPToUI: 1672 case Instruction::FPToSI: 1673 case Instruction::UIToFP: 1674 case Instruction::SIToFP: 1675 case Instruction::FPTrunc: 1676 case Instruction::FPExt: 1677 case Instruction::Select: 1678 case Instruction::GetElementPtr: { 1679 SmallVector<Value*, 8> NewOps; 1680 bool NeedsRebuild = 1681 (Mask.size() != 1682 cast<FixedVectorType>(I->getType())->getNumElements()); 1683 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1684 Value *V; 1685 // Recursively call evaluateInDifferentElementOrder on vector arguments 1686 // as well. E.g. GetElementPtr may have scalar operands even if the 1687 // return value is a vector, so we need to examine the operand type. 1688 if (I->getOperand(i)->getType()->isVectorTy()) 1689 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1690 else 1691 V = I->getOperand(i); 1692 NewOps.push_back(V); 1693 NeedsRebuild |= (V != I->getOperand(i)); 1694 } 1695 if (NeedsRebuild) { 1696 return buildNew(I, NewOps); 1697 } 1698 return I; 1699 } 1700 case Instruction::InsertElement: { 1701 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1702 1703 // The insertelement was inserting at Element. Figure out which element 1704 // that becomes after shuffling. The answer is guaranteed to be unique 1705 // by CanEvaluateShuffled. 1706 bool Found = false; 1707 int Index = 0; 1708 for (int e = Mask.size(); Index != e; ++Index) { 1709 if (Mask[Index] == Element) { 1710 Found = true; 1711 break; 1712 } 1713 } 1714 1715 // If element is not in Mask, no need to handle the operand 1 (element to 1716 // be inserted). Just evaluate values in operand 0 according to Mask. 1717 if (!Found) 1718 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1719 1720 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1721 return InsertElementInst::Create(V, I->getOperand(1), 1722 ConstantInt::get(I32Ty, Index), "", I); 1723 } 1724 } 1725 llvm_unreachable("failed to reorder elements of vector instruction!"); 1726 } 1727 1728 // Returns true if the shuffle is extracting a contiguous range of values from 1729 // LHS, for example: 1730 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1731 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1732 // Shuffles to: |EE|FF|GG|HH| 1733 // +--+--+--+--+ 1734 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1735 ArrayRef<int> Mask) { 1736 unsigned LHSElems = 1737 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1738 unsigned MaskElems = Mask.size(); 1739 unsigned BegIdx = Mask.front(); 1740 unsigned EndIdx = Mask.back(); 1741 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1742 return false; 1743 for (unsigned I = 0; I != MaskElems; ++I) 1744 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1745 return false; 1746 return true; 1747 } 1748 1749 /// These are the ingredients in an alternate form binary operator as described 1750 /// below. 1751 struct BinopElts { 1752 BinaryOperator::BinaryOps Opcode; 1753 Value *Op0; 1754 Value *Op1; 1755 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1756 Value *V0 = nullptr, Value *V1 = nullptr) : 1757 Opcode(Opc), Op0(V0), Op1(V1) {} 1758 operator bool() const { return Opcode != 0; } 1759 }; 1760 1761 /// Binops may be transformed into binops with different opcodes and operands. 1762 /// Reverse the usual canonicalization to enable folds with the non-canonical 1763 /// form of the binop. If a transform is possible, return the elements of the 1764 /// new binop. If not, return invalid elements. 1765 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1766 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1767 Type *Ty = BO->getType(); 1768 switch (BO->getOpcode()) { 1769 case Instruction::Shl: { 1770 // shl X, C --> mul X, (1 << C) 1771 Constant *C; 1772 if (match(BO1, m_Constant(C))) { 1773 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1774 return { Instruction::Mul, BO0, ShlOne }; 1775 } 1776 break; 1777 } 1778 case Instruction::Or: { 1779 // or X, C --> add X, C (when X and C have no common bits set) 1780 const APInt *C; 1781 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1782 return { Instruction::Add, BO0, BO1 }; 1783 break; 1784 } 1785 default: 1786 break; 1787 } 1788 return {}; 1789 } 1790 1791 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1792 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1793 1794 // Are we shuffling together some value and that same value after it has been 1795 // modified by a binop with a constant? 1796 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1797 Constant *C; 1798 bool Op0IsBinop; 1799 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1800 Op0IsBinop = true; 1801 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1802 Op0IsBinop = false; 1803 else 1804 return nullptr; 1805 1806 // The identity constant for a binop leaves a variable operand unchanged. For 1807 // a vector, this is a splat of something like 0, -1, or 1. 1808 // If there's no identity constant for this binop, we're done. 1809 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1810 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1811 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1812 if (!IdC) 1813 return nullptr; 1814 1815 // Shuffle identity constants into the lanes that return the original value. 1816 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1817 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1818 // The existing binop constant vector remains in the same operand position. 1819 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1820 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1821 ConstantExpr::getShuffleVector(IdC, C, Mask); 1822 1823 bool MightCreatePoisonOrUB = 1824 is_contained(Mask, UndefMaskElem) && 1825 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1826 if (MightCreatePoisonOrUB) 1827 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1828 1829 // shuf (bop X, C), X, M --> bop X, C' 1830 // shuf X, (bop X, C), M --> bop X, C' 1831 Value *X = Op0IsBinop ? Op1 : Op0; 1832 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1833 NewBO->copyIRFlags(BO); 1834 1835 // An undef shuffle mask element may propagate as an undef constant element in 1836 // the new binop. That would produce poison where the original code might not. 1837 // If we already made a safe constant, then there's no danger. 1838 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1839 NewBO->dropPoisonGeneratingFlags(); 1840 return NewBO; 1841 } 1842 1843 /// If we have an insert of a scalar to a non-zero element of an undefined 1844 /// vector and then shuffle that value, that's the same as inserting to the zero 1845 /// element and shuffling. Splatting from the zero element is recognized as the 1846 /// canonical form of splat. 1847 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1848 InstCombiner::BuilderTy &Builder) { 1849 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1850 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1851 Value *X; 1852 uint64_t IndexC; 1853 1854 // Match a shuffle that is a splat to a non-zero element. 1855 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 1856 m_ConstantInt(IndexC)))) || 1857 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1858 return nullptr; 1859 1860 // Insert into element 0 of an undef vector. 1861 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1862 Constant *Zero = Builder.getInt32(0); 1863 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1864 1865 // Splat from element 0. Any mask element that is undefined remains undefined. 1866 // For example: 1867 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1868 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1869 unsigned NumMaskElts = 1870 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 1871 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1872 for (unsigned i = 0; i != NumMaskElts; ++i) 1873 if (Mask[i] == UndefMaskElem) 1874 NewMask[i] = Mask[i]; 1875 1876 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1877 } 1878 1879 /// Try to fold shuffles that are the equivalent of a vector select. 1880 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1881 InstCombiner::BuilderTy &Builder, 1882 const DataLayout &DL) { 1883 if (!Shuf.isSelect()) 1884 return nullptr; 1885 1886 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1887 // Commuting undef to operand 0 conflicts with another canonicalization. 1888 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 1889 if (!isa<UndefValue>(Shuf.getOperand(1)) && 1890 Shuf.getMaskValue(0) >= (int)NumElts) { 1891 // TODO: Can we assert that both operands of a shuffle-select are not undef 1892 // (otherwise, it would have been folded by instsimplify? 1893 Shuf.commute(); 1894 return &Shuf; 1895 } 1896 1897 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1898 return I; 1899 1900 BinaryOperator *B0, *B1; 1901 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1902 !match(Shuf.getOperand(1), m_BinOp(B1))) 1903 return nullptr; 1904 1905 Value *X, *Y; 1906 Constant *C0, *C1; 1907 bool ConstantsAreOp1; 1908 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1909 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1910 ConstantsAreOp1 = true; 1911 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1912 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1913 ConstantsAreOp1 = false; 1914 else 1915 return nullptr; 1916 1917 // We need matching binops to fold the lanes together. 1918 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1919 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1920 bool DropNSW = false; 1921 if (ConstantsAreOp1 && Opc0 != Opc1) { 1922 // TODO: We drop "nsw" if shift is converted into multiply because it may 1923 // not be correct when the shift amount is BitWidth - 1. We could examine 1924 // each vector element to determine if it is safe to keep that flag. 1925 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1926 DropNSW = true; 1927 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1928 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1929 Opc0 = AltB0.Opcode; 1930 C0 = cast<Constant>(AltB0.Op1); 1931 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1932 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1933 Opc1 = AltB1.Opcode; 1934 C1 = cast<Constant>(AltB1.Op1); 1935 } 1936 } 1937 1938 if (Opc0 != Opc1) 1939 return nullptr; 1940 1941 // The opcodes must be the same. Use a new name to make that clear. 1942 BinaryOperator::BinaryOps BOpc = Opc0; 1943 1944 // Select the constant elements needed for the single binop. 1945 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1946 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1947 1948 // We are moving a binop after a shuffle. When a shuffle has an undefined 1949 // mask element, the result is undefined, but it is not poison or undefined 1950 // behavior. That is not necessarily true for div/rem/shift. 1951 bool MightCreatePoisonOrUB = 1952 is_contained(Mask, UndefMaskElem) && 1953 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1954 if (MightCreatePoisonOrUB) 1955 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 1956 ConstantsAreOp1); 1957 1958 Value *V; 1959 if (X == Y) { 1960 // Remove a binop and the shuffle by rearranging the constant: 1961 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1962 // shuffle (op C0, V), (op C1, V), M --> op C', V 1963 V = X; 1964 } else { 1965 // If there are 2 different variable operands, we must create a new shuffle 1966 // (select) first, so check uses to ensure that we don't end up with more 1967 // instructions than we started with. 1968 if (!B0->hasOneUse() && !B1->hasOneUse()) 1969 return nullptr; 1970 1971 // If we use the original shuffle mask and op1 is *variable*, we would be 1972 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1973 // poison. We do not have to guard against UB when *constants* are op1 1974 // because safe constants guarantee that we do not overflow sdiv/srem (and 1975 // there's no danger for other opcodes). 1976 // TODO: To allow this case, create a new shuffle mask with no undefs. 1977 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1978 return nullptr; 1979 1980 // Note: In general, we do not create new shuffles in InstCombine because we 1981 // do not know if a target can lower an arbitrary shuffle optimally. In this 1982 // case, the shuffle uses the existing mask, so there is no additional risk. 1983 1984 // Select the variable vectors first, then perform the binop: 1985 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1986 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1987 V = Builder.CreateShuffleVector(X, Y, Mask); 1988 } 1989 1990 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1991 BinaryOperator::Create(BOpc, NewC, V); 1992 1993 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1994 // 1. If we changed an opcode, poison conditions might have changed. 1995 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1996 // where the original code did not. But if we already made a safe constant, 1997 // then there's no danger. 1998 NewBO->copyIRFlags(B0); 1999 NewBO->andIRFlags(B1); 2000 if (DropNSW) 2001 NewBO->setHasNoSignedWrap(false); 2002 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2003 NewBO->dropPoisonGeneratingFlags(); 2004 return NewBO; 2005 } 2006 2007 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2008 /// Example (little endian): 2009 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2010 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2011 bool IsBigEndian) { 2012 // This must be a bitcasted shuffle of 1 vector integer operand. 2013 Type *DestType = Shuf.getType(); 2014 Value *X; 2015 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2016 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2017 return nullptr; 2018 2019 // The source type must have the same number of elements as the shuffle, 2020 // and the source element type must be larger than the shuffle element type. 2021 Type *SrcType = X->getType(); 2022 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2023 cast<FixedVectorType>(SrcType)->getNumElements() != 2024 cast<FixedVectorType>(DestType)->getNumElements() || 2025 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2026 return nullptr; 2027 2028 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2029 "Expected a shuffle that decreases length"); 2030 2031 // Last, check that the mask chooses the correct low bits for each narrow 2032 // element in the result. 2033 uint64_t TruncRatio = 2034 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2035 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2036 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2037 if (Mask[i] == UndefMaskElem) 2038 continue; 2039 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2040 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2041 if (Mask[i] != (int)LSBIndex) 2042 return nullptr; 2043 } 2044 2045 return new TruncInst(X, DestType); 2046 } 2047 2048 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2049 /// narrowing (concatenating with undef and extracting back to the original 2050 /// length). This allows replacing the wide select with a narrow select. 2051 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2052 InstCombiner::BuilderTy &Builder) { 2053 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2054 // of the 1st vector operand of a shuffle. 2055 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2056 return nullptr; 2057 2058 // The vector being shuffled must be a vector select that we can eliminate. 2059 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2060 Value *Cond, *X, *Y; 2061 if (!match(Shuf.getOperand(0), 2062 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2063 return nullptr; 2064 2065 // We need a narrow condition value. It must be extended with undef elements 2066 // and have the same number of elements as this shuffle. 2067 unsigned NarrowNumElts = 2068 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2069 Value *NarrowCond; 2070 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2071 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2072 NarrowNumElts || 2073 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2074 return nullptr; 2075 2076 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2077 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2078 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2079 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2080 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2081 } 2082 2083 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2084 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2085 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2086 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 2087 return nullptr; 2088 2089 Value *X, *Y; 2090 ArrayRef<int> Mask; 2091 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2092 return nullptr; 2093 2094 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2095 // then combining may result in worse codegen. 2096 if (!Op0->hasOneUse()) 2097 return nullptr; 2098 2099 // We are extracting a subvector from a shuffle. Remove excess elements from 2100 // the 1st shuffle mask to eliminate the extract. 2101 // 2102 // This transform is conservatively limited to identity extracts because we do 2103 // not allow arbitrary shuffle mask creation as a target-independent transform 2104 // (because we can't guarantee that will lower efficiently). 2105 // 2106 // If the extracting shuffle has an undef mask element, it transfers to the 2107 // new shuffle mask. Otherwise, copy the original mask element. Example: 2108 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2109 // shuf X, Y, <C0, undef, C2, undef> 2110 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2111 SmallVector<int, 16> NewMask(NumElts); 2112 assert(NumElts < Mask.size() && 2113 "Identity with extract must have less elements than its inputs"); 2114 2115 for (unsigned i = 0; i != NumElts; ++i) { 2116 int ExtractMaskElt = Shuf.getMaskValue(i); 2117 int MaskElt = Mask[i]; 2118 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2119 } 2120 return new ShuffleVectorInst(X, Y, NewMask); 2121 } 2122 2123 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2124 /// operand with the operand of an insertelement. 2125 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2126 InstCombinerImpl &IC) { 2127 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2128 SmallVector<int, 16> Mask; 2129 Shuf.getShuffleMask(Mask); 2130 2131 // The shuffle must not change vector sizes. 2132 // TODO: This restriction could be removed if the insert has only one use 2133 // (because the transform would require a new length-changing shuffle). 2134 int NumElts = Mask.size(); 2135 if (NumElts != (int)(cast<FixedVectorType>(V0->getType())->getNumElements())) 2136 return nullptr; 2137 2138 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2139 // not be able to handle it there if the insertelement has >1 use. 2140 // If the shuffle has an insertelement operand but does not choose the 2141 // inserted scalar element from that value, then we can replace that shuffle 2142 // operand with the source vector of the insertelement. 2143 Value *X; 2144 uint64_t IdxC; 2145 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2146 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2147 if (!is_contained(Mask, (int)IdxC)) 2148 return IC.replaceOperand(Shuf, 0, X); 2149 } 2150 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2151 // Offset the index constant by the vector width because we are checking for 2152 // accesses to the 2nd vector input of the shuffle. 2153 IdxC += NumElts; 2154 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2155 if (!is_contained(Mask, (int)IdxC)) 2156 return IC.replaceOperand(Shuf, 1, X); 2157 } 2158 2159 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2160 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2161 // We need an insertelement with a constant index. 2162 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2163 m_ConstantInt(IndexC)))) 2164 return false; 2165 2166 // Test the shuffle mask to see if it splices the inserted scalar into the 2167 // operand 1 vector of the shuffle. 2168 int NewInsIndex = -1; 2169 for (int i = 0; i != NumElts; ++i) { 2170 // Ignore undef mask elements. 2171 if (Mask[i] == -1) 2172 continue; 2173 2174 // The shuffle takes elements of operand 1 without lane changes. 2175 if (Mask[i] == NumElts + i) 2176 continue; 2177 2178 // The shuffle must choose the inserted scalar exactly once. 2179 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2180 return false; 2181 2182 // The shuffle is placing the inserted scalar into element i. 2183 NewInsIndex = i; 2184 } 2185 2186 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2187 2188 // Index is updated to the potentially translated insertion lane. 2189 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2190 return true; 2191 }; 2192 2193 // If the shuffle is unnecessary, insert the scalar operand directly into 2194 // operand 1 of the shuffle. Example: 2195 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2196 Value *Scalar; 2197 ConstantInt *IndexC; 2198 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2199 return InsertElementInst::Create(V1, Scalar, IndexC); 2200 2201 // Try again after commuting shuffle. Example: 2202 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2203 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2204 std::swap(V0, V1); 2205 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2206 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2207 return InsertElementInst::Create(V1, Scalar, IndexC); 2208 2209 return nullptr; 2210 } 2211 2212 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2213 // Match the operands as identity with padding (also known as concatenation 2214 // with undef) shuffles of the same source type. The backend is expected to 2215 // recreate these concatenations from a shuffle of narrow operands. 2216 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2217 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2218 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2219 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2220 return nullptr; 2221 2222 // We limit this transform to power-of-2 types because we expect that the 2223 // backend can convert the simplified IR patterns to identical nodes as the 2224 // original IR. 2225 // TODO: If we can verify the same behavior for arbitrary types, the 2226 // power-of-2 checks can be removed. 2227 Value *X = Shuffle0->getOperand(0); 2228 Value *Y = Shuffle1->getOperand(0); 2229 if (X->getType() != Y->getType() || 2230 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2231 !isPowerOf2_32( 2232 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2233 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2234 isa<UndefValue>(X) || isa<UndefValue>(Y)) 2235 return nullptr; 2236 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 2237 isa<UndefValue>(Shuffle1->getOperand(1)) && 2238 "Unexpected operand for identity shuffle"); 2239 2240 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2241 // operands directly by adjusting the shuffle mask to account for the narrower 2242 // types: 2243 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2244 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2245 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2246 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2247 2248 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2249 SmallVector<int, 16> NewMask(Mask.size(), -1); 2250 for (int i = 0, e = Mask.size(); i != e; ++i) { 2251 if (Mask[i] == -1) 2252 continue; 2253 2254 // If this shuffle is choosing an undef element from 1 of the sources, that 2255 // element is undef. 2256 if (Mask[i] < WideElts) { 2257 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2258 continue; 2259 } else { 2260 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2261 continue; 2262 } 2263 2264 // If this shuffle is choosing from the 1st narrow op, the mask element is 2265 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2266 // element is offset down to adjust for the narrow vector widths. 2267 if (Mask[i] < WideElts) { 2268 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2269 NewMask[i] = Mask[i]; 2270 } else { 2271 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2272 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2273 } 2274 } 2275 return new ShuffleVectorInst(X, Y, NewMask); 2276 } 2277 2278 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2279 Value *LHS = SVI.getOperand(0); 2280 Value *RHS = SVI.getOperand(1); 2281 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2282 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2283 SVI.getType(), ShufQuery)) 2284 return replaceInstUsesWith(SVI, V); 2285 2286 // Bail out for scalable vectors 2287 if (isa<ScalableVectorType>(LHS->getType())) 2288 return nullptr; 2289 2290 // shuffle x, x, mask --> shuffle x, undef, mask' 2291 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2292 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2293 ArrayRef<int> Mask = SVI.getShuffleMask(); 2294 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2295 2296 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2297 // simulated shuffle can simplify, then this shuffle is unnecessary: 2298 // shuf (bitcast X), undef, Mask --> bitcast X' 2299 // TODO: This could be extended to allow length-changing shuffles. 2300 // The transform might also be obsoleted if we allowed canonicalization 2301 // of bitcasted shuffles. 2302 Value *X; 2303 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2304 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2305 // Try to create a scaled mask constant. 2306 auto *XType = cast<FixedVectorType>(X->getType()); 2307 unsigned XNumElts = XType->getNumElements(); 2308 SmallVector<int, 16> ScaledMask; 2309 if (XNumElts >= VWidth) { 2310 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2311 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2312 } else { 2313 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2314 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2315 ScaledMask.clear(); 2316 } 2317 if (!ScaledMask.empty()) { 2318 // If the shuffled source vector simplifies, cast that value to this 2319 // shuffle's type. 2320 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2321 ScaledMask, XType, ShufQuery)) 2322 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2323 } 2324 } 2325 2326 if (LHS == RHS) { 2327 assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?"); 2328 // Remap any references to RHS to use LHS. 2329 SmallVector<int, 16> Elts; 2330 for (unsigned i = 0; i != VWidth; ++i) { 2331 // Propagate undef elements or force mask to LHS. 2332 if (Mask[i] < 0) 2333 Elts.push_back(UndefMaskElem); 2334 else 2335 Elts.push_back(Mask[i] % LHSWidth); 2336 } 2337 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 2338 } 2339 2340 // shuffle undef, x, mask --> shuffle x, undef, mask' 2341 if (isa<UndefValue>(LHS)) { 2342 SVI.commute(); 2343 return &SVI; 2344 } 2345 2346 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2347 return I; 2348 2349 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2350 return I; 2351 2352 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2353 return I; 2354 2355 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2356 return I; 2357 2358 APInt UndefElts(VWidth, 0); 2359 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2360 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2361 if (V != &SVI) 2362 return replaceInstUsesWith(SVI, V); 2363 return &SVI; 2364 } 2365 2366 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2367 return I; 2368 2369 // These transforms have the potential to lose undef knowledge, so they are 2370 // intentionally placed after SimplifyDemandedVectorElts(). 2371 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2372 return I; 2373 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2374 return I; 2375 2376 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 2377 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2378 return replaceInstUsesWith(SVI, V); 2379 } 2380 2381 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2382 // a non-vector type. We can instead bitcast the original vector followed by 2383 // an extract of the desired element: 2384 // 2385 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2386 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2387 // %1 = bitcast <4 x i8> %sroa to i32 2388 // Becomes: 2389 // %bc = bitcast <16 x i8> %in to <4 x i32> 2390 // %ext = extractelement <4 x i32> %bc, i32 0 2391 // 2392 // If the shuffle is extracting a contiguous range of values from the input 2393 // vector then each use which is a bitcast of the extracted size can be 2394 // replaced. This will work if the vector types are compatible, and the begin 2395 // index is aligned to a value in the casted vector type. If the begin index 2396 // isn't aligned then we can shuffle the original vector (keeping the same 2397 // vector type) before extracting. 2398 // 2399 // This code will bail out if the target type is fundamentally incompatible 2400 // with vectors of the source type. 2401 // 2402 // Example of <16 x i8>, target type i32: 2403 // Index range [4,8): v-----------v Will work. 2404 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2405 // <16 x i8>: | | | | | | | | | | | | | | | | | 2406 // <4 x i32>: | | | | | 2407 // +-----------+-----------+-----------+-----------+ 2408 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2409 // Target type i40: ^--------------^ Won't work, bail. 2410 bool MadeChange = false; 2411 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2412 Value *V = LHS; 2413 unsigned MaskElems = Mask.size(); 2414 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2415 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2416 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2417 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2418 unsigned SrcNumElems = SrcTy->getNumElements(); 2419 SmallVector<BitCastInst *, 8> BCs; 2420 DenseMap<Type *, Value *> NewBCs; 2421 for (User *U : SVI.users()) 2422 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2423 if (!BC->use_empty()) 2424 // Only visit bitcasts that weren't previously handled. 2425 BCs.push_back(BC); 2426 for (BitCastInst *BC : BCs) { 2427 unsigned BegIdx = Mask.front(); 2428 Type *TgtTy = BC->getDestTy(); 2429 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2430 if (!TgtElemBitWidth) 2431 continue; 2432 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2433 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2434 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2435 if (!VecBitWidthsEqual) 2436 continue; 2437 if (!VectorType::isValidElementType(TgtTy)) 2438 continue; 2439 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2440 if (!BegIsAligned) { 2441 // Shuffle the input so [0,NumElements) contains the output, and 2442 // [NumElems,SrcNumElems) is undef. 2443 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2444 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2445 ShuffleMask[I] = Idx; 2446 V = Builder.CreateShuffleVector(V, ShuffleMask, 2447 SVI.getName() + ".extract"); 2448 BegIdx = 0; 2449 } 2450 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2451 assert(SrcElemsPerTgtElem); 2452 BegIdx /= SrcElemsPerTgtElem; 2453 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2454 auto *NewBC = 2455 BCAlreadyExists 2456 ? NewBCs[CastSrcTy] 2457 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2458 if (!BCAlreadyExists) 2459 NewBCs[CastSrcTy] = NewBC; 2460 auto *Ext = Builder.CreateExtractElement( 2461 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2462 // The shufflevector isn't being replaced: the bitcast that used it 2463 // is. InstCombine will visit the newly-created instructions. 2464 replaceInstUsesWith(*BC, Ext); 2465 MadeChange = true; 2466 } 2467 } 2468 2469 // If the LHS is a shufflevector itself, see if we can combine it with this 2470 // one without producing an unusual shuffle. 2471 // Cases that might be simplified: 2472 // 1. 2473 // x1=shuffle(v1,v2,mask1) 2474 // x=shuffle(x1,undef,mask) 2475 // ==> 2476 // x=shuffle(v1,undef,newMask) 2477 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2478 // 2. 2479 // x1=shuffle(v1,undef,mask1) 2480 // x=shuffle(x1,x2,mask) 2481 // where v1.size() == mask1.size() 2482 // ==> 2483 // x=shuffle(v1,x2,newMask) 2484 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2485 // 3. 2486 // x2=shuffle(v2,undef,mask2) 2487 // x=shuffle(x1,x2,mask) 2488 // where v2.size() == mask2.size() 2489 // ==> 2490 // x=shuffle(x1,v2,newMask) 2491 // newMask[i] = (mask[i] < x1.size()) 2492 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2493 // 4. 2494 // x1=shuffle(v1,undef,mask1) 2495 // x2=shuffle(v2,undef,mask2) 2496 // x=shuffle(x1,x2,mask) 2497 // where v1.size() == v2.size() 2498 // ==> 2499 // x=shuffle(v1,v2,newMask) 2500 // newMask[i] = (mask[i] < x1.size()) 2501 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2502 // 2503 // Here we are really conservative: 2504 // we are absolutely afraid of producing a shuffle mask not in the input 2505 // program, because the code gen may not be smart enough to turn a merged 2506 // shuffle into two specific shuffles: it may produce worse code. As such, 2507 // we only merge two shuffles if the result is either a splat or one of the 2508 // input shuffle masks. In this case, merging the shuffles just removes 2509 // one instruction, which we know is safe. This is good for things like 2510 // turning: (splat(splat)) -> splat, or 2511 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2512 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2513 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2514 if (LHSShuffle) 2515 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2516 LHSShuffle = nullptr; 2517 if (RHSShuffle) 2518 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2519 RHSShuffle = nullptr; 2520 if (!LHSShuffle && !RHSShuffle) 2521 return MadeChange ? &SVI : nullptr; 2522 2523 Value* LHSOp0 = nullptr; 2524 Value* LHSOp1 = nullptr; 2525 Value* RHSOp0 = nullptr; 2526 unsigned LHSOp0Width = 0; 2527 unsigned RHSOp0Width = 0; 2528 if (LHSShuffle) { 2529 LHSOp0 = LHSShuffle->getOperand(0); 2530 LHSOp1 = LHSShuffle->getOperand(1); 2531 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 2532 } 2533 if (RHSShuffle) { 2534 RHSOp0 = RHSShuffle->getOperand(0); 2535 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 2536 } 2537 Value* newLHS = LHS; 2538 Value* newRHS = RHS; 2539 if (LHSShuffle) { 2540 // case 1 2541 if (isa<UndefValue>(RHS)) { 2542 newLHS = LHSOp0; 2543 newRHS = LHSOp1; 2544 } 2545 // case 2 or 4 2546 else if (LHSOp0Width == LHSWidth) { 2547 newLHS = LHSOp0; 2548 } 2549 } 2550 // case 3 or 4 2551 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2552 newRHS = RHSOp0; 2553 } 2554 // case 4 2555 if (LHSOp0 == RHSOp0) { 2556 newLHS = LHSOp0; 2557 newRHS = nullptr; 2558 } 2559 2560 if (newLHS == LHS && newRHS == RHS) 2561 return MadeChange ? &SVI : nullptr; 2562 2563 ArrayRef<int> LHSMask; 2564 ArrayRef<int> RHSMask; 2565 if (newLHS != LHS) 2566 LHSMask = LHSShuffle->getShuffleMask(); 2567 if (RHSShuffle && newRHS != RHS) 2568 RHSMask = RHSShuffle->getShuffleMask(); 2569 2570 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2571 SmallVector<int, 16> newMask; 2572 bool isSplat = true; 2573 int SplatElt = -1; 2574 // Create a new mask for the new ShuffleVectorInst so that the new 2575 // ShuffleVectorInst is equivalent to the original one. 2576 for (unsigned i = 0; i < VWidth; ++i) { 2577 int eltMask; 2578 if (Mask[i] < 0) { 2579 // This element is an undef value. 2580 eltMask = -1; 2581 } else if (Mask[i] < (int)LHSWidth) { 2582 // This element is from left hand side vector operand. 2583 // 2584 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2585 // new mask value for the element. 2586 if (newLHS != LHS) { 2587 eltMask = LHSMask[Mask[i]]; 2588 // If the value selected is an undef value, explicitly specify it 2589 // with a -1 mask value. 2590 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2591 eltMask = -1; 2592 } else 2593 eltMask = Mask[i]; 2594 } else { 2595 // This element is from right hand side vector operand 2596 // 2597 // If the value selected is an undef value, explicitly specify it 2598 // with a -1 mask value. (case 1) 2599 if (isa<UndefValue>(RHS)) 2600 eltMask = -1; 2601 // If RHS is going to be replaced (case 3 or 4), calculate the 2602 // new mask value for the element. 2603 else if (newRHS != RHS) { 2604 eltMask = RHSMask[Mask[i]-LHSWidth]; 2605 // If the value selected is an undef value, explicitly specify it 2606 // with a -1 mask value. 2607 if (eltMask >= (int)RHSOp0Width) { 2608 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2609 && "should have been check above"); 2610 eltMask = -1; 2611 } 2612 } else 2613 eltMask = Mask[i]-LHSWidth; 2614 2615 // If LHS's width is changed, shift the mask value accordingly. 2616 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2617 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2618 // If newRHS == newLHS, we want to remap any references from newRHS to 2619 // newLHS so that we can properly identify splats that may occur due to 2620 // obfuscation across the two vectors. 2621 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2622 eltMask += newLHSWidth; 2623 } 2624 2625 // Check if this could still be a splat. 2626 if (eltMask >= 0) { 2627 if (SplatElt >= 0 && SplatElt != eltMask) 2628 isSplat = false; 2629 SplatElt = eltMask; 2630 } 2631 2632 newMask.push_back(eltMask); 2633 } 2634 2635 // If the result mask is equal to one of the original shuffle masks, 2636 // or is a splat, do the replacement. 2637 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2638 if (!newRHS) 2639 newRHS = UndefValue::get(newLHS->getType()); 2640 return new ShuffleVectorInst(newLHS, newRHS, newMask); 2641 } 2642 2643 return MadeChange ? &SVI : nullptr; 2644 } 2645